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ABSTRACT

Suspension systems in the auto industry have always been a topic of interest, as they

relate to so many aspects of vehicles. Various types of suspension are commonly used

now, such as passive suspensions, semi-active suspensions and active suspensions. How-

ever, the current technology mainly focuses on the change of damping ratio. The aim

of this thesis is to consider both spring and damper properties for suspensions of an o�-

road vehicle. In order to do this, a 10-degree of freedom model was built using the EoM

so�ware in Julia. The output state space matrices from EoM were used as an input in

a Matlab/Simulink control loop to analyze the performance. A critical goal was to see

the e�ects on ride comfort of using Neural Networks for property selection in the Mat-

lab/Simulink control loop. By adding extra spring forces and damping forces, the level of

ride comfort was modi�ed. Preliminary road tests were conducted to serve as a proof of

concept.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

It is commonly known that an o�-road vehicle shows obvious advantages over a sedan

or normal SUV under bad road or weather conditions. However, during normal daily driv-

ing, since most o�-road vehicles use passive suspension, the ride quality is degraded when

compared against a typical passenger sedan. The motions experienced by the driver in-

clude both side-to-side shaking and up-and-down bumps on roads with varying road con-

ditions. Over time, this phenomenon can also cause damage to the vehicle. For example,

the Jeep ‘death wobble’ vibration reported in the media and online that some owners ex-

perience is due to suspension or steering system fasteners that are slowly loosened or

worn due to vibration in the original suspension.

In both Canada and the United States, there are many o�-road vehicle enthusiasts, and

as a result, there are many suspension products targeted at o�-road vehicles on the North

American market, for example, systems that provide the abilty to change the damper char-

acteristics while driving. However, besides dampers, one might consider the possibility

of dynamically changing the spring sti�ness as well. This research focuses on simulta-

neous changes of parameters of both springs and dampers, to improve the �exibility of
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suspension systems.

While manual control of these parameters would be a possibility, a far better solu-

tion would be the automatic selection of the appropriate parameters, using an automatic

tuning system. It is notable that in recent years, neural networks and other machine learn-

ing techniques have been providing many advances in arti�cial intelligence technology.

For this reason, the application of neural networks to make the selection of sti�ness and

damping ratios was explored. The goal was to see an improvement in both the ride com-

fort and vehicle safety.

1.2 Literature Review

1.2.1 Vehicle suspensions

The vehicle suspension system acts as the connector of the chassis (the ‘sprung mass’)

and the wheel, tire and brake (the ‘unsprung mass’) and consists of linkages, springs, and

shock absorbers (dampers). The suspension transmits the forces between the wheels and

the vehicle body and passengers. The suspension springs support the body mass and

isolate it from road disturbances, contributing to driver comfort. The dampers dissipate

the relative motion, contributing to both driving safety and comfort[1].

Vehicle suspension types

For decades, vehicle suspension systems have been a popular topic for researchers.

The importance of design of suspensions never fades. For the sake of driver and passen-

ger safety, di�erent types of vehicles must be equipped with proper suspension systems.

Moreover, the suspension system also directly a�ects the vehicle handling, and depends

strongly on the choice of spring sti�ness and damping ratio.

In general, the types of vehicle suspension can be classi�ed into three categories: pas-
sive suspensions, active suspensions and semi-active suspensions.
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Passive suspension system

In this context, ‘passive’ indicates that the suspension elements cannot provide energy

to the suspension system (see Figure 1.1). According to the targeted ride comfort and

handling stability level, the passive suspension system limits the motion of the body and

wheel by limiting their relative velocities to a rate that gives the required ride comfort.

This is achieved by using some type of damping element placed between the body and

the wheels of the vehicle, such as hydraulic shock absorbers[2].

Figure 1.1: Structure of a passive suspension of an o�-road vehicle. Image
reproduced from www.wikipedia.org.

Active suspension systems

Active suspensions can be divided into two types: real active suspensions, and adap-

tive suspensions or so-called semi-active suspensions. It is typical for most active suspen-

sions to imply varies kinds of actuators to raise and lower the chassis independently at

each wheel. Adaptive suspensions change the �rmness of the shock absobers in order to

adapt the dynamic environment, for example, road disturbances, loading mass changes

and weather conditions. There are many technologies to achieve this goal, for example

Electro-Rheological and Magneto-Rheological �uids, solenoid-valves and piezoelectric ac-

tuators[1]. The di�erence between fully-active and semi-active suspension is whether the

suspension system can generate forces between the vehicle body and wheels that are

fully independent of the direction of suspension travel. The distinction is illustrated in

Figure 1.2.
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Figure 1.2: Quarter-car models illustrating the three categories of suspen-
sions. Image reproduced from Omar[3].

1.2.2 Vehicle dynamics models

For certain research purposes, many classic vehicle models have been developed. For

every model, di�erent assumptions are made, e.g, di�ering degrees of freedom, according

to the requirement of the sophistication of the model. Generally in a 3D space, a coor-

dinate system is set at the vehicle mass center, where the x axis represents longitudinal

dynamics, the y axis re�ects lateral motions and the z axis stands for vertical movements

of the vehicle. The rotation around the x, y, and z axes is called ‘roll’, ‘pitch’, and ‘yaw’,

respectively.

Figure 1.3: Motions of a vehicle – roll, pitch, and yaw. Image reproduced
from www.racecar-engineering.com
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The yaw plane model

The yaw plane model is also called the ‘bicycle model’. In this case, the bicycle model

has nothing to do with a real bicycle but the name is used because the vehicle width is

ignored when the model is developed. The vehicle model is simpli�ed to a two degrees of

freedom model. Only the lateral velocity (v) and the yaw velocity (r , the angular velocity

around the z axis) are considered, while the forward speed (u) of the vehicle is treated

as constant. The condition of a constant forward speed is called a nonholonomic1 con-

straint[4]. Several simplifying assumptions are made to result in a linear dynamic model,

given in Eqn. 1.1. The critical assumption of this model is considering the width of the ve-

hicle as unimportant during a the model development, and so both the le� and right side

tires are considered to have the same forward speed. Although the lateral weight transfer

that occurs when the vehicle is cornering does play an important role as it in�uences the

tire performance, the yaw plane model considers it as a secondary e�ect, and ignores it.

There are several common notations to be mentioned in this model: the tire cornering

sti�ness cf and cr, where ‘f’ represents the front and ‘r’ represents the rear; the lateral

forces acting at each of the front and rear axles are Yf and Yr, respectively; the steering

angle of the front tires, assumed to be the same on the le� and right side is �f. Notice that

the only moment of inertia that matters in this model is Izz, because the yaw rotation is

around the z axis.

Meanwhile, there are some interesting e�ects on building the Newton-Euler equations

when studying the bicycle model. First, the longitudinal equation is irrelevant such that all

the î component terms are eliminated. Second, while computing the cornering sti�ness,

one must double the amount as measured for a single tire, because in the bicycle model,

although the width is neglected, it does have two tires at each axle.

[
m 0
0 Izz]

{
v̇
ṙ

}
+ 1
u [

cf + cr acf − bcr +mu2
acf − bcr a2cf + b2cr ]

{
v
r

}
= [

cf

acf]
{�f} (1.1)

1Nonholonomic systems are those where the number of position coordinates required exceeds the num-
ber of velocity coordinates. The yaw plane model has three position coordinates (x , y,  ), but only two
velocities (v, r ).
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Figure 1.4: A bicycle model, reproduced from Escalona[5].

The bicycle model is typical for analyzing handling performance. It is necessary to

calculate the yaw rate gain r
�f

, as it is important to de�ne and predict whether the vehicle

will understeer or oversteer. In the case of acf < bcr, the vehicle is in an understeer condi-

tion. However, when acf > bcr , which usually happens on a rear-heavy vehicle, is said to

oversteer. There is special case when acf = bcr, the vehicle is said to neutral steer.

Figure 1.5: The steady state yaw rate gain r
�f

is a function of speed.
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In seen in Figure 1.5, the oversteering vehicle becomes increasing sensitive near criti-

cal the speed ucrit, while the understeering vehicle reaches a maximum sensitivity at the

characteristic speed uchar.

The expressions for the characteristic speed and critical speed are given in Eqns. 1.2

and 1.3, respectively:

uchar =
√

cfcr(a + b)2
m(bcr − acf)

=
√
g(a + b)
kus

(1.2)

ucrit =
√

cfcr(a + b)2
m(acf − bcr)

=
√
g(a + b)
−kus

(1.3)

where kus is known as the understeer gradient.

The quarter car model

One of the classic vehicle models that is well known for predicting ride quality is the

quarter car model. It is a simple two degree of freedom model, with two bodies constrained

to vertical translation, representing the sprung mass ms (the chassis, powertrain, driver,

cargo, etc.) and the unsprung mass mu (the wheel, hub, brake rotor or drum, etc.)[4].

Figure 1.6: A quarter car model, reproduced from www.wikipedia.org
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The model is formed by writing Newton’s equation for each of the two bodies. For the

unsprung mass:

ms z̈s + cs żs − cs ̇zu + kszs − kszu = 0 (1.4)

For the unsprung mass:

mu z̈u + cs ̇zu − cs żs + ks ̇zu − kszs + ktzu = ktzg (1.5)

The two equations are combined as a vector equation:

[
ms 0
0 mu]

{
z̈s

z̈u

}
+ [

cs −cs

−cs cs ]

{
żs

żu

}
+ [

ks −ks

−ks ks + kt]

{
zs

zu

}
= [

0
kt]

{
zg

}
(1.6)

or:

Mz̈ + Lż + Kz = Fu (1.7)

In the transient condition, when a vehicle is driving on the road with disturbances, the

most obvious motion is the vertical motion, as it is directly in�uenced by the road input. A

quarter car model is suitable for analyzing the frequencies of both the sprung mass and the

unsprung mass. Typically, the damping terms are omitted, as they have a relatively small

e�ect on the resulting frequencies of motion, and this simpli�cation allows a sinusoidal

solution to the equations. Suppose that the road is smooth (i.e., zg = 0), and that the

motions can be written:

z =
{
zs

zu

}
= z0 cos(!t) (1.8)

As a result,
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z̈ = −!2z0 cos(!t) = −!2z (1.9)

The equation of motion is then:

− !2Mz + Kz = 0 (1.10)

or:

[K − !2M]z = 0 (1.11)

With an examination of the resulting equation, one should recognize that it is ef-

fectively an eigenvector problem, and therefore must have a singular coe�cient matrix.

Expanding the determinant of this matrix term gives the characteristic equation:

(ks − !2ms)(ks + kt − !2mu) − k2s = 0 (1.12)

A�er manipulation and some simpli�cation, two simple linear equations that can be

solved for !. First,

! =
√
ks + kt

mu
(1.13)

And second:

− (ks + kt)ms!2 + ktks = 0 (1.14)

! =
√

kskt
(ks + kt)ms

(1.15)

For typical values of the vehicle parameters, the lower frequency is typically about 2�
rad/s or 1 Hz, while the higher is around 20� rad/s or 10 Hz. For the higher frequency, it

shows a condition where the unsprung mass bounces against the suspension and tire as
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two parallel springs while the sprung mass is relatively stationary. However, the lower

frequency works inversely as the sprung mass bounces against the suspension and tire as

two springs in series, and the unsprung mass is ignored. The two motions are typically

called wheel hop mode (high frequency) and the bounce or heave mode (low frequency).

A property of the quarter car model is that the motions tend to be very discrete; the

low frequency is associated almost entirely with the vehicle body motion and the high

frequency with the wheel[4]. The frequency response of a typical quarter car model is

shown in Figure 1.7.
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Figure 1.7: Frequency response of the quarter car model, showing body
motion at low frequencies, suspension travel at midrange frequencies, and
tire compression at high frequencies.

1.2.3 Full car model

As its name, a full car model considers bounce, pitch, and roll motions of the vehicle

body. Typically a full car model is used extensively to study the steady state cornering on

various road pro�les which includes a range of smooth to rough road surfaces. In the free

body diagram of the full call car model has vertical and lateral forces acting at each of the

tire contact patches. In regard to many studies on suspension system, it is researcher’s

choice of how many degrees of freedom a model has, according to their own research
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interests. Meanwhile, since it has always hard for researchers to predict performance of

tires, the famous ’Magic Formula tire model’ is widely use to do such a job. However, in

order to validate the results from the magic formula, a test rig based on a full car model

is necessary for taking the actual performance data of tires. A schematic diagram of a

typical full car model is shown in Figure 1.8.

Figure 1.8: A full car model. Figure reproduced from Jazar[6]

Steady state analysis

When doing this analysis, assumptions has to made �rst. Assume the acceleration is

constant and the vehicle is treated as a single rigid body. If one assumes that the vehicle is

cornering in steady state, then the lateral acceleration v̇ + ur simpli�es to just ur . More-

over, the roll rate and pitch rate is assumed to be zero while the yaw rate is constant. In

this case, the equation of the vertical motion and the sti�ness of the system is fairly im-

portant as the system is ’statically indeterminate’, where the vertical motion at any point

is assumed to be equilibrium:

∑Z = −Zrf − Zlf − Zrr − Zlr +mg = mz̈ = 0 (1.16)

The reference point to build an axis in the ground plane to evaluate the roll moment

is not at the same location as where the center of mass is. In this way, additional inertial

moment is generated and the assumption keeps the angular acceleration of the roll to be

zero such that to describe the steady state.
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∑ L = tf
2 (Zlf − Zrf ) +

tr
2 (Zlr − Zrr ) = Ixx ṗ +murℎG = murℎG (1.17)

For the pitch motion, remembering the pitch rate (angular acceleration in the pitch

direction) is assumed to be zero when the vehicle is still moving at a constant speed.

Although the vertical o�set o� the reference axis at the center of mass does not has any

e�ects, the weight distribution of the vehicle can add an non-zero Ixz to the equation when

the sprung mass at the rear is signi�cantly higher than that in the front. The term of Ixz
can be positive when the rear of the vehicle carries its mass further above the ground.

However, even this con�guration combined with a angular velocity around the z axis

produce a pitching moment which tends to li� the vehicle front, the e�ect is still small

usually. Now equation for the pitch motion is:

∑M = a(Zrf + Zlf ) − b(Zrr + Zlr ) = Iyy q̇ − Ixzr2 = −Ixzr2 (1.18)

Considering the normal forces, which are assumed to have a linear relationship with

the suspension compression, the coupling moments across each anti-roll bar has to be

taken into account. Nevertheless, as the tire sti�ness is signi�cantly higher than the sus-

pension sti�ness such that the tire sti�ness can be neglected, not to say the sti�ness of

two springs in series is less than one individual spring. The de�ection of the anti-roll

bar caused by force transferred from the wheel is also calculated under the assumption

that the sti�ness of the anti-roll bar is a linear sti�ness. If quoting the roll sti�ness as a

moment per unit of rotation, the conversation factor is the square of the track width (e.g.,

kf b [Nm/rad] = t2kf b [N/m]).

Zrf = kf zrf + kf b(zrf − zlf ) (1.19)

Zlf = kf zlf + kf b(zlf − zrf ) (1.20)

Zrr = krzrr + krb(zrr − zlr ) (1.21)
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Zlr = krzlr + krb(zlr − zrr ) (1.22)

1.2.4 Ride comfort

Ride comfort standards

As a general rule, customer demands for vehicles are not only limited to driving perfor-

mance on various terrains, but also related to the performance. Performance is a general

term in the automotive industry, and can include many standards. Among all these stan-

dards, ‘ride comfort’ and ‘handling performance’ are most widely known. This thesis is

more focused on ride comfort than on the handling performance while both are consid-

ered.

When vehicle engineers try to develop a suspension system that can isolate the pas-

sengers from road disturbances, it o�en results in a sacri�ce of the vehicle handling per-

formance. The parameter selection for ride comfort and vehicle handling is a compromise.

In an e�ort to balance the e�ects, much research has been done with the aim of maximiz-

ing the ride comfort, while keeping the handling performance su�cient to ensure driver

safety.

According to Karnopp[7], vehicle ride comfort should be considered in terms of fre-

quencies, and the key to the suspension design is to isolate the body from high road input

frequencies. Meanwhile, at lower frequencies, the accelerations of the wheels and the

driver more directly correspond to the road input. The suspensions should be su�ciently

damped to control resonance such that the road disturbances are not ampli�ed, and that

wheel hop and loss of wheel contact with the road is restricted. Apart from this, when

the payload, or the forces generated from braking and cornering, or aerodynamic forces

change, the suspension should have the ability to control the energy translation to the

human body. For example, in a passive suspension system, all these requirements are

not feasible because a passive suspension does not include any form of energy regenera-

tion. The parameters of the suspension are set and cannot be changed under real driving
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conditions, while an active system or semi-active system implies a dynamic energy man-

agement so that it is capable of a�ecting the ride comfort level. A typical driver comfort

response is shown in Figure 1.9.

Figure 1.9: Frequency response of the disturbance transmitted through the
vehicle to the driver.

As scientists and researchers have proposed many di�erent standards to evaluate ride

comfort, the limits of acceptable ride comfort vary. In North America, the method of

calculating the AAP - the Average Absorbed Power[8] is common. The human body is

considered as elastically-behaved, absorbing forces from each displacement of the car until

all the energy is dissipated. During this process, the ratio of energy to time is calculated

using the Fast Fourier transform or the Laplace transformation. Graphically, the x axis

usually stands for frequency when the y axis stands for magnitude or phase calculated

from the comfort matrix. A full car model similar to the one in Figure 1.10 is used as part

of this process.

Ride comfort tests

There are some parameters that should be considered during ride evaluation events.

As mentioned in the last section on ride comfort standards, vehicle ride comfort should

be considered at levels of frequencies. Usually, ride tests are conducted mainly in two

road input frequency ranges: 0.5–3 Hz and 5–20 Hz. It is meaningful to test within two

separate frequency ranges as two peaks are expected to show in the result graph at two

natural frequencies of the system. The time of energy dissipation is the main data to

acquire and usually for a certain road pro�le there will be two sets of data: the energy
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Figure 1.10: Model of a vehicle used to select optimal damping force in
semi-active shock absorbers. Figure reproduced from Makowski[9].

dissipation time for the peak occurring under 5 Hz and the second peak between 5–20
Hz. In virtual analysis of ride comfort using so�ware such as ADAMS, the input road

pro�les tested typically include a cleat road test, an English road test and a geddes road

test. However, the plots of accelerations in longitudinal and vertical direction are similar.

A typical ADAMS cleat test is shown in Figure 1.11.

Figure 1.11: A sample of cleat ride comfort analysis in ADAMS. The size of
the obstacle is 100 mm x 25 mm
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1.3 An introduction of AI technology development and ar-

ti�cial neural networks

Arti�cial intelligence has been developed for many years, and it is applied widely for

modern living. For example, during the lock-down period caused by the ongoing Covid-19

pandemic, AI technology is playing an important role, in quickly diagnosing whether a

person is infected or not through analysis of the chest CT image. Going back to the 20th

century, a great question was raised by a famous scientist – Alan Turing. The question is:

‘Can machines think like human beings?’ A�erwards, the famous Turing test was born. To

pass the test, by communicating in words between humans and machines, the machines

will be recognized as AI if over 30% of human testers cannot realize the ‘person’ they were

talking with was a machine.

In 1956, the de�nition of ‘Arti�cial Intelligence’ was validated by three famous scien-

tists, Marvin Lee Minsky, John McCarthy, and Claude Shannon, during the ‘Dartmouth

Summer Research Project on Arti�cial Intelligence’[10]. Since then, AI technology has ex-

perienced three revolutions and two recessions. Today, society is experiencing the third

revolution. In 1997, IBM developed the �rst chess-playing computer – Deep Blue. It be-

came the �rst computer to win both a chess game and a chess match against 12-year reign-

ing world champion Garry Kasparov. Moreover, the algorithms of arti�cial intelligence

were proposed by many great scientists, such as the ‘Back Propagation (BP)’ algorithm

created by Geo�rey Hinton from University of Toronto, the ‘Convolutional Neural Net-

works (CNN)’ by Yann LeCun from New York University, and ‘Deep Learning’, ‘Neural

Machine Translation’, ‘Attention Model’, etc., by Yoshua Bengio from University of Mon-

treal[11].

As a core, the most usual algorithm in AI technology is the Arti�cial Neural Network

(NN), which is conceptually similar to the biological structure of a human brain. In NN,

every circular unit in the structure is called a neuron. This structure can be separated

into two main regions: a region for receiving and processing incoming information from

other cells (inputs) and a region for conducting and transmitting information to other cells

(outputs), as shown in Figure 1.12.
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Figure 1.12: Structure of a human neuron. Figure reproduced from
Sinkov[12].

The �rst mathematical model of a neuron, called the ‘McCulloch-Pitts Neuron’ (MP-

Neuron), was created in 1943 by Warren Sturgis McCulloch and Water Pitts[11]. They de-

�ned every neuron as a multi-input and single-output system, as in Figure 1.13. However,

there were problems that came with this model. First, it has �xed weights and thresholds,

such that the system cannot learn. Second, it was a great challenge to minimize size of a

MP-neurons network. Third, it was not suitable for cases where the process is non-discrete

or non-binary. In 1986, the term ‘Back-propagation’ was announced by Rumelhart, Hin-

ton and Williams[11], as illustrated in Figure 1.14. Instead of calculating the whole system

from inputs to outputs, it computes the gradient from outputs to inputs. It signi�cantly

decreased the complexity of calculation and improved Neural Network performance to

a new level. By introducing the loss function into the calculation, it keeps changing the

values of the weights until they are optimized. Moreover, it avoids duplicated calculations

and unnecessary intermediate values.

Activation functions

An activation function is also called a transfer function. It decides whether a neuron

should be activated or not, like yes or no. For example, depending upon the function, it

maps the resulting values in between 0 to 1 or −1 to 1 etc. To explain this in another way,

an activation function decides whether the neuron’s input to the network is important

or not in the process of prediction using simpler mathematical operations. In nature,

a function can be linear or nonlinear which is the same as the activation functions in

NN. The linear activation function, also known as ‘no activation’ or ‘identity function’
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Figure 1.13: McCulloch-Pitts Neuron. Figure reproduced from Sinkov[12].

Figure 1.14: Backpropagation structure. Figure reproduced from Jiang[13].

(multiplied by 1.0), is where the activation is proportional to the input. The function itself

doesn’t do anything to the weighted sum of the input, but simply returns the value it was

given. Mathematically it can be represented as:

F (x) = x (1.23)

Due to the simplicity of a linear activation function, it has two major drawbacks in

comparison with a nonlinear activation function. First, it is unable to back-propagate data

in the network, as the derivative of a linear function is a constant value. In this case, the

derivative has nothing to do with the input value so that it cannot process even at the �rst

level of derivatives. Another problem is, all layers of the neural network will collapse into



Chapter 1. Introduction 19

one if a linear activation function is used. No matter the number of layers in the neural

network, the last layer will still be a linear function of the �rst layer. So, essentially, a

linear activation function turns the neural network into just one layer [14].

The most widely used activation function type is nonlinear. It allows backpropaga-

tion since the input is still needed in the derivative function. In this case it is possible

to go back and understand which weights in the input neurons can provide a better pre-

diction. Meanwhile, it is also capable of including multiple layers of neurons, where the

network can be potentially developed to a deep neural network. By allowing a non-linear

combination of input passed through multiple layers, any output can be represented as a

functional computation in a neural network.

One of the most widely used transfer function been used by people is the sigmoid

function, represented as:

f (x) = 1
1 + e−x (1.24)

The reasons for its popularity are obvious. In the case of a neural network that is

designed to predict the probability of a certain case, a sigmoid function makes the results

clean and tidy because it has a range of output from 0 to 1. Moreover, due to the S-shape

of the sigmoid function, the resulting gradients are also smooth. It helps keep continu-

ous output values, unlike some of the other activation functions. Therefore, according

to people’s needs, the sigmoid function can be a great choice to become the activation/-

transfer function. Another similar activation function is called Tanh Function (Hyperbolic

Tangent). Mathematically it can be represented as:

f (x) = tanh(x) = (ex − e−x )
(ex + e−x ) (1.25)

The tanh function is also a S-shape function but with the di�erence in output range of

−1 to 1, see Figure 1.15. In tanh, the larger the input (more positive), the closer the output

value will be to 1.0, whereas the smaller the input (more negative), the closer the output

will be to −1.0. It is di�erent as it is an zero-centered function. This gives the advantage

to tanh function over than sigmoid function. In other words, because the output of the
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tanh activation function is in the range of negative 1 to positive 1, the output values can

be easily mapped as strongly negative, neutral, or strongly positive. As a result, the mean

for the hidden layer comes out to be 0 or very close to it. It helps in centering the data

and makes learning for the next layer much easier.

Figure 1.15: Tanh Function and Sigmoid function. Notice that the range is
di�erent.

During recent years, an activation function that is applied widely in convolutional

networks and the deep learning area is called ReLU. ReLU stands for Recti�ed Linear Unit,

the function shown in Figure 1.16. ReLU has an output range of zero to in�nity. It earns its

name as it is recti�ed at when input value equals 0. What makes ReLU special is that the

ReLU function does not activate all the neurons at the same time. The neurons will only

be deactivated if the output of the linear transformation is less than zero. One advantage

of using ReLU as an activation function is that since not all neurons are activated on the

network, the ReLU function is far more computationally e�cient when compared to the

sigmoid and tanh functions. What’s more, ReLU accelerates the convergence of gradient

descent towards the global minimum of the loss function due to its linear, non-saturating

property.

At the same time, because the value of ReLU and its derivative equals zero when the

input is negative or zero, some neurons may be killed by mistake, so that during back

propagation process, the weights and biases for some neurons are not updated. As a result

of this fact, the ReLU decreases the model’s ability to �t or train from the data properly.
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Figure 1.16: ReLU Function and Sigmoid Function. The ReLU function is
far more computationally e�cient when compared to the sigmoid function.

To deal with this issue, many other kinds of transfer functions variants are developed

based on ReLU. For example, the Leaky ReLU function, the Parametric ReLU function, the

Exponential Linear Units(ELUs) function, etc.

Another popular activation function used for classi�cation type of NN is So�max. It

calculates the relative probabilities. Similar to the sigmoid/logistic activation function,

the So�Max function returns the probability of each class. It is most commonly used as

an activation function for the last layer of the neural network in the case of multi-class

classi�cation. The mathematical equation of So�max function is:

so�max(Zi) =
exp(Zi)

∑1
j exp(Zi)

(1.26)
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CHAPTER 2

PRELIMINARY ROAD TEST

This chapter is a description and analysis of a road test using Neural Networks (NN)

to assess the ride quality, as a proof of concept. The goal of the thesis is to explore a po-

tentially improved adaptive suspension system. Based on the state of current suspension

products, improved technology can make them more intelligent and better able to satisfy

customer expectations. Moreover, the use of NN is expected to signi�cantly improve the

suspension performance, by improving the e�ciency and accuracy of suspension tun-

ing. In the end, the objective is that a real-drive-testing-data trained neural network can

switch the suspension mode for the virtual vehicle ride simulation at any time, and show

improved passenger comfort.

Before doing the simulation and the study of the ride comfort of o�-road vehicles, a

real road test was conducted locally in Windsor with micro gyro measurement devices

capable of recording acceleration in three directions, and angular velocity around three

axes. The car used in this test was a 2018 Jeep Wrangler 4x4 Unlimited Sport, shown in

Figure 2.1.

Due to COVID-19, the access to conducting road tests was very limited. It could only

be done before the nightly curfew started. Exposure in public areas for a long time was

not acceptable during this special time. In this situation, it was decided that the test would
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Figure 2.1: A 2018 Jeep Wrangler was used to gather the preliminary road
test data.

only be conducted on a relatively straight road with some bumps. The measuring device

was mounted at the le� rear �oor of the car, with the measuring frequency of 100 Hz. The

car speed was set at 35 km/h using cruise control, and the total time of data acquisition is

14 seconds, although several hours were spent gathering data to test and re�ne the data

acquisition procedure. The testing road geometry is shown in Figure 2.2. The mounted

device is shown in Figure 2.3.

Figure 2.2: Bump geomtry used for the road test.

The resulting data is shown in Figure 2.4. As expected, the vertical acceleration rose

to the largest at every bump, followed by the lateral acceleration. However, the wave of

the lateral acceleration was bigger than expected. Because the gyroscope was mounted

on the rear seats of the �oor, the vibrations from seats and the �oor can not be ignored.

In the meantime, the accuracy of the device was not fully tested. Beside these, the results

�t the prediction, as it also can be noticed that the angular pitch motion was larger than

either roll or yaw.
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Figure 2.3: First at the le� is the gyroscope, in the middle is the USB linking
device and at the right is the mounting device

Figure 2.4: Angular velocity and linear acceleration measurements in the
vertical, lateral and longitudinal directions. The motions were measured at
100 Hz. The vertical acceleration is the most obvious result, as expected.

2.1 Collecting data and building Neural Networks

Among the data, three groups were picked for Neural Network training. The data

was sorted into three categories: 1. 500 points for smooth road condition, 2. 500 points

for medium road condition, and 3. 500 for rough road condition. The Neural Network

structure is Back Propagation Neural Network with a structure of 5 inputs, 10 neurons and

3 outputs. There are 1000 groups for training and 500 groups of data for testing. The choice

of transfer function was the sigmoid function because it is continuously di�erentiable as
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desired in neural networks, and they allow for the back propagation of the error during

the training phase, which is necessary for the adjustment of weight and bias to �nally

achieve convergence. The logic of the calculation, from input layer to hidden layer and

�nally the output layer, is explained below.

In the following equations, l stands for the number of neurons, m stands for the num-

ber of outputs, n stands for the number of inputs, while j presents the neuron in hidden

layer.

1. Hidden layer input

Hj = f (
n
∑
i=1

!ijXi − aj) , j = 1, 2⋯ l (2.1)

2. Transfer function

f (x) = 1
1 + e−x (2.2)

3. Output

Ok =
l

∑
j=1

Hj!jk − bk , k = 1, 2⋯m (2.3)

4. Error calculation (Yk is the expected output)

ek = Yk − Ok , ; k = 1, 2⋯m (2.4)

5. Weight factor renewal (� = study rate)

!ij = !ij + �Hi(1 − Hj)x(i)
m
∑
k=1

!jkek (2.5)

!jk = !jk + �Hiek (2.6)
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6. Constant renewal

aj = aj + �Hi(1 − Hj)
m
∑
k=1

!jkek (2.7)

bk = bk + ek (2.8)

7. Repeating step 2-6 until �nished

2.2 Result and proof of concept

The result shows that Neural Network has reasonably good accuracy of detecting each

case. In all three modes, the so� mode has an accuracy of 50–80%, the accuracy of the

medium mode was always 100%, and the �rm mode’s accuracy was higher than 90%. To be

noticed, the number of input neurons and hidden neurons can be increased. For example,

one group of data can be transformed as square root, sine of the data, tangent of the data,

while two groups of data can also be multiplied together. The same also applies for the

hidden layers. However, an increase in the quantities of the neurons does not ensure an

increase in accuracy; it depends on the pattern and distribution of the data. Two results

are selected randomly as shown, the straight lines show the errors in one simulation, as

1 stands for smooth mode, 2 stands for medium mode and 3 stands for rough mode.



Chapter 2. Preliminary road test 27

Figure 2.5: There are only errors on smooth and �rm mode when the ac-
curacy of medium mode is 1. The plots shows error values for each NN
predictions, therefore the value of 2 means misidentifying smooth mode to
rough mode, −2 means the opposite.
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CHAPTER 3

VEHICLE MODELING

This chapter is a detailed discussion of the process of building a reliable car model as

a platform for this study, what extra considerations were involved, and how the issues

were resolved. The whole model was built with Julia Language, which is fast, powerful

and free. A�er careful study, a 10 degree-of-freedom car model was built. In this full

car model, bounce and roll motions are highlighted. Meanwhile, the forward speed was

considered to be constant and the main focus was on vertical and lateral motions. The car

model included a suspension system with four springs, two anti-roll bars, and linkages

for suspension constraints.

Because the vehicle model was built in Julia and the suspension system training pro-

cess was completed in MatLab Simulink, the steady state matrices were extracted from

the result of simulation in Julia by a MatLab script as the source of data for the Simulink

model. The state matrices were the system matrix, the feed-through matrix, and the input

and output matrices.

The model was simulated using a random road time history. By comparing the results

of before-trained and a�er-trained vehicle model, the improvement of drive comfort was

shown by applying Neural Networks to select the suspension properties.
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3.1 Model properties

The whole model �gure 3.2 was focus on the chassis. The suspension system was based

on a four-link style, so that it had four upper control bars and four lower control bars. In

the visualization of the model, they were represented by 8 suspension links. The front axle

linked thye two front tires together, similarly with the rear axle. By using two random

road functions, one for each side of the car, the front and rear axles could be excited by

the road input, thus pitch and roll angles were generated as time series data. Meanwhile,

in the consideration of the car length, the front and rear road excitation signals cannot

happen simultaneously. In this situation, the road input of the rear axle was delayed by

t = (a + b)/u, which was the wheelbase of the chassis divided by time.

In Figure 3.2, the center of gravity was put at origin, while four wheels were connected

to the axle by four constraints allowing a single rotation representing the wheel bearings.

Flexible joints wer used for the front and rear anti-roll bars. Moreover, to monitor the trace

of four wheels, �exible joints representing the tire sti�ness were also created. However, in

the state of constant speed, only vertical and lateral motions were of interest. Therefore,

four �exible joints were set to represent the vertical movement, with the lateral sti�ness

presented by another four �exible joints. As shown in Figure 3.1, the structure of a typical

double wishbone suspension system includes an upper control arm, an lower control arm

and a shock absorber that is mounted in between them. This brings constraints to the

system modeled in this thesis. The upper suspension links were set to be moved with the

top of the shock absorbers, when the lower suspension links would move together with

the bottom of the shock absorbers. This means, the shock absorbers had exactly the same

motions as there suspension links. Meanwhile, the sway bar should be mounted on the

lower control arms such that in the model there were two rigid points located at the center

of the front and rear axle. In this way it accomplish the goal of matching the mechanism

in real world.
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Figure 3.1: An example of the front suspension system of Jeep Wrangler
in Adams

Figure 3.2: A full car model with 10 degrees of freedom was built using the
EoM vehicle simulation so�ware[4]

3.2 So�ware tools

3.2.1 EoM package

To handle the kinematic system with multiple parts and mechanisms like a car, it is

nearly impossible to prepare the equations of motion and resulting system matrices by

hand. Due to the increasing of complexity of the models, the matrices become excessively
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Table 3.1: Parameters of the full car model

Parameter Notation Value

Wheelbase dimension a 1.384 m
Wheelbase dimension b 1.561 m
Sprung mass m 2000 kg
Front unsprung mass muf 80 kg
Rear unsprung mass mur 80 kg
Pitch inertia Iy 3200 kgm2

Yaw inertia Iz 3200 kgm2

Roll inertia Ix 800 kgm2

Front suspension sti�ness kf 25000 N/m
Rear suspension sti�ness kr 25000 N/m
Front suspension damping cf 1000 N/m
Rear suspension damping cr 1200 N/m
Front car width tf 1.572 m
Rear car width tr 1.572 m
Tire sti�ness kt 210000 N/m
Tire radius r 0.419 m
Forward speed u 10 m/s

large. The model of a vehicle can be treated as lots of parts or bodies being connected by

various joints that mimic the real-life constraints. To help resolve this issue, the EoM so�-

ware package is a powerful tool that can automatically generate the equations of motion,

presented as matrices in the state space form, in order to predict the states of the system.

When many di�erent rigid bodies move together under certain constraints for di�erent

mechanisms, such a system is described as a ‘multibody dynamic system’. Generally, the

equations of motion of this kind of system are a set of coupled nonlinear di�erential alge-

braic equations. In EoM, systems are formed from three parts: 1. the kinematic di�erential

equations, 2. the Newton-Euler equations, 3. the constraint equations.

The coordinates

The �rst task to complete the analysis is to set the coordinates. It is typical for a vehicle

to have six coordinates to de�ne the motion of the system. In a full analysis, there are three

coordinates to determine lateral, longitudinal and vertical movement. Apart from these,

the other three coordinates are for bounce, pitch and roll motions. To write the position

and orientation coordinates, one can use p, which is a 6n × 1 combined vector:
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p = [x′1 � ′1 x′2 � ′2 ⋯ x′n � ′n]
′

(3.1)

in which n represents the number of rigid bodies. Moreover, the velocities, as well as the

angular velocities, are similarly represented as a combined vector term w.

Newton-Euler equations

The most important step is to write the Newton-Euler equations for each body. Ac-

cording to Newton’s second law, the forces acting of the system can be described as:

Mẇ = ∑ f (p,w, t) (3.2)

where the matrix of mass is a combination of masses and moments of inertia of the system:

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m1 0 0 0
0 0 0 Ixx1 −Ixy1 −Ixz1 ⋯
0 0 0 −Ixy1 Iyy1 −Iyz1

0 0 0 −Ixz1 −Iyz1 Izz1

⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

There are various forces applied on the system, like the inertia force fi, elastic force fe,
constraint force fc, and applied force fa. Therefore the equation of motion can be expressed

as:

Mẇ = ∑ fi +∑ fe +∑ fc +∑ fa (3.4)

A�er linearizing the Newton-Euler equations, the elastic forces and damping forces

result in the sti�ness (K) and damping (L) matrices. Notice that the L matrix also includes

the inertial force terms.
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[0 M]

{
� ṗ
�ẇ

}
+ [K L]

{
�p
�w

}
= �fc + �fa (3.5)

Constraints of a multibody system

A both challenging and important part of the multibody dynamics equations is to

conclude the constraint forces. The term ‘multibody’ means a system that is composed

of at least two bodies. All the bodies have their own motions but the constraint matrix

links them together by their own mechanisms and also de�nes the degrees of freedom of

the system. When analyzing the general motion of a rigid body, there are six degrees of

freedom; similarly in a multibody system, each body also has six degrees of freedom: the

displacements on x, y, z axis and the rotations around each axis. However the situation

becomes more complex when the bodies are connected. Depending on how many bodies

there are in the system, the more the number of constraints, the less the number of degrees

of freedom. Assuming that there are n bodies in the system and the number of constraints

from the connections of the bodies is m, the �nal number of degrees of freedom will be

6n −m.

By using the Jacobian matrix of the constraint equations, the equations are written

with both holonomic and nonholonomic constraints included. The Jh matrix is for holo-

nomic constraints while the Jnh matrix stands for nonholonomic constraints. The V is a

consequence of the kinematic di�erential equations.

⎡
⎢
⎢
⎢
⎣

Jh 0
JhV Jh

0 Jnh

⎤
⎥
⎥
⎥
⎦
[
� ṗ �p
�ẇ �w] =

⎡
⎢
⎢
⎢
⎣

0 0
0 0
0 0

⎤
⎥
⎥
⎥
⎦

(3.6)

The task of the constraint Jacobian J is to minimize the size of the matrix for equations

of motions, which is completed by the orthogonal matrix J. Then the next step is to �nd

a T matrix, such that:

JT = 0 (3.7)
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By multiplying T with the new coordinates vector x:

Tx =
{
�p
�w

}
(3.8)

And:

JTx = J
{
�p
�w

}
= 0 (3.9)

Meanwhile, add a matrix U to satisfy:

U
{
0
fc

}
= 0 (3.10)

Note that in most cases, the matrix U = T′. While minimizing the number of coordi-

nates, the equation is also reduced linear �rst order form:

U [
I 0
0 M]Tẋ + U [

V −I
K L ]Tx = U

{
0
fa

}
(3.11)

Then:

A = −U [
V −I
K L ]T (3.12)

Bu = U
{
0
fa

}
(3.13)

E = U [
I 0
0 M]T (3.14)

Now, a�er substituting all the terms, the state-space describing matrices are found:
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[
E 0
0 I]

{
ẋ
y

}
= [

A B
C D]

{
x
u

}
(3.15)

in which the input is u and the output is y. As x is de�ned as the state vector, A is the

system matrix; B is the input matrix; C is the output matrix; D is the feedthrough matrix.

In some cases, the equation of motion may contain rate sensitive inputs. Consider for

example, a spring mass damper with base excitation:

mẍ + cẋ + kx = f u + gu̇ (3.16)

The EoM so�ware can accommodate such systems. In the form of a matrix, f and

g coe�cients become the F and G matrices, and the equations of motion (Equation 3.11)

can be modi�ed to accommodate the extra terms. The reduction process follows the same

approach.

⎡
⎢
⎢
⎢
⎣

I 0 0
0 M −G
0 0 0

⎤
⎥
⎥
⎥
⎦

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ṗ
ẇ
u̇

⎫⎪⎪⎪
⎬⎪⎪⎪⎭
+
⎡
⎢
⎢
⎢
⎣

V −I 0
K L −F
0 0 I

⎤
⎥
⎥
⎥
⎦

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

p
w
u

⎫⎪⎪⎪
⎬⎪⎪⎪⎭
=
⎡
⎢
⎢
⎢
⎣

0
0
I

⎤
⎥
⎥
⎥
⎦

{
u
}

(3.17)

A user-de�ned package

Based on of all the theory above, the EoM multibody dynamics so�ware was devel-

oped by University of Windsor Vehicle Dynamics and Control Research Group lead by

Dr. Minaker. This package automatically generates linearized equations by fully apply-

ing the mathematical method above. The package was originally prepared in the Matlab

environment, but developmnet has now converted to the Julia programming language. It

is completely free to access this package, and it is available to download from the online

source code repository GitHub (www.github.com).

When starting to use this package, it is the user’s task to de�ne the parameters, the

inputs and outputs, and the structure of the models to run. Notice that certain di�erent

types of ’items’ are de�ned in EoM as the building blocks of a model. As mentioned earlier,

Table 3.2 lists and describes all types of items that are available in EoM.
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Table 3.2: Types of items in EoM

Type of item De�nition

body a rigid body
spring a two point elastic spring, with linear or torsional sti�ness

and damping, non-zero free length
link a two point massless rigid link

rigid point a generic point constraint with a variable number of
constraint forces and moments

�ex point a point spring with translational and/or rotational
sti�ness and damping

nh point a non-holonomic constraint to prevent velocity but not
displacement

beam a zero mass beam spring with bi-directional bending
and shear sti�ness

load constant forces or moments applied to the system
actuator applied force or moment, proportional to an input signal
sensor used to measure displacement, velocity, or acceleration

A�er the parameters are de�ned, EoM will automatically proceed to generate and

solve the equations of motion. EoM �nds the eigenvalues and natural frequencies of dif-

ferent types of motion, by applying the equation:

det[Es − A] = 0 (3.18)

An eigenvalue contains two parts, s = a ± ib. The real part a represents decay of

motion, while the imaginary part b of the roots shows the frequency. The more negative

the real parts are, the more stable the system is, and it will decay approaching to zero

with time. If it is not the case, the system will become unstable by the increase of the

motion generated in the system. Meanwhile, the imaginary part shows the frequency of

oscillation. For example, when imaginary part is zero, there is no oscillation in the system.

The output �le of EoM is a system report in various formats (pdf, html) including

the state space form of the equations. Each moment of the system has corresponding

eigenvalues and frequencies to describe the behavior of the system, Figure 3.3 is a sample

table generated by the vehicle model for this research:
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Figure 3.3: An output table generated by EoM
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3.2.2 Julia

The model was solved by EoM in Julia language. The name of the input �le is input jeep.jl;

the �le contents are listed in Appendix A. This input �le listed all the dimensions and lo-

cations of the bodies; rigid points; �ex points; suspension links and shock absorbers. To

integrate the model with the Simulink environment, eight actuators were used for the

input with twelve sensors measuring the outputs. A�er running the simulation, the re-

lated tools in the EoM package will automatically generate and save all of the outputs in

a folder. For example, all the eigenvalues, the plots of the displacements and frequencies,

as well as the 3D animations for each mode shape of the simulation.

Input data

As mentioned in 3.2, EoM is a user-de�ned package. This research used the package

both in Julia and Matlab, while the �rst step was to carefully de�ne the inputs so that the

model was suitable. In Table 3.3, all the geometry of the model is listed.

A�er the simulation was completed, there was another Julia script to save the state

space matrices A, B, C, D , E, and send them as inputs to the Matlab script that was the

next step. Therefore, in the next step the processed data from Matlab script would be feed

into Simulink control loops, where the Neural Networks were inserted. See Figure 3.4.
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Figure 3.4: Simulation progress �owchart
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Table 3.3: The geometry of the full car model

Parameter Coordinates

Chassis [0, 0, 0.8]
front axle [a, 0, r]
rear axle [−b, 0, r]
Le� front wheel and hub [a, tf/2, r]
Rear front wheel and hub [a, −tf/2, r]
Le� Rear wheel and hub [−b, tr/2, r]
Right rear wheel and hub [−b, −tr/2, r]
Front anti-roll [a, 0, r]
Rear anti-roll [−b, 0, r]
Wheel bearing Le� front [a, tf/2, r]
Wheel bearing Right front [a, −tf/2, r]
Wheel bearing Le� rear [−b, tr/2, r]
Wheel bearing right rear [−b, −tr/2, r]
Le� front tire, vertical [a, tf/2, 0]
Right front tire, vertical [a, −tf/2, 0]
Le� rear tire, vertical [−b, tr/2, 0]
Right rear tire, vertical [−b, tr/2, 0]
Le� front tire, horizontal [[a, tf/2, 0]]
Right front tire, horizontal [a, −tf/2, 0]
Le� front tire, horizontal [−b, tr/2, 0]
Right rear tire, horizontal [−b, −tr/2, 0]
Suspension link 1 [a − 0.4, tf/2 − 0.2, r − 0.1]
Suspension link 2 [a − 0.4, −(tf/2 − 0.2), r − 0.1]
Suspension link 3 [a − 0.4, tf/2 − 0.2, r + 0.2]
Suspension link 4 [a − 0.4, −(tf/2 − 0.2), r + 0.2]
Suspension link 5 [−b + 0.4, tr/2 − 0.2, r − 0.1]
Suspension link 6 [−b + 0.4, −tr/2 − 0.2, r − 0.1]
Suspension link 7 [−b + 0.4, tr/2 − 0.2, r + 0.2]
Suspension link 8 [−b + 0.4, −(tr/2 − 0.2), r + 0.2]
Le� front spring [a, tf/2 − 0.2, r]
Right front spring [a, −(tf/2 − 0.2), r]
Le� rear spring [−b, tr/2 − 0.2, r]
Right rear spring [−b, −(tr/2 − 0.2), r]
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CHAPTER 4

MATLAB SIMULINK

This chapter is to describe the process of transferring result data from simulation in

Julia to MatLab as inputs, when an entire control system was built with two trained Neural

Networks. To run such a vehicle model in MatLab, many auxiliary functions were needed.

All the details are given in the following sections and subsections.

4.1 MatLab script

4.1.1 Random road

The �rst task was to build road pro�les that the vehicle could run over to simluate a

random road. To observe the performance on roads with di�erent roughness, such road

pro�le generation function should be able to provide various conditions of road according

to a certain criteria. Meanwhile, the function changes the road pro�le in every single

simulations in order to satisfying the needs of data collected.

The random road is a function included in the EoM package and used in conjunc-

tion with the quarter car model or half car model to demonstrate the response from the

suspension. According to ISO 8608 [15], there are eight ranges of roughness of the road,

from the smooth (A) to roughest (H), where ranges F, G, and H are considered equivalent
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to an o�-road condition. In this model, the road roughness, an integer ranging from 3-9

was de�ned in the script. A class 3 road is very smooth (on the boundary of ISO 8608

classes A and B), where class 9 is extremely rough (boundary of ISO 8608 classes G and

H). In this research, road roughness of 3–6 (from D to E) were used for simulations and

data collections. For the random road function, the standard of roughness is based on

the power spectral density (PSD) plots4.1 represented by an unevenness index Gd , which

could be expressed as function of two di�erent types of spatial frequencies 
0 and n0. The

corresponding standard index of Gd for di�erent level road roughness is de�ned while


0 = 1.0 rad/m or n0 = 0.1 cycles/m and are listed in 4.1.

Figure 4.1: An example of road roughness Class 4

Table 4.1: ISO 8608 values of Gd (n0) and Gd (
0) [15]

Road class
Gd (n0)(10−6m3) Gd (
0)(10−6m3)

Lower limit Upper limit Lower limit Upper limit
A - 32 - 2
B 32 128 2 8
C 128 512 8 32
D 512 2048 32 128
E 2048 8192 128 512
F 8192 32768 512 2048
G 32768 131072 2048 8192
H 131072 - 8192 -
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The index Gd can be expressed as a function of frequency as:

Gd (n) = Gd (n0) ⋅(
n
n0)

−2
(4.1)

or:

Gd (
) = Gd (
0) ⋅(



0)

−2
(4.2)

Using the concept of power spectral density, a random road of equivalent roughness can

be generated as a sum of a series of sine waves, where the amplitude and frequency vary

according to a speci�c relationship, and the phase angle is random. The relationship

between Gd and the amplitude of each wave Ai is:

Gd (ni) =
A2
i

2�n (4.3)

Therefore, the amplitude can be expressed as:

Ai =
√
2�n ⋅ Gd (n0) ⋅(

n
n0)

−2
(4.4)

Since the actual height of the random road ℎ is function of amplitudeA and expression

is as shown:

ℎ(x) =
N
∑
i=0

Ai cos(2� ⋅ i ⋅ �n ⋅ x + �i) (4.5)

expanded as:

ℎ(x) =
N
∑
i=0

√
�n ⋅ 2k ⋅ 10−3 ⋅ ( n0

i ⋅ �n ) ⋅ cos(2� ⋅ i ⋅ �n ⋅ x + �i) (4.6)

where x represents the location along the road from 0 to L, the length. The spatial fre-

quency interval �n = 1/L, and the number of frequencies will be expressed as N = L/B.

The integer value k is the index that shows the level of the road roughness. It ranges

from 3 to 9, corresponding to the class A-B transition to class G-H transition, as shown in
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Table 4.2. The random phase angle � for each frequency is from 0 to 2� .

Table 4.2: k values for ISO road roughness classi�cation

Road Class
k

Upper limit Lower limit
A B 3
B C 4
C D 5
D E 6
E F 7
F G 8
G H 9

The random road function returns a function handle that gives back ’z’ as a function

of ’x’. However, in the model, x needed to be converted to time index, where x=ut.

x = ut (4.7)

A forward speed of u = 10 m/s is assumed. In order to capture the random road

de�nition accurately, at least two time samples per wavelength were needed. At a forward

speed of 10 m/s, the shortest wavelength was covered in 0.05/10 = 0.005 seconds. This

gives a time step of 0.005/2 = 0.0025 s. This turns out to be the limiting factor, as 0.0025
s was very short compared to the timescale of vehicle response, which gave lots of time

steps per time constant and/or wavelength of the vehicle model.

t = 0 ∶ 0.0025 ∶ 60 (4.8)

To compute the resulting lag and from the wheelbase between the front and rear axle:

lag = 2.946
10 = 0.2946 s (4.9)

The random road function in EoM incorprates the ability to generate two ‘similar’

random roads, such the the le� and right side of the vehicle do not receive exactly the
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same input. The di�erence is a tunable dimensionless parameter ranging from 0–1, where

a choice of 0 gives two identical roads, and a choice of 1 gives two completely di�erent

roads.

4.2 Simulink control loop

This section explains the methodology of building the control loop in MatLab Simulink.

The �nal goal was to compare the suspension performances before and a�er the training.

The simulation block diagram starts with the creation of a random road pro�le at the very

le� edge. The function transferred di�erent road input data to both of the front wheels.

Meanwhile, there were two Time-Delay function blocks connected to le� rear wheel and

right rear wheel separately (see Figure 4.2). This allows the vehicle to pass over a pro�le so

that the wheels at rear received identical road input a�er a short time delay, calculated by

the length of wheelbase divided by the constant speed of the vehicle. In this research, the

vehicle model was running at a constant speed of 10 km/h. During all the of the simula-

tion, the road input was consistent at a certain roughness level, according to the road class

chosen before simulation started. Based on Newton’s equations, the force input from road

pro�le went into a system processing block where the steady state matrices were stored.

Therefore, the right end of the state space block was the output of the vehicle system,

supplying the data of twelve outputs. Eight of the outputs were the displacements of the

springs and dampers for le� front, le� rear, right front and right rear suspensions. The

remaining system outputs included the pitch and roll velocities of the chassis, together

with the acceleration in the vertical and lateral directions of a point �xed on the chassis.

As described in Chapter 2, ride quality assessment relied on the data output of the gy-

roscope mounted on the seat rail. Because the gyroscope couldn’t give the displacements

of either springs or dampers, but the velocity and acceleration in longitudinal, lateral and

vertical directions, the training data of neural networks in next step were the four outputs

from the vehicle system: pitch velocity, roll velocity, vertical acceleration, and lateral ac-

celeration. These speci�c parameters would be train by the �rst neural network to identify

which road class was the input road pro�le. A�erwards, the road grade would be another
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Figure 4.2: Random road grade 6. This was a more agressive road pro�le
used in the simulation.

input together with the outputs of velocities and accelerations, which in total was 5 in-

puts, entering the second neural network. The function of the second neural network was

to �nally determine how much the extra suspension force would be added to the original

suspension system to achieve a better ride quality. See Figure 4.3
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Figure 4.3: Simulink control loop
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CHAPTER 5

NEURAL NETWORKS

5.1 Neural Networks

There were two neural networks included in the simulation loop. The aim of the �rst

neural network was to recognize which road grade the vehicle was experiencing. When

driving in the real world, switches between road grades happen depending on di�erent

routes. In this case, being able to tell the vehicle system which road classes the vehicle is

driving on is the goal of the �rst neural network. In preparation to train the �rst neural

network, 4000 sets of data were collected from designated simulations. For each road

grade, 1000 sets of data were gathered; the road grades were class 3, class 4, class 5, and

class 6. The �rst NN had four inputs and one output, the inputs were pitch velocity,

roll velocity, vertical acceleration and lateral acceleration, while the output was the road

class(3, 4, 5, 6). The second neural network take took �ve inputs and gave one output. The

�ve inputs were the four inputs, the one output of the �rst neural network. Finally, the

second neural network gave a number of 0, 0.5 or 1. By multiplying the output number

with the extra sti�ness and damping, the additional forces were added to the suspension

system.
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5.1.1 Road grade identi�cation

As mentioned above, the �rst neural network was to identify the grade of road rough-

ness. This type of neural network is aiming to do the classi�cation. Because only grade

3 to grade 6 was used to collect the data, there were four possible numbers that the out-

put could give. When creating the database for the neural network, as per category was

classi�cation, the very �rst thing to do was to split the data. In this database, columns

1–4 were the time history data of pitch velocity, roll velocity, vertical acceleration and lat-

eral acceleration. Column 5 was the road grade, it should be speci�ed as ‘categorial’ data

in order to clarify the task. Brie�y speaking, the �rst step was marking columns 1–4 as

‘feature data’ and column 5 as the category data. A�erwards, in this research, 50% of the

total data became training data when the other 50% was further split with half (i.e., 25%)

Figure 5.1: The upper block of deep network is the �rst neural network,
which provided an additional feature into the lower block-the second neural
network to choose the suspension mode and submit it into the ‘compute
forces’ block



Chapter 5. Neural Networks 50

used for testing and the other half for validation. Meanwhile, there were also other train-

ing option parameters to de�ne for the network: the Batchsize was 50 and the number of

epochs was 200. The equations are:

number of training samples
BatchSize

= iterations per epoch (5.1)

which in this case was:
1000
50 = 20 (5.2)

iterations per epoch × Epochs = iterations (5.3)

which in this case was:

20 × 200 = 4000 (5.4)
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Figure 5.2: Mode identi�cation for Random road grade 3

The next step was to de�ne the structure of neural network. All the input values have

to be normalized before entering neural network. In the road grade identi�cation NN, in

addition of the input layer and the output layer, �ve layers were de�ned in total. Since
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Figure 5.3: Mode identi�cation for Random road grade 6

it was a classi�cation neural network, the activation functions for the �ve layers in the

middle were all ReLU function. Meanwhile, to convert the output to road grade number,

the So�max function was used in the output layer, also called the ‘classi�cation’ layer.

A�er the training process was �nished, the accuracy of this neural network was around

90%, and the whole training progress was visible, as seen in Figure 5.4

5.1.2 Selection of the suspension mode

The second neural network had �ve inputs: the four inputs and the one output of the

�rst neural network. Finally, the second neural network gave a number either 0, 0.5 or

1. By multiplying the output number with the extra sti�ness and damping, the additional

forces were added to the suspension system. The output from the �rst neural network

was directly fed to the second neural network together with the former outputs from the

vehicle system model. Therefore, the number of features in the second neural network

was �ve, i.e., it was the same as the �rst one, also a classi�cation neural network. In the

database, columns 1–5 were the pitch velocity, roll velocity, vertical acceleration, lateral

acceleration and the road grade, while column 6 was the classi�cation data 0, 0.5and1. For

these three modes, mode 0 was for road grade 3, which means no additional spring and
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damping force would be added. Mode 0.5 was switched on when the road grade was 4
or 5, where half of the additional spring and damping force were added, and mode 1 was

chosen at road grade 6 when all the extra forces were added.

Unlike the �rst neural network, in the second one, 75% of the data became training

data. Since the number of inputs increased, the percentage of data used for training pur-

pose raised as well to achieve a decent percentage of accuracy. The rest of the data were

also half used for test and the other half for validation. When de�ning training option

parameters, the batch size was the same but number of epochs increased from 200 to 300.

The theory behind adding numbers of epochs was similar to raising of the percentage of

training data. The more epochs that are present, the longer the simulation will run, and

hopefully the higher the accuracy that the neural network can achieve. At the same time,

the structure of the network was the same as the �rst one, where the activation functions

for the �ve layers in the middle were all the ReLU function and the So�max function was

used in the output layer. However, the �nal accuracy of this network was lower than

the �rst one, as it had an accuracy of typically below 85%. Training progress is shown in

Figure 5.5

Figure 5.4: A training process of the road grade classi�cation neural net-
work
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Figure 5.5: A training process of the suspension mode selection
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CHAPTER 6

SIMULATION RESULTS AND ANALYSIS

This chapter includes all the results from simulations and discussions of the results.

It was already shown that the both neural networks can be trained to reach an average

accuracy around 85 % tested by the data collected in advance. Nevertheless, the �nal

goal was to see their performances through the Simulink control loop. The �rst part

of this chapter is a conclusion of the accuracy of neural networks in visual ride event

simulations before sending the suspension mode number to the block of computing extra

forces. The second part will introduce the �nal suspension system performances both

with and without the trained neural networks, where by comparing the data of before

and a�er, the e�ects that networks brought are studied as well.

6.1 Performance of Neural Networks

6.1.1 Road grade identi�cation Neural Network

When evaluating the ability of recognizing road grade, the level of prediction perfor-

mance of neural network varies on di�erent road grades. As shown in following Figures

5.1–5.4, the accuracy of predicting road grade 3 and 6 were close to 100%. On the contrary,
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the abilities of predicting road grade 4 and 5 were very unstable. To be speci�c, by cal-

culating from the data in the plots, it was found that the accuracy of predictions for road

grade 4 was only 40% when the accuracy of predictions for road grade 5 was 64%. At the

same time, either predictions had random noises like excitements and crashes during the

progresses. However, it was not hard to understand why the accuracy for road grade 3
and 6 were higher than that of the road grade 4 and 5, as road grade 3 was the smoothest

road input while road grade 6 was the most uneven road pro�le.
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Figure 6.1: Classi�cation performance for random road with grade 3
roughness

6.1.2 Prediction results of suspension mode

In the vehicle model, the front suspension mass and the rear suspension sti�ness was

set at 25000 N/m, when the front suspension damping cf was 1000 N/m and the rear sus-

pension dampingCr was 1200N/m. According to the original speci�cations of suspension,

the extra spring sti�ness was set as 20000 N/m and the extra damping was 600 N/m. In

this case, as mode value can be 0, 0.5 and 1, to compute the extra force:
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mode value × 20000 × spring displacement = the amount of extra spring force (6.1)

mode value × 600 × damper speed = the amount of extra damping force (6.2)

Speci�cally, mode value 0 was switched on when the road grade was 3; mode value 0.5
was on when the road grade was 4 and 5; mode value 1 applied when the road grade was

6. In Figures 5.5 – 5.8, the results show that when the input road class was 3, the accuracy

of prediction was high, while in the case of road grade 4, the output value from the second

neural network were switching back and forth from 0 to 0.5. For road class 5, although

half of the predictions are correct (0.5), the other half of the prediction included both 0
and 1. Besides, when the simulation completed on a grade 6 road, the predictions were

given showed 84% of the suspension mode was 1. The other 16% of prediction results gave

the suspension mode value 0.5. The performance of both neural networks were similar as

they were performing much better for road grade 3 and 6, than for road grade 4 and 5.

6.2 Suspension performances comparison

The goal of the whole simulation progress was to see how suspension performances

changes by comparing the data of before and a�er, so that the amount of e�ects that net-

works brought were shown. The evaluation criteria were pitch velocity and roll velocity.

The reason why the accelerations were not included was the level of di�culty to calcu-

late from the before and a�er data of accelerations, they were found out as very randomly

such that there were no value to compare the data of accelerations.

As seen in the plots for road grade 3, it was not surprising at all as the suspension

performance had very little change because the default set for road grade 3 was 0. Since

there were no additional forces been added to the suspension system, the pitch and roll

velocities measured should not change. According to the performance of the second neu-

ral network, the accuracy of prediction was fairly high so that the output numbers were

almost all zeros, which also helped the a�er-trained suspension system to perform as be-

fore.
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In the case of road grade 4, the range of pitch velocity of the untrained system was

larger then the range of pitch velocity a�er trained by the neural networks. However,

it was unstable and the di�erence between performances was small. From the aspect of

roll velocity, it was hard to say the performance was improved as it was improved in

some time segments but also decreased in some others. At the same time, the lowest roll

velocity before training was lower than the lowest roll velocity a�er training, while the

highest roll velocity for the trained system was higher than the untrained system. This

result were predictable as neural network2 was not accurate in the case of road grade 4, it

was swinging between 0 to 0.5 which means the right suspension modes weren’t inputted

correctly during the simulation.

In terms of the performance of suspension system on a grade 5, it was not fair by

saying the suspension performance was improved during the whole simulation progress,

but the waves of the trained curves look obviously smaller than they were. Looking back

at the performance of neural network 2 on road grade 5, the results of mode selection

mostly lying on the level of 0.5 with some random increase to 1 and decrease to 0. If to

evaluate the performance according to the following equation:

Average improvement% =
∑ (trained velocity−untrained velocity)

trained velocity
Amount of datasets % (6.3)

The performance in terms of pitch velocity was improved 65% and the average roll

velocity was decreased 17% a�er adding extra forces to the suspension system. What’s

more, with regard to the performance of suspension system on a grade6, the waves of

the plots looks obviously smaller than they were. Meanwhile, looking back at the per-

formance of neural network2 on road grade6, the results of mode selection mostly lying

on the level of 1 with a very small amount of output decreased to 0.5. In conclusion, the

suspension system performance also got improved in the case of road grade6, with an

average improvement on pitch performance of 70% and an average improvement on roll

performance of 49%. A clari�cation has to be made here is that the way of calculating the

accuracy was only for reference because the decreases in velocities were not happening

during the entire process of the simulation.
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6.3 Conclusion

For both neural networks, the levels of accuracy for road grade 3 and road grade 6were

fairly high while the levels were low for the other road grades. Because the boundary be-

tween grade 4 and grade 5 was vague, chances were the neural networks can’t recognize

between them correctly. In addition, the amount of training data was not enough as the

accuracy of neural networks increase with more groups of data being trained. In the �nal

section of comparing the suspension performances before and a�er the neural networks

were been trained, the levels of ride comfort evaluated by pitch and roll velocities were

very similar in the cases of road grade 3 and road grade 4. Improvements became ob-

servable when the model was driving on the road input grade 5 and 6. Although the

calculations can prove the existences of improvements, the amount of improvement can’t

be con�rmed just by the value of average percentages.
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Figure 6.2: Classi�cation performance for random road with grade 4
roughness
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Figure 6.3: Classi�cation performance for random road with grade 5
roughness
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Figure 6.4: Classi�cation performance for random road with grade 6
roughness
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Figure 6.5: Prediction mode for Random road grade 3
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Figure 6.6: Prediction mode for Random road grade 4
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Figure 6.7: Prediction mode for Random road grade 5
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Figure 6.8: Prediction mode for Random road grade 6
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Figure 6.9: Suspension performance on road grade 3 before training
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Figure 6.10: Suspension performance on road grade 3 a�er training
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Figure 6.11: Suspension performance on road grade 4 before training
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Figure 6.12: Suspension performance on road grade 4 a�er training
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Figure 6.13: Suspension performance on road grade 5 before training
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Figure 6.14: Suspension performance on road grade 5 a�er training
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Figure 6.15: Suspension performance on road grade 6 before training
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Figure 6.16: Suspension performance on road grade 6 a�er training
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Figure 6.17: Pitch velocities comparison Before and A�er for road grade 6
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Figure 6.18: Roll velocities comparison Before and A�er for road grade 6
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CHAPTER 7

FURTHER DISCUSSION AND RECOMMENDATIONS

This research was not only a progress of building a full vehicle model, applying New-

ton’s equations of motion on a multibody system at steady state, but also a learning

progress of Neural Networks. Nowadays, the development of arti�cial intelligence tech-

nology is unstoppable. So�ware developers around the world have developed a great

number of methodologies to avoid manual thinking that is limited by human bodies. Us-

ing di�erent machine learning technologies to solve problems e�ciently is necessary as

many calculations can be extremely time consuming in real life. It is no doubt that all

the researchers in automotive industry are eager to borrow the power of AI in order to

get closer to cutting-edge technologies. Although a fully intelligent suspension system

has not yet appeared and applied in practical applications, the simulation data that can be

collected from various visual analysis gives the manufactures enormous useful references

to make decisions. The results of this research show that road quality detection through

neural networks is very feasible, and that this information should be available to allow

improvements in ride quality. However, because the neural network is trained based on

vehicle properties, making active changes in vehicle behaviour can confuse the neural

network.
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7.1 Simulation limitations

The simulations were conducted on a 2D road to simplify the model and the progress

of the simulation. However, road has 3 dimensions in real world, where the lateral ac-

celerations are quite in�uenced such that weight transfer happens a lot. Meanwhile, the

simulations in this research neglected the time required to switch mode and to make pre-

dictions of the following road input. To be realistic, it would be much more practical if

the time delay was taken into account and use neural networks in di�erent frequency

domains.

In related to the neural networks in the Simulink control loop, the study of how to

select input parameters for neural network was far away from enough. Although the

neural networks showed its ability of recognizing road grade and selecting modes for the

suspension system, the weaknesses were obvious. The poor accuracy of prediction for

road grades in the middle(4 and 5) had multiple negative e�ects on the performances.

At the same time, the mode value could only be 0, 0.5 and1 for four road classes, and

there were no strategies of choosing the values of extra spring sti�ness and damping. The

numbers were chosen only by trying di�erent values and running simulations to see how

much extra force were needed so as to make observable improvements.

7.2 Recommendations

The simulations can be done using a more practical maneuver by:

∙ Using 3D road pro�le for road input.

∙ Taking the response time for the system to make adjustments into account.

∙ Digging deeper to �nd better ways of picking the input parameters.

∙ Having more accommodations for the mode selection and the amount of extra sus-

pension forces.
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APPENDIXA

JULIA MODEL DETAILS

A.1 Code

This section presents the source code used to generate the vehicle model equations.

A.1.1 Input �le for jeep model

function input_jeep (;u=10,a=2.946*0.47 ,b=2.946*0.53 , tf=1.572 ,tr=1.572 ,kf=25000 ,

kr=25000 ,cf=1000 ,cr=1200,m=2000,

Ix=800,Iy=3200,Iz=3200,kt=210000 ,

muf=80,mur=80,r=0.419 , kfr =0.25* kf*(tf -0.4)ˆ2 , krr =0.25* kr*(tr -0.4)ˆ2)

the_system=mbd_system("Jeep Model")

# add one body representing the chassis

item=body("chassis")

item.mass=m

item.moments_of_inertia =[Ix,Iy,Iz] ## Only the Iy term matters here

item.products_of_inertia =[0,0,0]

item.location =[0 ,0 ,0.8] ## Put cg at origin , but offset vertically to make animation more clear

item.velocity =[u,0,0]

push!( the_system.item ,item)
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push!( the_system.item ,weight(item))

item=body("front axle")

item.mass=muf

item.moments_of_inertia =[1/12* muf*tfˆ2 ,0 ,1/12* muf*tfˆ2]

item.location =[a,0,r]

item.velocity =[u,0,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))

item=body("rear axle")

item.mass=mur

item.moments_of_inertia =[1/12* mur*trˆ2 ,0 ,1/12* mur*trˆ2]

item.location=[-b,0,r]

item.velocity =[u,0,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))

item=body("LF wheel+hub")

item.mass =40

item.moments_of_inertia =[2,4,2]

item.location =[a,tf/2,r]

item.velocity =[u,0,0]

item.angular_velocity =[0,u/r,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))

item=body("RF wheel+hub")

item.mass =40

item.moments_of_inertia =[2,4,2]

item.location =[a,-tf/2,r]

item.velocity =[u,0,0]

item.angular_velocity =[0,u/r,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))
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item=body("LR wheel+hub")

item.mass =40

item.moments_of_inertia =[2,4,2]

item.location=[-b,tr/2,r]

item.velocity =[u,0,0]

item.angular_velocity =[0,u/r,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))

item=body("RR wheel+hub")

item.mass =40

item.moments_of_inertia =[2,4,2]

item.location=[-b,-tr/2,r]

item.velocity =[u,0,0]

item.angular_velocity =[0,u/r,0]

push!( the_system.item ,item)

push!( the_system.item ,weight(item))

# front suspension

item=flex_point("front anti -roll")

item.body [1]="front axle"

item.body [2]="chassis"

item.location =[a,0,r]

item.stiffness =[0,kfr]

item.forces =0

item.moments =1

item.axis =[1,0,0]

push!( the_system.item ,item)

# rear suspension

item=flex_point("rear anti -roll")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location=[-b,0,r]

item.stiffness =[0,krr]

item.forces =0

item.moments =1

item.axis =[1,0,0]
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push!( the_system.item ,item)

#bearings

item=rigid_point("wheel bearing")

item.body [1]="LF wheel+hub"

item.body [2]="front axle"

item.location =[a,tf/2,r]

item.forces =3

item.moments =2

item.axis =[0,1,0]

push!( the_system.item ,item)

item=rigid_point("wheel bearing")

item.body [1]="RF wheel+hub"

item.body [2]="front axle"

item.location =[a,-tf/2,r]

item.forces =3

item.moments =2

item.axis =[0,1,0]

push!( the_system.item ,item)

item=rigid_point("wheel bearing")

item.body [1]="LR wheel+hub"

item.body [2]="rear axle"

item.location=[-b,tr/2,r]

item.forces =3

item.moments =2

item.axis =[0,1,0]

push!( the_system.item ,item)

item=rigid_point("wheel bearing")

item.body [1]="RR wheel+hub"

item.body [2]="rear axle"

item.location=[-b,-tr/2,r]

item.forces =3

item.moments =2

item.axis =[0,1,0]

push!( the_system.item ,item)
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# tires

item=flex_point("left front tire , vertical")

item.body [1]="LF wheel+hub"

item.body [2]="ground"

item.stiffness =[kt ,0]

item.location =[a,tf/2,0]

item.forces =1

item.moments =0

item.axis =[0,0,1]

item.rolling_axis =[0,1,0]

push!( the_system.item ,item)

item=flex_point("right front tire , vertical")

item.body [1]="RF wheel+hub"

item.body [2]="ground"

item.stiffness =[kt ,0]

item.location =[a,-tf/2,0]

item.forces =1

item.moments =0

item.axis =[0,0,1]

item.rolling_axis =[0,1,0]

push!( the_system.item ,item)

item=flex_point("left rear tire , vertical")

item.body [1]="LR wheel+hub"

item.body [2]="ground"

item.stiffness =[kt ,0]

item.location=[-b,tr/2,0]

item.forces =1

item.moments =0

item.axis =[0,0,1]

item.rolling_axis =[0,1,0]

push!( the_system.item ,item)

item=flex_point("right rear tire , vertical")

item.body [1]="RR wheel+hub"

item.body [2]="ground"
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item.stiffness =[kt ,0]

item.location=[-b,-tr/2,0]

item.forces =1

item.moments =0

item.axis =[0,0,1]

item.rolling_axis =[0,1,0]

push!( the_system.item ,item)

item=flex_point("left front tire , horizontal")

item.body [1]="LF wheel+hub"

item.body [2]="ground"

item.location =[a,tf/2,0]

item.damping =[30000/u,0]

item.forces =2

item.moments =0

item.axis =[0,0,1]

push!( the_system.item ,item)

item=flex_point("right front tire , horizontal")

item.body [1]="RF wheel+hub"

item.body [2]="ground"

item.location =[a,-tf/2,0]

item.damping =[30000/u,0]

item.forces =2

item.moments =0

item.axis =[0,0,1]

push!( the_system.item ,item)

item=flex_point("LR tire , horizontal")

item.body [1]="LR wheel+hub"

item.body [2]="ground"

item.location=[-b,tr/2,0]

item.damping =[30000/u,0]

item.forces =2

item.moments =0

item.axis =[0,0,1]

push!( the_system.item ,item)
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item=flex_point("RR tire , horizontal")

item.body [1]="RR wheel+hub"

item.body [2]="ground"

item.location=[-b,-tr/2,0]

item.damping =[30000/u,0]

item.forces =2

item.moments =0

item.axis =[0,0,1]

push!( the_system.item ,item)

# suspension constraints

item=link("susp link")

item.body [1]="chassis"

item.body [2]="front axle"

item.location [1]=[a-0.4,tf/2-0.2,r-0.1]

item.location [2]=[a,tf/2-0.2,r-0.1]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="front axle"

item.location [1]=[a-0.4,-(tf/2-0.2),r-0.1]

item.location [2]=[a,-(tf/2-0.2),r-0.1]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="front axle"

item.location [1]=[a-0.4,tf/2-0.2,r+0.2]

item.location [2]=[a,tf/2-0.4,r+0.2]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="front axle"

item.location [1]=[a-0.4,-(tf/2-0.2),r+0.2]

item.location [2]=[a,-(tf/2-0.4),r+0.2]
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push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="rear axle"

item.location [1]=[-b+0.4,tr/2-0.2,r-0.1]

item.location [2]=[-b,tr/2-0.2,r-0.1]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="rear axle"

item.location [1]=[-b+0.4,-(tr/2-0.2),r-0.1]

item.location [2]=[-b,-(tr/2-0.2),r-0.1]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="rear axle"

item.location [1]=[-b+0.4,tr/2-0.2,r+0.2]

item.location [2]=[-b,tr/2-0.4,r+0.2]

push!( the_system.item ,item)

item=link("susp link")

item.body [1]="chassis"

item.body [2]="rear axle"

item.location [1]=[-b+0.4,-(tr/2-0.2),r+0.2]

item.location [2]=[-b,-(tr/2-0.4),r+0.2]

push!( the_system.item ,item)

# front suspension

item=spring("left front spring")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,tf/2-0.2,r]

item.location [2]=[a,tf/2-0.2,r+0.4]

item.stiffness=kf
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item.damping=cf

push!( the_system.item ,item)

# front suspension

item=spring("right front spring")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,-(tf/2-0.2),r]

item.location [2]=[a,-(tf/2-0.2),r+0.4]

item.stiffness=kf

item.damping=cf

push!( the_system.item ,item)

# rear suspension

item=spring("left rear spring")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,tr/2-0.2,r]

item.location [2]=[-b,tr/2-0.2,r+0.4]

item.stiffness=kr

item.damping=cr

push!( the_system.item ,item)

# rear suspension

item=spring("right rear spring")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,-(tr/2-0.2),r]

item.location [2]=[-b,-(tr/2-0.2),r+0.4]

item.stiffness=kr

item.damping=cr

push!( the_system.item ,item)

# front suspension force

item=actuator("left front actuator")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,tf/2-0.2,r]
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item.location [2]=[a,tf/2-0.2,r+0.4]

push!( the_system.item ,item)

item=actuator("left rear actuator")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,tr/2-0.2,r]

item.location [2]=[-b,tr/2-0.2,r+0.4]

push!( the_system.item ,item)

item=actuator("right front actuator")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,-(tf/2-0.2),r]

item.location [2]=[a,-(tf/2-0.2),r+0.4]

push!( the_system.item ,item)

item=actuator("right rear actuator")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,-(tr/2-0.2),r]

item.location [2]=[-b,-(tr/2-0.2),r+0.4]

push!( the_system.item ,item)

# force motion

item=actuator("z0_LF")

item.body [1]="LF wheel+hub"

item.body [2]="ground"

item.location [1]=[a,tf/2,0]

item.location [2]=[a,tf/2,-0.1]

item.gain=kt

push!( the_system.item ,item)

item=actuator("z0_LR")

item.body [1]="LR wheel+hub"

item.body [2]="ground"

item.location [1]=[-b,tr/2,0]

item.location [2]=[-b,tr/2,-0.1]

item.gain=kt
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push!( the_system.item ,item)

item=actuator("z0_RF")

item.body [1]="RF wheel+hub"

item.body [2]="ground"

item.location [1]=[a,-tf/2,0]

item.location [2]=[a,-tf/2,-0.1]

item.gain=kt

push!( the_system.item ,item)

item=actuator("z0_RR")

item.body [1]="RR wheel+hub"

item.body [2]="ground"

item.location [1]=[-b,-tr/2,0]

item.location [2]=[-b,-tr/2,-0.1]

item.gain=kt

push!( the_system.item ,item)

# measure spring displacements

item=sensor("left front spring")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,tf/2-0.2,r]

item.location [2]=[a,tf/2-0.2,r+0.4]

push!( the_system.item ,item)

item=sensor("left rear spring")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,tr/2-0.2,r]

item.location [2]=[-b,tr/2-0.2,r+0.4]

push!( the_system.item ,item)

item=sensor("right front spring")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,-(tf/2-0.2),r]

item.location [2]=[a,-(tf/2-0.2),r+0.4]

push!( the_system.item ,item)
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item=sensor("right rear spring")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,-(tr/2-0.2),r]

item.location [2]=[-b,-(tr/2-0.2),r+0.4]

push!( the_system.item ,item)

# measure damper velocities

item=sensor("left front damper")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,tf/2-0.2,r]

item.location [2]=[a,tf/2-0.2,r+0.4]

item.order=2

push!( the_system.item ,item)

item=sensor("left rear damper")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,tr/2-0.2,r]

item.location [2]=[-b,tr/2-0.2,r+0.4]

item.order=2

push!( the_system.item ,item)

item=sensor("right front damper")

item.body [1]="front axle"

item.body [2]="chassis"

item.location [1]=[a,-(tf/2-0.2),r]

item.location [2]=[a,-(tf/2-0.2),r+0.4]

item.order=2

push!( the_system.item ,item)

item=sensor("right rear damper")

item.body [1]="rear axle"

item.body [2]="chassis"

item.location [1]=[-b,-(tr/2-0.2),r]

item.location [2]=[-b,-(tr/2-0.2),r+0.4]
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item.order=2

push!( the_system.item ,item)

# measure body motions

item=sensor("pitch velocity")

item.body [1]="chassis"

item.body [2]="ground"

item.location [1]=[0 ,0 ,0.8]

item.location [2]=[0 ,0.1 ,0.8]

item.gain =180/pi

item.order=2

item.twist=1

push!( the_system.item ,item)

item=sensor("roll velocity")

item.body [1]="chassis"

item.body [2]="ground"

item.location [1]=[0 ,0 ,0.8]

item.location [2]=[0.1 ,0 ,0.8]

item.gain =180/pi

item.order=2

item.twist=1

push!( the_system.item ,item)

item=sensor("ddot z_LR")

item.body [1]="chassis"

item.body [2]="ground"

item.location [1]=[-b,tr/2,r+0.1]

item.location [2]=[-b,tr/2,0]

item.order=3

item.gain =1/9.81

push!( the_system.item ,item)

item=sensor("ddot y_LR")

item.body [1]="chassis"

item.body [2]="ground"

item.location [1]=[-b,tr/2,r+0.1]

item.location [2]=[-b,tr/2-0.1,r+0.1]
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item.order=3

item.gain =1/9.81

push!( the_system.item ,item)

the_system

end

A.1.2 Jeep model in Julia

using EoM , DelimitedFiles

include("input_jeep.jl")

my_sys , my_eqns = run_eom(input_jeep , :verbose)

#my_result = analyze(my_eqns , :verbose , decomp=false)

writedlm(joinpath("matlab", "A.out"), my_eqns[end].A)

writedlm(joinpath("matlab", "B.out"), my_eqns[end].B)

writedlm(joinpath("matlab", "C.out"), my_eqns[end].C)

writedlm(joinpath("matlab", "D.out"), my_eqns[end].D)

writedlm(joinpath("matlab", "E.out"), my_eqns[end].E)
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APPENDIXB

MATLAB MODEL DETAILS

B.1 Matlab Script

wb =2.946;

u =10;

t_end = 10;

simin_kd = 0;

[x,z,z2]= random_road (6, u*t_end ,0.5);

t=x/u;

simin_z=timeseries ([z;z2]',t);

A=importdata('A.out ');

B=importdata('B.out ');

C=importdata('C.out ');

D=importdata('D.out ');

E=importdata('E.out ');

jeep=dss(A,B,C,D,E); %% Convert to descriptor state space form , and store a variable readable by simulink

sim('jeep_simulink_4 '); %% simulate
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figure (1)

plot(simout.Time ,simout.Data (:,1))

ylabel('Pitch velocity [degrees/s]')

figure (2)

plot(simout.Time ,simout.Data (:,2))

ylabel('Roll velocity [degrees/s]')

figure (3)

plot(simout.Time ,simout.Data (:,3))

ylabel('Vertical accln [g]')

figure (4)

plot(t,[z;z2]')

ylabel('Road input [m]')

legend('L','R')

B.2 Road grade identi�cation Neural Network

load G3 n3

load G4 n4

load G5 n5

load G6 n6

data = [n3;n4;n5;n6];

data = data (:,[2,3,4,5,1]);

%% split data

[m,˜] = size(data);

p = 0.5; %% percentage of total data becomes train data

idx=randperm(m);

train_data = data(idx(1: round(p*m)),:);

rest_data = data(idx(round(p*m)+1: end),:);

[m,˜] = size(rest_data );

idx=randperm(m);

val_data = rest_data(idx(1: round(p*m)),:);

test_data = rest_data(idx(round(p*m)+1: end),:);

%% convert train data and validation data into datastore

label_name = 'G_type ';

train_table = array2table(train_data ,'VariableNames ',{'f1','f2 ','f3','f4',label_name });
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train_table = convertvars(train_table ,label_name ,'categorical ');

train_datastore = arrayDatastore(train_table ,'OutputType ','same ');

%% train_datastore_trans = transform(train_datastore ,@(x)

%%[ cellfun(@transpose ,mat2cell(x(:,1:4), ones (1,1000)),' UniformOutput ',false) ,

%% mat2cell(categorical(x(:,5)),ones(1,m))]);

val_table = array2table(val_data ,'VariableNames ',{'f1','f2','f3','f4',label_name });

val_table = convertvars(val_table ,label_name ,'categorical ');

val_datastore = arrayDatastore(val_table ,'OutputType ','same ');

test_table = array2table(test_data ,'VariableNames ',{'f1 ','f2','f3','f4 ',label_name });

test_table = convertvars(test_table ,label_name ,'categorical ');

test_datastore = arrayDatastore(test_table ,'OutputType ','same ');

head(train_table)

classNames = categories(train_table {:, label_name })

%% define training option parameters

numFeatures = size(train_table ,2) - 1;

numClasses = numel(classNames );

miniBatchSize = 50; %% iteration per epoch = number of training samples (1000 in my case)

%%/ miniBatchSize = 20

maxEpochs = 200; %% iterations = iteration per epoch * maxEpoc

%% define all layers in the neural network

layers = [

featureInputLayer(numFeatures ,'Normalization ',"zscore")

fullyConnectedLayer (32) % 1st stack of layers

batchNormalizationLayer

reluLayer

fullyConnectedLayer (64) % 2nd stack of layers

batchNormalizationLayer

reluLayer

fullyConnectedLayer (128) % 3rd stack of layers

batchNormalizationLayer

reluLayer

fullyConnectedLayer (64) % 4th stack of layers

batchNormalizationLayer
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reluLayer

fullyConnectedLayer (32) % 5th stack of layers

batchNormalizationLayer

reluLayer

fullyConnectedLayer(numClasses) % output layers

softmaxLayer

classificationLayer]

%% define training options

options = trainingOptions('adam ','MiniBatchSize ',miniBatchSize ,'MaxEpochs ',maxEpochs ,

'Shuffle ','every -epoch ','ValidationData ',val_table ,'Plots ','training -progress ','Verbose ',false)

%% construct neural network and start to train

road_net = trainNetwork(train_table ,label_name ,layers ,options );

%% Test the network

y_pred = classify(road_net ,test_table (:,1:end -1),'MiniBatchSize ',miniBatchSize );

y_true = test_table{:, label_name };

acc = sum(y_pred == y_true) / numel(y_true)

%% plot a confusion matrix to visualize the results

figure

confusionchart(y_true ,y_pred)

%% save the trained network for further use

save('road_net.mat ',"road_net");

\end{1 stlisting}

\section{Neural Network for choosing the suspension mode}

\label{B:Neural Network for choosing the suspension mode}

\begin{1 stlisting}

%% === Data Preparation ===

%% load data

load("G3_new.mat");

load("G4_new.mat");

load("G5_new.mat");

load("G6_new.mat");

%% remove root mean square values

G3(:,5) = [];
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G4(:,5) = [];

G5(:,5) = [];

G6(:,5) = [];

%% combine all grades data

data = [G3;G4;G5;G6];

%% split train data

[m,˜] = size(data);

p = 0.75; % percentage of total data becomes train data

idx=randperm(m);

train_data = data(idx(1: round(p*m)),:);

rest_data = data(idx(round(p*m)+1: end),:);

%% split validation data and test data

[m,˜] = size(rest_data );

p = 0.5; % percentage of total data becomes test data

idx=randperm(m);

val_data = rest_data(idx(1: round(p*m)),:);

test_data = rest_data(idx(round(p*m)+1: end),:);

%% convert train data and validation data into table

label_name = 'G_type ';

train_table = array2table(train_data ,'VariableNames ',{'f1','f2 ','f3','f4',label_name });

train_table = convertvars(train_table ,label_name ,'categorical '); % label categorical col

%% convert validation data into table

val_table = array2table(val_data ,'VariableNames ',{'f1 ','f2','f3','f4 ',label_name });

val_table = convertvars(val_table ,label_name ,'categorical '); % label categorical col

%% conver test data into table

test_table = array2table(test_data ,'VariableNames ',{'f1','f2 ','f3','f4',label_name });

test_table = convertvars(test_table ,label_name ,'categorical '); % label categorical col

head(train_table)

classNames = categories(train_table {:, label_name })

%% define training option parameters

numFeatures = size(train_table ,2) - 1;
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numClasses = numel(classNames );

miniBatchSize = 50; % iteration per epoch = number of training samples

%% (1000 in my case) / miniBatchSize = 20

maxEpochs = 300; % iterations = iteration per epoch * maxEpochs

%% define all layers in the neural network

layers = [

featureInputLayer(numFeatures ,'Normalization ',"zscore")

fullyConnectedLayer (32) % 1st stack of layers

batchNormalizationLayer

reluLayer % activiation layer

fullyConnectedLayer (64) % 2nd stack of layers

batchNormalizationLayer

reluLayer % activiation layer

fullyConnectedLayer (128) % 3rd stack of layers

batchNormalizationLayer

reluLayer % activiation layer

fullyConnectedLayer (64) % 4th stack of layers

batchNormalizationLayer

reluLayer % activiation layer

fullyConnectedLayer (32) % 5th stack of layers

batchNormalizationLayer

reluLayer % activiation layer

fullyConnectedLayer(numClasses) % output layers

softmaxLayer

classificationLayer]

%% define training options

options = trainingOptions('adam ','MiniBatchSize ',miniBatchSize ,'InitialLearnRate ',

0.001,' MaxEpochs ',maxEpochs ,'Shuffle ','every -epoch ','ValidationData ',

val_table ,'Plots ','training -progress ','Verbose ',false)

%% construct neural network and start to train

road_net = trainNetwork(train_table ,label_name ,layers ,options );

%% Test the network

y_pred = classify(road_net ,test_table (:,1:end -1),'MiniBatchSize ',miniBatchSize );

y_true = test_table{:, label_name };

acc = sum(y_pred == y_true) / numel(y_true)
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%% plot a confusion matrix to visualize the results

figure

confusionchart(y_true ,y_pred)

%% save the trained network for further use

save('road_net_mode.mat ',"road_net");
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