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Abstract

In this dissertation, we consider two estimation problems in some tensor regression models.

The first estimation problem is about the tensor coefficient in a tensor regression model with

multiple and unknown change-points. We generalize some recent findings in five ways.

First, the problem studied is more general than the one in context of a matrix parameter with

multiple change-points. Second, we develop asymptotic results of the tensor estimators

in the context of a tensor regression with unknown change-points. Third, we construct

a class of shrinkage tensor estimators that encompasses the unrestricted estimator (UE)

and the restricted estimator (RE). Fourth, we generalize some identities which are crucial

in deriving the asymptotic distributional risk (ADR) of the tensor estimators. Fifth, we

show that the proposed shrinkage estimators (SEs) perform better than the UE. Finally, the

theoretical results are corroborated by the simulation findings and by applying our methods

to a real data analysis of MRI and fMRI datasets.

The second estimation problem is about the tensor regression coefficient in the context

of a generalized tensor regression model with multi-mode covariates. We generalize the

main results in recent literature in four ways. First, we weaken assumptions underlying

the main results of the previous works. In particular, the dependence structure of the error

and covariates are as weak as an L2−mixingale array, and the error term does not need to

be uncorrelated with regressors. Second, we consider a more general constraint than the

vi
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one considered in previous works. Third, we establish the asymptotic properties of the ten-

sor estimators. Specifically, we derive the joint asymptotic distribution of the unrestricted

tensor estimator (UE) and the restricted tensor estimator (RE). Fourth, we propose a class

of shrinkage-type estimators in the context of tensor regression, and under a general loss

function, we derive sufficient conditions for which the shrinkage estimators dominate the

UE. In addition to these interesting contributions, we derive a kind of functional central

limit theorem for vector-valued mixingales and we establish some identities which are use-

ful in studying the risk dominance of shrinkage-type tensor estimators. Finally, to illustrate

the application of the proposed methods, we corroborate the results by some simulation

studies of binary, Normal and Poisson data and we analyze a multi-relational network and

neuro-imaging datasets.



viii

To my mother.

This would not have been possible without your immense support.

Thank you!



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Nku-

runziza, who inspired me to pursue graduate studies in statistics. Thank you for all the

support and time you have invested in my academic work and for always being available

for help. I sincerely appreciate your ongoing guidance and advice. You are an incredible

teacher and role model.

I would also like to thank the external examiner, Dr. Peter Song from the University of

Michigan and my advisory committee members, Dr. Hussein, Dr. Belalia, and Dr. Li. I

appreciate the time you have spent reading my dissertation and I am grateful for your useful

comments and suggestions.

I am also very grateful to my wonderful department for providing such a welcoming envi-

ronment. Over the years, my peers, faculty and staff at the Department of Mathematics and

Statistics have become my second family. Thank you for your encouragement and support.

I would also like to express my gratitude to my wonderful husband. Thank you for your

understanding and patience during my busiest and most stressful times. Your help with the

kids and comforting support made this journey much easier.

Last but not least, I would like to express my deepest gratitude to my mother. You have

been through so much in life and yet you always find time to support my siblings and I in

all of our endeavours. Thank you for believing in me and for pushing me to be the best

ix



x

version of myself. I am especially grateful to you for instilling in me my love for God and

for reminding me to always do good. Thank you for being such an incredible grandmother

to my children. My children and I have become much better people because you are in our

lives.



Contents

Declaration of Co-Authorship/Previous Publication v

Abstract vii

Dedication viii

Acknowledgements x

List of Tables xv

List of Figures xvii

Nomenclature xviii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Organization and Highlights of Contributions . . . . . . . . . 5

2 Some Useful Identities 7

2.1 The Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Elliptically Contoured Distribution Case . . . . . . . . . . . . . . . . 10

2.2.1 The Elliptically Contoured Family of Distributions . . . . . . . . . 11

xi



CONTENTS xii

2.2.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Tensor Regression With Multiple Change-points 17

3.1 Statistical model and preliminary results . . . . . . . . . . . . . . . . . . . 19

3.1.1 Preliminary results: the known change-points case . . . . . . . . . 21

3.1.2 Estimation in the case of unknown change-points . . . . . . . . . . 21

3.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Some fundamental results . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 About the structure of the noise and the regressors . . . . . . . . . 33

3.2.3 Asymptotic properties of the UE and the RE . . . . . . . . . . . . . 44

3.3 A class of shrinkage estimators and risk functions . . . . . . . . . . . . . . 46

3.3.1 Preliminary results in shrinkage methods . . . . . . . . . . . . . . 47

3.3.2 Asymptotic distributional risk (ADR) . . . . . . . . . . . . . . . . 48

3.4 The case of unknown number of change-points . . . . . . . . . . . . . . . 51

3.4.1 Estimating the number of change points . . . . . . . . . . . . . . . 51

3.4.2 Asymptotic results of estimators with random dimensions . . . . . 52

3.5 Simulation studies and illustrative examples . . . . . . . . . . . . . . . . . 54

3.5.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Generalized Tensor Regression 68

4.1 The generalized tensor model and estimation . . . . . . . . . . . . . . . . 70

4.1.1 The generalized tensor regression model and constraints . . . . . . 70

4.1.2 Estimating score function in a generalized tensor regression model . 72



CONTENTS xiii

4.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Some definitions and assumptions . . . . . . . . . . . . . . . . . . 73

4.2.2 On the asymptotic distribution of the estimating score function . . . 75

4.2.3 On existence and consistency of the UE and the RE . . . . . . . . . 81

4.2.4 Asymptotic properties of UE and RE . . . . . . . . . . . . . . . . 85

4.3 A class of shrinkage tensor estimators and relative efficiency . . . . . . . . 89

4.4 Simulation study and real data analysis . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Summary and Future Research 106

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 110

Appendix A Some Useful Identities 117

Appendix B Tensor Regression with Multiple Change-points 130

B.1 Properties of tensors and definitions . . . . . . . . . . . . . . . . . . . . . 130

B.2 Some proofs of technical results in Chapter 3 . . . . . . . . . . . . . . . . 132

B.3 On the convergence of the estimators of the change-points . . . . . . . . . 164

B.4 Algorithm for estimating location of change-points . . . . . . . . . . . . . 181

B.4.1 Case 1: known number of change-points . . . . . . . . . . . . . . . 182

B.4.2 Case 2: unknown number of change-points . . . . . . . . . . . . . 182



CONTENTS xiv

Appendix C Generalized Tensor Regression 184

C.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.2 Some results and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3 Derivation of ADR1 for the elliptically contoured distribution . . . . . . . . 194

Vita Auctoris 201



List of Tables

2.1 Examples of p.d.f of elliptically contoured distributions with the respective

weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Results of fMRI data analysis for several subjects. Each subject was found

to have one non-stationarity (m̂) in their resting state scan and the time-

point at which the non-stationarity occurred was recorded as τ̂. . . . . . . . 66

xv



List of Figures

3.1 Signal images used for parameter estimation. . . . . . . . . . . . . . . . . 54

3.2 Comparison of several signal images with their respective estimators. . . . 56

3.3 The RMSE versus ∆ plot of the four estimators of the square signal param-

eter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 The two signal image parameters for the case where m0 = 1. . . . . . . . . 58

3.5 The RMSE versus ∆ plot of the UE, the RE and SEs . . . . . . . . . . . . . 59

3.6 The RMSE versus ∆ plot of the four estimators in the case where m = 2 is

unknown and T = 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 The RMSE versus ∆ plot of the four estimators in the case where m = 2 is

unknown and T = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 A visual representation of the restriction (red). This is an approximate

location of part of the fusiform gyrus. . . . . . . . . . . . . . . . . . . . . 63

3.9 Estimated regions (red) that may be associated with ADHD overlaid on a

randomly-drawn subject (grey). . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 RMSE versus ∆ plot of the UE, the RE, and the SEs with square signal

parameter under multi-mode covariates . . . . . . . . . . . . . . . . . . . 98

xvi



LIST OF FIGURES xvii

4.2 RMSE versus ∆ plot of the UE, the RE, and the SEs with square signal

parameter for Bernoulli data under multi-mode covariates and one-mode

covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Plot of estimated coefficients for the economicaid and warnings covariates.

a) UE, b) RE, c) James-Stein estimator, d) Positive Rule estimator . . . . . 102

4.4 A visual representation of the restriction (pink). This is an approximate

part of the dorsolateral prefrontal cortex . . . . . . . . . . . . . . . . . . . 104

4.5 Estimated regions (red) that may be associated with schizophrenia overlaid

on a randomly-drawn subject (grey) . . . . . . . . . . . . . . . . . . . . . 104



Nomenclature

X tensor notation

X matrix notation

x vector notation

�(d) operator that stacks two equal sized tensors

along d-th dimension

Vec(·) operator that stacks all columns of a tensor

into one column vector

×d mode-(d) matrix product of a tensor by a matrix

X(n) mode-n matrix of the tensor X

A ⊗B Kronecker product of two matrices

A(
d�

j=1
)

j
C j = A ×1 C1 ×2 C2 ×3 · · · ×d Cd

1⊗
i=d

Ci = Cd ⊗Cd−1 ⊗ · · · ⊗C1

A ◦ B tensor product of two tensors A and B

Nq1×···×qd (µ,Σ) q1 × · · · × qd normal tensor distribution with

tensor mean µ and covariance matrix Σ

χ2
l (∆) non-central chi-squared distribution with l

degrees of freedom and non-centrality

parameter ∆

xviii



NOMENCLATURE xix

χ2
l central chi-squared distribution with l

degrees of freedom

Eq1×q2×···×qd (µ,Σ; g) elliptically contoured distribution where

µ is a q1 × q2 × · · · × qd non-random tensor,

Σ is a positive definite matrix and the pdf generator g
L2

−−−−→
T→∞

convergence in L2

a.s
−−−−→
T→∞

convergence almost surely

P
−−−−→
T→∞

convergence in probability

d
−−−−→
T→∞

convergence in distribution

op(a) op(a)/a converges in probability to 0

Op(a) Op(a)/a is bounded in probability

o(a) o(a)/a converges to 0

O(a) O(a)/a is bounded

‖X‖r L r−norm of random tensor variate

‖X‖ L 2−norm of random tensor variate

‖X‖F Frobenius norm of tensor



Chapter 1

Introduction

1.1 Introduction

Today, a growing field in statistical modeling is the analysis of multi-dimensional observa-

tions known as tensors or arrays. Examples of tensor data include three-dimensional neuro-

images of subjects called magnetic resonance images (MRIs), four-dimensional neuro-

imaging time series known as functional magnetic resonance images (fMRIs) and many

relational networks and nodal connections are often summarized as array structures. An

important aspect in most array data includes the spatial structure of the tensors and the

relationships among neighbouring components. These relationships and spatial interpreta-

tion may be lost if the tensor array structure is broken through vectorization. For example,

suppose we are interested in finding associations between particular brain regions and a

disease such as schizophrenia. Breaking the tensor structures of the neuro-imaging data

would result in a loss of locations of interest in which abnormalities may somehow ex-

plain the development of the disease. As such, classical regression fails to offer crucial

information about neighbouring voxels and their relationships. Consequently, developing

regression methods that preserve the spatial structure of the tensor is of great interest in

1
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tensor analysis.

To give some related references on tensor regression, we quote Penny et al. (2011) who re-

gressed individual voxels of images. However, this removes the ability to intuitively under-

stand the spatial structure of the image and ignores any possible correlation among neigh-

bouring voxels. Other authors have tried to incorporate some correlation among neigh-

bouring voxels in their analysis. To give some examples, we quote Li et al. (2010) and

Skup et al. (2012). In particular, rather than jointly analyzing all the voxels, the smallest

distinguishable 3D components of an image tensor, these authors estimated parameters by

iteratively increasing the sphere of neighbouring voxels around each voxel and combined

the responses of those neighbours using weights. Nevertheless, none of these authors have

successfully analyzed the entire image.

Some other authors have attempted to keep the structure of the predictor tensor. We quote

for example Zhang and Li (2017) who proposed a tensor envelope partial least squares al-

gorithm to tackle the high-dimensional problem in tensor regression models. Further, Li

and Zhang (2017) proposed a parsimonious tensor response regression model with a di-

mension reducing envelope method. We also quote Li et al. (2018) who proposed a tensor

regression model based on the Tucker decomposition to reduce the dimensionality of the

tensor coefficient. Another related good reference is the work of Zhou et al. (2013) who

proposed a tensor regression model based on CP decomposition and a block-relaxation

algorithm to overcome the problem of the ultra-high dimensional setting. We also quote

Guhaniyogi et al. (2017) who proposed a Bayesian approach to study the tensor regression

using multiway shrinkage priors.

Although the above works offered tremendous advancements in the analysis of tensor

data, none of the quoted papers have considered the problem of change-points. In time

series analysis, the change-point problem is a well known issue in statistical modelling
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as some external/internal phenomena might change the data substantially in a certain time

spot due to unconventional shocks. Ignoring the existence of change-points in a model may

lead to wrong statistical conclusions. To give some recent references about change-point

problems and related issues, we quote for example Qu and Perron (2007), Gombay (2010),

Robbins et al. (2011), Gallagher et al. (2012), Woody and Lund (2014), Chen and Nkurun-

ziza (2015), Chen and Nkurunziza (2016), Roy et al. (2017), and references therein. The

first estimation problem of the dissertation generalizes the concepts of the quoted papers

in the context of a tensor regression model with multiple and unknown number of change-

points.

In addition, the vast majority of literature available on tensor model estimation assume

independent and identically distributed Gaussian observations. This assumption is not re-

alistic as many tensor data are not normally distributed nor independent. For example,

brain connectivity networks of different regions of the brain and relational networks are

summarized as dependent, binary tensor data. As such, it is of interest to develop methods

that can include these types of data. Thus, in the second estimation problem of this disser-

tation, we consider a generalized tensor model with an arbitrary link function that includes

the Gaussian assumption within its framework. As a result, the proposed model allows for

other different distributions to be studied such as binomial and Poisson tensor data.

A key difference of the methods proposed in this dissertation and tensor models in literature

lies in the dependence structure of tensor error terms and the regressors. Specifically, for

both of the models considered in this dissertation, we take assumptions that allow for the

dependence structure of the error terms to be as weak as that ofL2−mixingales. Recall that

mixingales are the generalizations of martingale sequences. The concept was first intro-

duced by McLeish (1977) and extended by Andrews (1988). This structure can be taken to

cover many types of data, including those that are identically and independently distributed
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and those that are neither identically nor independently distributed. Moreover, this struc-

ture allows for the scenario where the tensor error terms and the matrix of covariates are

dependent. Hence, the mixingale assumption admits a vast array of possible applications,

including many auto-correlated and heteroscedastic models. For more details on the mixin-

gale concept, we refer to McLeish (1977) and Davidson (1992), and references therein.

Moreover, we propose a class of tensor shrinkage estimators for the tensor regression pa-

rameter. To the best of our knowledge, such estimators have never been proposed in the

context of tensor regression models. We establish that the shrinkage estimators are robust

and more efficient than the unrestricted estimator even when the restriction fails. This class

of shrinkage estimators encloses the unrestricted, restricted and James-Stein shrinkage es-

timators as special cases. For some references about shrinkage estimation, we quote Saleh

(2006), Sen and Saleh (1985), Nkurunziza (2012) and references therein.

In this dissertation, under the weak dependence structures of mixingales, we establish the

asymptotic properties of the UE and RE. Subsequently, for both of the models considered,

we propose some sufficient conditions for which the shrinkage estimators dominate the

unrestricted estimators under some prior information. This prior information is taken as a

series of multi-mode restrictions imposed on the tensor parameter of the first model and

a general constraint on the tensor parameter of the second model. Moreover, in order to

derive the sufficient conditions for the dominance of the shrinkage estimators, we establish

some identities on quadratic forms of tensor variates that extend some recent results in lit-

erature. The established identities are useful in deriving the asymptotic optimality of the

proposed class of shrinkage-type tensor estimators.
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1.2 Dissertation Organization and Highlights of Contri-

butions

In this section, we highlight the contributions of this dissertation as summarized below.

1. In Chapter 2, we generalize the identities in Judge and Bock (1978), Nkurunziza

(2013) and Chen and Nkurunziza (2015, 2016) in the context of normal tensor vari-

ates and elliptically contoured tensor variates.

2. In Chapter 3, we consider the condition of L2−mixingale of size −1/2 and we gen-

eralize Lemma 3.1 and Lemma 3.2 of Chen and Nkurunziza (2016) in the context of

tensors. Moreover, we establish the joint asymptotic normality for the tensor UE and

RE under a sequence of local alternative multi-mode restrictions.

3. We consider a more general restriction than in Chen and Nkurunziza (2016) and

incorporate the multi-mode properties of tensors as discussed in Kolda and Bader

(2009).

4. We propose a class of tensor James-Stein type of shrinkage estimators which includes

as special cases the tensor UE, RE and SEs.

5. Using the tensor quadratic forms identities established in Chapter 2, we derive a

condition for the SEs to dominate the UE and we also derive the condition for the

REs to dominate the UE.

6. In Chapter 4, we generalize the tensor model of Chapter 3 to that of a generalized

tensor regression model with an arbitrary link function and multi-mode covariate

matrices.
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7. Moreover, in Chapter 4, we weaken some assumptions of Chapter 3. In particular, we

show that weaker conditions on the dependence structure of the tensor error terms and

regressors give the condition of L2− mixingale of size max−1/2 − ς, 0 6 ς 6 1. In

addition, we define the estimating score function of the model and prove the existence

and consistency of the UE and RE and we derive their joint asymptotic distribution.

8. We define the asymptotic distributional risk with respect to a more general loss func-

tion that includes the quadratic loss function of Chapter 3 as a special case.

9. Using the identities of Chapter 2, we derive the asymptotic distributional risk of the

elliptically contoured tensor distribution.

10. We show that the SEs dominate the UE with respect to the more general loss function

under some sufficient conditions.

The rest of this dissertation is organized as follows. In Chapter 2, we establish some es-

sential identities that are crucial in deriving the asymptotic risk of the proposed estimators

in subsequent chapters. Chapter 3 establishes some shrinkage methods in a tensor regres-

sion model with unknown change-points. In Chapter 4, we propose a generalized tensor

regression model that generalizes the model of Chapter 3 for the case where the model has

no change-points. Chapter 5 presents the conclusion and future research. In addition, we

give some properties of tensors and we present some technical results in Appendix B and

Appendix C.



Chapter 2

Some Useful Identities

In this chapter, we establish some useful identities about functions of quadratic forms of

random tensor variates. Such identities are useful in computing the asymptotic distribu-

tional risk of the proposed shrinkage estimators presented in Chapter 3 and Chapter 4.

Specifically, in Section 2.1, we establish identities for normal random tensors and in Sec-

tion 2.2, we expand the results to the case of the family of elliptically contoured distribu-

tions.

To set up some notations, let A �(d) B represent the concatenation/stacking of the equal-

sized tensors A and B along the d-th dimension. Let Vec(·) be the operator that stacks

all columns of a tensor into one column vector and let ×d represent the mode-(d) matrix

product of a tensor by a matrix. Let A(n) denote the mode-n matrix of the tensor A. For

more details about mode-(d) tensor-matrix product, we refer to Kolda and Bader (2009)

and Kolda (2006). Further, let A ⊗ B denote the Kronecker product of two matrices A and

B. For a tensor A and matrices C j, j = 1, · · · , d, let A(
d�

j=1
)

j
C j = A ×1 C1 ×2 C2 ×3 · · · ×d Cd

and let
1⊗

i=d
Ci = Cd⊗Cd−1⊗· · ·⊗C1. LetA◦B be the tensor product of two tensors A and B.

Note that for the special case where A and B are vectors, this tensor product becomes the

7
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vector outer product. For more information on the tensor product, we refer to Kolda (2006)

and Kolda and Bader (2009). We let X ∼ Nq1×···×qd (µ,Σ) denote a q1 × · · · × qd normal ten-

sor variate with tensor mean µ and covariance matrix Σ. In particular, we let x ∼ Nq(µ,Σ)

denote a q−column normal vector with mean vector µ and covariance matrix Σ. Further-

more, we denote χ2
l (∆) to be a non-central chi-squared random variable with l degrees of

freedom and non-centrality parameter ∆ and we let χ2
l denote a central chi-squared random

variable with l degrees of freedom. To simplify some notations, let

ψ(1)
i,n (x) =

∞∫
0

E[hi(t−1χ2
n(tx))]ω(t)dt, ψ(2)

i,n (x) =

∞∫
0

t−1E[hi(t−1χ2
n(tx))]ω(t)dt, x ≥ 0, (2.1)

and set c = ψ(2)
0,1(x) = ψ(2)

0,n(x), x ≥ 0. Further, let X∗ = X(
d�

j=1
)

j
Ξ1/2

j and let q =

d∏
i=1

qi,

p =

d∏
i=1

pi.

2.1 The Gaussian Case

In this section, we present three identities about quadratic forms of Gaussian tensor variates

which are useful in deriving the risk functions of the proposed estimators in Chapter 3 and

Chapter 4. These identities are the tensor extensions of Theorems 1 and 2 of Judge and

Bock (1978) and they are generalizations of Theorems B.1-B.3 of Chen and Nkurunziza

(2016).

We first establish Theorem 2.1.1 which generalizes Theorem B.1 of Chen and Nkurunziza

(2016).

Theorem 2.1.1. Let h be a Borel measurable and real-valued integrable function. Let X be

a q1 × · · · × qd+1 random tensor such that X ∼ Nq1×···×qd+1

(
M,

1⊗
i=d+1

Λi

)
, whereM is a non-

random tensor and Λi, i = 1, · · · , d + 1, are positive definite matrices. Suppose that there
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exist d+1 symmetric and nonnegative definite matrices,W j = Ξ
1/2
j W

∗
jΞ

1/2
j , j = 1, · · · , d+1,

where W∗j are symmetric and nonnegative definite matrices, Ξ j are nonnegative definite

matrices with rank l j for j = 1, · · · , d + 1 and suppose that for j = 1, · · · , d + 1, Λ jΞ j are

idempotent; Ξ jΛ jΞ j = Ξ j; Λ jΞ jΛ j = Λ j;M × j (Λ jΞ j) =M. Then,

E

h (
trace

(
X∗

′

(d)X
∗
(d)

))
X(

d+1�
j=1

)
j
W j

 = E
[
h
(
χ2

l1···ld+1+2

(
trace

(
M
∗′

(d)M
∗
(d)

)))] M(
d+1�
j=1

)
j
W j

 .
The proof of Theorem 2.1.1 is given in Appendix A. From Theorem 2.1.1 we establish

the next theorem which extends Theorem B.2 of Chen and Nkurunziza (2016).

Theorem 2.1.2. Let X∗∗ = X(
d+1�
j=1

)
j
W

1/2
j , M∗11 = M(

d+1�
j=1

)
j
W

1/2
j , D1 =

d+1∏
j=1

trace
(
W jΛ j

)
, and

let D2 = trace
(
M
∗′

11(d)
M
∗
11(d)

)
. Under the conditions of Theorem 2.1.1, we have

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
X∗∗

′

(d)X
∗∗
(d)

)]
= E

[
h(χ2

l1···ld+1+2

(
trace

(
M
∗′

(d)M
∗
(d)

))]
D1

+ E
[
h(χ2

l1···ld+1+4

(
trace

(
M
∗′

(d)M
∗
(d)

))]
D2.

The proof of this theorem is given in Appendix A. Next, we establish Theorem 2.1.3

which generalizes Theorem B.3 of Chen and Nkurunziza (2016).

Theorem 2.1.3. Let X �(d+1) Y ∼ Nq1×···×qd×2qd+1

MX �(d+1) −MX,

Π11 Π′21

Π21 Π22


, with

Π11 =
1⊗

j=d+1
Λ j, Π21 =

1⊗
j=d+1

B j − Π11, and Π22 =
1⊗

j=d+1
C j −

1⊗
j=d+1

D j − Π21. Let

Y∗∗ = Y(
d+1�
j=1

)
j
W

1/2
j and, for j = 1, · · · , d + 1, letW j = Ξ

1/2
j W

∗
jΞ

1/2
j whereW∗j and Ξ j are

non-negative definite matrices such that Ξ jΛ jΞ j = Ξ j, Λ jΞ jΛ j = Λ j andMX × j Λ jΞ j =
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MX. Let h be as in Theorem 2.1.2. Then,

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
Y∗∗

′

(d)X
∗∗
(d)

)]
= E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]  d+1∏
j=1

trace(W jB j) −
d+1∏
j=1

trace(W jΛ j)


− E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace

M′X(d)

MX(
d+1�
j=1

)
j
Ξ jB jW j


(d)


+ E

[
h
(
χ2

l+4

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace

M′X(d)

MX(
d+1�
j=1

)
j
Ξ jB jW j


(d)


− E

[
h
(
χ2

l+4

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace


MX(

d+1�
j=1

)
j
W

1/2
j


′

(d)

MX(
d+1�
j=1

)
j
W

1/2
j


(d)

 .
The proof of Theorem 2.1.3 is given in Appendix A.

2.2 The Elliptically Contoured Distribution Case

In this section, we establish identities about quadratic forms of the tensor variates that are

distributed as elliptically contoured family of distributions. To this end, in Section 2.2.1,

we first introduce some notations and define the elliptically contoured family of distribu-

tions and in Section 2.2.2, we derive corresponding identities. We note that establishing

results for the class of elliptically contoured distributions is motivated by the fact that the

assumption of normal distribution is not always practical or realistic. Further, elliptically

contoured distributions include the Gaussian distribution and maintain similar properties.

For more details on elliptically contoured distributions, we refer for example to Furman

and Landsman (2006), Liu et al. (2009), Landsman and Valdez (2003) and Bingham et al.

(2002). The established identities are successfully used in order to derive the risk of shrink-

age type tensor estimators of Chapter 4. Moreover, the established results generalize some

results in Chen and Nkurunziza (2016), Chen and Nkurunziza (2015), Nkurunziza (2013),
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Nkurunziza (2012) as well as the classical identities in Judge and Bock (1978). For more

details about the tensor elliptically contoured distribution and some practical examples, we

refer to Ghannam and Nkurunziza (2022).

2.2.1 The Elliptically Contoured Family of Distributions

In this subsection, we define the elliptically contoured random tensor and provide some

distributions that belong to this class of tensor distributions. To that end, we first recall the

definition of an elliptically contoured distribution in the particular case of scale mixtures of

normal tensor variates.

Definition 2.2.1. A q1×q2×· · ·×qd− random tensorX is said to be an elliptically contoured

tensor variate, denoted by X ∼ Eq1×q2×···×qd (µ,Σ; g) , where µ is a q1 × q2 × · · · × qd non-

random tensor, Σ, is a positive definite matrix and the pdf generator g, if the pdf of Vec(X)

can be written as

κ(x) =

+∞∫
0

fNq1 ···qd

(
Vec(µ), z−1Σ

)
(x)ω(z)dz, (2.2)

where fNn(µ,z−1Σ) denotes the pdf of an n− dimensional Gaussian random vector with mean

µ and covariance-variance z−1Σ, 0 < z < ∞, ω(·) is the weight function associated with the

random variate elliptically contoured distribution, as defined in Gupta and Varga (1995)

and Chu (1973), for example. For more details on the generator density g, we refer the

reader to Gupta and Varga (1995) and Batsidis (2010). Note that the condition in (2.2) is

equivalent to assuming that the pdf of the random tensor X is given by

κ(x) =

+∞∫
0

fNq1×···×qd−1×qd

(
µ, z−1Σ

)
(x)ω(z)dz. (2.3)

Note that a q1×q2×· · ·×qd random tensorX follows an elliptically contoured distribution

if and only if Vec(X) follows elliptically contoured distribution. Thus, we denote X ∼
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Eq1×···×qd (µ,Σ; g) if and only if Vec(X) ∼ Eq1q2···qd (Vec(µ),Σ; g) . Table 2.1 gives some

examples of the pdf of elliptically contoured distributions with their respective weighting

functions.

In order to account for the cases of degenerate random tensors obtained from mode- j

linear transformations ofX, we introduce the following notation. For the sake of simplicity,

let us first consider the case of random vectors and recall that a linear transformation of an

elliptically contoured random vector is an elliptically contoured random vector. In other

words, let Z be an n-column random vector such that Z ∼ En(µ,Σ; g), with Σ being a

positive definite matrix, let A be an m × n-matrix with rank(A) = n0 ≤ min(m, n), let C be

an m−column non-random vector and let Y = AZ + C, then Y is an m-column elliptically

contoured random vector. Nevertheless, if n0 < m, the random vector Y is degenerated and

using the notation of Garcia (2005), we denote Y ∼ E n0
m (Aµ + C,AΣA′; g). If n0 = m, the

random vector Y has a pdf and thus, to simplify the notation, we remove the superscript i.e.

E m
m (Aµ+C,AΣA′; g) = Em(Aµ+C,AΣA′; g). Similarly, for a q1×· · ·×qd random tensor

Y, we denote Y ∼ E
r1×···×rd

q1×···×qd
(µY ,ΣY ; g) if and only if Vec(Y) ∼ E

r1r2 ···rd
q1q2 ···qd (Vec(µY),ΣY ; g) ,

where rank(ΣY) =
d∏

i=1
ri ≤

d∏
i=1

qi. In particular, let Z ∼ En1×···×nd

(
µ,

1⊗
i=d

Λi; g
)
, then for qi × ni

matrices Ai with rank(Ai) = ri, i = 1, 2, . . . , d, by some algebraic computations, one can

verify that Y = Z(
d�

i=1
)

i
Ai + C ∼ E

r1×···×rd
q1×···×qd

(
Vec

(
µ(

d�
i=1

)
i
Ai

)
,

1⊗
i=d
AiΛiA

′
i ; g

)
. In the special

case where ri = qi, we get Y ∼ Eq1×···×qd

(
Vec

(
µ(

d�
i=1

)iAi

)
,

1⊗
i=d
AiΛiA

′
i ; g

)
.



CHAPTER 2. SOME USEFUL IDENTITIES 13

Table 2.1: Examples of p.d.f of elliptically contoured distributions with the respective

weighting functions

Distribution κ (x) “ω(z)”

Gaussian
(2π)−q/2

d−1∏
i=1
|Λi|

−
qi
2 |Λd |

−
qd
2 ×

exp
[
− 1

2 trace(g0(x))
] δ(z − 1)

t with q0 d.f.
Γ
( q0+q

2

)
(q0π)q/2Γ( q0

2 )
d−1∏
i=1
|Λi|

−
qi
2 |Λd |

−
qd
2 ×[

1 + trace (g0(x)) /q0
]− q0+q

2

( q0z
2 )

q0
2 e−

q0z
2

z Γ( q0
2 )

, z > 0

Pearson type VII
d−1∏
i=1
|Λi|

−
qi
2 |Λd |

−
qd
2

Γ(m)
(q0π)q/2Γ(m− q

2 )×[
1 + trace (g0(x)) /q0

]−m , m > q/2

zm−q/2−1 exp(−q0z/2)
(q0/2)q/2−mΓ(m−q/2) , z > 0

Laplace Γ(q/2)
(2π)q/2Γ(q)

d−1∏
i=1
|Λi|

−
qi
2 |Λd |

−
qd
2 ×

exp
[
− 1
√

2
( trace(g0(x)))

1
2

]
√
πΓ(q/2)
√

2Γ(q)
z−q−1 exp(−(4z)−1),

z > 0

2.2.2 Identities

Remark 2.2.1. For the Gaussian tensor-variate case, ψ(1)
i, j and ψ(2)

i, j in (2.1) become

ψ(1)
i,p+ j(x) = ψ(2)

i,p+ j(x) = E
[
hi(χ2

p+ j(x))
]
, x ≥ 0. (2.4)

Theorem 2.2.1. Let Λi be qi × qi positive semi-definite matrices with ranks pi ≤ qi,

i = 1, · · · , d. Let X ∼ E
p1×p2×···×pd

q1×q2×···×qd

M, 1⊗
j=d

Λ j; g

 . Suppose that there exist d symmetric and

nonnegative definite matrices W j = Ξ1/2
j W

∗
jΞ

1/2
j , j = 1, · · · , d, where W∗j are symmet-

ric and nonnegative definite matrices. Let Ξi be nonnegative definite matrices with rank

pi, i = 1, · · · , d and suppose that for j = 1, · · · , d, Λ jΞ j are idempotent; Ξ jΛ jΞ j = Ξ j;

Λ jΞ jΛ j = Λ j; M × j

(
Λ jΞ j

)
= M. Then, for any Borel measurable, real-valued square-
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integrable function h, we have

E

h (
trace

(
X∗

′

(d)X
∗
(d)

))
X(

d�
j=1

) jW j

 = ψ(1)
1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) M(
d�

j=1

)
j
W j

 .
The proof of Theorem 2.2.1 is given in Appendix A. Note that Theorem 2.2.1 gener-

alizes Theorem 2.1.1. By using Theorem 2.2.1, we derive the following corollary which

generalizes Theorem 3.1 in Nkurunziza (2013).

Corollary 2.2.1. Let Λi be qi × qi positive semi-definite matrices with ranks pi ≤ qi, i =

1, · · · , d. Let X ∼ E
p1×···×pd

q1×···×qd

M, 1⊗
j=d

Λ j; g

 . Let Ξi be symmetric, positive definite matrices

such that Ξ1/2
j Λ jΞ

1/2
j are idempotent matrices and M ×d (ΞdΛdΞd) = M ×d Ξd. Then, for

any Borel measurable, real-valued square-integrable function h, we have

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
X
]

= ψ(1)
1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
M.

Proof. The proof follows from Theorem 2.2.1 by takingW j = Ip j; j = 1, · · · , d. �

Theorem 2.2.2. Let h be a measurable and real-valued square-integrable function and let

Y∗∗ = Y(
d�

j=1
)

j
W

1/2
j where X �(d) Y ∼ E

p1×···×pd
q1×···×qd−1×2qd

M �(d)M2,

Π11 Π′21

Π21 Π22


, with Π11 =

1⊗
j=d

Λ j, Π21 =
1⊗

j=d
B j − Π11, and Π22 =

1⊗
j=d
C j −

1⊗
j=d
D j − Π21. Also, for j = 1, · · · , d,

let W j = Ξ1/2
j W

∗
jΞ

1/2
j where W∗j and Ξ j are non-negative definite matrices such that
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Ξ jΛ jΞ j = Ξ j, Λ jΞ jΛ j = Λ j andM × j Λ jΞ j = M. Then,

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
Y∗∗

′

(d)X
∗∗
(d)

)]
= ψ(1)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace


M2

( d�
j=1

)
j
W1/2

j


′

(d)

M( d�
j=1

)
j
W1/2

j


(d)


−ψ(1)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace

M′(d)

M( d�
j=1

)
j
Ξ jB jW j


(d)


+ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) d∏
j=1

trace(W jB j) − ψ
(2)
1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) d∏
j=1

trace(W jΛ j)

−ψ(1)
1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace


M( d�

j=1

)
j
W

1/2
j


′

(d)

M( d�
j=1

)
j
W

1/2
j


(d)


+ψ(1)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace


M( d�

j=1

)
j
W

1/2
j


′

(d)

M( d�
j=1

)
j
W

1/2
j


(d)


+ψ(1)

1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace

M′(d)

M( d�
j=1

)
j
Ξ jB jW j


(d)

 .
The proof of this theorem is given in Appendix A. Note that Theorem 2.2.2 generalizes

Theorem 2.1.2. From Theorem 2.2.2, we derive the following corollary which generalizes

Theorem 3.2 of Nkurunziza (2013).

Corollary 2.2.2. Let X ∼ E
p1×···×pd

q1×···×qd

M, 1⊗
j=d

Λ j; g

 where Λi are the same as in Corol-

lary 2.2.1. Let Y be q1×· · ·×qd random tensor with elliptically contoured distribution such

that E[Y|X] = E[Y] = M2. Then, for any Borel-measurable real-valued square-integrable

function h and any positive definite matrixA, we have

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
Y′(d)AX(d)

)]
= ψ(1)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace

(
M′2(d)

AM(d)

)
.

Proof. The proof follows from Theorem 2.2.2 by taking B j = Λ j,Wd = A andWi = Ipi ,

for i = 1, · · · , d − 1. �
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Theorem 2.2.3. Let X∗∗ = X(
d�

j=1
)

j
W

1/2
j ,M∗ = M(

d�
j=1

)
j
W

1/2
j , D1 =

d∏
j=1

trace
(
W jΛ j

)
, and let

D2 = trace
(
M∗

′

(d)M
∗
(d)

)
. Under the conditions of Theorem 2.2.1, we have

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
X∗∗

′

(d)X
∗∗
(d)

)]
= ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
D1 + ψ(1)

1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
D2.

The proof of Theorem 2.2.3 is given in Appendix A. It should be noted that Theo-

rem 2.2.3 generalizes Theorem 2.1.3. From Theorem 2.2.3, we derive the following corol-

lary which extends Theorem 3.3 in Nkurunziza (2013).

Corollary 2.2.3. Let Ξi and Λi be as in Corollary 2.2.1, and let X ∼ E p
q

M, 1⊗
j=d

Λ j; g

.
Then, for any Borel-measurable real-valued square-integrable function h and any symmet-

ric positive definite matrixA,

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
X′(d)AX(d)

)]
= ψ(1)

1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace

(
M′(d)AM(d)

)
+ ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace(AΛd)

d−1∏
j=1

trace
(
Λ j

)
.

Proof. The proof follows from Theorem 2.2.3 by taking Wd = A and Wi = Ipi , for i =

1, · · · , d − 1. �

Remark 2.2.2. Note that Theorems 2.2.1-2.2.3 generalize Theorems 3.1-3.3 of Nkurunziza

(2013) which become special cases with d = 2.

2.3 Conclusion

In summary, in this chapter, we established some useful identities about functions of quadratic

forms of normal and elliptically contoured tensor variates. These identities are crucial for

deriving the asymptotic distributional risks of the proposed estimators of Chapter 3 and

Chapter 4.



Chapter 3

Tensor Regression With Multiple

Change-points

In this chapter, we introduce a tensor regression model with multiple change-points. This

model is a generalization of the models in Chen and Nkurunziza (2015) and Chen and Nku-

runziza (2016) as it involves tensor observations, parameters, error terms and the number

of change-points may be unknown. Moreover, the restriction incorporated is of a much

more general form. We also propose a class of tensor shrinkage estimators to include pos-

sible prior knowledge through the restriction. The special cases of shrinkage estimators

known as the James-Stein estimators are then shown to be more efficient estimators than

the unrestricted estimator irrespective on the accuracy of the prior information. This is es-

tablished both theoretically and through simulation studies and through the analysis of real

neuroimaging datasets.

To give some references on tensor regression, we quote Liu et al. (2019) who proposed

ridge regression for tensor labels for hyperspectral image classification using CP (Cande-

comp/Parafac) tensor decomposition, Raskutti et al. (2015) who considered a general class

of convex regularization techniques to exploit sparsity and low-rankness of a coefficient

17



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 18

tensor and Hoff (2015) extended bilinear regression to predicting a tensor from another

tensor using Tucker product. As other interesting references, Xu et al. (2019) developed a

likelihood procedure to estimate tensor coefficients in a classical generalized linear model

with multi-mode covariates, and Li and Zhang (2017) used a technique known as the enve-

lope method that identifies immaterial information. We also quote Zhou et al. (2013) who

implemented a block relaxation algorithm involving CP decomposition of a tensor coef-

ficient, and we cite Lock (2018) who proposed a method where a tensor can be predicted

from a tensor covariate by solving a least squares penalty function minimization problem.

Further, Li et al. (2018) considered tensor regression using Tucker decomposition on scalar

response of a exponential family of distributions, and Zhang and Li (2017) developed a

tensor envelope partial least squares regression.

Our work is different in several ways. First, our method incorporates the change-points

framework and we consider a very general problem and a more general restriction than

that, for example, in Chen and Nkurunziza (2016). The restriction studied is especially

useful for taking into account for some prior knowledge about the tensor predictor and/or

for testing the statistical significance of some coefficients. Second, we propose a class of

tensor shrinkage estimators which, to the best of our knowledge, have never been proposed

in the context of tensor regression model. The proposed estimation method is robust and

flexible as it is shown to preserve a very good performance in the context of uncertainty

about the restriction and/or the significance of some components of the tensor coefficient.

To this end, we establish the asymptotic properties of the estimators of the tensor regression

coefficient under weaker assumptions on the error terms and regressors. In particular, un-

like the above quoted works on the tensor model, the established results hold in the general

context where the observations are not necessarily independent nor identically distributed.

We also show, theoretically and by simulations, that the proposed tensor shrinkage estima-
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tors (SEs) perform better than the unrestricted estimator (UE). Furthermore, we tackled an

additional issue related to the fact that the dimensions of the proposed tensor estimators are

random variables.

The rest of this chapter is organized as follows. In Section 3.1, we describe the statistical

model and state some preliminary results. In Section 3.2, we present the joint asymptotic

distribution of the unrestricted estimator (UE) and the restricted estimator (RE). In Sec-

tion 3.3, we introduce a class of tensor shrinkage estimators (SE) and the conditions under

which the SEs dominate the UE. In Section 3.4, we study the estimation problem in the

case of an unknown number of change-points. In Section 3.5, we present some simulation

studies and we analyse an MRI dataset as well as an fMRI dataset. In Section 3.6, we

present some concluding remarks.

3.1 Statistical model and preliminary results

In this section, we present the statistical model and the main regularity conditions. Let

(Ω,F , P) be a probability space and let {F i
T,k,−∞ ≤ k ≤ i ≤ ∞,T ≥ 1} be a complete fil-

tration. We consider the tensor regression model with T observations and m0 unknown

change-points 1 < τ1 < · · · < τm0 < T . In Sections 3.1-3.3, we focus on the case where the

number of change-points m0 is known. In Section 3.4, we outline the estimation method of

m0 and show that the method produces a consistent estimator. For convenience, let τ0=1

and τm0+1 = T . Then, the model of interest is

Y = δ×d+1Z̄ + U, (3.1)

whereY = Y1�(d+1)Y2�(d+1) · · ·�(d+1)YT ∈ R
q1×···×qd×T ,U = U1�(d+1)U2�(d+1) · · ·�(d+1)UT ∈

Rq1×···×qd×T , δ = B1�(d+1)B2�(d+1)· · ·�(d+1)Bm0+1 ∈ R
q1×···×qd×(m0+1)qd+1 , Z̄ = diag(Z1, · · · ,Zm0+1)

with Z1 = (z1, · · · , zτ1)
′, and for j = 2, 3, · · · ,m0 + 1, Z j = (zτ j−1+1, · · · , zτ j)

′, zτi−1+1 is a qd+1-
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column vector for i = 1, · · · ,m0 + 1.

Here, Y is the stacked tensor of observations, U is the stacked tensor of error terms, δ

is the stacked parameter to be estimated and Z̄ is the corresponding covariate matrix. It

is important to note that, unlike classical regression and other tensor regression models in

literature, we do not make any assumptions about the distribution or dependence structure

of the tensor error terms, Ui. Moreover, the model introduces change-points with different

possible regimes for different groups of observations.

We also consider the case where δ may satisfy the following restriction

δ ×1 R1 ×2 R2 ×3 · · · ×d+1 Rd+1 = r, (3.2)

where for j = 1, · · · , d, R j is a known l j × q j matrix with rank l j, l j 6 q j and Rd+1 is a

known ld+1 × (m0 + 1)qd+1 known matrix with rank ld+1 6 (m0 + 1)qd+1, and r is a known

l1 × · · · × ld+1 tensor. This restriction is used to incorporate some prior knowledge about

the tensor parameter. In practice, the restriction in (3.2) can reflect the fact that previous

statistical investigations or expert knowledge indicate that some components are not statis-

tically significant or that there exists an association between the components of the tensor

parameter. For instance, in the context of neuro-imaging data analysis, restrictions built on

some prior knowledge could be useful in more efficient estimation and better understanding

of the underlying brain structure for diseases. For example, in some preliminary studies,

there is a suspicion that a certain brain region may be associated with having a disease. In

that case, one can utilize the restrictions to pinpoint that specific region by setting up the

appropriate restrictions for the first 3 dimensions, i.e., R1, R2 and R3. If a brain region is

suspected to have no effect on the disease, then the restriction of the fourth dimension, R4,

could be set up as the identity matrix and r0 could be set up as the zero tensor. Moreover,

R4 could be used to choose the covariates of interest such as the diagnosis indicator or

age. A practical application of restrictions on a real neuro-imaging data can be found in
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Subsection 3.5.2

Remark 3.1.1. The restriction in (3.2) is a generalization of the restriction imposed in

Chen and Nkurunziza (2016) for the matrix parameter case. Indeed, by letting R1 = R,

R2 = L′ and δ ∈ Rq1×(m+1)q2 , the above condition reduces to δ×1 R1×2 R2 = RδL = r, where

r ∈ Rl1×l2 .

3.1.1 Preliminary results: the known change-points case

In this subsection, we give some preliminary results in the context where τ1, · · · , τm0 are

known. In particular, we derive the unrestricted estimator (UE) and the restricted esti-

mator (RE) in the case where the change-points are known. Define τ = (τ1, · · · , τm0)
′,

let δ̂(τ) denote the UE of δ when τ is known. Similarly, let δ̃(τ) denote the RE of δ

when τ is known. Let Q = Z̄ ⊗
1⊗

j=d
Iq j , R =

1⊗
j=d+1

R j, let Ji = R′i(RiR′i)
−1Ri, let Gi =

R′i(RiR′i)
−1 for i = 1, · · · , d, let Jd+1 = (Z̄′Z̄)−1R′d+1(Rd+1(Z̄′Z̄)−1R′d+1)−1Rd+1, and let Gd+1 =

(Z̄′Z̄)−1R′d+1(Rd+1(Z̄′Z̄)−1R′d+1)−1.

Proposition 3.1.1. The UE and the RE are respectively given by

δ̂(τ) = Y ×d+1 (Z̄′Z̄)−1Z̄′, δ̃(τ) = δ̂(τ) − δ̂(τ)(
d+1�
i=1

)
i
Ji + r(

d+1�
j=1

)
j
G j.

The proof of Proposition 3.1.1 can be found in Appendix B. Note that for the special

case where d = 1, the estimator in Proposition 3.1.1 yields the estimator given in Chen and

Nkurunziza (2016).

3.1.2 Estimation in the case of unknown change-points

In this subsection, we outline the estimation method of δ when the location of the change-

points τ1, · · · , τm0 are unknown. Thus, we also outline the estimation method for τ =
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(τ1, · · · , τm0)
′. In similar ways as in Chen and Nkurunziza (2016), one estimates the un-

known parameter δ and τ by minimizing the least squares of objective function. This gives

the UE of δ and τ . Let τ̂ and τ̃ denote the UE and RE of the true change-points from

restricted least squares, respectively. Also, let δ̂(τ̂ ) and δ̃(τ̃ ) be the UE and RE for the

regression coefficient tensor δ, respectively. Let SSRU
T (τ ) and SSRR

T (τ ) be the Frobenius-

norm of residuals from the UE and RE least squares regression model evaluated at the

partition τ = (τ1, · · · , τm0), respectively. We have

τ̂ = arg min
τ

SSRU
T (τ ), and τ̃ = arg min

τ
SSRR

T (τ ). (3.3)

The minimization of (3.3) needs to be done numerically by using the dynamic program-

ming algorithm which is similar to the one used in Nkurunziza et al. (2019), Chen and

Nkurunziza (2015) and references therein.

3.2 Asymptotic results

In this section, we derive some technical results underlying the proposed method. Specifi-

cally, we derive some fundamental results which are useful in generalizing the main results

of Chen and Nkurunziza (2015) as well as that in Chen and Nkurunziza (2016). In the spe-

cial case of matrix estimation problem, the established results are also useful in simplifying

the proofs of the main results of the above quoted papers. In particular, we derive some

asymptotic results for the UE and the RE.

3.2.1 Some fundamental results

Let op(a) denote a random variate (r.v.) such that op(a)/a converges in probability to 0,

let Op(a) denote a r.v. such that Op(a)/a is bounded in probability. Similarly, let o(a)
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denote a non-random quantity such that o(a)/a converges to 0, and O(a) denote a non-

random quantity such that O(a)/a is bounded. Further, the notations
L2

−−−−→
T→∞

,
a.s
−−−−→
T→∞

,
P
−−−−→
T→∞

and
d
−−−−→
T→∞

stand for convergence in L2, convergence almost surely, convergence in probability

and convergence in distribution, respectively. Let f : E 7→ F be a linear transformation

where E and F are vector spaces. Define Im( f ) = { f (x) : x ∈ E} and Ker( f ) = {x :∈

f (x) = 0}. Let
{
G i

T,k,∞ ≤ k ≤ i ≤ ∞,T ≥ 1
}

be a filtration, let Hi be the Hilbert space of

G i
T,−∞−measurable and square integrable functions and let Pi be a projector onto Hi. We

suppose that the projector Pi satisfies the following assumption.

Assumption 3.2.1. The sequence {Pi}
∞
i=−∞ is such that ‖Pi− j(X)‖ 6 ciϕ( j) and

‖X − Pi+ j(X)‖ 6 ciϕ( j + 1) where {ϕ( j)} j≥0 is a decreasing function such that

ϕ( j) = O
(

1
j1/2κ( j)

)
, with κ(.) an increasing and positive function such that

∞∑
j=1

1
jκ( j) < ∞.

Under this assumption, we derive below several propositions and a lemma which play

an important role in deriving the asymptotic normality of the UE.

Proposition 3.2.1. If Assumption 3.2.1 holds, then,

Pi+m(X)
a.s and L2

−−−−−−−→
m→∞

X and Pi−l−1(X)
a.s and L2

−−−−−−−→
l→∞

0.

Proof. Since ‖X − Pi+m(X)‖2 ≤ c2
i ϕ

2(m + 1), then we have

∞∑
m=0

‖X − Pi+m(X)‖2 ≤ c2
i

∞∑
m=0

ϕ2(m + 1) = c2
i

∞∑
m=1

ϕ2(m).

Since ϕ(m) = O
(

1
m1/2κ(m)

)
, we get

∞∑
m=0

‖X − Pi+m(X)‖2 ≤ c2
i A

∞∑
m=1

1
mκ2(m)

,

for some A > 0.Also, since κ is an increasing, positive function, we have κ−1(1) ≥ κ−1(m).

Hence, we get
∞∑

m=0

‖X − Pi+m(X)‖2 ≤ c2
i Aκ−1(1)

∞∑
m=1

1
mκ(m)

< ∞.



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 24

As such, by Markov’s inequality, for ε > 0,

∞∑
m=0

P (‖X − Pi+m(X)‖F ≥ ε) ≤
∞∑

m=0

E
[
‖X − Pi+m(X)‖2F

]
/ε2 =

∞∑
m=0

‖X − Pi+m(X)‖2/ε2 < ∞.

Therefore, by the Borel-Cantelli Lemma, we have X − Pi+m(X)
a.s
−−−−→
m→∞

0. This implies that

Pi+m(X)
a.s
−−−−→
m→∞

X. Similarly, since
∞∑

l=0
‖Pi−l−1(X)‖ ≤ c2

i

∞∑
l=1
ϕ2(l) < ∞, then Pi−l−1(X)

a.s
−−−→
l→∞

0.

This completes the proof. �

Proposition 3.2.2. If Assumption 3.2.1 holds, then 〈Pi(X), X〉 = ‖Pi(X)‖2.

Proof. By the definition of orthogonal projection, we have X − Pi(X) ∈ Ker(Pi). Since

Ker(Pi) ⊂ (Im(Pi))⊥, then X −Pi(X) ∈ (Im(Pi))⊥ . Hence, X −Pi(X) is orthogonal to any el-

ement of Im(Pi). In particular, X−Pi(X) is orthogonal to Pi(X).Hence, 〈X−Pi(X), Pi(X)〉 =

〈X, Pi(X)〉− 〈Pi(X), Pi(X)〉 = 0. This implies that 〈X, Pi(X)〉 = ‖Pi(X)‖2. This completes the

proof of the lemma. �

Proposition 3.2.3. Suppose the conditions of Proposition 3.2.1 hold. Then,

X =
∞∑

k=−∞

[Pi+k(X) − Pi+k−1(X)] a.s and in L2.

Proof. Note that
∞∑

k=−∞

[Pi+k(X) − Pi+k−1(X)] = lim
l,m→∞

m∑
k=−l

[Pi+k(X) − Pi+k−1(X)] . Since this is

a telescoping series, we have

∞∑
k=−∞

[Pi+k(X) − Pi+k−1(X)] = lim
l,m→∞

[Pi+m(X) − Pi−l−1(X)]

= lim
m→∞

Pi+m(X) − lim
l→∞

Pi−l−1(X).

By Proposition 3.2.1, we get

∞∑
k=−∞

[Pi+k(X) − Pi+k−1(X)] = X − 0 = X, a.s and in L2.

This completes the proof. �
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Proposition 3.2.4. Let P̄i = 1Hi
− Pi, where 1Hi

denotes the projector identity onto Hi.

Suppose that the projectors Pi satisfy the conditions of Proposition 3.2.1 and suppose that

〈Pi(X), P j(X)〉 = ‖Pi(X)‖2, for all i ≤ j. Then,

1. ‖P̄i+k−1(X) − P̄i+k(X)‖2 = ‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2,

2. 〈P̄i+k−1(X) − P̄i+k(X), P̄ j+k−1(X) − P̄ j+k(X)〉 = 0, for all j , i,

3. ‖P̄i+k−1(X)‖2 − ‖P̄i+k(X)‖2 = ‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2,

4. ‖X‖2 =
∞∑

k=−∞

‖Pi+k(X) − Pi+k−1(X)‖2.

Proof. 1. We have

‖P̄i+k−1(X) − P̄i+k(X)‖2 = ‖Pi+k(X) − Pi+k−1(X)‖2

= 〈Pi+k(X) − Pi+k−1(X), Pi+k(X) − Pi+k−1(X)〉

= 〈Pi+k(X), Pi+k(X)〉 + 〈Pi+k−1(X), Pi+k−1(X)〉 − 2〈Pi+k(X), Pi+k−1(X)〉

= 〈Pi+k(X), Pi+k(X)〉 + 〈Pi+k−1(X), Pi+k−1(X)〉 − 2〈Pi+k−1(X), Pi+k−1(X)〉

= 〈Pi+k(X), Pi+k(X)〉 − 〈Pi+k−1(X), Pi+k−1(X)〉 = ‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2.

This completes the proof of Part 1.

2. Without loss of generality, suppose that j < i.We have

〈P̄i+k−1(X) − P̄i+k(X), P̄ j+k−1(X) − P̄ j+k(X)〉

= 〈Pi+k(X) − Pi+k−1(X), P j+k(X) − P j+k−1(X)〉

= 〈Pi+k(X), P j+k(X)〉 + 〈Pi+k−1(X), P j+k−1(X)〉

− 〈Pi+k(X), P j+k−1(X)〉 − 〈Pi+k−1(X), P j+k(X)〉

= ‖P j+k(X)‖2 + ‖P j+k−1(X)‖2 − ‖P j+k−1(X)‖2 − ‖P j+k(X)‖2 = 0.

This completes the proof of Part 2.



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 26

3. Note that

‖P̄i+k−1(X)‖2 − ‖P̄i+k(X)‖2

= 〈X − Pi+k−1(X), X − Pi+k−1(X)〉 − 〈X − Pi+k(X), X − Pi+k(X)〉

= 〈X, X〉 − 2〈Pi+k−1(X), X〉 + 〈Pi+k−1(X), Pi+k−1(X)〉

− 〈X, X〉 + 2〈Pi+k(X), X〉 − 〈Pi+k(X), Pi+k(X)〉.

Then, by Proposition 3.2.2, we get

‖P̄i+k−1(X)‖2 − ‖P̄i+k(X)‖2

= −2‖Pi+k−1(X)‖2 + ‖Pi+k−1(X)‖2 + 2‖Pi+k(X)‖2 − ‖Pi+k(X)‖2

= ‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2.

This completes the proof of the third part.

4. Using Proposition 3.2.3, we have that

‖X‖2 = 〈X, X〉 = 〈X,
∞∑

k=−∞

[Pi+k(X) − Pi+k−1(X)]〉.

Hence, we have

‖X‖2 = 〈X, X〉 = 〈X, lim
l,m→∞

m∑
k=−l

[Pi+k(X) − Pi+k−1(X)]〉

= lim
l,m→∞

m∑
k=−l

〈X, Pi+k(X) − Pi+k−1(X)〉.

Then, 〈X, Pi+k(X) − Pi+k−1(X)〉 = 〈X, Pi+k(X)〉 − 〈X, Pi+k−1(X)〉.

By Proposition 3.2.2,

〈X, Pi+k(X)〉 = ‖Pi+k(X)‖2 and 〈X, Pi+k−1(X)〉 = ‖Pi+k−1(X)‖2.



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 27

Hence,

〈X, Pi+k(X) − Pi+k−1(X)〉 = ‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2

= 〈Pi+k(X), Pi+k(X)〉 − 〈Pi+k−1(X), Pi+k−1(X)〉

= 〈Pi+k(X) − Pi+k−1(X), Pi+k(X) − Pi+k−1(X)〉

= ‖Pi+k(X) − Pi+k−1(X)‖2.

This completes the proof of the fourth part.

�

Below, we establish a lemma which is useful in deriving the asymptotic properties of

the UE and the RE.

Lemma 3.2.1. Let {ak}
∞
k=−∞ and {bk}

∞
k=−∞ be sequences of positive numbers such that ak =

a−k and suppose that a−1
j − a−1

j−1 = O(κ(k)), b j = O
(

1
jκ2( j)

)
where κ is as in Assump-

tion 3.2.1. Then,
∞∑

k=1
(a−1

k − a−1
k−1)bk < ∞.

Proof. We have
∞∑
j=1
|a−1

j − a−1
j−1|b j =

∞∑
j=1

O(κ( j))O
(

1
jκ2( j)

)
=
∞∑
j=1

O
(

1
jκ( j)

)
. As such, we get for

some 0 < A0 < ∞,
∞∑
j=1

(a−1
j − a−1

j−1)b j ≤ A0

∞∑
j=1

1
jκ( j)

< ∞.

This completes the proof. �

By using Lemma 3.2.1, we derive the following two propositions which play an impor-

tant role in deriving the asymptotic properties of the UE.

Proposition 3.2.5. Let {ak}
∞
k=−∞ be as in Lemma 3.2.1. Under Assumption 3.2.1,

lim
n→∞

a−1
n+1ϕ

2(n + 1) = 0.

Proof. Since a−1
j − a−1

j−1 = O(κ( j)), we have

a−1
n − a−1

0 =

n∑
j=1

(
a−1

j − a−1
j−1

)
≤ B0

n∑
j=1

κ( j),
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for some 0 < B0 < ∞. Then, we have

a−1
n ϕ

2(n) ≤ a−1
0 ϕ

2(n) + B0ϕ
2(n)

n∑
j=1

κ(k).

Since κ( j) is increasing, we get

a−1
n ϕ

2(n) ≤ a−1
0 ϕ

2(n) + B0ϕ
2(n)

n∑
j=1

κ(n) = a−1
0 ϕ

2(n) + B0ϕ
2(n)nκ(n).

Since ϕ2(n) = O( 1
nκ2(n) ), we have

a−1
n ϕ

2(n) ≤ a−1
0 ϕ

2(n) + B1
1

nκ2(n)
κ(n) = a−1

0 ϕ
2(n) + B1

1
κ(n)

,

for some 0 < B1 < ∞. Hence, since

a−1
n+1ϕ

2(n + 1) ≤ a−1
0 ϕ

2(n + 1) + B1
1

κ(n + 1)
,

then

0 ≤ lim
n→∞

a−1
n+1ϕ

2(n + 1) ≤ a−1
0 lim

n→∞
ϕ2(n + 1) + B1 lim

n→∞

1
κ(n + 1)

= 0.

This completes the proof. �

Proposition 3.2.6. Let {ak}
∞
k=−∞ be as in Lemma 3.2.1. Under Assumption 3.2.1,

1.
∞∑

k=1

Lp∑
i=1

(
a−1

k − a−1
k−1

)
‖Pi−k(X)‖2 < ∞,

2.
∞∑

k=1

Lp∑
i=1

(
a−1

k+1 − a−1
k

)
‖P̄i+k(X)‖2 < ∞,

3.
∞∑

k=1

Lp∑
i=1

[
a−1

k ‖P̄i+k−1(X)‖2 − a−1
k+1‖P̄i+k(X)‖2

]
=

Lp∑
i=1

a−1
1 ‖P̄i(X)‖2 < ∞,

4.
∞∑

k=1

Lp∑
i=1

[
a−1

k−1‖Pi−k(X)‖2 − a−1
k ‖Pi−k−1(X)‖2

]
=

Lp∑
i=1

a−1
0 ‖Pi−1(X)‖2 < ∞.

Proof. 1. We have

∞∑
k=1

Lp∑
i=1

(
a−1

k − a−1
k−1

)
‖Pi−k(X)‖2 ≤

∞∑
k=1

Lp∑
i=1

(
a−1

k − a−1
k−1

)
c2

p,iϕ
2(k)

=

Lp∑
i=1

c2
p,i

∞∑
k=1

(
a−1

k − a−1
k−1

)
ϕ2(k).
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Thus, by taking bk = ϕ2(k) and by applying Lemma 3.2.1,

∞∑
k=1

(
a−1

k − a−1
k−1

)
ϕ2(k) < ∞.

This completes the proof of Part 1.

2. We have

∞∑
k=1

Lp∑
i=1

(
a−1

k+1 − a−1
k

)
‖P̄i+k(X)‖2 ≤

∞∑
k=1

Lp∑
i=1

(
a−1

k+1 − a−1
k

)
c2

p,iϕ
2(k + 1)

=

Lp∑
i=1

c2
p,i

∞∑
k=1

(
a−1

k+1 − a−1
k

)
ϕ2(k + 1).

Hence, we have by Lemma 3.2.1,

∞∑
k=1

Lp∑
i=1

(
a−1

k+1 − a−1
k

)
‖P̄i+k(X)‖2 ≤

Lp∑
i=1

c2
p,i

∞∑
k=2

(
a−1

k − a−1
k−1

)
ϕ2(k) < ∞.

This completes the proof of the second part.

3. Since the sum is a telescoping series,
∞∑

k=1

Lp∑
i=1

[
a−1

k ‖P̄i+k−1(X)‖2 − a−1
k+1‖P̄i+k(X)‖2

]
=

Lp∑
i=1

a−1
1 ‖P̄i(X)‖2 − lim

n→∞
a−1

n+1

Lp∑
i=1
‖P̄i+n(X)‖2.

Then,

lim
n→∞

a−1
n+1

Lp∑
i=1

‖P̄i+n(X)‖2 ≤ lim
n→∞

a−1
n+1

Lp∑
i=1

c2
p,iϕ

2(n + 1) =

Lp∑
i=1

c2
p,i lim

n→∞
a−1

n+1ϕ
2(n + 1).

By Proposition 3.2.5, lim
n→∞

a−1
n+1ϕ

2(n + 1) = 0. This gives

lim
n→∞

a−1
n+1

Lp∑
i=1

‖P̄i+n(X)‖2 = 0.

This completes the proof of the third part.

4. Note that

∞∑
k=1

Lp∑
i=1

[
a−1

k−1‖Pi−k(X)‖2 − a−1
k ‖Pi−k−1(X)‖2

]
=

Lp∑
i=1

a−1
0 ‖Pi−1(X)‖2 − lim

n→∞

Lp∑
i=1

a−1
n ‖Pi−n−1(X)‖2.
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By Proposition 3.2.5, we get lim
n→∞

Lp∑
i=1

a−1
n ‖Pi−n−1(X)‖2 = 0. Therefore,

∞∑
k=1

Lp∑
i=1

[
a−1

k−1‖Pi−k(X)‖2 − a−1
k ‖Pi−k−1(X)‖2

]
=

Lp∑
i=1

a−1
0 ‖Pi−1(X)‖2 < ∞.

This completes the proof.

�

Using Proposition 3.2.5 and Proposition 3.2.6, we derive the following corollary.

Corollary 3.2.1. Suppose that the conditions of Proposition 3.2.6 hold and let

U j,k(l) =

l+ j∑
i=l+1

[Pi+k(X) − Pi+k−1(X)] ,

j = 1, · · · , Lp, k = 1, 2, · · · . Then, for s1 = 1, · · · , q1, s2 = 1, · · · , q2, · · · , sd = 1, · · · , qd, sd+1 =

1, · · · , qd+1,

∞∑
k=1

a−1
k ‖U

2
Lp,k(l)‖

2 =

l+Lp∑
i=l+1

 ∞∑
k=1

(a−1
k+1 − a−1

k )‖P̄i+k(X)‖2 + a−1
1 ‖P̄i(X)‖2

 ,
and

−1∑
k=−∞

a−1
k ‖U

2
Lp,k(l)‖

2 =

l+Lp∑
i=l+1

 ∞∑
k=1

(a−1
k − a−1

k−1)‖Pi−k(X)‖2 + a−1
0 ‖Pi−1(X)‖2

 .
Proof. Note that

‖ULp,k(l)‖
2 =

∥∥∥∥∥∥∥∥
 l+Lp∑

i=l+1

(P̄i+k−1(X) − P̄i+k(X))


∥∥∥∥∥∥∥∥

2

=

l+Lp∑
i=l+1

‖P̄i+k−1(X) − P̄i+k(X)‖2 + 2
l+Lp∑
i=l+2

i−1∑
j=l+1

〈P̄i+k−1(X) − P̄i+k(X), P̄ j+k−1(X) − P̄ j+k(X)〉.

Hence, it follows from Proposition 3.2.4 that

‖ULp,k(l)‖
2 =

l+Lp∑
i=l+1

[
‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2

]
=

l+Lp∑
i=l+1

[
‖P̄i+k−1(X)‖2 − ‖P̄i+k(X)‖2

]
.
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Using this, we have

a−1
0 ‖ULp,0(l)‖2 =

l+Lp∑
i=l+1

a−1
0

[
‖Pi(X)‖2 − ‖Pi−1(X)‖2

]
and

∞∑
k=1

a−1
k ‖ULp,k(l)‖

2 =

∞∑
k=1

a−1
k

 l+Lp∑
i=l+1

[
‖P̄i+k−1(X)‖2 − ‖P̄i+k(X)‖2

] .
Moreover, we have

∞∑
k=1

a−1
k ‖ULp,k(l)‖

2 =

∞∑
k=1

 l+Lp∑
i=l+1

(a−1
k+1 − a−1

k )‖P̄i+k(X)‖2


+

∞∑
k=1

l+Lp∑
i=l+1

(
a−1

k ‖P̄i+k−1(X)‖2 − a−1
k+1‖P̄i+k(X)‖2

)
.

Hence, using the third statement in Proposition 3.2.6, we get

∞∑
k=1

a−1
k ‖ULp,k(l)‖

2 =

∞∑
k=1

 l+Lp∑
i=l+1

(a−1
k+1 − a−1

k )‖P̄i+k(X)‖2
 +

l+Lp∑
i=l+1

a−1
1 ‖P̄i(X)‖2 < ∞,

this proves the first statement. We prove the second statement by following similar steps

and using the assumption that ak = a−k. Namely, we have

−1∑
k=−∞

a−1
k ‖ULp,k(l)‖

2 =

−1∑
k=−∞

a−1
k

l+Lp∑
i=l+1

[
‖Pi+k(X)‖2 − ‖Pi+k−1(X)‖2

]
=

∞∑
k=1

l+Lp∑
i=l+1

a−1
k

[
‖Pi−k(X)‖2 − ‖Pi−k−1(X)‖2

]
.

Now, using the first and fourth statements in Proposition 3.2.6, we have

−1∑
k=−∞

a−1
k ‖ULp,k(l)‖

2 =

∞∑
k=1

l+Lp∑
i=l+1

(a−1
k − a−1

k−1)‖Pi−k(X)‖2

+

∞∑
k=1

l+Lp∑
i=l+1

(
a−1

k−1‖Pi−k(X)‖2 − a−1
k ‖Pi−k−1(X)‖2

)
< ∞.

Hence, by the fourth statement of Proposition 3.2.6,

−1∑
k=−∞

a−1
k ‖ULp,k(l)‖

2 =

l+Lp∑
i=l+1

 ∞∑
k=1

(a−1
k − a−1

k−1)‖Pi−k‖
2 + a−1

0 ‖Pi−1‖
2

 ,
which completes the proof. �
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To establish some main results, we consider the case where k(·) satisfies the following

assumption.

Assumption 3.2.2. The function κ(.) is positive and increasing such that , for some M > 0,

κ(x) > 1 for all x > M and
∞∑

n=1

 n∑
j=0

κ( j)


−1/2

< ∞.

Lemma 3.2.2. Under Assumption 3.2.2, let b j = O
(

j−1κ−2( j)
)

and let a0 = κ(0), a− j = a j,

a j =

(
−a−1

j−1 +
√

a−2
j−1 + 4κ( j)

)
/(2κ( j)), j = 1, 2, . . . Then,

1.
∞∑

j=−∞

a j < ∞; (2).
∞∑

n=1

 n∑
j=1

jκ2( j)


−1/2

< ∞; 3.
∞∑

n=1

(a−1
n − a−1

n−1)bn < ∞;

4.
∞∑

n=1

n−1κ−1(n) < ∞.

Proof. 1.Obviously, a j > 0, for any integer j. Further, one can verify that a−1
j =

(
a−1

j−1+
√

a−2
j−1+4κ( j)

)
2 ,

then, a−1
j − a−1

j−1 = a jκ( j) and then, a−1
j − a−1

j−1 > 0, for all j = 1, 2, . . . This proves that

a j is an increasing sequence. We also have
(
a−2

j − a−2
j−1

)
> κ( j), j = 1, 2, . . . This gives

a−2
n >

n∑
j=0

κ( j), n = 1, 2, . . . Hence, an <

 n∑
j=0

κ( j)


−1/2

, n = 1, 2, 3, . . . . Therefore,

∞∑
n=−∞

a j < 2
∞∑

n=1

 n∑
j=0

κ( j)


−1/2

< ∞, this proves Part 1.

2. Part 2 follows directly from Part 1.

3. We have,
∞∑

k=1

(a−1
k − a−1

k−1)bk 6 A0

∞∑
k=1

ak

kκ(k)
6

1
κ(1)

∞∑
k=1

ak < ∞.

4. Since nκ2(n) is increasing, we have
n∑

j=1

jκ2( j) 6 n2κ2(n), n = 1, 2, . . . Then, n∑
j=1

jκ2( j)


−1/2

> n−1κ−1(n), n = 1, 2, . . . Then, the proof follows directly from Part (2).

This completes the proof. �

Remark 3.2.1. Part 4 of Lemma 3.2.2 shows that, under Assumption 3.2.2, κ(.) satisfies

Assumption 3.2.1.
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3.2.2 About the structure of the noise and the regressors

In this subsection, we derive some technical results underlying the structure of the error

terms and the regressors. The established results are useful in deriving the joint asymp-

totic normality between the UE and the RE. In the following, we present some conditions

for deriving the joint asymptotic normality of the UE and the RE, which is an important

step for the proposed method. Indeed, the optimality of the proposed method is based on

the asymptotic results. We first define the concept of Lp − mixingales in the following

definition.

Definition 3.2.1. Let {Unt} be a zero-mean stochastic array and {G t
n,s,−∞ ≤ s ≤ t ≤ ∞, n ≥

1} be an array of sigma subfields of F . Then, {Unt,G t
n,s} is called an Lr− mixingale of size

−λ0 if

‖E(Unt|G
t−m

n,−∞)‖r 6 antζr,m, and ‖Unt − E(Unt|G
t+m

n,−∞)‖r 6 antζr,m+1, (3.4)

where {ant} is an array of positive constants and ζr,m = O(m−λ) for λ > λ0 > 0.

Assumption 3.2.3. (C1) Let Lp = (τ0
p − τ

0
p−1), p = 1, · · · ,m, then

(1/Lp)
∑τ0

p−1+[Lp/ν]
t=τ0

p−1+1
ztz′t

P
−−−−→
T→∞

Qp(ν), a non-random positive definite matrix uniformly in

ν ∈ [0, 1] and there exists an L0 > 0, such that for all Lp > L0, the minimum eigenvalues of

(1/Lp)
∑τ0

p−1+Lp

t=τ0
p−1+1

ztz′t and (1/Lp)
∑τ0

p−1

t=τ0
p−1+1

ztz′t are bounded away from 0.

(C2) The matrix
∑i2

t=i1
ztz′t is invertible for 0 ≤ i2 − i1 ≤ ε0T for some ε0 > 0.

(C3) τ0
p =

[
Tλ0

p

]
, where p = 1, · · · ,m0 + 1 and 0 < λ0

1 < · · · < λ
0
m0
< λ0

m0+1 = 1.

(C4) The minimization problem defined by (3.3) is taken over all possible partitions, such

that τi − τi−1 > νT, (i = 1, · · · ,m0 + 1) for some ν > 0.

(C5) For each segment,
(
τ0

p−1, τ
0
p

)
, p = 1, · · · ,m0 + 1, set

Xp,i = T−1/2Uτ0
p−1+i ◦ zτ0

p−1+i ∈ R
q1×···×qd×qd+1 ,
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where F i
p,−∞ = F

τ0
p−1+i

T,−∞ . We assume that there exist sequences of non-negative real numbers

{cpi : i ≥ 1} and {ψ( j), j ≥ 0}, such that ψ( j) = O( j−1/2κ−1( j)), with the function κ(·) as

defined in Assumption 3.2.2, and

‖E(Xpi|F
i− j
p,−∞)‖2 ≤ cpiψ( j), ‖Xpi − E(Xpi|F

i+ j
p,−∞)‖2 ≤ cpiψ( j + 1). (3.5)

Further, within each break, set Lp = τ0
p − τ

0
p−1 and let lp, bp be such that 1 ≤ lp ≤ lp + 1 ≤

bp ≤ Lp, and set rp =
[
Lp/bp

]
. Thus, this separates interval

[
τ0

p−1, τ
0
p

]
into

[
Lp/bp

]
or[

Lp/bp

]
+ 1 cells.

We assume that bp −−−−→
Lp→∞

∞, lp −−−−→
Lp→∞

∞, bp/Lp −−−−→
Lp→∞

0, and lp/bp −−−−→
Lp→∞

0.

(C6) For p = 1, · · · ,m0 + 1, set Vpi =
ibp∑

t=(i−1)bp+lp+1
Xp,t, and set

Vi = V1,i �(d+1) V2,i �(d+1) · · · �(d+1) Vm0+1,i ∈ R
q1×···qd×(m0+1)qd+1 ,

1) For s1 = 1, · · · , q1; s2 = 1, · · · , r2; s3 = 1, · · · , r3; · · · ; sd = 1, · · · , qd; sd+1 = 1, · · · , qd+1,

{X2
pi,s1,··· ,sd+1

/c2
pi, i = 1, 2, · · · } is uniformly integrable.

2) max
1≤i≤Lp

cpi = o(T−α/2b−1/2
p ), for some 0 < α ≤ 1.

3)
rp∑

i=1

(
max

(i−1)bp+1≤t≤ibp
cpt

)2

= O(T−αb−1
p ).

4)
rp∑

i=1
Vp,i(n)V

′
p,i(n)

P
−−−−→
Lp→∞

Σp,n, for n = 1, · · · , d + 1. Let rmin = min
1≤i≤m0+1

ri and let lmin =

min
1≤i≤m0+1

Li, we have
rmin∑
i=1

Vec(Vp,i)Vec(Vp,i)′
P

−−−−→
Lp→∞

1⊗
j=d+1

Σp, j, and

(i)
r j∑

i=rmin+1

(
max

(i−1)b j+1≤t≤ib j
c j,t

)2

= O(T−αb−1
j )

(ii)
rmin∑
i=1
Vi( j)V

′
i( j)

P
−−−−→
Lp→∞

Λ j, for n = 1, · · · , d + 1 and
rmin∑
i=1

Vec(Vi)Vec(Vi)′
P

−−−−−−→
Lmin→∞

Λ∗ =
1⊗

j=d+1
Λ j, where Λ j is q j × q j positive definite matrix for j = 1, · · · , d and

Λd+1 is an (m0 + 1)qd+1 × (m0 + 1)qd+1 positive definite matrix.
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Remark 3.2.2. For the special case where d = 1, Assumption (C6) becomes Condition (C6)

of Chen and Nkurunziza (2016). Indeed, if d = 1, we have

rmin∑
i=1

Vi(1)V
′
i(1) =

rmin∑
i=1

ViV
′
i

P
−−−−→
Lp→∞

Λ1,

rmin∑
i=1

Vi(2)V
′
i(2) =

rmin∑
i=1

V′iVi =
P

−−−−→
Lp→∞

Λ2

and
rmin∑
i=1

Vec(Vi)Vec(Vi)′
P

−−−−−−→
Lmin→∞

Λ2 ⊗ Λ1

where Λ1 is q1×q1 positive definite matrix for j = 1, · · · , d and Λ2 is an (m0+1)q2×(m0+1)q2

positive definite matrix.

Remark 3.2.3. For the special case where κ( j) = jε , for some ε > 0, the condition in (3.5)

means that {Xpi,F i
p,−∞} forms an L2−mixingale array of size −1/2.

The role of the first statement in Condition (C1) is to overcome the problem of unit

root regressors while the role of the second statement, in Condition (C1), is to avoid local

collinearity problem which guarantees the identifiability of the change-points. The role of

Condition (C2) is to guarantee the existence of the tensor estimate. In the model without

change-points, this corresponds to the classical requirement of full rank matrix of regres-

sors. Condition (C3) implies that the length of each regime is proportional to T and the role

of this condition is to guarantee that the location of the change-points is asymptotically dis-

tinct. Condition (C4) guarantees that the change-points are distinguishable. Thus, provided

that ν is relatively large, the search for the change-points avoids the change-point candi-

dates that are too close. Nevertheless, since ν can be chosen very small, Condition (C4)

does not constitute a limitation for the proposed method. Condition (C5) defines the depen-

dence structure of the error and the regressors. This condition is so general that it holds for

classical (univariate or multivariate) regression models. Finally, Condition (C6) is useful in

deriving tensor type Central limit theorem for tensor L2−mixingale array of size −1/2.
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Overall, the conditions in Assumption 3.2.3 are very general and hold for a vast array of

models. Specifically, these conditions guarantee that the proposed method can be applied

to the classical models where the errors are assumed to be independent and identically

distributed as well as to the case where the errors are neither independent nor identically

distributed. Further, we do not assume a specific distribution for the tensor noise U and

it is not necessary for U to be independent of the matrix of covariates Z̄. Namely, Con-

dition (C5) shows that the dependence structure of the noise and the regressors is much

weaker than what is seen in the literature. In particular, the above conditions admit a vast

array of possible applications, including many auto-correlated and heteroscedastic models.

Using the results of Section 3.2.1, we establish the following series of results that will

be used to derive Lemma 3.2.6, the main result of this subsection. Lemma 3.2.6 is useful

in establishing some asymptotic results about the UE and RE.

Corollary 3.2.2. Suppose that (C5)-(C6) hold, then, for each i, p = 1, 2, · · ·

E[Xp,i|F
i+m
p,−∞]

a.s
−−−−→
m→∞

Xp,i and E[Xp,i|F
i−l−1
p,−∞ ]

a.s
−−−→
l→∞

0.

Proof. The result follows directly from Proposition 3.2.1 by taking the projector Pi(X) =

E
[
Xp,i|F i

p,−∞

]
. �

We now use the above proposition to establish the following corollary. Set Di,k =

Xp,i − E[Xp,i|F i+k
p,−∞] and set Di,k,s1,··· ,sd+1 be the element in sth

1 row, sth
2 column, sth

3 position

in the third dimension,. . . , sth
d+1 position in the (d + 1)th dimension.

Corollary 3.2.3. Suppose that conditions (C5)-(C6) of Assumption 3.2.3. Then, for s1 =

1, · · · q1, s2 = 1, · · · , r2, · · · , sd = 1, · · · , qd, sd+1 = 1, · · · , qd+1, we have
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1.

E

 Lp∑
i=1

(Di,k−1,s1,s2,··· ,sd+1 − Di,k,s1,s2,··· ,sd+1)
2

 =

Lp∑
i=1

E(E2(Xp,i,s1,··· ,sd+1 |F
i+k
p,−∞))

−

Lp∑
i=1

E(E2(Xp,i,s1,··· ,sd+1 |F
i+k−1
p,−∞ ));

2.

Lp∑
i=1

i−1∑
j=1

E
[
(Di,k−1,s1,s2,··· ,sd+1 − Di,k,s1,s2,··· ,sd+1)(D j,k−1,s1,s2,··· ,sd+1 − D j,k,s1,s2,··· ,sd+1)

]
= 0;

3.

Lp∑
i=1

[
E(D2

i,k−1,s1,··· ,sd+1
) − E(D2

i,k,s1,··· ,sd+1
)
]

=

Lp∑
i=1

[
E(E2(Xp,i,s1,··· ,sd+1 |F

i+k
p,−∞)) − E(E2(Xp,i,s1,··· ,sd+1 |F

i+k−1
p,−∞ ))

]
.

Proof. Proof follows directly from Proposition 3.2.4. �

Using Corollary 3.2.3, we establish the following result.

Corollary 3.2.4. Suppose that assumptions (C5) and (C6) hold and let {ak}
∞
−∞ be as in

Lemma 3.2.1, Then, the following statements hold for s1 = 1, · · · , q1, · · · , sd = 1, · · · , qd,

sd+1 = 1, · · · , qd+1,

1)
∞∑

k=1

Lp∑
i=1

(a−1
k − a−1

k−1)E(E2(Xp,i,s1,··· ,sd+1 |F
i−k
p,−∞)) < ∞.

2)
∞∑

k=1

Lp∑
i=1

(a−1
k+1 − a−1

k )E(D2
i,k,s1,··· ,sd+1

) < ∞.

3)
∞∑

k=1

Lp∑
i=1

[a−1
k E(D2

i,k−1,s1,··· ,sd+1
) − a−1

k+1E(D2
i,k,s1,··· ,sd+1

)] =
Lp∑
i=1

a−1
1 E(D2

i,0,s1,··· ,sd+1
) < ∞.

4)
∞∑

k=1

Lp∑
i=1

[a−1
k−1E(E2(Xp,i,s1,··· ,sd+1 |F

i−k
p,−∞)) − a−1

k E(E2(Xp,i,s1,··· ,sd+1 |F
i−k−1
p,−∞ ))]

=
Lp∑
i=1

a−1
0 E(E2(Xp,i,s1,··· ,sd+1 |F

i−1
p,−∞)) < ∞.
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Proof. This result follows directly from Proposition 3.2.6 with Pi(X) = E
(
Xp,i|F i

p,−∞

)
. �

By using Corollary 3.2.1, we derive the following result which is useful in establishing

a central limit theorem type for some tensor mixingales.

Corollary 3.2.5. Suppose that the conditions of Proposition C.2.2 hold and let

V j,k(l) =

l+ j∑
i=l+1

[
E(Xp,i|F

i+k
p,−∞) − E(Xp,i|F

i+k−1
p,−∞ )

]
,

j = 1, · · · , Lp, k = 1, 2, · · · , l = 0, 1, · · · . Then, for sh = 1, · · · , qh, h = 1, 2, · · · , d + 1,

∞∑
k=1

a−1
k E(V2

Lp,k,s1,··· ,sd+1
(l)) =

l+Lp∑
i=l+1

 ∞∑
k=1

(a−1
k+1 − a−1

k )E(D2
i,k,s1,··· ,sd+1

) + a−1
1 E(D2

i,0,s1,··· ,sd+1
)

 ,
and

−1∑
k=−∞

a−1
k E(V2

Lp,k,s1,··· ,sd+1
(l))

=

l+Lp∑
i=l+1

 ∞∑
k=1

(a−1
k − a−1

k−1)E(E2(Xp,i,s1,··· ,sd+1 |F
i−k
p,−∞)) + a−1

0 E(E(X2
i,s1,··· ,sd+1

|F i−1
p,−∞))

 .
Proof. The proof follows from Corollary 3.2.1 by taking Pi(Xp,i) = E(Xp,i|F i

p,−∞). �

By using Corollary 3.2.5, we derive the following proposition which is useful in deriv-

ing the main result of this paper.

Proposition 3.2.7. Suppose {ak}
∞
k=−∞ are as in Lemma 3.2.1 and VLp,k is as in Corol-

lary 3.2.5. Then,

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

∞∑
k=−∞

a−1
k E

(
V2

Lp,k,s1,··· ,sd+1
(l)

)
≤

 l+Lp∑
i=l+1

c2
p,i

 {a−1
0

(
ψ2(0) + ψ2(1)

)
+ 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ2(k)} < ∞.

The proof of Proposition 3.2.7 is given in Appendix B. By using Corollary 3.2.4 and

Proposition 3.2.7, we also establish the following lemma which generalizes Lemma 3.2 in

McLeish (1977) which becomes a special case with q1 = · · · = qd = qd+1 = 1.
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Lemma 3.2.3. If Assumption 3.2.3 holds, then for L = 1, 2, 3, . . . ; l = 0, 1, 2, . . .
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E

max
j6L

 l+ j∑
i=l+1

Xp,i,s1,··· ,sd+1


2 6 K

l+L∑
i=l+1

c2
p,i, for some K > 0.

The proof of this lemma is given in Appendix B.

Remark 3.2.4. From the above corollary, we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


 Lp∑

i=1

Xp,i,s1,··· ,sd+1


2 = O

 Lp∑
i=1

c2
p,i

 .
For the next proposition, let Xp,i be as in Lemma 3.2.3 and define

Xa
p,i,s1,··· ,sd+1

= Xp,i,s1,··· ,sd+1I[|Xp,i,s1,··· ,sd+1 | 6 acp,i], Ei+mXa
p,i,s1,··· ,sd+1

= E(Xa
p,i,s1,··· ,sd+1

|F i+m
p,−∞),

U1,i,s1,··· ,sd+1 = Ei+mXa
p,i,s1,··· ,sd+1

− Ei−mXa
p,i,s1,··· ,sd+1

,

U2,i,s1,··· ,sd+1 = Xp,i,s1,··· ,sd+1 − Ei+mXp,i,s1,··· ,sd+1 + Ei−mXp,i,s1,··· ,sd+1 ,

U3,i,s1,··· ,sd+1 = Ei+m(Xp,i,s1,··· ,sd+1 − Xa
p,i,s1,··· ,sd+1

) − Ei−m(Xp,i,s1,··· ,sd+1 − Xa
p,i,s1,··· ,sd+1

). Also, let

v2
j =

j∑
i=1

c2
p,i, ṽ2

j(k) =
k+ j∑

i=k+1
c2

p,i, k = 0, 1, . . . , j, j = 1, 2, . . . , Ūt, j,s1,··· ,sd+1(l) =
l+ j∑

i=l+1
Ut,i,s1,··· ,sd+1 ,

t = 1, 2, 3, A(a,m) =
q1∑

s1=1
· · ·

qd+1∑
sd+1=1

max
j6L

Ū2
1, j,s1,··· ,sd+1

ṽ2
L(l)

,

B(a,m) =
q1∑

s1=1
· · ·

qd+1∑
sd+1=1

max
j6L

Ū2
2, j,s1,··· ,sd+1

ṽ2
L(l)

, C(a,m) =
q1∑

s1=1
· · ·

qd+1∑
sd+1=1

max
j6L

Ū2
3, j,s1,··· ,sd+1

ṽ2
L(l)

.

Proposition 3.2.8. Suppose that the conditions of Lemma 3.2.3 hold. Then,

1) For fixed (m, a) and for any ε > 0, one can choose a, b such that

J1(a, b,m) = E[A(a,m)I(A(a,m) > b/9)] < ε.

2) For any ε > 0, one can choose m such that J2(m) = E(B(m)) < ε.

3) For a fixed m, for any ε > 0, one can choose a such that J3(a,m) = E(C(a,m)) < ε.

The proof of Proposition 3.2.8 is given in Appendix B.

Using this result, we also derive the following proposition which is useful in deriving

the asymptotic normality of the UE.
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Proposition 3.2.9. Let b be a constant and let A1, A2, · · · , Ap be non-negative,

q−integrable random variables for 1 ≥ 1 and let S be a r.v such that S ≤ p
p∑

j=1
A ja.s with

p ≥ 2. Then,

1. E [S I(S > b)] ≤ p2E
[
A1I(A1 > b/p2)

]
+ p2

p∑
j=2

E(A j).

2. If P(S ≥ 0) = 1, E[S qI(S > b)] ≤ p2qE[Aq
1 >

bq

p2q ] + p2q
p∑

j=2
E(Aq

j), for q ≥ 1.

The proof of this proposition can be found in Appendix B. By using Propositions 3.2.8

and 3.2.9, we derive below a lemma which is useful in establishing the asymptotic proper-

ties of the UE and RE.

Lemma 3.2.4. Let v2
j =

j∑
i=1

c2
p,i, ṽ2

j(k) =
k+ j∑

i=k+1
c2

p,i, k = 0, 1, . . . , j, j = 1, 2, . . . , and

S j,s1,··· ,sd+1 =
j∑

i=1
Xp,i,s1,··· ,sd+1 , sh = 1, · · · , qh; h = 1, . . . , d + 1. Under Assumption 3.2.3, q1∑

s1=1
· · ·

qd∑
sd=1

qd+1∑
sd+1=1

max
j6L

(
S k+ j,s1,··· ,sd+1 − S k,s1,··· ,sd+1

)2

ṽ2
L(k)

; k = 0, 1, . . . , L; L = 1, 2, · · ·

 is a uniformly

integrable set. Further,

 q1∑
s1=1
· · ·

qd∑
sd=1

qd+1∑
sd+1=1

max
j6L

S 2
j,s1,··· ,sd+1

v2
L

; L = 1, 2, · · ·

 is a uniformly inte-

grable set.

The proof of Lemma 3.2.4 is given in Appendix B. Using Lemma 3.2.4, we derive the

following corollary.

Corollary 3.2.6. Let ṽ2
i =

ibp∑
(i−1)bp+lp+1

c2
p,t. If Assumption 3.2.3 holds, then the sets q1∑

s1=1
· · ·

qd∑
sd

qd+1∑
sd+1

max
j≤ibp

 j∑
t=(i−1)bp+lp+1

Xp,t,s1,··· ,sd+1


2

/ṽ2
i , i = 1, 2, · · ·

 , q1∑
s1=1
· · ·

qd∑
sd

qd+1∑
sd+1

 ibp∑
t=(i−1)bp+lp+1

Xp,t,s1,··· ,sd+1

2

/ṽ2
i , i = 1, 2, · · ·

 are uniformly integrable.

Proof. For each i, the uniform integrability of

q1∑
s1=1

· · ·

qd∑
sd

qd+1∑
sd+1

max
j≤ibp

 j∑
t=(i−1)bp+lp+1

Xp,t,s1,··· ,sd+1


2

/ṽ2
i
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follows directly from Lemma 3.2.4 by changing the starting point from 1 to

(i − 1)bp + lp + 1 and the end point changes from T to ibp. This holds uniformly in each

i. Moreover, it can be noted that
q1∑

s1=1

· · ·

qd∑
sd

qd+1∑
sd+1

 ibp∑
t=(i−1)bp+lp+1

Xp,t,s1,··· ,sd+1


2

/ṽ2
i is a particular

case and is thus also uniformly integrable. �

Proposition 3.2.10. Let F ∗
i be the σ−field generated by {Uibp ,Uibp−1, · · · }, where Ui are

random variables defined on (Ω,F , P) such that F ∗
i−1 ⊆ F i− j

p,−∞. Then, if {Xp,i,F i
p,−∞} is an

L2−mixingale of an arbitrary size, {E(Xp,i|F ∗
i−1),F i

p,−∞} is an L2−mixingale of size −1/2.

Proof. The proof is similar to that given for Proposition A.5 of Chen and Nkurunziza

(2016). �

Proposition 3.2.11. Let F ∗
i be the σ− f ield generated by {Uibp ,Uibp−1, · · · } with Ui a ran-

dom variable defined on (Ω,F , P) such that F ∗
i−1 ⊆ F i− j

p,−∞. Then, under Assumption 3.2.3,

rp∑
i=1

E(Vp,i|F
∗
i−1)

P
−−−−→
Lp→∞

0 and
rp∑

i=1

(Vp,i − E(Vp,i|F
∗
i−1))

P
−−−−→
Lp→∞

0.

The proof of Proposition 3.2.11 is given in Appendix B.

Proposition 3.2.12. Suppose that the conditions of Proposition 3.2.11 hold. Then,

rp∑
i=1

Wp,i(n)W
′
p,i(n)

P
−−−−→
Lp→∞

Σp,n, n = 1, · · · , d + 1, and

rp∑
i=1

Vec(Wp,i)Vec(Wp,i)′
P

−−−−→
Lp→∞

Σp,d+1 ⊗ · · · ⊗ Σp,1.

Moreover,
rp∑

i=1

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

E[(Wi,s1,··· ,sd+1)
2I(

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

W2
i,s1,··· ,sd+1

> ε)]
P

−−−−→
Lp→∞

0, ∀ε > 0.

The proof of this proposition can be found in Appendix B

Lemma 3.2.5. Under Conditions (C5) and (C6),

Lp∑
i=1

Xp,i
d

−−−−→
Lp→∞

Nq1×···×qd+1

0, 1⊗
j=d+1

Σp, j

 .
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The proof of Lemma 3.2.5 is given in Appendix B. Below, we establish a result which

is useful in deriving the asymptotic normality for (
L1∑
i=1

X1,i, · · · ,
Lm+1∑
i=1

Xm+1,i). For the sake of

simplicity, let Wp,i = E(Vp,i|F ∗
i ) − E(Vp,i|F ∗

i−1), andWi = W1 �(d+1) · · · �(d+1) Wm+1,i.

Proposition 3.2.13. Suppose that the conditions of Proposition 3.2.11 hold and let

ζ1,a,b,i,n = (Va,i(n) − E(Va,i(n) |F
∗
i ) + E(Va,i(n) |F

∗
i−1))(Vb,i(n) + E(Vb,i(n) |F

∗
i ) − E(Va,i(n) |F

∗
i−1))′

and

ζ2,a,b,i,n = Va,i(n)(E(Vb,i(n) |F
∗
i ))′ − Va,i(n)(E(Vb,i(n) |F

∗
i−1))′ − (E(Va,i(n) |F

∗
i ))V′b,i(n)

+ (E(Va,i(n) |F
∗
i−1))V′b,i(n)

.

Then,
m+1∑
a=1

m+1∑
b=1

rmin∑
i=1

‖ζ1,a,b,i,n‖1 = o(1) and
m+1∑
a=1

m+1∑
b=1

rmin∑
i=1

‖ζ2,a,b,i,n‖1 = o(1). (3.6)

The proof of this propositions can be found in Appendix B.

Proposition 3.2.14. Let rmin = min(r1, · · · , rm+1) and Lmin = min(L1, · · · , Lm+1). Suppose

that the conditions of Proposition 3.2.11 hold. Then,

rmin∑
i=1

[Vi(n)V
′
i(n)
−Wi(n)W

′
i(n)

]
P

−−−−−−→
Lmin→∞

0, (3.7)

for n = 1, · · · , d + 1 with A(n) denoting the mode-n matricization of A. Also,

rmin∑
i=1

[Vec(Vi)Vec(Vi)′ − Vec(Wi)Vec(Wi)′]
P

−−−−−−→
Lmin→∞

0. (3.8)

The proof of Proposition 3.2.14 is given in Appendix B. From Proposition 3.2.14, we

derive the following proposition which constitutes a version of the Lindeberg’s Condition

in the context of random tensors. Thus, the established proposition plays a crucial role in

deriving the asymptotic normality of the UE. Set ‖Wa,i‖
2
F =

q1∑
s1=1
· · ·

qd∑
sd=1

qd+1∑
sd+1=1

W2
a,i,s1,··· ,sd+1

.
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Proposition 3.2.15. Suppose that the conditions in Proposition 3.2.11 hold. Then,

m+1∑
a=1

ra∑
i=1

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E
[
(Wa,i,s1,··· ,sd+1)

2I
(
‖Wa,i‖

2
F > ε

)] P
−−−−→
T→∞

0 (3.9)

for all ε > 0. In addition,

rmin∑
i=1

Wi(n)W
′
i(n)

P
−−−−→
T→∞

Λn, n = 1, · · · , d + 1 (3.10)

and
rmin∑
i=1

Vec(Wi)Vec(Wi)′
P
−−−−→
T→∞

1⊗
i=d+1

Λi. (3.11)

The proof of this proposition is given in Appendix B.

Note that

T−1/2U ×(d+1) Z0′ =

L1∑
i=1

X1,i �(d+1) · · · �(d+1)

Lm0+1∑
i=1

Xm0+1,i.

To simplify some notations, let Bp, j(t) =
b jtc∑
i=1
Xp,i, B j(t) = B1, j(t)�(d+1) B2, j(t)�(d+1) · · ·�(d+1)

Bm+1, j(t), let Dk([0, 1]) denote the space of all k-column vectors of functions which are

right continuous with left limits on [0, 1] and let Λ∗ =

1⊗
j=d+1

Λ j. We present the main result

of this subsection in the following lemma.

Lemma 3.2.6. If Assumption 3.2.3 holds, then T−1/2U ×d+1 Z0′ d
−−−−→
T→∞

ε∗01 and for each

t ∈ [0, 1], BT (t)
d
−−−−→
T→∞

√
t ε∗01 where ε∗01 ∼ Nq1×···×qd×(m+1)qd+1(0,Λ

∗).

The proof of this lemma is given in Appendix B.

Lemma 3.2.6 states that, under the weak dependence structure of the regressors and tensor

error, the tensor product of the error term with the regressors converges to a normal tensor

variate. This result is essential in establishing the asymptotic normality of the UE given in

Section 3.2.3. This result is the second main contribution and it plays an important role in

deriving the results of the following subsection. All propositions, lemmas and corollaries
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given in Section 3.2.1 are the building blocks in the derivation of some key results in ob-

taining Lemma 3.2.6. It should also be noted that the above results are useful in deriving

Lemma 3.2.4 which generalizes some results in McLeish (1977) and Chen and Nkurunziza

(2016) which become special cases with q1 = · · · = qd = qd+1 = 1 and d = 1, respectively.

3.2.3 Asymptotic properties of the UE and the RE

In this subsection, we present some asymptotic properties of the UE and RE. The estab-

lished results are useful in evaluating the relative efficiency of the proposed estimators.

To simplify some mathematical expressions, let Lp = τ0
p − τ

0
p−1. Note that the condition

min
16i6m0+1

(Li)→ ∞ is equivalent to T → ∞ and thus, under (C1)- (C4), (Lp)−1
τ0

p−1+[Lp]∑
t=τ0

p−1+1
ztz′t

P
−−−−→
T→∞

Qp. Then, under (C1)-(C4), T−1Z̄0′Z̄0 P
−−−−→
T→∞

Γ, where Γ is a (m0 + 1)qd+1 × (m0 + 1)qd+1 non-

random, positive definite matrix. Also, under (C6), T−1Vec(U ×d+1 Z̄0′)
(
Vec(U ×d+1 Z̄0′)

)′
converges in probability to a non-random matrix

1⊗
j=d+1

Λ j. The following proposition gives

the asymptotic distribution of the UE. In the sequel, let Σ∗11 = Γ−1Λd+1Γ
−1 ⊗ Λ∗∗ with

Λ∗∗ =
1⊗

j=d
Λ j.

Proposition 3.2.16. Let ε∗1,T (τ) =
√

T (δ̂(τ) − δ). Under Assumption 3.2.3, we have

ε∗1,T (τ)
d
−−−−→
T→∞

ε∗1 with ε∗1 ∼ Nq1×···×qd×(m0+1)qd+1

(
0,Σ∗11

)
.

The proof of Proposition 3.2.16 is outlined in Appendix B. By using Proposition 3.2.16,

we derive the asymptotic normality of the RE under the restriction in (3.2). To this end, let

Ωi = Ji, R′i(RiR′i)
−1Ri,Gi = R′i(RiR′i)

−1, for i = 1, · · · , d,Ωd+1 = Γ−1Rd+1(Rd+1Γ
−1R′d+1)−1Rd+1,

Ω =
1⊗

j=d+1
Ω j, G

∗
d+1 = Γ−1R′d+1(Rd+1Γ

−1R′d+1)−1,

Σ∗22 = Σ∗11 −Ωd+1Γ
−1Λd+1Γ

−1 ⊗

 1⊗
j=d

Ω jΛ j

 − Γ−1Λd+1Γ
−1Ω′d+1 ⊗

 1⊗
j=d

Λ jΩ
′
j


+Ωd+1Γ

−1Λd+1Γ
−1Ω′d+1 ⊗

 1⊗
j=d

Ω jΛ jΩ
′
j

 .
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Proposition 3.2.17. Under Assumption 3.2.3 and restriction (3.2),

√
T (δ̃(τ) − δ)

d
−−−−→
T→∞

ε∗2 ∼ N(m+1)q1×···×qd×qd+1(0,Σ
∗
22).

The proof of Proposition 3.2.17 is given in Appendix B.

Next, we derive the joint asymptotic normality of the RE and the UE. In particular, the

joint asymptotic normality is established in the context where the restriction in (3.2) may

not hold. To this end, as in the matrix parameter case, in order to avoid some degeneracy

of the limiting distribution of δ̃, we consider the following sequence of local alternatives

H1T : δ ×1 R1 ×2 R2 ×3 · · · ×d+1 Rd+1 = r +
r0
√

T
,T = 1, 2, · · · (3.12)

where r0 is an l1 × · · · × ld+1 tensor with ‖r0‖ < ∞. To introduce some notation, let

ε∗2,T (τ) =
√

T (δ̃(τ) − δ), and let ε∗3,T (τ) =
√

T (δ̂(τ) − δ̃(τ)), G∗ = G∗d+1 ⊗
1⊗

i=d
Gi,

µ∗∗ =

(
−r0(

d�
j=1

)
j
G j

)
×d+1 G

∗
d+1, Σ∗12 = Σ∗11 − Γ−1Λd+1Γ

−1Ω′d+1 ⊗

 1⊗
j=d

Λ jΩ
′
j

 , Σ∗21 = Σ∗12
′,

Σ∗
′

31 = Σ∗
′

13,Σ∗23 = Σ∗
′

32, Σ∗13 = Γ−1Λd+1Γ
−1Ω′d+1 ⊗

 1⊗
j=d

Λ jΩ
′
j

, Σ∗33 = Ωd+1Γ
−1Λd+1Γ

−1Ω′d+1 ⊗ 1⊗
j=d

Ω jΛ jΩ
′
j

 , Σ∗32 = Ωd+1Γ
−1Λd+1Γ

−1 ⊗

 1⊗
j=d

Ω jΛ j

 −Ωd+1Γ
−1Λd+1Γ

−1Ω′d+1 ⊗

 1⊗
j=d

Λ jΩ
′
j

 .
Proposition 3.2.18. Under Assumption 3.2.3, along with (3.12),

ε∗1,T (τ) �(d+1) ε
∗
2,T (τ) �(d+1) ε

∗
3,T (τ)

d
−−−−→
T→∞

ε∗1 �(d+1) ε
∗
2 �(d+1) ε

∗
3 where

ε∗1 �(d+1) ε
∗
2 �(d+1) ε

∗
3 ∼ Nq1×···×qd×3(m+1)qd+1


0 �(d+1) µ

∗∗ �(d+1) −µ
∗∗,


Σ∗11 Σ∗12 Σ∗13

Σ∗21 Σ∗22 Σ∗23

Σ∗31 Σ∗32 Σ∗33




.

Further, ε∗1,T (τ̂) �(d+1) ε
∗
2,T (τ̂) �(d+1) ε

∗
3,T (τ̂)

d
−−−−→
T→∞

ε∗1 �(d+1) ε
∗
2 �(d+1) ε

∗
3 .

The proof of Proposition 3.2.18 is outlined in Appendix B
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3.3 A class of shrinkage estimators and risk functions

In this section, we propose a class of James-Stein type estimators for the tensor parameter δ.

Let Ad+1 = R′d+1(Rd+1Γ
−1Λd+1Γ

−1R′d+1)−1Rd+1 and for j = 1, · · · , d, let A j = R′j(R jΛ jR′j)
−1R j,

Â j = R′j(R jΛ̂ jR′j)
−1R j, Âd+1 = R′d+1(Rd+1Γ̂

−1Λ̂d+1Γ̂
−1R′d+1)−1Rd+1 where Λ̂ j is a consistent

estimator of Λ j. Further, let Λ̂d+1 and Γ̂ be consistent estimators of Λd+1 and Γd+1, respec-

tively. Furthermore, let δ∗ =
(
δ̂(τ̂) − δ̃(τ̂)

)
(
d+1�
j=1

)
j
Â1/2

j , let ψ = T trace
(
δ∗(d)

′δ∗(d)

)
and let h be a

known Borel measurable and real-valued integrable function. Let θ be a tensor parameter,

θ̂ be an unrestricted tensor estimator for θ and let θ̃ be a restricted estimator for θ. We

consider the following class of tensor estimators

ϑ̂(h, θ̂, θ̃) = θ̃ + h
(
T‖θ̂ − θ̃‖2{Ξi,i=1,··· ,d+1}

) (
θ̂ − θ̃

)
. (3.13)

In the sequel, we consider that h is continuous. Note that

ϑ̂(1, θ̂, θ̃) = θ̂ and ϑ̂(0, θ̂, θ̃) = θ̃. (3.14)

Thus, the UE and the RE both belong to the class of estimators in (3.13) by setting h = 1

and h = 0, respectively. Another set of estimators that are members of this class are the

James-Stein and Positive-rule James-Stein estimators, denoted as θ̂s and θ̂sp, respectively.

Indeed, by letting h(x) = 1 − c
x , c > 0, we obtain the James-Stein estimator and by taking

h(x) = max{0, 1 − c
x }, c > 0, we get the Positive-rule James-Stein estimator. As such,

this class is also known as shrinkage-type estimators of θ. Overall, the class of estimators

combines both the sample information and non-sample information from the uncertain re-

striction in (3.2). In the context of the tensor change-point model in (3.1), the shrinkage

estimators (SEs) are obtained as above by taking n = T and c =

d+1∏
j=1

li − 2. Namely, let

δ̂s = δ̃(τ̂) +

1 −
 d+1∏

j=1

l j − 2

ψ−1

 (δ̂(τ̂) − δ̃(τ̂)
)
,
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δ̂s+ = δ̃(τ̂) +

1 −
 d+1∏

j=1

l j − 2

ψ−1


+ (
δ̂(τ̂) − δ̃(τ̂)

)
.

Define (θ̂ − θ)∗ = (θ̂ − θ)(
d+1�
j=1

)
j
W

1/2
j , where W j, j = 1, · · · , d + 1 are non-negative defi-

nite matrices. To evaluate the performance of the proposed estimator, we use a criterion

known as the asymptotic distributional risk (ADR). This is defined as ADR1(θ̂, θ;W) =

E
(
trace

(
ρ∗
′

(d)ρ
∗
(d)

))
, where the random tensor ρ∗ = ρ(

d+1�
j=1

)
j
W

1/2
j with

√
T (θ̂ − θ)

d
−−−−→
T→∞

ρ.

In the following subsection, we establish some preliminary results using identities in Sec-

tion 2.1 that help to establish the ADR1.

3.3.1 Preliminary results in shrinkage methods

In this subsection, we present some propositions that follow from results established in

Section 2.1 that are useful in deriving the risk functions of the proposed shrinkage estima-

tors. To set up notations, let Λ∗11 =
1⊗

j=d+1
ΛX j, with ΛX j = G jR jΛ jR′jG

′
j for j = 1, · · · , d,

ΛXd+1 = G∗d+1Rd+1Γ
−1Λd+1Γ

−1R′d+1G
∗′

d+1.

Proposition 3.3.1. Let W j = A1/2
j W

∗
jA

1/2
j , j = 1, · · · , d + 1, where W∗j are non-negative

definite matrices. Let ε∗3 be a random tensor as defined in Proposition 3.2.18, let ε∗31 =

ε∗3(
d+1�
j=1

)
j
A1/2

j , µ∗1 = µ∗∗(
d+1�
j=1

)
j
A1/2

j , ∆ = trace
(
µ∗
′

1(d)
µ∗1(d)

)
, and let h be as in Theorem 2.1.1.

Then, E
[
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗3(

d+1�
j=1

)
j
W j

]
= E

[
h
(
χ2

l+2 (∆)
)] (

µ∗∗(
d+1�
j=1

)
j
W j

)
.

The proof of this proposition is given in Appendix B.

Proposition 3.3.2. Let ε∗32 = ε∗3(
d+1�
j=1

)
j
W

1/2
j , µ∗2 = µ∗∗(

d+1�
j=1

)
j
W

1/2
j , D1 =

d+1∏
j=1

trace(W jJ j) and let

D2 = trace(µ∗
′

2(d)
µ∗2(d)

) and let h be as in Theorem 2.1.1. If the conditions of Proposition 3.3.1

hold, then,

E
[
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
trace

(
ε∗
′

32(d)
ε∗32(d)

)]
= E

[
h(χ2

l1···ld+1+2 (∆))
]

D1 + E
[
h(χ2

l1···ld+1+4 (∆))
]

D2.
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Proof. The result follows directly from Theorem 2.1.2 using the fact that ε∗3 ∼

Nq1×···×qd×(m+1)qd+1

(
−µ∗∗,Σ∗33

)
. �

Next, we derive the following proposition which is a key result in deriving the ADR of

the proposed class of shrinkage estimators. For simplicity, let Υ∗d+1 = Ωd+1Γ
−1Λd+1Γ

−1Ω′d+1,

Υ∗j = Ω jΛ jΩ
′
j, C∗j = Λ j, B∗j = Λ jΩ

′
j, D∗j = B∗j

′, for j = 1, · · · , d, B∗d+1 = Γ−1Λd+1Γ
−1Ω′d+1,

C∗d+1 = Γ−1Λd+1Γ
−1, c1 = trace

µ∗∗′(d)

(
µ∗∗(

d+1�
j=1

)
j
A jB∗jW j

)
(d)

 , c2 =
d+1∏
j=1

trace(W jB∗j), c3 =

d+1∏
j=1

trace(W jΥ
∗
j), c4 = trace

(µ∗∗(d+1�
j=1

)
j
W

1/2
j

)′
(d)

(
µ∗∗(

d+1�
j=1

)
j
W

1/2
j

)
(d)

.
Proposition 3.3.3. Let ε∗2 and ε∗3 be as defined in Proposition 3.2.18. Let h(.), W j, j =

1, · · · , d + 1 be as in Proposition 3.3.1. Then,

E

h (
trace

(
ε∗
′

31(d)
ε∗31(d)

))
trace

(ε∗2(
d+1�
j=1

)
j
W

1/2
j

)′
(d)

(
ε∗3(

d+1�
j=1

)
j
W

1/2
j

)
(d)


= −E

[
h
(
χ2

l+2 (∆)
)

c1

]
+ E

[
h
(
χ2

l+2 (∆)
)]

[c2 − c3] + E
[
h
(
χ2

l+4 (∆)
)]

c1 − E
[
h
(
χ2

l+4 (∆)
)]

c4.

Proof. From Proposition 3.2.18 we have

ε∗3 �(d+1) ε
∗
2 ∼ Nq1×···×qd×qd+1

−µ∗∗ �(d+1) µ
∗∗,

Π
∗
11 Π∗12

Π∗21 Π∗22


 , with Π∗11 =

1⊗
j=d+1

Υ∗j,

Π∗21 =
1⊗

j=d+1
B∗j −

1⊗
j=d+1

Υ∗j, Π
∗
22 =

1⊗
j=d+1

C∗j −
1⊗

j=d+1
D∗j −

1⊗
j=d+1

B∗j +
1⊗

j=d+1
Υ∗j. Therefore, the result

follows by applying Theorem 2.1.3 with the appropriate substitutions. This completes the

proof. �

3.3.2 Asymptotic distributional risk (ADR)

In this subsection, we derive the ADR of the class of estimators ϑ̂(h, θ̂, θ̃) as defined in

(3.13). To this end, we assume that the weight matricesW j = A1/2
j W

∗
jA

1/2
j ,W∗j non-negative

definite matrices for j = 1, · · · , d + 1, and letW = [W1,W2, · · ·Wd+1].



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 49

Lemma 3.3.1. Let ϑ̂(h, θ̂, θ̃) be as in (3.13) with h a continuous and square integrable

function. If Assumption 3.2.3 holds along with (3.12), then,

ADR1
(
ϑ̂(h, θ̂, θ̃), δ,W

)
= ADR1

(
δ̃(τ̂), δ,W

)
− 2E

[
h
(
χ2

l+2 (∆)
)]

c1 + 2E
[
h
(
χ2

l+2 (∆)
)]

c2

−2E
[
h
(
χ2

l+2 (∆)
)]

c3 + 2E
[
h
(
χ2

l+4 (∆)
)]

c1 + E
[
h2(χ2

l+2 (∆))
]

c3

−2E
[
h
(
χ2

l+4 (∆)
)]

c4 + E
[
h2(χ2

l+4 (∆))
]

c4.

The proof of Lemma 3.3.1 is outlined in Appendix B. From Proposition 3.2.18, we also

derive the following lemma which gives the ADR of the UE and the RE.

Lemma 3.3.2. If Assumption 3.2.3 holds along with (3.12), then,

ADR1
(
δ̂(τ̂), δ0,W

)
=

d+1∏
j=1

trace
(
W jC∗j

)
,

ADR1
(
δ̃(τ̂), δ0,W

)
= ADR1

(
δ̂(τ̂), δ0,W

)
− 2c2 + c4 + c3.

The proof of this lemma is given in Appendix B. By using Lemma 3.3.1 and Lemma 3.3.2,

we derive the ADR of δ̂s and the ADR of δ̂s+. Let h1(x) = 1 − ((l − 2)/x), and let

h3(x) = [1 − ((l − 2)/x)]I (x < l − 2), x > 0.

Corollary 3.3.1. Under Assumption 3.2.3 and (3.12), ADR1
(
δ̂s, δ,W

)
= ADR1

(
δ̃(τ̂), δ,W

)
−2E

[
h1

(
χ2

l+2 (∆)
)]

c1 + 2E
[
h1

(
χ2

l+2 (∆)
)]

c2 − 2E
[
h1

(
χ2

l+2 (∆)
)]

c3 + 2E
[
h1

(
χ2

l+4 (∆)
)]

c1

+ E
[
h2

1(χ2
l+2 (∆))

]
c3 − 2E

[
h1

(
χ2

l+4 (∆)
)]

c4 + E
[
h2

1(χ2
l+4 (∆))

]
c4;

ADR
(
δ̂s+, δ0,W

)
= ADR

(
δ̂s, δ0,W

)
+ 2E

[
h3

(
χ2

l+2 (∆)
)]

c1 − 2E
[
h3

(
χ2

l+2 (∆)
)]

c2

+2E
[
h3

(
χ2

l+2 (∆)
)]

c3 − 2E
[
h3

(
χ2

l+4 (∆)
)]

c1 − E
[
h2

3(χ2
l+2 (∆))

]
c3

+2E
[
h3

(
χ2

l+4 (∆)
)]

c4 − E
[
h2

3(χ2
l+4 (∆))

]
c4.

The proof of this corollary is given in Appendix B. From Corollary 3.3.1, we derive

below a result which gives a sufficient condition for the tensor RE to dominate the UE.

For simplicity, let $ =
1⊗

j=d+1
A1/2

j Υ∗jW jΥ
∗
jA

1/2
j and let Chmax (B) and Chmin (B) denote the

maximum and minimum eigenvalues of a matrix B, respectively.
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Corollary 3.3.2. Suppose that Assumption 3.2.3 holds along with (3.12). Then, if ∆ ≤

2c2−c3
Chmax($) , ADR1

(
δ̃(τ̂), δ0,W

)
6 ADR1

(
δ̂(τ̂), δ0,W

)
. Moreover, if ∆ > 2c2−c3

Chmin($) , then,

ADR1
(
δ̃(τ̂), δ0,W

)
> ADR1

(
δ̂(τ̂), δ0,W

)
.

The proof of this corollary is outlined in Appendix B.

From Corollary 3.3.1, we also derive a result which gives a sufficient condition for the

tensor SEs to dominate the UE. Namely, in the following corollary, we show that for certain

weighting matrices,W j, j = 1, · · · , d + 1, the SEs always dominate the UE. Towards that

end, let Π∗ =
1⊗

j=d+1
A1/2

j

4 1⊗
j=d+1

B∗j + (l − 2)
1⊗

j=d+1
Υ∗j

 1⊗
j=d+1
W jΥ

∗
jA

1/2
j , Π∗∗ = Π∗+Π∗′

2 .

Corollary 3.3.3. Let c2 > max {c3/2,Chmax (Π∗∗) /4} and suppose that Assumption 3.2.3

holds along with (3.12). Then, for all ∆ ≥ 0,

ADR1
(
δ̂s+, δ0,W

)
6 ADR1

(
δ̂s, δ0,W

)
6 ADR1

(
δ̂(τ̂), δ0,W

)
.

The proof of Corollary 3.3.3 is given in Appendix B. We note that the established

sufficient condition for the risk dominance of SEs in Corollary 3.3.3 is more general than

the one given in existing literature such as, for example, in Saleh (2006), Hossain et al.

(2016) among others. Thus, the cases studied in the quoted papers are special cases with

d = 1 and where the shrinking factor and the RE are uncorrelated. Namely, other than

the fact that this is a vector case, the scenario studied in the quoted papers correspond to

the case where Σ32 = Σ′23 = 0. To illustrate the importance of the condition above, note

that if d = 1 or d = 2, Σ32 = Σ′23 = 0, the classical sufficient condition for the risk

dominance is
d∏

i=1

trace(WiΞ
∗
i ) >

p + 2
2

Chmax

 1⊗
i=d

WiΞ
∗
i

 , which is a special case of the

condition given in Corollary 3.3.3. Indeed, in this case, the condition in Corollary 3.3.3

yields
d∏

i=1

trace(WiΞ
∗
i ) >

p + 2
4

Chmax

 1⊗
i=d

WiΞ
∗
i

 and noting that, for b > 0,
{
x : x > b

2

}
⊂{

x : x > b
4

}
, the condition of Corollary 3.3.3 is more general than the one given in the quoted

literature.
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3.4 The case of unknown number of change-points

In the previous sections, we assumed that the number of change points, m, was known.

However, this is not always the case and we often face the challenge of analyzing a data

set in which very little information is given about the number of the change-points. In this

section, we describe a method that can be used to estimate m and τ and how to determine

the UE and RE when both parameters are unknown. We also present an asymptotic result

which is used to overcome the challenge due to the randomness of the dimensions of the

proposed tensor estimators.

3.4.1 Estimating the number of change points

In this subsection, we describe a method to estimate m and τ . We estimate m by choosing

the value that gives the best fitting model. Thus, we consider the following penalty function

to choose the best fitting model

IC(m) = −2 SSRU
T (τ̂ (m)) + (m + 1)ν(qd+1)γ(T ), (3.15)

where τ̂ (m) is established in (2.3) corresponding to each m; ν(x) = x + 1; γ(T ) is a non-

decreasing function of T ; and m is the potential number of change points. Note that, we

can also include the restriction in the penalty function to obtain the restricted estimator for

m. However, since the goal is to obtain a consistent estimator for m, we choose to ignore

such a penalty function for the sake of simplicity. The function in (3.15) is known as the

least squares-based information criterion and in the case where γ(T ) = log(T ), the function

yields the Schwarz information criterion (SIC) as in Schwarz (1978). We also prove that, as

T is large, the IC(m) reaches its minimum value when m = m0 where m0 is the true number

of change-points. As such, by minimizing the IC(m), one can detect m0. The outline of the

algorithm used to estimate m and τ is derived from the dynamic algorithm described in Qu
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and Perron (2007) and can be found in Nkurunziza et al. (2019). Let m̂ be an estimator of

m0, obtained from (3.15).

Theorem 3.4.1. Under Assumption 3, (1). lim
T→∞

P (IC(m0) < IC(m)) = 1, ∀ m < m0;

(2). lim
T→∞

P (IC(m0) < IC(m)) = 1, ∀ m > m0; (3). lim
T→∞

P (IC(m0) < IC(m)) = 1, ∀ m , m0.

(4). m̂ is a consistent estimator for m0.

The proof of this theorem is given in Appendix B. Note that Parts (1)-(3) of Theo-

rem 3.4.1 show that the proposed penalty function, IC(m) reaches its minimum value when

m = m0 and thus, this guarantees that our algorithm allows us to detect the exact value

of the number change-points m0. Importantly, Part (4) of Theorem 3.4.1 shows that our

algorithm produces an estimator m̂ which converges in probability to the exact value of the

number of the change-points m0.

3.4.2 Asymptotic results of estimators with random dimensions

In this subsection, we present a probabilistic result which allows us to overcome the prob-

lem related to the fact that when m is replaced by an estimator, the dimensions of the tensor

estimators become random variables. Indeed, the dimensions of δ̂(τ ), δ̃(τ ), δ̂(τ̂ ) and δ̃(τ̃ ),

are functions of m and because of that, let δ̂(τ̂ ,m) denote the δ̂(τ̂ ) and let δ̃(τ̃ ,m) denote

δ̃(τ̃ ). Further, let m̂ be a consistent estimator for m0 and let τ̂ (m̂) be the estimator of

τ (m). For the sake of simplicity, we denote τ̂ and τ̃ to stand for τ̂ (m̂) and τ̃ (m̂), respec-

tively. The UE and RE are obtained as in Section 2 by replacing m with m̂ for δ̂(τ̂ ,m)

and δ̃(τ̃ ,m). As such, the UE and RE become δ̂(τ̂ , m̂) and δ̃(τ̃ , m̂), respectively. It is im-

portant to note that as the dimensions of δ̂(τ̂ , m̂) and δ̃(τ̃ , m̂) are functions of m̂, it is not

possible to derive the limiting distribution of δ̂(τ̂ , m̂) and δ̃(τ̃ , m̂). Due to that fact, nei-

ther the relative risk dominance of the UE and the RE nor the construction of shrinkage
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estimators follow from the results in literature as, for example, in Saleh (2006), and Chen

and Nkurunziza (2016). To overcome the random dimension problem, we use the follow-

ing result. Let ρT (τ̂, m̂) =
√

T (δ̂(τ̂, m̂) − δ)I{m̂=m}, ζT (τ̃, m̂) =
√

T (δ̃(τ̃, m̂) − δ)I{m̂=m} and

ξT (τ̂, m̂) =
√

T (δ̂(τ̂, m̂) − δ̃(τ̃, m̂)).

Theorem 3.4.2. Let g : Rq1×···×qd×(m+1)qd+1×Rq1×···×qd×(m+1)qd+1×Rq1×···×qd×(m+1)qd+1 → Ra1×···×ad+1

be a continuous function with ai, i = 1, · · · , d + 1 independent of m, and suppose that

Assumption 3.2.3 holds along with (3.12). Then,

1. if r0 , 0, g(ε∗1,T (τ̂, m̂), ε∗2,T (τ̃, m̂), ε∗3,T (τ̂, m̂)))
d
−−−−→
T→∞

g(ε∗1 , ε
∗
2 , ε
∗
3);

2. if r0 = 0, g(ε∗1,T (τ̂, m̂), ε∗2,T (τ̃, m̂), ε∗3,T (τ̂, m̂)))
d
−−−−→
T→∞

g(ε∗10, ε
∗
20, ε

∗
30), where

ε∗10 �(d+1) ε
∗
20 �(d+1) ε

∗
30 ∼ Nq1×···×qd×3(m+1)qd+1


0,


Σ∗11 Σ∗12 Σ∗13

Σ∗21 Σ∗22 Σ∗23

Σ∗31 Σ∗32 Σ∗33




.

Proof. The proof follows by using vec operator along with Lemma 5.1 of Nkurunziza et al.

(2019) and Proposition 3.2.18. �

Remark 3.4.1. Recall that the optimality of the proposed estimators, which is established

in Corollary 3.3.3, heavily relies on Proposition 3.2.18. However, in this context, the di-

mension of the random tensors ρT (τ̂, m̂), ζT (τ̃, m̂) and ξT (τ̂, m̂) are random variables. The

notion of asymptotic distribution of ρT (τ̂, m̂) �(d+1) ζT (τ̃, m̂) �(d+1) ξT (τ̂, m̂) does not make

any sense here. Nevertheless, Theorem 3.4.2 tells us that, since g(x,y, z) = trace
(
x∗

′

(d)x
∗
(d)

)
is a real-valued function, we can still use the distribution of ε∗1 �(d+1) ε

∗
2 �(d+1) ε

∗
3 given in

Proposition 3.2.18 in order to get the ADR of the proposed estimators.
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3.5 Simulation studies and illustrative examples

3.5.1 Simulation studies

In this subsection, we present some simulation results that illustrate the performance of the

proposed method. We carry out the simulations for the case where there is no change-point

(i.e. m0 = 0) as well as for the case where m0 = 1, m0 = 2 and m0 = 3. Nevertheless, to save

the space of this paper, we only report the results for the cases where m0 = 0 and m0 = 1.

Subsequently, we also present results in the case where m0 = 2 is unknown and must be

estimated.

First case: First, consider the case where there is no change-point and set m0 = 0. Consider

the estimation problem of two dimensional 64×64 signals image of a square, a circle, a tri-

angle and a > similar to that in Figure 3.1 and set the responses to also be two dimensional

matrices.

Figure 3.1: Signal images used for parameter estimation.

Set d = 2, q1 = q2 = 64, q3 = 1 and let δ = B1 be 64×64×1 (which is equivalent to 64×

64 matrix) and set the number of observations/responses to be T = 20. We let covariates

zi to be scalars randomly drawn from a uniform distribution on the interval (0,1.5) and the

resulting matrix of covariates becomes Z̄ = (z1, · · · , z20)′. The error terms Ui are 64 × 64

randomly drawn from a normal distribution with mean 0 and variance 1 and the resulting

stacked error term along the 3rd dimension, U, is a 64×64×20 dimensional tensor in which

the ith face corresponds to the ith error term of the ith 64×64 response matrix. Stacking along



CHAPTER 3. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 55

the 3rd dimension gives the response tensor Y which is 64 × 64 × 20 with Y = δ ×3 Z̄ + U.

To set up the restriction, let l1 = 20, l2 = 64, R1 =
[
Il1 , 0l1×(q1−l1)

]
, R2 = Il2 , and let r0 be an

l1 × l2 × 1 tensor of zeros. Then, we compute the UE, the RE and the SEs as in this chapter.

We have an idea that the signal is mainly concentrated in the middle of the image and

the surrounding voxels are empty signals. Thus, we know that along the first dimension

(i.e. down the rows of the parameter matrix), the first, say, 20 rows are 0. Hence, we set the

mode-1 restriction, R1, to be as previously defined. Moreover, such an empty signal would

be spread throughout the columns from 1 to 64, hence, we set the mode-2 restriction to be

the 64×64 identity matrix. r0 is set to be 20×64 zero matrix to support the hypothesis that

the first 20 rows and 64 columns of our matrix parameter display an empty signal.

We repeated this simulation for several different image signals and the results are dis-

played in Figure 3.2. This shows that the UE for each signal parameter mostly displayed

the true signal in the centre, however, it failed to display any information about the area

surrounding the image. However, the RE has offered more information as the top portion

of the signal is uniform and gives an idea that there may not be any signal for the top por-

tion of this parameter. The SEs, although not as clearly uniform as the RE, are far less

grainy and display more consistency in colouring than the image of the UE. As such, it can

be seen that with some prior knowledge about an image, the RE outperforms the UE and

the SEs are not too far behind.

In addition to the findings illustrated by Figure 3.2 we study the efficiency of the pro-

posed estimators by comparing their relative mean square efficiencies (RMSE) with respect

to δ̂. The RMSE is defined as RMSE(δ̂∗) = ADR(δ̂)/ADR(δ̂∗), where δ̂∗ is a proposed es-

timator of δ. All parameters, dimensions and initial restrictions are as discussed in the

above simulation. We run the simulation with r deviating from 0 by units of 1/
√

T at each

iteration, i.e. r = r0 +
(

∆
√

T

)
E, where ∆ = 0, 1, · · · , 6 and E is 20 × 64 × 1 tensor of ones.
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Unrestricted Restricted Shrinkage Positive rule shrinkageOriginal Signal

Unrestricted Restricted Shrinkage Positive rule shrinkageOriginal Signal

OLS Restricted Shrinkage Positive rule shrinkageOriginal Signal

Unrestricted Restricted Shrinkage Positive rule shrinkageOriginal Signal

Figure 3.2: Comparison of several signal images with their respective estimators.
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For each restriction, we compute the UE, the RE, the SEs and RMSE of each estimator

with respect to the UE. For each deviation, ∆, we replicate the simulation 1000 times and

obtain the average RMSE for each estimator. The results of this simulation are displayed

in Figure 3.3. This shows that, in the neighbourhood of the restriction, the RE dominates

all estimators while if fails from around ∆ = 1.5. However, the SEs continue to be more

efficient than the UE as we deviate away from a true constraint. This corroborates with the

theoretical results given in Corollary 3.3.2 and Corollary 3.3.3.
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Figure 3.3: The RMSE versus ∆ plot of the four estimators of the square signal parameter.

Second case: We also perform the simulations for the cases where m0 = 1. For T = 80 and

T = 150, we consider that the first 30 observations depend on the 2-dimensional square

signal parameter and the remaining T − 30 depend on the 2-dimensional triangle signal

parameter. Further, as in the previous simulations, we set d = 2, q1 = q2 = 64, q3 = 1. The

parameter B1 is set as the 2-dimensional square signal and B2 is set as the 2-dimensional

triangle signal and δ = B1 �3 B2 is the 64 × 64 × 2 model parameter. Note that the two

images compose the two faces of δ, which is three dimensional. Figure 3.4 illustrates the
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two signal image parameters. We generate the covariates zi as in the first case and the

resulting matrix of covariates becomes Z̄ =
(
(z1, · · · , z30, 0̄′T−30) (0̄′30, z31, · · · , zT )

)′
, which

is a T × 2 block diagonal matrix, where 0̄n is the vector of n zeros. The error, U, is a

64 × 64 × T -tensor randomly drawn as above. We set R1 and R2 as in the first case and we

set R3 = I2, to represent that the mode-1 and mode-2 restrictions apply for both faces of the

3-dimensional image parameter, δ. We set r0 to be an 20 × 64 × 2 tensor of zeros. After

the initializations, we assume that the location of the change-points is unknown and we

run the dynamic programming algorithm to obtain τ̂ and τ̃ . Using τ̂ and τ̃ , we then build

the corresponding covariate matrix, Z̄, and obtain the UE and RE as in Proposition 3.1.1.

We build the shrinkage estimators from the UE and RE as defined in Section 3.3. As in

the first case, we compute the RMSE for the UE, the RE and the SEs and the obtained

results are displayed in Figure 3.5. Once again, this shows that in the neighbourhood of the

hypothesized restriction, the RE dominates all estimators while it performs poorly as one

moves far away from the restriction. Further, the SEs continue to dominate the UE even

when the restriction fails. This visual protrait further corroborates the theoretical results of

Corollary 3.3.2 and Corollary 3.3.3.

B1 B2

Figure 3.4: The two signal image parameters for the case where m0 = 1.
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(a) The case where m0 = 1 and T = 80
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(b) The case where m0 = 1 and T = 150

Figure 3.5: The RMSE versus ∆ plot of the UE, the RE and SEs

Third case: To illustrate the model and estimation in the case of unknown number of

change-points, we take the case where m0 = 2 and we set T = 80 observations where the

first 32 depend on the 2-dimensional square signal parameter, the next 30 depend on the

2-dimensional triangle signal parameter, and the remaining depend on an irregular centred

image. Then, as in the previous simulations, we set d = 2, q1 = q2 = 64, q3 = 1. B1 is

set as the 2-dimensional square signal, B2 is set as the 2-dimensional triangle signal, B3 is
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set as a 2-dimensional irregular shape signal and δ = B1 �(3) B2 �(3) B3 is the 64 × 64 × 3

model parameter. Note, that in this simulation the three images compose the three faces of

δ, which is three dimensional. Once again, we let covariates zi be scalars randomly drawn

from a uniform distribution on the interval (0,1.5) and the resulting matrix of covariates

becomes Z̄ =
(
(z1, · · · , z30, 0̄′50) (0̄′30, z31, · · · , z62, 0̄′18) (0̄′62, z63, · · · , z80)

)′
, which is an 80 ×

3 block diagonal matrix. The error tensor, U, is randomly drawn from random normal

with mean 1 and variance 1.5 and has dimensions 64 × 64 × 80. We set the maximum

number of change-points to be 5. For each number of change-points, we run the dynamic

programming algorithm and store the unrestricted SSR and the estimated change-point

locations. The program then selects the number of change-points that gives the minimum

value of the penalty function in (3.15) . We set that number to be m̂, the estimated number

of change-points. After we find m̂, we set R1 and R2 as in the previous simulations and we

set R3 = I3, to represent that the mode-1 and mode-2 restrictions apply for all three faces of

our 3-dimensional image parameter, δ. We set r0 to be an 20 × 64 × 3 tensor of zeros. We

once again deviate away from the initial restriction by units of 1/
√

80 at each iteration for

∆ = 0, 1, 2, 3. We replicate the simulation 1000 times and obtain the average RMSE for the

UE, RE and SEs. We repeated the simulation for the case when T = 200. The simulation

results are displayed in Figure 3.6 and Figure 3.7. As in the first two cases, it can be seen

by the plots in Figure 3.6 and Figure 3.7 that in the neighbourhood of the restriction, the

RE once again outperforms the other estimators but performs poorly the farther away we

move from the restriction. In addition, the shrinkage estimators continue to dominate the

UE even when the restriction fails. This further corroborates our theory.
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Figure 3.6: The RMSE versus ∆ plot of the four estimators in the case where m = 2 is

unknown and T = 80.
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Figure 3.7: The RMSE versus ∆ plot of the four estimators in the case where m = 2 is

unknown and T = 200.

3.5.2 Real data analysis

In this subsection, we summarize some real neuro-imaging data analysis results. In par-

ticular, we illustrate the application of the proposed method to MRI imaging data and we
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show that the SEs as well as the RE perform slightly better than the UE. We also conduct a

change-point detection analysis on real neuro-imaging time series.

MRI dataset

In this subsection, we show results of an analysis on a real neuro-imaging dataset in order

to illustrate the application of our methods. For the analysed dataset, the attention deficit

hyperactivity disorder (ADHD) data was acquired from the ADHD-200 Sample Initiative

which consists of 775 subjects consisting of 491 normal controls and 285 combined ADHD

subjects. We obtained the preprocessed anatomical (MRI) data provided by the Burner

pipeline ( Bellec et al. (2017)). We removed 7 images due to poor quality or missing data.

For each subject, the MRI data is a 197 × 233 × 189 tensor, which will be taken as our

observed three-dimensional responses. To facilitate the analysis, we down-sized the data

and the resulting dimensions of each observation Yi are 30 × 36 × 30.

From previous literature such as in Solanto et al. (2009), Wolf et al. (2009) and Yu-Feng

et al. (2007), it was suggested that ADHD is associated with an abnormality of the brain

region known as the fusiform gyrus. Specifically, it was found that for those diagnosed with

ADHD, the fusiform gyrus was much darker when compared with the control indicating

that those regions are inactive. As such, using this prior knowledge and to illustrate how

restrictions can be used for more efficient estimation, we set R1 to be a 10×30 matrix where

the first 5 rows and columns 8 to 12 are set to be the identity matrix. In addition, the part of

R1 corresponding to rows 6 to 10 and columns 20 to 24 were also set to the identity matrix.

R2 is set to be 5 × 36 matrix where the sub-matrix consisting of rows 1 to 5 and columns

16 to 20 is set to also be the identity matrix of size 5. R3 is 5 × 30 matrix with sub-matrix

consisting of rows 1 to 5 and columns 6 to 10 are also set to be the identity matrix of size 5.

All other elements of R1, R2 and R3 were set as 0. We let R4 = [0, 0, 1] and r0 is a 10×5×5
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zero tensor. To provide some practical interpretation of these matrices, note that R1, R2 and

R3 select the region of interest in the brain and R4 selects those diagnosed with ADHD. A

visual representation of this restriction can be found below in Figure 4.4.

Figure 3.8: A visual representation of the restriction (red). This is an approximate location

of part of the fusiform gyrus.

Further, we included the age, gender and ADHD diagnosis as covariates and obtained

the estimators for B and the RMSE by performing a bootstrap with 1000 replications. Fig-

ure 4.5 displays the estimated regions overlaid on a randomly selected subject. As can be

seen in Figure 4.5, there are some subtle differences in the estimated regions associated

with each estimator. We bootstrapped residuals to produce replicates. The RMSE of the

restricted estimator was found to be 1.0036, the RMSE of the James-Stein shrinkage esti-

mator was 1.0003 and the RMSE of Positive James-Stein shrinkage estimator was 1.00035.

Thus, as the RMSEs of the SEs are larger than 1, we conclude that the SEs are more ef-

ficient than the UE. This confirms that, even when working with real neuro-imaging data,

the SEs perform better than the UE. In addition, as the RMSE of the RE is also slightly

larger than 1, we conclude that the RE is more efficient than the UE. In other words, an

abnormality/inactivation of the fusiform gyrus may exist for those with ADHD.
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(a) UE estimated regions. (b) RE estimated regions.

(c) James-Stein estimated regions.
(d) Positive James-Stein estimated re-

gions.

Figure 3.9: Estimated regions (red) that may be associated with ADHD overlaid on a

randomly-drawn subject (grey).

fMRI dataset

In this subsection, we use real neuro-imaging data to detect the existence of change-points.

In particular, we analyze the non-stationary properties of resting state functional magnetic

resonance imaging or fMRI. This resting state scan requires an individual to remain entirely

still with eyes closed and to keep any thought process blank for a period of time. These

scans are useful in pinpointing the brain regions involved in underlying brain activity and

are sometimes known as the default network. During this period of time, three-dimensional
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images of the brain are taken at each time point, resulting in a four-dimensional time-series

of brain scans of each individual. The stationarity of this time-series is often a crucial

assumption that must be checked to ensure that the brain results are not due to an external

stimulus such as an individual’s thought process or a loud, unexpected sound occurring

during the scanning session. As in Aston and Kirch (2012), we use the 1000 connectome

resting state functional magnetic resonance imaging or fMRI Biswal et al. (2010). We

use the Beijing scan site data which consist of 198 resting state fMRI scans, where three-

dimensional images of size 64 × 64 × 33 voxels are taken over 225 time points and every

pair of consecutive time points are 2 seconds apart. We also included the age and gender as

covariates. For each subject, we checked if a change-point could be detected. By using the

proposed method, the results reported in Table 3.1 show that, for each subject, a change-

point was detected at a certain time-point. As can be seen in Table 3.1, a change-point

has been detected for the subjects and the estimated location of that change-point was also

found.
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Subject Number m̂ τ̂

00440 1 71

10973 1 46

17315 1 44

48501 1 76

49782 1 50

01018 1 40

69518 1 123

Table 3.1: Results of fMRI data analysis for several subjects. Each subject was found to

have one non-stationarity (m̂) in their resting state scan and the time-point at which the

non-stationarity occurred was recorded as τ̂.

3.6 Conclusion

In this chapter, we studied an estimation problem about the tensor coefficient in a tensor

regression model with multiple and unknown change-points in the context where the ten-

sor parameter is suspected to satisfy some restrictions. We introduced the proposed tensor

coefficient estimators including the UE, RE and the James-Stein and Positive-rule Stein

estimators. Under the L2−mixingale assumptions, we derived the joint asymptotic distri-

bution of the UE and RE which is the tensor generalization of Lemma 3.4 of Chen and

Nkurunziza (2016). In addition, we defined the asymptotic distributional risk under the

quadratic loss function and derived the ADR1 for the class of shrinkage estimators as well

as the proposed estimators. Using the results, we established some sufficient conditions for

the SEs and RE to outperform the UE. We also proposed methods to consistently estimate
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the number of change-points in the case where m0 is unknown. To demonstrate the applica-

tions of the restrictions and the overall proposed methods, we corroborated the results with

some simulation studies and we also analyzed MRI and fMRI datasets.



Chapter 4

Generalized Tensor Regression

In this chapter, we study estimation methods for a generalized tensor regression model.

Unlike Chapter 3 where an identity link function on the tensor linear predictors was used,

the model in this chapter extends results of multivariate linear regression to a tensor gen-

eralized model with a known link function. As we are interested in developing estimation

methods in the context of a generalized model, in this chapter we do not consider multiple

change-points but we provide assumptions that are weaker than the conditions of Assump-

tion 3.2.3 of Chapter 3. Moreover, we study the asymptotic distributional risks under a

general constraint and a general loss function that includes the quadratic loss and restric-

tion of Chapter 3 as a special case.

In this chapter, our methods differ from recent works in several ways. First, while some

references such as Zhou et al. (2013), Li and Zhang (2017), Raskutti et al. (2015) and

Hoff (2015) assume independent and/or identically distributed errors, we consider a gener-

alized tensor model with a link function that includes the Gaussian assumption within its

framework. In addition, the model takes into account matrix regressors on multiple-modes

allowing for more complex interactions and connections among covariates. Incorporating

multi-mode covariates would include many other different types of models such as spatio-

68
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temporal growth models, network population models and dyadic data with node attributes.

See Xu et al. (2019) for more details on this topic. Second, under some general assump-

tions, we weaken the dependence structure of the error terms of the model to be as weak

as that of an L2− mixingale. Third, we introduce a general restriction upon the tensor pa-

rameter and derive the unrestricted and restricted estimators by minimizing a quasi-score

function. While some of the quoted papers, such as Zhou et al. (2013) and Hoff (2015),

have presented a penalty function as a form of model regularization and dimension reduc-

tion, our work differs in that the restriction can implement prior knowledge for parameter

reduction or can even be used for statistical inference. For example, when working with

three-dimensional neuro-imaging data, a previous study may have suggested that a certain

region of the brain may/may not have an effect on the diagnosis of disease of interest. The

restrictions can be chosen such that the first three restriction matrices would select the re-

gion and the fourth would select the covariate of interest or even all covariates. Fourth, we

propose a class of shrinkage estimators which, to the best of our knowledge, has not been

investigated in the context of generalized tensor regression models with tensor observations

and matrix regressors.

The remainder of this chapter is organized as follows. In Section 4.1, we present the

general tensor regression model and constraint on the tensor parameter and estimation

method. In Section 4.2, we establish some asymptotic results of the estimators that are

derived from assumptions intended to weaken the dependence structure of the tensor error

terms. In Section 4.3, we present a class of tensor shrinkage estimators and the asymp-

totic distributional risk. We present some conditions for which some shrinkage estimators

dominate the unrestricted estimator. Section 4.4 summarizes some simulation studies and

application of two real datasets.
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4.1 The generalized tensor model and estimation

In this section, we present the generalized tensor regression model and a general constraint

to be applied to the tensor parameter. We then derive an estimating score function for

the tensor parameter. The obtained estimating score function is useful in deriving some

asymptotic results.

4.1.1 The generalized tensor regression model and constraints

We consider the following model with n observations and link function f (·). We assume

that f (·) is a d−dimensional, twice continuously differentiable function that maps elements

component-wise. Let

Yi = f (Θi) + Ui, i = 1, · · · , n, (4.1)

where Yi ∈ R
q1×q2×···×qd , Θi = B(

d�
j=1

)
j
Xi j, B ∈ R

p1×p2×···×pd , Xi j ∈ R
q j×p j , j = 1, 2, · · · , d.

Define Y = Y1 �(d+1) Y2 �(d+1) · · · �(d+1) Yn, U = U1 �(d+1) U2 �(d+1) · · · �(d+1) Un and

µi = E
(
Yi

∣∣∣∣Xi1,Xi2, . . . ,Xid

)
= f (Θi), i = 1, 2, . . . , n and let µ = f (Θ1) �(d+1) f (Θ2) �(d+1)

· · · �(d+1) f (Θn). We also define X =

 1⊗
j=d
X ′

1 j, · · · ,
1⊗

j=d
X ′

n j

′ . Thus, the tensor regression

model in (4.1) becomes

Y = µ + U (4.2)

where the random tensorY represents the stacked response andX represents the regressors

while U represents the tensor of stacked error terms. We suppose that E (U|X) = 0 with

E
(
‖U‖2

)
< ∞ and E

(
‖X‖2

)
< ∞. Here, the error term and the regressors do not need to

be independent and we do not assume any specific distribution for the error term or the

regressors. Further, as given in the next section, the components of the error term may be

correlated.
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Remark 4.1.1. The model in Equation (4.1) is the general form of the model in Equa-

tion (3.1) for the case where m0 = 0. Indeed, by setting the link function f as f (x) = x and

taking p j = q j, j = 1, · · · , d; pd+1 = qd+1 = 1; n = T ; and Xi j = Iq j , j = 1, · · · , d and

Xid+1 = zi ∈ R, i = 1, · · · , n, we get the model in Equation (3.1).

Additionally, we consider the scenario where uncertain prior information about the tar-

get parameter exists. Thus, we establish a statistical method which combines the imprecise

prior knowledge and the sample information from the model in (4.2). In particular, we con-

sider the case where the prior knowledge is in the form of some constraints on the tensor

parameter B. Namely, we consider the following general constraint on the tensor parameter

~∗(B) = 0, (4.3)

where ~∗(B) is an l1 × l2 × · · · × ld function. To guarantee the existence and the consistency

of the restricted estimator (RE) of the tensor parameter B, we assume that the following

assumption holds.

Assumption 4.1.1. 1. In a neighbourhood of B∗, the function ~∗(B) is a twice continuously

differentiable function. Let ~(B) = Vec(~∗(B));

2. Let H(B) =
∂~(B)
∂Vec(B) . H(B) is l1l2 · · · ld × p1 p2 · · · pd matrix with full column rank. Further,

in a neighbourhood of B∗, ∂H(B)
∂(Vec(B))′ exists and is bounded by a constant and integrable

function.

Remark 4.1.2. Note that the constraint in (4.3) can be set as the restriction considered in

(3.2). Specifically, we can set ~∗ as

~∗(B∗) = B∗ ×1 R1 ×2 R2 × · · · ×d Rd − r, (4.4)

where Ri are li × pi, non-random matrices with rank li 6 pi, i = 1, 2, · · · , d and r is

l1 × l2 × · · · × ld non-random tensors.
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4.1.2 Estimating score function in a generalized tensor regression model

In this subsection, we present an estimating function for the model in (4.1). This estimating

function is useful in the derivation of the unrestricted estimator (UE) and, under a general

constraint in (4.3), it is useful in establishing the restricted estimator (RE). Based on the

least square optimization function, the estimating function is defined as

Gn(B) =

[
∂Vec(µ)
∂Vec(B)′

]′
Vec(Y − µ) =

[
∂Vec(µ)′

∂Vec(B)

]
Vec(Y − µ) (4.5)

where µ and Y are given by (4.2). We break down each of these components: Vec(µ) =

(Vec( f (Θ1))′, Vec( f (Θ2))′, · · · , Vec( f (Θn))′)′ and the first derivative with respect to Vec(B)′

is
∂Vec(µ)′

∂Vec(B)
=

((
∂Vec( f (Θ1))′

∂Vec(B)

)
,

(
∂Vec( f (Θ2))′

∂Vec(B)

)
, · · · ,

(
∂Vec( f (Θn))′

∂Vec(B)

))
. (4.6)

Using the chain rule, we get

∂Vec(µ)′

∂Vec(B) =

∂Vec( f (Θ1))
∂Vec(Θ1)

1⊗
j=d

X1 j

′ , ∂Vec( f (Θ2))
∂Vec(Θ2)

1⊗
j=d

X2 j

′ , · · · , ∂Vec( f (Θn))
∂Vec(Θn)

1⊗
j=d

Xn j

′′ .
Let Dn =

∂Vec(µ)
∂Vec(Θ)′ , where Θ = (Θ1, · · · ,Θn) . As a result, the estimating function in (4.5)

becomes

Gn(B) =

n∑
i=1


 1⊗

j=d

X ′
i j

 (∂Vec( f (Θi))
∂Vec(Θi)

)′
Vec(Ui)

 = X ′D′nVec(Y − µ). (4.7)

The (unrestricted) score estimating equation for estimating the tensor parameter B is given

by

Gn(B) = 0. (4.8)

Let B̂ be the unique root of the estimating equation (4.8). This is known as the unrestricted

estimator (UE). By combining the estimating equation in (4.8) with the restriction in (4.3),

we propose the system of restricted estimating equations

Gn(B) +H ′(B)λn = 0, ~∗(B) = 0, (4.9)

where λn is an l1l2 · · · ld-column vector of Lagrange multipliers.
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Remark 4.1.3. In the context of the model in (3.1) and the restriction (3.2), (4.8) and (4.9)

are equivalent to the equations (B.1) and (B.2), respectively.

4.2 Asymptotic results

In this section, we prove the existence of the solutions of the estimating score equations

(4.8) and (4.9). We also show that the resulting estimators are consistent and asymptotically

normal. To that end, we first introduce some important definitions and assumptions that will

enable us to derive the asymptotic normality of the estimating score function in (4.5). From

these assumptions, we will then establish some preliminary results. Subsequently, we use

these preliminary results to establish the asymptotic normality of the unrestricted score

function. This result is then used to derive the asymptotic normality of the UE and the RE.

To introduce some notations, suppose that Gn(B) is differentiable with respect to Vec(B)

and let Cn(B) = −
∂Gn(B)

∂(Vec(B))′ . In particular, by taking the derivative of Gn(B) with respect to

−Vec(B), we have

Cn(B) = −

n∑
i=1

∂2Vec( f (Θi))′

∂Vec(Θi)∂Vec(Θi)′

 1⊗
j=d

X ′
i j

 Vec(Ui)

+

n∑
i=1

 1⊗
j=d

X ′
i j

 (∂Vec( f (Θi))
∂Vec(Θi)

)′ (
∂Vec( f (Θi))
∂Vec(Θi)

)  1⊗
j=d

Xi j

 . (4.10)

4.2.1 Some definitions and assumptions

We present the following assumption which gives some conditions for the existence of a

solution of the estimating equation (4.8) as well as the consistency of the UE.

Assumption 4.2.1. 1. There is a true B∗ ∈ Rp1×···×pd and for all B within an α neigh-

bourhood Nα
B
∗ = {B : ‖B − B∗‖ ≤ α} such that Gn(B), Cn(B) and ∂Cn(B)

∂(Vec(B)) exist and
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Gn(B) andCn(B) are continuous and bounded in absolute value by finitely integrable

functions and ∂Cn(B)
∂(Vec(B)) is bounded by a function with a finite expectation,

2. 1
nCn(B)

P
−−−→
n→∞

Φ, where Φ is non-random and positive definite matrix. Let µ0 > 0 be

the minimum eigenvalue of Φ.

To derive some asymptotic results, let (Ω,F , P) be a probability space and let

Zn,t = n−1/2

 1⊗
j=d

X ′
t j

 (∂Vec( f (Θt))
∂Vec(Θt)

)′
Vec(Ut). (4.11)

Note that, for each t = 1, 2, . . . , n for each n = 1, 2, . . . Zn,t is
d∏

i=1

pi-column vector. Let Zn,t,s

be the sth component of the vector Zn,t, s = 1, 2, . . . ,
d∏

i=1

pi. Note that Gn(B) is proportional

to the sum of the terms in (4.11) with respect to t. In the following assumption, we present

several conditions which will subsequently be used to relax the dependence structure of the

model in (4.1). These conditions will be used to show that the array in (4.11) forms anLp−

mixingale.

Assumption 4.2.2. 1. There exists a positive constant array

{cnt, t = 1, . . . , n; n = 1, . . . } such that {Zn,t,s/cnt} , s = 1, · · · , p1 p2 · · · pd isLr-bounded

for r > 2 uniformly in t and n;

2. Zn,t is near-epoch dependent in L2 of size -1 on an α−mixing array such that αm =

O
(
m−(1+2ς)r/(r−2)κ−1(m)

)
, 0 6 ς < 1/2, where κ(·) is a positive and increasing func-

tion such that for some M > 0, κ(x) > 1 for all x > M and
∞∑

n=1

 n∑
j=0

κ( j)


−1/2

< ∞.

3. For some α ∈ (0, 1], let bn = [n−α] and rn = [n/bn] and define Mni = max
(i−1)bn<t6ibn

{cnt}

for i = 1, · · · , rn and Mn,rn+1 = max
rnbn<t6n

{cnt}, the following conditions hold:

max
16i6rn+1

Mni = o(b−1/2
n );

rn∑
i=1

Mni = O(bς−1/2
n );

rn∑
i=1

M2
ni = O(n−αb−1

n ), 0 6 ς < 1/2.

(4.12)
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4.
rn∑

i=1
Vn,iV

′
n,i

P
−−−→
n→∞

Φ∗, where Vn,i =
ibn∑

t=(i−1)bn+ln+1
Zn,t, i = 1, · · · , rn, 1 6 ln < n and Φ∗

is a non-random symmetric and positive definite matrix.

Condition (2) ensures that the for the special case where κ( j) = jε0 , ε0 > 0, the de-

pendence structure of the error and regressors form an L2− mixingale array. Conditions

(1), (3) and (4) are useful in deriving a functional central limit theorem for L2-mixingale

arrays of size −1/2 − ς. The derived result is useful in establishing the joint asymptotic

normality of the UE and the RE. Note that some parts of Assumption 4.2.2 are weaker

than those of Assumption 3.2.3. Specifically, part 1 of Assumption 4.2.2 gives part 1 of

Condition (C6) of Assumption 3.2.3 and part 2 of Assumption 4.2.2 gives Condition (C5)

of Assumption 3.2.3 as will be shown in Lemma 4.2.1. Parts 3 and 4 are equivalent to parts

2-4 of Assumption 3.2.3.

4.2.2 On the asymptotic distribution of the estimating score function

In this subsection, we present some notations and some preliminary results which are use-

ful in deriving the main results of this paper. We consider that we have some filtration

{F t
n,s,−∞ ≤ s ≤ t ≤ ∞, n ≥ 1} and we prove that, under Assumption 4.2.2, {Zn,t,F t

n,−∞} is

anL2−mixingale of size −1/2−ς. Thanks to this result, we derive some preliminary results

that help us establish the joint asymptotic normality of the UE and the RE. To simplify some

notations, we take EmU = E[U |F m
n,−∞] and Em

nU = E[U |F m
n,k], for some random array U

and integers −∞ < k < m < ∞.

Lemma 4.2.1. Suppose that {Zn,t} satisfies Parts 1-3 of Assumption 4.2.2, then

‖Et−mZn,t‖p 6 ζp,mcnt and ‖Zn,t − Et+mZn,t‖p 6 ζp,m+1cnt, where

ζp,m = Op(m−λ
∗

), λ∗ = min{ (r−p)(1+2ς)
p(r−2) + logm κ(m), 1 + δ0}, δ0 > 0.

Proof. For a fixed m, Et+[m/2]
t−[m/2]Znt is an F t+i

n,−∞−measurable function for i = −[m/2],−[m/2]+
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1, · · · , [m/2] and is hence strong mixing of the same size.Then, we have

‖Et−mZnt‖p = ‖Et−m(Znt − Et+[m/2]
t−[m/2]Znt + Et+[m/2]

t−[m/2]Znt)‖p

≤ ‖Et−m(Znt − Et+[m/2]
t−[m/2]Znt)‖p + ‖Et−m(Et+[m/2]

t−[m/2]Znt)‖p.

Using Lemma 4.1 of Davidson (1992) and Jensen’s inequality, we have

‖Et−m(Et+[m/2]
t−[m/2]Znt)‖p ≤ 2(21/p + 1)α1/p−1/r

[m/2] ‖E
t+[m/2]
t−[m/2]Znt‖r

≤ 2(21/p + 1)α1/p−1/r
[m/2] ‖Znt‖r ≤ 2(3)α1/p−1/r

[m/2] ‖Znt‖r.

Further, by the definition of near epoch, we have ‖Et−m(Znt − Et+[m/2]
t−[m/2]Znt)‖p ≤ ν[m/2]dnt.

Thus, we have

‖Et−mZnt‖p ≤ 6α1/p−1/r
[m/2] ‖Znt‖r + ν[m/2]dnt ≤ (6α1/p−1/r

[m/2] + ν[m/2]) max{‖Znt‖r, dnt}.

Then,

‖Et−mZnt‖p ≤ 6α1/p−1/r
[m/2] + ν[m/2])2Kcnt = ζp,mcnt

with ζp,mcnt = B(6α1/p−1/r
[m/2] + ν[m/2]), for B ≥ 4.

We also have ‖Znt − Et+mZnt‖p ≤ 2‖Znt − Et+m
t−mZnt‖p ≤ 2νmdnt ≤ ζ

(p)
m+1cnt by Lemma 4.2

of Davidson (1992). By part 3 of Assumption 4.2.2, α1/p−1/r
m = O

(
m−

(r−p)(1+2ς)
p(r−2) κ−(1/p−1/r)(m)

)
and νm = O(m−λ) = O(m−1−δ0), for λ > 1, for some δ0 > 0. Therefore, we have ζp,m =

O(m−λ
∗

), where λ∗ = min{ (r−p)(1+2ς)
p(r−2) κ(1/p−1/r)(m), 1 + δ0}. The result follows. �

Remark 4.2.1. For the special case where κ(m) = mε0 for some ε0 > 0, we have that {Zn,t}

is an Lp− mixingale of size max{− (r−p)(1+2ς)
p(r−2) ,−1} with respect to the constant array {cnt}. In

particular, if p = 2, {Zn,t,F t
n,−∞} forms an L2− mixingale array of size max{−1− ς/2,−1},

for 0 6 ς 6 1.

From Lemma 4.2.1, we establish the following lemma. In particular, the established

lemma will be used to derive the asymptotic properties of the estimating score function in

(4.5).
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Lemma 4.2.2. Let v2
j =

j∑
i=1

c2
n,i, ṽ2

j(k) =
k+ j∑

i=k+1
c2

n,i, k = 0, 1, . . . , j, j = 1, . . . , S j,s =
j∑

i=1
Zn,i,s,

s = 1, · · · ,
d∏

i=1
pi, and ṽ2

i =
ibn∑

(i−1)bn+ln+1
c2

n,t. Under Assumption 4.2.2,

1. The sets


d∏

i=1
pi∑

s=1
max

j6L

(
S k+ j,s − S k,s

)2

ṽ2
L(k)

; k = 0, . . . , L; L = 1, · · ·

,


d∏

i=1
pi∑

s=1
max

j6L

S 2
j,s

v2
L

; L = 1, 2, · · ·


are uniformly integrable;

2. The sets


d∏

i=1
pi∑

s=1
max
j6ibn

(
S j,s − S (i−1)bn+ln ,s

)2
/
ṽ2

i , i = 1, 2, · · ·

 ,


d∏
i=1

pi∑
s=1

(S ibn ,s−S (i−1)bn+ln ,s)2

ṽ2
i

, i = 1, 2, · · ·


are uniformly integrable.

The proof of this lemma follows directly from Lemma 3.2.4 by taking q2 = · · · = qd+1 =

1 and q1 =
d∏

i=1
pi,m0 = 0. For the convenience of the reader, we also provide alternate proofs

of Lemma 4.2.2 and all related results in Appendix C.

From the above Lemma 3.2.4, we establish the following theorem which is the main

contribution of this section. The established theorem leads immediately to the asymptotic

distribution of the estimating function, Gn(B∗). For the sake of simplicity, let Pn, j(t) =

b jtc∑
i=1
Zn,i, t ∈ [0, 1] and let Dk([0, 1]) denote the space of all k-column vectors of functions

which are right continuous with left limits on [0, 1].

Theorem 4.2.1. Under Assumption 4.2.2,Pn,n(1) = n−1/2Gn(B∗)
D
−−−→
n→∞

U ∼ Np1···pd (0, Φ∗) .

Further, for each t ∈ [0, 1], Pn,n(t)
d
−−−→
n→∞

√
tU .

Proof. Let γn =
rn∑

i=1

(
Vn,i − E(Vn,i|F ∗

i ) + E(Vn,i|F ∗
i−1)

)
+

rn∑
i=1

(i−1)bn+ln∑
t=(i−1)bn+1

Zn,t +
n∑

t=rnbn+1
Zn,t. We

have

Sn =
n∑

t=1
Zn,t = γn +

rn∑
i=1
Wn,i +

(
n∑

i=rn+1

(
ibn∑

t=(i−1)bn+1
Zn,t

))
. (4.13)

Then, from Proposition C.2.5, we have

γn
P
−−−→
n→∞

0. (4.14)
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Moreover, letting S ∗j = {t : t ∈
n⋃

i=rn+1
[(i − 1)bn + 1, ibn]}, we have

d∏
i=1

pi∑
s=1

E


 n∑

i=rn

ibn∑
t=(i−1)bn+1

Zn,t,s


2 =

d∏
i=1

pi∑
s=1

E


∑

t∈S ∗j

Zn,t,s


2 ,

and then, together with Lemma 4.2.2, we get

d∏
i=1

pi∑
s=1

E


 n∑

i=rn

ibn∑
t=(i−1)bn+1

Zn,t,s


2 = O

 n∑
i=rn+1

ibn∑
t=(i−1)bn+1

c2
n,t

 = O

 n∑
i=rn+1

(
max

(i−1)bn+16t6ibn
cn,t

)2

bn

 = o(1).

Hence
n∑

i=rn+1

 ibn∑
t=(i−1)bn+1

Zn,t

 P
−−−→
n→∞

0. (4.15)

In addition, by Proposition C.2.5, we have

rn∑
i=1
Wn,iW

′
n,i

P
−−−→
n→∞

Φ∗ and
rn∑

i=1

d∏
i=1

pi∑
s=1

E

(Wn,i,s)2I


d∏

i=1
pi∑

s=1
W2

n,i,s > ε


 −−−→n→∞

0, for all ε > 0. Then,

by the martingale difference sequence central limit theorem,
rn∑

i=1
Wn,i

d
−−−−→
T→∞

Np1 p2...pd (0, Φ∗) .

Hence, together with (B.11), (B.12), (B.13) along with Slutsky’s theorem, we prove the

first claim. The second claim follows from the first statement along with the fact that

Pn,n(t) =
(
btnc n−1

)1/2
Pn,btnc(1), this completes the proof. �

Below, we prove that, under additional conditions,
{
Pn,n(t)

}∞
1 converges weakly to a

Gaussian process. As an intermediate result, we first establish the following lemma.

Lemma 4.2.3. Under Assumption 4.2.2, if

sup
0<α<1−a,06a<1

lim sup
n→∞

α−1
bn(a+α)c∑
i=bnac

c2
n,i < ∞, (4.16)

then

1.
{

max
u6t6u+α

∥∥∥Pn,n(t) − Pn,n(u)
∥∥∥2 /

α; n ≥ N(u, α), 0 6 s 6 1, α ∈ T
}

is a uniformly integrable

set for some sequence T of α approaching 0 and nonrandom finite valued function N(u, α).
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2.
{
Pn,n(.)

}∞
n=1 is tight in Stone’s topology on D

d∏
i=1

pi
([0, 1]);

3. for each t ∈ [0, 1], the set
{
‖Pn,n(t)‖2 : n = 1, 2, . . .

}
is uniformly integrable;

4. the weak limit process of any convergent subsequence of {S(.)} is almost surely continu-

ous.

Proof. One can verify that,

max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
I

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
> b


= max

s6t6s+α

v̄2 (bs jc, b jtc)
α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

v̄2 (bs jc, b jtc)
I

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

v̄2 (bs jc, b jtc)

v̄2 (bs jc, b jtc)
> bα


6 α−1 max

s6t6s+α
v̄2 (bs jc, b jtc) Y j(α, s)I

Y j(α, s) >
bα

max
s6t6s+α

v̄2 (bs jc, b jtc)

 ,
with v̄2 (bs jc, b jtc) =

b jtc∑
i=bs jc

c2
n,i and Y j(α, s) = max

s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2
/v̄2 (bs jc, b jtc). From

Lemma 4.2.2,
{
Y j(α, s) : j ≥ N(s, α)

}
is uniformly integrable. Then,

sup
j,s

E

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
I

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
> b




6 α−1
b j(s+α)c∑
i=bs jc

c2
n,isup

j,s
E

Y j(α, s)I

Y j(α, s) > b

α−1
b j(s+α)c∑
i=bs jc

c2
n,i


−1

 ,
and then, using Condition (A.9), we get

sup
j,s

E

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
I

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
> b




6 C0sup
j,s

E

Y j(α, s)I

Y j(α, s) > b

α−1
b j(s+α)c∑
i=bs jc

c2
n,i


−1

 , (4.17)

for some C0 > 0. Further, from (A.9), lim
α→0

lim sup
j→∞

α−1
b j(s+α)c∑
i=bs jc

c2
n,i


−1

= 0, for arbitrary

0 6 s 6 1. Therefore, together with (4.17), we get

sup
06s61

sup
j

E

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
I

 max
s6t6s+α

∥∥∥P j, j(t) − P j, j(s)
∥∥∥2

α
> b


 = 0,
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for arbitrary α, this completes the proof of Part 1. The proof of Part 2 follows by combining

Part 1 and Theorem 8.4 of Billingsley (1968). Part 3 follows from Part 1. Finally, Part 1

follows from Part 1 along with Proposition VI.3.26 in Jacod and Shiryaev (1987). This

completes the proof. �

Note that the condition in (A.9) permits the inclusion of cases where Zn,i have growing

moments. From Theorem 4.2.1 and Lemma 4.2.3, we derive the following result.

Theorem 4.2.2. Suppose that lim
n→∞

E
[
Pn,n(t)P′n,n(t)

]
= Λ∗(t) for all t ∈ [0, 1] along with the

conditions of Lemma 4.2.3. Then, Pn,n(t)
d
−−−→
n→∞

S(t) where {S(t) : 0 6 t 6 1} is a vector-

valued Gaussian process with almost surely continuous paths and independent increments.

Proof. From Part (3) of Lemma 4.2.3, we have(
P′n,n(t1),P′n,n(t2), . . . ,P′n,n(tk)

)′ d
−−−→
n→∞

(S′(t1),S′(t2) . . . ,S′(tk))′, for all (t1, t2, . . . , tk)′ ∈ ([0 1])k.

Then, by combining Theorem 4.2.1 and Lemma 4.2.3, we conclude that Pn,n(t)
d
−−−→
n→∞

S(t)

where {S(t) : 0 6 t 6 1} is a Gaussian process with almost surely continuous paths. Then,

the proof is completed if we prove that, for any set {t1, · · · , tk : 0 < t1 < · · · < tk < 1}

and for all i < j, Pn,n(ti) − Pn,n(ti−1) and Pn,n(t j) − Pn,n(t j−1) are asymptotically uncorre-

lated. To this end, one can verify that,
∥∥∥∥E

[(
Pn,n(ti) − Pn,n(ti−1)

) ((
Pn,n(t j) − Pn,n(t j−1)

))′]∥∥∥∥ =∥∥∥∥∥∥∥∥E


 bntic∑

k=bnti−1c+1

Zn,k


 bnt jc∑

k=bnt j−1c+1

Zn,k


′
∥∥∥∥∥∥∥∥ and then, letting p =

d∏
i

pi, for fixed α > 0, we get

∥∥∥∥E
[(
Pn,n(ti) − Pn,n(ti−1)

) ((
Pn,n(t j) − Pn,n(t j−1)

))′]∥∥∥∥ 6 p∑
l=1

∥∥∥∥∥∥∥
bntic∑

k=bnti−1c+1

Zn,k,l

∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥
bn(t j−1+α)c∑
k=bnt j−1c+1

Zn,k,l

∥∥∥∥∥∥∥∥
2

+

p∑
l=1

n∑
g=1

n∑
h=1

∣∣∣E(Zn,g,lZn,h,l)
∣∣∣ I (|s − t| > n(t j−1 + α) − nti

)
.

Further, since bntc − bnsc → ∞ for all t > s, by some algebraic computations, we get

lim
n→∞

n∑
l=1

n∑
k=1

∣∣∣E(Zn,g,lZn,h,l)
∣∣∣ I (|s − t| > n(t j−1 + α) − nti

)
= 0. Hence, together with (A.9), we

get lim
n→∞

E
[(
Pn,n(ti) − Pn,n(ti−1)

) (
Pn,n(t j) − Pn,n(t j−1)

)′]
= 0, this completes the proof. �
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4.2.3 On existence and consistency of the UE and the RE

In this subsection, we derive two lemmas which show that the estimating equations (4.8)

and (4.9) have solutions. The established results also show that the UE and the RE are

consistent estimators for the tensor parameter B if the solutions are unique. To prove

Lemma 4.2.5 and Lemma 4.2.6, we use the following lemma from Aitchison and Silvey

(1958).

Lemma 4.2.4. Let g be a continuous function mapping from Rr onto itself. If for every ψ

such that ‖ψ‖ = 1 we have ψ′g(ψ) < 0 then there exists a point ψ̂ such that ‖ψ̂‖ < 1 and

g(ψ̂) = 0.

The proof of Lemma 4.2.4 can be found in Aitchison and Silvey (1958).

Lemma 4.2.5. Suppose that Assumption 4.2.2 and Assumption 4.2.1 hold. Then, for an

arbitrarily small δ > 0 and some 0 < ε < 1, there exists nε,δ such that for all n > nε,δ,

Gn(B) = 0 has a solution B̂ with probability greater than 1 − ε and with ‖B̂ − B∗‖ ≤ δ.

Moreover, if there exists an n0 such that a solution to Gn(B) = 0 is unique for all n > n0,

then B̂
P
−−−→
n→∞

B
∗.

Proof. We have the equation
1
n
Gn(B) = 0. (4.18)

Let an α neighbourhood of B∗ be denoted as Nα
B
∗ = {B : ‖B − B∗‖ ≤ α}. Let δ < min{α, 1}

and suppose B ∈ Nδ
B
∗ . Then, expanding (4.18) about B∗, we get the equation

1
n
Gn(B∗) −

1
n
Cn(B∗)(Vec(B) − Vec(B∗)) +

1
n

r̃1(B) = 0, (4.19)

where r̃1(B) is the remainder term of higher order derivatives. Then, we have by Theo-

rem 4.2.1, 1
nGn(B∗) = op(1) and by Condition (1) of Assumption 4.2.1, 1

n r̃1(B) = op(‖B −
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B
∗
‖2). Further, 1

nCn(B) −Φ = op(1). Hence, (4.19) becomes the equation

op(1) −Φ(Vec(B) − Vec(B∗)) − op(1)(Vec(B) − Vec(B∗)) + op(‖B − B∗‖2) = 0, (4.20)

Since δ < 1, then we get the equation

−Φ(Vec(B) − Vec(B∗)) + op(1) = 0, (4.21)

Define ψ = (Vec(B)−Vec(B∗))/δ and g (ψ) = −δΦψ+ op(1) and fix ε, 0 < ε < 1. Choose a

sufficiently small δ such that for some natural number Nε,δ > 0, we have P(‖op(1)‖ < δ2) >

1 − ε, for all n > Nε,δ. Then, for sufficiently large n we have with probability greater than

1 − ε that

ψ′g (ψ) = −
1
δ

(Vec(B) − Vec(B∗))′Φ(Vec(B) − Vec(B∗)) +
1
δ

(Vec(B) − Vec(B∗))′op(1), then

ψ′g (ψ) 6 −
1
δ
µ0‖B − B

∗
‖2 +

δ2

δ
‖B − B

∗
‖, (4.22)

where the inequality follows by Condition (2) of Assumption 4.2.1 for the first term and the

Cauchy-Schwarz inequality for the second term. Thus, by choosing B such that ‖B−B∗‖ =

δ, we have

ψ′g (ψ) 6 −δµ0 + δ2 < 0 (4.23)

with probability 1 − ε for a sufficiently small δ and a sufficiently large n. Therefore, by

Lemma 4.2.4, we have for a sufficiently small δ and 0 < ε < 1 there exists an Nε,δ such

that for all n > Nε,δ, we have a ψ̂ with g(ψ̂) = 0 with probability greater than 1 − ε. That is,

(4.23) has a solution for ‖B − B∗‖ < δ, say B̂, and assuming the solution is unique then it

will also be consistent for B∗. �

Lemma 4.2.6. Suppose that Assumption 4.1.1 holds along with the conditions of Lemma

4.2.5. Then, Gn(B) + H(B)′λn = 0 has a consistent solution in {(B) : ‖B−B∗‖ ≤ δ}, denoted

as B̃.
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Proof. We have the system of equations

1
n
Gn(B) + H(B)′λn = 0, and ~∗(B) = 0. (4.24)

Let an α neighbourhood of B∗ be denoted as Nα
B
∗ = {B : ‖B − B∗‖ ≤ α}. Let δ < min{α, 1}

and suppose B ∈ Nδ
B
∗ . Then, expanding (4.24) about B∗, we get the system of equations

1
n
Gn(B∗) −

1
n
Cn(B∗)(Vec(B) − Vec(B∗)) +

1
n

r̃1(B) + H(B)′λn = 0,

~∗(B∗) + H(B)(Vec(B) − Vec(B∗)) + r̃2(B) = 0, (4.25)

where r̃1(B) and r̃2(B) are the remainder terms of higher order derivatives. Then, we have

by Theorem 4.2.1, 1
nGn(B∗) = op(1) and by (1) of Assumption 4.2.1, 1

n r̃1(B) = op(‖B−B∗‖2).

In addition, 1
nCn(B) − Φ = op(1), r̃2(B) = O(‖B − B∗‖2), and ~∗(B∗) = 0. Hence, (4.25)

becomes

op(1) −Φ(Vec(B) − Vec(B∗)) − op(1)(Vec(B) − Vec(B∗)) + op(‖B − B∗‖2) + H(B)′λn = 0,

H(B)(Vec(B) − Vec(B∗)) + O(‖B − B∗‖2) = 0. (4.26)

Since δ < 1, then we get the system of equations

−Φ(Vec(B) − Vec(B∗)) + H(B)′λn + op(1) = 0, (4.27)

H(B)(Vec(B) − Vec(B∗)) + O(‖B − B∗‖2) = 0.

Then, we multiply both sides of (4.27) by H(B∗)Φ−1, and we get the equation

− H(B∗)(Vec(B) − Vec(B∗)) + H(B∗)Φ−1H(B)′λn + op(1) = 0. (4.28)

Furthermore, since H(B) is full column rank, we have that H(B∗)Φ−1H(B∗), is invertible

and for a sufficiently small δ, H(B∗)Φ−1H(B),would also be invertible. Hence using (4.28),

we can solve for λn to obtain λn = [H(B∗)Φ−1H(B)′]−1(H(B∗)(Vec(B) − Vec(B∗)) + op(1),

this gives

λn[H(B∗)Φ−1H(B)′]−1(H(B∗)O(‖B − B∗‖2) + op(1) = O(‖B − B∗‖2) + op(1). (4.29)
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Substituting λn into (4.27), we get

−Φ(Vec(B) − Vec(B∗)) + H(B)′O(‖B − B∗‖2) + op(1) = 0. (4.30)

Since H(B) is bounded, then the first equation of (4.27) can be rewritten as

−Φ(Vec(B) − Vec(B∗)) + δ2ν(B) + op(1) = 0, (4.31)

for some bounded continuous function ν(B) with ‖ν(B)‖ < K, K > 0. Define

ψ = (Vec(B) − Vec(B∗))/δ, g (ψ) = −δΦψ + δ2ν(B) + op(1) and fix ε, 0 < ε < 1. Choose a

sufficiently small δ such that for some natural number Nε,δ > 0, we have P(‖op(1)‖ < δ2) >

1 − ε, for all n > Nε,δ. Then, for sufficiently large n we have with probability greater than

1 − ε that

ψ′g (ψ) = −
1
δ

(Vec(B) − Vec(B∗))′Φ(Vec(B) − Vec(B∗)) + δ(Vec(B) − Vec(B∗))′ν(B)

+
1
δ

(Vec(B) − Vec(B∗))′op(1).

Then,

ψ′g (ψ) 6 −
1
δ
µ0‖B − B

∗
‖2 + δK‖B − B∗‖ +

δ2

δ
‖B − B

∗
‖, (4.32)

where the inequality follows from Condition 2) of Assumption 4.2.1 for the first term and

the Cauchy-Schwarz inequality for the other terms. Thus, by choosing B such that ‖B −

B
∗
‖ = δ, we have

ψ′g (ψ) ≤ −δµ0 + δ2K + δ2 < 0 (4.33)

with probability 1 − ε for a sufficiently small δ and a sufficiently large n. Therefore, by

Lemma 4.2.4, we have for a sufficiently small δ and 0 < ε < 1 there exists an Nε,δ such

that for all n > Nε,δ, we have a ψ̂ with g(ψ̂) = 0 with probability greater than 1 − ε. That is,

(4.33) has a solution for ‖B − B∗‖ < δ, say B̃, and assuming the solution is unique then it

will also be consistent for B∗. �
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4.2.4 Asymptotic properties of UE and RE

In this subsection, we present some asymptotic properties of the UE and RE using Theo-

rem 4.2.1. We first establish the following theorem which gives the asymptotic distribution

of the unrestricted estimator, B̂. In the sequel, we set ε1,n =
√

n(B̂ − B∗).

Theorem 4.2.3. Suppose that Assumption 4.2.1 and Assumption 4.2.2 hold. Then,

ε1,n =
√

n(B̂ − B∗)
D
−−−→
n→∞

ε1 ∼ Np1×p2×···×pd

(
0, Φ−1Φ∗Φ−1

)
.

Proof. It suffices to show that
√

n(Vec(B̂) − Vec(B∗))
D
−−−→
n→∞

Vec(ε1) with

Vec(ε1) ∼ Np1 p2···pd

(
0,Φ−1Φ∗Φ−1

)
. Since B̂ is an estimator, it satisfies (4.8). We expand

Gn(B) in a Taylor series around Vec(B∗) and then, together with the consistency of B̂, we

get

Gn(B) = Gn(B∗) −Cn(B∗) (Vec(B) − Vec(B∗)) + op(En) = 0, (4.34)

where En = ‖B̂ − B∗‖. By rearranging the expansion, we have

Cn(B∗)
(
Vec(B̂) − Vec(B∗)

)
= Gn(B∗) − op(En). Then,

Vec(B̂) − Vec(B∗) = C−1
n (B∗)Gn(B∗) −C−1

n op(En).

Then, we have
√

n(Vec(B̂) − Vec(B∗)) = nC−1
n (B∗) 1

√
nGn(B∗) + op(1) and by Condition (2)

of Assumption 4.2.2, Theorem 4.2.1 and Slutsky’s theorem, we get nC−1
n

1
√

nGn(B∗)
D
−−−→
n→∞

Φ−1U0, where U0 ∼ Np1 p2···pd (0,Φ∗). Therefore, we get that
√

n(Vec(B̂) − Vec(B∗))
D
−−−→
n→∞

Vec(ε1), where Vec(ε1) ∼ Np1 p2···pd (0,Φ−1Φ∗Φ−1). This completes the proof. �

Next, we derive the asymptotic distribution for the restricted estimator in the case where

the general constraint in (4.3) may not hold. Specifically, we consider the following se-

quence of local alternative constraints

~(B∗) =
Vec(r0)
√

n
, n = 1, 2, . . . (4.35)



CHAPTER 4. GENERALIZED TENSOR REGRESSION 86

where r0 is an l1 × l2 × · · · × ld non-random tensor. For simplicity, let

ε2,n =
√

n(B̃ − B∗), ε3,n =
√

n(B̂ − B̃),H(B∗) =

1⊗
i=d

Hi(B∗),

J1,n = C−1
n (B∗)H(B∗)′

[
H(B∗)C−1

n (B∗)H(B∗)′
]−1
H(B∗),

J2,n = C−1
n (B∗)H(B∗)′

[
H(B∗)C−1

n (B∗)H(B∗)′
]−1

,

J = Φ−1H(B∗)′
[
H(B∗)Φ−1H(B∗)′

]−1
H(B∗).

To derive the asymptotic distribution of ε2,n under the sequence of local alternative con-

straints in (4.35), we first establish the following proposition.

Proposition 4.2.1. Suppose that the conditions of Theorem 4.2.3 and Lemma 4.2.6 hold

along with the sequence of alternative constraints in (4.35). Then,

Vec
(
ε2,n

)
=

 1⊗
i=d

Ipi − J1,n

 Vec
(
ε1,n

)
− J2,nVec(r0) + op(1). (4.36)

Proof. From Theorem 4.2.1, we have 1
nGn(B)

P
−−−→
n→∞

0 and by Lemma 4.2.6, B̃ is a consistent

estimator of the true tensor parameter, B∗. Next, by using Lagrangian multipliers, the RE

B̃ satisfies

Gn(B) + H(B)′λn = 0, (4.37)

for some non-random vector λn of size l1l2 · · · ld. The Taylor expansion of ~(B̃) gives

~(B̃) = ~(B∗) +H(B∗)(Vec(B̃) − Vec(B∗)) + op(Ẽn) = 0, (4.38)

with Ẽn = ‖B̃ − B∗‖. Similarly, by expanding (4.37) and using (4.38), we have

Gn(B∗) −Cn(B∗)(Vec(B̃) − Vec(B∗)) +H(B∗)′λn + op(Ẽ ∗n ) = 0, (4.39)

with Ẽ ∗n = ‖B̃ − B∗‖ + ‖λn‖. Further, from (4.38), we get

H(B∗)(Vec(B̃) − Vec(B∗)) = −~(B∗) + op(Ẽn). (4.40)
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Multiplying (4.39) byH(B∗)C−1
n (B∗) gives

H(B∗)C−1
n (B∗)Gn(B∗) −H(B∗)C−1

n (B∗)Cn(B∗)(Vec(B̃) − Vec(B∗))

+H(B∗)C−1
n (B∗)H(B∗)′λn +H(B∗)C−1

n (B∗)op(Ẽ ∗n ) = 0.

Using (4.40), we get

H(B∗)C−1
n (B∗)Gn(B∗) +H(B∗)C−1

n (B∗)H(B∗)′λn +H(B∗)C−1
n (B∗)op(Ẽ ∗n )

+~(B∗) + op(Ẽn) = 0.

Setting ~(B∗) =
Vec(r0)
√

n , we get

H(B∗)C−1
n (B∗)Gn(B∗) +H(B∗)C−1

n (B∗)H(B∗)′λn +H(B∗)C−1
n (B∗)op(Ẽ ∗n )

+
Vec(r0)
√

n
+ op(Ẽn) = 0.

SinceH(B∗)C−1
n (B∗)H(B∗)′ is non-singular a.s, then we get

λn = −J ′2,nGn(B∗) −
[
H(B∗)C−1

n (B∗)H(B∗)′
]−1 Vec(r0)

√
n
− J ′2,nop(Ẽ ∗n )

−
[
H(B∗)C−1

n (B∗)H(B∗)′
]−1

op(Ẽn), (4.41)

with J2,n = C−1
n (B∗)H(B∗)′

[
H(B∗)C−1

n (B∗)H(B∗)′
]−1

. Substituting (4.41) into (4.39), we

have

Gn(B∗) −Cn( ˜(B∗)Vec
(
ε2,n

)
/
√

n − J1,nGn(B∗) −Cn(B∗)J2,n
Vec(r0)
√

n
−Cn(B∗)J2,nop(Ẽn)

−J1,nop(Ẽ ∗n ) + op(Ẽn) = 0

where J1,n = H(B∗)′
[
H(B∗)C−1

n (B∗)H(B∗)′
]−1
H(B∗)C−1

n (B∗). Solving for Vec
(
ε2,n

)
, we

get

Vec
(
ε2,n

)
/
√

n = C−1
n (B∗)

 1⊗
i=d

Ipi − J1,n

Gn(B∗) − J2,n
Vec(r0)
√

n
− J2,nop(Ẽn)

−C−1
n (B∗)J1,nop(Ẽ ∗n ) + op(Ẽn), (4.42)

and the result follows. �
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Remark 4.2.2. Note that if the constraint is

~∗(B∗) = B∗ ×1 R1 ×2 R2 × · · · ×d Rd − r =
r0
√

n
, (4.43)

where Ri are li × pi, non-random matrices with rank li 6 pi, i = 1, 2, · · · , d and r and r0

are l1×l2×· · ·×ld non-random tensors. Then, ~(B∗) =
1⊗

i=d
RiVec(B∗)−Vec(r0) andH(B∗) =

1⊗
i=d
Ri = R. Let J ∗1,n = C−1

n (B∗)R′
[
RC−1

n (B∗)R′
]−1
R, J ∗2,n = C−1

n (B∗)R′
[
RC−1

n (B∗)R′
]−1

,

J ∗ = Φ−1R′
[
RΦ−1R′

]−1
R. In this case, we get

Vec
(
ε2,n

)
=

 1⊗
i=d

Ipi − J
∗
1,n

 Vec
(
ε1,n

)
− J ∗2,nVec(r0) + op(1). (4.44)

We use Proposition 4.2.1 to derive the joint asymptotic distribution of the UE and the

RE in the following theorem.

Theorem 4.2.4. Suppose that the conditions of Proposition 4.2.1 hold, then

ε1,n �(d+1) ε2,n �(d+1) ε3,n
d
−−−→
n→∞

ε1 �(d+1) ε2 �(d+1) ε3 ∼ Np1×p2×···×3pd

(
0 �(d+1) δ �(d+1) −δ,Σ

)
,

where Σ =


Φ̃ Φ̃(Ip1 p2···pd − J

′) Φ̃J ′

(Ip1 p2···pd − J )Φ̃ (Ip1 p2···pd − J )Φ̃(Ip1 p2···pd − J
′) (Ip1 p2···pd − J )Φ̃J ′

JΦ̃ JΦ̃(Ip1 p2···pd − J
′) JΦ̃J ′


.

Proof. Let J ∗2 = Φ−1H(B∗)′
[
H(B∗)Φ−1H(B∗)′

]−1
. From Proposition 4.2.1, we have

Vec(ε2,n) =
√

nC−1
n (B∗)

[
Ip1 p2···pd − J1,n

]
Gn(B∗) − J2,nVec(r0) + op(1), and

Vec(ε3,n) =
√

nC−1
n (B∗)J1,nGn(B∗) + op(1). Moreover, note that

Vec(ε1,n �(d+1) ε2,n �(d+1) ε3,n) = ((Vec(ε1,n))′, (Vec(ε2,n))′, (Vec(ε3,n))′)′, then

Vec(ε1,n �(d+1) ε2,n �(d+1) ε3,n)

=
(
(nC−1

n (B∗), (nC−1
n (B∗)[I − J1,n])′, (nC−1

n (B∗)J1,n)′
)′ 1
√

n
Gn(B∗)

+
(
0,−(J2Vec(r0))′, (J2Vec(r0))′

)′
+ op(1),
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where, for the sake of simplicity, we set Ip1 p2···pd = I . Hence, by Slutsky’s theorem, we have

Vec(ε1,n�(d+1)ε2,n�(d+1)ε3,n)′
d
−−−→
n→∞

(
I , I − J

′

,J
′
)′

Φ−1U0+
(
0,−(J ∗2 Vec(r0))′, (J ∗2 Vec(r0))′

)′
with U0 ∼ Np1···pd (0,Φ∗). The result follows. �

From Theorem 4.2.4, we derive the following corollary which gives the joint asymptotic

distribution of ε1,n, ε2,n and ε3,n in the special case where the sequence of local alternatives

restriction is as in (4.43).

Corollary 4.2.1. Under Assumption 4.2.2 and the sequence of local alternatives in (4.43),

we have ε1,n �(d+1) ε2,n �(d+1) ε3,n
d
−−−→
n→∞

ε1 �(d+1) ε2 �(d+1) ε3,

where ε1 �(d+1) ε2 �(d+1) ε3 ∼ Np1×p2×···×3pd

(
0 �(d+1) δ

∗ �(d+1) −δ
∗,Σ∗

)
and

Σ =


Φ̃ Φ̃(Ip1 p2···pd − J

∗′) Φ̃J ∗
′

(Ip1 p2···pd − J
∗)Φ̃ (Ip1 p2···pd − J

∗)Φ̃(Ip1 p2···pd − J∗
′

) (Ip1 p2···pd − J∗)Φ̃J∗
′

J ∗Φ̃ J∗Φ̃(Ip1 p2···pd − J
∗′) J ∗Φ̃J∗

′


.

Proof. The result follows from Theorem 4.2.4 by takingHi(B∗) = Ri , i = 1, · · · , d. �

The results of Theorem 4.2.4 will be used in Section 4.3 to compare the relative effi-

ciency of the proposed estimators.

4.3 A class of shrinkage tensor estimators and relative ef-

ficiency

In this section we propose shrinkage estimators in the context of the generalized tensor

regressor model in (4.2). As such, the shrinkage estimators (SEs) for the model in (4.2) are

obtained from the class of shrinkage estimators (3.13) of Section 3.3. Namely, following

the notations of Section 2.2, the James-Stein and Positive rule James-Stein estimators are
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taken to be

B̂s = B̃ +

1 −
 d∏

j=1

li − 2

 / (
n‖B̂ − B̃‖2

{Ξ̂i,i=1,··· ,d}

) (B̂ − B̃) , (4.45)

B̂sp = B̃ + max


1 −

 d∏
j=1

li − 2

 / (
n‖B̂ − B̃‖2

{Ξ̂i,i=1,··· ,d}

) , 0

 (
B̂ − B̃

)
,

respectively, where Ξ̂i = Hi(B̂)′
[
Hi(B̂)nC−1

n (B̂)Hi(B̂)′
]−1
Hi(B̂), i = 1, 2, . . . , d. In

order to evaluate the performance of the proposed class of estimators, we compute their

asymptotic distributional risk with respect to the loss function `, denoted by ADR`. Let

Wi, i = 1, · · · , d be nonnegative definite matrices and let W = [W1,W2, . . . ,Wd]. We

consider the loss function L(θ̂,θ;W ) = `
(
trace

(
ρ∗
′

(d)ρ
∗
(d)

))
for ρ∗ = ρ(

d�
i=1

)
i
W 1/2

i where `(t)

is a non-negative, non-decreasing concave function on (0,+∞) such that `′(t) exists and
√

n(θ̂ − θ)
d
−−−→
n→∞

ρ. Then, the ADR` of an estimator θ̂ of a parameter θ is defined as

ADR`(θ̂,θ,W ) = E
[
`
(
trace

(
ρ∗
′

(d)ρ
∗
(d)

))]
. (4.46)

Remark 4.3.1. For the special case where `(t) ≡ t, t > 0, (4.46) yields the usual asymptotic

distributional risk with respect to the quadratic loss function as defined in Section 3.3, i. e.

ADR1(θ̂,θ,W ) = E
[
trace

(
ρ∗
′

(d)ρ
∗
(d)

)]
. (4.47)

To analyze the relative efficiency of the tensor estimators in (3.13) under loss function

`, we consider the case where θ̂ is a consistent estimator of θ such that

√
n
(
θ̂ − θ

)
�(d+1)

√
n
(
θ̃ − θ

)
�(d+1)

√
n
(
θ̂ − θ̃

) d
−−−→
n→∞

ϑ1 �(d+1) ϑ2 �(d+1) ϑ3 (4.48)

Vec(ϑ2) = (Ip1 p2···pd −J0)Vec(ϑ1) + Vec(δ) and Vec(ϑ3) = J0Vec(ϑ1)−Vec(δ), where J0 is

a matrix with the same structure as the matrix J given in Theorem 4.2.4. In the following

lemma, we show that if the SEs dominate the UE under quadratic loss function, then they

also dominate the UE under l(·). This is useful in deriving some conditions under which the
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SEs dominate the UE under l(·). For some simplification, let

ϑ∗i = ϑi(
d�

i=1
)

i
W 1/2

i , i = 1, 2, 3, 4, let I = Ip1 p2···pd and let

g(ϑ∗1) =
(
Vec(ϑ∗1)

)′
(J ′0J0 − J

′
0 − J0)

(
Vec(ϑ∗1)

)
+ 2

(
(I − J0)Vec(ϑ∗1)

)′ (
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

+(J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)
+2

(
(I − J0)Vec(ϑ∗1)

)′
Vec(δ)

+‖δ‖2 − 2
(
(I − J0)Vec(ϑ∗1)

)′ (
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
−2(J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)′ (
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+2 (Vec(δ))′

[(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)
−

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)]
.

Lemma 4.3.1. Under (4.48), we have

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ) + E
[
l′
(
‖ϑ∗1)‖2

)
g(ϑ∗1)

]
.

Proof. From Corollary 4.2.1, we get
√

n
(
ϑ̂(h, θ̂, θ̃) − θ

) d
−−−→
n→∞

ϑ4 = ϑ2+h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ3.

Let ϑ∗i = ϑi(
d�

i=1
)

i
W 1/2

i
, i = 1, 2, 3, 4. Then, trace

(
ϑ∗

′

4(d)ϑ
∗
4(d)

)
= ‖ϑ∗4‖

2 and then

trace
(
ϑ∗

′

4(d)ϑ
∗
4(d)

)
= (Vec(ϑ∗2 + h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
3))′(Vec(ϑ∗2 + h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
3))

= ‖ϑ∗2‖
2 + 2Vec(ϑ∗2)′Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
3)

+ (Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
3))′Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
3).

Note that Vec(ϑ2) = (Ip1 p2···pd − J0)Vec(ϑ1) + Vec(δ) and Vec(ϑ3) = J0Vec(ϑ1) − Vec(δ),

where J0 is a matrix of the same nature as J . Then,

trace
(
ϑ∗

′

4(d)ϑ
∗
4(d)

)
=

(
(Ip1 p2···pd − J0)Vec(ϑ∗1)+Vec(δ)

)′ (
(Ip1 p2···pd − J0)Vec(ϑ∗1)+Vec(δ)

)
+ 2

(
(Ip1 p2···pd − J0)Vec(ϑ∗1)+Vec(δ)

)′ (
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)−Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
−Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ))

′
(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)−Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+ (J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1).



CHAPTER 4. GENERALIZED TENSOR REGRESSION 92

Hence, setting Ip1 p2···pd = I , we have

trace
(
ϑ∗∗

′

4(d)ϑ
∗
4(d)

)
= ‖ϑ∗1‖

2 +
(
Vec(ϑ∗1)

)′ (J ′0J0 − J
′
0 − J0)

(
Vec(ϑ∗1)

)
+2

(
(I − J0)Vec(ϑ∗1)

)′Vec(δ)

+(Vec(δ))′(Vec(δ)) + 2
(
(I − J0)Vec(ϑ∗1)

)′ (J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

−2
(
(I − J0)Vec(ϑ∗1)

)′ (Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})δ)

)
+(J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

−2(J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)′ (
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+2 (Vec(δ))′

[(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)
−

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)]
,

and then, trace
(
ϑ∗∗

′

4(d)ϑ
∗
4(d)

)
= ‖ϑ∗1‖

2 +
(
Vec(ϑ∗1)

)′
(J ′0J0 − J

′
0 − J0)

(
Vec(ϑ∗1)

)
+ 2

(
(I − J0)Vec(ϑ∗1)

)′ (
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

+ (J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

= ‖ϑ∗1‖
2 + g(ϑ∗1),

where

g(ϑ∗1) =
(
Vec(ϑ∗1)

)′ (J ′0J0 − J
′
0 − J0)

(
Vec(ϑ∗1)

)
+2

(
(I − J0)Vec(ϑ∗1)

)′ (J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

+(J0Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)

+2
(
(I − J0)Vec(ϑ∗1)

)′Vec(δ) + (Vec(δ))′(Vec(δ))

−2
(
(I − J0)Vec(ϑ∗1)

)′ (Vec(h(‖ϑ3‖
2
{Ξ,i=1,··· ,d})δ)

)
−2(J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1))′

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)′ (
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)
+2 (Vec(δ))′

[(
J0Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})ϑ

∗
1)
)
−

(
Vec(h(‖ϑ3‖

2
{Ξ,i=1,··· ,d})δ)

)]
.
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Hence, L(ϑ̂(h, θ̂, θ̃),θ;W ) = l
(
‖ϑ∗1‖

2 + g(ϑ∗1)
)
. Then, using the fact that l(.) is a con-

cave function, we have l(t + y) 6 l(t) + yl′(t). Then L(ϑ̂(h, θ̂, θ̃),θ;W ) 6 l
(
‖ϑ∗1‖

2
)

+

l′
(
‖ϑ∗1‖

2
)

g(ϑ∗1). Hence, by taking expectations of both sides of the inequality, we have

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) + E
[
l′
(
‖ϑ∗1‖

2
)

g(ϑ∗1)
]
.

This completes the proof. �

From Lemma 4.3.1, we derive the following result which shows that if ϑ̂(h, θ̂, θ̃) dom-

inates asymptotically θ̂ under quadratic loss function, it also dominates it asymptotically

under the loss function l(.).

Lemma 4.3.2. Let f (‖x‖2) be the pdf of a p1× p2×· · ·× pd random tensor ϑ1. Suppose that

ADR1(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR1(θ̂,θ;W ) where the expectation is taken with respect to

a probability measure whose density is proportional to f (‖x‖2)l′
(
‖x‖2

)
. Then,

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ).

Proof. From Lemma 4.3.1,

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ) + E
[
l′
(
‖ϑ∗1‖

2
) (

g(ϑ∗1)
)]
.

Adding and subtracting ‖ϑ∗1‖
2 to g(ϑ∗1), we get

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ) + E
[
l′
(
‖ϑ∗1‖

2
) (

g(ϑ∗1) + ‖ϑ∗1‖
2 − ‖ϑ∗1‖

2
)]
.

Thus,

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ) + E
[
l′
(
‖ϑ∗1‖

2
) (

g(ϑ∗1) + ‖ϑ∗1‖
2
)]

− E
[
l′
(
‖ϑ∗1‖

2
)
‖ϑ∗1‖

2
]
, then

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ) + ADR1(ϑ̂(h, θ̂, θ̃),θ;W ) − ADR1(θ̂,θ;W ),

where ADR1 is given as in (4.47) with the expectation taken with respect to a probability
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measure whose density is proportional to f (‖x‖2)l′
(
‖x‖2

)
. Hence, whenever

ADR1(ϑ̂(h, θ̂, θ̃),θ;W ) − ADR1(θ̂,θ;W ) 6 0, we have

ADR`(ϑ̂(h, θ̂, θ̃),θ;W ) 6 ADR`(θ̂,θ;W ).

This completes the proof. �

In the following lemma, we give a result which shows that if l′(·) is completely mono-

tonic then the condition in Lemma 4.3.2 is fulfilled in the case where f (.) is a pdf of some

random tensors with elliptically contoured distribution as defined in Definition 2.2.1.

Lemma 4.3.3. Suppose l′(·) is a completely monotonic function and letX be a d−dimensional

random tensor such that X ∼ Eq1×q2×···×qd (M,Ψ; g), where g is such that (−1) jg( j)(t) > 0, for

j = 1, 2, 3, · · · and t > 0 and let fX denote the pdf ofX. Then, f ∗X(x) = k fX(‖x‖2)l′(‖x‖2), k > 0,

is also a pdf belonging to an elliptically contoured family of distributions.

Proof. Since (−1)kg(k)(t) ≥ 0, then X has a scale mixture of normal distributions as in

Gómez-Sánchez-Manzano et al. (2006). Hence, fX(·) is completely monotonic and since

l′(t) is also completely monotonic, we get fX(x)l′(x) is a completely monotonic function

(see Berger (1975) and Kubokawa et al. (2015)). Thus, f ∗X(x) = k fX(x)l′(x), k ≥ 0 is a

scale mixture of normal distributions. This completes the proof. �

Remark 4.3.2. From Corollary 4.2.1, it can be noted that fε1 is normally distributed and

thus, is also elliptically contoured. Then, by Lemma 4.3.3, for some k > 0, k fε1(‖t‖
2)l′(‖t‖2)

would be a pdf of a family of elliptically contoured distributions provided that l′(t) is com-

pletely monotonic.

To compare the asymptotic distributional risks of the proposed estimators, we use the

identities about quadratic forms of elliptically contoured distributions in Section 2.2. These

identities are crucial in deriving the ADR of the UE, RE and SEs. Thereafter, we work

under the following assumption.
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Assumption 4.3.1. The loss function l(·) is non-negative, non-decreasing and concave

with l′(t) a completely monotonic function such that k fε1(t)l
′(t), k > 0, is a pdf of ϑ∗∗1 ∼

Ep1×···×pd

(
0,

1⊗
i=d

Φ̄−1
i ; g

)
, for non-random positive definite matrices Φ̄i, i = 1, · · · , d.

We derive below the main result of Section 4.3 which shows that for a suitable choice

of the weight matrices, Wi, i = 1, · · · , d, the SEs always dominate the UE. To introduce

some notation, let c∗1 = trace

δ′(d)

(
δ
( d�

j=1

)
j
Ξ∗jΦ̄

−1
j W j

)
(d)

 , c∗2 =
d∏

j=1
trace(W jΦ̄

−1
j ),

c∗3 =
d∏

i=1
trace(WiῩ

∗
i ), c∗4 = trace

(
δ∗
′

(d)δ
∗
(d)

)
, Ῡ∗i = JiΦ̄

−1
i ,

Ji = Φ̄−1
i H

′
i (B∗)(Hi(B∗)Φ̄−1

i H
′
i (B∗))−1Hi(B∗). We also define Π̄∗∗ =

(
Π̄∗ + Π̄∗

′
)
/2 where

Π̄∗ =
1⊗

i=d
Ξ∗1/2i

(
4

1⊗
i=d

Ῡ∗i + (l − 2)
1⊗

i=d
JiRiῩ

∗
i

) 1⊗
i=d
WiῩ

∗
iR
′
iJ
′
i Ξ
∗1/2
i . Let Chmax(A) denote

the maximum eigenvalue of a matrix A. In the following theorem, we present the main

result of this section. Specifically, we derive some sufficient conditions for the SEs to

dominate the UE.

Theorem 4.3.1. Suppose that Assumption 4.3.1 holds along with the conditions of Corol-

lary C.3.1 where c∗2 > max
{ c∗3

2 ,
Chmax(Π̄∗)

4

}
. Then,

ADR`(B̂sp,B∗;W ) 6 ADR`(B̂s,B∗;W ) 6 ADR`(B̂,B∗;W ), for all ∆ > 0.

4.4 Simulation study and real data analysis

In this section, we present some simulation studies that illustrate the performance of the

proposed methods. Further, we apply the proposed methods to two real datasets. In partic-

ular, we analyse a multi-relational network and a neuro-imaging datasets.
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4.4.1 Simulation study

In this subsection, we present some simulation studies to support the theory. We consider

the estimation of a square-centred image of ones surrounded by 0 signals. We set d = 1,

p1 = 8, p2 = 8 and p3 = 1. This gives an 8 × 8 parameter B. We set the number of

observations to be n = 30 and we set q1 = 20, q2 = 20, q3 = 30. The mode-1 covariate

matrix, X1 is 20 × 8 generated from a uniform distribution on the interval (0,1). Similarly,

the mode-2 covariate matrix is also 20 × 8 and the mode-3 covariate matrix is 30 × 1,

both generated from a uniform distribution on the interval (0,1). The linear predictor of

the model is then set as Θ = B ×1 X1 ×2 X2 ×3 X3 and stacked response Y is generated as

Normal(µ,1), Poisson(µ) and Bin(1,µ) where µ is set as Θ, eΘ and eΘi j

1+eΘi j
, i = 1, · · · , 8, j =

1, · · · , 8 for Normal, Poisson and Binomial distributions, respectively. We set the restriction

matrices as R1 = I8, R2 = [I3, 03,5] and r0 is set as the corresponding 8 × 2 matrix of zeros.

This restriction sets the first three columns of the parameter to zero as it is suspected that the

true parameter is a centred signal. In particular, R1 selects all eight rows of the parameter

and R2 selects the first three columns of the parameter and this selection is set to zero

through r0. We study the efficiency of the estimators by comparing the relative mean square

error (RMSE) of each estimator with respect to the UE, B̂. The RMSE of some estimator,

say B̂
∗
, with respect to B̂ is defined as RMSE(B̂

∗
) = ADR

(
B̂,B;W

)
/ADR

(
B̂

∗
,B;W

)
.

We run the simulation with the r0 deviates away by units of 1/
√

30, 1.5/
√

30 and 2/
√

30

for the Normal, Poisson and Bernoulli simulated data, respectively. For each restriction,

we compute the UE, RE and SEs and replicate each run 1000 times to obtain the RMSE of

each estimator. The results of the simulations are presented in Figure 4.1. As can be seen

in Figure 4.1, as we deviate away from the restriction, the RE naturally fails at some point.

However, the SEs still continue to perform at least as well as the UE despite the restriction

being completely inaccurate. These results are confirmed for all the three distributions we
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have investigated and they corroborate the theory that SEs dominate the UE.
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(a) Normal distribution
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(b) Poisson distribution
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(c) Bernoulli distribution

Figure 4.1: RMSE versus ∆ plot of the UE, the RE, and the SEs with square signal param-

eter under multi-mode covariates

Furthermore, we have noticed that the plot for the Bernoulli distribution is less dramatic

than that of the Normal and Poisson data as we deviate away from the restriction. We

performed some additional simulations to investigate a possible reason for the difference.

Specifically, we ran the same simulation for Bernoulli with 3 covariate matrices but with

n = 100 and we also ran a simulation for Bernoulli data with only one covariate matrix

with n = 30. The results of these additional runs are presented in Figure 4.2. As can be

seen, the case where n = 100 does not appear to improve the plot too much as compared

to plot c) of Figure 4.1. However, the case where we estimate the Bernoulli data using
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only one covariate matrix results in a more clear descent as the restriction deviates. We

suspect that this phenomenon may be affected by a certain interaction between the number

of mode covariates in the model as well as the sample size. Perhaps as the number of mode

covariates increases the sample size may need to also be increased. Overall, the simulation

results corroborate our theoretical findings as established in Section 4.3.
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(a) Bernoulli distribution with multimode covariates for n = 100
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(b) Bernoulli distribution with mode 3 covariates for n = 30

Figure 4.2: RMSE versus ∆ plot of the UE, the RE, and the SEs with square signal param-

eter for Bernoulli data under multi-mode covariates and one-mode covariates
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4.4.2 Real data analysis

In this subsection, we apply the proposed methods to two datasets. First, we analyze a two

dimensional parameter with three-dimensional data. Second, we analyze a neuro-imaging

dataset which consists in observations collected on patients with schizophrenia disease.

The nations dataset

The nations dataset is composed of 56 recorded relations among 14 countries between 1950

and 1965. This relational network is summarized into a 14×14×56 binary tensor where an

entry of 1 indicates a connection and an entry of 0 indicates a lack of a connection between

two countries for the particular relation. For more details on this dataset and relational

networks, we refer the reader to Nickel et al. (2011). We take the 14 × 14 × 56 binary data

as the response tensor, Y, and we take 6 country-level attributes as the mode-1 and mode-2

covariates. Namely, we take ‘constitutional’, ‘catholics’, ‘lawngos’,‘politicalleadership’,

‘geographyx’ and ‘medicinengo’ as the covariates and form both the 14 × 6 mode-1 co-

variate and the 14 × 6 mode-2 covariate matrix, X1 and X2, respectively. These covariates

are set as either 0 if the country does not have the attribute and 1 if it does. The tensor

parameter B is thus a 6 × 6 × 56, which exhibits the effects of a pair of covariates (i, j) on

relation k. In addition, as Xu et al. (2019) noted, some relations belonging to a particular

cluster exhibit similar covariate effects such as the ‘economicaid’ and ‘warnings’ relations,

we add this using a restriction. Hence, to incorporate that possible prior knowledge, we set

R1 = I6, R2 = I6, R3 = [1, 01,9,−1, 01,45] and r0 is a 6 × 6 × 1 zero tensor. This sets the

coefficients of the two relations to be equal. We run a bootstrap by resampling 500 times

and at each iteration we obtain the UE, RE and SEs. The resulting RMSE with respect to

the UE are 2.3307 × 10−38, 1 + 0.12 × 10−5 and 1 + 0.12 × 10−5 for the RE, James-Stein

estimator and Positive-rule James-Stein estimator, respectively. As the RMSE of the RE is
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very small, it can be concluded that the hypothesized restriction is inaccurate. However,

even with such an incorrect prior information, the SEs still perform slightly better than the

UE, further supporting our theory. We provide some visual plots of the effect estimation

for each estimator in Figure 4.3 for the ‘economicaid’ and ‘warnings’ relations. From

Figure 4.3, the coefficients of the RE are either very large or extremely small as compared

to the effect maps of the other estimators. This indicates that the resulting estimation of the

effects is questionable and that the restriction is most likely inaccurate. However, the effects

of the SEs are more reasonable and indicate the covariate interactions with the strongest ef-

fects. For example, the interaction of ‘medicinengo’ with the ‘catholics’ covariate appears

to have a strong positive effect on the ‘economicaid’ relation. In addition, the interactions

of ‘constitutional’ covariate with the ‘catholics’ and ‘lawngos’ appears to have little effect

on the ‘warnings’ relation.
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(a) Economicaid covariate estimated coefficient
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(b) Warnings covariate estimated coefficient

Figure 4.3: Plot of estimated coefficients for the economicaid and warnings covariates. a)

UE, b) RE, c) James-Stein estimator, d) Positive Rule estimator

Schizophrenia dataset

The schizophrenia dataset is composed of a total of 174 preprocessed T1-weighted MRI im-

ages with 124 control subjects and 50 subjects diagnosed with schizophrenia. The dataset

may be accessed at https://openfmri.org/dataset/ds000030/. Schizophrenia is a

serious mental illness where an individual loses touch with reality. A rapidly growing in-

terest in psychiatry and mental illness diagnosis is to be able to find regions of interest with

respect to mental diseases and to potentially develop methods allowing for the diagnosis

of psychiatric disorders by examining the brain of a patient. To estimate potential brain

regions of interest, we set the stacked response, Y to be 30 × 36 × 36 × 174 tensor and we

https://openfmri.org/dataset/ds000030/
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take diagnosis, gender and age to form the mode-3 covariates. We set the link function to

be the identity. For schizophrenia, previous studies have suggested that anatomical abnor-

malities in the dorsolateral prefrontal cortex may play a role in an individual developing

schizophrenia, see for example, Cheng et al. (2009). Hence, we use this prior information

to set the restriction. In particular, we set R1 = [02,3, I2, 02,25] be the 2 × 30 restriction

on the first mode, R2 = [07,23, I7, 07,6] is the 7 × 36 restriction on the second mode and

R3 = [06,22, I6, 06,8] is the 6×36 restriction on third mode, R4 = I3 and r0 is the 2×7×6×1

zero tensor. The interpretation of the matrices is that R1, R2 and R3 select the 3-dimensional

location, in this case the dorsolateral prefrontal cortex, in the brain and R4 signifies that we

will set the effects of the covariates to zero. We present a visual representation of the

restriction in Figure 4.4. We run the simulation using tensor glm under identity link by

resampling the data 1000 times and at each iteration we obtain the estimators. The result-

ing RMSE of the RE, James-Stein estimator and Positive-rule James-Stein estimator are

1 + 0.174 × 10−3, 1 + 0.119 × 10−9 and 1 + 0.119 × 10−9 , respectively. As can be seen, the

RMSE of the SEs is above 1, once again corroborating the established theoretical results.

Moreover, the RMSE of the RE also performs better than the UE. This may suggest that

there may not be much significant impact of the dorsolateral prefrontal cortex on having

schizophrenia. However, in the future, further analysis would be recommended and the de-

velopment of some inference techniques would be of great interest to study the significance

of effects of the estimated brain region regions. We present the estimated regions of interest

in Figure 4.5. As can be seen, the RE results in less regions that may affect the illness as

compared with the UE. Furthermore, the difference between the UE and SEs is not clear at

the surface of the skull, although internally there may be some interesting regions that the

SEs cover.
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Figure 4.4: A visual representation of the restriction (pink). This is an approximate part of

the dorsolateral prefrontal cortex

(a) UE estimated regions. (b) RE estimated regions.

(c) James-Stein estimated regions.
(d) Positive James-Stein estimated re-

gions.

Figure 4.5: Estimated regions (red) that may be associated with schizophrenia overlaid on

a randomly-drawn subject (grey)
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4.5 Conclusion

In this chapter, we studied an estimation problem about the tensor coefficient in a gener-

alized tensor regression model with multi-mode covariates where the tensor parameter is

suspected to satisfy some general constraint. We defined the estimating score function of

the model and under some assumptions, we showed that estimating score function con-

verges asymptotically to a normal vector. Using the estimating score function, we defined

the proposed tensor estimators, the UE and RE. Moreover, we proved the existence and the

consistency of the proposed estimators and under some weak dependence assumptions, we

derived the joint asymptotic distribution of the UE and RE. In addition, we proposed the

James-Stein and the Positive-rule Stein estimators in the context of this generalized model.

We also defined the asymptotic distributional risk under a more general loss function which

includes the ADR1 of Chapter 3 as a special case. In a similar fashion to Chapter 3, we

derived the conditions for the SEs to dominate the UE in terms of the ADR with respect to

the general loss function. We corroborated those results by simulation studies on normal,

binomial and Poisson data simulations and we analyzed a binary relational network and a

schizophrenia neuro-imaging dataset.

Note that the results and methods of this chapter extend the methods of Chapter 3 when

m0 = 0. Namely, the link function of the model is no longer the identity link function on

the tensor linear predictors and the dependence assumptions in Chapter 4 are weaker and

imply the assumptions of Chapter 3. Further, we consider regressors on all modes of the

tensor coefficient as opposed to just the mode d + 1 regressors of Chapter 3. This allows

for studying the effects of covariates on different dimensions of the tensor coefficient. In

addition, the restrictions, the SEs and the ADR of Chapter 3 are special cases of those in

Chapter 4, respectively.



Chapter 5

Summary and Future Research

5.1 Summary

In this dissertation, we proposed two tensor regression models. The first model was a ten-

sor regression model with multiple and possibly unknown number of change-points. Under

the weakest dependence structure of the error and regressor terms, we generalized the as-

sumptions and results of McLeish (1977) and Chen and Nkurunziza (2015, 2016). We

also generalized the restriction imposed on the parameters of Chen and Nkurunziza (2015,

2016) by incorporating multi-mode restrictions on the tensor parameter. These restrictions

allow for region selection, for example, and allow to set some prior knowledge or associa-

tions between brain regions and their effects on disease states. This was highlighted in the

MRI data analyses of Chapters 3 and 4. We established a tensor L2−mixingale CLT-type

theorem from which we derived the joint asymptotic distribution of the UE and RE. Using

this joint asymptotic normality and the identities established in Section 2.1, we derived the

joint asymptotic distributional risk of the proposed SEs, UE and RE. Shrinkage estimators

are known to be especially advantageous in cases where the restriction is seriously violated

as it still offers a good performance regardless of the validity of the restriction. On the
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other hand, the RE would not perform efficiently in the case where the restriction does not

hold. Under the weak dependence structure, we derived some sufficient conditions for the

SEs and the RE to dominate the UE. We also considered the case where the number of

change-points is also unknown and proved that the methods give a consistent estimator of

the number of change-points.

The second model that we consider in this dissertation is a generalized tensor regression

model. This model focuses on data for which there are no change-points. However, this

model is an extension of the model proposed in Chapter 3 as it replaces the identity link

function in the change-point model of Chapter 3 with an arbitrary link function. Moreover,

we consider a general constraint function on the tensor parameter of Chapter 4 which en-

closes the constraint of Chapter 3 as a special case. We set weaker assumptions on the error

and regressor terms and show that the assumptions give the L2−mixingale assumption of

Chapter 3. In addition, by using the estimating score function, we prove the existence and

consistency of the resulting UE and RE as well as their joint asymptotic normality. Fur-

thermore, we define the asymptotic distributional risk under a more general loss function

than that considered in Chapter 3 and using the identities of Section 2.2.1, we prove that

the SEs asymptotically dominate the UE with respect to the general loss function under

some sufficient conditions. The general tensor regression model allows the extension of the

methods to non-i.i.d, non-Gaussian tensor data such as binary tensor data. We corroborate

the results and show examples of applications using the Nations relational network dataset

(binary) and a schizophrenia MRI dataset (Gaussian).
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5.2 Future research

In the future, we are interested in addressing the problem in the context where the number

of change-points grows proportionally with T. Moreover, we seek to include some detailed

data analysis in the case where the number of change-points is unknown. Specifically, we

will investigate how our methods perform when the number of change-points is incorrectly

estimated for complex data and what that would mean for the estimated locations and the

performance of the proposed estimators. In addition, another point of interest would be

to check how well our results perform in the case where the change-points are not clear-

cut. Another improvement for our work would be to remove some redundant steps in the

dynamic programming algorithm of Section B.4 as suggested by Chen et al. (2017), for

example, in order to optimize the run-time.

An improvement is also to possibly investigate methods for a more precise restriction selec-

tion of brain regions for the neuro-imaging data analysis. A more precise region selection

should further improve the efficiency of the restricted estimator as well as the shrinkage

estimators.

Another point of interest is to incorporate methods which enable the model estimation to

overcome the high-dimensionality problem. Common in tensor data, high-dimensionality

is the case where there are far too many parameters to be estimated than the number of

observations available. We wish to address this problem in the future and we look to

study ways at which we may include some dimension reduction tools as in Xu et al.

(2019) or tensor decomposition tools as in the block-relaxation algorithm of Zhou et al.

(2013). The main challenge of such dimension-reduction tools is in establishing the joint

asymptotic distributions of the resulting estimators. Another avenue to overcome this high-

dimensionality problem is by using a procedure called the least absolute shrinkage and se-

lection operator (Lasso) which was introduced by Tibshirani (1996). This procedure helps
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to identify the model with the most relevant parameters to explain underlying phenomena.

We look to extend the results of Jandhyala et al. (2013) in the context of the proposed tensor

regression model. Jandhyala et al. (2013) developed a Lasso-type method for a multiple

change-point model for vector coefficients. Our extension would be interesting since we

will be working with tensor coefficients under weak dependence assumptions.
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Appendix A

Some Useful Identities

Proof of Theorem 2.1.1. For j = 1, · · · , d + 1, let Ξ
1/2†
j be the Moore-Penrose pseudo-

inverse of Ξ
1/2
j . Then, by the definition of the Moore-Penrose pseudo-inverse, we have

Ξ
1/2†
j Ξ

1/2
j Ξ

1/2†
j = Ξ

1/2†
j ; Ξ

1/2
j Ξ

1/2†
j Ξ

1/2
j = Ξ

1/2
j ,

(
Ξ

1/2†
j Ξ

1/2
j

)′
= Ξ

1/2†
j Ξ

1/2
j ; and

(
Ξ

1/2
j Ξ

1/2†
j

)′
=

Ξ
1/2
j Ξ

1/2†
j . Further, Λ jΞ j are idempotent matrices for j = 1, · · · , d+1 and note that Ξ

1/2
j Λ jΞ

1/2
j

is a symmetric and idempotent matrix for all j. Hence, the Kronecker product
1⊗

j=d+1
Ξ

1/2
j Λ jΞ

1/2
j

is also symmetric and idempotent. As a result, there exists an orthogonal matrix O such

that
1⊗

j=d+1

Ξ
1/2
j Λ jΞ

1/2
j = O ′

Il1···ld+1 0

0 0

O . Let

V = O

 1⊗
j=d+1

Ξ
1/2
j

 Vec(X),
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let q =
d+1∏
i=1

qi and let l =
d+1∏
i=1

li. Then, V =

V1

V2

 ∼ N(m+1)q1···qd+1


MV1

MV2

 ,
Il 0

0 0


 , where

MV1 = [Il, 0] O

( 1⊗
i=d+1

Ξ
1/2
i

)
Vec(M). Then, we have,

‖MV2‖
2 =M′V2

MV2 = (Vec(M))′
1⊗

j=d+1
Ξ

1/2
j O ′

0 0

0 Iq−l

O
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j=d+1
Ξ

1/2
j (Vec(M))

= (Vec(M))′
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j

Iq − O ′

Il 0

0 0
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 1⊗
j=d+1

Ξ
1/2
j (Vec(M)) .

Then, since Ξ jΛ jΞ j = Ξ j, by multiplying through the parenthesis, we have

1⊗
j=d+1

Ξ
1/2
j

Iq − O ′

Il 0

0 0

O


1⊗

j=d+1

Ξ
1/2
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j=d+1

Ξ j −

1⊗
j=d+1

Ξ jΛ jΞ j = 0.

Hence, ‖MV2‖ = 0 which implies MV2 = 0. Then, since MV2 = 0 and ΣV2 = 0, we get

V2 = 0 with probability 1. As a result, we have

trace
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(d)X
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This gives

trace
(
X∗

′

(d)X
∗
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Further, one can verify that
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As such, we have Vec
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Letting ς1 = E
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Therefore, using Theorem 1 in Judge and Bock (1978), we get
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We also have
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Moreover, sinceW j = Ξ
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By Part 1 of Theorem B.1.1,

M(
d+1�
j=1

)
j
W jΞ

1/2†
j Ξ

1/2
j Λ jΞ j =

(
M × jW jΞ

1/2†
j Ξ

1/2
j Λ jΞ j

)
(

d+1�
i=1
i, j

)
i
WiΞ

1/2†
i Ξ

1/2
i ΛiΞi,

and by Part 2 of Theorem B.1.1, M × j W jΞ
1/2†
j Ξ

1/2
j Λ jΞ j =

(
M × j Λ jΞ j

)
× j W jΞ

1/2†
j Ξ

1/2
j .

Hence,M × jW jΞ
1/2†
j Ξ

1/2
j Λ jΞ j =M × jW jΞ

1/2†
j Ξ

1/2
j . Also, sinceW j = Ξ

1/2
j W

∗
jΞ

1/2
j ,

M × jW jΞ
1/2†
j Ξ

1/2
j Λ jΞ j =M × j Ξ

1/2
j W

∗
jΞ

1/2
j Ξ

1/2†
j Ξ

1/2
j =M × j Ξ

1/2
j W

∗
jΞ

1/2
j =M × jW j.
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Therefore, (A.14) becomes(
Wd+1Ξ

1/2†
d+1 ⊗ · · · ⊗W1Ξ

1/2†
1

)
O ′[Il1···ld+1 , 0]′MV1 = Vec

M(
d+1�
j=1

)
j
W j

 . (A.7)

Therefore, by combining relations (A.11), (A.12) and (A.15), we get the stated result. �

Proof of Theorem 2.1.2. From the proof of Theorem 2.1.1, trace
(
X∗

′

(d)X
∗
(d)

)
= V ′1V1.

Further, trace
(
X∗∗

′

(d)X
∗∗
(d)

)  1⊗
j=d+1

Ξ
1/2†
j W jΞ

1/2†
j

  1⊗
j=d+1

Ξ
1/2
j

 (Vec(X))

= (Vec(X))′
 1⊗

j=d+1

Ξ
1/2
j

O ′O

 1⊗
j=d+1

Ξ
1/2†
j W jΞ

1/2†
j

O ′O

 1⊗
j=d+1

Ξ
1/2
j

 (Vec(X)) .

Then, trace(X∗∗
′

(d)X
∗∗
(d)) = V ′O

 1⊗
j=d+1

Ξ
1/2†
j W jΞ

1/2†
j

O ′V. Since V2 = 0 with probability 1, we

get trace(X∗∗
′

(d)X
∗∗
(d)) = V ′1

¯̄WV1, with ¯̄W = [Il, 0]O

 1⊗
j=d+1

Ξ
1/2†
j W jΞ

1/2†
j

O ′[Il, 0]′. Therefore,

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
X∗∗

′

(d)X
∗∗
(d)

)]
= E

[
h(V ′1V1)V ′1

¯̄WV1

]
,

with V1 ∼ Nl
(
MV1 , Il

)
. Then, by Theorem 2 in Judge and Bock (1978), we have

E
[
h(V ′1V1)V ′1

¯̄WV1

]
= E

[
h
(
χ2

l+2(M′V1
MV1)

)]
trace( ¯̄W) + E

[
h
(
χ2

l+4(M′V1
MV1)

)]
M
′
V1

¯̄WMV1 .

Then, from (A.13), it suffices to verify that trace
( ¯̄W

)
= D1 andM′V1

¯̄WMV1 = D2. We have

trace
( ¯̄W

)
= trace

 1⊗
j=d+1

Ξ
1/2
j Λ jΞ

1/2
j

  1⊗
j=d+1

Ξ
1/2†
j W jΞ

1/2†
j

, then

trace
( ¯̄W

)
=

d+1∏
j=1

trace
(
Ξ

1/2
j Λ jΞ

1/2
j Ξ

1/2†
j W jΞ

1/2†
j

)
. (A.8)

Note that, for j = 1, · · · , d + 1,

trace
(
Ξ

1/2
j Λ jΞ

1/2
j Ξ

1/2†
j W jΞ

1/2†
j

)
= trace

(
Ξ

1/2
j W

∗
jΞ

1/2
j Λ j

)
= trace

(
W jΛ j

)
,

and then trace
(
Ξ

1/2
j Λ jΞ

1/2
j Ξ

1/2†
j W jΞ

1/2†
j

)
= trace

(
Ξ

1/2
j W

∗
jΞ

1/2
j Λ j

)
= trace

(
W jΛ j

)
. Hence,

together with (A.16), we have trace
( ¯̄W

)
=

d+1∏
j=1

trace
(
W jΛ j

)
= D1. Similarly,

M
′
V1

¯̄WMV1 = (Vec(M))′
 1⊗

j=d+1

Ξ jΛ jΞ
1/2
j Ξ

1/2†
j W jΞ

1/2†
j Ξ

1/2
j Λ jΞ j

 (Vec(M)) .
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Note that Ξ
1/2
j Ξ

1/2†
j W jΞ

1/2†
j Ξ

1/2
j = Ξ

1/2
j Ξ

1/2†
j Ξ

1/2
j W

∗
jΞ

1/2
j Ξ

1/2†
j Ξ

1/2
j =W j, for j = 1, · · · , d+1.

Hence,

M
′
V1

¯̄WMV1 =

Vec(M(
d+1�
j=1

)
j
W

1/2
j Λ jΞ j)


′ Vec(M(

d+1�
j=1

)
j
W

1/2
j Λ jΞ j)

 .
Note that for j = 1, · · · , d + 1,M × j Λ jΞ j =M, then by Part 2 in Theorem B.1.1,

M × jW
1/2
j Λ jΞ j = (M × j Λ jΞ j) × jW

1/2
j =M × jW

1/2
j . As such,

M
′
V1

¯̄WMV1 =

(
Vec

(
M(

d+1�
j=1

)
j
W

1/2
j

))′ (
Vec

(
M(

d+1�
j=1

)
j
W

1/2
j

))
= trace

(
M
∗′

11(d)
M
∗
11(d)

)
= D2,

this completes the proof. �

Proof of Theorem 2.1.3. As in Theorem 2.1.1, let V = O
1⊗

j=d+1
Ξ

1/2
j Vec(X). Then,

E
[
h
(
X∗

′

(d)X
∗
(d)

)
trace

(
Y∗∗

′

(d) X∗∗(d)

)]
= E

h(V ′1V1)E [Vec(Y)|V1]′
1⊗

j=d+1

W jΞ
1/2†
j O ′[Il, 0]′V1

 .
By using the fact that

(
V ′1, (Vec(Y))′

)′
=


[Il, 0] O

1⊗
j=d+1

Ξ
1/2
j 0

0 Iq


(
(Vec(X))′, (Vec(Y))′

)′ ,

it can be shown that
(
V ′1, (Vec(Y))′

)′
∼ Nlq


 MV1

−Vec (MX)

 ,
 Il Π∗21

′

Π∗21 Π22


 , with

Π∗21 =

 1⊗
j=d+1

B j −

1⊗
j=d+1

Λ j

 1⊗
j=d+1

Ξ
1/2
j O ′ [Il, 0]′ .

Hence,

E [Vec(Y)|V1] = −Vec(MX) +

 1⊗
j=d+1

B j −

1⊗
j=d+1

Λ j

 1⊗
j=d+1

Ξ
1/2
j O ′ [Il, 0]′

(
V1 −MV1

)
.

Then, by Theorem 1 in Judge and Bock (1978), we have

E

h(V ′1V1) (Vec(MX))′
1⊗

j=d+1

W jΞ
1/2†
j O ′[Il, 0]′V1


= E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))
trace

(
M
∗′

X(d)
M
∗
X(d)

)]
.
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Similarly,

E

h(V ′1V1)M′V1
[Il, 0] O

1⊗
j=d+1

Ξ
1/2
j B j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′V1

 =

E

h (
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))
M
′
V1

[Il, 0] O
1⊗

j=d+1
Ξ

1/2
j B j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′MV1

 .
Note that sinceMV1 = [Il, 0] O

1⊗
j=d+1

Ξ
1/2
j Vec(MX), then

M
′
V1

[Il, 0] O
1⊗

j=d+1

Ξ
1/2
j B j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′MV1 = (Vec(MX))′

1⊗
j=d+1

Ξ
1/2
j

×

1⊗
j=d+1

Ξ
1/2
j Λ jΞ

1/2
j

1⊗
j=d+1

Ξ
1/2
j B jW jΞ

1/2†
j

1⊗
j=d+1

Ξ
1/2
j Λ jΞ

1/2
j

1⊗
j=d+1

Ξ
1/2
j (Vec(MX)) .

This gives

M
′
V1

[Il, 0] O
1⊗

j=d+1
Ξ

1/2
j B j

⊗1
j=d+1W jΞ

1/2†
j O ′[Il, 0]′MV1

= (Vec(MX))′
1⊗

j=d+1
Ξ jB jW jΛ jΞ j (Vec(MX))

and then,

M
′
V1

[Il, 0] O
1⊗

j=d+1

Ξ
1/2
j B j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′MV1

= (Vec(MX))′
1⊗

j=d+1

Ξ jB jW j (Vec(MX) .

Hence,

E

h (
V ′1V1

)
M
′
V1

[Il, 0]O
1⊗

j=d+1
Ξ

1/2
j Λ jW jΞ

1/2†
j O ′[Il, 0]′V1

 =

E

h (
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))
M
′
V1

[Il, 0]O
1⊗

j=d+1
Ξ

1/2
j Λ jW jΞ

1/2†
j O ′[Il, 0]′MV1

 .
Since

O ′[Il, 0]′MV1 = O ′[Il, 0]′[Il, 0]O
1⊗

j=d+1

Ξ
1/2
j Vec(MX) =

1⊗
j=d+1

Ξ
1/2
j Λ jΞ jVec(MX),
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then using similar techniques as in Theorem 2.1.1

E

h(V ′1V1)V ′1 [Il, 0] O
1⊗

j=d+1
Ξ

1/2
j B j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′V1


= E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))] d+1∏
j=1

trace(W jB j)

+ E
[
h
(
χ2

l+4

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace

M′X(d)

(
MX(

d+1�
j=1

)
j
Ξ jB jW j

)
(d)

 ,
and

E

h(V ′1V1)V ′1 [Il, 0] O
1⊗

j=d+1
Ξ

1/2
j Λ j

1⊗
j=d+1

W jΞ
1/2†
j O ′[Il, 0]′V1


= E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))] d+1∏
j=1

trace(Λ jW jΛ jΞ j)

+ E
[
h
(
χ2

l+4

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace

(MX(
d+1�
j=1

)
j
W

1/2
j Λ jΞ j

)′
(d)

(
MX(

d+1�
j=1

)
j
Λ jΞ j

)
(d)


= E

[
h
(
χ2

l+2

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))] d+1∏
j=1

trace(W jΛ j)

+ E
[
h
(
χ2

l+4

(
trace

(
M
∗∗′

X(d)
M
∗∗
X(d)

)))]
trace

(MX(
d+1�
j=1

)
j
W

1/2
j

)′
(d)

(
MX(

d+1�
j=1

)
j
W

1/2
j

)
(d)

 .
Therefore, the proof follows from algebraic computations. �

Proof of Theorem 2.2.1. For j = 1, · · · , d, let Ξ1/2†
j be the Moore-Penrose pseudo-inverse

of Ξ1/2
j . Then, by the definition of the Moore-Penrose pseudo-inverse, we have Ξ1/2†

j Ξ1/2
j Ξ1/2†

j =

Ξ1/2†
j ; Ξ1/2

j Ξ1/2†
j Ξ1/2

j = Ξ1/2
j ;

(
Ξ1/2†

j Ξ1/2
j

)′
= Ξ1/2†

j Ξ1/2
j ; and

(
Ξ1/2

j Ξ1/2†
j

)′
= Ξ1/2

j Ξ1/2†
j . Fur-

ther, since Ξ1/2
j Λ jΞ

1/2
j are idempotent, then the Kronecker product

1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j is also

idempotent. Hence, there exists an orthogonal matrix Q such thatQ

 1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j

Q′ =Ip 0

0 0

 , with p =

d∏
j=1

p j. Let V = Q
1⊗

j=d
Ξ1/2

j Vec(X). Hence,

V =

V1

V2

 ∼ E p
q


M1

0

 ,Σv; g

 , (A.9)
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with

M1 =
[
Ip 0

]
Q

1⊗
j=d

Ξ1/2
j Vec(M), Σv =

Ip 0

0 0

 . (A.10)

From (A.9), V2 = 0 with probability 1. Thus,

trace
(
X∗

′

(d)X
∗
(d)

)
= (Vec(X))′

1⊗
j=d

Ξ1/2
j Q

′Q
1⊗

j=d
(Ξ1/2

j Λ jΞ
1/2
j )Q′Q

1⊗
j=d

Ξ1/2
j (Vec(X)). This gives

trace
(
X∗

′

(d)X
∗
(d)

)
= V′[Ip, 0]′[Ip, 0]V = V ′1V1.

Further, it can be verified that

X
( d�

j=1

)
j
W j = X

( d�
j=1

)
j

(
Ξ1/2

j W
∗
jΞ

1/2
j

)
= X

( d�
j=1

)
j

(
W jΞ

1/2†
j Ξ1/2

j

)
.

As such, we have Vec
(
X(

d�
j=1

)
j
W j

)
= Vec

(
X(

d�
j=1

)
j

(
W jΞ

1/2†
j Ξ1/2

j

))
, and

(Vec (X))′
1⊗

j=d

W j (Vec (X)) = (Vec (X))′
1⊗

j=d

(
Ξ1/2

j Ξ1/2†
j W jΞ

1/2
j Ξ1/2†

j

)
(Vec (X)) .

Set ς1 = E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
Vec

(
X(

d�
j=1

)
j

(
W jΞ

1/2†
j Ξ1/2

j

))]
.

We have ς1 = E

h (
trace

(
X∗

′

(d)X
∗
(d)

)) 1⊗
j=d

(
W jΞ

1/2†
j

)
Q′V

. This gives

ς1 = E

h (
V ′1V1

)  1⊗
j=d

W jΞ
1/2†
j

 Q′[Ip, 0]′V1

 . (A.11)

Therefore, by using Lemma A.2 of Nkurunziza (2013), we get

ς1 = ψ(1)
1,p+2(M′1M1)Q′[Ip, 0]′M1. (A.12)

We also haveM′1M1 = (Vec(M))′
⊗1

j=d Ξ1/2
j Q

′
[
Ip, 0

]′ [
Ip, 0

]
Q

⊗1
j=d Ξ1/2

j (Vec(M)). Then,

M
′
1M1 = (Vec(M))′

 1⊗
j=d

Ξ jΛ jΞ j

 (Vec(M)) = (Vec(M))′
 1⊗

j=d

Ξ j

 (Vec(M)) .

This gives

M
′
1M1 = ‖M‖2{Ξi,i=1,··· ,d}. (A.13)
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Moreover, sinceW j = Ξ1/2
j W

∗
jΞ

1/2
j , for j = 1, · · · , d, we have

1⊗
j=d

(
W jΞ

1/2†
j

)
Q′[Ip, 0]′M1 =

1⊗
j=d

(
W jΞ

1/2†
j

) 1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j

1⊗
j=d

Ξ1/2
j Vec(M).

This gives

1⊗
j=d

(
W jΞ

1/2†
j

)
Q′[Ip, 0]′M1 = Vec

M( d�
j=1

)
j
W jΞ

1/2†
j Ξ1/2

j Λ jΞ j

 . (A.14)

Then,

M(
d�

j=1
)

j
W jΞ

1/2†
j Ξ1/2

j Λ jΞ j =
(
M × jW jΞ

1/2†
j Ξ1/2

j Λ jΞ j

) ( d�
i=1
i, j

)
i
WiΞ

1/2†
i Ξ1/2

i ΛiΞi,

andM × jW jΞ
1/2†
j Ξ1/2

j Λ jΞ j =
(
M × j Λ jΞ j

)
× jW jΞ

1/2†
j Ξ1/2

j .

Hence,M × jW jΞ
1/2†
j Ξ1/2

j Λ jΞ j = M × jW jΞ
1/2†
j Ξ1/2

j . Also, sinceW j = Ξ1/2
j W

∗
jΞ

1/2
j ,

M × jW jΞ
1/2†
j Ξ1/2

j Λ jΞ j = M × j Ξ1/2
j W

∗
jΞ

1/2
j Ξ1/2†

j Ξ1/2
j = M × j Ξ1/2

j W
∗
jΞ

1/2
j = M × jW j.

Therefore, (A.14) becomes

(
WdΞ

1/2†
d ⊗ · · · ⊗W1Ξ

1/2†
1

)
Q′[Ip, 0]′M1 = Vec

M( d�
j=1

)
j
W j

 . (A.15)

Therefore, by combining relations (A.11), (A.12) and (A.15), we get the stated result. �

Proof of Theorem 2.2.2. As in Theorem 2.2.1, let V = Q
1⊗

j=d
Ξ1/2

j Vec(X). Then,

E
[
h
(
X∗

′

(d)X
∗
(d)

)
trace

(
Y∗∗

′

(d)X
∗∗
(d)

)]
= E

h(V ′1V1)E [Vec(Y)|V1]′
1⊗

j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1

 .
By using the fact that

(
V ′1, (Vec(Y))′

)′
=


[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j 0

0 Iq


(
(Vec(X))′, (Vec(Y))′

)′ ,
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it can be shown that
(
V ′1, (Vec(Y))′

)′
∼ Epq


 M1

−Vec (M1)

 ,
 Ip Π∗

′

21

Π∗21 Π22


 ,

with Π∗21 =

 1⊗
j=d
B j −

1⊗
j=d

Λ j

 1⊗
j=d

Ξ1/2
j Q

′
[
Ip, 0

]′
. Hence,

E [Vec(Y)|V1] = Vec (M2) +

 1⊗
j=d

B j −

1⊗
j=d

Λ j

 1⊗
j=d

Ξ1/2
j Q

′
[
Ip, 0

]′
(V1 −M1) .

Then, by Lemma A.2 of Nkurunziza (2013),

E

h(V ′1V1) (Vec(M2))′
1⊗

j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1

 = ψ(1)
1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
×trace


M2

( d�
j=1

)
j
W1/2

j


′

(d)

M( d�
j=1

)
j
W1/2

j


(d)


Similarly,

E

h(V ′1V1)M′1
[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1

 =

ψ(1)
1,p+2

(
‖M‖2

{Ξi,i=1,··· ,d}

) M′1 [
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′M1

 .
Note that sinceM1 =

[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j Vec(M), then

M
′
1

[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

⊗1
j=dW jΞ

1/2†
j Q′[Ip, 0]′M1 = (Vec(M))′

1⊗
j=d

Ξ1/2
j

1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j

×
1⊗

j=d
Ξ1/2

j B jW jΞ
1/2†
j

1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j

1⊗
j=d

Ξ1/2
j (Vec(M)) .

This gives

M
′
1

[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′M1 = (Vec(M))′

1⊗
j=d

Ξ jB jW jΛ jΞ j (Vec(M))

and then,

M
′
1

[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′M1 = (Vec(M))′

1⊗
j=d

Ξ jB jW jVec (M) .
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Hence,

E

h (
V ′1V1

)
M
′
1[Ip, 0]Q

1⊗
j=d

Ξ1/2
j B jW jΞ

1/2†
j Q′[Ip, 0]′V1

 =

ψ(1)
1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace

M′(d)

M( d�
j=1

)
j
Ξ jB jW j


(d)

 .
Similarly,

E

h (
V ′1V1

)
M
′
1[Ip, 0]Q

1⊗
j=d

Ξ1/2
j Λ jW jΞ

1/2†
j Q′[Ip, 0]′V1


= ψ(1)

1,p+2

(
‖M‖2

{Ξi,i=1,··· ,d}

)
trace

M′(d)

(
M(

d�
j=1

)
j
Ξ jΛ jW j

)
(d)


= ψ(1)

1,p+2

(
‖M‖2

{Ξi,i=1,··· ,d}

)
trace

(M(
d�

j=1
)

j
W

1/2
j

)′
(d)

(
M(

d�
j=1

)
j
W

1/2
j

)
(d)

 .
Further, Q′[Ip, 0]′M1 = Q′[Ip, 0]′[Ip, 0]Q

1⊗
j=d

Ξ1/2
j Vec(M1) =

1⊗
j=d

Ξ1/2
j Λ jΞ jVec(M). Then,

as in proof of Theorem 2.2.1,

E

h(V ′1V1)V ′1
[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j B j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1


= ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) d∏
j=1

trace(W jB j) + ψ(1)
1,p+4trace

M′(d)

M( d�
j=1

)
j
Ξ jB jW j


(d)

 .
We also have

E

h(V ′1V1)V ′1
[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j Λ j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1


= ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) d∏
j=1

trace(Λ jW jΛ jΞ j)

+ψ(1)
1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace


M( d�

j=1

)
j
W

1/2
j Λ jΞ j


′

(d)

M( d�
j=1

)
j
Λ jΞ j


(d)

 .
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Then,

E

h(V ′1V1)V ′1
[
Ip, 0

]
Q

1⊗
j=d

Ξ1/2
j Λ j

1⊗
j=d

W jΞ
1/2†
j Q′[Ip, 0]′V1


= ψ(2)

1,p+2

(
‖M‖2{Ξi,i=1,··· ,d}

) d∏
j=1

trace(W jΛ j)

+ψ(1)
1,p+4

(
‖M‖2{Ξi,i=1,··· ,d}

)
trace


M( d�

j=1

)
j
W

1/2
j


′

(d)

M( d�
j=1

)
j
W

1/2
j


(d)

 .
Therefore, the proof follows from algebraic computations. �

Proof of Theorem 2.2.3. From the proof of Theorem 2.2.1, trace
(
X∗

′

(d)X
∗
(d)

)
= V ′1V1. Further,

trace
(
X∗∗

′

(d)X
∗∗
(d)

)
= (Vec(X))′

 1⊗
j=d

Ξ1/2
j


 1⊗

j=d

Ξ1/2†
j W jΞ

1/2†
j


 1⊗

j=d

Ξ1/2
j

 (Vec(X))

= (Vec(X))′
 1⊗

j=d

Ξ1/2
j

Q′Q
 1⊗

j=d

Ξ1/2†
j W jΞ

1/2†
j

Q′Q
 1⊗

j=d

Ξ1/2
j

 (Vec(X)) .

Then, trace(X∗∗
′

(d)X
∗∗
(d)) = V ′Q

 1⊗
j=d

Ξ1/2†
j W jΞ

1/2†
j

Q′V. Since V2 = 0 with probability 1, we

get

trace(X∗∗
′

(d)X
∗∗
(d)) = V ′1

¯̄WV1, with ¯̄W = [Il, 0]Q

 1⊗
j=d

Ξ1/2†
j W jΞ

1/2†
j

Q′[Il, 0]′. Therefore,

E
[
h
(
trace

(
X∗

′

(d)X
∗
(d)

))
trace

(
X∗∗

′

(d)X
∗∗
(d)

)]
= E

[
h(V ′1V1)V ′1

¯̄WV1

]
,

with V1 ∼ E p
q

(
M1, Ip

)
. Then, by Lemma A.3 in Nkurunziza (2013), we have

E
[
h(V ′1V1)V ′1

¯̄WV1

]
= ψ(1)

1,p+2(M′1M1)trace( ¯̄W ) + ψ(1)
1,p+4(M′1M1)M′1

¯̄WM1.

Then, it suffices to verify that trace
( ¯̄W

)
= D1 andM′1

¯̄WM1 = D2. We have

trace
( ¯̄W

)
= trace

 1⊗
j=d

Ξ1/2
j Λ jΞ

1/2
j

  1⊗
j=d

Ξ1/2†
j W jΞ

1/2†
j

, then

trace
( ¯̄W

)
=

d∏
j=1

trace
(
Ξ1/2

j Λ jΞ
1/2
j Ξ1/2†

j W jΞ
1/2†
j

)
. (A.16)
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Note that, for j = 1, · · · , d, trace
(
Ξ1/2

j Λ jΞ
1/2
j Ξ1/2†

j W jΞ
1/2†
j

)
= trace

(
Ξ1/2

j W
∗
jΞ

1/2
j Λ j

)
=

trace
(
W jΛ j

)
, and then

trace
(
Ξ1/2

j Λ jΞ
1/2
j Ξ1/2†

j W jΞ
1/2†
j

)
= trace

(
Ξ1/2

j W
∗
jΞ

1/2
j Λ j

)
= trace

(
W jΛ j

)
.Hence, together

with (A.16), we get

trace
( ¯̄W

)
=

d∏
j=1

trace
(
W jΛ j

)
= D1.

Similarly,

M
′
1

¯̄WM1 = (Vec(M))′
 1⊗

j=d

Ξ jΛ jΞ
1/2
j Ξ1/2†

j W jΞ
1/2†
j Ξ1/2

j Λ jΞ j

 (Vec(M)) .

Note that Ξ1/2
j Ξ1/2†

j W jΞ
1/2†
j Ξ1/2

j = Ξ1/2
j Ξ1/2†

j Ξ1/2
j W

∗
jΞ

1/2
j Ξ1/2†

j Ξ1/2
j =W j, for j = 1, · · · , d.

Hence,

M
′
1

¯̄WM1 =

Vec(M
( d�

j=1

)
j
W

1/2
j Λ jΞ j)


′ Vec(M

( d�
j=1

)
j
W

1/2
j Λ jΞ j)

 .
Note that for j = 1, · · · , d,M× j Λ jΞ j = M, then,M× jW

1/2
j Λ jΞ j = (M× j Λ jΞ j)× jW

1/2
j =

M × jW
1/2
j . As such,

M
′
1

¯̄WM1 =

Vec

M(
d�

j=1

)
j
W

1/2
j



′ Vec

M(
d�

j=1

)
j
W

1/2
j




= trace


M(

d�
j=1

)
j
W

1/2
j


′

(d)

M(
d�

j=1

)
j
W

1/2
j


(d)


= D2,

this completes the proof. �



Appendix B

Tensor Regression with Multiple

Change-points

B.1 Properties of tensors and definitions

Theorem B.1.1. Let S ∈ Rq1×q2×···×qd be a d−dimensional tensor and let A ∈ RIm×qm and

B ∈ RIn×qn be two matrices. Then,

1.

S ×m A ×n B = (S ×m A) ×n B = (S ×n B) ×m A, (m , n),

2. If C ∈ RK×Im is a given matrix, then

S ×m A ×m C = S ×m (CA).

The proof of this result is given in Kolda and Bader (2009).

To simplify some notations, let Λ∗ =
1⊗

i=d+1
Λi, Σ∗11 = Γ−1Λd+1Γ

−1 ⊗ Λ∗, Ω =
1⊗

i=d+1
Ωi,

P∗ = G∗d+1 ⊗
1⊗

i=d
Gi, and let G0 =

(
Γ∗−1 ⊗ Iqd · · · ⊗ Iq1

)
.
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Proposition B.1.1. Let X be a (d + 1)−dimensional tensor random variate with

X ∼ Nq1×···×qd×(m0+1)qd+1 (0,Λ∗) , and let Γ∗ be an (m0 + 1)qd+1 × (m0 + 1)qd+1 symmetric,

non-random matrix. Then, X ×d+1 Γ∗−1 ∼ Nq1×···×qd×(m0+1)qd+1

(
0,Σ∗11

)
.

Proof. Note that Vec
(
X ×d+1 Γ∗−1

)
=

(
Γ∗−1 ⊗ Iqd · · · ⊗ Iq1

)
Vec(X) = G0Vec(X). Now, since

Vec(X) ∼ N(m0+1)q1···qd+1 (0,Λ∗) , then G0Vec(X) ∼ N(m0+1)q1···qd+1

(
0,Σ∗11

)
,with Σ∗11 = G0Λ

∗G0.

Then, the proof follows from Kronecker product rules. �

Proposition B.1.2. Let ε∗1 ∼ Nq1×···×qd×qd+1

(
0,Σ∗11

)
. Then,

(
I, I −Ω

′

,Ω
′
)′

Vec(ε∗1) + (0,−1, 1)′ ⊗ P∗Vec(r0) ∼ Nq1···qd3(m0+1)qd+1 (Vec(µ),Σ) ,

where µ = 0�(d+1) (−r0 ×1G1 ×2 · · · ×dGd ×d+1G
∗
d+1)�(d+1) (r0 ×1G1 ×2 · · · ×dGd ×d+1G

∗
d+1),

Σ =


Σ∗11 Σ∗11 − Σ∗11Ω

′ Σ∗11Ω
′

Σ∗11 − J∗Σ∗11 Σ∗11 − J∗Σ∗11 − Σ∗11Ω
′ + J∗Σ∗11Ω

′ Σ∗11Ω
′ − J∗Σ∗11Ω

′

J∗Σ∗11 J∗Σ∗11 − J∗Σ∗11Ω
′ J∗Σ∗11Ω

′


.

Proof. We have

I

I − J∗

J∗


Vec(ε∗1) +



0

−P∗Vec(r0)

P∗Vec(r0)


∼ Nq1···qd3(m0+1)qd+1 (0 + µ∗,Σ)

with

µ∗ =



0

−P∗Vec(r0)

P∗Vec(r0)


,Σ =



I

I − J∗

J∗


Λ∗

(
I
... I − J∗′

... J∗′
)
.
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Then, by some algebraic computations, we have

Σ =


Λ∗ Λ∗(I − J∗′) Λ∗J∗′

(I − J∗)Λ∗ (I − J∗)Λ∗(I − J∗′) (I − J∗)Λ∗J∗′

J∗Λ∗ J∗ΛΛ∗(I − J∗′) J∗Λ∗J∗′


,

this completes the proof. �

B.2 Some proofs of technical results in Chapter 3

Proof of Proposition 3.1.1. By vectorizing the model in (3.1), we have

Vec(Y) = QVec(δ) + Vec(U).

If τ1, · · · , τm0 and m0 are known, we minimize with respect to Vec(δ), the optimization

function

L1(δ) = [Vec(Y) − QVec(δ)]′[Vec(Y) − QVec(δ)],

with respect to Vec(δ). Taking the derivative of L1(δ) with respect to Vec(δ) and setting it

equal to 0, we have

− 2Vec(Y)′Q + 2Vec(δ)′Q′Q = 0. (B.1)

Solving for Vec(δ), we get

Vec(δ) = (Q′Q)−1Q′Vec(Y).

Further, we have
∂2L1(δ)

∂Vec(δ)Vec(δ)′
= Q′Q,

which is a positive definite matrix. Then, by noting that (Q′Q)−1Q′ = (Z̄′Z̄)−1Z̄′ ⊗
1⊗

i=d
Iqi ,

we have
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Vec(δ̂(τ)) = [(Z̄′Z̄)−1Z̄′ ⊗
1⊗

i=d

Iqi]Vec(Y).

Therefore, returning to tensor form, we have

Vec(δ̂(τ)) = Y ×d+1 (Z̄′Z̄)−1Z̄′.

Further, if τ1, · · · , τm0 and m0 are known, to find δ̃(τ), we minimize the Lagrangian, L2(δ),

with respect to Vec(δ)

L2(δ) = [Vec(Y) − QVec(δ)]′[Vec(Y) − QVec(δ)] + λ′(RVec(δ) − Vec(r)),

where λ is an arbitrary l1l2 · · · ld+1−column vector of Lagrangian multipliers.

To this end, taking the derivative of both sides with respect to Vec(δ), we get

− 2Vec(Y)′Q + 2Vec(δ)′Q′Q + λ′R = 0. (B.2)

Solving for Vec(δ), we have

Vec(δ) = (Q′Q)−1Q′Vec(Y) − 1/2(Q′Q)−1R′λ. (B.3)

Multiplying both sides of (B.3) by R and subtracting Vec(r), we get

RVec(δ) − Vec(r) = R(Q′Q)−1Q′Vec(Y) − 1/2R(Q′Q)−1R′λ − Vec(r).

Hence, under the restriction in (3.2), we have,

R(Q′Q)−1Q′Vec(Y) − 1/2R(Q′Q)−1R′λ − Vec(r) = 0.

Finally, solving for λ, we get

λ = 2[R(Q′Q)−1R′]−1(R(Q′Q)−1Q′Vec(Y) − Vec(r)) (B.4)
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Substituting λ from (B.4) into (B.3), we have

Vec(δ) = (Q′Q)−1Q′Vec(Y) − (Q′Q)−1R′[R(Q′Q)−1R′]−1[R(Q′Q)−1Q′Vec(Y) − Vec(r)].

Using the fact that Vec(δ̂(τ )) = (Q′Q)−1Q′Vec(Y), the above equation can be simplified as

Vec(δ) = Vec(δ̂(τ )) − (Q′Q)−1R′[R(Q′Q)−1R′]−1[RVec(δ̂(τ )) − Vec(r)].

Using Kronecker product properties, we have

Q′Q =

Z̄ ⊗ 1⊗
i=d

Iqi

′ Z̄ ⊗ 1⊗
i=d

Iqi

 =

Z̄′ ⊗ 1⊗
i=d

Iqi

 Z̄ ⊗ 1⊗
i=d

Iqi

 =

Z̄′Z̄ ⊗ 1⊗
i=d

Iqi

 .
Hence,

(Q′Q)−1 = (Z̄′Z̄)−1 ⊗

1⊗
i=d

Iqi .

Similarly, it can be shown that

R′[R(Q′Q)−1R′]−1R =

1⊗
i=d+1

Ji,

and

R′[R(Q′Q)−1R′]−1 =

1⊗
i=d+1

Gi.

Hence, we have

Vec(δ̃(τ )) = Vec(δ̂(τ )) −

 1⊗
i=d+1

Ji

 Vec(δ̂(τ )) +

 1⊗
i=d+1

Gi

 Vec(r). (B.5)

Therefore, converting back to tensor mode by “un-vecing”, we have

δ̃(τ ) = δ̂(τ ) − δ̂(τ )(
d+1�
i=1

)
i
Ji + r(

d+1�
i=1

)
i
Gi,

this completes the proof. �

Proof of Proposition 3.2.7. We have by Corollary 3.2.5,

∞∑
k=−∞

a−1
k E

(
V2

Lp,k,s1,··· ,sd+1
(l)

)
=

l+Lp∑
i=l+1

[a−1
0 E(E2(Xp,i,s1,··· ,sd+1 |F

i
p,−∞)) + a−1

1 E(D2
i,0,s1,··· ,sd+1

)

+

∞∑
k=1

(a−1
k+1 − a−1

k )E(D2
i,k,s1,··· ,sd+1

) +

∞∑
k=1

(a−1
k − a−1

k−1)E(E2(Xp,i,s1,··· ,sd+1 |F
i−k
p,−∞))].
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Thus,
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

∞∑
k=−∞

a−1
k E

(
V2

Lp,k,s1,··· ,sd+1

)
= a−1

1

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E(D2
i,0,s1,··· ,sd+1

)

+

l+Lp∑
i=l+1

a−1
0

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E(E2(Xp,i,s1,··· ,sd+1 |F
i
p,−∞))

+

∞∑
k=1

(a−1
k+1 − a−1

k )
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E(D2
i,k,s1,··· ,sd+1

)

+

∞∑
k=1

(a−1
k − a−1

k−1)
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E(E2(Xp,i,s1,··· ,sd+1 |F
i−k
p,−∞)).

Now, using mixingale properties, we have

qd+1∑
sd+1=1

qd∑
sd=1

· · ·

q1∑
s1=1

E(E2(Xp,i,s1,··· ,sd+1 |F
i−k
p,−∞)) ≤ c2

p,iψ
2(k),

and
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E(D2
i,k,s1,··· ,sd+1

|F i−k
p,−∞) ≤ c2

p,iψ
2(k + 1).

This gives
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

∞∑
k=−∞

a−1
k E

(
V2

Lp,k,s1,··· ,sd+1
(l)

)
≤

 l+Lp∑
i=l+1

c2
p,i

 {a−1
0

 1∑
j=0

ψ2( j)


+ (a−1

1 ψ
2(1) − a−1

0 ψ
2(1)) +

∞∑
j=2

(a−1
j − a−1

j−1)ψ2( j) +

∞∑
k=1

(a−1
k − a−1

k−1)ψ2(k)}.

Then, we have
q1∑

s1=1

· · ·

qd+1∑
sd+1=1

∞∑
k=−∞

a−1
k E

(
V2

Lp,k,s1,··· ,sd+1

)
≤

 l+Lp∑
i=l+1

c2
p,i

 {a−1
0

(
ψ2(0) + ψ2(1)

)
+ 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ2(k)} < ∞.

This completes the proof. �

Proof of Lemma 3.2.3. Let Q j,k(l) =
l+ j∑

i=l+1

[
E(Xp,i|F i+k

p,−∞) − E(Xp,i|F i+k−1
p,−∞ )

]
. Then, by Corol-

lary 3.2.2, we get
l+ j∑

i=l+1
Xp,i =

∞∑
k=−∞

Q j,k(l) a.s. Define a sequence {ak}
∞
−∞ such that condi-

tions in Lemma 3.2.2 hold. Then, by Cauchy-Schwarz’s inequality, for s1 = 1, · · · , q1,



APPENDIX B. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 136

s2 = 1, · · · , q2, · · · sd+1 = 1, · · · , qd+1, we have l+ j∑
i=l+1

Xp,i,s1,··· ,sd+1


2

=

 ∞∑
k=−∞

Q j,k,s1,··· ,sd+1(l)

2

6

 ∞∑
k=−∞

ak

  ∞∑
k=−∞

a−1
k Q2

j,k,s1,··· ,sd+1

 .
Thus, E

max
j6L

 j∑
i=1

Xp,i,s1,··· ,sd+1


2 6

(
∞∑

k=−∞

ak

) (
∞∑

k=−∞

a−1
k E

(
max

j6L
Q2

j,k,s1,··· ,sd+1
(l)

))
.

For each k,s1, s2, · · · , sd+1, the sequence {Qi,s1,··· ,sd+1(l),F
i+k
p,−∞, 1 + l 6 i 6 l + L} is a martin-

gale. Then, by Doob’s inequality, we have

E

max
j6L

 l+ j∑
i=l+1

Xp,i,s1,··· ,sd+1


2 6 4

 ∞∑
k=−∞

ak

  ∞∑
k=−∞

a−1
k E

(
Q2

L,k,s1,··· ,sd+1
(l)

) .
Using Proposition 3.2.7, we get

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E

max
j6L

 l+ j∑
i=l+1

Xp,i,s1,··· ,sd+1


2 6 4

(
∞∑

k=−∞

ak

) (
l+L∑

i=l+1
c2

p,i

)
K(ψ) < ∞,

where K(ψ) = a−1
0

(
ψ2(0) + ψ2(1)

)
+ 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ2(k), this completes the proof. �

Proof of Proposition 3.2.8. 1) We have

J1(a, b,m)

= E

 q1∑
s1=1
· · ·

qd+1∑
sd+1=1

max
j≤L

Ū2
1, j,s1,··· ,sd+1

ṽ2
L(l)

I

 q1∑
s1=1

· · ·

qd+1∑
sd+1=1

max
j≤L

Ū2
1, j,s1,··· ,sd+1

ṽ2
L(l)

> b/9


 .

Since ϕ2(k)/ϕ2(m) ≥ 1 for k < m, we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[E2(U1,i,s1,··· ,sd+1 |F
i−k
p,−∞)]

=

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[E2((Ei+mXa
p,i,s1,··· ,sd+1

) − Ei−mXa
p,i,s1,··· ,sd+1

|F i−k
p,−∞)]

=

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[(E(Xa
p,i,s1,··· ,sd+1

|F i−k
p,−∞) − E((Ei−m(Xa

p,i,s1,··· ,sd+1
)|F i−k

p,−∞))2].

Hence,

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

E[E2(U∗1,i,s1,··· ,sd+1
|F i−k

p,−∞)]


≤

2q1···qdqd+1a2c2
p,i

ϕ2(m) ψ2(k), if k < m,

= 0, ifk ≥ m.
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Similarly,

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[(U1,i,s1,··· ,sd+1 − E(U1,i,s1,··· ,sd+1 |F
i+k
p,−∞))2]

=

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[(Ei+mXa
p,i,s1,··· ,sd+1

− Ei−mXa
p,i,s1,··· ,sd+1

)

− E((Ei+mXa
p,i,s1,··· ,sd+1

− Ei−mXa
p,i,s1,··· ,sd+1

)|F i+k
p,−∞)2]

=

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E[(E(Ei+mXa
p,i,s1,··· ,sd+1

|F i+k
p,−∞) − E(Xa

p,i,s1,··· ,sd+1
|F i+k

p,−∞))2].

Then, we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E
[
(U1,i,s1,··· ,sd+1 − E(U1,i,s1,··· ,sd+1 |F

i+k
p,−∞))2

]
≤

2q1 · · · qdqd+1a2c2
p,i

ϕ2(m)
ψ2(k + 1)I(k < m).

Hence, {U1,i,F i
p,−∞} is a mixingale of size −1/2, and it follows from Corollary 3.2.2

that Ū1, j =
j∑

i=1
U1,i =

∞∑
k=−∞

Û1, j,k a.s., where

Û1, j,k =
j∑

i=1
[E(U1,i|F i+k

p,−∞) − E(U1,i|F i+k−1
p,−∞ )]. Let {Bk}

∞
k=−∞

be a sequence of positive

real numbers. By Jensen’s inequality,

 ∞∑
k=−∞

Û1, j,k,s1,··· ,sd+1

4

=

 ∞∑
k=−∞

Bk

4

∞∑

k=−∞

Û1, j,k,s1,··· ,sd+1

Bk

Bk
∞∑

k=−∞

Bk


4

≤

 ∞∑
k=−∞

Bk

4 ∞∑
k=−∞

Û4
1, j,k,s1,··· ,sd+1

B4
k

Bk
∞∑

k=−∞

Bk

,

which results in

 ∞∑
k=−∞

Û1, j,k,s1,··· ,sd+1

4

≤

 ∞∑
k=−∞

Bk

3 ∞∑
k=−∞

Û4
1, j,k,s1,··· ,sd+1

B3
k

.



APPENDIX B. TENSOR REGRESSION WITH MULTIPLE CHANGE-POINTS 138

Note that

E(U1,i,s1,··· ,sd+1 |F
i+k
p,−∞) − E(U1,i,s1,··· ,sd+1 |F

i+k−1
p,−∞ )

= E(Ei+mXa
p,i,s1,··· ,sd+1

− Ei−mXa
p,i,s1,··· ,sd+1

|F i+k
p,−∞)

− E(Ei+mXa
p,i,s1,··· ,sd+1

− Ei−mXa
p,i,s1,··· ,sd+1

|F i+k−1
p,−∞ ).

Hence,

|E(U1,i,s1,··· ,sd+1 |F
i+k
p,−∞) − E(U1,i,s1,··· ,sd+1 |F

i+k−1
p,−∞ )|


≤ 4a, if k ≤ m,

= 0, if k > m.

Thus, we have

E
(
max

j≤L
Ū4

1, j,s1,··· ,sd+1

)
≤

 ∞∑
k=−∞

Bk

3 ∞∑
k=−∞

E(max j≤L Û4
1, j,k,s1,··· ,sd+1

)

B3
k

=

 ∞∑
k=−∞

Bk

3 m∑
k=−m

E(max j≤L Û4
1, j,k,s1,··· ,sd+1

)

B3
k

,

and hence, by Doob’s inequaltiy, we get

E
(
max

j≤L
Ū4

1, j,s1,··· ,sd+1

)
≤ (4/3)4

 ∞∑
k=−∞

Bk

3 m∑
k=−m

E(Û4
1,L,k,s1,··· ,sd+1

)

B3
k

.

Thus, by Lemma 3.1 of McLeish (1977),

E(Û4
L,k,s1,··· ,sd+1

) ≤ 10(4a)4(ṽ2
L(l))2.

Therefore,

E
(
max

j≤L
Ū4

1, j,s1,··· ,sd+1

)
≤ (4/3)4

 ∞∑
k=−∞

Bk

3

10(4a)4ṽ4
L(l)

m∑
k=−m

B−3
k .

Hence, we choose B j = 1 if | j| ≤ m and B j = | j|−1κ−1(| j|), otherwise. Thus,

E
(
max

j≤L
Ū4

1, j,s1,··· ,sd+1

)
≤ 10(4/3)4

2m + 1 + 2
∞∑

j=m+1

j−1κ−1( j)


3

(2m + 1)(4a)4ṽ4
L(l).
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Then, by Cauchy-Schwarz’s inequality,

J1(a, b,m) ≤
q1∑

s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E1/2
(
max

j≤L
Ū4

1, j,s1,··· ,sd+1
/ṽ4

L(l)
)

× E1/2

I( q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

) max
j≤L

Ū2
1, j,s1,··· ,sd+1

/ṽ2
L(l) > b/9)2

 .
Therefore, for fixed (m, a) and any ε > 0, we can pick b such that J1(a, b,m) ≤ ε,

proving the first statement.

2) One can verify that

‖E(U2,i|F
i−k
p,−∞)‖2 = ‖E((Xp,i − Ei+mXp,i + Ei−mXp,i)|F i−k

p,−∞)‖2

= ‖E(Ei−m|F
i−k
p,−∞)‖2 ≤ cp,iψ(m ∨ k),

and similarly,

‖U2,i − E(U2,i|F
i+k
p,−∞)‖2 = ‖(Xp,i − Ei+mXp,i + Ei−mXp,i)

− E((Xp,i − Ei+mXp,i + Ei−mXp,i)|F i+k
p,−∞)‖2

= ‖(Xp,i − Ei+mXp,i) − E((Xp,i − Ei+mXp,i)|F i+k
p,−∞)‖2.

This gives

‖E(U2,i|F
i−k
p,−∞)‖2 ≤ cp,iψ(m ∨ k + 1).

Then, {U2,i,F i
p,−∞} is a mixingale with mixing function ψ̂(k) = ψ(m ∨ k).

Therefore, it follows from Lemma 3.2.3 that

J2(m) ≤ 4

 ∞∑
k=−∞

ak


 L∗∑

i=1

c2
p,i

 {a−1
0 (ψ̂2(0) + ψ̂2(1)) + 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ̂2(k)}

where

a−1
0 (ψ̂2(0) + ψ̂2(1)) + 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ̂(k)

= a−1
0 (ψ2(m) + ψ2(m)) + 2

m∑
k=1

(a−1
k − a−1

k−1)ψ2(m) + 2
∞∑

k=m+1
(a−1

k − a−1
k−1)ψ̂2(k).
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Noting that

{a−1
0 (ψ̂2(0) + ψ̂2(1)) + 2

∞∑
k=1

(a−1
k − a−1

k−1)ψ̂2(k)}

= a−1
0 (ψ2(m) + ψ2(m) + 2m(O(κ(m))ψ2(m) + 2

∞∑
j=m+1

(O(κ( j))ψ2( j))

= O(m−1κ−1(m)) + O(κ−1(m)) + O(
∞∑

j=m+1
j−1κ−1(k)),

we conclude that we can choose m such that J2(m) ≤ ε, this completes the proof of

the second statement.

3) Since ψ(k)
ϕ(m) ≥ 1 for k < m, then by Jensen’s inequality, we have

‖E(U3, jF
i−k
p,−∞)‖2 = ‖E(Ei+m(Xp,i,s1,··· ,sd+1 − Xa

p,i,s1,··· ,sd+1
)|F i−k

p,−∞)

− Ei−m(Xp,i,s1,··· ,sd+1 − Xa
p,i,s1,··· ,sd+1

)|F i−k
p,−∞)‖2.

This gives

‖E(U3, j|F
i−k
p,−∞)‖2 ≤ ‖Ei+m(Xp,i,s1,··· ,sd+1 − Xa

p,i,s1,··· ,sd+1
)‖2.

Then,

‖E(U3, j|F
i−k
p,−∞)‖2 ≤ cp,i

√
E(X2

p,i,s1,··· ,sd+1
/c2

p,iI(X
2
p,i,s1,··· ,sd+1

/c2
p,i > a2)).

This gives

‖E(U3, j|F
i−k
p,−∞)‖2 ≤

ψ(k)
ϕ(m)

cp,i

√
sup

j
E(X2

p, j,s1,··· ,sd+1
/c2

p, jI(X
2
p, j,s1,··· ,sd+1

/c2
p, j > a2)),

if k < m, and is equal to 0 for k ≤ m. Similarly,

‖U3, j − E(U3, j|F
i+k
p,−∞)‖2 ≤ ‖Ei+m(Xp,i,s1,··· ,sd+1 − Xa

p,i,s1,··· ,sd+1
)‖2

≤
ϕ(k + 1)
ψ(m)

cp,i

√
sup

j
E(X2

p, j,s1,··· ,sd+1
/c2

p, jI(X
2
p, j,s1,··· ,sd+1

/c2
p, j > a2))I(k < m).

Therefore, {U3,i,F i
p,−∞} is also a L2−mixingale with functions ψ̂(k) = ψ(k) and c2

p,i

becomes
c2

p,i

ψ2(m) sup
j

E(X2
p, j,s1,··· ,sd+1

/c2
p, jI(X

2
p, j,s1,··· ,sd+1

/c2
p, j > a2)).
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Hence, for a fixed m with J2(m) ≤ ε, we can choose an a significantly large enough

such that J3(a,m) ≤ ε, this completes the proof of the last statement.

�

Proof of Proposition 3.2.9. 1. We have

S I(S > b) ≤ p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 .
Further,

p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 = pA1I

 p∑
j=1

A j > b/p

 + p
p∑

j=2

A jI

 p∑
j=1

A j > b/p


= pA1I

 p∑
j=1

A j > b/p, A1 > b/p2

 + pA1I

 p∑
j=1

A j > b/p, A1 ≤ b/p2


+ p

p∑
j=2

A jI

 p∑
j=1

A j > b/p

 .
This gives

p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 ≤ pA1I
(
A1 > b/p2

)
+ pA1I

 p∑
j=1

A j > b/p, A1 ≤ b/p2


+ p

p∑
j=2

A jI

 p∑
j=1

A j > b/p


Then, since p ≥ 2, we have

pA1I

 p∑
j=1

A j > b/p, A1

 ≤ p
p∑

j=2

A jI

 p∑
j=1

A j > (p − 1)b/p2

 .
Then,

p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 ≤ pA1I
(
A1 > b/p2

)
+ p

p∑
j=2

A jI

 p∑
j=1

A j > (p − 1)b/p2


+ p

p∑
j=2

A jI

 p∑
j=1

A j > b/p

 .
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Hence, we have

p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 ≤ pA1I
(
A1 > b/p2

)
+ 2p

p∑
j=2

A j.

Since p ≥ 2, we have

p
p∑

j=1

A jI

p
p∑

j=1

A j > b

 ≤ p2A1I
(
A1 > b/p2

)
+ p2

p∑
j=2

A j.

Therefore, taking the expected value through both sides we have,

E

p
p∑

j=1

A jI

p
p∑

j=1

A j > b


 ≤ p2E

[
A1I

(
A1 > b/p2

)]
+ p2E

 p∑
j=2

A j

 .
This proves Part 1.

2. The proof of Part 2 follows from Part 1 along with the fact that if q ≥ 1, the function

f (x) = xq is convex on (0,+∞). This completes the proof.

�

Proof of Lemma 3.2.4. Let Ūt, j,s1,··· ,sd+1(l) =
l+ j∑

i=l+1
Ut,i,s1,··· ,sd+1 , t = 1, 2, 3. Using the convexity

of the quadratic function, we have(
S l+ j,s1,··· ,sd+1 − S l,s1,··· ,sd+1

)2
=

(
l+ j∑

i=l+1
Xp,i,s1,··· ,sd+1

)2

=

[
l+ j∑

i=l+1
(U1,i,s1,··· ,sd+1 + U2,i,s1,··· ,sd+1 + U3,i,s1,··· ,sd+1)

]2

≤ 3(Ū2
1, j,s1,··· ,sd+1

(l) + Ū2
2, j,s1,··· ,sd+1

(l) + Ū2
3, j,s1,··· ,sd+1

(l)).

Then,

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

(
S l+ j,s1,··· ,sd+1 − S l,s1,··· ,sd+1

)2
≤ 3

 q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

Ū2
1, j,s1,··· ,sd+1

(l)


+ 3

 q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

Ū2
2, j,s1,··· ,sd+1

(l)

 + 3

 q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

Ū3, j,s1,··· ,sd+1
(l)

 .
This implies

max
j≤L

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

(
S l+ j,s1,··· ,sd+1 − S l,s1,··· ,sd+1

)2
/ṽ2

L(l) ≤ 3(Ap(a,m) + Bp(m) + Cp(a,m)),
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where Ap(a,m; L), Bp(m; L) and Cp(a,m; L) are as defined in Proposition 3.2.8. Then, from

Proposition 3.2.9, we have

E

 q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

S j,s1,··· ,sd+1(l)I

 q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

S j,s1,··· ,sd+1(l) > b




≤ 9(J1(a, b,m) +J2(m) +J3(a,m)),

where S j,s1,··· ,sd+1(l) = max
j≤L

(
S l+ j,s1,··· ,sd+1 − S l,s1,··· ,sd+1

)2
ṽ2

L(l) andJ1(a, b,m),J2(m),J3(a,m)

are as defined in Proposition 3.2.8. Thus, from Proposition 3.2.8, for any ε′ we can choose

an m, a, b such that I1(a, b,m) < ε′/27, I2(m) < ε′/27, and I3(a,m) < ε′/27, this completes

the proof. �

Proof of Proposition 3.2.11. We have

rp∑
i=1

E(Vp,i|F
∗
i−1) =

rp∑
i=1

ibp∑
t=(i−1)bp+lp+1

E(Vp,i|F
∗
i−1) =

∑
t∈S 1

E(Xp,t|F
∗
i−1),

where S 1 = {t : t ∈ ∪rp

i=1[(i − 1)bp + lp + 1, ibp]}. It follows from Proposition 3.2.10 that

{E(Xp,i|F ∗
i−1),F i

p,−∞} is an L2−mixingale of size −1/2. Hence, by Lemma 3.2.3

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E

∑
t∈S 1

E(Xp,t,s1,··· ,sd+1 |F
∗
i−1)


2

= O

∑
t∈S 2

c2
p,tψ(lp)2η

 = O(T−αψ(lp)2η),

and then
q1∑

s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E

∑
t∈S 1

E(Xp,t,s1,··· ,sd+1 |F
∗
i−1)


2

= o(1).

Hence,
rp∑

i=1
E(Vp,iF ∗

i−1)
P

−−−−→
Lp→∞

0, this proves the first statement. Similarly, by the triangle

inequality it can be shown that {Xp,i−E(Xp,i|F ∗
i−1),F i

p,−∞} is an L2−mixingale of size −1/2.

Using Lemma 3.2.3, we have

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E


 rp∑

i=1

(Vp,i,s1,··· ,sd+1 − E(Vp,i,s1,··· ,sd+1 |F
∗
i−1))

2
=

q1∑
s1=1

· · ·

qd∑
sd=1

qd+1∑
sd+1=1

E


∑

t∈S 1

(Xp,i,s1,··· ,sd+1 − E(Xp,i,s1,··· ,sd+1 |F
∗
i−1))


2 = o(1),
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this implies that
rp∑

i=1
(Vp,i − E(Vp,i|F ∗

i−1))
P

−−−−→
Lp→∞

0. �

Proof of Proposition 3.2.12. For n = 1, · · · , d + 1, we have

rp∑
i=1

Wp,i(n)W
′
p,i(n)

=

rp∑
i=1

Vp,i(n)V
′
p,i(n)
−

rp∑
i=1

[Vp,i(n)V
′
p,i(n)
−Wp,i(n)W

′
p,i(n)

] (B.6)

By combining Proposition 3.2.11, Condition (C6) and Slutsky’s theorem, we have

rp∑
i=1

Wp,i(n)W
′
p,i(n)

P
−−−−→
Lp→∞

Σp,n, n = 1, · · · , d + 1,

which proves the first statement. To prove the second statement, note that

{E(Vp,i|F ∗
i )−E(Vp,i|F ∗

i−1),F ∗
i } is an L2−mixingale array of size −1/2 with mixingale mag-

nitude indices 2cp,i. Also, let ṽ2
i =

ibp∑
t=(i−1)bp+lp+1

c2
p,t, then,

rp∑
i=1

q1∑
s1

· · ·

qd+1∑
sd+1

E

W2
p,i,s1,··· ,sd+1

I

 q1∑
s1

· · ·

qd+1∑
sd+1

W2
p,i,s1,··· ,sd+1

> ε




=

rp∑
i=1

q1∑
s1

· · ·

qd+1∑
sd+1

E
(
W2

p,i,s1,··· ,sd+1
/ṽ2

i I
(
‖Wp,i‖

2
F/ṽ

2
i > ε/ṽ

2
i

))
ṽ2

i

≤

rp∑
i=1

q1∑
s1

· · ·

qd+1∑
sd+1

E

W2
p,i,s1,··· ,sd+1

/ṽ2
i I

‖Wp,i‖
2
F/ṽ

2
i >

ε

max
1≤i≤rp

ṽ2
i


 ṽ2

i

≤

rp∑
i=1

q1∑
s1

· · ·

qd+1∑
sd+1

E

W2
p,i,s1,··· ,sd+1

/ṽ2
i I

max
1≤i≤rp

‖Wp,i‖
2
F/ṽ

2
i >

ε

max
1≤i≤rp

ṽ2
i


 ṽ2

i .

So we have,

rp∑
i=1

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E
(
W2

p,i,s1,··· ,sd+1
I
(
‖Wp,i‖

2
F > ε

))

≤ max
1≤i≤rp


q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E

W2
p,i,s1,··· ,sd+1

/ṽ2
i I

max
1≤i≤rp

‖Wp,i‖
2
F/ṽ

2
i >

ε

max
1≤i≤rp

ṽ2
i





rp∑
i=1

ṽ2
i .

Under Conditions (C5) and (C6), we have

rp∑
i=1

ṽ2
i =

rp∑
i=1

ibp∑
t=(i−1)bp+lp+1

c2
p,t ≤

rp∑
i=1

bp

(
max

(i−1)bp+1≤t≤ibp
c2

p,t

)2

= O(T−α) = o(1).
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Hence,
rp∑

i=1

q1∑
s1

· · ·
qd+1∑
sd+1

E
(
W2

p,i,s1,··· ,sd+1
I(

q1∑
s1

· · ·
qd+1∑
sd+1

W2
p,i,s1,··· ,sd+1

> ε)
)

≤ max
1≤i≤rp


q1∑
s1

· · ·

qd+1∑
sd+1

E

W2
p,i,s1,··· ,sd+1

/ṽ2
i I

max
1≤i≤rp

‖Wp,i‖
2
F/ṽ

2
i >

ε

max
1≤i≤rp

ṽ2
i





rp∑
i=1

(
max

(i−1)bp+1≤t≤ibp
cp,t

)2

bp

= O

max
1≤i≤rp


q1∑

s1=1

· · ·

qd+1∑
sd+1=1

E

W2
p,i,s1,··· ,sd+1

/ṽ2
i I

max
1≤i≤rp

‖Wp,i‖
2
F/ṽ

2
i >

ε

max
1≤i≤rp

ṽ2
i




 . It follows from

Corollary 3.2.6 that
q1∑

s1=1
· · ·

qd+1∑
sd+1=1

W2
p,i,s1,··· ,sd+1

/ṽ2
i is uniformly integrable and lim

Lp→∞
max
1≤i≤rp

ṽi = 0

which implies that the last term above converges to 0 for any ε > 0. This completes the

proof. �

Proof of Lemma 3.2.5. First, note that T → ∞ if and only if Lp → ∞. Further, we have

Lp∑
i=1

Xp,i =

rp∑
i=1

 ibp∑
t=(i−1)bp+lp+1

Xp,t

 +

rp∑
i=1

 (i−1)bp+lp∑
t=(i−1)bp+1

Xp,t

 +

Lp∑
t=rpbp+1

Xp,t. (B.7)

Then, using Lemma 3.2.3, we have that

q1∑
s1

· · ·

qd+1∑
sd+1

E

 Lp∑
t=rpbp+1

Xp,t,s1,··· ,sd+1


2

= O

 Lp∑
t=rpbp+1

c2
p,t

 = O
(
bp max

rpbp+1≤t≤Lp
c2

p,t

)
= o(1).

To study the convergence of
rp∑

i=1

(i−1)bp+lp∑
t=(i−1)bp+1

Xp,t, let S 2 = {t : t ∈ ∪rp

i=1[(i−1)bp+1, (i−1)bp+lp]}.

Then, by combining Lemma 3.2.3 and Conditions (C5) and (C6), we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


 rp∑

i=1

(i−1)bp+lp∑
t=(i−1)bp+1

Xp,t,s1,··· ,sd+1


2 =

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


∑

t∈S 2

Xp,t,s1,··· ,sd+1


2

= O

 rp∑
i=1

(i−1)bp+lp∑
t=(i−1)bp+1

c2
p,t

 = O

 rp∑
i=1

(
max

(i−1)bp+1≤t≤ibp
c2

p,t

)2

lp

 = O(T−αlp/bp) = o(1).

Since the second and third terms of (B.7) converge in probability to 0 as Lp → ∞, it

remains to show that
rp∑

i=1

ibp∑
t=(i−1)bp+lp+1

Xp,t converges in distribution to a random tensor which

is distributed as Nq1×···×qd+1(0,Σp,d+1 ⊗ · · · ⊗ Σp,1). To this end, let Vp,i =
ibp∑

t=(i−1)bp+lp+1
Xp,t and
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let F ∗
i be the σ−field generated by {Uibp ,Uibp−1,···}, with Ui random variables defined on

(Ω,F , P) such that F ∗
i−1 ⊆ F i− j

p,−∞. Then,

rp∑
i=1

ibp∑
t=(i−1)bp+lp+1

Xp,t =

rp∑
i=1

(Vp,i − E(Vp,i|F
∗
i )) +

rp∑
i=1

(E(Vp,i|F
∗
i ) − E(Vp,i|F

∗
i−1))

+

rp∑
i=1

E(Vp,i|F
∗
i−1).

By Proposition 3.2.12, we have

rp∑
i=1

E(Vp,i|F
∗
i )

P
−−−−→
Lp→∞

0,
rp∑

i=1

(Vp,i − E(Vp,i|F
∗
i−1))

P
−−−−→
Lp→∞

0.

Since E((E(Vp,i|F ∗
i ) − E(Vp,i|F ∗

i−1))|F ∗
i−1) = 0, then E(Vp,i|F ∗

i ) − E(Vp,i|F ∗
i−1) is a martin-

gale difference array with respect to F ∗
i−1. Hence, from Proposition 3.2.12

rp∑
i=1

Wp,i(n)W
′
p,i(n)

P
−−−−→
Lp→∞

Σp,n, n = 1, · · · , d + 1,

and
rp∑

i=1

Vec(Wp,i(n))Vec(Wp,i(n))
′ P
−−−−→
Lp→∞

1⊗
j=d+1

Σp, j.

Also, by Proposition 3.2.12,

rp∑
i=1

E

 q1∑
s1=1

· · ·

qd+1∑
sd+1=1

(Wp,i,s1,··· ,sd+1)
2I

 q1∑
s1=1

· · ·

qd+1∑
sd+1=1

(Wp,i,s1,··· ,sd+1)
2 > ε


 P
−−−−→
Lp→∞

0,

for any ε > 0. Hence, by the martingale difference sequence central limit theorem,

Lp∑
i=1

Xp,i
d

−−−−→
Lp→∞

Nq1×···×qd+1

0, 1⊗
j=d+1

Σp, j

 ,
which completes the proof. �
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Proof of Proposition 3.2.13. For the first equation above, we have

rmin∑
i=1

‖ζ1,a,b,i,n‖1 ≤

rmin∑
i=1

‖(Va,i(n) − E(Va,i(n) |F
∗
i ) + E(Va,i(n) |F

∗
i−1))‖2

× ‖(Vb,i(n) + E(Vb,i(n) |F
∗
i ) − E(Vb,i(n) |F

∗
i−1))′‖2

≤

rmin∑
i=1

‖(Va,i(n) − E(Va,i(n) |F
∗
i ) + E(Va,i(n) |F

∗
i−1))‖2

× (‖(Vb,i(n)‖2 + ‖E(Vb,i(n) |F
∗
i )‖2 + ‖E(Vb,i(n) |F

∗
i−1))′‖2).

This gives

m+1∑
a=1

m+1∑
b=1

rmin∑
i=1

‖ζ1,a,b,i,n‖1 ≤ 3
rmin∑
i=1

‖(Va,i(n) − E(Va,i(n) |F
∗
i ) + E(Va,i(n) |F

∗
i−1))‖2‖Vb,i(n)‖2

≤ 3
rmin∑
i=1

(‖(Va,i(n) − E(Va,i(n) |F
∗
i )‖2 + ‖E(Va,i(n) |F

∗
i−1))‖2)‖Vb,i(n)‖2.

It can be shown that, for some η ∈ (0, 1)

‖(Va,i(n) − E(Va,i(n) |F
∗
i )‖2 = O


rp∑

i=1

 ibp∑
t=(i−1)bp+lp+1

c2
p,tψ(lp + 1)2η


1/2 , (B.8)

‖E(Va,i(n) |F
∗
i−1))‖2 = O


rp∑

i=1

 ibp∑
t=(i−1)bp+lp+1

c2
p,tψ(lp)2η


1/2 , (B.9)

and

‖Vb,i(n)‖2 = O


 ibp∑

t=(i−1)bp+lp+1

c2
p,t


1/2 . (B.10)

Then, combining the relations (B.8), (B.9) and (B.10), we have as a result

rmin∑
i=1

‖ζ1,a,b,i,n‖1 = O

 rmin∑
i=1

 iba∑
t=(i−1)ba+la+1

c2
a,tψ(lp,a)2η


1/2  ibb∑

t=(i−1)bb+lb+1

c2
b,t


1/2 .

Thus, we have
rmin∑
i=1

‖ζ1,a,b,i,n‖1 = O

 rmin∑
i=1

(baMa,i)1/2ψ(la)η(bbMb,i)1/2

 ,
where M j,i = (max(i−1)b j+l j+1 j c2

j,t), j = a, b for each a, b = 1, · · · ,m + 1.

Therefore, using (C5) and (C6), we have
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rmin∑
i=1
‖ζ1,a,b,i,n‖1 = O(T−αψ(la)η) = o(1), which proves the first statement in (3.6).

To prove the second statement in (3.6), we have

rmin∑
i=1

‖ζ2,a,b,i,n‖1 ≤

rmin∑
i=1

(‖Va,i(n) − E(Va,i(n) |F
∗
i ) + E(Va,i(n) |F

∗
i−1))‖2‖Vb,in‖2

+ ‖Va,i(n)‖2‖Vb,i(n) − E(Vb,i(n) |F
∗
i ) + E(Vb,i(n) |F

∗
i−1))‖2).

Again, by combining the relations (B.8), (B.9) and (B.10), we get
rmin∑
i=1
‖ζ2,a,b,i,n‖1 = o(1) + o(1) = o(1), this proves the second statement in (3.6). �

Proof of Proposition 3.2.14. We have∥∥∥∥∥∥∥
rmin∑
i=1

[Vi(n)V
′
i(n)
−Wi(n)W

′
i(n)

]

∥∥∥∥∥∥∥
1

≤

rmin∑
i=1

∥∥∥[Vi(n)V
′
i(n)
−Wi(n)W

′
i(n)

]
∥∥∥

1

≤

m+1∑
a=1

m+1∑
b=1

rmin∑
i=1

∥∥∥∥Va,i(n)V
′
b,i(n)
−Wa,i(n)W

′
b,i(n)

∥∥∥∥
1
.

Using the same techniques as in Proposition 3.2.13, we have that for any a, b = 1, · · · ,m+1,

‖Va,i(n)V
′
b,i(n)
−Wa,i(n)W

′
b,i(n)
‖1 ≤ ‖(Va,i(n) − E(Va,i(n) |F

∗
i ) + E(Va,i(n) |F

∗
i−1))

× (Vb,i(n) + E(Vb,i(n) |F
∗
i ) − E(V−,i(n) |F

∗
i−1))′ − ζ2,a,b,i,n‖1.

So, we have

‖Va,i(n)V
′
b,i(n)
−Wa,i(n)W

′
b,i(n)
‖1 ≤ ‖ζ1,a,b,i,n‖1 + ζ2,a,b,i,n‖1.

Then, the first statement follows from Proposition 3.2.13. To prove the relation (3.8), note

that ‖X‖F =
√

Vec(X)′Vec(X) for any random tensor X. Therefore, the proof of (3.8)

follows from similar steps to that of (3.7). �

Proof of Proposition 3.2.15. First, from Proposition 3.2.12,

ra∑
i=1

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E

(Wa,i,s1,··· ,sd+1)
2I

 q1∑
s1=1

· · ·

qd+1∑
sd+1=1

W2
a,i,s1,··· ,sd+1

> ε


 P
−−−−−−→
Lmin→∞

0,
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for each a = 1, · · · ,m + 1, and thus, their summation also converges to 0, this proves (3.9).

The proof of the relation in (3.10) follows from a more generalized version of the proof

of Proposition 3.2.11 with
rp∑

i=1
Vp,i(n)V

′
p,i(n)

and
rp∑

i=1
Wp,i(n)W

′
p,i(n)

extended to
rmin∑
i=1
Vi(n)V

′
i(n)

and
rmin∑
i=1
Wi(n)W

′
i(n)
, n = 1, · · · , d + 1, respectively. Indeed,

rmin∑
i=1

Wi(n)W
′
i(n)

=

rmin∑
i=1

Vi(n)V
′
i(n)
−

rmin∑
i=1

[
Vi(n)V

′
i(n)
−Wi(n)W

′
i(n)

]
.

Hence, combining (C6), Proposition 3.2.14 and Slutsky’s theorem, we have

rmin∑
i=1

Wi(n)W
′
i(n)

P
−−−→
Lmin

Λn, for n = 1, · · · , d + 1.

Moreover, note that
rmin∑
i=1

Vec(Wi)Vec(Wi)′ =
rmin∑
i=1

Vec(Vi)Vec(Vi)′ −
rmin∑
i=1

[Vec(Vi)Vec(Vi)′ − Vec(Wi)Vec(Wi)′].

Then, the proof of (3.8) follows from Proposition 3.2.14 along with Condition (C6). �

Proof of Lemma 3.2.6. We have

T−1/2U ×(d+1) Z0′ = ζ +
rmin∑
i=1
Wi

+

(
r1∑

i=rmin+1

(
ib1∑

t=(i−1)b1+1
X1,t

)
�(d+1) · · · �(d+1)

rm+1∑
i=rmin+1

(
ibm+1∑

t=(i−1)bm+1+1
Xm+1,t

))
. (B.11)

Then, it follows from Lemma 3.2.5 that

ζ
p

−−−−−→
Lmin→∞

0. (B.12)

Moreover, for each j = 1, · · · ,m + 1, we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


 r j∑

i=rmin

ib j∑
t=(i−1)b j+1

X j,t,s1,··· ,sd+1


2 =

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


∑

t∈S ∗j

X j,t,s1,··· ,sd+1


2 ,
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where S ∗j = {t : t ∈
r j⋃

i=rmin+1

[(i − 1)b j + 1, ib j]}. Then, by using Lemma 3.2.3, we have

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E


 r j∑

i=rmin

ib j∑
t=(i−1)b j+1

X j,t,s1,··· ,sd+1


2 = O

 r j∑
i=rmin+1

ib j∑
t=(i−1)b j+1

c2
j,t


= O

 r j∑
i=rmin+1

(
max

(i−1)b j+1≤t≤ib j
c j,t

)2

b j

 = o(1).

This implies that

r1∑
i=rmin+1

 ib1∑
t=(i−1)b1+1

X1,t

 �(d+1) · · · �(d+1)

rm+1∑
i=rmin+1

 ibm+1∑
t=(i−1)bm+1+1

Xm+1,t

 P
−−−−−−→
Lmin→∞

0. (B.13)

In addition, by Proposition 3.2.15, we have

rmin∑
i=1

Wi(n)W
′
i(n)

P
−−−−−−→
Lmin→∞

Λn, n = 1, · · · , d + 1,

rmin∑
i=1

Vec(Wi)Vec(Wi)′
P
−−−−→
T→∞

Λ1 ⊗ · · · ⊗ Λd+1,

and

m+1∑
a+1

ra∑
i=1

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

E

(Wa,i,s1,··· ,sd+1)
2I

 q1∑
s1=1

· · ·

qd+1∑
sd+1=1

W2
a,i,s1,··· ,sd+1

> ε


 −−−−−−→Lmin→∞

0,

for all ε > 0. Hence, by the martingale difference sequence central limit theorem,

rmin∑
i=1

Wi
d
−−−−→
T→∞

Nq1×···×qd×(m+1)qd+1(0,Λd+1 ⊗ · · · ⊗ Λ1).

Therefore, together with (B.11), (B.12), (B.13) along with Slutsky’s theorem, we establish

the stated result. �

Proof of Proposition 3.2.16. From (3.1) and Proposition 3.1.1, we have

δ̂(τ) = Y ×d+1 (Z′Z)−1ZZ′ = (δ ×d+1 Z + U) ×d+1 (Z′Z)−1Z′.

Using tensor mode multiplication properties, this becomes

δ̂(τ) = δ ×d+1 Z ×d+1 (Z′Z)−1Z′ + U ×d+1 (Z′Z)−1Z′

= δ ×d+1 ((Z′Z)−1Z′Z) + (U ×d+1 Z′) ×d+1 (Z′Z)−1.
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Thus,

δ̂(τ) = δ + (U ×d+1 Z′) ×d+1 (Z′Z)−1. (B.14)

From (B.14), we get

√
T (δ̂(τ) − δ) =

√
T (U ×d+1 Z′) ×d+1 (Z′Z)−1 = T−1/2(U ×d+1 Z′) ×d+1 (T (Z′Z)−1).

Then,
√

T (δ̂(τ) − δ) = (T−1/2U ×d+1 Z′) ×d+1 (T−1Z′Z)−1.

Therefore, by using Lemma 3.2.6 and Slutsky’s theorem along with the fact that

T−1Z′Z
p
−−−−→
T→∞

Γ, we have

√
T (δ̂(τ) − δ)

d
−−−−→
T→∞

ε∗01 ×d+1 Γ−1,

where ε∗01 ∼ Nq1,··· ,qd ,(m+1)qd+1(0,Λd+1 ⊗ · · · ⊗ Λ1). Hence, using Proposition B.1.1,

ε∗1 = ε∗01 ×d+1 Γ−1 ∼ Nq1,··· ,qd ,(m+1)qd+1(0,Γ
−1Λd+1Γ

−1 ⊗ Λd ⊗ · · · ⊗ Λ1). (B.15)

This completes the proof. �

Proof of Proposition 3.2.18. Note that

Vec(ε∗1,T �d+1 ε
∗
2,T �d+1 ε

∗
3,T ) =

(
Vec(ε∗1,T )′, Vec(ε∗2,T )′, Vec(ε∗3,T )′

)′

=


Vec(ε∗1,T )

(I − J(T ))Vec(ε∗1,T ) − G(T )Vec(r0)

J(T )Vec(ε∗3,T ) + G(T )Vec(r0)


=


I

I − J(T )

J(T )


Vec(ε∗1,T ) +


0

−G(T )Vec(r0)

G(T )Vec(r0)


.

Then, using Proposition 3.2.16 along with Slutsky’s Theorem, we have

Vec(ε∗1,T (τ,m) �d+1 ε
∗
2,T (τ,m) �d+1 ε

∗
3,T (τ,m))

d
−−−−→
T→∞


Vec(ε∗1)

Vec(ε∗2)

Vec(ε∗3)
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with

(
(Vec(ε∗1))′, (Vec(ε∗2))′, (Vec(ε∗3))′

)′
=

(
I, I −Ω′,Ω′

)′
(Vec(ε∗1))′

+

(
0,−(G∗Vec(r0))′, (G∗Vec(r0))′

)′
.

Then, by using Proposition B.1.2, we have

(
(Vec(ε∗1))′, (Vec(ε∗2))′, (Vec(ε∗3))′

)′
∼ N3(m+1)q1···qd+1 (Vec(µ),Σ) ,

where Vec(µ) =


0

Vec(µ∗1)

Vec(−µ∗1)


and Σ =


Σ∗11 Σ∗12 Σ∗13

Σ∗21 Σ∗22 Σ∗23

Σ∗31 Σ∗32 Σ∗33


, this proves the first statement. The

last statement follows from the first statement along with Proposition B.3.7 and Proposi-

tion B.3.8. This completes the proof. �

Proof of Proposition 3.3.1. Note that, for j = 1, · · · , d,

ΛX jA j = G jR jΛ jR′jG
′
jR
′
j(R jΛ jR′j)

−1R j = R′j(R jR′j)
−1R jΛ jR′j(R jR′j)

−1R jR′j(R jΛ jR′j)
−1R j

= R′j(R jR′j)
−1R j,

and

(R′j(R jR′j)
−1R j)2 = R′j(R jR′j)

−1R jR′j(R jR′j)
−1R j = R′j(R jR′j)

−1R j.

Therefore, ΛX jA j are idempotent for j = 1, · · · , d. Moreover,

A jΛX jA j = R′j(R jΛ jR′j)
−1R jR′j(R jR′j)

−1R j = R′j(R jΛ jR′j)
−1R j = A j,

and

ΛX jA jΛX j = R′j(R jR′j)
−1R jR′j(R jR′j)

−1R jR′j(R jR′j)
−1R jΛ jR′j(R jR′j)

−1R j

= R′j(R jR′j)
−1R jΛ jR′j(R jR′j)

−1R j = ΛX j.
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Also, for j = 1, · · · , d,

µ∗∗ × j ΛX jA j =

r0

d�
i=1
i, j

Gi ×d+1 G
∗
d+1

 × j (R′j(R jR′j)
−1R j)

= r0

d�
i=1
i, j

Gi × j (R′j(R jR′j)
−1R j)G j ×d+1 G

∗
d+1

= r0

d�
i=1
i, j

Gi × j R′j(R jR′j)
−1R jR′j(R jR′j)

−1 ×d+1 G
∗
d+1

= r0

d�
i=1
i, j

Gi × j R′j(R jR′j)
−1 ×d+1 G

∗
d+1 = r0

d�
i=1
i, j

Gi × j G j ×d+1 G
∗
d+1 = µ∗∗,

and W j = A1/2
j W

∗
jA

1/2
j is symmetric and non-negative definite matrix since A j is non-

negative with rank l j. Similarly,

ΛXd+1Ad+1 = (G∗d+1Rd+1Γ
−1Λd+1Γ

−1R′d+1G
∗
d+1
′)R′d+1(Rd+1Γ

−1Λd+1Γ
−1R′d+1)−1Rd+1

= (Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1Γ

−1Λd+1Γ
−1R′d+1(Rd+1Γ

−1R′d+1)−1Rd+1Γ
−1)

× R′d+1(Rd+1Γ
−1Λd+1Γ

−1R′d+1)−1Rd+1,

this gives

ΛXd+1Ad+1 = Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1

and

Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1 = Γ−1R′d+1(Rd+1Γ

−1R′d+1)−1Rd+1Γ
−1R′d+1(Rd+1Γ

−1R′d+1)−1Rd+1

= Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1.

Therefore, ΛXd+1Ad+1 is idempotent. Moreover,

Ad+1ΛXd+1Ad+1 = R′d+1(Rd+1Γ
−1Λd+1Γ

−1R′d+1)−1Rd+1Γ
−1R′d+1(Rd+1Γ

−1R′d+1)−1Rd+1 = Ad+1,
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and

ΛXd+1Ad+1ΛXd+1 = Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1Γ

−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1

Γ−1Λd+1Γ
−1R′d+1(Rd+1Γ

−1R′d+1)−1Rd+1Γ
−1.

This gives

ΛXd+1Ad+1ΛXd+1 = ΛXd+1.

Also,

µ∗∗ ×d+1 ΛXd+1Ad+1 =

r0

d�
j=1

G j ×d+1 G
∗
d+1

 ×d+1 Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1

= r0

d�
j=1

G j ×d+1 Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1G

∗
d+1

= r0

d�
j=1

G j ×d+1 Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1Rd+1Γ

−1R′d+1(Rd+1Γ
−1R′d+1)−1

= r0

d�
j=1

G j ×d+1 Γ−1R′d+1(Rd+1Γ
−1R′d+1)−1 = r0

d�
j=1

G j ×d+1 G
∗
d+1.

This gives µ∗∗ ×d+1 ΛXd+1Ad+1 = µ∗∗, and since Ad+1 is non-negative with rank ld+1,Wd+1 =

A1/2
d+1W

∗
d+1A1/2

d+1 is a symmetric and non-negative definite matrix . Hence, the assumptions of

Theorem 2.1.1 hold and it follows that

E

h (
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗3(

d+1�
j=1

)
j
W j

 = E
[
h
(
χ2

l+2

(
trace

(
µ∗
′

1(d)
µ∗1(d)

)))] µ∗∗( d+1�
j=1

)
j
W j

 .
�

Proof of Lemma 3.3.1. By Slutsky’s theorem, we have

√
T

(
ϑ̂(h, θ̂, θ̃) − δ

)
=
√

T
(
δ̃(τ̂) − δ

)
+ (h(ψ))

√
T

(
δ̂(τ̂ ) − δ̃(τ̂ )

) d
−−−−→
T→∞

ϑ∗(h),

where ϑ∗(h) = ε∗2 + h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗3 . Then,

ADR1
(
ϑ̂(h, θ̂, θ̃), δ,W

)
= E

trace


ϑ∗(h)(

d+1�
j=1

)
j
W1/2

j


′

(d)

ϑ∗(h)(
d+1�
j=1

)
j
W1/2

j


(d)




= E
[
trace

((
ε∗21 + h

(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗32

)′
(d)

(
ε∗21 + h

(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗32

)
(d)

)]
.
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Then,

ADR1
(
ϑ̂(h, θ̂, θ̃), δ,W

)
= E

[
trace

(
ε∗
′

21(d)
ε∗21(d)

)]
+ 2E

[
trace

(
ε∗
′

21(d)

(
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗32

)
(d)

)]
+ E

[
trace

((
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗32

)′
(d)

(
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
ε∗32

)
(d)

)]
,

and then

ADR1
(
ϑ̂(h, θ̂, θ̃), δ,W

)
= E

[
trace

(
ε∗
′

21(d)
ε∗21(d)

)]
+ 2E

[
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
trace

(
ε∗
′

21(d)
ε∗32(d)

)]
+ E

[
h2

(
ε∗
′

31(d)
ε∗31(d)

)
trace

(
ε∗
′

32(d)
ε∗32(d)

)]
= ADR1

(
δ̃(τ̂ ), δ,W

)
+ 2E

[
h
(
trace

(
ε∗
′

31(d)
ε∗31(d)

))
trace

(
ε∗
′

21(d)
ε∗32(d)

)]
+ E

[
h2

(
ε∗
′

31(d)
ε∗31(d)

)
trace

(
ε∗
′

32(d)
ε∗32(d)

)]
.

Hence, by Proposition 3.3.2 and Proposition 3.3.3, we have

ADR1
(
ϑ̂(h, θ̂, θ̃), δ,W

)
= ADR1

(
δ̃(τ̂ ), δ,W

)
− 2E

h (
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




+ 2E
[
h
(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j) − 2E
[
h
(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j)

+ 2E
[
h
(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)

 + E
[
h2(χ2

l+2 (∆))
] d+1∏

j=1

trace
(
W jΥ

∗
j

)

− 2E
[
h
(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


+ E

[
h2(χ2

l+4 (∆))
]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 .
This completes the proof. �
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Proof of Lemma 3.3.2. Since ε∗1 ∼ Nq1×···qd×(m0+1)qd+1

(
0,Σ∗11

)
, then,

ADR1
(
δ̂(τ̂ ), δ,W

)
= E

trace


ε∗1(

d+1�
j=1

)
j
W1/2

j


′

(d)

ε∗1(
d+1�
j=1

)
j
W1/2

j


(d)




= E

(Vec(ε∗1)
)′ 1⊗

j=d+1

W j
(
Vec(ε∗1)

) = trace

 1⊗
j=d+1

W jΣ
∗
11


= trace


 1⊗

j=d+1

W j


Γ−1Λd+1Γ

−1 ⊗

1⊗
j=d

Λ j




= trace
(
Wd+1Γ

−1Λd+1Γ
−1

) d∏
j=1

trace
(
W jΛ j

)
=

d+1∏
j=1

trace
(
W jC∗j

)
.

Similarly, since ε∗2 ∼ Nq1×···qd×(m0+1)qd+1

(
µ∗∗,Σ∗22

)
, then,

ADR1
(
δ̃(τ̂ ), δ,W

)
= E

trace


ε∗2(

d+1�
j=1

)
j
W1/2

j


′

(d)

ε∗2(
d+1�
j=1

)
j
W1/2

j


(d)




= E

(Vec(ε∗2)
)′ 1⊗

j=d+1

W j
(
Vec(ε∗2)

)
= trace

 1⊗
j=d+1

W jΣ
∗
22

 + (Vec (µ∗∗))′
1⊗

j=d+1

W j (Vec (µ∗∗))

= trace

 1⊗
j=d+1

W j

Γ−1Λd+1Γ
−1 ⊗

1⊗
j=d

Λ j




− trace

 1⊗
j=d+1

W j

Ωd+1Γ
−1Λd+1Γ

−1 ⊗

1⊗
j=d

Ω jΛ j




− trace

 1⊗
j=d+1

W j

Γ−1Λd+1Γ
−1Ωd+1

′
⊗

1⊗
j=d

Λ jΩ
′
j




+ trace

 1⊗
j=d+1

W j

Ωd+1Γ
−1Λd+1Γ

−1Ωd+1
′
⊗

1⊗
j=d

Ω jΛ jΩ
′
j




+ (Vec (µ∗∗))′
1⊗

j=d+1

W j (Vec (µ∗∗)) .
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Thus, we have,

ADR1
(
δ̃(τ̂ ), δ,W

)
= trace

Wd+1Γ
−1Λd+1Γ

−1 ⊗

1⊗
j=d

W jΛ j


− 2trace

Wd+1Γ
−1Λd+1Γ

−1Ωd+1
′
⊗

1⊗
j=d

W jΛ jΩ
′
j


+ trace

Wd+1Ωd+1Γ
−1Λd+1Γ

−1Ωd+1
′
⊗

1⊗
j=d

W jΩ jΛ jΩ
′
j


+ trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 ,
and the result follows. �

Proof of Corollary 3.3.1. The proof follows directly from Lemma 3.3.1 by taking h(x) =

1 − ((l − 2)/x) and h(x) = h2(x) = (1 − ((l − 2)/x)) I(x > l − 2), respectively. For the

convenience of the reader, we give details on the derivation of ADR
(
δ̂s+, δ,W

)
. Using

Lemma 3.3.1, we have

ADR1
(
δ̂s+, δ,W

)
= ADR1

(
δ̃(τ̂ ), δ,W

)
− 2E

h2

(
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




+ 2E
[
h2

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j) − 2E
[
h2

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j)

+ 2E
[
h2

(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


− 2E

[
h2

(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


+ E

[
h2

2(χ2
l+2 (∆))

] d+1∏
j=1

trace
(
W jΥ

∗
j

)
+ E

[
h2

2(χ2
l+4 (∆))

]
trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 ,
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where h2(X) =
(
1 − l−2

X

)
I(X > l − 2). Using Corollary 3.3.1, note that

ADR1
(
δ̃(τ̂ ), δ,W

)
= ADR1

(
δ̂s, δ,W

)
+ 2E

h1

(
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




− 2E
[
h1

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j) + 2E
[
h1

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j)

− 2E
[
h1

(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


+ 2E

[
h1

(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


− E

[
h2

1(χ2
l+2 (∆))

] d+1∏
j=1

trace
(
W jΥ

∗
j

)
− E

[
h2

1(χ2
l+4 (∆))

]
trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 .
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Hence, we get

ADR1
(
δ̂s+, δ,W

)
= ADR1

(
δ̂s, δ,W

)
+ 2E

h1

(
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




− 2E
[
h1

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j) + 2E
[
h1

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j)

− 2E
[
h1

(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


+ 2E

[
h1

(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


− E

[
h2

1(χ2
l+2 (∆))

] d+1∏
j=1

trace
(
W jΥ

∗
j

)
+ 2E

[
h2

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j)

− E
[
h2

1(χ2
l+4 (∆))

]
trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


− 2E

h2

(
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




+ 2E
[
h2

(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


− 2E

[
h2

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j) + E

[
h2

2(χ2
l+2 (∆))

] d+1∏
j=1

trace
(
W jΥ

∗
j

)
− 2E

[
h2

(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


+ E

[
h2

2(χ2
l+4 (∆))

]
trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 .
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Since h1(X) − h2(X) = (1 − l−2
X )I (X < l − 2), then,

ADR1
(
δ̂s+, δ,W

)
= ADR1

(
δ̂s, δ,W

)
+ 2E

h3

(
χ2

l+2 (∆)
)

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




− 2E
[
h3

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jB∗j) + 2E
[
h3

(
χ2

l+2 (∆)
)] d+1∏

j=1

trace(W jΥ
∗
j)

− 2E
[
h3

(
χ2

l+4 (∆)
)]

trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


+ 2E

[
h3

(
χ2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


− E

[
h2

3(χ2
l+2 (∆))

] d+1∏
j=1

trace
(
W jΥ

∗
j

)
− E

[
h2

3(χ2
l+4 (∆))

]
trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


This completes the proof. �

Proof of Corollary 3.3.2. From Lemma 3.3.2, we have

ADR1
(
δ̃(τ̂), δ0,W

)
− ADR1

(
δ̂(τ̂), δ0,W

)
= c4 − (2c2 − c3). (B.16)

Note that c4 = (Vec(µ∗1))′$(Vec(µ∗1)). Since $ is positive definite then by Theorem 2.4.7 in

Mathai and Provost (1992), we have

Chmin ($) 6
c4

∆
6 Chmax ($) ,

and so we get c4 − (2c2 − c3) 6 ∆ Chmax ($) − (2c2 − c3). Therefore, from (B.16), we have

ADR1
(
δ̃(τ̂), δ0,W

)
−ADR1

(
δ̂(τ̂), δ0,W

)
6 0 if ∆ Chmax ($)− (2c2− c3) 6 0. Thus, we get

ADR1
(
δ̃(τ̂), δ0,W

)
6 ADR1

(
δ̂(τ̂), δ0,W

)
if ∆ 6 2c2−c3

Chmax($) . Using similar steps, the proof of

the second part of the corollary follows by using the inequality ∆ Chmin ($) − (2c2 − c3) 6

c4 − (2c2 − c3). �
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Proof of Corollary 3.3.3. Using Corollary 3.3.1 and Lemma 3.3.2, we have

ADR1
(
δ̂s, δ,W

)
= ADR1

(
δ̂(τ̂, m̂), δ,W

)
− 2

d+1∏
j=1

trace(W jB∗j)

+

d+1∏
j=1

trace(W jΥ
∗
j) + trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


− 2E

(1 − (l − 2) χ−2
l+2 (∆)

)
trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




+ 2E
[(

1 − (l − 2) χ−2
l+2 (∆)

)] d+1∏
j=1

trace(W jB∗j) − 2E
[(

1 − (l − 2) χ−2
l+2 (∆)

)] d+1∏
j=1

trace(W jΥ
∗
j)

+ 2E
[(

1 − (l − 2) χ−2
l+4 (∆)

)]
trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


− 2E

[(
1 − (l − 2) χ−2

l+4 (∆)
)]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)


+ E

[(
1 − (l − 2) χ−2

l+2(∆)
)2
] d+1∏

j=1

trace
(
W jΥ

∗
j

)
+ E

[
(1 − (l − 2) χ−2

l+4 (∆))2
]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 ,
By simplifying and removing common terms we have,

ADR1
(
δ̂s, δ,W

)
= ADR1

(
δ̂(τ̂, m̂), δ,W

)
+ 2E

((l − 2) χ−2
l+2 (∆)

)
trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)




− 2E
[(

(l − 2) χ−2
l+2 (∆)

)] d+1∏
j=1

trace(W jB∗j)

− 2E
[(

(l − 2) χ−2
l+4 (∆)

)]
trace

µ∗∗′(d)

µ∗∗( d+1�
j=1

)
j
A jB∗jW j


(d)


+ E

[
((l − 2)2 χ−4

l+2 (∆))
] d+1∏

j=1

trace
(
W jΥ

∗
j

)
+ E

[
((l − 2)2 χ−4

l+4 (∆))
]

trace


µ∗∗( d+1�

j=1

)
j
W1/2

j


′

(d)

µ∗∗( d+1�
j=1

)
j
W1/2

j


(d)

 .
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Then, using the identity E
(
χ−2

l+4(∆)
)

= E
(
χ−2

l+2(∆)
)
− 2E

(
χ−4

l+4(∆)
)
, we have

2E
[(

(l − 2) χ−2
l+2 (∆)

)]
c1 − 2E

[(
(l − 2) χ−2

l+4 (∆)
)]

c1 = 4(l − 2)χ−4
l+4 (∆) c1,

and hence,

4(l − 2)χ−4
l+4 (∆) c1 + E

[
((l − 2)2 χ−4

l+4 (∆))
]

c4 = (l − 2)(4c1 + (l − 2)c4)E
[
χ−4

l+4 (∆))
]
.

As such, we get

ADR1
(
δ̂s, δ,W

)
= ADR1

(
δ̂(τ̂), δ,W

)
+ (l − 2)(4c1 + (l − 2)c4)E

[
χ−4

l+4 (∆))
]

− 2 (l − 2) E
[
χ−2

l+2 (∆)
]

c2 + (l − 2)2 E
[
χ−4

l+2 (∆)
]

c3.

Using the identity E
[
χ−2

l+2(∆)
]

= (l − 2)E
[
χ−4

l+2(∆)
]

+ 2∆E
[
χ−4

l+4(∆)
]
, we get

ADR1
(
δ̂s, δ,W

)
− ADR1

(
δ̂(τ̂), δ,W

)
= (l − 2)(4c1 + (l − 2)c4)E

[
χ−4

l+4 (∆))
]

+ (l − 2)2 E
[
χ−4

l+2 (∆)
]

c3

− 2 (l − 2)
(
(l − 2)E

[
χ−4

l+2(∆)
]

+ 2∆E
[
χ−4

l+4(∆)
])

c2

= (l − 2)(4c1 + (l − 2)c4)E
[
χ−4

l+4 (∆))
]
− 2 (l − 2)2 E

[
χ−4

l+2(∆)
]

c2

− 4 (l − 2) ∆E
[
χ−4

l+4(∆)
]

c2 + (l − 2)2 E
[
χ−4

l+2 (∆)
]

c3

= − (l − 2)2 (2c2 − c3)E
[
χ−4

l+2(∆)
]
− (l − 2) (4∆c2 − 4c1 − (l − 2)c4) E

[
χ−4

l+4(∆)
]
.

Therefore, for ADR1
(
δ̂s, δ,W

)
− ADR1

(
δ̂(τ̂), δ,W

)
≤ 0 if both of the following are satis-

fied

1. 2c2 − c3 ≥ 0,

2. 4∆c2 − 4c1 − (l − 2)c4 ≥ 0.

If 4c1 + (l − 2)c4 = 0 then since c2 ≥ 0 by definition of trace, inequality 2 holds for any
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∆ ≥ 0. Also,

c1 = (Vec (µ∗∗))′
 1⊗

j=d+1

A jB∗jW j

 (Vec (µ∗∗))

= (Vec (µ∗∗))′
 1⊗

j=d+1

A jB∗jW j


Vec

µ∗∗( d+1�
j=1

)
j
Υ∗jA j




= (Vec (µ∗∗))′
 1⊗

j=d+1

A jB∗jW jΥ
∗
jA j

 (Vec (µ∗∗)) ,

and

c4 = (Vec (µ∗∗))′
 1⊗

j=d+1

W j

 (Vec (µ∗∗))

=

Vec

µ∗∗( d+1�
j=1

)
j
Υ∗jA j



′  1⊗

j=d+1

W j


Vec

µ∗∗( d+1�
j=1

)
j
Υ∗jA j




= (Vec (µ∗∗))′
 1⊗

j=d+1

A jΥ
∗
jW jΥ

∗
jA j

 (Vec (µ∗∗)) .

Hence,

4c1 + (l − 2)c4 = (Vec (µ∗∗))′
 1⊗

j=d+1

A1/2
j Π∗

1⊗
j=d+1

A1/2
j

 (Vec (µ∗∗)) ,

where Π∗ =
1⊗

j=d+1
A1/2

j

4 1⊗
j=d+1

B∗j + (l − 2)
1⊗

j=d+1
Υ∗j

 1⊗
j=d+1
W jΥ

∗
jA

1/2
j . Then,

4c1 + (l − 2)c4

∆
=

(
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))′
Π∗

(
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))
(
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))′ (
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

)) ,

and by using the identity that x′Bx = x′( B+B′
2 )x, for some vector x, we have

4c1 + (l − 2)c4

∆
=

(
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))′ (
Π∗ + Π∗

′

2

) (
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))
(
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

))′ (
Vec

(
µ∗∗(

d+1�
j=1

)
j
A1/2

j

)) .

Therefore, by Courant’s theorem, 4c1+(l−2)c4
∆

≤ Chmax

((
Π∗+Π∗

′

2

))
= Chmax (Π∗∗) . Hence, if

c2 > 0, then 4∆c2 − 4c1 − (l − 2)c4 ≥ 0 if c2 ≥
Chmax(Π∗∗)

4 . Therefore, ADR1
(
δ̂s, δ,W j

)
≤
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ADR1
(
δ̂(τ̂), δ,W

)
if c2 ≥ max

{c3

2
,

Chmax (Π∗∗)
4

}
. Similarly, it can be shown that

ADR1
(
δ̂s+, δ,W

)
≤ ADR1

(
δ̂s, δ,W

)
. �

B.3 On the convergence of the estimators of the change-

points

Proposition B.3.1. Let
∥∥∥Ũ∥∥∥2

F
be the restricted SSE under τ̃,

∥∥∥Û∥∥∥2

F
be the unrestricted SSE

under τ̂ and
∥∥∥Ũ0

∥∥∥2

F
be the restricted SSE under τ̃0 = {τ̃0

1, · · · , τ̃
0
m0
}, respectively. Then,

∥∥∥Û∥∥∥2

F
6

∥∥∥Ũ∥∥∥2

F
6

∥∥∥Ũ0
∥∥∥2

F
6 ‖U‖2F .

Proof. Recall,

τ̂ = arg min
τ

SSEU
T (τ), (B.17)

and

τ̃ = arg min
τ

SSER
T (τ ), (B.18)

with the restriction δ ×1 R1 ×2 R2 ×3 · · · ×d+1 Rd+1 = r. Also, recall that if A ⊆ B, then

Inf(A) ≥ Inf(B), provided that Inf(A) and Inf(B) exist. Hence, ‖Û‖2F ≤ ‖Ũ‖
2
F . Moreover,

from the definition of the minimum, we have ‖Ũ‖2F ≤ min
δ̃

SSER
T (τ0) = ‖Ũ0‖2F ≤ ‖U‖

2
F . This

completes the proof. �

In deriving the consistency of the rate of change-points, we use the following result. To

simplify some notations, let

Q0 = Z̄0 ⊗ Iqd ⊗ · · · ⊗ Iq1 .

Proposition B.3.2. Under Assumption 2, and assuming that the shifts in the coefficients

are of fixed magnitudes independent of T , then

Q0Vec(δ0) = Op(T 1/2) and (Vec(U))′ Q0Vec(δ0) = Op(T 1/2).
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Proof. First, we define ‖A‖F =
√

(Vec(A))′Vec(A), for a tensor A. Then,

‖Z̄0‖F =

√(
Vec(Z̄0)

)′
Vec(Z̄0) = Op(T 1/2). In addition,

‖ (Vec(U))′ Q0‖F = ‖U ×d+1 Z̄0′‖F =

m0+1∑
p=1

q1∑
s1=1

· · ·

qd+1∑
sd+1=1

T 1/2
Lp∑
i=1

Xp,i,s1,··· ,sd+1


2

1/2

.

Thus,

P
(
‖ (Vec(U))′ Q0‖F > T 1/2

)
= P


m0+1∑

p=1

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

(
T 1/2

Lp∑
i=1

Xp,i,s1,··· ,sd+1

)21/2

> T 1/2


= P

m0+1∑
p=1

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

(
T 1/2

Lp∑
i=1

Xp,i,s1,··· ,sd+1

)2 > T

 .
By Markov’s Inequality, we get

P
(
‖ ((Vec(U)))′ Q0‖ > T 1/2

)
6

m0+1∑
p=1

E


q1∑

s1=1

· · ·

qd+1∑
sd+1=1

T 1/2
Lp∑
i=1

Xp,i,s1,··· ,sd+1


2 /T.

Then,

P
(
‖ ((Vec(U)))′ Q0‖ > T 1/2

)
6

m0+1∑
p=1

E


q1∑

s1=1

· · ·

qd+1∑
sd+1=1

 Lp∑
i=1

Xp,i,s1,··· ,sd+1


2 .

Hence, by using Lemma 3.3, we have

E


q1∑

s1=1

· · ·

qd+1∑
sd+1=1

 Lp∑
i=1

Xp,i,s1,··· ,sd+1


2 = O

 Lp∑
i=1

c2
p,i

 = o(1).

This implies that ‖Vec(U)′Q0‖ = O(T 1/2). In addition, by Cauchy-Shwarz’s inequality,

‖Q0Vec(δ0)‖ 6 ‖Q0‖‖Vec(δ0)‖ = ‖Z̄0 ⊗ Iq1···qd‖‖Vec(δ0)‖ = ‖Z̄0‖(
√

q1 · · · qd)‖Vec(δ0)‖,

and

‖ (Vec(U))′ Q0Vec(δ0)‖ 6 ‖ (Vec(U))′ Q0‖‖Vec(δ0)‖.

Therefore, under Assumption 3.2.3 and assuming that the shifts in the coefficients that

are of fixed magnitudes which are independent of T , we have Q0Vec(δ0) = Op(T 1/2) and

(Vec(U))′Q0Vec(δ0) = Op(T 1/2). �
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Proposition B.3.3. Let Z̄∗ be the diagonal partition of {Z1, · · · ,Zm0+1} under {τ̂1, · · · , τ̂m0}

and δ̂ be the related unrestricted estimation of δ. If there exists a break rate (i.e. λ0
j) which

cannot be consistently estimated, then

∥∥∥δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗
∥∥∥2

F
> TC‖δ0

j(d+1) − δ
0

j+1(d+1)‖
2
F

for some C > 0 with probability no less than ε > 0.

Proof. For ‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F , if there exists a break rate which cannot be con-

sistently estimated, then with some positive probability ε0 > 0, there exists an η > 0 such

that this non-estimated break falls in the interval
[
τ0

j − Tη, τ0
j + Tη

]
. Suppose this interval

satisfies τ̂k−1 ≤ τ
0
j − Tη < τ0

j + Tη ≤ τ̂k. Then, we have

‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥
τ0

j∑
t=τ0

j−Tη+1
((δ̂′k(d+1)

− δ0′
j(d+1)

)zt)′((δ̂′k(d+1)
− δ0′

j(d+1)
)zt) +

τ0
j +Tη∑

t=τ0
j +1

((δ̂′k(d+1)
−

δ0′
j+1(d+1)

)zt)′((δ̂′k(d+1)
− δ0′

j+1(d+1)
)zt).

Then,

‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥
τ0

j∑
t=τ0

j−Tη+1
z′t(δ̂

′
k(d+1)
− δ0′

j(d+1)
)′(δ̂′k(d+1)

− δ0′
j(d+1)

)zt +

τ0
j +Tη∑

t=τ0
j +1

z′t(δ̂
′
k(d+1)
−

δ0′
j+1(d+1)

)′(δ̂′k(d+1)
− δ0′

j+1(d+1)
)zt.

This gives

‖δ0×(d+1)Z̄0−δ̂×(d+1)Z̄∗‖2F ≥
τ0

j∑
t=τ0

j−Tη+1
trace[z′t(δ̂

′
k(d+1)
−δ0′

j(d+1)
)′(δ̂′k(d+1)

−δ0′
j(d+1)

)zt]+
τ0

j +Tη∑
t=τ0

j +1
trace[z′t(δ̂

′
k(d+1)
−

δ0′
j+1(d+1)

)′(δ̂′k(d+1)
− δ0′

j+1(d+1)
)zt], and then,

‖δ0×(d+1)Z̄0−δ̂×(d+1)Z̄∗‖2F ≥
τ0

j∑
t=τ0

j−Tη+1
trace[ztz′t(δ̂

′
k(d+1)
−δ0′

j(d+1)
)′(δ̂′k(d+1)

−δ0′
j(d+1)

)]+
τ0

j +Tη∑
t=τ0

j +1
trace[ztz′t(δ̂

′
k(d+1)
−

δ0′
j+1(d+1)

)′(δ̂′k(d+1)
− δ0′

j+1(d+1)
)].

Hence, we have
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‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥ trace

(δ̂k(d+1) − δ
0

j(d+1))
′


τ0

j∑
t=τ0

j−Tη+1

ztz′t

 (δ̂k(d+1) − δ
0

j(d+1))


+ trace

(δ̂k(d+1) − δ
0

j+1(d+1))
′


τ0

j +Tη∑
t=τ0

j +1

ztz′t

 (δ̂k(d+1) − δ
0

j+1(d+1))
′

 . (B.19)

Let γt and γ∗t be the smallest eigenvalues of
τ0

j∑
t=τ0

j−Tη+1
ztz′t and

τ0
j +Tη∑

t=τ0
j +1

ztz′t in (B.19), respec-

tively. Then

‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥ γt‖δ̂k(d+1) − δ
0

j(d+1)‖
2 + γ∗t ‖δ̂k(d+1) − δ

0
j+1(d+1)‖

2

≥ min(γt, γ
∗
t )

(
‖δ̂k(d+1) − δ

0
j(d+1)‖

2 + ‖δ̂k(d+1) − δ
0

j+1(d+1)‖
2
)
. (B.20)

In addition, using the convexity of quadratic functions, we have

2‖a‖2 + 2‖b‖2 ≥ ‖a + b‖2, (B.21)

and combining relations (B.19),(B.20), and (B.21), we get

‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥ (1/2) min(γt, γ
∗
t )(‖δ0

j(d+1)
− δ0

j+1(d+1)‖
2).

Further, let
τ0

j∑
t=τ0

j−Tη+1

ztz′t =
Tη
Tη

τ0
j∑

t=τ0
j−Tη+1

ztz′t = TηAT ,

where At = 1
Tη

τ0
j∑

t=τ0
j−Tη+1

ztz′t . Under condition (C2), the smallest eigenvalue of AT is bounded

away from zero. Thus, the smallest eigenvalue of TηAT , γt, is of order Tη. Similarly, γ∗t is

also of order Tη. Therefore

‖δ0 ×(d+1) Z̄0 − δ̂ ×(d+1) Z̄∗‖2F ≥ TC‖δ0
j(d+1)
− δ0

j+1(d+1)
‖2F

for some C > 0 with probability no less than ε > 0. �
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Lemma B.3.1. If Assumption 3.2.3 holds, then,

sup
16i6m0

‖(τi+1 − τi)−1/2
τi+1∑

t=τi+1

zt(Vec(Ut))′‖F = Op(Tα∗), for 1−α
2 < α∗ < 1/2.

Proof. Under (C5) and (C6), with 1/2 − α/2 < α∗ < 1/2, we have

P

 sup
εT≤(τi+1−τi)≤T

‖(τi+1 − τi)−1/2
τi+1∑

t=τi+1

ztVec(Ut)′‖F > Tα∗


= P

 sup
εT≤Li+1≤T

‖(τi+1 − τi)−1/2T 1/2
Li+1∑
t=1

Vec(Xi+1,t)‖F > Tα∗


≤ P

 sup
εT≤Li+1≤T

‖(τi+1 − τi)−1/2
Li+1∑
t=1

Vec(Xi+1,t)‖F > T−1+α∗


=

T∑
Li+1=[εT ]

P
L−2

i+1

q1∑
s1=1
· · ·

qd+1∑
sd+1=1

(
Li+1∑
t=1

Xi+1,t,s1,··· ,sd+1

)2

> T−2+2α∗


≤
T∑

Li+1=[εT ]
L−2

i+1E
 q1∑

s1=1
· · ·

qd+1∑
sd+1=1

(
Li+1∑
t=1

Xi+1,t,s1,··· ,sd+1

)2 /T−2+2α∗ .

Since E
 q1∑

s1=1
· · ·

qd+1∑
sd+1=1

(
Li+1∑
t=1

Xi+1,t,s1,··· ,sd+1

)2 = O
(

Li+1∑
t=1

c2
i+1,t

)
= O(T−α) and

T∑
Li+1=[εT ]

L−2
i+1 ≤ 2ε[εT ]−1,

P

 sup
εT≤(τi+1−τi)≤T

‖(τi+1 − τi)−1/2
τi+1∑

t=τi+1

ztVec(Ut)′‖F > Tα∗

 = O(T 1−α−2α∗) = o(1).

This implies

‖(τi+1 − τi)−1/2
τi+1∑

t=τi+1

ztVec(Ut)′‖F = Op(Tα∗), (B.22)

this completes the proof. �

Lemma B.3.2. Let Z̄ be the partitioned matrix of regressors based on {τ1, · · · , τm0}. Then,

under Assumption 2, sup
τ1,··· ,τm0

(‖U×d+1 (Z̄(Z̄′Z̄)−1Z̄′)‖F) = Op(Tα∗), for some 1−α
2 < α∗ < 1/2.

Proof. Note that

‖U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′)‖2F =
(
Vec(U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′))

)′
Vec(U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′)).

(B.23)
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Then, we have

Vec(U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′))′Vec(U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′))

=

m∑
i=1

 τi+1∑
t=τi+1

ztVec(Ut)′

′  τi+1∑

t=τi+1

ztz′t


−1  τi+1∑

t=τi+1

ztVec(Ut)′
 . (B.24)

Also, one can see that the summation
τi+1∑

t=τi+1
ztz′t may contain either data from only one

regime or may contain data from multiple regimes. In either case, it always contains at

least [εT/2] data points from one particular regime. Without loss of generality, we assume

that these point are from regime k. That is, τi ≤ τ
0
k ≤ τ

0
k + [εT/2] ≤ τi+1. Then,

τi+1∑
t=τi+1

ztz′t =

τ0
k∑

t=τi+1

ztz′t +

τ0
k+[εT/2]∑
t=τ0

k+1

ztz′t +

τi+1∑
t=τ0

k+[εT/2]+1

ztz′t .

Since the difference between the two matrices is positive definite, we have

 τi+1∑
t=τi+1

ztz′t


−1

≤


τ0

k+[εT/2]∑
t=τ0

k+1

ztz′t


−1

,

where the notation A ≤ B means that B − A is nonnegative definite. Therefore, under

Condition (C2),∥∥∥∥∥∥∥∥
(τi+1 − τi)−1

τi+1∑
t=τi+1

ztz′t


−1

∥∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥∥∥
(τi+1 − τi)−1

τ0
k+[εT/2]∑
t=τ0

k+1

ztz′t


−1∥∥∥∥∥∥∥∥∥

F

=
1
ε

Op(1).

Combining the relation (B.24) and Lemma B.3.1, we get

‖U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′)‖2F =

m∑
i=1

 τi+1∑
t=τi+1

ztVec(Ut)′

′  τi+1∑

t=τi+1

ztz′t


−1  τi+1∑

t=τi+1

ztVec(Ut)′
 = Op(T 2α∗).

Therefore,

sup
τ1,··· ,τm

(‖U ×(d+1) (Z̄(Z̄′Z̄)−1Z̄′)‖F) = Op(Tα∗).

�
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In deriving the consistency of the rate of change-points, we use the following result. To

simplify some notations, let Q0 = Z̄0 ⊗ Iqd ⊗ · · · ⊗ Iq1 , let {τ1, · · · , τm0} be a partition in the

set

Vε,i(C) = {(τ1, · · · , τm0) : C < |τi − τ
0
i | < εT, for some i}, (B.25)

with associated unrestricted sum of squared residuals SSEU
1 , regressor matrix Z̄ and the

UE δ̂1. Similarly, let {τ1, · · · , τ
0
i , · · · , τm0} be a partition with associated unrestricted sum of

squared residuals SSEU
0 , regressor matrix Z̄0 and the UE δ̂0. Let δ̂r0 = δ̂1 − δ̂0.

Proposition B.3.4. If Assumption 2 and (3.7) hold, then on the set Vε,i(C) for C large

enough, 1. δ̂r0(
d+1�
j=1

)
j
R j = Op(|τi − τ

0
i |T
−1); 2. r − δ̂1(

d+1�
j=1

)
j
R j = |τi − τ

0
i |Op(T−1).

Proof. By Tobing and McGilchrist (1992) on the set Vε,i(C) for C large enough, we have

(Z̄′1Z̄1)−1 = (Z̄′0Z̄0)−1 + Op

(
τi − τ

0
i

T 2

)
.

Since ‖(δ0 ×(d+1) Z̄0 +U)×(d+1) Z̄′1‖F ≤ ‖Z̄
′
1‖F‖δ0 ×(d+1) Z̄0‖F + ‖U×(d+1) Z̄′1‖F = Op(T ), then,

δ̂r0 = (δ0 ×(d+1) Z̄1 + U) ×(d+1) (Z̄′1Z̄1)−1Z̄′1 − (δ0 ×(d+1) Z̄0 + U) ×(d+1) (Z̄′0Z̄0)−1Z̄′0

= (δ0 ×(d+1) Z̄1 + U) ×(d+1)

(
(Z̄′0Z̄0)−1 + Op

(
τi−τ

0
i

T 2

))
Z̄′1 − (δ0 ×(d+1) Z̄0 + U) ×(d+1) (Z̄′0Z̄0)−1Z̄′0

= (δ0 ×(d+1) Z̄0) ×(d+1) (Z̄′0Z̄0)−1(Z̄′1 − Z̄′0) + U ×(d+1) (Z̄′0Z̄0)−1(Z̄′1 − Z̄′0) + |τi − τ
0
i |Op(T−1).

= δ0 ×(d+1) (Z̄′0Z̄0)−1(Z̄′1 − Z̄′0)Z̄0 + (U ×(d+1) (Z̄′1 − Z̄′0)) ×(d+1) (Z̄′0Z̄0)−1 + |τi − τ
0
i |Op(T−1).

By the definitions of Z̄0 and Z̄1, (Z̄′1 − Z̄′0)Z̄0 has at most |τi − τ
0
i | terms. As such, under

condition (C2), (Z̄′1 − Z̄′0)Z̄0 = Op(|τi − τ
0
i |). This gives

(δ0 ×(d+1) Z̄0) ×(d+1) (Z̄′0Z̄0)−1(Z̄′1 − Z̄′0) = Op(|τi − τ
0
i |)Op(T−1).

Also,

U ×(d+1) (Z̄′1 − Z̄′0) = Op(|τi − τ
0
i |).
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Therefore, δ̂r0 = Op(|τi − τ
0
i |T
−1) and

δ̂r0(
d+1�
j=1

)
j
R j = Op(|τi − τ

0
i |T
−1). (B.26)

In addition, since δ̂1 = δ̂r0 + δ̂0, and

r − δ̂0(
d+1�
j=1

)
j
R j = (δ0 − δ̂0)(

d+1�
j=1

)
j
R j.

This becomes

(δ0 − δ̂0)(
d+1�
i=1

)
i
Ri =

(
δ0 − Y ×(d+1) (Z̄′0Z̄0)−1Z̄′0

)
(

d+1�
j=1

)
j
R j

=
((
δ0 ×(d+1) Z̄0

)
×(d+1) (Z̄′0Z̄0)−1Z̄′0 −

(
δ0 ×(d+1) Z̄0 + U

)
×(d+1) (Z̄′0Z̄0)−1Z̄′0

)
(

d+1�
j=1

)
j
R j

=
(
δ0 ×(d+1) Z̄0 − δ0 ×(d+1) Z̄0 − U

) d+1�
j=1

R j

(
(Z̄′0Z̄0)−1Z̄′0

)
.

(Z̄0− Z̄0) has at most 2εT non-zero terms in each column, ‖Z̄0− Z̄0‖F = (2ε)1/2Op(T 1/2) and

Z̄′0(Z̄0 − Z̄0) = 2εOp(T ). Choosing ε small enough, r − δ̂0(
d+1�
j=1

)
j
R j can be made arbitrarily

small. Therefore,

r − δ̂1(
d+1�
j=1

)
j
R j = r − δ̂0(

d+1�
j=1

)
j
R j − δ̂r0(

d+1�
j=1

)
j
R j = |τi − τ

0
i |Op(T−1).

This completes the proof. �

To simplify some mathematical expressions, let

f (τi, τ
0
i ) = SSER

T (τ1, · · · , τi, · · · , τm0) − SSER
T (τ1, · · · , τ

0
i , · · · , τm0)

Q∗0 = R′d+1[Rd+1(Z̄′0Z̄0)−1R′d+1]−1Rd+1(Z̄′0Z̄0)−1 ⊗

1⊗
i=d

Ji (B.27)

Q∗1 = R′d+1[Rd+1(Z̄′0Z̄0)−1R′d+1]−1Rd+1 ⊗

1⊗
i=d

Ji, Z0 = (Z̄′0Z̄0)−1Z̄′0 ⊗
1⊗

i=d

Iqi ,

and, for a full rank matrix x, let

R(x) = [Rd+1(x′x)−1R′d+1]−1 ⊗

1⊗
i=d

(RiR′i)
−1, P(x) = R′d+1[Rd+1(x′x)−1R′d+1]−1 ⊗

1⊗
j=d

G j.
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Proposition B.3.5. Under the conditions of Proposition B.3.4, we have

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

(
Vec(δ̂r0)

)′
Q∗1Vec(δ̂r0) + 2

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(U)

+2
(
Vec(δ̂r0)

)′
Q∗1Z0Vec(δ0 ×d+1 (Z̄0 − Z̄0)) + |τi − τ

0
i |

3Op(T−2).

Proof. It can be shown that

SSER
T (τ1, · · · , τi, · · · , τm0) = SSEU

1 +

Vec

r − δ̂1(
d+1�
j=1

)
j
R j



′

R(Z̄1)Vec

r − δ̂1(
d+1�
j=1

)
j
R j

 .
Similarly, we have

SSER
T (τ1, · · · , τ

0
i , · · · , τm0) = SSEU

0 +

Vec

r − δ̂0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec

r − δ̂0(
d+1�
j=1

)
j
R j

 .
Then, we have

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

Vec

r − δ̂1(
d+1�
j=1

)
j
R j



′

R(Z̄1)Vec

r − δ̂1(
d+1�
j=1

)
j
R j


−

Vec

r − δ̂0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec

r − δ̂0(
d+1�
j=1

)
j
R j

 .
By Proposition B.3.4, Vec

r − δ̂1(
d+1�
j=1

)
j
R j

 = |τi−τ
0
i |Op(T−1), and by Tobing and McGilchrist

(1992), on the set Vε,i(C) for a large enough C, we have

[Rd+1(Z̄′1Z̄1)−1R′d+1]−1 = [Rd+1(Z̄′0Z̄0)−1R′d+1]−1 + Op(τi − τ
0
i ).

Thus, we have

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

Vec

r − δ̂1(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec
(
r − δ̂1(

d+1�
j=1

)
j
R j

)

−

Vec

r − δ̂0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec

r − δ̂0(
d+1�
j=1

)
j
R j

 + |τi − τ
0
i |

3Op(T−2).

This gives

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

Vec

(δ̂0 + δ̂r0)(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec

(δ̂0 + δ̂r0)(
d+1�
j=1

)
j
R j


−

Vec

δ̂0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec

δ̂0(
d+1�
j=1

)
j
R j

 − 2

Vec

δ̂r0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec(r)

+|τi − τ
0
i |

3Op(T−2).
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This becomes

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

(
Vec

(
r − δ̂1(

d+1�
j=1

)
j
R j

))′
R(Z̄0)Vec

(
r − δ̂1(

d+1�
j=1

)
j
R j

)
−

(
Vec

(
r − δ̂0(

d+1�
j=1

)
j
R j

))′
R(Z̄0)Vec

(
r − δ̂0(

d+1�
j=1

)
j
R j

)
+ |τi − τ

0
i |

2Op(T−2).

Then,

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

(
Vec

(
(δ̂0 + δ̂r0)(

d+1�
j=1

)
j
R j

))′
R(Z̄0)Vec

(
(δ̂0 + δ̂r0)(

d+1�
j=1

)
j
R j

)
−

Vec

δ̂0(
d+1�
j=1

)
j
R j



′

R(Z̄0)Vec
(
δ̂0(

d+1�
j=1

)
j
R j

)
− 2

(
Vec

(
δ̂r0(

d+1�
j=1

)
j
R j

))′
R(Z̄0)Vec(r)

+|τi − τ
0
i |

3Op(T−2).

By simplifying, we have

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

(
Vec(δ̂0 + δ̂r0)

)′
Q∗1Vec(δ̂0 + δ̂r0) −

(
Vec(δ̂0)

)′
Q∗1Vec(δ̂0)

−2
(
Vec(δ̂r0)

)′
P(Z̄0)Vec(r) + |τi − τ

0
i |

3Op(T−2).

This results in

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 + 2

(
Vec(δ̂r0)

)′
P(Z̄0)(

1⊗
j=d+1

R j)Z0Vec
(
δ0 ×d+1 Z̄0 + U

)
−Vec(r) +

(
Vec(δ̂r0)

)′
Q∗1Vec(δ̂r0) + |τi − τ

0
i |

3Op(T−2).

Hence,

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 +

(
Vec(δ̂r0)

)′
Q∗1Vec(δ̂r0) + 2

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(U)

+2
(
Vec(δ̂r0)

)′
Q∗1Z0Vec(δ0 ×d+1 (Z̄0 − Z̄0)) + |τi − τ

0
i |

3Op(T−2),

this completes the proof. �

We also derive the following proposition which is useful in establishing the convergence

of λ̂ and λ̃. Let J(x) = R′d+1[Rd+1(x′x)−1R′d+1]−1Rd+1 ⊗
1⊗

i=d
Ji for a full rank matrix x.
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Proposition B.3.6. Let (τ1, · · · , τm0) ∈ Vε,i(C) where Vε,i(C) is as in (B.25). Then,

1.

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(U)

|τi − τ
0
i |

= op(1), 2.

(
Vec(δ̂r0)

)′
J(Z̄0)Vec(δ̂r0)

|τi − τ
0
i |

= Op(1),

3.

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(δ0 ×d+1 (Z̄0 − Z̄0))

|τi − τ
0
i |

= Op(1).

Proof. We have,

∥∥∥∥(Vec(δ̂r0)
)′
Q∗1Z0Vec(U)

∥∥∥∥
F
6

∥∥∥∥(Vec(δ̂r0)
)′∥∥∥∥

F

∥∥∥R′d+1[Rd+1(Z̄′0Z̄0)−1R′d+1]−1Rd+1

∥∥∥
F

×

∥∥∥∥∥∥∥
(Z̄′0Z̄0)−1Z̄′0 ⊗

1⊗
i=d

Ji

 Vec(U)

∥∥∥∥∥∥∥
F

.

One can also verify that
∥∥∥∥(Vec(δ̂r0)

)′∥∥∥∥
F

= Op(|τi − τ
0
i |T
−1) and∥∥∥∥∥∥∥

(Z̄′0Z̄0)−1Z̄′0 ⊗
1⊗

i=d

Ji

 Vec(U)

∥∥∥∥∥∥∥
F

= Op(T−1T 1/2+α∗) = op(1), (B.28)

for some 1/2 − α/2 < α∗ < 1/2. Hence, we have(
Vec(δ̂r0)

)′
Q∗1Z0Vec(U)

|τi − τ
0
i |

= OP

(
|τi − τ

0
i |T
−1TT−1/2+α∗

|τi − τ
0
i |

)
= op(1), (B.29)

this proves the first claim. To derive the second claim, we use similar techniques to prove

that (
Vec(δ̂r0)

)′
J(Z̄0)Vec(δ̂r0)/|τi − τ

0
i | = |τi − τ

0
i |Op(T−1) = εOp(1),

which can be made arbitrarily small by choosing a small enough ε. To prove the third

claim, note that (Z̄0 − Z̄0) has at most 2εT non-zero terms in each column. Then,

(Z̄0 − Z̄0) = (2ε)1/2Op(T 1/2) and Z̄′0(Z̄0 − Z̄0) = 2εOp(T ). Therefore,

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(δ0 ×d+1 (Z̄0 − Z̄0))/|τi − τ

0
i | = (2ε)Op(1),

which can be also made arbitrarily small by choosing ε small enough, this completes the

proof. �
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Proposition B.3.7. Under Assumption 3.2.3, and if the shifts in the coefficients are of fixed

magnitudes independent of T , then,

1. max
16 j6m0

∣∣∣λ̂ j − λ
0
j

∣∣∣ P
−−−−→
T→∞

0, and max
16 j6m0

∣∣∣λ̃ j − λ
0
j

∣∣∣ P
−−−−→
T→∞

0.

2. For every ε > 0, there exists a C < ∞, such that for large enough T ,

max
16 j6m0

(
P(|τ̂ j − τ

0
j | > C)

)
< ε, and max

16 j6m0

(
P(|τ̃ j − τ

0
j | > C)

)
< ε.

Proof. 1. From Proposition B.3.1,

‖Û‖2F 6 ‖Ũ‖
2
F 6 ‖Ũ

0‖2F 6 ‖U‖
2
F .

Further, let Z̄∗ be the diagonal partition of {Z1, · · · ,Zm0} under τ̂ and let δ̂ be the corre-

sponding UE of δ. Then,
∥∥∥Û∥∥∥2

F
=

∥∥∥δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗ + U
∥∥∥2

F
. Then,

∥∥∥Û′∥∥∥2

F
=

∥∥∥δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗
∥∥∥2

F
+ 2 (Vec(U))′Vec(δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗) + ‖U‖2F .

Since δ̂ = Y ×d+1 (Z̄∗
′

Z̄∗)−1Z̄∗
′

where Y = δ0 ×d+1 Z̄0 + U, then

(Vec(U))′Vec(δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗) = −
(
Vec(U ×d+1 Z̄∗(Z̄∗

′

Z̄∗)−1Z̄∗
′

)
)′

Vec(δ0 ×d+1 Z̄0)

−
∥∥∥U ×d+1 Z̄∗(Z̄∗

′

Z̄∗)−1Z̄∗
′
∥∥∥2

F
+ (Vec(U))′Vec(δ0 ×d+1 Z̄0).

From Assumption 3.2.2 and Proposition B.3.2, ‖δ0×d+1Z̄0‖F = Op(T 1/2), and by Lemma B.3.2,(
Vec(U ×d+1 Z̄∗(Z̄∗

′

Z̄∗)−1Z̄∗
′

)
)′

= Op(Tα∗). Then,
∥∥∥U ×d+1 Z̄∗(Z̄∗

′

Z̄∗)−1Z̄∗
′

)
∥∥∥2

F
= Op(T 2α∗).

Therefore, under Assumption 2,

∥∥∥∥(Vec(U ×d+1 Z̄∗(Z̄∗
′

Z̄∗)−1Z̄∗
′

)
)′

Vec(δ0 ×d+1 Z̄0)
∥∥∥∥

F

6
∥∥∥∥(Vec(U ×d+1 Z̄∗(Z̄∗

′

Z̄∗)−1Z̄∗
′

)
)′∥∥∥∥

F

∥∥∥Vec(δ0 ×d+1 Z̄0)
∥∥∥

F
= Op(T 1/2+α∗)

uniformly over all partitions. Hence, by Proposition B.3.2, we have

(Vec(U))′Vec(δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗) = Op(T 1/2+α∗). (B.30)
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Further, by combining Proposition B.3.3 and (B.30), we have that if at least one break is

not consistently estimated, then

T−1
∥∥∥Ũ∥∥∥2

F
≥ T−1

∥∥∥Û∥∥∥2

F
≥ T−1 ‖U‖2F + C

∥∥∥∥δ0
j(d+1)
− δ0

j+1(d+1)

∥∥∥∥2

F
+ op(1) > T−1 ‖U‖2F

holds with some positive probability. But, this contradicts T−1
∥∥∥Ũ∥∥∥2

F
6 T−1 ‖U‖2F , this

proves the first claim of Part 1. The second claim of Part 1 is established in a similar way.

2. Let (τ1, · · · , τm0) ∈ Vε,i(C). Then, by Proposition B.3.5 along with the notations of

Proposition B.3.4,

f (τi, τ
0
i ) = SSEU

1 − SSEU
0 + 2

(
Vec(δ̂r0)

)′
Q∗1Z0Vec(U) +

(
Vec(δ̂r0)

)′
J(Z̄0)Vec(δ̂r0)

+2
(
Vec(δ̂r0)

)′
Q∗1Z0Vec(δ0 ×d+1 (Z̄0 − Z̄0)) + |τi − τ

0
i |

3Op(T−2). (B.31)

Further, as in Bai and Perron (1998), we have

SSEU
1 − SSEU

0

|τi − τ
0
i |

> 2−1
(
Vec(δ0

i+1 − δ
0
i )
)′ (Z̄1−Z̄0)(Z̄1−Z̄0)′⊗Iq1 ···qd

|τi−τ
0
i |

(
Vec(δ0

i+1 − δ
0
i )
)

−εOp(1) − ρOp(1), (B.32)

where ε and ρ can be made arbitrarily small by choosing a small ε and a large T . Moreover,

(Z̄1 − Z̄0)(Z̄1 − Z̄0)′ ⊗ Iq1···qd has at most 2|τi − τ
0
i | terms and under (C2), it has a minimum

eigenvalue bounded away from zero. Thus, the term

2−1
(
Vec(δ0

i+1 − δ
0
i )
)′ (

(Z̄1 − Z̄0)(Z̄1 − Z̄0)′ ⊗ Iq1···qd

) (
Vec(δ0

i+1 − δ
0
i )
)
/|τi − τ

0
i |

is positive and dominates the other two terms by choosing a small enough ε and ρ.

Hence, by combining Proposition B.3.6 with (B.31) and (B.32), we conclude first that

(SSEU
1 − SSEU

0 )/(|τi − τ
0
i |) dominates all others and is positive with probability one for

large T . However, SSEU
1 = SSEU

T (τ1, τ2, · · · , τm0) is the minimum among all possible

values of τ and we thus have SSEU
1 ≤ SSEU

T (τ1, τ2, · · · , τm0), which is a contradiction, this

proves the first claim of Part 2. Further, by combining Proposition B.3.6 with (B.31) and
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(B.32), we also conclude that f (τi, τ
0
i )/|τi − τ

0
i | > 0. But, since SSER

T (τ1, · · · , τi, · · · , τm0)

is the minimization among all possible values of {τ1, · · · , τm0}, we get f (τi, τ
0
i ) 6 0, with

probability one. This is a contradiction, which shows that |τ̃i− τ
0
i | < C when T is large, this

completes the proof. �

Proposition B.3.8. Suppose that Assumption 3.2.3 holds and r0i = δ0
T,i+1 − δ

0
T,i = νT r0i,

where r0i is independent of T and νT > 0 with νT → 0 and as T → ∞, T−1/2−ην → ∞, for

some η ∈ (0, 1/2). Then, 1. max
16 j6m0

∣∣∣λ̂ j − λ
0
j

∣∣∣ P
−−−−→
T→∞

0 and max
16 j6m0

∣∣∣λ̃ j − λ
0
j

∣∣∣ P
−−−−→
T→∞

0.

2. For every ε > 0, there exists a C < ∞, such that for large T ,

max
16 j6m0

(
P(ν2

T |τ̂ j − τ
0
j | > C)

)
< ε and max

16 j6m0

(
P(ν2

T |τ̃ j − τ
0
j | > C)

)
< ε.

Proof. We have δ0
T,i+1 − δ

0
T,i = O(νT ), which implies that δ0

T,i − δ
0
T, j = O(νT ) for all i and j.

Further, δ0 ×d+1 (Z̄0 − Z̄∗) depends on changes in the parameters (i.e. δ0
i − δ

0
j for some i and

j). To see this, without loss of generality, consider the case where m = 1 and assume that

τ1 < τ
0
1. Then,

Vec(δ0 ×d+1 (Z̄0 − Z̄∗)) = (δ0
1(d+1)
− δ0

2(d+1)
)′(0, · · · , 0, z′T1+1, · · · , z

′

T 0
1
, 0, · · · , 0))′.

This implies that δ0×d+1 (Z̄0− Z̄∗) is at most Op(T 1/2νT ). Further, in similar ways as in proof

of Proposition B.1, one proves that∥∥∥∥(Vec(U ×d+1 Z̄∗(Z̄∗
′

Z̄∗)−1Z̄∗
′

)
)′

Vec(δ0 ×d+1 (Z̄0 − Z̄∗))
∥∥∥∥

F
= Op(T 1/2+α∗νT ),

(Vec(U))′Vec(δ0 ×d+1 (Z̄∗ − Z̄0)) = Op(T 1/2νT ).

(Vec(U))′Vec(δ̂ ×d+1 Z̄∗ − δ0 ×d+1 Z̄0) = Op

(
T 1/2+α∗νT

)
,∥∥∥δ0 ×d+1 Z̄0 − δ̂ ×d+1 Z̄∗

∥∥∥2

F
> TC

∥∥∥∥δ0
j(d+1)
− δ0

j+1(d+1)

∥∥∥∥
F
> TCν2

T ,

in the case where at least one break is not consistently estimated. Hence, together with

some algebraic computations, we get

T−1
∥∥∥Ũ∥∥∥2

F
≥ T−1

∥∥∥Û∥∥∥2

F
> T−1 ‖U‖2F + Cν2

T + op(1) > T−1 ‖U‖2F
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with some positive probability. This is a contradiction with Proposition 2.1, this proves the

first claim of Part (1). The other statements are established in a similar way, this completes

the proof. �

Proof of Theorem 3.4.1. (1). We have

IC(m0) =

m0+1∑
j=1

τ̂ j∑
i=τ̂i−1

(
Vec(Yi) − δ̂′j(d+1)

zi

)′ (
Vec(Yi) − δ̂′j(d+1)

zi

)
+ (m + 1)(qd+1 + 1)log(T ),

where τ̂ is obtained via (2.3). Moreover, define

IC0(m0) =

m0+1∑
j=1

τ0
j∑

i=τ0
i−1

(
Vec(Yi) − δ̂0′

j(d+1)
zi

)′ (
Vec(Yi) − δ̂0′

j(d+1)
zi

)
+ (m + 1)(qd+1 + 1)log(T ),

where δ̂0
j = Ȳ j×d+1

(
Z0′

j Z0
j

)−1
Z0′

j ; Z0
j = (zτ j−1+1, · · · , zτ j)

′; Ȳ j = Yτ j−1+1�(d+1)· · ·�(d+1)Yτ j . Since

τ̂ is obtained by minimizing SSRU
T , we get IC(m0) 6 IC0(m0) with probability 1. Thus, it

remains to show that IC(m) > IC0(m0), for all m < m0 with probability 1. For some positive

integer m∗ such that 0 < m∗ < m0, suppose that the corresponding estimated change-

points are τ̂∗ = (τ̂∗1, τ̂
∗
2, · · · , τ̂

∗
m∗), and the corresponding UE is δ̂∗j = Ȳ∗j ×d+1

(
Z̄∗
′

1 Z̄∗1
)−1

Z̄∗
′

1 ,

Z∗j = (zτ∗j−1+1, · · · , zτ∗j )
′ and Ȳ∗j = Yτ∗j−1+1 �(d+1) · · · �(d+1) Y∗τ∗j . Then, for m < m0, we have

IC(m) − IC0(m0) =
m0+1∑

j=1

τ̂ j∑
i=τ̂i−1

(
Vec(Yi) − δ̂∗

′

j(d+1)
zi

)′ (
Vec(Yi) − δ̂∗

′

j(d+1)
zi

)
−

m0+1∑
j=1

τ0
j∑

i=τ0
i−1

(
Vec(Yi) − δ̂0′

j(d+1)
zi

)′ (
Vec(Yi) − δ̂0′

j(d+1)
zi

)
+ (m∗ − m0)(qd+1 + 1) log(T ).

Since m∗ < m0, then there exists at least one change-point that cannot be consistently

estimated. Without loss of generality, let that change-point be τ0
j . Using similar techniques

as in Proposition B.3.3, we get

1/T
(
IC(m) − IC0(m0)

)
> C∗‖δ0

j(d+1)
− δ0

j+1(d+1)
‖2 + op(1), (B.33)

for all m < m0, for some C∗ > 0 with probability 1. Therefore, for large T , IC(m) > IC0(m0)

with probability 1, for all m < m0, and then, lim
T→∞

P (IC(m0) < IC(m)) = 1, for all m < m0.
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(2). For m∗ > m0, let the estimated change points be τ̂∗ = (τ̂∗1, · · · , τ̂
∗
m∗). Then,

IC(m∗) − IC0(m0) =
T∑

i=0

(
Vec(Yi) − δ̂∗

′

j(d+1)
zi

)′ (
Vec(Yi) − δ̂∗

′

j(d+1)
zi

)
−

T∑
i=0

(
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)
+ (m∗ − m0)(qd+1 + 1) log(T ).

where δ̂(∗)
i =

m∗+1∑
j=1
δ̂∗j I(τ̂

∗
j−1 < ti 6 τ̂∗j) and δ̂(0)

i =
m0+1∑

j=1
δ̂0

j I(τ
0
j−1 < ti 6 τ0

j). It should be

noted that when m∗ > m0, there are m∗ − m0 estimated change points that divide [0,T ] into

m∗ −m0 + 1 different regimes such that within each regime the number of estimated change

points is equal to the number of the actual change points. Hence, denote these m∗ − m0

change-points as τ̃∗j = (τ∗1, · · · , τ
∗
m∗−m0

). Let τ∗0 = 0 and τ∗m∗−m0+1 = T . Hence,

IC(m∗) − IC0(m0) =
m∗−m0+1∑

j=1

τ̃∗j∑
i=τ̃∗j−1

[ (
Vec(Yi) − δ̂∗

′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂∗

′

i(d+1)
zi

)
−

(
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)
+

(m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T )

]
.

Define δ(0)
i =

m∗+1∑
j=1

δ0
jI(τ

0
j−1 < ti 6 τ

0
j). This becomes

IC(m∗) − IC0(m0) =
m∗−m0+1∑

j=1

τ̃∗j∑
i=τ̃∗j−1

z′i
(
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)
zi

−
m∗−m0+1∑

j=1

τ̃∗j∑
i=τ̃∗j−1

z′i
(
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi (B.34)

+ 2
m∗−m0+1∑

j=1

τ̃∗j∑
i=τ̃∗j−1

(Vec(Ui))′
(
δ̂(∗)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi +

m∗−m0+1∑
j=1

τ̃∗j∑
i=τ̃∗j−1

(m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ).

Hence, it suffices to show that for each (τ̃∗j−1, τ̃
∗
j], j = 1, · · · ,m∗ − m0 + 1,

τ̃∗j∑
i=τ̃∗j−1

z′i
(
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)
zi −

τ̃∗j∑
i=τ̃∗j−1

z′i
(
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi

+ 2
τ̃∗j∑

i=τ̃∗j−1

(Vec(Ui))′
(
δ̂(∗)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi +

τ̃∗j∑
i=τ̃∗j−1

(m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ) (B.35)

is positive with probability one, whenever T is large. We first consider the case where there

are no change-points within (τ̃∗j−1, τ̃
∗
j]. Then, we have τ0

k∗−1 < τ̃∗j−1 < τ̃∗j < τ0
k∗ , for some
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k∗ > 0. Then, we have

δ̂(∗)
i = δ(0)

i + Ū∗i ×d+1

(
Z̄∗
′

j Z̄∗j
)−1

Z̄∗
′

j and δ̂(∗)
i = δ(0)

i + Ū0
i ×d+1

(
Z̄0′

j Z̄0
j

)−1
Z̄0′

j .

Using these expressions, (B.35) becomes

τ̃∗j∑
i=τ̃∗j−1

[
z′i

(
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(∗)′

i(d+1)

)
zi − z′i

(
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)′ (
δ(0)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi

]

+2
τ̃∗j∑

i=τ̃∗j−1

(Vec(Ui))′
(
δ̂(∗)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi +

τ̃∗j∑
i=τ̃∗j−1

(m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ).

Since δ̂(∗)
i = δ(0)

i + Ū∗j ×d+1

(
Z̄∗
′

j Z̄∗j
)−1

Z̄∗
′

j and δ̂(0)
i = δ(0)

i + Ū0
j ×d+1

(
Z̄0′

j Z̄0
j

)−1
Z̄0′

j , where

Ū∗ = Uτ̃∗j−1+1 �(d+1) · · · �(d+1) Uτ̃∗j and Ū∗ = Uτ0
k−1+1 �(d+1) · · · �(d+1) Uτ̃0

k
, (B.35) becomes

τ̃∗j∑
i=τ̃∗j−1

z′i

(Ū∗j ×d+1 Z̄∗
′

j

)′
(d+1)

 τ̃∗j∑
i=τ̃∗j−1+1

ziz′i

−1
′ (Ū∗j ×d+1 Z̄∗

′

j

)′
(d+1)

 τ̃∗j∑
i=τ̃∗j−1+1

ziz′i

−1 zi

−

τ̃0
j∑

ti=τ̃0
j−1

z′i

(Ū0
k ×d+1 Z̄0′

k

)′
(d+1)

 τ0
k∑

i=τ0
k−1+1

ziz′i

−1
′ (Ū0

k ×d+1 Z̄0′
k

)′
(d+1)

 τ0
k∑

i=τ0
k−1+1

ziz′i

−1 zi

+

τ̃∗j∑
i=τ̃∗j−1

2 (Vec(Ui))′
(Ū∗j ×d+1 Z̄∗

′

j

)′
(d+1)

 τ̃∗j∑
i=τ̃∗j−1+1

ziz′i

−1

−
(
Ū0

k ×d+1 Z̄0′
k

)′
(d+1)

 τ0
k∑

i=τ0
k−1+1

ziz′i

−1 zi

+

τ̃∗j∑
ti=τ̃∗j−1

(m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ).

Then, the first term is bounded by

∥∥∥∥(T−1/2Ū∗j ×d+1 Z̄∗
′

j

)
(d+1)

∥∥∥∥2

F

∥∥∥∥∥∥∥∥∥
1/T

τ̃∗j∑
i=τ̃∗j−1+1

ziz′i


−1∥∥∥∥∥∥∥∥∥

F

.

Thus, by similar arguments as in Proposition B.3.3 and Lemma B.3.1, for 1 − α/2 < α∗ <

1/2, we get
τ̃∗j∑

ti=τ̃∗j−1

z′i

(Ū∗j ×d+1 Z̄∗
′

j

)′
(d+1)

 τ̃∗j∑
i=τ̃∗j−1+1

ziz′i

−1
′ (Ū∗j ×d+1 Z̄∗

′

j

)′
(d+1)

 τ̃∗j∑
i=τ̃∗j−1+1

ziz′i

−1 zi = Op

(
log(T )2α∗

)
.

Similar results hold for the second and third terms. Therefore, for large T , (B.34) is dom-

inated by (m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ). Since this term is positive, we conclude that, for large
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T , the term in (B.34) is positive with probability 1. Next, we consider the case where there

exist m j exact change points in (τ̃∗j−1, τ̃
∗
j], where 0 < m j < m0. Since

τ̃∗j∑
ti=τ̃∗j−1

(
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)
6

T∑
ti=0

(
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂

(0)′

i(d+1)
zi

)
= trace

(Ū ×d+1 Z̄′
)

(d+1)

(
Ū ×d+1 Z̄′

)′
(d+1)

 τ0
j∑

i=τ0
j−1+1

ziz′i


−1 = Op(log T 2α∗).

In addition, using similar arguments as in the proof of Proposition B.1, we have that∑
ti∈(τ̃∗j−1,τ̃

∗
j]

2 (Vec(Ui))′
(
δ̂(∗)′

i(d+1)
− δ̂(0)′

i(d+1)

)
zi = Op(log T 2α∗).

Since for large T , (log T )2α∗ < (m∗−m0)
m∗−m0+1 (qd+1 + 1) log(T ), we have, for large T , (B.34) is

dominated by either

(m∗ − m0)
m∗ − m0 + 1

(qd+1 + 1) log(T ) or
∑

ti∈(τ̃∗j−1,τ̃
∗
j]

(
Vec(Yi) − δ̂∗

′

i(d+1)
zi

)′ (
Vec(Yi) − δ̂∗

′

i(d+1)
zi

)
,

which are both positive. This implies that, for large T , the term in (B.34) is positive with

probability 1. Therefore, lim
T→∞

P
(
IC(m) > IC0(m0)

)
= 1, for m > m0, this proves Part (2).

Part (3) follows directly from Parts (1) and (2), and Part (4) follows directly from Parts (1)-

(3), this completes the proof. �

B.4 Algorithm for estimating location of change-points

In this section, we outline the dynamic programming algorithm used in estimating the

change-point locations. Let HU
1 (r,Tr) = minτ SSRU

[0,Tr](τ ) and HR
1 (r,Tr) = minτ SSRR

[0,Tr](τ )

to be the unrestricted and restricted residual sum of squares, respectively, computed based

on the optimal partition of the time interval [0,Tr] that contains r change-points. Also,

let HU
2 (a, b) = minτ SSRU

[a,b](τ ) and HR
2 (a, b) = minτ SSRR

[a,b](τ ) be the unrestricted and

restricted residual sum of squares based on a time regime (a, b]. Let h be the minimal per-

missible length of a time regime. Here, h is designated by the user.
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B.4.1 Case 1: known number of change-points

In this subsection, we outline the dynamic programming algorithm used in estimating the

change-point locations in the case where the number of change-points, m0, is known. For

known m0, we compute (3.3) using the following steps.

Step 1. Compute and save HU
2 (a, b) and HR

2 (a, b) for time periods (a, b] that satisfy b−a ≥ h.

Step 2. Compute and save HU
1 (1,T1) and HR

1 (1,T1) by solving
HU

1 (1,T1) = mina∈[h,T1−h]

[
HU

2 (0, a) + HU
2 (a,T1)

]
HR

1 (1,T1) = mina∈[h,T1−h]

[
HR

2 (0, a) + HR
2 (a,T1)

]
for all T1 ∈ [2h,T − (m0 − 1)h].

Step 3. Sequentially compute and save
HU

1 (r,Tr) = mina∈[rh,Tr−h]

[
HU

1 (r − 1, a) + HU
2 (a,Tr)

]
HR

1 (r,Tr) = mina∈[rh,Tr−h]

[
HR

1 (r − 1, a) + HR
2 (a,Tr)

]
,

for r = 2, . . . ,m0 − 1 and Tr ∈ [(r + 1)h,T − (m0 − r)h].

Step 4. The estimated change points can then be obtained by solving
HU

1 (m0,T ) = mina∈[m0h,T−h]

[
HU

1 (m0 − 1, a) + HU
2 (a,T )

]
HR

1 (m0,T ) = mina∈[m0h,T−h]

[
HR

1 (m0 − 1, a) + HR
2 (a,T )

]
,

and HU
1 (m0 − 1, a) = HU

2 (0, a), HR
1 (m0 − 1, a) = HR

2 (0, a), if m0 = 1.

B.4.2 Case 2: unknown number of change-points

In this subsection, we outline the dynamic programming algorithm used in estimating the

change-point locations in the case where the number of change-points, m0, is also unknown.

For change-point number m, we compute the estimates in (3.3) by using the following steps.
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Step 1. Compute and save HU
2 (a, b) and HR

2 (a, b) for time periods (a, b] that satisfy b−a ≥ h.

Step 2. Compute and save HU
1 (1,T1) and HR

1 (1,T1) by solving
HU

1 (1,T1) = mina∈[h,T1−h]

[
HU

2 (0, a) + HU
2 (a,T1)

]
HR

1 (1,T1) = mina∈[h,T1−h]

[
HR

2 (0, a) + HR
2 (a,T1)

]
for all T1 ∈ [2h,T − (m − 1)h].

Step 3. Sequentially compute and save
HU

1 (r,Tr) = mina∈[rh,Tr−h]

[
HU

1 (r − 1, a) + HU
2 (a,Tr)

]
HR

1 (r,Tr) = mina∈[rh,Tr−h]

[
HR

1 (r − 1, a) + HR
2 (a,Tr)

]
,

for r = 2, . . . ,m − 1 and Tr ∈ [(r + 1)h,T − (m − r)h].

Step 4. The estimated change points can then be obtained by solving
HU

1 (m,T ) = mina∈[mh,T−h]

[
HU

1 (m − 1, a) + HU
2 (a,T )

]
HR

1 (m,T ) = mina∈[mh,T−h]

[
HR

1 (m − 1, a) + HR
2 (a,T )

]
,

and HU
1 (m − 1, a) = HU

2 (0, a), HR
1 (m − 1, a) = HR

2 (0, a), if m = 1.

Step 5. Follow steps 1-4 to search for the optimal locations of the m estimated change-

points and store the value of IC(m).

Step 6. Repeat the above steps 1-5 for m = 0, 1, · · · ,mmax.

The estimated number of change-points, m̂, can then be obtained by taking the m with

smallest IC(m) value. The user can set mmax such that 0 6 mmax 6 dT/he. mmax can also be

determined by observing and analyzing the data or from available literature.



Appendix C

Generalized Tensor Regression

C.1 Definitions

Below, we define α−mixing (strong-mixing), near-epoch dependence, Hausdorff and con-

nected spaces and Stone topology.

Definition C.1.1 (α-mixing). Let {F t
n,s,−∞ 6 s 6 t 6 ∞, n ≥ 1} be a family of sigma

subfields of F and let G ∈ F t
n,−∞ and H ∈ F∞

n,t+m be events. Define αm = sup |P(G ∩ H) −

P(G)P(H)| with the supremum being taken over events G and H and over t and n. Then, the

family is said to be α−mixing/strong mixing if αm → 0 as m → ∞. Moreover, the family of

sigma subfields is said to be α/strong-mixing of size −λ0 if αm = O(m−λ) for λ > λ0.

Definition C.1.2 (near-epoch dependence). {Un,t} is said to be near-epoch dependent inLp

norm of size −λ0 if and only if

‖Un,t − E(Un,t|F
t+ j
n,t− j)‖p 6 dntν j, (C.1)

where the sigma subfields F t+ j
n,t− j are defined as above, {dnt} is an array of positive constants

and ν j = O( j−λ) for λ > λ0 > 0.

184



APPENDIX C. GENERALIZED TENSOR REGRESSION 185

As explained in Davidson (1992), there is no loss of generality in assuming ν j 6 1.

Definition C.1.3 (Hausdorff space). A Hausdorff space is a topological space with a sep-

aration property. In other words, any two distinct points can be separated by disjoint open

sets. That is, whenever x and y are distinct points of a set X, there exist disjoint open sets

Ux and Uy such that Ux contains x and Uy contains y.

Definition C.1.4 (Connected space). A connected space is a topological space which can-

not be written as a union of two-empty disjoint open sets. An example of a connected space

is the set of real numbers. Conversely, a disconnected space is a topological space which

can be written as a union of two empty disjoint open sets. An example of a disconnected

space is the set of rational numbers and any discrete space.

Definition C.1.5 (Stone topology/space). A Stone topology/space is a compact, totally dis-

connected Hausdorff space. Examples of a Stone space include finite discrete spaces and

the Cantor set and any product of finite discrete spaces is also a Stone space.

Definition C.1.6 (Completely monotonic function). A function f on (0,+∞) is completely

monotonic if it the derivatives f (n)(x) exist for all n = 0, 1, 2, · · · and if (−1)n f (n)(x) > 0, for

all x > 0.

C.2 Some results and proofs

In this section, for the convenience of the reader we present some alternate proofs of

the theorems in Chapter 4. Note that the results of Chapter 4 follow from the results of

Chapter 3 by setting m0 = 0, T = n, s1 =
d∏

i=1
pi, and s2 = s3 = · · · = sd+1 = 1. Set

Di,k = Zn,i − E[Zn,i|F i+k
n,−∞] and set Di,k,s be the sth element.

The following Corollary C.2.1 follows immediately from Corollary 3.2.3 by taking m0 = 0,



APPENDIX C. GENERALIZED TENSOR REGRESSION 186

T = n, s1 =
d∏

i=1
pi, and s2 = s3 = · · · = sd+1 = 1. We provide an alternate prove of

Corollary C.2.1 below.

Corollary C.2.1. Suppose that conditions of Assumption 4.2.2 hold. Then, for s = 1, · · ·
d∏

i=1
pi,

we have 1. E
(

n∑
i=1

(Di,k−1,s − Di,k,s)2

)
=

n∑
i=1

E(E2(Zn,i,s|F i+k
n,−∞)) −

n∑
i=1

E(E2(Zn,i,s|F i+k−1
n,−∞ ));

2.
n∑

i=1

i−1∑
j=1

E
[
(Di,k−1,s − Di,k,s)(D j,k−1,s − D j,k,s)

]
= 0;

3.
n∑

i=1

[
E(D2

i,k−1,s) − E(D2
i,k,s)

]
=

n∑
i=1

[
E(E2(Zn,i,s|F i+k

n,−∞)) − E(E2(Zn,i,s|F i+k−1
n,−∞ ))

]
.

Proof. The proof is similar to that of Corollary 3.2.3. Below, we provide an alternative

proof with more details. 1. Expanding the left side, we have

E

 n∑
i=1

(Di,k−1,s − Di,k,s)2


=

n∑
i=1

E[E2(Zn,i,s|F
i+k
n,−∞) + E2(Zn,i,s|F

i+k−1
n,−∞ )] − 2

n∑
i=1

E(EZn,i,s|F
i+k
n,−∞)E(Zn,i,s|F

i+k−1
n,−∞ ))

=

n∑
i=1

E[E2(Zn,i,s|F
i+k
n,−∞)] +

n∑
i=1

E[E2(Zn,i,s|F
i+k−1
n,−∞ )] − 2

n∑
i=1

E(E(Zn,i,s|F
i+k
n,−∞)E(Zn,i,s|F

i+k−1
n,−∞ )),

then,

E

 n∑
i=1

(Di,k−1,s − Di,k,s)2

 =

n∑
i=1

E[E2(Zn,i,s|F
i+k
n,−∞)] +

n∑
i=1

E[E2(Zn,i,s|F
i+k−1
n,−∞ )]

− 2
n∑

i=1

E[E(EZn,i,s|F
i+k
n,−∞)|F i+k−1

n,−∞ )E(Zn,i,s|F
i+k−1
n,−∞ )].

Then, since E(E(Zn,i,s|F i+k
n,−∞)|F i+k−1

n,−∞ ) = E(Zn,i,s|F i+k−1
n,−∞ ) a.s., we have,

E

 n∑
i=1

(Di,k−1,s − Di,k,s)2

 =

n∑
i=1

E[E2(Zn,i,s|F
i+k
n,−∞)] +

n∑
i=1

E[E2(Zn,i,s|F
i+k−1
n,−∞ )]

− 2
n∑

i=1

E[E2(Zn,i,s|F
i+k−1
n,−∞ )]

and then,

E

 n∑
i=1

(Di,k−1,s − Di,k,s)2

 =

n∑
i=1

E[E2(Zn,i,s|F
i+k
n,−∞)] −

n∑
i=1

E[E2(Zn,i,s|F
i+k−1
n,−∞ )].
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2. Using the fact that E(Zn,i,s|F i+k
n,−∞) − E(Zn,i,s|F i+k−1

n,−∞ ) is F j+k-measurable for all

j = 1, · · · , i − 1 and i = 1, · · · , n, we have
n∑

i=1

i−1∑
j=1

E[((Di,k−1,s − Di,k,s)(D j,k−1,s − D j,k,s))]

=

n∑
i=1

i−1∑
j=1

E[E((Di,k−1,s − Di,k,s)|F j+k)(D j,k−1,s − D j,k,s)].

The right side of this term above becomes
n∑

i=1

i−1∑
j=1

E[(E(Zn,i,k−1,s|F j+k) − E(Zn,i,k−1,s|F j+k))(D j,k−1,s − D j,k,s))] = 0.

3.
n∑

i=1

[E(D2
i,k−1,s) − E(D2

i,k,s)] =

n∑
i=1

[E(E2(Zn,i,s|F
i+k−1
n,−∞ ) − 2E(Zn,i,s|F

i+k−1
n,−∞ )Zn,i,s + Z2

n,i,s)

− E(E2(Zn,i,s|F
i+k
n,−∞) − 2E(Zn,i,s|F

i+k
n,−∞)Zn,i,s + Z2

n,i,s)]

=

n∑
i=1

[E(E2(Zn,i,s|F
i+k−1
n,−∞ )) − 2E(E(Zn,i,s|F

i+k−1
n,−∞ )Zn,i,s)

− E(E2(Zn,i,s|F
i+k
n,−∞)) + 2E(E(Zn,i,s|F

i+k
n,−∞)Zn,i,s)].

Note that, since E(Zn,i,s|F i+k
n,−∞) is F i+k

n,−∞-measurable,

E(E(Zn,i,s|F
i+k
n,−∞)Zn,i,s) = E[E(E(Zn,i,s|F

i+k
n,−∞)Zn,i,s)|F i+k

n,−∞] = E[E2(Zn,i,s|F
i+k
n,−∞)].

Similarly, since E(Zn,i,s|F i+k−1
n,−∞ ) is F i+k−1

n,−∞ -measurable, we have

E(E(Zn,i,s|F
i+k−1
n,−∞ )Zn,i,s) = E[E(E(Zn,i,s|F

i+k−1
n,−∞ )Zn,i,s)|F i+k−1

n,−∞ ] = E[E2(Zn,i,s|F
i+k−1
n,−∞ )].

Therefore,
n∑

i=1

[
E(D2

i,k−1,s) − E(D2
i,k,s)

]
=

n∑
i=1

[
E(E2(Zn,i,s|F

i+k
n,−∞)) − E(E2(Zn,i,s|F

i+k−1
n,−∞ ))

]
,

this completes the proof. �

Using Corollary C.2.1, we establish the following result which follows immediately

from Corollary 3.2.4 by taking m0 = 0, T = n, s1 =
d∏

i=1
pi, and s2 = s3 = · · · = sd+1 = 1. We

also provide an alternate proof of Corollary C.2.2 below.
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Corollary C.2.2. Let {ak}
∞
−∞ be as in Lemma 3.2.2, Then, for s = 1, · · · ,

d∏
i=1

pi,

1.
∞∑

k=1

n∑
i=1

(a−1
k − a−1

k−1)E(E2(Zn,i,s|F i−k
n,−∞)) < ∞; 2.

∞∑
k=1

n∑
i=1

(a−1
k+1 − a−1

k )E(D2
i,k,s) < ∞;

3.
∞∑

k=1

n∑
i=1

[a−1
k E(D2

i,k−1,s) − a−1
k+1E(D2

i,k,s)] =
n∑

i=1
a−1

1 E(D2
i,0,s) < ∞;

4.
∞∑

k=1

n∑
i=1

[a−1
k−1E(E2(Zni,s|F i−k

n,−∞)) − a−1
k E(E2(Zn,i,s|F i−k−1

n,−∞ ))] =
n∑

i=1
a−1

0 E(E2(Zn,i,s|F i−1
n,−∞)) < ∞.

Proof. Define κ∗( j) = κ( j)I{ξ(2)
j = O( j−1/2−ςκ−1(j))} + jδ0I{ξ(2)

j = O( j−1−δ0)}, for δ0 > 0.

Then, κ∗ satisfies the conditions of Lemma 3.2.2.

1. Since a−1
j − a−1

j−1 = O(κ∗( j)), we have a−1
m − a−1

0 =
m∑

j=1

(
a−1

j − a−1
j−1

)
, then a−1

m − a−1
0 6

B0

m∑
j=1
κ∗( j), for some 0 < B0 < ∞. Then, we have a−1

m ζ
2
2,m 6 a−1

0 ζ
2
2,m + B0ζ

2
2,m

m∑
j=1
κ∗( j). Since

κ∗( j) is increasing, we get a−1
m ζ

2
2,m 6 a−1

0 ζ
2
2,m +B0ζ

2
2,m

m∑
k=1
κ∗(m) = a−1

0 ζ
2
2,m +B0ζ

2
2,mmκ∗(m). Since

ζ2
2,m = O

(
1

mκ∗2(m)

)
, we get a−1

m ζ
2
2,m 6 a−1

0 ζ
2
2,m+B1

1
mκ∗2(m)mκ

∗(m) = a−1
0 ζ

2
2,m+B1

1
κ∗(m) , for some

0 < B1 < ∞. Hence, since a−1
m+1ζ

2
2,m+1 6 a−1

0 ζ
2
2,m+1 + B1

1
κ∗(m+1) , then

0 6 lim
m→∞

a−1
m+1ζ

2
2,m+1 6 a−1

0 lim
m→∞

ζ2
2,m+1 + B1 lim

m→∞

1
κ∗(m + 1)

= 0,

this proves Part 1.

2. We have
∞∑

k=1

n∑
i=1

∣∣∣a−1
k − a−1

k−1

∣∣∣ E (
E2

(
Zn,i,s|F i−k

n,−∞

))
6

n∑
i=1

c2
n,i

∞∑
k=1

∣∣∣a−1
k − a−1

k−1

∣∣∣ ζ2
2,k. Thus, by tak-

ing bk = ζ2
2,k and by applying Lemma 3.2.2, we get the statement of Part 2.

3. We have
∞∑

k=1

n∑
i=1

∣∣∣a−1
k+1 − a−1

k

∣∣∣ E (
D2

i+k,s

)
6

n∑
i=1

c2
ni

∞∑
k=1

∣∣∣a−1
k+1 − a−1

k

∣∣∣ ζ2

2,k+1. Hence, by Lemma 3.2.2,
∞∑

k=1

n∑
i=1

(
a−1

k+1 − a−1
k

)
E

(
D2

i,k,s

)
6

n∑
i=1

c2
ni

∞∑
k=2

(
a−1

k − a−1
k−1

)
ζ2

2,k < ∞, this proves Part 3.

4. We have
∞∑

k=1

n∑
i=1

[
a−1

k E
(
D2

i,k−1,s

)
− a−1

k+1E
(
D2

i,k,s

)]
=

n∑
i=1

a−1
1 E

(
D2

i,0,s

)
− lim

m→∞
a−1

m+1

n∑
i=1

E
(
D2

i,m,s

)
,

and from Part 1, lim
m→∞

a−1
m+1

n∑
i=1

E
(
D2

i,m,s

)
6 lim

m→∞

n∑
i=1

c2
n,ia
−1
m+1ζ

2
2,m+1 = 0. This proves Part 4.

5. Note that

∞∑
k=1

n∑
i=1

[
a−1

k−1E
(
E2

(
Zn,i,s|F i−k

n,−∞

))
− a−1

k E
(
E2

(
Zn,i,s|F i−k−1

n,−∞

))]
=

n∑
i=1

a−1
0 E

(
E2

(
Zn,i,s|F i−1

n,−∞

))
− lim

m→∞

n∑
i=1

a−1
m E

(
E2

(
Zn,i,s|F i−m−1

n,−∞

))
.
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By Part 1, we get lim
m→∞

n∑
i=1

a−1
m E

(
E2

(
Zn,i,s|F i−m−1

n,−∞

))
6 lim

m→∞

n∑
i=1

c2
n,ia
−1
m ζ

2
2,m+1 = 0. Therefore,

∞∑
k=1

n∑
i=1

[
a−1

k−1E
(
E2

(
Zn,i,s|F i−1

n,−∞

))
− a−1

k E
(
E2

(
Zn,i,s|F i−k−1

n,−∞

))]
=

n∑
i=1

a−1
0 E

(
E2

(
Zn,i,s|F i−1

n,−∞

))
< ∞,

this completes the proof. �

Corollary C.2.3. Suppose that the conditions of Corollary C.2.2 hold and let

Vn,k(l) =

l+ j∑
i=l+1

[
E(Zn,i|F

i+k
n,−∞ − E(Zn,i|F

i+k−1
n,−∞ )

]
, j = 1, · · · , n, k = 1, 2, · · · . Then, for s =

1, · · · ,
d∏

i=1
pi,

1.
∞∑

k=1
a−1

k E(V2
n,k,s(l)) =

l+n∑
i=l+1

(
∞∑

k=1
(a−1

k+1 − a−1
k )E(D2

i,k,s) + a−1
1 E(D2

i,0,s)
)

;

2.
−1∑

k=−∞

a−1
k E(V2

n,k,s(l)) =

l+n∑
i=l+1

 ∞∑
k=1

(a−1
k − a−1

k−1)E(E2(Zn,i,|F
i−k
n,−∞)) + a−1

0 E(E(Z2
n,i,s|F

i−1
n,−∞))

.
Proof. This result follows directly from Corollary 3.2.5. Below, we provide an alternative

proof with more details. Put Di,k = Zn,i − E(Zn,i|F i+k
n,−∞) for k ≥ 0 and note that for each

s = 1, · · · ,
d∏

i=1
pi,

E(V2
n,k,s) = E

( n∑
i=1

(Di,k−1,s − Di,k,s)
)2. This gives

E(V2
n,k,s) = E

 n∑
i=1

(Di,k−1,s − Di,k,s)2

 + 2
n∑

i=2

i−1∑
j=1

E
[
(Di,k−1,s − Di,k,s)(D j,k−1,s − D j,k,s)

]
.

Hence, it follows from Proposition C.2.1 that

E(V2
n,k,s) =

n∑
i=1

[
E(E2(Zn,i,s|F

i+k
n,−∞)) − E(E2(Zn,i,s|F

i+k−1
n,−∞ ))

]
=

n∑
i=1

[
E(D2

i,k−1,s) − E(D2
i,k,s)

]
.

Using this, we have

a−1
0 E(V2

n,0,s) =

n∑
i=1

a−1
0

[
E(E2(Zn,i,s|F

i
n,−∞)) − E(E2(Zn,i,s|F

i−1
n,−∞))

]
and

∞∑
k=1

a−1
k E(V1

n,k,s) =

∞∑
k=1

a−1
k

 n∑
i=1

[
E(D2

i,k−1,s) − E(D2
i,k,s)

] .
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Moreover, using the second and third statements in Proposition C.2.2, we have

∞∑
k=1

 n∑
i=1

(a−1
k+1 − a−1

k )E(D2
i,k,s)

 +

∞∑
k=1

n∑
i=1

(a−1
k E(D2

i,k−1,s) − a−1
k+1E(D2

i,k,s))

=

n∑
i=1

a−1
1 E(D2

i,0,s) +

∞∑
k=1

a−1
k

 n∑
i=1

[
E(D2

i,k−1,s) − E(D2
i,k,s)

] < ∞.
Therefore,

∞∑
k=1

a−1
k E(V2

n,k,s) =

n∑
i=1

 ∞∑
k=1

(a−1
k+1 − a−1

k )E(D2
i,k,s) + a−1

1 E(D2
i,0,s)

 ,
this proves the first statement. We prove the second statement by following similar steps

and using the assumption that ak = a−k. Namely, we have

−1∑
k=−∞

a−1
k E(V2

n,k,s) =

−1∑
k=−∞

a−1
k

n∑
i=1

[
E(E2(Zn,i,s|F

i+k
n,−∞)) − E(E2(Zn,i,s|F

i+k−1
n,−∞ ))

]
=

∞∑
k=1

n∑
i=1

a−1
k

[
E(E2(Zn,i,s|F

i+k
n,−∞)) − E(E2(Zn,i,s|F

i+k−1
n,−∞ ))

]
.

Now, using the first and fourth statements in Proposition C.2.2, we have

∞∑
k=1

n∑
i=1

(a−1
k − a−1

k−1)E(E2(Zn,i,s|F
i−k
n,−∞)) +

∞∑
k=1

n∑
i=1

(
a−1

k−1E(E2(Zn,i,s|F
i−k
n,−∞)) − a−1

k E(E2(Zn,i,s|F
i−k−1
n,−∞ ))

)
=

∞∑
k=1

n∑
i=1

a−1
k

(
E(E2(Zn,i,s|F

i−k
n,−∞)) − E(E2(Zn,i,s|F

i−k−1
n,−∞ ))

)
< ∞.

Hence,

−1∑
k=−∞

a−1
k E(V2

n,k,s) =

n∑
i=1

 ∞∑
k=1

(a−1
k − a−1

k−1)E(E2(Zn,i,s|F
i−k
n,−∞)) + a−1

0 E(E2(Zn,i,s|F
i−1
n,−∞))

 ,
which completes the proof. �

Once again this result follows from Corollary 3.2.5 by taking m0 = 0, T = n, s1 =
d∏

i=1
pi,

and s2 = s3 = · · · = sd+1 = 1. An alternate proof of Corollary C.2.3 is also provided for

convenience.
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Proposition C.2.1. Suppose {ak}
∞
k=−∞ are as in Lemma 3.2.2 and Vn,k is as in Corollary C.2.3.

Then,
d∏

i=1
pi∑

s=1

∞∑
k=−∞

a−1
k E

(
V2

n,k,s(l)
)
6

 l+n∑
i=l+1

c2
n,i


a−1

0

(
ζ2

2,0 + ζ2
2,1

)
+ 2

∞∑
k=1

(a−1
k − a−1

k−1)ζ2
2,k

 < ∞.
Proof. The proof is similar to that of Proposition 3.2.7. �

Lemma C.2.1. Under Assumption 4.2.2, for L = 1, 2, 3, . . . ; l = 0, 1, 2, . . .
d∏

i=1
pi∑

s=1

E
(
max

j6L

(
S l+ j,s − S l,s

)2
)
6 K

l+L∑
i=l+1

c2
n,i, for some K > 0.

Proof. The proof is similar to that of Lemma 3.2.3. �

For the next proposition, let Zn,i be as in (4.11) and define

Za
n,i,s = Zn,i,sI[|Zn,i,s| 6 acn,i], Ei+mZa

n,i,s = E(Za
n,i,s|F

i+m
n,−∞), U1,i,s = Ei+mZa

n,i,s − Ei−mZa
n,i,s,

U2,i,s = Zn,i,s − Ei+mZn,i,s + Ei−mZn,i,s, U3,i,s = Ei+m(Zn,i,s − Za
n,i,s) − Ei−m(Zn,i,s − Za

n,i,s).

Also, let v2
j =

j∑
i=1

c2
n,i, ṽ2

j(k) =
k+ j∑

i=k+1
c2

n,i, k = 0, 1, . . . , j, j = 1, 2, . . . , Ūt, j,s(l) =
l+ j∑

i=l+1
Ut,i,s,

t = 1, 2, 3, A(a,m) =

d∏
i=1

pi∑
s=1

max
j6L

Ū2
1, j,s

ṽ2
L(l)

, B(a,m) =

d∏
i=1

pi∑
s=1

max
j6L

Ū2
2, j,s

ṽ2
L(l)

, C(a,m) =

d∏
i=1

pi∑
s=1

max
j6L

Ū2
3, j,s

ṽ2
L(l)

.

Proposition C.2.2. Suppose that the conditions of Lemma C.2.1 hold. Then,

1. For fixed (m, a) and for any ε > 0, one can choose a, b such that

J1(a, b,m) = E[A(a,m)I(A(a,m) > b/9)] < ε.

2. For any ε > 0, one can choose m such that J2(m) = E(B(m)) < ε.

3. For a fixed m, for any ε > 0, one can choose a such that J3(a,m) = E(C(a,m)) < ε.

Proof. The proof is similar to that of Proposition 3.2.8. �

Proposition C.2.3. Let F ∗
i be the σ − f ield generated by {Uibn ,Uibn−1, · · · } with Ui a ran-

dom variable defined on (Ω,F , P) such that F ∗
i−1 ⊆ F i− j

n,−∞. Then, under Assumption 4.2.2,

rn∑
i=1

E(Vn,i|F
∗
i−1)

P
−−−→
n→∞

0 and
rn∑

i=1

(Vn,i − E(Vn,i|F
∗
i−1))

P
−−−→
n→∞

0.
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Proof. The proof is similar to that of Proposition 3.2.11. �

Proposition C.2.4. Suppose that the conditions of Proposition C.2.3 hold and let

ζ̄1,i,n = (Vi − E(Vn,i|F ∗
i ) + E(Vn,i|F ∗

i−1))(Vn,i + E(Vn,i|F ∗
i ) − E(Vn,i|F ∗

i−1))′,

ζ̄2,i,n = Vn,i(E(Vn,i|F ∗
i ))′ − Vn,i(E(Vn,i|F ∗

i−1))′ − (E(Vn,i|F ∗
i ))V ′n,i + (E(Vn,i|F ∗

i−1))V ′n,i. Then,

rn∑
i=1

‖ζ̄1,i,n‖1 = o(1) and
rn∑

i=1

‖ζ̄2,i,n‖1 = o(1). (C.2)

Proof. The proof follows from Proposition 3.2.13. �

Proposition C.2.5. Suppose that the conditions of Proposition C.2.3 hold. Then,

rn∑
i=1

[Vn,iV
′

n,i −Wn,iW
′
n,i]

P
−−−→
n→∞

0; (C.3)

d∏
i=1

pi∑
s=1

E
[
(Wn,i,s)2I

(
‖Wn,i‖

2
F > ε

)] P
−−−→
n→∞

0 for all ε > 0; and
rn∑

i=1

Wn,iW
′
n,i

P
−−−→
n→∞

Φ∗. (C.4)

Proof. We have
∥∥∥∥∥ rn∑

i=1
[Vn,iV

′
n,i −Wn,iW

′
n,i]

∥∥∥∥∥
1
6

rn∑
i=1

∥∥∥[Vn,iV
′

n,i −Wn,iW
′
n,i]

∥∥∥
1
. Using the same

techniques as in Proposition C.2.4, we have

‖Vn,iV
′

n,i −Wn,iW
′
n,i‖1

6 ‖(Vn,i − E(Vn,i|F
∗
i ) + E(Vn,i|F

∗
i−1))(Vn,i + E(Vn,i|F

∗
i ) − E(Vn,i|F

∗
i−1))′ − ‖ζ̄2,i,n‖1.

So, we have ‖Vn,iV
′

n,i −Wn,iW
′
n,i‖1 6 ‖ζ̄1,i,n‖1 + ‖ζ̄2,i,n‖1. Then, the proof of (C.3) follows

from Proposition C.2.4. To prove the first statement of (C.4), note that {E(Vn,i|F ∗
i ) −

E(Vn,i|F ∗
i−1),F ∗

i } is an L2− mixingale array of size −1/2 with mixingale magnitude in-
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dices 2cn,i. Also, let ṽ2
i =

ibn∑
t=(i−1)bn+ln+1

c2
n,t, then,

rn∑
i=1

d∏
i=1

pi∑
s=1

E

W2
n,i,sI


d∏

i=1
pi∑

s=1

W2
n,i,s > ε


 =

rn∑
i=1

d∏
i=1

pi∑
s=1

E
(
W2

n,i,s/ṽ
2
i I

(
‖Wn,i‖

2
F/ṽ

2
i > ε/ṽ

2
i

))
ṽ2

i

6
rn∑

i=1

d∏
i=1

pi∑
s=1

E

W2
n,i,s/ṽ

2
i I

‖Wn,i‖
2
F/ṽ

2
i >

ε

max
16i6rn

ṽ2
i


 ṽ2

i

6
rn∑

i=1

d∏
i=1

pi∑
s=1

E

W2
n,i,s/ṽ

2
i I

max
16i6rn

‖Wn,i‖
2
F/ṽ

2
i >

ε

max
16i6rn

ṽ2
i


 ṽ2

i .

So we have,

rn∑
i=1

d∏
i=1

pi∑
s=1

E
(
W2

n,i,sI
(
‖Wn,i‖

2
F > ε

))
6 max

16i6rn


d∏

i=1
pi∑

s=1

E

W2
n,i,s/ṽ

2
i I

max
16i6rn

‖Wn,i‖
2
F/ṽ

2
i >

ε

max
16i6rn

ṽ2
i





rn∑
i=1

ṽ2
i .

From Assumption 4.2.2, we have
rn∑

i=1
ṽ2

i =
rn∑

i=1

ibn∑
t=(i−1)bn+ln+1

c2
n,t 6

rn∑
i=1

bn

(
max

(i−1)bn+16t6ibn
cn,t

)2

=

O(n−α). Then
rn∑

i=1
ṽ2

i = o(1). Hence,

rn∑
i=1

d∏
i=1

pi∑
s=1

E

W2
n,i,sI


d∏

i=1
pi∑

s=1
W2

n,i,s > ε




6 max
16i6rn


d∏

i=1
pi∑

s=1

E

W2
n,i,s/ṽ

2
i I

max
16i6rn

‖Wn,i‖
2
F/ṽ

2
i >

ε

max
16i6rn

ṽ2
i





rn∑
i=1

(
max

(i−1)bn+16t6ibn
cn,t

)2

bn

= O

max
16i6rn


d∏

i=1
pi∑

s=1

E

W2
n,i,s/ṽ

2
i I

max
16i6rn

‖Wn,i‖
2
F/ṽ

2
i >

ε

max
16i6rn

ṽ2
i




 . It follows from Lemma 4.2.2

that

d∏
i=1

pi∑
s=1

W2
n,i,s/ṽ

2
i is uniformly integrable and lim

n→∞
max
16i6rn

ṽi = 0 which implies that the last

term above converges to 0 for any ε > 0. This completes the proof of the first claim

of (C.4). To prove the second statement of (C.4), we get
rn∑

i=1
Wn,iW

′
n,i =

rn∑
i=1
Vn,iV

′
n,i −
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rn∑
i=1

[
Vn,iV

′
n,i −Wn,iW

′
n,i

]
. Hence, by combining Assumption 4.2.2, Proposition C.2.5 and

Slutsky’s theorem, we have
rn∑

i=1
Wn,iW

′
n,i

P
−−−→
n→∞

Φ∗. �

C.3 Derivation of ADR1 for the elliptically contoured dis-

tribution

In this subsection, we outline the derivation of the asymptotic distributional risk function

of the proposed class of shrinkage estimators under quadratic loss function. Let θ̂, θ̃ be

estimators given in (4.48) and let ϑ̂
(
h, θ̂, θ̃

)
be as in (3.13). Let

θ̂s = θ̃ +

1 −
 d∏

j=1

li − 2

 / (
n‖θ̂ − θ̃‖2

{Ξ̂i,i=1,··· ,d}

) (θ̂ − θ̃) , (C.5)

θ̂sp = θ̃ + max


1 −

 d∏
j=1

li − 2

 / (
n‖θ̂ − θ̃‖2

{Ξ̂i,i=1,··· ,d}

) , 0

 (
θ̂ − θ̃

)
,

where Ξ̂i, i = 1, 2, . . . , d are consistent estimators for Ξi = H ′
i (HiΛiH

′
i )−1Hi with Λ1,Λ2,. . . ,Λd

be positive definite matrices, Hi a full rank li × pi-matrix, li 6 pi, i = 1, 2, . . . , d. Let

Λ̄1, Λ̄2, . . . , Λ̄d be positive definite matrices, let Ji = Λ̄iH
′
i (HiΛ̄iH

′
i )−1, i = 1, 2, . . . , d,

J0 =

1⊗
j=d

JiHi. Let Vec(ϑ2) = (Ip1 p2···pd −J0)Vec(ϑ1) + Vec(δ) and Vec(ϑ3) = J0Vec(ϑ1)−

Vec(δ), δ∗ = δ(
d�

i=1
)

i
W 1/2

i , ∆ = trace
(δ(

d�
i=1

)
i
Ξ1/2

i

)′
(d)

(
δ(

d�
i=1

)
i
Ξ1/2

i

)
(d)

 .
As in Section 4.3, suppose that

√
n
((
θ̂ − θ

)
�(d+1)

(
θ̃ − θ

)
�(d+1)

(
θ̂ − θ̃

)) d
−−−→
n→∞

ϑ1 �(d+1) ϑ2 �(d+1) ϑ3

where ϑ1 satisfies the following condition.

Assumption C.3.1. We assume ϑ1 ∼ Ep1×···×pd

(
0,

1⊗
i=d

Λi; g
)

where Λi, i = 1, 2, . . . , d are

positive definite matrices.
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Under Assumption C.3.1, we have

ϑ1�(d+1)ϑ2�(d+1)ϑ3 ∼ E
l1×···×ld
p1×···×3pd

(
0 �(d+1) δ �(d+1) −δ, Σ∗; g

)
with Σ∗ =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


,

with Σ11 =
1⊗

i=d
Λi, Σ12 =

1⊗
i=d

Λ j −
1⊗

i=d
ΛiH

′
iJ
′
i , Σ21 = Σ12

′, Σ31
′ = Σ13 =

1⊗
i=d

ΛiH
′
iJi
′,

Σ23 =
1⊗

i=d
ΛiH

′
iJ
′
i −

1⊗
i=d
JiHiΛiH

′
iJ
′
i , Σ33 =

1⊗
i=d
JiHiΛiH

′
iJ
′
i , Σ32 = Σ′23, Σ22 =

1⊗
i=d

Λi −
1⊗

i=d
JiHiΛi −

1⊗
i=d

ΛiH
′
iJ
′
i +

1⊗
i=d
JiHiΛiH

′
iJ
′
i .

Below, we derive the ADR of θ̂, θ̃, θ̂s, θ̂sp under quadratic loss. To this end, let

χ2
n(λ) denote a chi-square random variable with n degrees of freedom and non-centrality

parameter λ, let ω(t), t > 0 be the weight function associated to the elliptically contoured

distribution in Assumption C.3.1, let

ψ(1)
i,n (x) =

∞∫
0

E[hi(t−1χ2
n(tx))]ω(t)dt, ψ(2)

i,n (x) =

∞∫
0

t−1E[hi(t−1χ2
n(tx))]ω(t)dt, x ≥ 0, (C.6)

c = ψ(2)
0,1(x) = ψ(2)

0,n(x), x ≥ 0, and let

ϑ(h) = ϑ2 + h
(
‖ϑ2 − ϑ1‖

2
Ξi ,i=1,2,...,d

)
(ϑ1 − ϑ2) , and ϑ∗(h) = ϑ(h)(

d�
i=1

)
i
W 1/2

i , (C.7)

whereWi, i = 1, 2, . . . , d are nonnegative definite matrices. Below, we establish a proposi-

tion which gives the ADR of the UE and the RE.

Proposition C.3.1. Under Assumption C.3.1, we have

ADR1
(
θ̂,θ;W

)
= c

d∏
i=1

trace(WiΛi); (C.8)

ADR1
(
θ̃,θ;W

)
= c

d∏
i=1

trace(WiΛi) − 2c
d∏

i=1

trace(WiΥ
∗
i ) + c

d∏
i=1

trace(WiΥ
∗
iH

′
iJ
′
i )

+ trace
(
δ∗
′

(d)δ
∗
(d)

)
.

Proof. Let ϑ∗1 = ϑ1(
d�

i=1
)

i
W 1/2

i
and ϑ∗2 = ϑ2(

d�
i=1

)
i
W 1/2

i
. From Assumption C.3.1, we have

E
[
trace

(
ϑ∗

′

1(d)
ϑ∗1(d)

)]
= c

d∏
i=1

trace(WiΛi); with c = ψ(2)
0,1(x) = ψ(2)

0,n(x), x ≥ 0, this
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proves the first statement of the proposition. Further, let N denote a q1 × · · · × qd such

that N ∼ Nq1×···×qd

(
δ, z−1

( 1⊗
i=d

Λi −
1⊗

i=d
JiHiΛi −

1⊗
i=d

ΛiH
′
iJ
′
i +

1⊗
i=d
JiHiΛiH

′
iJ
′
i

))
and let

N∗ = N(
d�

i=1
)

i
W 1/2

i . We have

E
[
trace

(
ϑ∗

′

2(d)
ϑ∗2(d)

)]
=

∞∫
0

Ez

[
trace

(
N∗

′

(d)N
∗
(d)

)]
ω(z)dz, (C.9)

where

Ez

[
trace

(
N∗

′

(d)N
∗
(d)

)]
= trace

 1⊗
i=d

Wi

 z−1

 1⊗
i=d

Λi −

1⊗
i=d

JiHiΛi −

1⊗
i=d

ΛiH
′
iJ
′
i


+trace

 1⊗
i=d

Wi

 z−1

 1⊗
i=d

JiHiΛiH
′
iJ
′
i

 + trace
(
(−δ∗

′

(d))(−δ
∗
(d))

)
.

Then,

Ez

[
trace

(
N∗

′

(d)N
∗
(d)

)]
= z−1

 d∏
i=1

trace(WiΛi) − 2
d∏

i=1

trace(WiΥ
∗
i )


+z−1

d∏
i=1

trace(WiΥ
∗
iH

′
iJ
′
i ) + trace

(
δ∗
′

(d)δ
∗
(d)

)
.

Therefore, together with (C.9) we get the result stated. �

More generally, the following theorem gives ADR1
(
ϑ̂

(
h, θ̂, θ̃

)
,θ;W

)
.

Theorem C.3.1. Under Assumption C.3.1,

ADR1
(
ϑ̂

(
h, θ̂, θ̃

)
,θ;W

)
= ADR1

(
θ̃,θ;W

)
+ ψ(2)

2,l+2(∆)
d∏

i=1

trace(WiΥ
∗
iH

′
iJ
′
i)

− 2 ψ(1)
1,l+2 (∆) trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)

 + 2 ψ(2)
1,l+2 (∆)

d∏
j=1

trace(W jΥ
∗
j)

− 2 ψ(1)
1,l+4 (∆) trace

(
δ∗
′

(d)δ
∗
(d)

)
− 2 ψ(2)

1,l+2 (∆)
d∏

j=1

trace(W jΥ
∗
iH

′
iJ
′
i)

+ 2 ψ(1)
1,l+4 (∆) trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)

 + ψ(1)
2,l+4(∆)trace(δ∗

′

(d)δ
∗
(d)).
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Proof. Let ϑ∗3 = ϑ3(
d�

i=1
)

i
W 1/2

i
. We have

E
[
trace

(
ϑ∗

′

(h)(d)ϑ
∗(h)(d)

)]
= E

[
trace

(
ϑ∗

′

2(d)
ϑ∗2(d)

)]
+ 2E

[
h(‖ϑ3‖

2
{Ξi,i=1,··· ,d})trace(ϑ∗

′

3(d)
ϑ∗2(d)

)
]

+ E
[
h2(‖ϑ3‖

2
{Ξi,i=1,··· ,d})trace(ϑ∗

′

3(d)
ϑ∗3(d)

)
]
.

As established in Proposition C.3.1, we have E
[
trace

(
ϑ∗

′

2(d)
ϑ∗2(d)

)]
= ADR1

(
θ̃,θ;W

)
. Fur-

ther, by using Theorem 2.2.2 and Theorem 2.2.3 of Chapter 2, along with some algebraic

computations, we get

E
[
h
(
‖ξ3‖

2
{Ξi,i=1,··· ,d}

)
trace

(
ξ∗
′

3(d)
ξ∗2(d)

)]
= ψ(1)

1,l+2 (∆) trace
(
−δ∗

′

(d)δ
∗
(d)

)
+ ψ(2)

1,l+2 (∆)
d∏

j=1

trace
(
W jΥ

∗
j

)
− ψ(1)

1,l+2 (∆) trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)


+ψ(1)

1,l+2 (∆) trace
(
δ∗
′

(d)δ
∗
(d)

)
− ψ(1)

1,l+4 (∆) trace
(
δ∗
′

(d)δ
∗
(d)

)
+ψ(1)

1,l+4 (∆) trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)

− ψ(2)
1,l+2 (∆)

d∏
j=1

trace
(
W jΥ

∗
iH

′
iJ
′
i

)
,

and

E
[
h2

(
‖ξ3‖

2
{Ξi,i=1,··· ,d}

)
trace

(
ξ∗
′

3(d)
ξ∗3(d)

)]
= ψ(1)

2,l+4(∆)trace
(
δ∗
′

(d)δ
∗
(d)

)
+ ψ(2)

2,l+2(∆)
d∏

i=1
trace

(
WiΥ

∗
iH

′
iJ
′
i

)
,

this completes the proof. �

From Theorem C.3.1, one can obtain the results of Proposition C.3.1 by taking h(x) =

1 and h(x) = 0, respectively and by using the fact that, when h(x) = 1, ψ(1)
1,l+4(∆) =

ψ(1)
2,l+4(∆) = 1 and ψ(2)

1,l+2(∆) = ψ(2)
2,l+2(∆) = c. From Theorem C.3.1, by using the fact that

the distribution of ε1 is a particular case of the one in Assumption C.3.1, one can deduce

ADR1
(
B̂(h),B;W

)
. Further, by taking suitable function h, one can deduce ADR1

(
B̂s,B;W

)
and ADR1

(
B̂sp,B;W

)
. Below, we establish a result which shows that for a suitable weight-

ing matrix W , SEs dominates the UE. As an intermediate step, we first derive the follow-
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ing proposition. To simplify some notations, let c1 = trace

δ′(d)

(
δ
( d�

j=1

)
j
Ξ jΥ

∗
jW j

)
(d)

,
c2 =

d∏
j=1

trace(W jΥ
∗
j), c3 =

d∏
i=1

trace(WiΥ
∗
iH

′
iJ
′
i), c4 = trace

(
δ∗
′

(d)δ
∗
(d)

)
.

Proposition C.3.2. Suppose that Assumption C.3.1 holds and let

f1 (∆) = ADR1(θ̂s,θ;W ) − ADR1(θ̂,θ;W ). Then, for all ∆ > 0,

f1 (∆) = −2 (l − 2)2
(
c2 −

c3
2

) ∞∫
0

E
[
χ−4

l+2(t∆)
]
ω(t)dt − 2(l−2)

2∆

∞∫
0

(t − 1)e−∆t/2ω(t)dt

−(l − 2) (4∆c2 − 4c1 − (l − 2)c4)
∞∫
0

tE
[
χ−4

l+4(t∆)
]
ω(t)dt

−(l − 2)2
(
c3 + 4c4

∆

) ∞∫
0

(1 − t)E
[
χ−4

l+2(t∆)
]
ω(t)dt.

Proof. We have ADR1(θ̂s,θ;W ) =
∞∫
0

ADR1(θ̂s,θ;W | t)ω(t)dt, with

ADR1(θ̂s,θ;W | t) = t−1
d∏

i=1

trace(WiΛi) − t−1
d∏

i=1

trace(WiΥ
∗
i ) + trace(δ∗

′

(d)δ
∗
(d))

−2
(
1 − t(l − 2)E

[
χ−2

l+2(t ∆)
])

trace
(
δ∗
′

(d)δ
∗
(d)

)
− 2

(
t−1 − (l − 2)E

[
χ−2

l+2(t ∆)
])

c3

−2
(
1 − t (l − 2)E

[
χ−2

l+2(t ∆)
])

trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)


+2

(
t−1 − (l − 2)E

[
χ−2

l+2(t ∆)
]) d∏

j=1

trace(W jΥ
∗
j)

+2
(
1 − t (l − 2)E

[
χ−2

l+2(t ∆)
])

trace
(
δ∗
′

(d)δ
∗
(d)

)
−2

(
1 − t (l − 2)E

[
χ−2

l+4(t ∆)
])

trace
(
δ∗
′

(d)δ
∗
(d)

)
+2

(
1 − t (l − 2)E

[
χ−2

l+4(t ∆)
])

trace

δ′(d)

δ( d�
j=1

)
j
Ξ jΥ

∗
jW j


(d)


+

(
1 − 2t (l − 2)E

[
χ−2

l+4(∆)
]

+ t2(l − 2)2E
[
χ−4

l+4(∆)
])

trace(δ∗
′

(d)δ
∗
(d))

+
(
t−1 − 2 (l − 2)E

[
χ−2

l+2(t ∆)
]

+ t(l − 2)2E
[
χ−4

l+2(t ∆)
]) d∏

i=1

trace(WiΥ
∗
iH

′
iJ
′
i).

The rest of the proof follows from some algebraic computations along with the identities

E
(
χ−2

l+4(t∆)
)

= E
(
χ−2

l+2(t∆)
)
− 2E

(
χ−4

l+4(t∆)
)

; t E
[
χ−4

l+4(t∆)
]

=
2
∆

E
[
χ−4

l+2(∆t)
]
−

2
∆p(l − 2)

e−∆t/2;
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Et

[
χ−2

l+2(t∆)
]

= (l − 2)Et

[
χ−4

l+2(t∆)
]

+ 2∆tEt

[
χ−4

l+4(t∆)
]
.

�

From Proposition C.3.2 we derive below a result which shows that for a suitable choice

of the weight matrices,Wi, i = 1, · · · , d, the SEs always dominate the UE.

To introduce some notation, let Π∗∗ =
(
Π∗ + Π∗

′
)
/2 where

Π∗ =

1⊗
i=d

Ξ1/2
i

4 1⊗
i=d

Υ∗i + (l − 2)
1⊗

i=d

JiHiΥ
∗′

i

 1⊗
i=d

WiΥ
∗
iH

′
iJ
′
i Ξ

1/2
i .

Define Chmax(A) to denote the maximum eigenvalue of a matrixA.

Corollary C.3.1. Suppose that Assumption C.3.1 holds where the weight mixture function

ω(.) is such that
∞∫
0

(1 − t)E
[
χ−4

l+2(t∆)
]
ω(t)dt 6 0,

∞∫
0

(t − 1)e−∆t/2ω(t)dt 6 0 for all ∆ > 0, and

suppose that

c2 > max
{

c3
2 ,

Chmax(Π∗∗)
4

}
. Then, ADR1(θ̂sp,θ;W ) 6 ADR1(θ̂s,θ;W ) 6 ADR1(θ̂,θ;W ),

for all ∆ > 0.

Proof. From Proposition C.3.2, ADR1(θ̂s,θ;W ) − ADR1(θ̂,θ;W ) 6 0 provided that the

following conditions hold: (i). 2 c2 − c3 ≥ 0, and (ii). 4 ∆c2 − 4 c1 − (l − 2) c4 > 0.

First, note that, if 4 c1 + (l − 2) c4 = 0, then since c2 > 0, the inequality in (ii) holds for any

∆ > 0. Second, note that

c1 = (Vec(δ))′
( 1⊗

i=d
ΞiΥ

∗
iWi

)
(Vec(δ)) = (Vec(δ))′

( 1⊗
i=d

ΞiΥ
∗
iWi

)
Vec

(
δ
( d�

i=1

)
i
Υ∗iH

′
iJ
′
iΞi

)
.

Then, c1 = (Vec(δ))′
( 1⊗

i=d
ΞiΥ

∗
iWiΥ

∗
iH

′
iJ
′
iΞi

)
(Vec (δ)). We also have

c4 = (Vec(δ))′
( 1⊗

i=d
Wi

)
(Vec(δ))

=

(
Vec

(
δ
( d�

i=1

)
i
Υ∗iH

′
iJ
′
iΞi

))′ ( 1⊗
i=d
Wi

) (
Vec

(
δ
( d�

i=1

)
i
Υ∗iH

′
iJ
′
iΞi

))
. Then,

c4 = (Vec(δ))′
 1⊗

i=d

ΞiJiHiΥ
∗′

i WiΥ
∗
iH

′
iJ
′
iΞi

 (Vec (δ)) .
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Hence, 4 c1 + (l − 2) c4 = (Vec(δ))′
( 1⊗

i=d
Ξ1/2

i Π∗
1⊗

i=d
Ξ1/2

i

)
(Vec(δ)) , where

Π∗ =
1⊗

i=d
Ξ1/2

i

(
4

1⊗
i=d

Υ∗i + (l − 2)
1⊗

i=d
JiHiΥ

∗′

i

) 1⊗
i=d
WiΥ

∗
iH

′
iJ
′
iΞ

1/2
i . Then,

4 c1 + (l − 2) c4

∆
=

(
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))′
Π∗

(
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))
(
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))′ (
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

)) .

This gives

4 c1 + (l − 2) c4

∆
=

(
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))′ (
Π∗ + Π∗

′

2

) (
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))
(
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

))′ (
Vec

(
δ
( d�

i=1

)
i
Ξ1/2

i

)) .

Hence,
4 c1 + (l − 2) c4

∆
6 Chmax

(
Π∗ + Π∗

′

2

)
= Chmax (Π∗∗) .

Thus, if c2 > 0, then 4∆ c2 − 4 c1 − (l− 2) c4 > 0 if c2 > max
{

c3

2
,

Chmax (Π∗∗)
4

}
. Similarly,

one proves that ADR1(θ̂sp,θ;W ) 6 ADR1(θ̂s,θ;W ). �
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