ABAM, a model for bioaccumulation of POPs in birds: Validation for adult herring gulls and their eggs in Lake Ontario

Document Type


Publication Date


Publication Title

Environmental Science and Technology





First Page


Last Page



An Avian BioAccumulation Model (ABAM) of persistent organic pollutant (POP) uptake and elimination in adult life-stage of birds was validated by simulation of concentrations of DDE, dieldrin, mirex, and HCB in herring gull eggs in Lake Ontario for the years 1985, 1990, and 1992. These chemicals represented a range of whole-body half-lives of 82-265 days in the gull. Dietary intake of POPs by a female gull was simulated by a dynamic bioenergetics model which included dependence on temperature, photoperiod, egg production, and feeding chicks. Concentrations in the two main prey fish of the gull in Lake Ontario were used for POP exposure. Clearance from the female was based on a two compartment toxicokinetic model. Egg concentrations were estimated from egg/whole body female concentration ratios. Simulated concentrations were compared to measured concentrations in gull eggs from 4 different colonies in the northern part of Lake Ontario. Simulations using a diet of 81% fish and 19% uncontaminated food resulted in the best fit with least variance among predicted and measured data. The mean ratio of predicted to measured concentrations in eggs was 1.0 ± 0.27 among chemicals, years, and colonies for this exposure scenario. This result was in excellent agreement with field assessments of herring gull diet composition in Lake Ontario of 80-82% fish. The ability to perform accurate a priori simulations for the range of test conditions employed in the validation constituted a rigorous test of the soundness of the model's structure and parameterization. With species-specific adjustments, ABAM can be regarded as a general model for lipophilic POPs bioaccumulation in birds. © 2007 American Chemical Society.