Handling missing data in self-report measures
Document Type
Article
Publication Date
2005
Publication Title
Research in Nursing & Health
Volume
28
Issue
6
Keywords
missing data, self-report measures, item level missingness, variable level missingness, imputation, deletion techniques
Abstract
Self-report measures are extensively used in nursing research. Data derived from such reports can be compromised by the problem of missing data. To help ensure accurate parameter estimates and valid research results, the problem of missing data needs to be appropriately addressed. However, a review of nursing research literature revealed that issues such as the extent and pattern of missingness, and the approach used to handle missing data are seldom reported. The purpose of this article is to provide researchers with a conceptual overview of the issues associated with missing data, procedures used in determining the pattern of missingness, and techniques for handling missing data. The article also highlights the advantages and disadvantages of these techniques, and makes distinctions between data that are missing at the item versus variable levels. Missing data handling techniques addressed in this article include deletion approaches, mean substitution, regression-based imputation, hot-deck imputation, multiple imputation, and maximum likelihood imputation.
Recommended Citation
Fox-Wasylyshyn, Susan and El-Masri, Maher. (2005). Handling missing data in self-report measures. Research in Nursing & Health, 28 (6).
https://scholar.uwindsor.ca/nursingpub/7