
Thriving Through Climate Change & Pandemic 
Windsor, Ontario, Canada 

June 24-25, 2021 
 

*Prof. O’Brien, corresponding author, paul.obrien@lassonde.yorku.ca 

 

Numerical investigation of heat transfer in air channels for thermal 
energy storage applications in buildings 

 
Behdad Rezanejadzanjani, Paul G. O’Brien * 

Department of Mechanical Engineering, Lassonde School of Engineering, York University 
4700 Keele St., Toronto, ON, M3J 1P3, Canada  

 
 

Abstract 
Energy demand has significantly increased in building sectors over the past decade because of population growth, increased 
indoor activities, and increased energy requirements for controlling the internal environment due to global climate change. The 
residential sector accounts for 32% of the total energy consumption. Space and water heating account for most of the fossil fuel 
use in residential buildings. Several studies have been done to optimize the design of heat transfer fins and channels in space and 
water heating systems to improve their efficiency. In this study the effects of the cross-sectional shape of air-channels on heat 
transfer from the channels to the air is investigated. Air channels with circular, triangular, rectangular and sinusoidal shaped cross 
sections are considered. Further, heat transfer to air flowing through beds comprising these air channels are also investigated. 
Numerical analyses is performed to investigate the dependency of the outlet temperatures to optimize the shape of the air 
channels and beds. Results show the sinusoidal channel and bed have better performance in relation to the outlet temperature. 
Considering channels with a length of 100 mm, a surface area of 1770 m2, and a wall-to-air heat transfer rate of 790 W/m2, the air 
outlet temperature for the sinusoidal channel is about 57°C higher than that of the circular channel. Considering beds with a 
height of 5 mm and wall-to-air heat transfer rate of 790 W/m2, the outlet temperature of the sinusoidal bed is about 10°C higher 
than the outlet temperature for a rectangular bed with similar surface area.  The results are applicable to the design of thermal 
energy storage units that could be used directly or indirectly (such as adsorbent beds for thermal energy storages) to supply heat 
to air within HVAC systems. 
 

1. Introduction 

Energy demand has significantly increased in building sectors over the past decade because of population growth, 
increased indoor activities, and more energy required to control the internal environment due to global climate 
change [1]. In Ontario, about 20% of the total energy supply is consumed in the form of electricity, most of which 
comes from non-emitting sources such as nuclear and hydro, while the other 80% is derived from burning fossil 
fuels for heating, transportation and industry. [2]. According to the Internal Energy Agency, in most countries the 
residential sector accounts for ~30% of the total energy consumption, however in terms of primary energy this value 
increases to around 40% [3]. Space heating, water heating, and cooking account for most of the fossil fuel use in 
residential buildings [1]. The energy required for space heating of residential buildings can be decreased by 
improving insulation, minimizing air leakage, using heat recovery from ventilation air, and optimizing the design of 
the components that are responsible for heating and cooling such as vents and ducts [4]. In a previous study, a 
prototype duct system was used to measure and evaluate the ability for smart booster fans and dampers to control 
airflow to different vents for the purpose of increasing the efficiency of HVAC systems. The results from both the 
experimental and numerical evaluation show that the smart booster fan and dampers can significantly improve the 
airflow at a vent that is underperforming [5].  
An important approach to minimizing energy consumption in the building sector is through life cycle analysis [6]. 
The life cycle of a building includes the production of building materials, construction, the use phase (which 
includes operation and maintenance), disassembly, and disposal. All these phases can be considered in order to 
minimize the life cycle energy use and CO2 emissions. Several studies have shown that for buildings constructed in 
temperate or cold regions, most of the energy consumption over the building’s life cycle occurs during the use phase 
[7-9]. Thus, integrating and optimizing the design of HVAC components that reduce energy consumption during the 
use phase in buildings is a sensible strategy.   
Decarbonization of electricity generation followed by electrification in the buildings sector is known to be one of the 
promising pathways to achieve a low carbon future [10]. It is estimated that eliminating the use of fossil fuels in the 
building sector can support reductions in CO2 emissions by 31% by 2050 [11] There are currently four technologies 
for electrification of space heating: air source heat pumps (HPs), air source HPs in conjunction with other heating 
sources, ground source HPs, and electric resistance thermal storage heating. Air source HPs are a common 
technology used to transport heat from outdoor to interior space during the heating season and from indoors to 
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outdoors during the cooling season. HPs can be ducted or ductless. Ground source HPs transfer the heat to and from 
earth instead of the outside air. Electric resistance storage heaters, mostly in the form of elements encased in heat 
storing ceramic, have been used for decades [12]. HPs can produce equivalent space heating for as little as one-
quarter the cost of conventional heating or cooling which operate based on fossil fuels [13]. Thermal energy storage 
(TES) systems are mainly used to merge renewable energy in the electricity production mix, and also proved to be 
useful for storing the electrical energy from peak to off peak hours, becoming useful for demand-side management 
(DSM) [14]. Using simple heat storages including tanks for the stratified storage of hot and cold water have been 
studied widely in building applications [15-17]. Ioan Sarbu et al. [18] reviewed TES technologies and described 
several energy storage methods and the calculation of storage capacities such as sensible, latent , and thermo-
chemical storages. In another study, Dieter Patteeuw et al. [19] have coupled TES systems to electric heating 
systems (HPs and resistance heaters). They showed that only these integrated systems can overcome the constraints 
on both the supply and demand side of electric power systems. Arteconi et al. [14] analyzed HPs with radiators 
coupled with TES to show how the HP system operates and affects the thermal comfort of occupant base on demand 
side management (DSM). They showed that the HPs integrated with TES systems can achieve good control of the 
indoor temperature, even after three hours of turning off the HPs.  
In order to improve the efficiency of these systems, several studies have been done to reach optimal design of heat 
transfer fins and channels. Each one of them had suggested various shapes and designs base on their systems [20-
22].  In another study, A.Mohan et al. [23] gave both theoretical and simulation analysis for the duct size. They also 
compared the pressure loss in rectangular and circular ducts, concluding that the circular duct has minimal friction 
loss. Also, Vishal shah et al. [24] compared rectangular and circular ducts and showed that rectangular ducts cause 
more turbulence compared to circular ducts.  
In this study the effects of the cross-sectional shape of air-channels on heat transfer from the internal surface of 
channels to air flowing through the channels is investigated. Air channels with circular, triangular, rectangular and 
sinusoidal shaped cross sections are considered. Further, heat transfer to air flowing through beds comprising these 
air channel shapes are also investigated. The beds have a greater cross-sectional area than the channels and can be 
used in the design of ducts that transport larger volumes of air in HVAC systems.  Numerical analyses is performed 
to investigate the outlet temperatures to optimize the shape of the air channels and beds. Results show the sinusoidal 
channel and bed have better performance in relation to the outlet temperature. Considering channels with a length of 
100 mm, a surface area of 1770 m2, and a wall-to-air heat transfer rate of 790 W/m2, the air outlet temperature for 
the sinusoidal channel is about 57°C higher than that of the circular channel. Considering beds with a height of 5 
mm and wall-to-air heat transfer rate of 790 W/m2, the outlet temperature of the sinusoidal bed is about 10°C higher 
than the outlet temperature for a rectangular bed with similar surface area.  The results are applicable to the design 
of TES units that could be used directly or indirectly (such as adsorbent beds for TES) to supply heat to air passing 
through HVAC systems within buildings.   
 
 
2. Materials and methods 

 

2.1 Numerical Analysis Methods for Determining Heat Transfer within Channels 

Numerical analyses was performed to compare the amount of heat transferred to air that passes through channels 
with different cross-sectional geometries. Four different cross-sectional geometries were considered: 1) circular, 2) 
triangular, 3) rectangular, and 4) sinusoidal. These channels are shown in Figure 1 and their dimensions are given in 
Table 1. The length, L, and internal surface area, A, for all channels is 100 mm, and 1770 mm2, respectively. The 
characteristic parameter, a, and cross-sectional area for each channel differs as shown in Figure 1 and Table 1. All 
four channels have the same internal surface area of 1770 mm2 which is assumed to provide a constant heat flux of 
790 W/m2. For each of the four channels, air enters the inlet with a velocity of 1 m/s, a temperature of 20 °C, and a 
constant density of 1.225 kg/m3. For each channel, the outlet is assumed to have zero Pascal gauge pressure. Also, a 
no slip boundary condition has been applied at the contact surface between the air and the channels. Computational 
Fluid Dynamics (CFD) analysis was performed using Ansys software to determine the heat transferred to the air as it 
passes through the channels. The mesh properties used in the simulation for determining the heat transfer within 
channels are given in Table 2. Figure 2 shows the specified mesh for each case study. Also, the dependency of the 
solution from the grid for all cases is studied. For instance, the number of elements used to simulate the sinusoidal 
channel is 298240 and reducing this number by 37,690 causes a change in the results of only 3%. Considering the 
properties of air at 20°C such as density (1.2047 kg/m3), dynamic viscosity (1.8205*10-5 kg/m.s) and also 
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calculating the hydraulic diameters of the channels as 5.63 mm, 3.40 mm, 4.42mm and 3.02mm for the circular, 
triangular, rectangular and sinusoidal channel shapes, respectively, the Reynolds numbers for the circular, triangular, 
rectangular and sinusoidal channel shapes are 373, 225, 292 and 200, respectively, showing laminar flow for all 
channel shapes. 
 
 
Table 1. Dimensions of the duct channels. 
 

Shape a (mm) L (mm) A (mm2) Cross-sectional area (mm2) 

Circular 5.63 100 1770 24.96 

Triangular 5.90 100 1770 15.09 

Rectangular 4.42 100 1770 19.58 

Sinusoidal 5.00 100 1770 12.50 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Geometry used in the simulation (a) Circular (b) Triangular (c) Rectangular (d) Sinusoidal. 
 
 

Table 2. Mesh properties used in the simulations for the channels. 

Shape  Min size (m) Aspect ratio Skewness Growth rate Number of 
elements 

Circular 1.46e-5 1.64 0.240 1.2 4536 
Triangular 1.46e-5 3.9 0.183 1.2 6768 
Rectangular 1.46e-5 3.1 0.003 1.2 6390 
Sinusoidal 1.46e-5 3.2 0.150 1.2 298240 
 
 

a) 

d)c) 

b)

L

L

L

L
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Figure 2. Specified mesh used in the simulation (a) Circular (b) Triangular (c) Rectangular (d) Sinusoidal. 
 

2.2 Numerical Analysis Methods for Determining Heat Transfer within Beds 

The heat transferred to air flowing through five bed designs with different shapes is numerically determined. The 
bed designs are based on five different shapes, which are: 1) Sinusoidal, 2) Triangular 1 (same width, d, and length, 
L, as the sinusoidal bed), 2) Triangular 2 (same internal surface area, A, as the sinusoidal bed), 3) Rectangular 1 
(same width and length as the sinusoidal bed) and Rectangular 2 (same surface area as the sinusoidal bed). The 
geometry of the beds is shown in Figures 3 and 4 and the corresponding values for the dimensional parameters are 
given in Table 3. The height of all beds is assumed to have the same value of h = 5 mm. The internal surfaces of all 
beds is assumed to supply a constant heat flux of 790 W/m2. The boundary conditions are similar to those used in 
simulating the channels. That is, air enters the inlet of the beds with a velocity of 1 m/s, a temperature of 20 °C, and 
a constant density of 1.225 kg/m3. For each bed the outlet is assumed to have zero Pascal gauge pressure. Also, the 
outer side walls are assumed to be perfectly insulated. Computational Fluid Dynamics (CFD) analysis was 
performed using Ansys software to determine the heat transferred to the air as it passes through the beds. The mesh 
properties used in the simulation for determining the heat transfer within beds are given in Table 4. Figure 5 shows 
the specified mesh for each case study.  Also, the dependency of the solution from the grid for all cases is studied. 
For instance, the number of elements used to simulate the sinusoidal duct is 575,865 and reducing this number by 
13,401 causes a change in the results of only 0.2%. Considering the properties of air at 20°C such as density (1.2047 
kg/m3), dynamic viscosity (1.8205*10-5 kg/m.s) and also calculating the hydraulic diameters of the beds as 7.94 mm, 
9.25 mm, 9.30 mm, 9.59 mm and 9.66 mm  for the sinusoidal, triangular 1, triangular 2, rectangular 1 and 
rectangular 2 bed shapes, respectively, the Reynolds numbers for the sinusoidal, triangular 1, triangular 2, 
rectangular 1 and rectangular 2 bed shapes are 525, 612, 615 , 635 and 639, respectively showing laminar flow for 
all bed shapes. 
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Table 3. Dimension of beds. 

Bed shape H (mm) D (mm) L (mm) A (mm2) Cross-section area (mm2) 
Sinusoidal 5 118 100 14341 590 
Triangular 1 5 118 100 12064 590 
Triangular 2 5 137.94 100 14341 689.7 
Rectangular 1 5 118 100 11800 590 
Rectangular 2 5 143.41 100 14341 717.05 

 
 
 

 
Figure 3. Cross-section schematic of modelled beds. (a) Sinusoidal (b) Rectangular (c) Triangular. 
 
 
 

 
Figure 4. Geometry used in the simulation (a) Sinusoidal (b) Rectangular (c) Triangular. 
 
 
 
Table 4. Mesh properties used in the simulations for the beds. 

Shape  Min size (m) Aspect ratio Skewness Growth rate Number of elements 
Sinusoidal 1.46e-5 1.68 0.342 1.2 575865 
Triangular 1 1.46e-5 2.3 0.177 1.2 14740 
Triangular 2 1.46e-5 2.5 0.180 1.2 15600 
Rectangular1 1.46e-5 2.25 0.019 1.2 12420 
Rectangular 2 1.46e-5 2.56 0.015 1.2 11890 
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Figure 5. Specified mesh used in the simulation of the (a) sinusoidal (b) rectangular, and (c) triangular beds. 
 
 
 

3. Results  

Figure 6 shows the average outlet temperature for the four different channel shapes studied. The results show that 
the sinusoidal shape has the highest outlet temperature of 136.3 °C. Accordingly, the average outlet temperatures for 
circular, triangular, and rectangular shapes are 79.3 °C, 122.9 °C, and 95.9 °C, respectively. 
 

 
 
Figure 6. Average outlet temperature for different channel shapes. 
 
Figure 7 shows the average outlet temperature for the five different bed shapes studied. The results show that the 
sinusoidal shaped bed has the highest outlet temperature of 65.9 °C. Accordingly, the average outlet temperatures 
for triangular 1 (same dimension as the sinusoidal), triangular 2 (same surface area as the sinusoidal), rectangular 1 
(same dimension as the sinusoidal) and rectangular 2 (same surface area as the sinusoidal) are 58.3 °C, 58.2 °C, 56.3 
°C and 56.3 °C, respectively. 
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Figure 7. Average outlet temperature for triangular 1 (T1, same dimensions as the sinusoidal), triangular 2 (T2, same 
surface area as the sinusoidal), rectangular 1 (R1, same dimensions as the sinusoidal) and rectangular 2 (R2, same 
surface area as the sinusoidal). 

 

Table 5. Inlet pressure of the channels.                              Table 6. Inlet pressure of the beds. 

                  
  
 
 
 
 
 

 
 
Table 5 and Table 6 show the inlet gauge pressure of the air for the channels and beds, respectively. Since the outlet 
pressures at the boundry conditions were set to zero-gauge pressure, the pressure drop for each case is equal to the 
inlet gauge pressures. It can be seen that for both channels and beds the sinusoidal shape results in a higher inlet 
pressure (7.71 Pa for the channel and 1.67 Pa for the bed) compared to all other cross-sectional shapes considered.   
 
Tables 7 and 8 compare the wall-to-air heat transfer rate to the power loss due to the pressure drop along the 
channels and beds, respectively. It can be seen that the power lost for the sinusoidal channel and bed are higher than 
the other shapes.  
 
 
Table 7. Power calculation of the channels from the heat transfer and drop pressure. 

Channel shapes  Wall‐to‐air heat transfer (KJ/s)  Power loss due to pressure drop (KJ/s) 

Circular  1.82E‐03  5.62E‐05 

Triangular  1.91E‐03  7.15E‐05 

Rectangular  1.83E‐03  6.30E‐05 

Sinusoidal channel  1.79E‐03  9.48E‐05 
 
 
 
 
 
Table 8. Power calculation of the beds from the heat transfer and drop pressure. 

Beds  inlet pressure (Pa) 

T1  1.19 

T2  1.18 

R1  1.13 

R2  1.13 

S  1.67 

Channels  inlet pressure (Pa) 

Sinusoidal   7.71 

Circular  2.29 

Rectangular  3.27 

Triangular  4.82 
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Bed shapes 
Power gained from the heat 
transfer (KJ/s) 

Power lost from the drop 
pressure (KJ/s) 

Sinusoidal bed  2.78E‐02  9.69E‐04 

Triangular 1  2.78E‐02  6.91E‐04 

Triangular 2  3.08E‐02  8.00E‐04 

Rectangular 1  2.64E‐02  6.56E‐04 

Rectangular 2  4.06E‐02  7.97E‐04 
 
 
 

4. Discussion 

As shown in Figures 4 and 5 the temperature of the air flowing through the sinusoidal-shaped channels and beds 
increases to the greatest extent. These results can assist in the design of ducts with integrated TES. For example, 
phase change materials or adsorbent-based thermochemical energy storage materials may be applied at the surfaces 
of the ducts. Further, TES integrated into the ducting network of HVAC systems can potentially be coupled with 
heat pumps to efficiently utilize surplus electricity during low-demand periods. Future work is required to 
investigate the potential of such systems and the optimal duct design for their implementation.  
 

5. Conclusion    

This paper demonstrates a study on determining the heat transfer within differently shaped duct channels and beds 
using numerical analysis (CFD) and compares the outlet temperatures for four cases studied. Circular, triangular, 
square, and sinusoidal duct shapes are considered. In a heating application, wherein heat is transferred from the 
internal surfaces of the ducts to the air, the sinusoidal channel and bed increased the temperature of the air more than 
the other cross-sectional shapes considered. For a set heating rate and surface area, the outlet temperature of the 
sinusoidal channel is about 57 °C higher than the circular channel, whereas the outlet temperature of the sinusoidal 
bed is about 10 °C higher than that of a rectangular bed. Energy losses due to the pressure drop in the channels and 
beds with a sinusoidal-shaped cross-section are greater than those in channels and beds with triangular or 
rectangular cross-sections. However, the energy losses due to pressure drop are small in comparison to the heat 
gained from the internal surfaces of the channels and beds for the conditions considered in this work (a wall-to-air 
heat transfer rate of 790 m/s). Thus, for the conditions considered in this work, the sinusoidal cross-sectional shape 
shows better performance than the triangular, rectangular, or circular cross-sectional shapes for both channels and 
beds.   
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