Document Type

Article

Publication Date

2006

Publication Title

Journal of Applied Biomechanics

Volume

22

Issue

4

First Page

275

Last Page

284

Abstract

The purpose of this research was to examine the effects of voluntarily manipulating muscle activation and localized muscle fatigue on tibial response parameters, including peak tibial acceleration, time to peak tibial acceleration, and the acceleration slope, measured at the knee during unshod heel impacts. A human pendulum delivered consistent impacts to 15 female and 15 male subjects. The tibialis anterior and lateral gastrocnemius were examined using electromyography, thus allowing voluntary contraction to various activation states (baseline, 15%, 30%, 45%, and 60% of the maximum activation state) and assessing localized muscle fatigue. A skin-mounted uniaxial accelerometer, preloaded medial to the tibial tuberosity, allowed tibial response parameter determination. There were significant decreases in peak acceleration during tibialis anterior fatigue, compared to baseline and all other activation states. In females, increased time to peak acceleration and decreased acceleration slope occurred during fatigue compared to 30% and 45%, and compared to 15% through 60% of the maximum activation state, respectively. Slight peak acceleration and acceleration slope increases, and decreased time to peak acceleration as activation state increased during tibialis anterior testing, were noted. When examining the lateral gastrocnemius, the time to peak acceleration was significantly higher across gender in the middle activation states than at the baseline and fatigue states. The acceleration slope decreased at all activation states above baseline in females, and decreased at 60% of the maximum activation state in males compared to the baseline and fatigue states. Findings agree with localized muscle fatigue literature, suggesting that with fatigue there is decreased impact transmission, which may protect the leg. The relative effects of leg stiffness and ankle angle on tibial response need to be verified.

Comments

This article was first published here: http://journals.humankinetics.com/jab

Included in

Biomechanics Commons

COinS