
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2022

Building Competent Teams of Experts Based on Project Building Competent Teams of Experts Based on Project

Completion Time and Skill Levels Completion Time and Skill Levels

Yalda Yazdanpanah
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons, and the Other Operations Research, Systems Engineering

and Industrial Engineering Commons

Recommended Citation Recommended Citation
Yazdanpanah, Yalda, "Building Competent Teams of Experts Based on Project Completion Time and Skill
Levels" (2022). Electronic Theses and Dissertations. 9004.
https://scholar.uwindsor.ca/etd/9004

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.uwindsor.ca%2Fetd%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.uwindsor.ca%2Fetd%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9004?utm_source=scholar.uwindsor.ca%2Fetd%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Building Competent Teams of Experts
Based on Project Completion Time and

Skill Level

By

Yalda Yazdanpanah

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2022

©2022 Yalda Yazdanpanah

Building Competent Teams of Experts Based on Project Completion Time and Skill

Level

by

Yalda Yazdanpanah

APPROVED BY:

M.F. Baki

Odette School of Business

Y.H. Tsin

School of Computer Science

J. Chen, Advisor

School of Computer Science

October 3, 2022

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

With many companies quickly expanding their sizes, building the best team of

experts from the applicants has evolved into an interesting subject for computer-

aided decision-making tasks. In this regard, the Team Formation Problem (TFP)

has been well-studied in Artificial Intelligence and operations research literature in

recent years. We consider a Team Formation Problem of assigning qualified experts

to a given set of positions in a given set of projects where each position is to be filled

with an expert with a required skill. In our setting, an expert can be quantitatively

characterized by one level per skill, and each expert has a limited workload capacity at

any moment of the time. Under the condition that all projects need to be completed

before they are due, the ultimate goal is to maximize the gain from all the projects

in terms of the overall skill levels of each position. We formulated the problem in

Integer Linear Programming (ILP) model. We also designed and implemented two

improvement-based heuristic approaches, both following the local search strategy.

The first one explores the neighbourhood of the current solution considering both the

feasible and the infeasible solutions, where the evaluation of the solutions is defined by

a linear combination of the objective function and the number of violated constraints.

The second one explores the neighbourhood for only feasible solutions. The solutions

obtained from these heuristic approaches and the one obtained from ILP solver Gurobi

are compared according to their execution times and objective values.

Keywords: Integer linear programming, Team formation problem, Heuristic, Local

Search

IV

DEDICATION

For children of war and children who suffer poverty.

You deserve to be careless, roam in your limitless imagination, and mess around

with silly science experiments. You deserve to be children!

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

LIST OF TABLES VIII

LIST OF FIGURES IX

LIST OF ABBREVIATIONS X

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Contributions . 3
1.4 Structure . 5

2 Related Work 6
2.1 Fundamental Concepts and Techniques 6

2.1.1 Integer Linear Programming (ILP) 6
2.1.2 Branch and Bound Algorithm (B&B) 9
2.1.3 Greedy Algorithms . 10
2.1.4 Meta-Heuristic Algorithms . 10

2.2 Team Formation Problem (TFP) . 12

3 Proposed Methods 15
3.1 Preliminaries . 15

3.1.1 Notation and Setting . 15
3.1.2 Problem Description . 17

3.2 ILP Model For TFP with Maximized Quality 18
3.3 Steepest Descent Local Search (LS) 20

3.3.1 LS-Hybrid . 21
3.3.2 LNS . 26

4 Experiments 35
4.1 Setup . 35

4.1.1 Environment . 35
4.1.2 Data . 36

4.2 Case Study . 36
4.3 Experimental Evaluation . 40

4.3.1 Q1: Parameter Effect Analysis 40
4.3.2 Q2: Objective Comparison. 43

VI

4.3.3 Q3: Comparative Performance. 44

5 Conclusions and Future Steps 46
5.1 Conclusions . 46
5.2 Future work . 48

APPENDIX A Implementation 49
A.1 ILP Optimization Using Gurobi . 49

APPENDIX B LS Algorithms’ Initial Solution 53
B.1 Purely Random Initial Solution (Init R) 53
B.2 Greedy Initial Solution (Init G) . 54

REFERENCES 57

VITA AUCTORIS 61

VII

LIST OF TABLES

3.1.1 Summary of Notations . 17

4.2.1 sample dsataset . 37

4.2.2 PSR, the number of experts needed for each skill in projects in the

sample dataset . 37

4.2.3 Q , the skill level of each expert in the sample dataset 37

4.2.4 Gurobi’s solution for the sample dataset objective value: 98 38

4.2.5 LS-Hybrid’s solution for the sample dataset objective value: 73 . . 38

4.2.6 LNS’s solution for the sample dataset objective value: 96 39

4.3.1 Effect of the change in parameter sizes on the number of

constraints . 41

B.0.1 Example 1. with some PSR, and Q 53

VIII

LIST OF FIGURES

1.3.1 An example of our setting with five experts in the pool, three projects,

and two time-intervals . 3

2.1.1 Mathematical Programming Hierarchy 7

3.1.1 The abstract illustration of our studied problem 16

4.3.1 Effect of the number of experts (a), skills (b), projects (c), time in-

tervals (d), and maximum experts per skill (e) on the number of con-

straints generated. 42

4.3.2 Objective value comparison of Gurobi and LNS. |E| = 600, |S| = 3,

|T | = 20, |PSRmax| = 2 . 43

4.3.3 Execution time performance comparison of ILP, LS-Hybrid, and LNS.

|E| = 600, |S| = 3, |T | = 20, |PSRmax| = 2 44

IX

LIST OF ABBREVIATIONS

TFP Team Formation Problem

TFP-SN Team Formation Problem in Social Networks

LP Linear Programming

MIP Mixed Integer Programming

ILP Integer Linear Programming

KP Knapsack Problem

KCI Kolbe Conative Indices

SA Simulated Annealing

B&B Branch and Bound

BFS Breadth First Search

DFS Depth First Search

FIFO First In First Out

LIFO Last In First Out

LS Local Search

LNS Large Neighbourhood Search

X

CHAPTER 1

Introduction

1.1 Overview

Many companies, including large corporations and start-ups, are expanding at a fast

pace. Hiring the most competent group of experts has become more difficult for em-

ployers due to new objectives, such as the extensive pool of applicants compared to the

past. Over the years, the structure of private organizations has changed worldwide,

transitioning to a multi-task team-based fashion [9]. The Team Formation problem

(TFP) has become a well-known problem in recent years in Artificial Intelligence and

operations research literature. ”This problem is relatively recent compared to other

more classic OR problems” [13]. The objective is to answer the following questions:

Who should be hired? How can a decision be evaluated? What influences the gain of

a project?

A team is formed by a number of people who come from different fields, master

complementary skills, and work together to complete a common task [14]. Although

there are some arguments about teams’ efficiency [3], there is plenty of evidence that

high-performance teams add value to their organizations; especially when decision-

making and complex problem-solving are needed.

Generally, the recruitment process includes finding the right team of experts pos-

sessing specific skills to maximize the gain of a set of projects. The definition of the

right team and project’s gain vary among studies. For example, the right team can

refer to the most cost-efficient or experienced teams in different contexts. Similarly,

maximizing the project’s gain can mean maximizing one or several positive social

1

1. INTRODUCTION

attributes. In particular, we consider a recruitment company (i.e. LinkedIn) that

has to optimally assign competent teams to match a required set of skills in several

projects while guaranteeing the completion of all projects in their specified timelines.

We intend to develop the reputation of all project outcomes by maximizing the skilled

experts’ recruitment in this research.

1.2 Motivation

The work dynamics change throughout time. Nevertheless, significant changes hap-

pened during the COVID-19 pandemic since many businesses were forced to shut

down for more than two years in many countries. Some pre-existing limitations have

lifted with companies switching to working remotely from home. Since the location

was not an issue anymore, companies started to consider a wider pool of candidates for

a job. This indicates the demand for a merit-based optimization that finds multiple

teams of experts among a large pool of candidates. It also emphasizes the importance

of our research.

Many studies on the TFP subproblems focus on maximizing profit by minimizing

the cost. In most cases, the employee’s salary is a part of the overall cost. Offering a

job with the bottom range of salary to an expert can lead to employee dissatisfaction

or low work quality, which deflects the primary goal. To overcome this problem, in

this thesis, we are proposing an approach that does not focus on the hiring salary. We

want to consider each expert’s merits and design an optimization solution that as-

signs the most skilled teams of experts to the available positions on different projects.

Companies can assess their overall costs using available databases and machine learn-

ing tools to predict an acceptable salary range based on the country’s regulations and

the job position. For example, Glassdoor 1 is a website where current and former

employees anonymously review companies and submit their actual salaries. They

release a Job Market Report monthly as a part of their data collection and analysis.

1Glassdoor. 2022. Glassdoor Economic Research. [online] Available at:
¡https://www.glassdoor.com/research/¿ [Accessed 1 August 2022].

2

1. INTRODUCTION

Companies should be encouraged to schedule their budget and project specifications

more realistically before starting the recruitment process.

To the best of our knowledge, few studies in the TFP area take project completion

time into account [5]. To have a realistic setup, we think addressing time in team

formation problems is crucial although many well-developed studies have ignored it.

With that in mind, as shown in Figure 1.3.1, our problem setting can be illustrated

by two bipartite graphs, one between the experts and the projects; and the other

between projects and the time intervals.

1.3 Contributions

In our setting, we are given a set of projects where each requires a specific set of

skills and must be completed by a particular time. Moreover, we are given a set of

candidates where each individual has an acquired skill set and a quality score defining

each skill level. Each expert has a limited workload, introducing constraints on the

number of tasks a person can take simultaneously. This leads to more realistic team

construction, higher employee satisfaction, and a better quality of product.

Fig. 1.3.1: An example of our setting with five experts in the pool, three projects,
and two time-intervals

For example, Figure 1.3.1 shows a small sample of our problem. We have three

projects to complete, each specifying how many experts they need for the two skills,

3

1. INTRODUCTION

SQL and Python. Note that projects are not mandated to have all the skills. In

this example, the projects share the same skills required for their completion. The

optimization goal is to hire the most highly skilled experts among the applicants to

maximize the gain of each project. The decision can get more complicated due to

a vast pool of candidates and projects with overlapping development times. In this

example, the number of projects is greater than the time intervals, pointing out that

at least two projects will be in conflict. As a result, it adds more constraints to

our problem since it exceeds the expert’s workload if one takes two jobs scheduled

simultaneously.

In summary, we have the following assumptions in our setup:

• There is a set of projects and our goal is to find optimal recruitment decisions

for all of them simultaneously.

• Each project has a specification denoting the project completion time, the skills

required to complete the project, and the number of experts needed for each

skill.

• Each expert’s workload capacity is limited to one. An expert can be assigned

to at most one skill in each project. They can be assigned to skills in multiple

projects as long as those projects are not scheduled on the same timeline.

• Each expert possesses a set of skills, along with a quality score measured for

each skill.

• The quality score is a metric to evaluate an expert’s success; it is derived from

the expert’s education, previous work experience, and the number of reviews.

Primarily, we model the problem and utilize Integer Linear Programming (ILP)

to formulate an optimal solution for the specified problem. Furthermore, we seek to

compare the solution from Gurobi to some alternative heuristic approaches.

4

1. INTRODUCTION

1.4 Structure

Further in this thesis, in Chapter 2, several fundamental concepts and ideas related to

existing techniques and methodologies are presented in more detail, along with details

about various tools and methods to tackle the problem. In Chapter 3, we present

the problem of building teams of experts based on skill level and project deadlines,

along with our proposed ILP and heuristic solutions. Chapter 4 demonstrates some

experiments with synthetic and real-life data and compares the two approaches. Fi-

nally, chapter 5 contains some final comments and potential future steps related to

this work.

5

CHAPTER 2

Related Work

Our research belongs to one of the team formation problems. In this chapter, we go

over several fundamental concepts and techniques that can be utilized to develop its

optimal and close to optimal solutions. TFP is a broad subject; in this chapter, we

revisit the literature for those previously-studied TFP problems.

2.1 Fundamental Concepts and Techniques

It is proven by Lappas et al. in [17] that the single team formation is classified as

NP-hard. Similar to many other computationally complex problems, there are two

effective ways to tackle optimization problems:

• Finding an optimal solution using Exact Algorithms.

• Finding a close to the optimal solution using Heuristic Approaches.

2.1.1 Integer Linear Programming (ILP)

Linear programming (LP) is a method to achieve an optimal solution for a lin-

ear objective function, subject to linear equality and inequality constraints. Linear

programming is a particular case of mathematical programming. If some or all

decision variables are discrete, the problem is known as Mixed-Integer Program-

ming (MIP) and Integer Linear Programming (ILP or IP), respectively.

Similar to linear programming, the constraints must be in linear form. Assuming

6

2. RELATED WORK

Fig. 2.1.1: Mathematical Programming Hierarchy

xi is a binary decision variable, some common constraint types are [25]:

Set Partition:
∑

xi = 1; xi ∈ {0, 1}

Set Covering:
∑

xi ≥ 1; xi ∈ {0, 1}

Set Packing:
∑

xi ≤ 1; xi ∈ {0, 1}

Examples of ILP

In the following, we take a glimpse at two famous problems that share some resem-

blance with the problem studied in this thesis. The first one is a maximization,

modelled at its most basic form. The second is a minimization model we built under

assumptions to experiment with conflict handling; such problems can vary depending

on the optimization goals.

Knapsack Problem (KP)

The knapsack problem, which first appeared in [20], is to make an optimal decision

about packing a set of items, with given values and sizes (i.e. weights or volumes),

into a container with a maximum capacity. KP can be modelled into a 0-1 (Binary)

7

2. RELATED WORK

IP form as follow:

max
n∑

i=1

vixi (1)

subject to
n∑

i=1

wixi ≤ W xi ∈ {0, 1} (2)

Where the parameters are: W , denoting the knapsack’s capacity; vi and wi, denoting

the value and weight of item i, respectively. The binary decision variable xi represents

the selection of item i for the knapsack; thus, the objective function is to maximize the

sum of the chosen items’ values. This example is relatively small; the only constraint

introduced in (2) limits the decision variables such that the summation of the selected

items’ weights is always less than or equal to the knapsack’s capacity.

Elementary Shortest Path Problem (ESPP)

In a directed graph G = (V,E) with arbitrary costs on the edges in E, the elementary

shortest path problem is to find a path between two nodes s and t with the minimum

cost. A path is elementary if it does not visit any node in V mode than once. A

standard integer programming formulation [27] can be found in the following:

min
∑

(i,j)∈E

cijxij (1)

subject to
∑

(i,j)∈δ+(i)

xij −
∑

(j,i)∈δ−(i)

xji =

1 if i = s

−1 if i = t

0 else

∀i ∈ V (2)

∑
(i,j)∈δ+(i)

xij ≤ 1 ∀i ∈ V (3)

xij ∈ {0, 1} ∀(i, j) ∈ E (4)

8

2. RELATED WORK

Where the parameter is: cij ∈ R denoting the edge costs (weights). The binary

decision variable xij represents the selection of edge (i, j) for the path. δ+(i) and

δ−(i) denote the set of outgoing and incoming edges of node i. Constraints (2) are

related to flow conservation; the equality depends on the node i (i.e. the left-hand

side is equal to 1 if node i is the starting point). Constraints (3) guarantee that each

edge’s outgoing degree is at most one.

2.1.2 Branch and Bound Algorithm (B&B)

Branch and bound is an exact algorithm [16] for global optimization of various prob-

lems including ILP models[18]. B&B represents the solution as a state space tree;

it evaluates all possible permutations by storing partial solutions called subproblems

in a tree structure.

The fundamental components of the B&B are [21]:

• The search strategy: The order in which subproblems in the tree are explored,

which is usually breadth-first search (BFS). To name a few other options,

we can mention depth-first search (DFS), best-first search, and cyclic best-first

search.

• The branching strategy: How the solution space is partitioned to produce

new subproblems in the tree. For instance, depending on the container used for

the next node exploration, B&B can be classified into FIFO-BB, LIFO-BB,

(LC-BB) 1.

• The pruning rules: Rules that prevent exploration of suboptimal regions of

the tree.

Deterministic algorithms seem promising in finding the optimal solution. Nonethe-

less, their execution time might get very large in many cases since they consider every

1The containers used for the First-In-First-Out (FIFO) B&B and the Last-In-First-Out (LIFO)
B&B are queue and stack, respectively. Lastly, the Least-Cost-First search B&B expand paths from
the frontier in order of their costs.

9

2. RELATED WORK

combination, which can be their major downside.

2.1.3 Greedy Algorithms

Using dynamic programming to determine the best decisions can be an overkill for

many optimization problems. Therefore, greedy algorithms are developed to make

a sequence of decisions, each one being in some way the best fit at the moment.

By choosing the best decision, not necessarily globally optimum, at each step, they

produce locally optimal solutions that approximate a globally optimal solution in an

appropriate amount of time [7].

The solution constructed by the end of a greedy approach is the final solution;

no improvements are involved. They are versatile, straightforward, and efficient.

However, they do not necessarily yield a globally optimal solution. Another downside

of greedy algorithms is that they can not solve optimization problems with negative

graph edges. In the latter sections of the current chapter, we will go through some

applications of the greedy approach over previous studies related to our work. Before

moving forward, let us summarize the steps involved in a greedy algorithm:

1. Determine the optimal structure of the problem and find the best subproblem.

2. Determine the objective function, which evaluates the best choice at each step.

3. Develop an iterative or recursive process to inspect all subproblems and create

an optimum solution.

2.1.4 Meta-Heuristic Algorithms

Meta-Heuristic algorithms are computational intelligence paradigms primarily

used for complex optimization problems [1]. Similar to the greedy approach, the

original intention of a heuristic algorithm is to reduce the search space and lower

the run-time at the expense of some potential optimality loss. Heuristic algorithms

use probability and statistics to avoid checking all the combinations in the solution

region. Note that, unlike greedy algorithms, they do not construct a solution; they

10

2. RELATED WORK

usually start from a random solution and then enhance it with each step until reaching

the local/global optimum. These iterations carry until the system converges and the

solution found meets some predefined criterion [31].

Meta-heuristic algorithms imitate natural evolutionary principles to perform the

search and optimization procedures. These methods choose their path through the

parameter space using random factors [24]. As the name suggests, these methods

are a higher-level heuristic that is more general in problem-solving, making these

techniques powerful.

Simulated Annealing

Inspired by the annealing procedure, a metal’s heating and slow cooling, simulated

annealing was proposed by [15] for the first time. Generally, in the beginning, the

algorithm explores successors wildly randomly. This pace goes down as time passes

until there is a time when things are settled.

At each annealing temperature, the SA algorithm generates a new potential so-

lution (or neighbour of the current state) to the problem considered by altering the

current state according to a predefined criterion. Then, the new state’s acceptance

is based on the satisfaction of the Metropolis criterion, and this procedure is iterated

until convergence. The basic idea behind the Metropolis criterion is to avoid getting

trapped in extreme local optima. SA is problem-independent.

The main difference between SA and other heuristic approaches like stochastic

hill climbing remains in finding the neighbourhood transition methods. In stochastic

hill climbing, the steps are taken randomly, and the current point is replaced with

a new point, provided the new point is an improvement to the previous point. The

next node is constructed in simulated annealing by altering the current node while

the search works the same way. However, the worst points are sometimes accepted to

allow the algorithm to learn answers that are eventually better. Furthermore, SA is

often used when the search space is discrete, and it seems a good fit for our problem

- which will be described more in detail in Chapter 3.

11

2. RELATED WORK

2.2 Team Formation Problem (TFP)

As mentioned in the introduction, the Team formation problem generally refers to

finding team members from a pool of candidates that would form a team of maximum

”efficacy” to take on a task. The two major fields of interest in this problem are:

Operations Research (OR) and Data Mining (DM). In the OR version, the

drive is the organization’s demands [32], and the goal is to identify teams of candidates

whose skills match the job positions the best. In the DM version, the drive is the

social networks [17], and the goal is to identify closely acquainted candidates whose

combined skill-set equals the task’s demanded skills.

Principally, the previous studies on the TFP can be classified as assignment-

based and community-based TFPs [13]. The assignment-based category involves a

bipartite matching between the set of candidates and the set of jobs (or tasks), each

carrying a suitability score. The mentioned weight or score suggests the candidate’s

compatibility with a job position. Then, the objective is to maximize the suitability

score matching. Examples of this can be found in [4], where Anagnostopoulos et al.

investigate their proposed TFP model using various scoring functions such as all skills

required, least-skill dominant, fraction of skills possessed, micro average of skill, and

macro average of skill. Another example is using Kolbe Conative Indices (KCI) as a

parameter in the scoring measure in [9].

On the other hand, the community-based category concentrates more on the

previous relationships among the experts [30, 6], for example, acquaintance, collabo-

rations, and closeness. Therefore, it involves a minimum spanning tree (MST) or a

sub-graph over the input graph describing the communication cost. Then, the objec-

tive is to minimize such costs or maximize the compatibility if the weights are defined

positively.

Majumder et al. pioneer exploring the TFP in a software development context us-

ing the GitHub collaboration graph as a dataset for experimentation [19]. They have

crawled millions of software repositories spanning four years and hundreds of thou-

12

2. RELATED WORK

sands of developers from GitHub 2. This data collection can be part of a somewhat

reliable scoring measure, though it is primarily beneficial for building the communi-

cation graph in their work. Thus, a community-based formulation with binary skills

is proposed, along with the difference between a modification on the original covering

constraint and an additional packing constraint.

In comprehensive research regarding TFPs [13], Juárez et al. point out that the

communication graph in many community-based models is considered an undirected

weighted graph, which shows the one-on-one relationship between two candidates.

The pairwise interactions might differ from the dynamics of a group of three, which

much of the literature disregards.

Although the community-based models might seem more realistic, we must take

a step back and review the assumptions. All TFPs assume the candidates as an

idling resource [13], which is usually not the case in real life. Our work addresses

an application of TFPs that aims to form groups of freelancer or contract-based

employees for projects. An actual scenario would suggest that a company would

rule out the good connections from the optimization problem if existent. Then the

remaining decision-making for the company will be cast into an assignment form.

Regardless of the mentioned categories, the problem setting can involve forming a

single or many teams. The goal in single team formation is to generate one team;

such problems are relatively basic versions of many teams formation. In a study

on balanced teams [29], Van de Water et al. analyzed dividing a pool of students into

teams where each team has nine roles, and each student has a suitability score for each

role. The objective of maximizing the suitability score was subjected to constraints

based on students’ capacities and a distinctive set of balancing constraints that, for

example, restricted students with a high score on the same role from being in the

same team.

The many team formation can be reduced to a single team formation if candidates

are bounded to be part of only a single team. Fitzpatrick et al. proposed a MIP

formulation [9], Labour Pool Extraction Model - Multiple Teams (LPEMT), and

2a popular open-source social coding network

13

2. RELATED WORK

a heuristic algorithm to form multiple teams from a pool of candidates with the

necessary skills. The objective function of their mathematical model computes the

deviation from optimal Kolbe Conative Indices across all teams. KCI measures an

individual’s instinctive behaviour or drive, which does not imply either good or bad;

merely a means to classify and understand the reasons we do things the way we do

or react to things in certain ways.

Sukthankar et al. formulate a TFP where each agent (i.e. candidates or experts)

is allowed a single team assignment. So, agents already in a team are constrained to

move according to a set of team behaviours. The offered algorithm is called Simul-

taneous Team Assignment and Behavior Recognition (STABR) [26] that generates

behaviour annotations from spatio-temporal agent traces. Their evaluation metric is

based on team assignment accuracy, behavioural recognition accuracy, and hypothe-

sis set size. One of their benchmarks was a military simulation, which is not aligned

with our goal but shows how diverse the applications of TFP can be.

14

CHAPTER 3

Proposed Methods

We have already outlined the details of the TFP problems. This section formally

describes our setting and provides a comprehensive view of our proposed methods.

3.1 Preliminaries

3.1.1 Notation and Setting

The notations described in this section are used in all the methods discussed in future

sections. The terms mentioned in Chapter 2 are defined as follow:

Skills. We consider a set S of skills, which can be any qualification a candidate

can have, such as Python, SQL or UI/UX design. |S| denotes the cardinality of S.

Experts. We consider a colossal set E of experts (or candidates) who are seeking

to be hired. Each expert e ∈ E possesses a subset of acquired skills S ′
e, such that

S ′
e ⊆ S. For simplicity, this information is embedded in each expert’s quality measure:

Qes; e ∈ E , s ∈ S. So instead of S ′
e, we keep Qes ∈ {0, 1, ..., n} for each pair of (e, s).

Qes = 0 denotes that expert e does not have skill s at all; if this number equals to

any integer between 1 to n, it denotes expert e’s possession and level of proficiency

for skill s. Each expert has a workload capacity limited to one, showing that each

one can be assigned to at most one task 1 in a particular time interval.

Projects. We consider a set of P of projects, PSRsp, s ∈ S, p ∈ P is an integer

∈ {0, 1, 2, ...} assessing the number of experts project p needs for skill S. Like the

experts, we embedded the subset of skills each project requires in PSR, so for instance,

1A task refers to a particular skill in a project.

15

3. PROPOSED METHODS

PSRsp = 4 means project p needs four experts possessing skill s in order to complete.

If this number equals zero, project p does not need skill s for completion.

Time intervals. We assume that time is a discrete parameter that can refer to

specific weeks or months. We consider a set of time intervals T that projects can be

assigned to.

Fig. 3.1.1: The abstract illustration of our studied problem

We can break down the problem into two main subproblems:

Team Assignments: As shown in Figure 3.1.1, for the subproblem of assigning

experts to projects, we consider the assignment problem on a bipartite graph G, where

nodes Ne and Np represent expert and project nodes, respectively. Edges E represent

possible assignments of experts to specific skills in projects. The grey edges in the

illustration show the expert skill quality (Q) and project skill requirements (PSR)

associations. These denote what links are available/allowed between the left side of

the graph and the right.

Projects Scheduling: For the subproblem of assigning projects to time intervals,

we consider the scheduling problem on a bipartite graph G′ where Np and Nt represent

project and time interval nodes, respectively. Edges E ′ represent possible assignments

of projects to time intervals.

16

3. PROPOSED METHODS

3.1.2 Problem Description

Problem 1 Consider a set of projects P , each specified with a completion time

and a set PSRsp. Given a project p ∈ P , PSRsp determines the number of experts

that project p requires in skill s, where s ∈ S. We have a pool of experts E . Each

given expert e ∈ E has a limited workload and is characterized by a quality measure

Qes defining the expert’s capabilities in skill s. Given all that, the goal is to find

a solution so that all the hiring requirements of the projects are satisfied, the total

quality score over all the projects is maximized, and the experts are not assigned to

overlapping time intervals.

Notation Description

E set of experts

S set of skills

P set of projects

T set of time intervals

e index for experts; e ∈ E

s index for skills; s ∈ S

p index for projects; p ∈ P

t index for time intervals; t ∈ T

PSRsp number of experts required for skill s in project p

Qes extracted quality measure of expert e in skill s

Wpt 1 if project p is selected for time interval t; 0 otherwise

Vesp 1 if expert e is assigned to skill s in project p; 0 otherwise

Zpqt 1 if project p and q are assigned to the same timeslot t; 0 otherwise

Table 3.1.1: Summary of Notations

17

3. PROPOSED METHODS

3.2 ILP Model For TFP with Maximized Quality

In this section, we outline our proposed ILP model and further elaborate over the

objective function and constraints.

Objective function:

max
∑
p∈P

∑
s∈S

∑
e∈E

(Qes × Vesp) (1)

Subjected to:

Vesp + Veuq +
∑
t∈T

Zpqt ≤ 2 ∀e ∈ E ,∀p, q ∈ P ,∀s, u ∈ S (2)

Zpqt ≥ Wpt +Wqt − 1 (3)

Zpqt ≤ Wpt (4)

Zpqt ≤ Wqt ∀t ∈ T ,∀p, q ∈ P (5)∑
t∈T

Wpt = 1 ∀p ∈ P (6)

∑
e∈E

Vesp ≤ PSRsp ∀s ∈ S, p ∈ P (7)

∑
s∈S

Vesp ≤ 1 ∀e ∈ E , p ∈ P (8)

As discussed before, the goal is maximize the gain of all projects simultaneously.

Our comprehension of gain is the summation of skill quality that the team of experts

brings to the project. Thus, as shown in equation (1), the objective function is

maximize Qes over all of the selected experts in all projects.

Handling Conflicts

Definition 1 (Conflict) A conflict Z between two projects p, q ∈ P occurs when both

of them are assigned to a time interval t ∈ T . A conflict is represented as a derivative

Zpqt.

18

3. PROPOSED METHODS

Hence, a conflict happens between project p and q when the decision variables

responsible for this selection Wpt and Wqt are assigned to one. In such case, Zpqt is

the product of those assignments: Zpqt = Wpt ×Wqt. We can rewrite this constraint

to linearize it.

Equations (3, 4, and 5). Now that conflict is formally and mathematically clear;

we must manage the consequences of the conflict. If in the given problem we have

|T | < |P|, a conflict between two projects is inevitable. Then, we should restrict the

experts’ assignment so that no expert is selected for more than one skill concurrently

in one time interval. As shown in equation (2), for every two skills u, s ∈ S, and

every two projects p, q ∈ P , expert e can be selected for at most one skill in a project

at time interval t. In other words, There is at most one connection (link) between

expert e and time interval t.

Project Completion Guarantee

One of the goals of our model is that all projects must be completed. For such a

cause, all projects must be assigned to a time interval. So, we have equation (6)

that ensures that the summation of all project assignments over time intervals for

each project equals 1, which means that there is precisely one time interval to which

project p is assigned.

Project’s Skill Requirement (PSR)

As shown in Table 3.1.1, PSRsp determines the number of experts required for skill s

in project p. In other words, the summation of the selected experts for each skill and

each project must reach this number. Note that
∑

e∈E Vesp ≥ PSRsp would result in

hiring abundant experts for the task since the variable Vesp is used in the objective

function, which is to maximize the summation of the selected experts by their skill

level. Thus, assuming the |E| is large enough, we have
∑

e∈E Vesp ≤ PSRsp to limit

and satisfy the project skill requirements.

19

3. PROPOSED METHODS

Expert’s Workload Limitation

By having the constraint (8), we secure that for each expert and project, the sum-

mation of all the skills an expert is responsible for is at most 1. Moreover, since a

project cannot be assigned to multiple time intervals simultaneously, we guarantee

that no expert is assigned to more than one task at a time.

3.3 Steepest Descent Local Search (LS)

Local search is a single-solution-based family of metaheuristics [12]. The emphasis

is on exploitation to find a nearly optimal solution within a reasonable computation

time. At each iteration of the algorithm, an improving solution is found by search-

ing the neighbourhood of the current solution. These neighbourhoods are developed

by generating partial yet large enumeration trees based on the current solutions and

heuristically searched [2, 23]. The main property that must characterize a neighbour-

hood is its locality. A neighbourhood mapping has a strong locality if neighbours

have similar qualities. It helps the local search to perform a meaningful search in the

landscape of the problem [28].

The initial solutionA in the search space consists of a fully assigned set of variables

of a possible world. Starting from that initial state, we can change any variable to

get to a neighbour A′. At each step, only the current solution is kept in the memory.

According to the Steepest Descent algorithm, we need to evaluate each neighbour

using an evaluation function Eval(A′). After exploring the current neighbourhoods,

we substitute the current solution A with the neighbour with the highest evaluation

A′
best. Below is an abstract overview of steps in the steepest descent local search:

1. Initiate solution A, which is a complete assignment of all decision

variables.

2. Move to neighbour A′ ∼ A such that Eval(A′) < Eval(A) 2.

2Assuming that the evaluation function Eval(X) refers to the cost of the solution X , the goal is
to minimize this cost in a general context.

20

3. PROPOSED METHODS

3. Repeat step 2 until A is a satisfying solution.

It is common to generate the initial solution randomly. However, discovering

a feasible neighbour from an infeasible state can be challenging in some problems

like the one studied here. Different techniques can be employed to overcome this

problem; we will focus on the following and describe the three main components,

input, neighbourhood relations, and evaluation function in each one:

• Searching the feasible region from a feasible starting solution with the ob-

jective function as the evaluation function.

• Searching feasible and infeasible regions in the search space from an infeasible

starting solution with a hybrid evaluation function.

3.3.1 LS-Hybrid

We propose LS-Hybrid, a heuristic local search with a hybrid evaluation function

that traverses feasible and infeasible regions until the local optima is found. After

explaining the key components of the algorithm, we present the pseudocode and some

discussions.

Input:

As defined in Table 3.1.1, V and W are the decision variables, indicating the team

assignments 3 and projects scheduling, respectively. The initial solution A can be

any complete, randomly assigned set of all the variables in V and W . The indexes to

the selected time interval and their associated projects are kept in the data structure,

SCHEDULE for faster access during the local search. For further details, refer to

Appendix B.1. This solution may be violating one or more constraints.

Neighbourhood Relations:

Assume that a change in one variable in V or W creates a new neighbour. The

variable domains in this discrete optimization problem is 0, 1 since they are binary.

3A team assignment refers to the assignment of an expert e to a specific skill s in project p.

21

3. PROPOSED METHODS

Consider the current solution A. We can go to the next neighbour A′ by changing

a single variable Vesp to its opposite, 1 − Vesp while all other variables in V and W

remain the same as in A. Similarly, by fixing all of the variables to their current values

and only changing a single variable Wpt to 1 −Wpt we produce a new neighbour. 4

We will use the term flipping for such change.

In this algorithm, the search space includes all possible solutions to the problem.

We will traverse parts of the feasible and infeasible solutions in the search space,

which can be further decreased by selecting some hard constraints. Constraint (6)

is the only linear equality constraint among all the constraints introduced. We

interpret this as a constraint that cannot be compromised to get a feasible solution.

Thus, for the W variables, we can prevent multiple assignments of each project p to

different time intervals by holding constraint (6) as a hard constraint. It will increase

the likelihood of converging into an overall feasible solution. Besides constraint (6),

all of the constraints introduced for this problem are bound constraints. There is

more than one case where inequalities can hold valid. We aim to rigorously explore

all permutations of V variables to find any neighbour better than the current one.

Therefore, all constraints (2, 3, 4, 5, 7, 8) are considered soft. Note that soft con-

straints may be violated during the search, which will be assessed with the evaluation

function and avoided.

Evaluation Function:

The evaluation function Eval(X) determines the worth of a solution X . In this LS

algorithm, we propose a hybrid evaluation function of minimizing constraint violations

Const(X) and maximizing the objective function Obj(X), such that the following

linear combination holds:

Eval(X) = Obj(X)− α× Const(X)
4The target variable will turn into zero if it already has the value one, and vice versa.

22

3. PROPOSED METHODS

Where α is a weight on the constraint violation, this way, a solution with minimum

Const(X) and maximum or same Obj(X) has the priority to get selected as the next

neighbour to be traversed. As shown in equation (1), the problem’s objective is finding

the maximum gain (quality score) over the selected experts, so the Obj(X) calculation

is apparent. There are various ways to calculate the Const(X) for constraint violation

check, targeting the number of the constraint violations in solution X or the distance

of the solution X to the optimal solution.

Although our primary goal is to minimize the number of violations, counting the

number of constraints violated can be insufficient in many cases. Assume there are

two neighbours X ′ and X ′′ that only violate constraint number (7). By proceeding

with the violation count, both solutions X ′ and X ′′ will get a fair chance of being the

potential best in the neighbourhood. Instead, by calculating the distance, we consider

a weight for the violated constraint. For instance, in constraint (7), if the inequality∑
e∈E Vesp ≤ PSRsp does not hold for all s ∈ S, p ∈ P , rather than incrementing

one, we keep the absolute value of the subtraction |
∑

e∈E Vesp − PSRsp| to measure

how far the solution is from the nearest feasible one. Generally, in every constraint

inequality, the subtraction of the left-hand side by the right-hand side is the distance

that a solution X has until it is within the boundaries.

Dist(X) = |LHS −RHS|

Furthermore, since the evaluation needs to be performed when examining each

neighbour, it must be computationally inexpensive. It is therefore not viable to re-

evaluate all assigned values in V and W of a solution X for constraint violations.

Instead, we can calculate the difference in constraint violation distance between the

currently selected solution X and every neighbour X ′. To do that, we identify all

the constraints violated by a single expert (in the case of V -flipping) or project

(in the case of W -flipping) before the flip action, using a slightly modified func-

tion S Const(X , e, s, p, t), where e, s, p, and t are the indexes that flipped. Then,

after the flip is performed, we once again calculate the number and amount of con-

23

3. PROPOSED METHODS

straints violated by the same single expert or project with the new value assignments,

S Const(X ′, e, s, p, t). This way, we can study the effect of the changed indexes on the

constraint violations, and the difference S Const(X ′, e, s, p, t)−S Const(X , e, s, p, t)

should be the same as Const(X ′)− Const(X).

Discussion:

As shown in LS-Hybrid’s pseudocode 3.3.1, the main loop repeats until a maximum

number of idle iterations have reached. A satisfactory solution for us is one that is

the best among all its neighbours based on the evaluation function. The maximum

iteration counter, iter counter, will reset back to its maximum value when a better

solution is found; whereas, it decreases each time a neighbour that is not better than

the current solution is checked.

One of the advantages of this algorithm is that the neighbour production is speedy

and straightforward. The algorithm is not problem-specific and can be adopted non-

exclusively by similar problems. The search will not immediately converge to the

feasible region, but with the proposed hybrid evaluation function, it finally gets into

a locally optimal solution in many cases. The major drawback of the LS with hybrid

evaluation function is its large neighbourhood size. The scope of each neighbourhood,

which equals to (|E| · |S| · |P|) + (|P| · |T |), depends heavily on the input size.

We will experiment LS-Hybrid with a feasible starting point in Chapter 4. The

initial random solution can be adjusted to start from a feasible solution (see Init G

in Appendix B.2 for more details). Following the same steps as Algorithm 3.3.1, this

time, we choose the neighbours with zero violations so that we can stay in the feasible

region. Nevertheless, the large number of analyses for each iteration will still grow

proportionally with the input size, which is not advantageous.

24

3. PROPOSED METHODS

Algorithm 3.3.1 LS-Hybrid
Data: E ,S,P , T , PSR,Q,max iter, α
Result: W,V

iter counter ← max iter
V,W, SCHEDULE← Init R(E ,P ,S, T , PSR) // initiate V and W

// get the initial evaluation function:

objbest ← Obj(V)
constbest ← Const(V,W, p)
evalbest ← constbest − α× objbest

while iter counter > 0 do

foreach p ∈ P do
tsel ← SCHEDULE[p]
Wp,tsel ← 0 // flip the current assignment

foreach t ̸= tsel ∈ T do
Wp,t ← 1 // flip another assignment

objnbr ← Obj(V)
constnbr ← S Const(V,W, e, s, p)
evalnbr ← constnbr − α× objnbr
if evalnbr > evalbest then

W flip← True
update objbest, evalbest
best← (p, tsel, t)
reset iter counter

else
decrement iter counter

Wp,tsel ← 1

foreach Ve,s,p ∈ V do
Ve,s,p ← 1− Ve,s,p // flipping

objnbr ← Obj(V)
constnbr ← S Const(V,W, e, s, p)
evalnbr ← constnbr − α× objnbr

if evalnbr > evalbest then
W flip← False
update objbest, evalbest
best← (e, s, p)
reset iter counter

else
decrement iter counter

Ve,s,p ← 1− Ve,s,p

25

3. PROPOSED METHODS

// figuring out which flip led to the selected neighbour,

// then transitioning to that neighbour

if W flip = True then
p, tsel, t← best
Wp,tsel ← 0
Wp,t ← 1

else
e, s, p← best
Ve,s,p ← 1− Ve,s,p

3.3.2 LNS

We propose a Large Neighbourhood Search (LNS) algorithm with modified neigh-

bourhood structures to overcome the previously mentioned issues with LS-Hybrid.

With this method, we aim to limit the search only to the feasible region in the search

space. It is challenging to navigate among solutions and avoid getting stuck in a

state where all the neighbours are infeasible. Since producing each neighbour via

LNS techniques is more computationally expensive than LS-Hybrid, we decided to

simplify the evaluation function and consider all of the constraints hard. Similar to

the previous section, we explain the key concepts and then provide the pseudocode

of our algorithm along with some discussions.

Input

The search space considered for LNS is the feasible region only; thus, all constraints

are considered hard constraints in this method. Since we no longer intend to check the

constraint violations, the search’s starting point must also be in the feasible region.

It will not be purely random; however, within the boundaries of the constraints, it is

still a random assignment of variables. We temporarily ignore the objective function

and employ a greedy method, Init G, to solve a satisfactory version of the prob-

lem. We build the feasible solution while generating three data structures, TEAM,

SCHEDULE, AVAILABLE, and IN COMMON.

The SCHEDULE generated via the greedy initial solution generator differs from

26

3. PROPOSED METHODS

the SCHEDULE previously used. While scheduling the projects, this time, we keep

all projects assigned to a specific time interval in individual lists in Init G. It helps

faster and more organized access to the data and guarantees constraint (8) does not

get violated.

TEAM, which is also not a part of the solution, helps keep track of task assign-

ments. It holds the list of all experts assigned to each skill in each project (i.e. teams

for each skill in all projects). TEAMp contains all the experts assigned to different

skills in project p.

AVAILABLE is a data structure that keeps lists of experts ⊆ E who are available

at each time interval. AVAILABLEt is the list of experts who are unemployed or

assigned to projects in time intervals other than t; thus, we know they are available

to be assigned to any task at time t.

IN COMMON is a graph that indicates if two projects have any experts hired for

both. In this graph, where the nodes are all projects, an edge (p, q), where p, q ∈ P ,

shows that p and q have at least one expert assigned to both projects. If there is

no edge between the two projects, they are exclusive regarding expert assignments.

Refer to Appendix B.2 for more details about Init G and the rest of the introduced

data structures.

Neighbourhood Relation:

As mentioned before, an essential step in the steepest descent local search is finding

the best neighbour to the current state that satisfies all the constraints. In the

previous approach, we used brute force to find the next neighbour. In contrast,

in this algorithm, we utilize constraint programming to explore the neighbourhood

since it is relatively large. Because of the characteristics of our problem, we do not

want to limit ourselves to small neighbourhoods; instead, we aim to use the large

neighbourhood to our advantage and use discrete optimization solving techniques to

unravel the overall problem.

Given a solution A, to specify a large neighbourhood, we fix k% of the variables

in V and W to their current value. Then, we proceed with solving the remaining

27

3. PROPOSED METHODS

unfixed variables. Solving this problem is similar to solving a reduced version of the

original problem. To be more precise, we aim to find one pair of interchangeable

assignments, fix the rest of the solution, and then swap these two assignments to get

a new neighbourhood. The steps required so two experts eA and eB can alternate

their tasks, SWAP(V, p, eA, eB, sA, sB), are as follow:

VeA,sA,p ← 0

VeB,sA,p ← 1

Expert eB can also be chosen from the set of experts available at time t in which p

is currently scheduled, AVAILABLEt. In this case, sB would not have any values,

and the previous steps are sufficient. Nonetheless, if sB exists, it indicates that the

successful swap is selected from within the projects. So, we will have:

VeB,sB,p ← 0

VeA,sB,p ← 1

Projects are initially assigned to time intervals using the greedy initializer, Init G.

In case the number of time intervals is larger than the number of projects, |T | ≥ |P|,

we can assume that the distribution resulting from Init G is the best we can get for

scheduling all projects. Otherwise, when the number of time intervals in the input

exceeds the number of projects, |T | < |P|, a conflict between two projects occurs,

which is inevitable. In such a case, at least two projects must be assigned to the

same time interval. Thus, we can no longer assume that the greedy initial solution

generator performs best without checking. To overcome this issue, we examine all

other time intervals.

For each time interval t′ ̸= t, we check IN COMMON(p,q) ∀q ∈ SCHEDULEt′ . If

it does not exist (or is equal to an empty set), then we can schedule project p for the

time interval t′ instead of t. In other words, if p does not share an expert with any

projects in a time interval, then it can be transferred to that time interval without any

28

3. PROPOSED METHODS

constraint violations. This transfer lets us analyze different conflicts between projects

while still allowing experts to swap jobs among their teams. Typically, constraints

would be violated when an expert gets overloaded with tasks or assigned to more

than one skill in a single time interval. If the expert swap is within one project, the

two experts are simply swapping tasks; since every project is allocated to only one

time interval, no violations would be violated. If the expert swap is with an expert

from outside the project, it is still a safe substitution since the choice is limited to the

candidates available at that time. Thus, any expert swap in our proposed method

uses the updated look-up tables and would be violation-free. This way, eventually,

each project converges towards local optimality.

Evaluation Function:

Unlike the previous algorithm, the evaluation function in our proposed LNS method is

simple. No constraints can be violated during the neighbourhood navigation; hence,

it is safe to assume that the objective function alone can evaluate a solution. When

exploring the feasible region, if Obj(X) > Obj(X ′), then X is definitely a better state

than X ′, and we allow the neighbourhood navigation.

Discussion:

Similar to the LS-Hybrid algorithm, we cannot prove optimality for LNS. In practice,

LNS is applied until resource exhaustion and returns the current best solution after

maximum idle iterations are passed. We get a random time interval t to explore, and

then we pick a random project p among the ones assigned to the time interval t 5.

Inside project p, we try to find a better arrangement of experts that leads to a higher

objective value. Integrating random choice of neighbours can be very robust in local

search algorithms. A new neighbour found can be from any of the following relations.

1. Swapping two experts within one project by exchanging their tasks.

5The selected time interval must have at least one project assigned to it

29

3. PROPOSED METHODS

2. Swapping an expert from one project with one from outside of the project.

(a) Substituting an expert from one project with an unemployed expert.

(b) Substituting an expert from one project with another expert who is in

another team, but is available at this specific time interval.

As explained in the previous subsection, these steps are repeated if an alternative

time interval t′ is found to see if the time change is beneficial. The expert swap within

the project would still result in the same objective function since the time interval is

not considered in the objective function. Thus, we can omit re-checking the expert

swaps within the project. Overall, five possible relations can produce a new neighbour

with and without a time change.

Landing on a new neighbour seems more straightforward in LS-Hybrid than our

proposed LNS based on the pseudocodes presented in 3.3.1 and 3.3.2. The variable

permutation in LS-Hybrid covers all of the E , S, P , and T domains. However, in

LNS, we have a much smaller loop to iterate through.

Let us analyze the computational cost of exploring a neighbourhood. To find a

pair of candidates who can exchange their tasks within the selected time interval t

and project p, we examine every pair of experts with different skills within (category

1) or outside (category 2) of p and determine if swapping them increases the objective

function value. In either categories, there are |TEAMp| computations required for each

project p to find the first swap candidate, where |TEAMp| is the number of experts

assigned to project p. In category 1, the second swap candidate is selected from the

same project p, so the computational cost of producing a new neighbour is |TEAMp|2,

which is ≪ |E|2. In category 2, the second swap candidate is selected from the list

of experts not assigned to any project q ̸= p scheduled at time interval t. Therefore,

the computational cost of producing a new neighbour is |AVAILABLEt| × |TEAMp|,

which is < |E|2. Moreover, to find a new time schedule t′ for project p, we examine

every time interval in T . Thus, if the new neighbour is produced via a new schedule,

the computational cost via category 2 is
∑

t′∈T |AVAILABLEt′ |×|TEAMp|. Note that

category 1 will not be considered anymore since it is redundant to examine experts

30

3. PROPOSED METHODS

within the project again.

Hence, the computational cost of exploring a neighbourhood is as below, which is

of the order O(|T | × |E|2):

|TEAMp|2 + |AVAILABLEt| × |TEAMp|+
∑
t′∈T

|AVAILABLEt′ | × |TEAMp|

.

Algorithm 3.3.2 LNS
Data: E ,S,P , T , PSR,Q,max iter
Result: W,V

iter counter ← max iter
// initiate V and W
V,W, SCHEDULE,TEAM, IN COMMON← Init G(E ,P ,S, T , PSR)

objbest ← Obj(V, E ,S,P , Q) // set the best objective function

while iter counter > 0 do

t← random(T) // pick a non-empty time interval t randomly

p← random(SCHEDULE[t]) // pick a project scheduled at t randomly

// I) Investigate Swaps For The Current Time Schedule:

p skills← [s ∀ s ∈ TEAM[p]] // get all skills in project p

for sA i = 1 to len(p skills) do
sA← p skills[sA i] // retrieve skill sA

foreach eA ∈ TEAM[p][sA] do

// Category 1: choose the seocond expert from within p
for sB i = sA i+ 1 to len(p skills) do

sB ← p skills[sB i] // retrieve skill sB

foreach eB ∈ TEAM[p][sB] do
Vnbr ← SWAP (V, p, eA, eB, sA, sB)
objnbr ← Obj(Vnbr, E ,S,P , Q)
if objnbr > objbest then

update objbest, Vbest

swapbest ← (t, p, eA, eB, sA, sB)
new hire← False
iter counter ← max iter // reset the idle counter

else
iter counter ← iter counter − 1 // decrement counter

// Category 2: choose the second expert from outside of p
NewHire(t)

31

3. PROPOSED METHODS

// II) Investigate Swaps For Other Time Schedules:

if p is the only project in t then

foreach t′ ̸= t ∈ T do
new schedule← True
tnew ← t′

foreach q ∈ SCHEDULE[t′] do
if IN COMMON[(p, q)] then

// disqualify tnew, projects p and q share experts

new schedule← False

if new schedule then

experts in p← [e ∀ e ∈ TEAM[p]]
insert experts in p into AVAILABLEnbr[t]
remove experts in p from AVAILABLEnbr[tnew]

remove p from SCHEDULEnbr[t]
insert p into SCHEDULEnbr[tnew]
Wnbr[(p, t)]← 1−Wnbr[(p, tnew)]

// Category 2: choose the second expert from outside of p
NewHire(tnew)

NavigateToNeighbour()

32

3. PROPOSED METHODS

Procedure NewHire
input: time interval t
foreach eB ∈ AVAILABLE[t] do

Vnbr ← SWAP (V, p, eA, eB, sA)
objnbr ← Obj(V, E ,S,P , Q)
if objnbr > objbest then

update objbest, Vbest

swapbest ← (t, p, eA, eB, sA, sB)
new hire← True
reset iter counter

else
decrement iter counter

33

3. PROPOSED METHODS

Procedure NavigateToNeighbour

if swapbest and not new schedule then
update V
t, p, eA, eB, sA, sB ← swapbest
delete eA from TEAM[p][sA]
add eB to TEAM[p][sA]

// In case where the swap is within the project

if sB then
delete eB from TEAM[p][sB]
add eA to TEAM[p][sB]

// In case where the swap is from outside of the project

if new hire then
add eA to AVAILABLE[t]
remove eB from AVAILABLE[t]
new hire← False
update IN COMMON

if swapbest and new schedule then
update V,W
update AVAILABLE, SCHEDULE

t, p, eA, eB, sA, sB ← swapbest
delete eA from TEAM[p][sA]
add eB to TEAM[p][sA]

add eA to AVAILABLE[t]
remove eB from AVAILABLE[t]
new hire← False
update IN COMMON

delete swapbest

34

CHAPTER 4

Experiments

In this chapter, we present the results of the experiments to evaluate the performance

of our proposed ILP model in Gurobi and the local search methods. Furthermore, we

examine the effect of some parameters on execution time and memory usage.

4.1 Setup

We first provide details of the computational environment and the data sets employed,

then present the results.

4.1.1 Environment

All experiments are conducted on a PC with an Intel(R) CoreTM i5-8250U CPU

@ 1.80 GHz and 8.00 GB memory. In the case of the local search methods, we

examine 8 random initial states in parallel, as there are 8 CPU cores available. Python

3.8.1 is used for the exact and heuristic approaches. Gurobi 9.0 [11] was selected

as the optimization solver for the proposed ILP model, and gurobipy, the Gurobi

Python interface, was utilized for the implementation. For the algorithm performance

evaluation, we measure the average time for ten executions of each algorithm, and for

the study of simulation parameter effects, we take the average results of 10 random

seed executions.

Other optimization solvers can be selected to solve the ILP model introduced

in this thesis, such as CPLEX. We chose Gurobi for various reasons. Gurobi has a

convenient Python interface, which allows the user to access different attributes in the

35

4. EXPERIMENTS

solver or add a limitation to the MIP solver used by Gurobi. We use these features in

our experiments to stop the optimization when a specific execution time or objective

value has been reached. More importantly, Gurobi offers free academic licenses with

no limits on model size and complete services. The one-year license can be renewed

annually. However, other powerful tools such as CPLEX only offer a free solver for

problems that have under 1,000 variables and 1,000 constraints 1.

In Gurobi’s MIP solver, there is a valid lower bound at any time during the

branch-and-bound search, sometimes called the best bound. Gurobi’s documentation

mentions that ”this bound is obtained by taking the minimum of the optimal objective

values of all of the current leaf nodes.” The difference between the current upper and

lower bounds is known as the gap, which demonstrates optimality when it is equal

to zero.

4.1.2 Data

In order to evaluate the various parameters of our algorithms under a wide variety

of conditions, we utilized synthetic data. For the most part, values were pulled from

uniform random distributions. We occasionally introduced a bias for the quality

measure to get cases with a higher chance of an expert not possessing a skill at all.

The quality score Qes is an arbitrary measure assessed for an expert in a specific skill.

In our experiments, we bound Qes to an integer between {0, 1, ..., 10}.

4.2 Case Study

To outline the objectives and desired outcomes, we generated a small-sized dataset

using the described synthetic data, and then applied all three methods, ILP with

Gurobi, LS-Hybrid, and LNS, without any limits on the execution time or the ob-

jective function. Consider the case study of twenty experts, two skills, four projects,

and three time intervals with parameters shown in Tables 4.2.1, 4.2.2, and 4.2.3.

1According to ILOG CPLEX Optimization Studio pricing by the time this thesis document is
written

36

4. EXPERIMENTS

Set Indexes

E {1, 2, ..., 20}
S {1, 2}
P {1, 2, 3, 4}
T {1, 2, 3}

Table 4.2.1: sample dsataset

Project SQL Python

P1 1 2

P2 1 2

P3 1 1

P4 2 1

Table 4.2.2: PSR, the number of experts needed
for each skill in projects in the sample dataset

Expert SQL Python Expert SQL Python

Brandon Crawford 9 0 Christa Morris 8 9

Eric Shae 0 7 Frank Huang 0 8

Gertrude Cook 6 0 Jack Carrozza 1 0

Jason Thier 0 7 Joyce Mills 0 4

Judith Castillo 0 0 Lois Tibbetts 3 6

Louise Anderson 5 3 Michael Adkinson 6 10

Nancy Bouie 0 1 Peter Towler 3 6

Raymond Dailey 0 6 Stan Bartlett 2 8

Stephan Hanson 4 0 Truman Holm 2 1

Verna Warren 0 6 Wanda Mckenney 5 3

Table 4.2.3: Q , the skill level of each expert in the sample dataset

37

4. EXPERIMENTS

Expert Skill Project Time Interval

Brandon Crawford SQL

Michael Adkinson
Python

P2 TI1

Christa Morris

Brandon Crawford SQL

Michael Adkinson
Python

P1

Stan Bartlett TI2

Christa Morris SQL
P3

Frank Huang Python

Christa Morris
SQL

Brandon Crawford P4 TI3

Michael Adkinson Python

Table 4.2.4: Gurobi’s solution for the sample dataset
objective value: 98

Expert Skill Project Time Interval

Christa Morris SQL

Gertrude Cook
Python

P2 TI1

Raymond Dailey

Gertrude Cook
SQL

Stan Bartlett P4 TI2

Michael Adkinson Python

Louise Anderson SQL

Michael Adkinson
Python

P1

Christa Morris
TI3

Gertrude Cook SQL
P3

Jason Thier Python

Table 4.2.5: LS-Hybrid’s solution for the sample dataset
objective value: 73

38

4. EXPERIMENTS

Expert Skill Project Time Interval

Christa Morris SQL

Michael Adkinson
Python

P1

Frank Huang
TI1

Gertrude Cook
SQL

Brandon Crawford P4

Stan Bartlett Python

Brandon Crawford SQL

Michael Adkinson
Python

P2 TI2

Christa Morris

Brandon Crawford SQL
P3 TI3

Michael Adkinson Python

Table 4.2.6: LNS’s solution for the sample dataset
objective value: 96

The objective values of the solutions found by Gurobi, LS-Hybrid, and LNS are

98, 73, and 96, respectively. The teams selected by each method are shown in

Tables 4.2.4, 4.2.5, and 4.2.6. According to the sample dataset, experts may have an

inadequate or zero quality level in some skills. None of the methods choose an expert

with a zero quality score when other options are available. Also, since an expert

cannot work on two tasks assigned at the same time interval, all three methods find

a minimum number of conflicts among the projects. This way, there is a broader

selection of available experts for each task.

As reported by Gurobi, the globally optimum solution occurs where project P1

and P3 are in conflict. LS-Hybrid adopts the same conflict configuration but reaches

a local optimum it cannot avoid due to its small search step. Although the LNS

method establishes the conflict differently in its final solution, it obtains a locally

optimal solution with nearly the same objective value as the globally optimal solution,

greatly outperforming LS-Hybrid.

39

4. EXPERIMENTS

4.3 Experimental Evaluation

In this section, we evaluate the performance of the ILP, LS-Hybrid, and LNS methods

on larger datasets. Also, we examine the effect of the size of the input parameters on

the number of constraints produced. We aim to answer the following questions:

• Q1: Parameter Effect Analysis. What is the effect of the size of the input

parameters, E , S, P , and T , on the number of the constraints?

• Q2: Objective Comparison. How close are the results of the heuristic algo-

rithms to the global optimal solution in fixed execution times?

• Q3: Comparative Performance. How do ILP, LS-Hybrid and LNS compare

in terms of execution time to reach the same objective value?

4.3.1 Q1: Parameter Effect Analysis

In order to evaluate and compare the performance of both Gurobi and the local search-

based methods, we first need to examine the effect that different size parameters

have on the problem and solution. We can achieve this by examining the number

of individual constraints that are produced for datasets with different numbers of

experts, skills, projects, time instances as well as average number of experts per skill.

40

4. EXPERIMENTS

|E| # of Constraints |S| # of Constraints

50 189180 1 77140

100 361180 2 248160

150 533180 3 533180

200 705180 4 932200

250 877180

300 1049180

|P| # of Constraints |T | # of Constraints

10 127090 5 521780

15 295260 10 527480

20 533180 15 533180

25 840850 20 538880

30 1218270 25 544580

Table 4.3.1: Effect of the change in parameter sizes on the number of con-
straints

To get a better insight into the effect of each data entry on the number of con-

straints, we refer to the mathematical model proposed for the problem in section 3.2

of Chapter 3. To analyze each parameter, we fix all but one of the |E| = 150, |S| = 3,

|P| = 20, |T | = 15, and |PSRmax| = 2 values, while varying the remaining quantity.

The number of constraints produced can be used to determine the size and/or dif-

ficulty of solving the particular ILP problem. The results for each quantity can be

seen in Table 4.3.1. Note that the maximum PSR depends on the number of experts

in the input. Increasing the maximum PSR allowed in projects can lead to expert

shortage and the lack of any feasible solution. Also, increasing or decreasing the max-

imum value allowed for PSR does not affect the number of constraints produced in

a problem. For instance, by increasing the maximum PSR from 1 to 4 for the same

setup, we get the flat number of 533180 constraints produced.

41

4. EXPERIMENTS

As derived from the mathematical model 3.2, we plot each part of the data from

Table 4.3.1 into four figures shown in Figure 4.3.1a for better observation. The num-

ber of constraints produced in the problem grows linearly by increasing the number

of experts. Similarly, on a smaller scale based on their y-axis, increasing the number

of time intervals shown in Figure 4.3.1d raises the number of constraints in a linear

fashion. Moreover, Increasing the number of skills above four leads to an infeasible

solution, and the problem becomes unsolvable. Therefore, we can see that the maxi-

mum possible number of skills highly depends on the number of experts and projects.

Lastly, we observe the maximum number of constraints, 1218270, produced when

increasing the number of projects with nonlinear growth.

(a) |S| = 3, |P| = 20, |T | = 15 (b) |E| = 150, |P| = 20, |T | = 15

(c) |E| = 150, |S| = 3, |T | = 15 (d) |E| = 150, |S| = 3, |P| = 20

Fig. 4.3.1: Effect of the number of experts (a), skills (b), projects (c), time intervals
(d), and maximum experts per skill (e) on the number of constraints generated.

Therefore, for all upcoming experiments, we examine how different metrics scale

in relation to the number of projects |P|. It displays the exponential nature of the

problem while allowing for valid values without needing to modify any of the other

parameters.

42

4. EXPERIMENTS

4.3.2 Q2: Objective Comparison.

LS-Hybrid and LNS find locally optimal objectives and do not guarantee to provide

the globally optimal solution. Thus, we fix a maximum execution time to evaluate

the solutions’ objective values fairly. By setting the Time Limit parameter on Gurobi

and manually computing the execution time on LNS, both methods will terminate

when the execution time is exceeded. The results of this experiment can be seen

in Fig 4.3.2. As mentioned before, LS-Hybrid searches both infeasible and feasible

regions; thus, its execution time is sizable compared to the other two methods. Most

of the solutions found by LS-Hybrid under the limited execution time were infeasible,

so we do not consider it for this experiment. Gurobi surpasses LNS when the number

of projects is less than the number of time intervals. As we increase |P|, Gurobi’s

execution time increases, resulting in premature termination of the optimization and

some performance loss. Therefore, although Gurobi performs ×2.5 better than LNS

for |P| = 10, it performs equally or worse than LNS for |P| ≥ 45

Fig. 4.3.2: Objective value comparison of Gurobi and LNS.
|E| = 600, |S| = 3, |T | = 20, |PSRmax| = 2

43

4. EXPERIMENTS

4.3.3 Q3: Comparative Performance.

In order to explore the comparison of execution time among all three methods, we set

an objective goal for all methods. To prepare for the experiment, we employ Gurobi

without limitations to obtain the globally optimal solution. Then, we alter Gurobi’s

best objective value parameter, BestObjStop, so that the objective function reaches

at least 60% of the previously calculated optimal one. Next, we attempt to reach at

least the same objective value with LS-Hybrid and LNS. We examine the execution

times for different numbers of projects. Figure 4.3.3 presents the results. Another

way to set termination criteria for Gurobi’s MIP solver is to fix the gap between

the lower and upper objective bound, MIPGapAbs, in a way that the optimization

terminates when reaching a MIP gap of 60%.

Fig. 4.3.3: Execution time performance comparison of ILP, LS-Hybrid, and LNS.
|E| = 600, |S| = 3, |T | = 20, |PSRmax| = 2

As can be seen, although LS-Hybrid finds a local optimum, it has a high execution

time due to its considerable number of neighbour traversals. The calculation for

|P| > 20 was prohibitively expensive. The execution time for Gurobi and LNS roughly

grows equally. Gurobi’s overall execution time for the first datasets is better than

LNS when no limitation is applied. However, the computational cost of Gurobi grows

exponentially with respect to the number of projects |P|. As seen in Figure 4.3.3,

Gurobi performs about the same as LNS when the objective value is restricted.

44

4. EXPERIMENTS

It should also be noted that the space required by Gurobi is proportional to the

number of constraints. Thus, it grows exponentially with the number of projects as

shown in the Figure 4.3.1c in the previous subsection. In contrast, the space required

for LS-Hybrid and LNS grows quadratically with the size of the dataset. See Chapter

3.3.2 for more details.

45

CHAPTER 5

Conclusions and Future Steps

5.1 Conclusions

In this work, we studied a team formation problem where we are given a set of

projects, each requiring specific skills that must be completed in a particular time.

Additionally, we are given a set of candidates where each individual has a skill set

alongside a quality score associated with each one. We explored various techniques

to achieve a global or local solution for finding the most highly qualified teams of

experts for all projects.

We modelled the problem using integer linear programming and examined it via

Gurobi, the commercial optimizer. Then we explored two heuristic approaches to

tackle the proposed TFP, LS-Hybrid and LNS. Due to heuristic algorithm character-

istics, we cannot prove our solution’s proximity to the optimal. However, the exact

algorithms, such as the ones used in Gurobi to solve the ILP model, achieve a glob-

ally optimal solution. We did an approximation accuracy analysis and showed that

compared to the results from ILP, our proposed LNS’s accuracy is between 75-90%.

An advantage of heuristic approaches, like the ones used in this thesis, over con-

structive methods is that the algorithm can be stopped prematurely at any time

during the execution to get a solution. That solution may or may not be locally

optimal and most likely will not be globally optimal, but it is still a complete solution

to the problem. There is, therefore, an inherent trade-off between accuracy and time

between the optimization and local search approaches, respectively.

46

5. CONCLUSIONS AND FUTURE STEPS

Furthermore, we must mention that the number of constraints produced when

using ILP can lead to a considerable amount of memory with particularly large test

cases. On the other hand, in both heuristic approaches, the memory is limited to

only the current assignments of V and W and the defined data structures.

The LS-Hybrid solution provided in this thesis is not problem specific and can

be adopted by other similar problems. However, some criticism is directed at the

practicality of classic TFP [13].

One of the main assumptions in most TFPs is that the experts are assumed to be

idle, which is somewhat unrealistic. In real-world scenarios, experts can get hired by

another company/institution by the time we come to a decision. On the other hand,

we believe that it is beneficial for a company with multiple projects to utilize this

model to consider schedules, acknowledge costs (such as setting annual budgets), and

estimate the number of candidates they need to hire depending on the optimization

results.

Moreover, our proposed methods can be a tool to analyze what-if scenarios dur-

ing resource planning. Experiments similar to the ones shown in Chapter 4 can be

employed to determine how much the overall project gains are affected by different

parameters.

47

5. CONCLUSIONS AND FUTURE STEPS

5.2 Future work

There are other possibly efficient techniques to linearize quadratic constraints, similar

to the one mentioned in Chapter 3.2 [22]. In the same chapter, our linear alternative

is suggested in equations (3, 4, and 5).

This research can be further extended in several ways. To examine other possible

neighbourhoods for the LNS, we suggest unassigning all experts to a single time

interval and solving the smaller subproblem. It would allow the expert to swap jobs

not only within a project but also between multiple projects that are assigned to the

same time interval.

Moreover, it may be interesting to evaluate the algorithms developed in various

real-world datasets, such as data extracted from GitHub repositories or data scraped

from platforms like LinkedIn.

48

APPENDIX A

Implementation

A.1 ILP Optimization Using Gurobi

def ilp(experts, projects, skills, timeslots, Q, PSR):

num_experts, num_projects, num_skills, num_timeslots = len(experts

↪→), len(projects), len(skills), len(timeslots)

-- Create a Model:

mdl = gp.Model("Maximum Expert Quality Hiring Problem")

##

Variables

##

-- Wpt: 1 if project p is selected at timeslot t; 0 otherwise

W = mdl.addVars(projects, timeslots, vtype=gp.GRB.BINARY, name="W

↪→ ")

-- Vesp: 1 if expert e is assigned to skill s in project p; 0

↪→ otherwise

V = mdl.addVars(experts, skills, projects, vtype=gp.GRB.BINARY,

↪→ name="V")

49

A. IMPLEMENTATION

-- Zpqt: 1 if project p and q are assigned to the same timeslot

↪→ t; 0 otherwise

Z = mdl.addVars(projects, projects, timeslots, vtype=gp.GRB.BINARY

↪→ , name="Z")

mdl.update()

##

Mathematical Formulation

##

-- Objective: maximize the quality of the selected experts

mdl.setObjective(gp.quicksum(Q[(e, s)] * V[(e, s, p)] for e in

↪→ experts for s in skills for p in projects),

gp.GRB.MAXIMIZE)

Constraints:

-- Constraint 1: Expert e cannot be assigned to skills in

↪→ different projects at the same timeslot

mdl.addConstrs((V[e, s, q] + V[e, u, p] + gp.quicksum(Z[p, q, t]

↪→ for t in timeslots) <= 2

for e in experts for s in skills for u in skills for

↪→ p in projects for q in projects if p != q),

name="Constraint1")

-- Constraint 2-4: Controlling conflicts between projects

mdl.addConstrs((Z[p, q, t] >= W[p, t] + W[q, t] - 1

for p in projects for q in projects if p != q for t

↪→ in timeslots),

name="Constraint2")

50

A. IMPLEMENTATION

mdl.addConstrs((Z[p, q, t] <= W[p, t]

for p in projects for q in projects if p != q for t

↪→ in timeslots),

name="Constraint3")

mdl.addConstrs((Z[p, q, t] <= W[q, t]

for p in projects for q in projects if p != q for t

↪→ in timeslots),

name="Constraint4")

-- Constraint 5 : All projects must be selected

mdl.addConstrs((gp.quicksum(W[p, t] for t in timeslots) == 1 for p

↪→ in projects),

name="Constraint5")

-- Constraint 6: Enough experts must be assigned to skill s in

↪→ project p.

mdl.addConstrs((gp.quicksum(V[e, s, p] for e in experts) <= PSR[s,

↪→ p] for s in skills for p in projects),

name="Constraint6")

-- Constraint 7: A person should be allowed to one thing at the

↪→ time

mdl.addConstrs((gp.quicksum(V[e, s, p] for s in skills) <= 1 for e

↪→ in experts for p in projects),

name="Constraint7")

Update the model

mdl.update()

51

A. IMPLEMENTATION

##

Optimization

##

Make a path for the data

PATH = ’_’.join([str(num_experts) + ’e’, str(num_skills) + ’s’,

str(num_projects) + ’p’, str(num_timeslots) + ’t’])

os.makedirs(PATH, exist_ok=True)

mdl.write(PATH + "/model.lp")

Optimize the model

mdl.optimize()

print("MODEL RUNTIME: ", mdl.Runtime)

52

APPENDIX B

LS Algorithms’ Initial Solution

In this chapter, we elaborate on the two initial solution generators used in Algorithms

3.3.1 and 3.3.2. We discuss the Init R function followed by the Init G. Consider the

example below with five experts, two skills, four projects, and three time intervals.

We will use this example in the next sections for better interpretation.

Set Indexes

E {0, 1, 2, ..., 10}

S {0, 1}

P {0, 1, 2, 3}

T {0, 1, 2}

Table B.0.1: Example 1. with some PSR, and Q

B.1 Purely Random Initial Solution (Init R)

For variables V , we iterate through the set of experts, skills, and projects, then assign

a random binary digit to any of the variables. The results for Example 1. shown in

Table B.0.1 could be such as below, which is not necessarily a feasible solution:

The first rows of the dictionary are shown for clarification

Definition: V[(e, s, p)] = 0 or 1

V ={(e0, s0, p0): 0, (e0, s0, p1): 1, (e0, s0, p2): 0, (e0, s0, p3): 0,

(e0, s1, p0): 0,

..., (e10, 1, 3): 1}

53

B. LS ALGORITHMS’ INITIAL SOLUTION

For variables W , we iterate through the set of projects, but we only allow one

time-interval selection for each. The reason will be explored and explained more in

detail in the next subsection. Again, for Example 1. the initializer could result in:

Each row is related to one project and has only one assignment.

Multiple project assignments to one time interval is possible,

such as p1 and p2 to t1.

Definition: W[(s, p)] = 0 or 1

W ={(s0, p0): 1, (s0, p1): 0, (s0, p2): 0,

(s1, p0): 0, (s1, p1): 1, (s1, p2): 0,

(s2, p0): 0, (s2, p1): 1, (s2, p2): 0,

(s3, p0): 0, (s3, p1): 0, (s3, p2): 1}

We keep the indexes to the selected time interval and their associated projects in

the data structure, SCHEDULE for faster access during the local search. To get a

better conception, look at the following example:

This is a lookup table, not a part of the solution,

which keys time intervals by their selected projects.

Definition: SCHEDULE[p] = t

SCHEDULE ={p0: t0,

p1: t1,

p2: t1,

p3: t2}

B.2 Greedy Initial Solution (Init G)

The generated solution via a greedy approach will still be randomly assigned; the only

difference is that it is also a feasible solution. Experts can be assigned to skills they

do not possess, where they have a quality score Q equal to zero. The constructed so-

lution possibly has an undesirable objective value, but at least all the assignments are

guaranteed to be feasible. The two data structures generated alongside the solution

are as follows:

54

B. LS ALGORITHMS’ INITIAL SOLUTION

In the altered SCHEDULE data structure, we key the list of projects by the time

interval they are scheduled. Below is an example of the new SCHEDULE :

This is a lookup table, not a part of the solution,

which keys the list of projects by their selected time interval.

Definition: SCHEDULE[t] = [p for p in P if W[(p,t) == 1]

SCHEDULE ={t0: [p0],

t1: [p1, p2],

t2: [p3]}

TEAM is also an additional data structure that is generated to keep track of task

assignments to experts. It shows the assignment of the set of experts for each skill

in a project. TEAM[p][s] contains the set of all experts hired for project p, skill s.

In a general sense, the team formed for each project is held within TEAM[p]. For a

better understanding, look at the following example:

This is a lookup table, not a part of the solution,

For each project key, another dictionary keeps the experts’ information for each

↪→ skill in the project.

Definition: TEAM[p] = {s: [e]}

TEAM ={p0: {s0: [e0, e1]},

p1: {s1: [e0, e4]},

p2: {s0: [e1], s1: [e2, e3]},

p3: {s0:[e1], s1:[e2, e5]}}

AVAILABLE is a data structure consisting of all the experts that are available

to be hired at specific time intervals. Keeping lists of available experts at each time

interval accelerates and organizes the neighbourhood navigation for the large neigh-

bourhood search. Below is an example for better understanding. Assuming the

current formed teams are selected as in the TEAMS above, expert e5, e6, and the

rest are not assigned to any projects yet, so they are idle or unemployed at all time

intervals. Also, due to the current scheduling, some experts hired for other projects

might still be available at a given time.

55

B. LS ALGORITHMS’ INITIAL SOLUTION

This is a lookup table, not a part of the solution,

Lists of experts that are available at a given time interval.

Definition: AVAILABLE[t] = [e]

AVAILABLE ={t0: [e2, e3, e4, e5, e6, e7, e8, e9, e10],

t1: [e5, e6, e7, e8, e9, e10],

t2: [e0, e3, e4, e6, e7, e8, e9, e10],}

Lastly, IN COMMON is a graph that indicates whether or not two projects have

hired any experts in their assignments in common. This data structure is a lookup

table that speeds up the queries needed in the large neighbourhood search. The edge

value can be the set of all experts in common between two projects or just a binary

value indicating the existence of any mutual experts. For clarification, look at the

following example:

This is a lookup table, not a part of the solution,

A graph where nodes are projects and edges show what experts each two projects

↪→ have in common.

Definition: IN_COMMON[(p, q)] = [e]

IN_COMMON ={(p0, p1) :[e0],

(p0, p2) :[e1],

(p0, p3) :[e1],

(p1, p2) :[],

(p1, p3) :[],

(p2, p3) :[e1, e2]}

56

REFERENCES

[1] Abdel-Basset, M., Abdel-Fatah, L., and Sangaiah, A. K. (2018). Metaheuristic

algorithms: A comprehensive review. Computational intelligence for multimedia

big data on the cloud with engineering applications, pages 185–231.

[2] Ahuja, R. K., Ergun, Ö., Orlin, J. B., and Punnen, A. P. (2002). A survey of

very large-scale neighborhood search techniques. Discrete Applied Mathematics,

123(1-3):75–102.

[3] Allen, N. J. and Hecht, T. D. (2004). The ‘romance of teams’: Toward an under-

standing of its psychological underpinnings and implications. Journal of Occupa-

tional and Organizational Psychology, 77(4):439–461.

[4] Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., and Leonardi, S.

(2010). Power in unity: forming teams in large-scale community systems. In Pro-

ceedings of the 19th ACM international conference on Information and knowledge

management, pages 599–608.

[5] Baykasoglu, A., Dereli, T., and Das, S. (2007). Project team selection using

fuzzy optimization approach. Cybernetics and Systems: An International Journal,

38(2):155–185.

[6] Chen, S.-J. and Lin, L. (2004). Modeling team member characteristics for the

formation of a multifunctional team in concurrent engineering. IEEE transactions

on Engineering Management, 51(2):111–124.

57

REFERENCES

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition.

[8] Eren, Y., İbrahim B. Küçükdemiral, and İlker Üstoğlu (2017). Chapter 2 - intro-

duction to optimization. In Erdinç, O., editor, Optimization in Renewable Energy

Systems, pages 27–74. Butterworth-Heinemann, Boston.

[9] Fitzpatrick, E. L. and Askin, R. G. (2005). Forming effective worker teams

with multi-functional skill requirements. Computers & Industrial Engineering,

48(3):593–608.

[Glassdoor] Glassdoor. Glassdoor economic research.

[11] Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

[12] Jaddi, N. S. and Abdullah, S. (2020). Global search in single-solution-based

metaheuristics. Data Technologies and Applications.

[13] Juárez, J., Santos, C. P., and Brizuela, C. A. (2022). A comprehensive review

and a taxonomy proposal of team formation problems. ACM Computing Surveys,

54(7):1–33.

[14] Katzenbach, J. R. and Smith, D. K. (1993). The discipline of teams. Harvard

Business Review.

[15] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simu-

lated annealing. Science, 220(4598):671–680.

[16] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520.

[17] Lappas, T., Liu, K., and Terzi, E. (2009). Finding a team of experts in social

networks. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 467–476.

[18] Lawler, E. L. and Wood, D. E. (1966). Branch-and-bound methods: A survey.

Operations research, 14(4):699–719.

58

REFERENCES

[19] Majumder, A., Datta, S., and Naidu, K. (2012). Capacitated team formation

problem on social networks. In Proceedings of the 18th ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1005–1013.

[20] Mathews, G. B. (1896). On the Partition of Numbers. Proceedings of the London

Mathematical Society, s1-28(1):486–490.

[21] Morrison, D. R., Jacobson, S. H., Sauppe, J. J., and Sewell, E. C. (2016). Branch-

and-bound algorithms: A survey of recent advances in searching, branching, and

pruning. Discrete Optimization, 19:79–102.

[22] Oral, M. and Kettani, O. (1992). A linearization procedure for quadratic and cu-

bic mixed-integer problems. Operations Research, 40(1-supplement-1):S109–S116.

[23] Palpant, M., Artigues, C., and Michelon, P. (2004). Lssper: Solving the resource-

constrained project scheduling problem with large neighbourhood search. Annals

of Operations Research, 131(1):237–257.

[24] Selvi, S. T., Baskar, S., and Rajasekar, S. (2018). An intelligent approach based

on metaheuristic for generator maintenance scheduling. In Classical and recent

aspects of power system optimization, pages 99–136. Elsevier.

[25] Souza Brito, S., Gambini Santos, H., and Miranda Santos, B. H. (2014). A

local search approach for binary programming: Feasibility search. In International

Workshop on Hybrid Metaheuristics, pages 45–55. Springer.

[26] Sukthankar, G. and Sycara, K. (2006). Simultaneous team assignment and be-

havior recognition from spatio-temporal agent traces. In AAAI, volume 6, pages

716–721.

[27] Taccari, L. (2016). Integer programming formulations for the elementary shortest

path problem. European Journal of Operational Research, 252(1):122–130.

[28] Talbi, E. and Metaheuristics, G. (2009). From design to implementation. vol.

74. hoboken.

59

REFERENCES

[29] van de Water, T., van de Water, H., and Bukman, C. (2007). A balanced team

generating model. European Journal of Operational Research, 180(2):885–906.

[30] Wi, H., Oh, S., Mun, J., and Jung, M. (2009). A team formation model based on

knowledge and collaboration. Expert Systems with Applications, 36(5):9121–9134.

[31] Yang, X.-S. and Deb, S. (2014). Cuckoo search: recent advances and applications.

Neural Computing and applications, 24(1):169–174.

[32] Zzkarian, A. and Kusiak, A. (1999). Forming teams: an analytical approach. IIE

transactions, 31(1):85–97.

60

VITA AUCTORIS

NAME: Yalda Yazdanpanah

PLACE OF BIRTH: Tehran, Iran

YEAR OF BIRTH: 1995

EDUCATION:

Shiraz University, B.Sc in Computer Engi-
neering, Shiraz, Iran, 2018

University of Windsor, M.Sc in Computer
Science, Windsor, Ontario, 2022

61

	Building Competent Teams of Experts Based on Project Completion Time and Skill Levels
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Overview
	Motivation
	Contributions
	Structure

	Related Work
	Fundamental Concepts and Techniques
	Integer Linear Programming (ILP)
	Branch and Bound Algorithm (B&B)
	Greedy Algorithms
	Meta-Heuristic Algorithms

	Team Formation Problem (TFP)

	Proposed Methods
	Preliminaries
	Notation and Setting
	Problem Description

	ILP Model For TFP with Maximized Quality
	Steepest Descent Local Search (LS)
	LS-Hybrid
	LNS

	Experiments
	Setup
	Environment
	Data

	Case Study
	Experimental Evaluation
	Q1: Parameter Effect Analysis
	Q2: Objective Comparison.
	Q3: Comparative Performance.

	Conclusions and Future Steps
	Conclusions
	Future work

	APPENDIX Implementation
	ILP Optimization Using Gurobi

	APPENDIX LS Algorithms' Initial Solution
	Purely Random Initial Solution (Init_R)
	Greedy Initial Solution (Init_G)

	REFERENCES
	VITA AUCTORIS

