Invasion genetics of the Eurasian spiny waterflea: Evidence for bottlenecks and gene flow using microsatellites

Author ORCID Identifier


Document Type


Publication Date


Publication Title

Molecular Ecology





First Page


Last Page





The Eurasian spiny waterflea (Bythotrephes longimanus) is a predacious zooplankter that has increased its range in Europe and is rapidly invading inland water-bodies throughout North America's Great Lakes region. To examine the genetics of these invasions, we isolated five microsatellite DNA loci with between 5 and 19 alleles per locus. We sampled three populations where B. longimanus has been historically present (Switzerland, Italy, and Finland) as well as an introduced European population (the Netherlands) and three North American populations (Lakes Erie, Superior, Shebandowan). Consistent with a bottleneck during colonization (i.e. founder effect), average heterozygosities of the four European populations ranged from 0.310 to 0.599, and were higher than that of three North American populations (0.151-0.220). Pairwise F ST estimates among North American populations (0.002-0.063) were not significantly different from zero and were much lower than among European populations (0.208-0.474). This is consistent with a scenario of high gene flow among North American populations relative to that of European ones. Contrary to an invasion bottleneck, however, Erie and Superior populations contained similar numbers of rare alleles as European populations. Assignment tests identified several migrant genotypes in all introduced populations (the Netherlands, Erie, Superior, Shebandowan), but rarely in native ones (Switzerland, Italy and Finland). A large number of genotypes from North America were assigned to our Italian population suggesting a second, previously unidentified, invasion source somewhere in the region of northern Italy. Together, our results support an invasion bottleneck for North American populations that has been largely offset by gene flow from multiple native sources, as well as gene flow among introduced populations. © 2005 Blackwell Publishing Ltd.