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Abstract

In this thesis, we analyze the Kraft Inequality and the Kraft-McMillan Inequality in their

equality cases. Kraft’s Inequality deals with prefix-free code and Kraft-McMillan’s Inequality

deals with uniquely decodable codes. The focus of the Kraft Inequality analysis is to study

the occurrence of prefix-free codes that satisfy the equality case and the structure of words

in the code when the equality condition is met. The second part of the thesis touches on the

Kraft-McMillan Inequality. Since the proof of this latter inequality uses limits, we cannot

immediately analyse its equality cases. The paper will therefore study the equality cases of

this theorem and demonstrate that these equality cases have similar results to that of the

Kraft Inequality, although it is necessary to prove them in a different way since the latter

theorem’s proof is less direct.
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Chapter 1

Introduction

This thesis is concerned with two theorems in Information Theory: the Kraft Inequality and

the Kraft-McMillan Inequality. These theorems deal with prefix-free codes and uniquely

decodable codes respectively. We start by reviewing these notions and the context in which

they occur.

1.1 Basic Notation

We start by introducing the language that will be used in this thesis. An alphabet A is a

finite set of characters (which we sometimes call letters). Let d = |A|, so there are d letters

in the alphabet. Let A∗ be the free monoid generated by A. In computer science literature,

A∗ is often called the Kleene star of A. A word is an element of A∗ and thus is a string of

characters from A.

A code is a subset C of A∗. We will only consider finite codes C = {w1, . . . , wn} where

each wi is a word in A∗. For any w ∈ C, let l(w) be its length.

1
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1.2 The Kraft and Kraft-McMillan Inequalities

Definition 1.2.1. The notation lmax is used to represent the longest word in a code C, i.e.

lmax = max{l(w1), . . . , l(wn)}.

Definition 1.2.2. A code C is prefix-free if there do not exist two distinct words w, v ∈ C

such that w is an initial segment of v. Similarly, a code is suffix-free if there do not exist

two distinct words w, v ∈ C such that w is an ending segment of v.

Definition 1.2.3. A code C is uniquely decodable if any word in A∗ can be written as a

concatenation of words in C in at most one way.

Clearly, any prefix-free code is uniquely decodable.

all codes

uniquely decodable

prefix-free

However, the converse is not true: there exist uniquely decodable codes which are not

prefix-free.

Example 1.2.4. If we take an alphabet A and a code C to be suffix-free, this gives a simple

way of getting a uniquely decodable code that is not prefix-free. For example, if A = {a, b},

and the suffix-free code is C = {a, ab, abb, bbb}, then this code is clearly uniquely decodable

because it is suffix-free and it is not prefix-free.

Example 1.2.5. Let A = {0, 1} be our alphabet and C = {0, 001, 110} be our code. Clearly,

C is not prefix-free, as 0 is a prefix to 001. However, it is uniquely decodable because of the

conditions in which we can find a 1. If we can find an isolated 1, then the word associated
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must be 001. If there are two 1’s together we must have 110 and if there are 3 one’s in a

row then the result must be 001 followed by 110. Now outside of these occasions the rest of

the characters will be 0’s from the word 0.

Now we can state the Kraft and the Kraft-McMillan Inequalities.

Theorem 1.2.6 (The Kraft Inequality). If C is a prefix-free code from the alphabet A, then

∑
w∈C

1

dl(w)
≤ 1.

Proof. Let C(w) = {v ∈ A∗ : l(v) = lmax, w is a prefix of v}. Since C is a prefix-free code,

C(w1) ∩ C(w2) = ∅ for all w1, w2 ∈ C such that w1 ̸= w2. Then,

∑
w∈C

|C(w)| ≤ |{v ∈ A∗ : l(v) = lmax}|.

Hence, ∑
w∈C

dlmax−l(w) ≤ dlmax .

The inequality is now a straightforward result. ■

Theorem 1.2.7 (Kraft-McMillan Inequality). If C is a uniquely decodable code, then

∑
w∈C

1

dl(w)
≤ 1.

Proof. Let m ∈ N and Nm,l be the number of combinations of m codewords with length l.
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Since C is uniquely decodable, |Nm,l| ≤ dl. Then,

(∑
w∈C

1

dl(w)

)m

=
∑

w1,w2,...,wm∈C

1

dl(w1)+l(w2)+...+l(wm)

=
m·lmax∑
l=0

Nm,l

dl

≤
m·lmax∑
l=0

1

= m · lmax + 1.

Hence
∑
w∈C

1

dl(w)
≤ m
√

m · lmax + 1 , but lim
m→∞

m
√

m · lmax + 1 = 1, so we get
∑
m∈C

1

dl(w)
≤ 1. ■

This proof of McMillan’s first inequality [2] is the method used by Karush [3].

The second part of McMillan’s work is the Shannon-McMillan Theorem. Shannon coding,

the base of this part of his work, is a technique of lossless data compression for constructing

a prefix-free code with their probabilities.

The Kraft-McMillan Inequality extends what we know from the Kraft Inequality for

prefix-free codes to the more general uniquely decodable codes. Hence, when it satisfies the

equality case, our code is full and cannot be enlarged.

Example 1.2.8. Here is a list of examples where equality is attained in the Kraft and

Kraft-McMillan Inequalities.

1. If A = {a}, then C = {a} is clearly uniquely decodable, and

1

1la
= 1.

2. If A = {0, 1}, then C = {0, 11, 101, 100} is clearly prefix-free, and

∑
w∈C

1

2l(w)
=

1

2
+

1

4
+

1

8
+

1

8
= 1.
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3. If A = {a, b, c}, then C = {a, ba, bb, bc, c} is prefix-free and

∑
w∈C

1

3l(w)
=

1

3
+

1

9
+

1

9
+

1

9
+

1

3
= 1.

4. If A = {0, 1}, then C = {00, 01, 11, 101, 1000, 1001} is prefix-free, and

∑
w∈C

1

2l(w)
=

1

4
+

1

4
+

1

4
+

1

8
+

1

16
+

1

16
= 1.

5. Let C be the prefix-free code that contains all words of length N for a given alphabet

of size d. Then there are dN words and we have

∑
w∈C

1

dl(w)
=
∑
w∈C

1

dN
= dN

1

dN
= 1.

6. If α ∈ A is fixed, let C consist of all words of the form

αα . . . α︸ ︷︷ ︸
k occurrences

β

with 0 ≤ k ≤ N − 1 and β ∈ A arbitrary such that β ̸= α if k ̸= N − 1. For example,

if

A = {a, b, c}, then C = {b, c, ab, ac, . . . , a . . . ab, a . . . ac, a . . . aa}.

Clearly C is prefix-free and

∑
w∈C

1

dl(w)
= (d− 1)

1

d
+ (d− 1)

1

d2
+ . . .+ d

1

dN
= 1.

7. If A = {0, 1} and C = {0, 01, 11}, then we see that C is clearly not prefix-free but is
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suffix-free, so it is uniquely decodable. We then have

∑
w∈C

1

2l(w)
=

1

2
+

1

4
+

1

4
= 1.

1.3 The Results

Question 1.3.1. What can be said about C (a prefix-free or uniquely decodable code) if

equality occurs in the Kraft Inequality or the Kraft-McMillan Inequality, i.e. if

∑
w∈C

1

dl(w)
= 1?

Two more notions we have to define for our results in this thesis are the occurrence and

the weighted number of occurrences of a character. The occurrence of a character, α, in a

word w ∈ C is the number of times α appears in the word and we will use the notation

nα(w). The weighted number of occurrences is calculated for α in the entire code C:

Aα :=
∑
w∈C

nα(w)

dl(w)
.

Example 1.3.2. We take the same examples as in Example 1.2.8 and calculate Aα for all

α, β ∈ A. Each example correlates to the same number from the previous set.

1. A = {a} and C = {a}, so

Aa = 1.

2. A = {0, 1} and C = {0, 11, 101, 100}, so

A0 =
1

2
+

1

8
+

2

8
=

7

8
; A1 =

2

4
+

2

8
+

1

8
=

7

8
.
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3. A = {a, b, c} and C = {a, ba, bb, bc, c}, so

Aa =
1

3
+

1

9
=

4

9
; Ab =

1

9
+

2

9
+

1

9
=

4

9
; Ac =

1

9
+

1

3
=

4

9
.

4. A = {0, 1} and C = {00, 01, 11, 101, 1000, 1001}, so

A0 =
2

4
+

1

4
+

1

8
+

3

16
+

2

16
=

19

16
; A1 =

1

4
+

2

4
+

2

8
+

1

16
+

2

16
=

19

16
.

5. Let C be the set of all words of lengthN . Therefore, there are dN words. There areNdN

letters overall, and α will occur
1

d
of the time. From this, we get

∑
w∈C

nα(w) =
N

d
dN ,

and so for all α ∈ A,

Aα =
1

dN

∑
w∈C

nα(w) = NdN−1 1

dN
=

N

d
.

6. In the two sections in this example we will use

n∑
k=0

krk = r
1− (n+ 1)rn−1 + nrn+1

(1− r)2
.

Indeed, multiplying both sides by (1 − r)2 and multiplying out on the left hand side

boils this down to a routine calculation. This calculation can be seen at [8].

(a) A = {a, b, c} and C = {b, c, ab, ac, . . . , a . . . ab, a . . . ac, a . . . aa}, so

Ab = Ac =
1

3
+

1

32
+ . . .+

1

3N−1
=

1

2

(
1− 1

3N

)
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Aa =
2

32
+

2 · 2
33

+ . . .+
2 · (N − 1)

3N
+

N

3N

=
2

3

(
1

3
+

2

32
+

3

33
+ . . .+

N − 1

3N−1

)
+

N

3N

=
2

3

((
1

3

)
1−N 1

3N−1 + (N − 1) 1
3N

(1− 1
3
)2

)
+

N

3N

=
1

2

(
1−N

1

3N−1
+ (N − 1)

1

3N
+

2N

3N

)
=

1

2

(
1− 1

3N

)
.

(b) For a fixed α and an alphabet of size d, we have

Aα =
d− 1

d2
+

2(d− 1)

d3
+ . . .+

(d− 1)(N − 1)

dN
+

N

dN

=
(d− 1)

d

(
1

d
+

2

d2
+ . . .+

N − 1

dN−1

)
+

N

dN

=
d− 1

d

(
1

d
·
1−N 1

dN−1 + (N − 1) 1
dN

(1− 1
d
)2

)
+

N

dN

=
1

d− 1

(
1−N

1

dN−1
+ (N − 1)

1

dN
+

(d− 1)N

dN

)
=

1

d− 1

(
1− 1

dN

)

Aβ =
1

d
+

1

d2
+ . . .+

1

dN−1
=

1

d

(
1− 1

dN

1− 1
d

)
=

1

d− 1

(
1− 1

dN

)
.

7. A = {0, 1} and C = {0, 01, 11}, so

A0 =
1

2
+

1

4
=

3

4
; A1 =

1

4
+

2

4
=

3

4
.

Theorem 1.3.3. Let C be prefix-free and
∑
w∈C

1

dl(w)
= 1. (I.e. the equality case occurs in

Kraft’s Inequality.) Then,

Aα = Aβ for all α, β ∈ A. (1.1)

The next theorems we go over are all refinements on this base theorem.
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Theorem 1.3.4. Let C be a prefix-free code. We have

∑
w∈C

1

dl(w)
≤ 1− 1

lmax

max
α,β∈A

{|Aα − Aβ|}. (1.2)

In the above theorem, we find a sharpened version of the Kraft Inequality from which

we get Theorem 1.3.3 when equality occurs in the Kraft Inequality and the right hand side

is strictly 1.

Theorem 1.3.5. If C is a prefix-free code that satisfies the equality case of the Kraft In-

equality, then

1. Aα = Aβ

2.
∑
w∈C

(nα(w)− nβ(w))
2

dl(w)
= Aα + Aβ

for all α, β ∈ A.

The above theorem is an extension of Theorem 1.3.3 but offers more information regarding

the weighted number of occurrences of characters.

Theorem 1.3.6. Assume that C is uniquely decodable and that
∑
w∈C

1

dl(w)
= 1 (i.e. that

equality occurs in the Kraft-McMillan Inequality). Then

Aα = Aβ, for all α, β ∈ A.

Since the proof of the Kraft-McMillan Inequality uses limits, this proof says very little

about when the equality cases of the theorem are satisfied. To prove Theorem 1.3.6 we will

rely on a generalization of the Kraft-McMillan Inequality (Proposition 4.1.1) and combine

it with a variational approach using Lagrange multipliers. This raises the question about

whether the behaviour in the equality case of the Kraft Inequality is actually similar to the

behaviour of the equality case in the Kraft-McMillan Inequality as well.
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We will arrive to the result of Theorem 1.3.3 in three different ways in this thesis and

each of these results offers different additional results.



Chapter 2

Preliminaries

2.1 Reviewing Monoids

Throughout this thesis we will use monoids and monoid homomorphisms, mainly as a con-

venient language device.

Definition 2.1.1 (Monoid). A monoid is a triple (M, e, ∗) consisting of a set M , an asso-

ciative binary operation ∗ on M and an identity element e. In other words, monoids satisfy

the following rules:

1. (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ M

2. e ∗ x = x ∗ e = x for all x ∈ M .

Definition 2.1.2. Amonoid homomorphism between two monoids (M1, e1, ∗) and (M2, e2, ◦)

is a function ϕ : M1 → M2 such that:

1. ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y) for all x, y ∈ M1

2. ϕ(e1) = e2.

Remark 2.1.3. If ϕ : (M1, e1, ∗) → (M2, e2, ◦) is a monoid homomorphism, then

ϕ(x1 ∗ x2 ∗ . . . ∗ xn) = ϕ(x1) ◦ ϕ(x2) ◦ . . . ◦ ϕ(xn) for all x1, x2, . . . , xn ∈ M1 (2.1)

11
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(i.e. the property in the definition remains true for any number of elements).

2.2 Important Notions

First recall that A∗ is the free monoid generated by A and we will simply use this notation

instead of (A∗, ” ”, ∗). We will work with the monoid homomorphism from A∗ to [0,∞) with

the latter under multiplication. These have a very specific form, i.e.

ϕ(v) =
∏
α∈A

xnα(v)
α (2.2)

where xα ≥ 0 is a constant (in fact, xα = ϕ(α)).

Lemma 2.2.1. Let ϕ : A∗ → [0,∞) and L ∈ N. Then,

∑
v∈A∗

l(v)=L

ϕ(v) =

(∑
α∈A

ϕ(α)

)L

.

Proof. ∑
v∈A∗

l(v)=L

ϕ(v) =
∑
v∈A∗

l(v)=L

∏
α∈A

ϕ(α)nα(v) by (2.2) and xα = ϕ(α)

=
∑

∑
kα=L

(
L

kα1 , . . . , kαd

)∏
α∈A

ϕ(α)kα

=

(∑
α∈A

ϕ(α)

)L

by the Multinomial Theorem.

■

We say that ϕ ∈ Hom(A∗, [0,∞)) is normalized if
∑
α∈A

ϕ(α) = 1. LetH ⊂ Hom(A∗, [0,∞))

be the set of normalized homomorphisms. In the next chapters, we will often be using

H◦ = {ϕ ∈ H : ϕ(α) > 0, for all α ∈ A}. Let

Ψ : H◦ → [0,∞) defined as Ψ(ϕ) =
∑
w∈C

ϕ(w). (2.3)
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In explicit calculations, it is convenient to use more explicit notation as follows. We choose

α1, α2, . . . , αd to be an enumeration of A, and write Ψ(x1, . . . , xd) instead of Ψ(ϕ) where

xi = xαi
= ϕ(αi). Thus we can identify H with the (d− 1)-simplex

∆ = {(x1, x2, . . . , xd} ∈ Rd : xi ≥ 0,
∑

xi = 1}. (2.4)

Let also ϕ0 ∈ H, given by:

ϕ0(w) =
1

dl(w)
. (2.5)

Here we see that Ψ(ϕ0) is the quantity
∑
w∈C

1

dl(w)
which is exactly the left hand side in the

Kraft and Kraft McMillan Inequalities.



Chapter 3

The Equality case of the the Kraft

Inequality

This chapter studies what happens when equality occurs in the Kraft Inequality.

3.1 A Refinement of the Kraft Inequality

Our first result is an improvement of Kraft’s Inequality.

Theorem 3.1.1. If C ⊂ A∗ is a (finite) prefix-free code, then

∑
w∈C

1

dl(w)
≤ 1− 1

lmax

max
α,β∈A

{|Aα − Aβ|}. (3.1)

Before proving this theorem, we first need some preliminaries.

Lemma 3.1.2. In the situation of Theorem 3.1.1,

dAβ −
∑
α∈A

Aα ≤ lmax

(
1−

∑
w∈C

1

dl(w)

)

for all β ∈ A.

14
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Proof. For w ∈ C and N = lmax, let C(w) be the set of all length N words which start with

w. Therefore, the size of the set C(w) will be dN−l(w) as we include all possible endings to

this prefix. Next, we calculate the amount of occurrences of β in C(w). We know that nβ(w)

is the amount of occurrences of β in the first l(w) letters in each word, or the prefix, thus

we just need to find the number of occurrences in the remaining N − l(w) letters. Clearly,

we will get exactly 1
d

th
of the remaining letters to be β, which is dN−l(w)N − l(w)

d
resulting

in β occurring dN−l(w)

(
nβ(w) +

N − l(w)

d

)
times in C(w).

Therefore, we get ∑
w∈C

dN−l(w)

(
nβ(w) +

N − l(w)

d

)
≤ NdN−1.

By reorganizing and diving by dN , we have

∑
w∈C

nβ(w)

dl(w)
+

N

d

∑
w∈C

1

dl(w)
−
∑
w∈C

l(w)

dl(w)
≤ N

d
.

Thus, we get

dAβ −
∑
α∈A

Aα ≤ N

(
1−

∑
w∈C

1

dl(w)

)
.

■

Lemma 3.1.3. Let x1, x2, . . . , xn ≥ 0. Then,

max
1≤i,j≤n

|xi − xj| ≤ max
1≤k≤n

(
nxk −

n∑
i=1

xi

)
.

Proof. To begin, let a, b ∈ {1, 2, . . . , n} such that xa = max
1≤k≤n

xk and xb = min
1≤k≤n

xk. Then we
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have

max
1≤k≤n

(
nxk −

n∑
i=1

xi

)
= nxa −

n∑
i=1

xi

= xa − xb + (n− 1)xa −
∑
i ̸=b

xi

= xa − xb +
∑
i ̸=b

(xa − xi)

≥ xa − xb

= max
1≤i,j≤n

|xi − xj|

■

Proof of Theorem 3.1.1. The proof of the theorem follows from Lemmas 3.1.2 and 3.1.3, the

latter applied with Aα’s instead of xi’s. ■

Corollary 3.1.4. Let α, β ∈ A and suppose equality occurs in the Kraft Inequality. Then,

Aα = Aβ.

Proof. Suppose we have
∑
w∈C

1

dl(w)
= 1 (the equality case of Kraft’s Inequality). Using Theo-

rem 3.1.1, we know that
1

lmax

max
α,β∈A

{|Aα − Aβ|} = 0. Therefore, Aα = Aβ for all α, β ∈ A.

■

This is in fact the base theorem that will also follow from two other theorems that will

be proven later on in the thesis.

3.2 Maximal prefix-free codes

Definition 3.2.1. A prefix-free code C is maximal if for any word w′ such that w′ /∈ C, then

C ∪ {w′} is not prefix-free.
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Proposition 3.2.2. If ϕ ∈ H◦ and C is a prefix-free code, then

Ψ(ϕ) ≤ 1.

Moreover, Ψ(ϕ) = 1 if and only if C is maximal.

Proof. Take C(w) = {v ∈ A∗ : l(v) = lmax, w is a prefix of v}. As in the proof of the usual

Kraft Inequality, if C is prefix-free, then

C(w1) ∩ C(w2) = ∅ for all w1, w2 ∈ C where w1 ̸= w2. (3.2)

Now,

Ψ(ϕ) =
∑
w∈C

ϕ(w)

=
∑
w∈C

ϕ(w)
∑

l(u)=N−l(w)

ϕ(u) by Lemma 2.2.1

=
∑
w∈C

∑
l(u)=N−l(w)

ϕ(w ∗ u)

=
∑
w∈C

∑
v∈C(w)

ϕ(v)

≤
∑
v∈A∗

l(v)=N

ϕ(v) by (3.2)

= 1 by Lemma 2.2.1.

Next, we will show that Ψ(ϕ) = 1 if and only if C is maximal. To get this last result, we

need only show that C is maximal if and only if
⋃
w∈C

C(w) is equal to the set of all length

N words (i.e. {C(w) : w ∈ C} is a partition). First, we show that C is maximal if and only

if
⋃
w∈C

C(w) is the set of all length N words. Assume {C(w) : w ∈ C} is a partition and we

take the length N of words in C(w) to be greater or equal to the length of the word, w′ we

try to add to C. Therefore, w′ will be a prefix of words in
⋃
w∈C

C(w). This implies that w is a

prefix of w′ or vice versa and thus C is not maximal. Conversely, if {C(w) : w ∈ C} is not a
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partition, then there exists a word w′ of length N such that w′ /∈ C(w) for all w ∈ C. Thus

C ∪ {w′} is prefix-free, so C is not maximal.

Second, we show that
⋃
w∈C

C(w) is the set of all length N words if and only if Ψ(ϕ) = 1.

This follows from the sequences of inequalities above and ϕ ∈ H◦. ■

Corollary 3.2.3. If ϕ ∈ H◦ and C is prefix-free with

Ψ(ϕ) = 1,

then ∑
w∈C

1

dl(w)
= 1.

Proof. From Proposition 3.2.2, we have that C must be maximal. Now, by applying Propo-

sition 3.2.2 again with ϕ = ϕ0 it follows that Ψ(ϕ0) =
∑
w∈C

1

dl(w)
= 1. ■

Lemma 3.2.4. If F ∈ R[x1, x2, . . . , xd] is a polynomial such that F (x1, x2, . . . , xd) = 1 for

all x1, x2, . . . , xd such that x1 + x2 + . . .+ xd = 1 and x1, . . . , xd > 0, then

1.
∂F

∂xi

=
∂F

∂xj

for all i, j at points where x1 + x2 + . . .+ xd = 1

2. 2∂ijF = ∂2
i F + ∂2

jF for all i, j at points where x1 + x2 + . . .+ xd = 1

are both true.

Remark 3.2.5. In fact there are higher derivatives that can be calculated to give new equa-

tions. However, the results are restricted to the first and second as the rest will be calculated

in similar manners.

Proof. To begin, 1 − x1 − x2 − . . . − xd is irreducible and F (x1, . . . , xd) − 1 = 0 whenever

1 − x1 − . . . − xd = 0 and x1, . . . , xd > 0. It follows that F (x1, . . . , xd) − 1 = 0 whenever

1 − x1 − . . . − xd = 0 and xi ∈ C. This follows from that fact that if P ∈ R[x1, . . . , xm]

such that P (x1, . . . , xm) = 0 for all (x1, . . . , xm) ∈ U where U is an open set, then P = 0.



CHAPTER 3. THE EQUALITY CASE OF THE THE KRAFT INEQUALITY 19

Applying this to the identity, F (x1, . . . , xd−1, 1− x1 − . . .− xd−1) = 0 when x1, . . . , xd−1 > 0

and x1 + . . . + xd−1 < 1 means that the identity is still true for all x1, . . . , xd−1 ∈ C. Now

from the Nullstellensatz on page 164 of [7], we get (1−x1− . . .−xd) divides F (x1, . . . , xd)−1

and so

F (x1, . . . xd) = g(x1, . . . xd)(1− x1 − . . .− xd) + 1.

1. Clearly,

∂F

∂xi

=
∂

∂xi

[(1− x1 − . . .− xd)g(x1, . . . , xd) + 1] .

Now by using the chain rule,

∂F

∂xi

= −g(x1, . . . , xd) + (1− x1 − . . .− xd)
∂g

∂xi

(x1, . . . , xd).

When x1 + . . .+ xd = 1 we have the result

∂F (x1, . . . , xd)

∂xi

= −g(x1, . . . , xd).

Therefore, at points where x1 + x2 + . . .+ xd = 1, we get

∂F (x1, . . . , xd)

∂xi

=
∂F (x1, . . . , xd)

∂xj

for all i, j ∈ {1, 2, . . . , d}. (3.3)

2. From the first part of this proof, we have

∂F

∂xi

(x1, . . . , xd) = −g(x1, . . . , xd) + (1− x1 − . . .− xd)
∂g

∂xi

(x1, . . . , xd)

and similarly for
∂F

∂xj

(x1, . . . , xd).

Taking the partial derivatives with respect to l and k such that k ̸= l, we get

∂2F

∂xi∂xk

= − ∂g

∂xk

(x1, . . . , xd)−
∂g

∂xi

(x1, . . . , xd) + (1− x1 − . . .− xd)
∂2g

∂xi∂xk
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and

∂2F

∂xi∂xl

= − ∂g

∂xl

(x1, . . . , xd)−
∂g

∂xi

(x1, . . . , xd) + (1− x1 − . . .− xd)
∂2g

∂xi∂xl

.

From here, when we set x1 + . . .+ xd = 1, we have

∂2F

∂xi∂xk

= − ∂g

∂xk

(x1, . . . , xd)−
∂g

∂xi

(x1, . . . , xd)

and

∂2F

∂xi∂xl

= − ∂g

∂xl

(x1, . . . , xd)−
∂g

∂xi

(x1, . . . , xd).

Thus, at the points where x1 + . . .+ xd = 1, we have

∂2F

∂xi∂xk

− ∂2F

∂xi∂xl

= − ∂g

∂xk

(x1, . . . , xd) +
∂g

∂xl

(x1, . . . , xd).

Therefore since the right hand side is independent of xi, the following formula holds:

∂2F

∂xi∂xk

− ∂2F

∂xi∂xl

=
∂2F

∂xj∂xk

− ∂2F

∂xj∂xl

at the points where x1 + . . .+ xd = 1.

Thus we get

∂ikF + ∂jlF = ∂ilF + ∂jkF

and if we let i = l and j = k, then

2∂ijF = ∂2
i F + ∂2

jF (3.4)

for all i, j at points where x1 + x2 + . . .+ xd = 1.

■
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Theorem 3.2.6. If C is prefix-free and maximal, then

1. Aα = Aβ

2.
∑
w∈C

(nα(w)− nβ(w))
2

dl(w)
= Aα + Aβ

for all α, β ∈ A.

Proof. For this theorem we will use Lemma 3.2.4 with F replaced by Ψ.

1. From Lemma 3.2.4, we have
∂Ψ

∂xi

=
∂Ψ

∂xj

when x1 + x2 + . . .+ xd = 1. Now calculating

the first partial derivative of Ψ with respect to xi, we get

∂Ψ

∂xi

(x1, . . . , xd) =
∑
w∈C

nαi
(w)

x
α1(w)
1 . . . x

αd(w)
d

xi

.

Evaluating the first partials of Ψ at

(
1

d
,
1

d
, . . . ,

1

d

)
we now have,

∂Ψ

∂xi

(
1

d
,
1

d
, . . . ,

1

d

)
=
∑
w∈C

nαi
(w)

dl(w)−1
= dAαi

.

Therefore, we get that Aαi
= Aαj

.

2. To compute
∂2Ψ

∂xi∂xj

, we’ll treat the cases i ̸= j and i = j separately .

(a) If i ̸= j, then

∂2Ψ

∂xi∂xj

=
∑
w∈C

nαi
(w)nαj

(w)
x
nα1 (w)
1 . . . x

nαd
(w)

d

xixj

.

Again, evaluating this at

(
1

d
,
1

d
, . . . ,

1

d

)
we get,

∂2Ψ

∂xi∂xj

(
1

d
,
1

d
, . . . ,

1

d

)
=
∑
w∈C

nαi
(w)nαj

(w)

dl(w)−2
= d2

∑
w∈C

nαi
(w)nαj

(w)

dl(w)
. (3.5)
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(b) If i = j

∂2Ψ

∂x2
i

=
∑
w∈C

nαi
(w)(nαi

(w)− 1)
x
nα1 (w)
1 . . . x

nαd
(w)

d

x2
i

.

Again, evaluating this at

(
1

d
,
1

d
, . . . ,

1

d

)
we get,

∂2Ψ

∂x2
i

(
1

d
,
1

d
, . . . ,

1

d

)
=
∑
w∈C

nαi
(w)(nαi

(w)− 1)

dl(w)−2
= d2

∑
w∈C

nαi
(w)(nαi

(w)− 1)

dl(w)
.

(3.6)

From Lemma 3.2.4, (3.5) and (3.6), we get

2d2
∑
w∈C

nαi
(w)nαj

(w)

dl(w)
= d2

∑
w∈C

nαi
(w)(nαi

(w)− 1)

dl(w)
+ d2

∑
w∈C

nαj
(w)(nαi

(w)− 1)

dl(w)

= d2

(∑
w∈C

(nαi
(w))2

dl(w)
−
∑
w∈C

nαi
(w)

dl(w)
+
∑
w∈C

(nαj
(w))2

dl(w)
−
∑
w∈C

nαj
(w)

dl(w)

)

Therefore we get

∑
w∈C

nαi
(w)

dl(w)
+
∑
w∈C

nαj
(w)

dl(w)
=
∑
w∈C

(nαi
(w))2

dl(w)
− 2

∑
w∈C

nαi
(w)nαj

(w)

dl(w)
+
∑
w∈C

(nαj
(w))2

dl(w)

and thus the following equality is satisfied:

∑
w∈C

(nαi
(w)− nαj

(w))2

dl(w)
= Aαi

+ Aαj
. ■



Chapter 4

The equality case of the

Kraft-McMillan Inequality

In this section we will look at the equality case of the Kraft-McMillan Inequality. However,

we cannot approach this in the same way as the Kraft Inequality.

As the proof for the Kraft-McMillan Inequality uses limits, we will prove the similar

results to Kraft’s Inequality using an indirect approach.

4.1 Extending our results to uniquely decodable codes

The proposition below is a straightforward generalization of the Kraft-McMillan Inequality.

Proposition 4.1.1. Let ϕ : A∗ → [0,∞) be a homomorphism such that

∑
α∈A

ϕ(α) = 1. (4.1)

Then, if C is uniquely decodable, we have

∑
w∈C

ϕ(w) ≤ 1. (4.2)

23
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Proof. Let m ∈ N. Then,

(∑
w∈C

ϕ(w)

)m

=
∑

w1,w2,...,wm∈C

ϕ(w1)ϕ(w2) . . . ϕ(wm)

=
∑

w1,w2,...,wm∈C

ϕ(w1 ∗ w2 ∗ . . . ∗ wm) by (2.1)

≤
∑
v∈A∗

l(v)≤m·lmax

ϕ(v) because C is uniquely decodable

=
m·lmax∑
L=0

 ∑
v∈A∗

l(v)=L

ϕ(v)


=

m·lmax∑
L=0

(∑
α∈A

ϕ(α)

)L

by Lemma (2.2.1)

= m · lmax + 1 by (4.1) .

(4.3)

Hence
∑
m∈C

ϕ(w) ≤ m
√
m · lmax + 1, but lim

m→∞
m
√

m · lmax + 1 = 1. Therefore,
∑
m∈C

ϕ(w) ≤ 1 ■

This theorem is Theorem 1 (Kraft Inequality) in [5] with the proof given in the Appendix

in loc.cit.

Now we can proceed to prove our main result of this chapter.

Theorem 4.1.2. Assume that C is uniquely decodable and that
∑
w∈C

1

dl(w)
= 1 (i.e. that

equality occurs in the Kraft-McMillan Inequality). For each α ∈ A,

Aα = Aβ, for all α, β ∈ A. (4.4)

Proof. Recall the definitions of H,Ψ and ϕ0 from section 2.2. From Proposition 4.1.1 we

know that

Ψ(ϕ) ≤ 1 for all ϕ ∈ H. (4.5)



CHAPTER 4. THE EQUALITY CASE OF THE KRAFT-MCMILLAN INEQUALITY25

Assuming we have equality in the Kraft-McMillan Inequality, we get

Ψ(ϕ0) =
∑
w∈C

ϕ0(w) =
∑
w∈C

1

dl(w)
= 1. (4.6)

Recall the identification of H with the (d − 1)-simplex according to Chapter 2. By (4.5)

and (4.6) we get that Ψ attains a maximum at ϕ0. Ψ(x1, x2, . . . , xd) has a maximum at(
1

d
,
1

d
, . . . ,

1

d

)
under the condition x1+x2+ . . .+xd = 1 and xi > 0 for all i ∈ {1, 2, . . . , d}.

By Remark 2.1, in these coordinates, Ψ(x1, x2, . . . , xd) =
∑
w∈C

x
n1(w)
1 x

n2(w)
2 . . . x

nd(w)
d , which

we’ve just seen attains a maximum at (1
d
, 1
d
, . . . , 1

d
).

Recall that according to the method of Lagrange Multipliers, if ϕ(x1, x2, . . . , xd) has a

local maximum at (x1, x2, . . . , xd) under the condition F (x1, x2, . . . , xd) = 0, then ∇Ψ =

λ∇F . Since we are looking at points in the neighbourhood of

(
1

d
, . . . ,

1

d

)
we can ignore

xi ≥ 0 for the Lagrange multiplier process. In our case, F (x1, x2, . . . , xd) = x1+x2+. . .+xd−1

and thus we have that

∇Ψ = λ∇(x1 + x2 + . . .+ xd − 1) = λ(1, 1, . . . , 1) at

(
1

d
,
1

d
, . . . ,

1

d

)
.

because the gradient of x1 + x2 + . . .+ xd − 1 is (1, 1, . . . , 1). Hence

∂Ψ

∂x1

(
1

d
,
1

d
, . . . ,

1

d

)
=

∂Ψ

∂x2

(
1

d
,
1

d
, . . . ,

1

d

)
= . . . =

∂Ψ

∂xd

(
1

d
,
1

d
, . . . ,

1

d

)
. (4.7)

On the other hand, we can compute:

∂Ψ

∂x1

=
∑
w∈C

nα1(w)x
nα1 (w)−1
1 x

nα2 (w)
2 · · ·xnαd

(w)

d

∂Ψ

∂x2

=
∑
w∈C

nα2(w)x
nα1 (w)
1 x

nα2 (w)−1
2 · · ·xnαd

(w)

d
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. . .

∂Ψ

∂xd

=
∑
w∈C

nαd
(w)x

nα1 (w)
1 x

nα2 (w)
2 · · ·xnαd

(w)−1

d

Now if we set xi =
1
d
, we get

∂Ψ

∂xj

(
1

d
,
1

d
, . . . ,

1

d

)
=
∑
w∈C

nαj
(w)

1

dl(w)−1

= dAαj

(4.8)

By (4.7) and (4.8) it follows that Aαj
are all equal. ■

4.2 Further Directions

We ask how we could take the results of this thesis further.

Question 4.2.1. A prefix-free code C is maximal if and only if we have equality in the Kraft

Inequality. Does this still hold when we broaden our codes from prefix-free to all uniquely

decodable codes with equality in the Kraft-McMillan Inequality?

This result is in fact true and a proof of it is given in the Theoretical Computer Science

Stack Exchange [6].

Question 4.2.2. Does the refinement on the Kraft Inequality still hold for Kraft-McMillan?

This part will not be pursued in this thesis and is an interesting concept that might be

investigated in future work.



Chapter 5

Conclusion

In this paper, we have studied the equality case of two theorems, the Kraft Inequality and

McMillan’s extension, the Kraft-McMillan Inequality. The goal of the thesis was to study

whether prefix-free codes and uniquely decodable codes follow the same rules in terms of

character occurrence when restricted to the equality case. Throughout the thesis we went

over different extensions to our base theorem stating that when equality occurs in the Kraft

Inequality, the weighted number of occurrences of any letter in our alphabet will be equal.

We were able to show that this extended into Kraft-McMillan Inequality as well as getting

more information on what happens with these weighted number of occurrences for specifically

prefix-free codes.
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