Photophase Duration Affects Immature Black Soldier Fly (Diptera: Stratiomyidae) Development

Leslie Holmes, University of Windsor
Sherah L. Vanlaerhoven, University of Windsor
Jeffery K. Tomberlin

Abstract

This study tested the effect of photophase duration on black soldier fly, Hermetia illucens (L.; Diptera: Stratiomyidae), development. Successful larval eclosion, development time and adult emergence were measured for individuals exposed to 0 h, 8 h, and 12 h of light, at approximately 27°C and 70% relative humidity. Accumulated degree hours (ADH) were calculated to correct for differences in temperature across treatments. Larvae successfully eclosed in all treatments, with larvae in 12 h light requiring 5.77% and 4.5% fewer ADH to eclose than larvae in 0 h and 8 h, respectively. Overall, larvae in 0 h required 39.34% and 37.78% more ADH to complete their development from egg to adult than larvae in 8 h and 12 h, respectively. The effect of photophase duration on juvenile development was largest in the post-feeding stage, and smallest in the pupal stage. Specifically, post-feeding larvae in 0 h required 80.02% and 90.08% more ADH to pupate than larvae in 8 h and 12 h, respectively, but pupae in 8 h required 9.63% and 7.52% fewer ADH to eclose than pupae in 0 h and 12 h, respectively. Lastly, larval mortality was significantly higher in 0 h, with 72% survivorship, and 96% and 97% in 8 h and 12 h, respectively. However, 17.8% of mortality in the absence of light is hypothesized to be a result of predation by Arachnidae and Blattidae. These data could prove valuable for optimizing industrial processes for mass-production of this species for use as alternative protein in feed for livestock, poultry, and aquaculture.