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Abstract

Breast cancer is a complex disease that can be classified into at least 10 different molecular

subtypes. Appropriate diagnosis of specific subtypes is critical for ensuring the best possi-

ble patient treatment and response to therapy. Current computational methods for determin-

ing the subtypes are based on identifying differentially expressed genes (i.e., biomarkers)

that can best discriminate the subtypes. Such approaches, however, are known to be un-

reliable since they yield different biomarker sets when applied to data sets from different

studies. Gathering knowledge about the functional relationship among genes will identify

“network biomarkers” that will enrich the criteria for biomarker selection. Cancer network

biomarkers are subnetworks of functionally related genes that “work in concert” to per-

form functions associated with a tumorigenic. We propose a machine learning framework

that can be used to identify network biomarkers and driver genes for each specific breast

cancer subtype. Our results show that the resulting network biomarkers can separate one

subtype from the others with very high accuracy. We also propose an integrated approach

that can best capture knowledge (and complex relationships) contained within and between

drugs,genes and disease data. A network-based machine learning approach is applied there-

after by using the extracted knowledge and relationships in order to identify single and pair

of approved or experimental drugs with potential therapeutic effects on different breast can-

cer subtypes.
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Chapter 1

Introduction

Over the years, researchers have gathered large quantities of data to better understand the

molecular dynamics behind complicated diseases such as cancer. However, the complexity

of these data makes it difficult for researchers to carry out in-depth analysis and extract the

pertinent information. Here is where the need for high-performance computers, combined

with appropriate algorithms, models and programs, can become extremely helpful. In the

past few years, with the help of technological advancements in computer hardware and

software, computer scientists made a tremendous progress in developing machine learning

algorithms that are able to quickly analyze huge amounts of data and provide models that

are useful for identifying relevant pieces of information and making predictions about sta-

tus and progress of various diseases. As these models become increasingly advanced and

sophisticated, they are opening up a new world of possibilities for big data analysis in many

domains including healthcare, by transforming the way these conducted studies can provide

important discoveries much quicker.

1
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1.1 Cancer and Its Origin

Cancer is one of the leading causes of death worldwide, and a perfect example of where

Artificial Intelligence (AI) and machine learning can be a huge help. Cancer is the result of

an uncontrolled division of abnormal cells in a particular part of the body that can invade

and kill normal tissue and organs around it [37]. Despite tremendous efforts, scientists have

not yet been able to identify a systematic treatment for many types of cancer. One of the

main reasons for that is an extremely complex nature of this disease, with many subtypes,

each often can have a different diagnosis and treatment procedure. Cancer is not limited to

a specific geographical location either. Figure 1.1 shows the share of population with any

types of cancer. As seen in the figure, United states and Canada are on the lead and we do

not see in decline in the disease across various geographical locations.

Cancer is not a new disease either. Conducted studies on fossilized bones and mum-

mified tissues have shown that malignant transformations have been targeting humans and

animals for a long time [69].

Although cancer is a complex disease, it has been suggested that only 10% of cancer

cases might originates from inherited mutations [16] and the majority of cases has been

suspected to come from either high penetrance genes or polymorphisms [22, 214]. For

example, specific inherited mutations in BRCA1 and BRCA2 genes account for only 5 to

10 percent of all breast cancer cases [41]. While the majority of human cancer cases has

been related to age [56] and environmental factors [16, 69].
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Figure 1.1: Share of total population with any form of cancer, measured as the
age-standardized percentage. This share has been age-standardized assuming a con-
stant age structure to compare prevalence between countries and through time (source:
https://ourworldindata.org/cancer)
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1.2 Breast Cancer

Breast cancer is the leading cause of death among women in most developed countries

including Canada [36]. Figure 1.2 shows the share of Canadian population with different

types of cancer in 2017.

Figure 1.2: Share of total population with different types of cancer in 2017, measured as
the age-standardized percentage. (source: https://ourworldindata.org/cancer)

Breast cancer is not a single disease, but a heterogeneous disease comprising different

entities with distinct pathological and clinical properties [59,89,190,199]. In next sections,

we take a look at development of this disease as well as various existing categorizations.
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1.3 Breast Cancer Development

In regard to disease development, breast cancer can be categorized into several stages, span-

ning from stage zero to stage four [30]. Except stage zero, each stage consists of the Roman

numbers I, II, III, or IV often followed by A, B, or C. In general, the higher the number, the

more advanced the breast cancer. In stage zero, there is no evidence of cancer cells. Also,

if there exists non-cancerous but abnormal cells, they have remained within the same part

of the breast that they have originally initiated and there is no sign of getting through to

or invading neighboring normal tissues. In stage I, cancer cells are breaking through to or

invading normal surrounding breast tissues. The size of the cancerous region at this stage

is no more than 2 centimeters normally. in Stage IA, the cancer has spread into the fatty

breast tissue. The tumor itself is no larger than 2 centimeters, or there may be no tumor

observed in fatty breast tissue. In stage IB a tiny amounts of cancer cells have been found

in a few lymph nodes. In stage II, the cancer might have been grown, spread, or both. In

stage IIA, the tumor in the breast is still small and the cancer has not spread to more than

three lymph nodes. In stage IIB, breast tumor is grown bigger (up to 5 centimeters). In

stage III, it’s considered advanced, and it’s harder to fight. In stage IIIA, the cancer has

been found in up to nine of the lymph nodes that usually form a chain or it has spread to

or enlarged the lymph nodes deep in the breast. In stage IIIB, the tumor has grown into the

chest wall or skin around the breast. In stage IIIC, cancer has been found in ten or more

lymph nodes, or has spread above or below the collarbone. In Stage IV, breast cancer cells

have spread far away from the breast and lymph nodes around it. This stage is described as

“metastatic,” meaning it has spread beyond the region of the body where it was first found

into the bones, lungs, liver, brain or other organs. The 5-year survival rate (survival rate of

patients 5 years after their first diagnosis) of patients can decrease dramatically from 100%
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in stage I to as low as 23% in Stage IV [36]. Thus, early detection of the cancer is vital for

proper treatment and increasing the survival rate of the patients.

1.4 Breast Cancer Subtypes

It has been shown that breast cancer tumours consist of various pathological and biological

features and exhibit distinctive behaviors that eventually lead to different responses during

the treatment and hence should not be treated with the same therapeutic strategy [31]. So,

accurate clustering of breast cancer tumours into clinically relevant subtypes is vital for

further therapeutic decisions and effective treatment of the disease.

1.4.1 Classical Breast Cancer Subtypes

Sørlie et al. grouped more than 500 breast cancer samples into five intrinsic subtypes

with distinct clinical outcomes: luminal A, luminal B, HER2 , Basal and normal-like tu-

mors [157, 186]. He reported a distinctive gene signature for those breast cancer subtypes.

the idea was that the differences underlying the gene expression patterns among cancer

subtypes can effectively reflect the differences of the tumors at the molecular level [187].

These subtypes have been repeated by other studies with different numbers of signature

genes for each subtype. Onitilo et al. classified breast cancer into four groups based on

Immunohistochemistry (IHC) profile on Estrogen receptors (ER), Progesterone receptors

(PR) and Human epidermal growth factor receptor-2 (HER2) expressions, into four groups

and claimed that his IHC-based classification correlated well with intrinsic gene expression

microarray categorization [149]. Hu et al. reported a 306 gene signature with the ability

of distinguishing these subtypes [88]. Parker et al. reported a 50-gene classifier (PAM50),
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with significant prognostic performance on breast tumors [64, 79, 155] with the ability of

being used in clinical trials [8]. Rezaeian et al. proposed a hierarchical classification model

consisting of only 18 genes that was able to classify these 5 breast cancer subtypes with

more than 95% accuracy [170]. In this section, we discuss about each of these subtypes in

more details.

Luminal Subtypes

The luminal-like tumors express hormone receptors, with expression profiles reminiscent

of the luminal epithelial component of the breast [157]. At least two subtypes exist within

luminal-like tumors: luminal A and luminal B. In short, luminal A represents the [ER+—PR+,HER2-

] group (tumors with ER or PR positivity and HER2 negativity) and luminal B represents the

[ER+—PR+, HER2+] group (tumors with ER or PR positivity and HER2 positivity) [206].

Luminal tumors are the most common subtypes among breast cancer, with luminal A being

the majority. In general, the luminal subtypes carry a good prognosis, and luminal A tumors

have a significantly better prognosis than the luminal B subtype [187].

HER-2 Subtype

The intrinsic HER2 over-expression tumors refer to those identified using gene expression

array, which is similar to the [ER-,PR-,HER2+] subgroup by IHC [149] or fluorescence in

situ hybridization (FISH) [206]. There has not been any known relationship between race,

age or known risk factors and HER2 up-regulation [38,51,147] and this subtype has usually

a poor prognosis [186–188], which seems to be related to higher risk of early relapse among

those patients without complete removal of tumor cells [38].
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Basal Subtype

Basal subtype accounts for 60% to 90% of triple negative (ER-,PR-,HER2-]) breast cancer

tumors [71, 198]. There has been a lot of research in recent years regarding Basal subtype,

because tumors belonging to this subtype tend to follow aggressive clinical course and

currently there is no standard and systematic therapy for this subtype. Compared with the

other subtypes, Basal subtype is associated with younger patients and is also more common

to develop in African-American women [42]. The size of tumors in this subtype is normally

larger than the other subtypes and tend to grow more rapidly [86, 165]. Given the nature

of triple negative receptor status, basal tumors are not responsive to conventional targeted

breast cancer therapies such as hormone therapy, chemotherapy is the only main option for

patients with this breast cancer subtype [29].

1.4.2 Multigenomic Breast cancer subtypes

Traditional classification of breast cancer relies solely on gene expression (GE) as the main

driver behind distinction of breast cancer subtypes. However, to be able to take into account

all possible molecular drivers for each subtype, not only the gene expression has to be

taken into account, but also other genomic information such as copy number abberation

(CNA), copy number variation (CNV) and single nucleotide polymorphisms (SNP) have to

be considered as well. Curtis et al. [53] proposed an integrated analysis of copy number

and gene expression data conducted on 2,000 breast cancer patients with long-term clinical

followup and shown that genomic variants such as CNA, CNV and SNP were associated

with expression of close to 40% of the genes, with CNAs having the dominant role in

that effect. By incorporating the information corresponding to both CNA and GE, they

discovered 10 distinctive breast cancer sub-groups. In a followup study, Ali et al. validated
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their previous 10 subtypes (known as IntClust subtypes) and shown that the results are

reproducible in a larger analysis consisting of 7500 patients [15].

1.5 Breast Cancer Bioinformatics

Breast cancer (BC) is a complex disease consisting of five subtypes [185] to ten sub-

types [53], each arising from a distinct molecular mechanism and having a distinct clinical

progression, and occurring in sites that can be distinguished based in part on characteristic

gene expression signatures. Recent studies have revealed extensive diversity both between

and within BC tumors, and that most tumors present unique characteristics. This hetero-

geneity poses significant challenges to BC diagnosis and treatment, with many BC patients

undergoing over-treatment [65]. The development of BC is caused by multiple somatic mu-

tations of a small number of genes, called driver genes (or drivers), whose mutation changes

deregulate many biological processes or cellular pathways, and therefore leading to initi-

ation and progression of BC as well as resistance to treatment [82, 146]. The passenger

genes (or passengers) are those genes whose deregulations or expression changes are the

by-products of the drivers. Thus, the drivers are the genes which provoke the disease via so-

matic mutations. Together, the drivers and their passengers are called gene biomarkers and

an important task is to discover them. A more important task, however, is to find the drivers

in order to understand/characterize the disease and develop better therapies [20]. Finding

the drivers is, therefore, a challenging problem due to the heterogeneity of BC tumors [92].

A biomarker is a biomolecule (e.g. gene, RNA, protein, metabolite) found in body fluids

or tissues that is a sign of a normal or abnormal process, or of a condition or disease [40].

Different types of biomarkers are identified in cancer research and used in cancer medicine

to make different predictions: 1) risk biomarker: to predict predisposition to cancer [205];



CHAPTER 1. 10

2) diagnostic biomarker: to predict cancer subtype [182]; 3) prognostic biomarker: to pre-

dict cancer outcome [209]; 4) predictive biomarker: to predict response to therapy [163]; 5)

treatment biomarker: to predict an effective therapy [34]; 6) progression biomarker: to pre-

dict cancer stage [28]; 7) monitoring biomarker: to predict if therapy is working [212]; and

8) recurrence biomarker: to predict if cancer will return [232]. BC is the most frequently

diagnosed type of cancer and one of the leading causes of cancer death in women [183].

The correct diagnosis of a patient’s BC subtype is critical for ensuring the best possible

therapy and care. Methods such as MRI, mammography, or CT scan examine phenotypi-

cal mammary change but provide little effective information to guide therapy. Other risk

factors such as tumor size and lymph node status are also insufficient to accurately predict

tumor classes [12].

Since the ten breast cancer subtypes are driven from much larger sample size and also

have been shown promising with distinct clinical outcomes in recent years [13, 138], our

downstream analysis in this thesis is based on ten subtypes. In Chapter 2, we use differ-

ent machine learning techniques in order to leverage the knowledge about the functional

relationship among genes and identify network biomarkers and driver genes for each breast

cancer subtype. In Chapter 3, we will leverage pathway information and also the network

biomarkers identified in Chapter 2 in order to find the best combination of re-positioned

drugs for each breast cancer subtype.
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1.6 Introduction to network-based Machine Learning Tech-

niques

The field of network research has seen an increase in interest over the past decade, with

emphasis shifting away from analysis of small graphs to consideration of large-scale graphs,

as well as complex networks. Many branches of science have adopted such networks as a

way of representing complex systems. These models are typically used to represent systems

that include complex topologies and are very voluminous. Complex networks areas have

emerged as unifying topics in complex systems due to the technological advances as well

as the amount of data being collected and analyzed [68]. An analysis of random networks

resulting from that investigation led to the development of a new area of study termed

the theory of random networks, which involves combining graph theory and probability

theory to generate and analyze large-scale graphs. Complex network areas have emerged

as unifying topics in complex systems due to technological advances as well as the amount

of data being collected and analyzed [24].

There is ample evidence that complex networks exist in real-world settings. Here are

some examples of real-world network representations: biological neural networks [191,

213], financial networks [44,161,189], information networks [224], social networks among

individuals [97, 177] and between companies and organizations [135], food webs [136],

metabolic networks [54] and distribution as the bloodstream [215], protein-protein interac-

tion networks [208], postal delivery and electricity distribution networks [14], to name a

few.

In general, we can categorize network-based machine learning techniques into three

groups: Unsupervised, Supervised, and semi-supervised. In the next few sections we dis-
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cuss about each of these groups.

1.6.1 Network-based Unsupervised Learning

Clustering data is one of the main tasks of unsupervised learning. Network-based meth-

ods are well suited for data clustering tasks, as we do not know how the clusters will be

formed or how many will exist in unsupervised learning methods. Data clustering is es-

sentially a community detection problem once the original dataset is constructed. During

transformation, each vertex represents a data item, and connections are established accord-

ing to similarity measures of the vertex. Clusters are often referred to as communities

when performing a community detection task. A community is described as a sub-graph

whose vertices are highly connected internally, but relatively sparsely connected with oth-

ers. Network-based methods are particularly useful when dealing with clusters that have

varying shapes, spatial proximity, orientation, and density [100]. For a better understanding

of various phenomena in complex networks, community detection can be very useful [83].

Complex networks are characterized by a modular structure. Some modules may have

many connections, whereas others may be sparse [144]. Global statistics may be misleading

when there is a lot of variation between communities. The modular structure of a network

may also influence the way in which dynamical processes are conducted (e.g., spreading

processes and synchronizations [17]) on the network. Functional modules in biological net-

works are communities whose members perform essential cellular tasks in concert to form

coherent units. For example, modules are common in metabolic networks [167] and protein

phosphorylation networks [98].

In biological networks, the identification of functional modules may be a promising

computational paradigm for discovering functions of genes and proteins. In the case of
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proteins with unknown functions, the modules to which they belong can be used to classify

them [153]. Modules are sets of genes or proteins that work together to perform biological

processes. Biotechnology and drug design have benefited a great deal from the identifi-

cation of functional modules. The removal of a whole functional module can be used to

delete a certain function in many cases. Modules in complex networks can be detected in

a number of different ways [74]. some of the popular approaches consider communities as

groups of adjacent motifs [153], while others are influenced by information theory [171],

message passing [76], or Bayesian principle [32]. Modularity, a quantity that is typically

optimized, is a widely used class of algorithms [145].

It has been a long and hard struggle to develop accurate and efficient solutions to the

NP-complete problem of community detection. Some of these solutions include the spec-

tral method [210], the betweenness-based technique [143], modularity greedy optimiza-

tion [142], detection of communities based on the Potts model [169], synchronization [17],

information theory [75], and random walks [85]. There is a comprehensive discussion of

this topic in [74].

1.6.2 Network-based Supervised Learning

Although network-based unsupervised and semi-supervised learning techniques have been

studied more extensively in the literature [48,91], network-based supervised learning meth-

ods have not been studied that much and there is still a big space for discovering new ways

to utilize network models for supervised learning.

Classification is one of the most used tasks in supervised learning domain. Network-

based classification techniques would be preferable than regular classification methods in

cases such as relational classification, where the class label of a sample might not de-



CHAPTER 1. 14

pend solely on its own attributes, but also on the labels of its neighbor samples [128].

Among the many problems that can be solved by relational classification techniques are

the finding of molecular pathways in gene expression [178], link prediction in social net-

works [11, 25, 118], and classification of linked scientific publications [111]. A similar

approach is suitable for various other applications, including recommendation systems, the

identification of probable associations in e-commerce sites and scientific collaboration net-

works, as well as the analysis of criminal networks and the structural analysis of bacteria

or other biological organisms. Consequently, all of these applications require more effi-

cient and versatile methods for link prediction, making it an important and scientifically

attractive research topic. Similarly, relational classification can be used to identify small

connected subgraphs in a social network that best reflect the relationship between two ver-

tices. Researchers in [70] have proposed an efficient algorithm based on electrical circuit

laws for identifying the connected subgraphs from large social networks. Additionally, it

has been demonstrated that a connected subgraph can be used to effectively compute sev-

eral topological feature values for the supervised link prediction problem when the network

is large [11].

In one sense, we can categorize existing classification algorithms into two groups. Local

classifiers are those that employ collective inference only at specific stages of the learning

process. One may employ a local classifier, such as Naı̈ve Bayes or relational probability

trees, to predict labels for each unlabeled vertex and further use a collective inference al-

gorithm, such as ICA [125] or Gibbs sampling [96], to restate the class labels of vertices

that are used in the next iteration. Secondly, there are so-called global formulation-based

methods, which do not use a separate local classifier, but rather use the entire algorithm

for training and inference. Using this method, training aims to optimize a global objec-
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tive function. The loopy belief propagation algorithm and relaxation labeling are examples

of these algorithms [179]. A supervised learning network-based framework for relational

data classification in networks was proposed in [129] as a solution to the unification prob-

lem. Three components are considered in the model: a local classifier that uses the training

set to determine the probability distribution for the classes; a relational classifier that does

the same but now considers the nearby relations in the network; and a collective inference

component that refines the prediction further.



Chapter 2

An Integrative Approach for Identifying

Network Biomarkers of Breast Cancer

Subtypes Using Genomic, Interactomic,

and Transcriptomic Data

2.1 Introduction

Most bioinformatics methods have focused on identifying BC biomarkers as small sub-

sets of differentially expressed genes. However, differentially expressed genes have lim-

ited predictive performance due to (i) the heterogeneity within tissues and across patients

and (ii) the dependence among genes, gene products, or pathways. To accurately identify

effective BC biomarkers, new bioinformatics methods integrating additional biological in-

formation with gene expression data has become necessary. Within the last five years, new

16
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classes of biomarkers called cancer network biomarkers (NBs) have been defined and stud-

ied [121, 122, 228]. A cancer network biomarker (NB) is a disease-related sub-network of

interacting genes identified by an appropriate integration of a secondary network (e.g. pro-

tein interaction network or cellular pathway network) data with the primary gene expression

data, thus taking into account the dependencies among genes.

In this chapter, we propose a framework that can be used to identify differential NBs

specific to each breast cancer subtype. First, we select and combine relevant features using

CNV, CNA and GE data, in order to obtain a set of candidate genes for each breast cancer

subtype consisting of (i) genes that are differentially expressed in the subtype and (ii) genes

that have significant copy numbers in the subtype. Then, each gene in the candidate set is

used to seed the search for discriminative NBs in an input protein-protein interaction (PPI)

network.

2.2 Materials and Methods

We have used the METABRIC dataset [53], which contains the copy number values and

gene expression levels of 2000 primary breast tumors with long-term clinical follow-up. It

can be accessed from the European Genome-Phenome Archive using the accession num-

ber EGAS00000000083. In [53], the copy number aberrations and copy number variations

generated using Affymetrix SNP 6.0 arrays and gene expression data were obtained using

Illumina HT 12 technology. The dataset contains two sets of data, validation set and dis-

covery set. Due to the lack of class labels in the validation set, in this paper. we only use the

discovery set, which contains 997 samples from ten subtypes of breast cancer. Each sample

contains expression data for 48,803 probe IDs. The expression of all probes corresponding

to the same gene have been merged based on the median expression of those probes, which
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maps all the probes to 24,351 unigenes. The number of samples corresponding to each

subtype are listed in Table 2.1.

Table 2.1: Number of samples corresponding to each of ten subtypes.
Subtypes 1 2 3 4 5 6 7 8 9 10

# of Samples 76 45 156 167 94 44 109 143 67 96

To obtain a NB corresponding to each subtype, we consider each subtype as positive

class and the remaining subtypes as negative class. Thus, by performing a one-against-

all classification scheme, separately for each subtype, we can obtain the specific NB that

best discriminates that subtype from the other subtypes. Figure 2.1 illustrates the proposed

framework for finding NBs corresponding to each subtype.

2.2.1 Obtaining Candidate Genes

In the first step, we use CNA, CNV and GE data to find the most informative genes, sepa-

rately for each subtype, which are used later as seeds to find the best separating NBs of a

given subtype. To do so, we first use CNA/CNV information to find those genes that have

very high genotypic aberration in each subtype based on their GISTIC score [27]. GISTIC

identifies significant aberrations using two steps. In the first step, it calculates the G-score

statistic, which involves both the frequency of occurrence and the amplitude of the aberra-

tion. In the second step, it assesses the significance of each aberration using Fisher’s Exact

test [168]. To make sure that we only target aberrations in the copy number and not com-

mon variations across different populations, we use the HapMap database [52]. HapMap is

a catalog of common genetic variants that occur in human. We only consider those genes for

a significant test that have CNA but no CNV. We also use gene expression data to identify

the top differentially expressed genes for each subtype. For this, we used Chi2 [120] to rank



CHAPTER 2. 19

Figure 2.1: The proposed framework for finding NBs corresponding to each subtype.

genes based on their ability to separate each subtype from the remaining subtypes. At the

end, after obtaining the top genes using CNA/CNV and GE data separately, if CNA/CNV

analysis determined N genes as significant in terms of their genomic aberrations, we select

the top N genes from GE data; then out of these two gene sets, we take the intersection as

candidate genes, which will be used as seeds in our PPI network data.
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2.2.2 Obtaining NB for Each Subtype

In this step, we use the candidate genes obtained from the previous step as seeds in the

PPI network data. First, we combined the human PPI network data obtained from BioGrid

[192], HPRD [162], Intact [103], DIP [221] and MINT [46] into a single unified large PPI

network consisting of 230,000 protein-protein interactions and 15,823 proteins as the union

of all aforementioned databases. We only included those PPIs that are verified in two or

more of aforementioned databases.

Second, we mapped all candidate genes onto our PPI network in order to be used as

seeds for finding the NBs Starting from a given seed node v, the search for the best separat-

ing NB proceeds as follows. We iteratively aggregate its neighboring nodes u in a greedy

manner, using breath-first search algorithm. A neighbor u is inserted into the current aggre-

gate N if and only if its inclusion (i.e., the new aggregate N +u) increases the correlation

between the expression of the genes in the aggregate and the given subtype; that is, when

|correlation(N +u,subtype)− correlation(N,subtype)| > ∆, where ∆ is 0.001. Then, the

same process is repeated on the new aggregate N +u. This process continues until all pos-

sible neighbors (with any distance) from the new aggregate are evaluated, resulting in a

subnetwork, Sv, obtained from seed v. The same process is also applied to all the seeds

obtained for a given subtype, and the union of all the subnetworks is considered as the final

NB of that given subtype.

Since the order of candidate genes may alter the expansion of subnetworks, depending

on which candidate gene reaches a certain gene first, we shuffle the candidate genes 100

times and obtain the network for each case individually. At the end, we merge all 100

networks. In this case, each individual interaction have a confidence score from 1 to 100,

which represents the number of times each interaction appeared in all 100 networks. We
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categorize interactions in three groups; low, medium and high confidence, which contain

those interactions that present in less that 30%, between 30% and 70%, and more than 70%

of the networks, respectively. Table 2.2 shows the distribution of the interactions in each

subtype NB.

2.2.3 Evaluating the Predictive Performance of each NB

The following measures are used for evaluating the predictive performance of each NB.

Accuracy =
T P+T N

T P+FN +FP+T N
, (2.1)

F-measure uses both precision and recall measures to compute the score as follows:

F-measure = 2× Percision×Recall
Precision+Recall

, (2.2)

where

Precision =
T P

T P+FP
, (2.3)

Recall =
T P

T P+FN
, (2.4)

Another measure, the area under the receiving operating characteristics (ROC) curve,

AUC, shows the trade-off between Specificity and Sensitivity (Recall), where:

Sensitivity (Recall) =
T P

T P+FN
, (2.5)

Speci f ity =
T N

T N +FP
, (2.6)

Above, T P,T N,FP,FN means true positive, true negative, false positive, and false neg-
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Table 2.2: Number of interactions in NBs corresponding to each subtype. Interactions
have been categorized in three groups: low, medium and high confidence, which contain
interactions that are present in less that 30%, between 30% and 70%, and more than 70%
of the networks, respectively.

Subtype Total # of Interactions Low Confidence Medium Confidence High Confidence
1 2,389 2,230 126 33
2 3,013 2,890 91 32
3 2,524 2,260 177 87
4 1,444 1,170 184 90
5 1,999 1,866 104 29
6 2,900 2,608 211 81
7 2,294 2,102 118 74
8 2,750 2,585 106 59
9 3,000 2,787 161 52
10 936 814 94 28

ative, respectively.

2.3 Results

Table 2.3 shows the number of selected genes and interactions in the obtained NB corre-

sponding to each of the ten breast cancer subtypes. Since the classes are highly imbalanced,

using a more robust performance measure such as AUC provides less bias insight regarding

the performance of the NBs for each subtype. As shown in the table, the AUC of the NBs

for almost all of the subtypes are more than 0.95, which indicates the excellent predictive

performance of each NB.

We trained a random forest classifier containing 50 trees along with 10-fold cross-

validation scheme to evaluate the effectiveness of candidate and high confidence genes

involved in each subtype’s NB in discriminating each subtype individually. Tables 2.4, and

2.5 show the performance of candidate genes and high confidence genes in each subtype,
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Table 2.3: Comparison between the number of genes, interactions and the performance of
NBs for ten breast cancer subtypes.

Subtype # of genes # of interactions Phenotype correlation Accuracy F-measure AUC
1 2385 2120 -0.947 94.1% 0.928 0.970
2 2948 2432 -0.913 96.6% 0.959 0.966
3 3309 3089 0.916 93.7 0.941 0.939
4 4557 3846 0.929 95.6 0.922 0.952
5 1541 1382 -0.96 97.1 0.964 0.993
6 5382 3987 -0.902 95.7 0.939 0.961
7 3111 2879 -0.947 94.8 0.934 0.952
8 4343 3622 -0.923 93.84 0.943 0.971
9 2266 2151 -0.949 95.6 0.935 0.982
10 2921 2662 0.951 96.1 0.963 0.975

respectively. As shown in the tables, though candidate genes themselves can provide an

accurate gene signature for each subtype of breast cancer, adding high confidence genes to

candidate gene sets increase the classification performance.

Table 2.4: Using candidate genes corresponding to each subtype for classification.
Subtype Candidate Genes Accuracy (%) F-measure AUC MCC

1 42 93.78 0.935 0.950 0.521
2 16 95.08 0.945 0.832 0.314
3 32 85.55 0.853 0.854 0.436
4 96 87.96 0.873 0.891 0.531
5 18 91.07 0.908 0.897 0.449
6 69 95.78 0.949 0.868 0.338
7 16 88.66 0.883 0.840 0.382
8 27 86.86 0.866 0.881 0.448
9 59 94.48 0.932 0.904 0.423

10 75 95.68 0.957 0.965 0.758

Figure 2.2 shows the genes with medium and high confidence in Subtype-1 NB. As

shown in the figure, some of the hub genes in the subnetwork such as Cyclin Dependent

Kinase 1 (CDK1) are known indicators in breast cancer prognosis [106] and further inves-

tigations for determining their possible roles in Subtype-1 of breast cancer is in progress.



CHAPTER 2. 24

Table 2.5: Using high confidence genes and candidate genes corresponding to each subtype
for classification. High confidence genes are those that are present in more than 70% of the
networks.

Subtype High Confidence Genes Accuracy (%) F-measure AUC MCC
1 103 94.98 0.947 0.964 0.607
2 59 97.59 0.975 0.990 0.709
3 148 88.56 0.877 0.893 0.516
4 225 87.96 0.869 0.904 0.516
5 68 97.09 0.972 0.992 0.840
6 187 98.99 0.990 0.997 0.875
7 104 92.17 0.908 0.906 0.515
8 100 91.37 0.907 0.930 0.610
9 144 95.38 0.948 0.962 0.562

10 115 95.88 0.959 0.968 0.765

We used Intogen’s mutational breast cancer driver genes [2] and compared them with

the genes that we identified in the NBs of each breast cancer subtype. Table 2.6 shows all

mutational driver genes and their overlap with NB corresponding to one of the subtypes. As

shown in the table, out of 184 mutational driver genes, our model covered 125 of them as

part of NBs in different breast cancer subtypes. This is impressive since our model covered

these genes without having access to any mutational data corresponding to METABRIC

dataset.

We also computed the odds ratio [176] of having a deletion or amplification in each

candidate gene and compared their relation to the expression of that specific gene across

different subtypes. Figure 2.3 shows the odds ratio and gene expression of candidate genes

for Subtype-1 of breast cancer. Odds ratio show how a deletion/amplification in a specific

gene is likely to separate a subtype from the others; the higher the ratio, the more effective

is that aberration in separating one subtype from the rest. In most of the cases, we found

the copy number aberration and gene expression as two independent factors, which means

having a high odds ratio for a gene does not necessarily mean that the gene expression
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Figure 2.2: The NB of Subtype1 including medium and high confidence interactions.

pattern for that gene has totally different patterns in one subtype against the other subtypes.

Some of genes appeared in more than one subtype as a high confidence gene. Figure

2.4 depicts these genes along with the subtypes these genes belong to. As shown in the
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Table 2.6: Mutational driver genes identified in the NBs of breast cancer subtypes.
Gene Present Gene Present Gene Present Gene Present Gene Present Gene Present

PIK3CA LPHN2 KDM5C X KALRN X ERCC2 X MAX
TP53 X CDKN1B X APC X EIF4A2 X HSPA8 X EIF2C3
PTEN X TBL1XR1 X ARID2 X MGA X NUP107 ARNTL X
AKT1 X BRCA2 X CIC X MECOM X ERBB2IP KLF4 X
SF3B1 X BRCA1 X SMAD4 X ARHGAP35 X BMPR2 X G3BP2 X
KRAS ANK3 BAP1 X NUP98 X MLH1 TCF12 X
GATA3 X ERBB2 X PBRM1 STAG1 X CLTC X CARM1 X

MAP3K1 X MYH9 X DDX5 X SMARCA4 NOTCH1 X TCF7L2 X
MLL3 MED23 X KEAP1 X BCOR X SUZ12 SEC24D
CDH1 X MLLT4 X STK11 X PTPRU HLA-A X ZFP36L2 X

NCOR1 X ARID4B X RPL5 X FLT3 X CNOT3 CAST X
MAP2K4 X RPGR PHF6 ARFGEF2 X SOS2 X CLASP2 X
RUNX1 X HCFC1 FUBP1 X BPTF X HLF X ACSL6

NF1 MYH14 EIF1AX FOXP1 X DHX15 X MUC20
RB1 X NOTCH2 X MACF1 X CEP290 EIF4G1 X NF2 X
ATM X SPTAN1 X AHNAK X MED24 X ACO1 X ITSN1 X

ARID1A PRKAR1A X MED12 X CSDE1 X LCP1 X RBM5 X
TBX3 CCAR1 X AKAP9 X EP300 X PIP5K1A AQR X
MLL2 RFC4 TAF1 FN1 X NR4A2 X MSR1
CBFB CAD X SVEP1 X BNC2 X CHEK2 X THRAP3
CTCF SRGAP1 X ASPM CHD9 X MKL1 X GOLGA5 X
CHD4 ACVR1B X ATR X POLR2B X CUL1 X ACTB X

PIK3R1 X GPS2 MLL PIK3CB X TNPO1 RHEB
STAG2 PRKCZ X MTOR LRP6 DIS3 ATF1 X
CASP8 X FBXW7 X ASH1L X FMR1 FUS X ATIC X
FOXA1 X BRAF NSD1 SOS1 X CLSPN X PCSK6
MYB X NRAS X CDK12 X PCDH18 STK4 X CCT5 X

ZFP36L1 IDH1 X MYH11 X DDX3X X RBBP7 X HNRPDL
PAX5 SETD2 TRIO X AFF4 X SFPQ X TGFBR2 X

TFDP1 EGFR X SETDB1 X TOM1 X ELF1 STIP1 X
PTGS1 NDRG1 X PIK3R3 CSNK1G3

figure, some of the genes such as COPS5, GRB2 and MAP1LC3B appeared in the network

of four subtypes, despite of not being among the candidate genes in any of the subtypes.

This implies that these genes, in spite of having non-significant copy number aberration

and gene expression simultaneously, actively participate in differentiation of several breast

cancer subtypes.

2.4 Discussion

We used the IPAD pathway analysis database and tool [229] to determine the diseases

associated with the hub nodes in the NBs obtained for each subtype. For example, out of
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Figure 2.3: The odds ratio and gene expression of candidate genes for Subtype-1

nine genes that had more than 10 connections in the NB corresponding to Subtype-1, at

least three of them have been related to breast cancer, in the literature. Table 2.7 shows the

involvement of these hub genes in breast cancer.
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Table 2.7: Breast related diseases corresponding to candidate genes of each subtype NB
with p-value of less than 0.05.

Disease ID Disease Name Involved genes in the
disease

Subtype P-value

MESH:D058922 Inflammatory
Breast Neo-
plasms

DDIT4 , ECH1,
COX17, UQCRB,
TMPO, CCNE2,
MAPKAPK5, CDK1,
FANCI, GHRL, ETV6,
CX3CR1, ZWINT,
H2AFJ

1 2.8e-2

MESH:D018270 Carcinoma,
Ductal, Breast

CX3CR1, ETV6,
LTF, CDK1, FANCI,
GHRL, SLC5A1,
ZWINT, IFNGR2,
ECH1, DDIT4, CLTC,
UQCRB, COX17,
VGLL4, ARID5B,
MAPKAPK5, CCNE2,
TMPO, H2AFJ, CCT2

1 4.49e-2
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Figure 2.4: List of High confidence genes participating in NB of more than one subtype.
Markers with black circle depicts the candidate genes.



Chapter 3

Computationally Repurposing Drugs for

Breast Cancer Subtypes Using a

Network-Based Approach

3.1 Introduction

Discovery of a new drug, especially for cancer can be a very time-consuming and costly

process. It normally takes between 10 to 15 years to develop a new drug [181] and can

cost upward of tens of billion dollars [7, 58, 61]. On the other hand, the success rate of

developing a new drug for cancer is very low [217], and the number of new FDA-approved

drugs has been declining since past 25 years [63].

Drug repositioning and repurposing are effective alternative strategies to find new uses

of existing drugs. Both drug repositioning and repurposing processes consist of using an

existing drug for treatment of a disease other than its primary or initial purpose. If the drug

is already FDA-approved, the process is called drug repurposing, while if the drug is in trial
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or experimental phase, the process is called drug repositioning. Since in this work we use

the same methodology for all existing drugs, irrespective of their FDA-approval status, for

simplicity, we refer to the methodology as ”drug repurposing” in a general sense.

In case of repurposed drugs (and to a lesser degree for repositioned drugs, depending

on their trial or experimental stage), the overall cost and time associated with using it for

treatment of other diseases is significantly lower than developing a new drug [58].

In order to repurpose an existing drug for a new disease, the main challenge is to iden-

tify new relationships between drugs and diseases. To overcome this challenge, a variety

of approaches have been introduced including computational, biological and experimen-

tal approaches, as well as hybrid schemes that combine both computational and biological

techniques. Computational approaches for drug repurposing bear much lower cost and

other barriers in comparison to biological experimental approaches, which makes it a more

appealing strategy and a very good starting point for further clinical trials and biological

validations [150].

The majority of existing computational methods for drug repurposing are based on the

comparison between gene expression response of various cell lines before and after treat-

ment or a combination of several types of data corresponding to various aspects of disease-

drug relationships [80, 123, 141, 234]. For example, Lotfi et al. grouped drug repurposing

methods based on their principle source of biological data and core methodology, including

gene regulatory networks, metabolic networks and molecular interaction networks [123],

while Zou et al. categorized drug repurposing methods into two groups of data-driven

and hypothesis-driven approaches [234]. Xue et al., on the other hand, focused on the

underlying methodology used in drug repurposing, when it regards to categorizing those

methods [223]. Luo et al. used Singular Value Thresholding (SVT) to predict scores for un-
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known drug–disease pairs based on known relationship between drugs and diseases [126].

Zhang et al. utilized a drug similarity network, a disease similarity network, and known

drug-disease associations to explore the potential associations among unrelated pairs of

drugs and diseases [231].

Generally speaking, we can group drug repurposing approaches into three distinct groups:

text-mining approaches [81, 94, 108, 109, 114, 166, 230], semantics-based approaches [139,

154, 233], and finally network-based approaches [33, 67, 107, 130, 159, 194–196, 207, 218,

219, 227]. The latter takes into the account the relationship and interactions between

genes in their corresponding pathways. For example Bourdakou et al. used statistical

co-expression networks to highlight and prioritize genes for breast cancer subtypes and

leveraging them for drug repurposing [33]. One of the biggest difference between the pro-

posed framework and the previous network-based methods is the ability of the proposed

framework to identify not only single drugs, but also pairs of combined drugs (and the-

oretically unlimited number of drug combinations) for a given disease with a reasonable

computational overhead, which enables it to find combinations of drugs that could far out-

reach the therapeutic effects of single drugs for a given breast cancer subtype (or any other

disease in general).

This paper introduces a novel network-based approach to identify drugs with the highest

repurposability with respect to each of ten breast cancer subtypes. This goal is achieved by

first finding driver genes responsible for each subtype using genomic and transcriptomic

data, which are then used along with pathway data in order to find those drugs that have

the highest repurposing scores for each of ten breast cancer subtypes. The results show that

the proposed method is able to identify potential effective known and experimental drugs

developed for other diseases to be repurposed for various breast cancer subtypes. Indeed,
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further wet lab analysis is needed to determine the therapeutic level of identified drugs

on each breast cancer subtype. For reference, what we refer to here as ten breast cancer

subtypes are ten distinctive sub-groups identified in [53].

Moreover, we used the proposed method to identify single and pairs of drugs for Triple

Negative (TN) breast cancer tumors. Between 10% to 15% of breast cancer cases are con-

sidered as TN, where they lack any hormone epidermal growth factor receptor 2 (HER-2),

estrogen receptors (ER), and progesterone receptors (PR) in the tumor [131]. Thus, the tra-

ditional targeted (often hormone) therapy that targets one of these hormones are ineffective

in these cases. This lack of targeted therapies has intensified the interest in this group of

patients. Our results show that the proposed method were able to computationally identify

single and paired repurposed drugs that could have therapeutic effect on this this group.

3.2 Materials and Methods

For drug expression data, we used level-5 data of the LINCS dataset (from Gene Expression

Omnibus with the reference number GSE70138), which consists of z-score values of more

than 118,000 drug/ concentration/ treatment time for more than 12,000 genes. In order to

make the process more computationally manageable, we used only the lowest and highest

dosages of each drug (generally 0.04 and 10.0 µmol, correspondingly) and a default 24-

hour time-point frame for the analysis, in case of having more than one time-point frame.

If a drug does not have a 24-hour time-point frame, we use the default time-point frame

indicated in LINCS database.
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3.2.1 Obtaining Candidate Genes

In the first step, we use CNA, CNV and GE data to find the most informative genes, sepa-

rately for each subtype. To do so, we first use CNA/CNV information to find those genes

that have very high genotypic aberration in each subtype based on their GISTIC score [27].

GISTIC identifies significant aberrations using two steps. In the first step, it calculates the

G-score statistic, which involves both the frequency of occurrence and the amplitude of the

aberration. In the second step, it assesses the significance of each aberration using Fisher’s

Exact test [168]. These two steps take place in 3.1(a). To make sure that we only target

aberrations in the copy number and not common variations across different populations, we

use the HapMap database [52] (shown in Figure 3.1(b)). HapMap is a catalog of common

genetic variants that occur in human. We only consider those genes for a significant test

that have CNA but no CNV. We also use gene expression data to identify the top differen-

tially expressed genes for each subtype. For this, we used Chi2 [120] to rank genes based

on their ability to separate each subtype from the remaining subtypes. At the end, after

obtaining the top genes using CNA/CNV and GE data separately, if CNA/CNV analysis

determined N genes as significant in terms of their genomic aberrations, we select the top

N genes from GE data; then out of these two gene sets, we take the intersection as candidate

genes. These candidate genes are those genes that have both significant differences in terms

of gene expression and copy number aberrations.

3.2.2 Obtaining gene scores

The measurement is a normalized z-score value for each replicate of a given gene treated

with the same perturbation agent (i.e., perturbagen: either drugs or small molecule com-

pounds or others) based on 95% confidence level [202]. Thus, for each pair of gene and



CHAPTER 3. 35

Figure 3.1: Schematic view of the proposed framework for identification of best repur-
posing drugs for each breast cancer subtype. METABRIC dataset is used to obtain copy
number aberration and gene expression data for breast cancer subtypes. HapMap data is
used to obtain copy number variation information. Lincs dataset is used to obtain the effect
of different drug compounds on gene expression of cancer samples. KEGG dataset is used
to create a universal pathway network [99] .
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drug agent, we consider a value between -10 and 10. A value close to zero shows that the

expression of a given gene will not be affected by the drug agent. In comparison, based on

the concepts of gene expression inhibition and induction, a negative or positive score shows

that the expression of the given gene decreases or increases, respectively, because of the

effect of the drug agent.

We have used the METABRIC dataset [53], which contains the copy number values and

gene expression levels of 2000 primary breast tumors with long-term clinical follow-up. It

can be accessed from the European Genome-Phenome Archive using the accession num-

ber EGAS00000000083. In [53], the copy number aberrations and copy number variations

generated using Affymetrix SNP 6.0 arrays and gene expression data were obtained using

Illumina HT 12 technology. The dataset contains two sets of data, validation set and dis-

covery set. Due to the lack of class labels in the validation set, in this paper we only use the

discovery set, which contains 997 samples from ten subtypes of breast cancer. Each sample

contains expression data for 48,803 probe IDs. The expression of all probes corresponding

to the same gene have been merged based on the median expression of those probes, which

maps all the probes to 24,351 unigenes. We calculate the same normalized z-score values

for each of the ten breast cancer subtypes in the METABRIC dataset, (which can be ac-

cessed from European Genome-Phenome Archive with the study id EGAS00000000083),

in such a way that the normalized z-score of each gene is a value between -10 and 10.

A value close to zero shows that the expression of a given gene will not be affected by

the disease, while a negative or positive score shows that the expression of the given gene

decreases or increases, respectively, because of the effect of the disease.
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3.2.3 Creating unified global human pathway

In the next step, we use the KEGG Pathway database to find all possible paths between

genes [99]. A biological pathway is a series of actions among molecules in a cell that leads

to a certain product or a change in the cell. It can trigger the assembly of new molecules,

such as a fat or protein, turn genes on and off, or spur a cell to move [5]. The version of the

KEGG Pathway database we used contains 265 human pathways. So, by taking union of all

genes and also all existing direct relations between each pair of genes, we create a unified

global human pathway (UGHP). The UGHP contains interaction between 4985 genes in all

265 human pathways in KEGG as a matrix, where UGHPi j represents signaling interaction

type between gene i and gene j. The values of the matrix could be -1, 1 or 0 representing

activation, suppression, or no direct signal from gene i to gene j.

3.2.4 Calculating drug-disease repurposing score

At this point, for each drug Di and breast cancer subtype S j, we perform the following

steps:

1. Select the top 50 affected genes by the drug Di from the LINCS dataset by ranking

the genes based on their absolute z-score values and call them drug genes. Note that

at the end of the process, the pipeline focuses only on negative correlations between

drug and disease.

2. Use the candidate genes corresponding to subtype S j that we identified in using copy

number alteration (CNA), copy number variation (CNV) and gene expression (GE)

data [73]. We call these candidate genes disease genes.

3. Map back these drug and disease genes to UGHP to create a drug-disease network,
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DiS j, which contains the shortest paths between each pair of drug-disease genes

(shown in Figure 3.1(c)). Thus, the maximum number of nodes in DiS j network,

N, is given as follows:

N = Gdr +Gdi +Gi (3.1)

where Gdr is the number of drug genes, Gdi is the number of disease genes, and Gi is

the number of intermediate genes in the shortest path between each pair of drug and

disease genes.

4. Since for each gene in this drug-disease network we have two z-score values (one

for the effect of drug and one for the effect of disease), we construct two arrays, one

consists of drug z-score values while the other consists of disease z-score values with

identical gene order.

5. We compute Pearson correlation [110, 184] between the above arrays using the fol-

lowing formula (shown in Figure 3.1(d)):

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

(3.2)

where xi and x are the z-score value of gene i and average of all z-score values for

the drug group in drug-disease network, and yi and y are the z-score value of gene i

and average of all z-score values for the disease group in the drug-disease network,

respectively.

Figure 3.1 depicts the proposed framework for the identification of best repurposing

drugs for each breast cancer subtype.

Obtaining a positive correlation between a given drug genes and the disease genes
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means that the drug and the disease have similar effect on the genes in the drug-disease

network. In contrast, obtaining a negative correlation implies that the drug’s effect on the

genes in the drug-disease network is opposite to the effect of the disease on the genes in

that network.

Obtaining a negative correlation is a favorable case in this context, because we are

looking for drugs that could have a potential reverse effect on the genes affected by the

disease.

3.2.5 Identifying Combinations of Drugs for Repurposing

In the previous section, we solely focused on effects of each individual perturbation agent

on each subtype of breast cancer. In this section, we test the hypothesis that combination of

two or more drugs might be more effective in terms of reversing the effect of the disease,

i.e., by generating a more negative correlation with the disease than each drug indepen-

dently. For simplicity, in this step, we assume that the z-score value of a given pair of drugs

to be additive with respect to the z-score value of each of those drugs independently. In

other words, if we assume that the z-score value of drug Di on gene G is Xi, and the z-score

value of drug D j on the same gene G is X j, we can then assume that the z-score value for

the given pair of drugs [Di,D j] is X , where X = Xi +X j.

Thus, in order to find the best repurposed pair of drugs for a given subtype of breast

cancer, first, we calculate the combined z-score value of all genes for every pair of drugs,

and then we pick the top genes with the highest absolute value of their combined z-score.

Figure 3.2 depicts the proposed framework for identification of the best pair of repurposed

drugs for each breast cancer subtype.
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3.2.6 Calculating drug-disease repurposing score for a pair of drugs

For pair of drug Di and D j and breast cancer subtype Sk, we perform the following steps:

1. Calculate the combined z-score value of all genes for pair of drugs Di j, and selecting

the top 50 genes with the highest absolute value of their combined z-score values as

paired drug genes.

2. Use the candidate genes corresponding to subtype Sk that we identified in using copy

number alteration (CNA), copy number variation (CNV) and gene expression (GE)

data [73]. We call these candidate genes disease genes.

3. Map back these drug and disease genes to UGHP to create a drug-disease network,

Di jSk, which contains the shortest paths between each pair of drug-disease genes

(shown in Figure 3.2(c)). Thus, the maximum number of nodes in Di jSk network, N,

is given as follows:

N = Gdr +Gdi +Gi j (3.3)

where Gdr is the number of drug genes, Gdi is the number of disease genes, and Gi j is

the number of intermediate genes in the shortest path between each pair of combined

drug and disease gene.

4. Since for each gene in this drug-disease network we have two z-score values (one

for the effect of drug and one for the effect of disease), we construct two arrays, one

consists of drug z-score values while the other consists of disease z-score values with

identical gene order.

5. We compute Pearson correlation [110, 184] between the above arrays using the fol-



CHAPTER 3. 41

lowing formula (shown in Figure 3.2(d)):

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

(3.4)

where xi and x are the z-score value of gene i and average of all z-score values for

the drug group in drug-disease network, and yi and y are the z-score value of gene i

and average of all z-score values for the disease group in the drug-disease network,

respectively.

6. Finally, we perform a post-verification analysis on drug interference for the identified

pairs of drugs using DrugBank’s Interaction Checker tool, in order to confirm if there

is any known interference between any of those identified pairs. (shown in Figure

3.2(e)).

A drug-drug interference is a situation in which one drug affects the activity of an-

other. Drugs may interact with each other to cause side effects that are unexpected or

unintended. If any pair of drugs have known drug-drug interference, we remove them

from the analysis. For example, the combination of Tadalafil and palbociclib gener-

ated a negative correlation of -0.65 with subtype 3, which put them in the top 10 list

of paired-drugs for this subtype. But given the fact that they have a known moderate

interaction with each other, this pair has been removed from the analysis [3]. The

reason for doing a post-verification analysis instead of checking it as a pre-process

step, is that the post-verification approach gives us the flexibility of updating the re-

sults with newly discovered drug interference in the future without a need to rerun

the analysis. Also, using a post-verification approach gives us the ability to deal with

interferences between a given pair of drugs at different levels depending on the type
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or level of interference.

Figure 3.2: Schematic view of the proposed framework for identification of best pair of
repurposing drugs for each breast cancer subtype. METABRIC dataset is used to obtain
copy number aberration and gene expression data for breast cancer subtypes. HapMap data
is used to obtain copy number variation information. Lincs dataset is used to obtain the
effect of different drug compounds on gene expression of cancer samples. KEGG dataset is
used to create a universal pathway network [99]. And finally, DrugBank’s drug interference
checker is used to check any possible interference between each pair of drugs.

3.2.7 Extension to Triple-Negative Breast Cancer Tumors

In this section, we leverage the proposed pipeline for the ten breast cancer subtypes con-

sidered in the previous section, to identify potential repurposable drugs specifically for
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triple negative beast cancer tumors. In order to do so for identifying candidate genes, we

treat triple negative samples in METABRIC as one group and all the remaining samples

as another group. By running the pipeline introduced in [73], we identify the most dis-

criminative genes in terms of gene expression and copy number aberration between TN and

non-TN groups. Then, using the pipelines depicted in Figures 3.1 and 3.2, we identify the

top repurposing single and paired drugs for the TNBC subtype.

3.3 Results and Discussion

For reference, Table 3.1 shows the list of drugs that have been approved by FDA to date

for breast cancer treatment [1]. The results show that the proposed model is able to identify

highly negative correlated drugs corresponding to each of ten breast cancer subtypes, both

when used in single drug mode or for identifying pairs of drugs. Some of the well-known

and widely used breast cancer drugs have been identified among the top drugs, which again

shows that the proposed approach was able to pick up current drugs with high accuracy. For

example, Goserelin (Zoladex) is a well known and FDA approved hormone therapy drug

for treatment of BC that showed up in top ten drugs for subtypes 2 and 8. Also, Palbociclib

(Ibrance) is another well known and FDA approved chemo therapy drug for treatment of

BC that showed up in top ten drugs for subtype 4. Moreover, Ruxolitinib, which showed up

in top ten drugs for 9 out of 10 subtypes (table 3.2) has been under several trials and studies

regarding its potential inhibiting effects on BC [105, 193].
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Table 3.1: List of FDA-approved drugs for breast cancer treatment.
Abemaciclib Kadcyla (Ado-Trastuzumab Emtansine)
Abitrexate (Methotrexate) Kisqali (Ribociclib)
Abraxane Lapatinib Ditosylate
Ado-Trastuzumab Emtansine Letrozole
Afinitor (Everolimus) Lynparza (Olaparib)
Anastrozole Megestrol Acetate
Aredia (Pamidronate Disodium) Methotrexate
Arimidex (Anastrozole) Methotrexate LPF (Methotrexate)
Aromasin (Exemestane) Mexate (Methotrexate)
Capecitabine Mexate-AQ (Methotrexate)
Clafen (Cyclophosphamide) Neosar (Cyclophosphamide)
Cyclophosphamide Neratinib Maleate
Cytoxan (Cyclophosphamide) Nerlynx (Neratinib Maleate)
Docetaxel Nolvadex (Tamoxifen Citrate)
Doxorubicin Hydrochloride Olaparib
Ellence (Epirubicin Hydrochloride) Paclitaxel
Epirubicin Hydrochloride Ixempra (Ixabepilone)
Eribulin Mesylate Palbociclib
Everolimus Pamidronate Disodium
Exemestane Perjeta (Pertuzumab)
5-FU (Fluorouracil Injection) Pertuzumab
Fareston (Toremifene) Ribociclib
Faslodex (Fulvestrant) Tamoxifen Citrate
Femara (Letrozole) Taxol (Paclitaxel)
Fluorouracil Injection Taxotere (Docetaxel)
Folex (Methotrexate) Thiotepa
Folex PFS (Methotrexate) Toremifene
Fulvestrant Trastuzumab
Gemcitabine Hydrochloride Tykerb (Lapatinib Ditosylate)
Gemzar (Gemcitabine Hydrochlo-
ride)

Velban (Vinblastine Sulfate)

Goserelin Acetate Velsar (Vinblastine Sulfate)
Halaven (Eribulin Mesylate) Verzenio (Abemaciclib)
Herceptin (Trastuzumab) Vinblastine Sulfate
Ibrance (Palbociclib) Xeloda (Capecitabine)
Ixabepilone Zoladex (Goserelin Acetate)
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Table 3.2: Rank comparison among the top 30 drugs across all 10 breast cancer subtypes
Overall Rank Drugs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Median

1 Ruxolitinib 1 3 2 43 1 1 2 2 2 1 2
2 Tranilast 4 12 11 193 7 11 4 43 32 4 11
3 Rupatadine 22 44 6 1 31 2 15 11 1 51 13
4 Ribavirin 2 10 7 2 9 20 60 66 21 17 13.5
5 Deferiprone 3 14 3 15 27 4 20 6 183 20 14.5
6 Etofylline-Clofibrate 16 29 9 20 15 45 5 15 45 9 15.5
7 Fingolimod 36 6 58 137 16 9 3 109 20 13 18
8 ICI-185282 61 4 21 46 17 7 14 39 35 3 19
9 PF-04217903 10 25 16 398 10 40 10 107 25 10 20.5

10 Raloxifene 30 43 26 7 25 31 8 4 3 75 25.5
11 EDTA 13 55 10 8 18 127 112 196 38 6 28
12 Amiprilose 23 46 57 13 42 10 61 14 7 34 28.5
13 Bafilomycin A1 101 28 33 6 21 34 21 30 191 5 29
14 Dexamethasone 27 21 91 171 32 68 23 87 17 23 29.5
15 Dofequidar 11 88 24 14 106 29 104 29 31 56 30
16 MK-1775 14 49 12 61 24 37 13 46 41 7 30.5
17 TG-100801 121 50 44 60 6 17 11 18 8 53 31
18 Swainsonine 15 58 17 34 90 48 63 28 23 27 31
19 Raclopride 24 54 13 4 30 36 19 71 137 36 33
20 L-690330 37 7 38 35 61 32 12 314 5 133 36
21 Phentermine 57 22 43 57 135 5 36 12 26 55 39.5
22 PHA-767491 64 8 8 153 13 257 9 325 379 15 39.5
23 PD-173074 59 18 42 108 37 27 17 356 15 142 39.5
24 Lidocaine 122 17 103 212 12 88 25 17 51 30 40.5
25 Mibampator 98 15 20 22 93 12 46 60 85 37 41.5
26 PD-153035 26 108 214 18 35 128 33 47 235 39 43
27 AKT-inhibitor-1-2 21 24 40 110 48 57 34 150 282 22 44
28 Maraviroc 41 77 25 9 41 3 48 149 132 415 44.5
29 SDZ-NKT-343 104 5 65 203 5 39 6 51 241 24 45
30 Clomipramine 48 198 37 177 22 46 44 155 153 32 47
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3.3.1 Single drug repurposing

Figure 3.3 shows the distribution of drug repurposing scores across the ten breast cancer

subtypes. There are a few interesting observations. First, the response level of different BC

subtypes to tested drugs are different. While the distribution of correlation scores among the

tested drugs versus some of the subtypes such as subtypes 1, 4 and 6 are relatively narrow

(which implies relatively lower response level of the aforementioned subtypes to the tested

drugs), in some other subtypes, such as subtypes 2 and 8, we observe a wider distribution

of these scores. This shows that effects of tested drugs could be widely different across

subtypes. The second observation is regarding the median of these scores. As shown in

the figure, in all subtypes, we observe a slight distribution bias toward negative repurposing

scores, which implies that the tested drugs tend to exhibit more of a therapeutic effect than

adverse effect.

Tables 3.3 to 3.12 show the top 20 inhibiting drugs corresponding to each of the ten

subtypes. These drugs fall into three categories. Experimental drugs are those that are at

the pre-clinical or at an animal testing stage. Investigational drugs are those that are in

stage I, II or III of human clinical trials. Finally, Approved drugs are those drugs that have

already been approved by FDA to be used for treatment of various diseases. Drugs that are

FDA approved to be used for BC treatment (i.e. those listed in 3.1) have been highlighted

in bold. Also, reference column lists any publication that suggested usage of that drug for

BC treatment.

Some of the drugs in these lists are well-known and have been used extensively for

either breast cancer or other types of cancer. For example, Raloxifene is among the top ten

drugs in most, if not all, of the ten subtypes. It was originally approved by FDA in 1997 for

the management and prevention of osteoporosis in postmenopausal women and reduction
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Figure 3.3: Distribution of drug-disease correlation for 3,742 drugs across 10 breast cancer
subtypes.



CHAPTER 3. 48

Table 3.3: Top 20 drugs corresponding to subtype 1
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Ruxolitinib 10 24 -0.589 Approved [105, 193]
2 Ribavirin 10 24 -0.556 Approved [43]
3 Deferiprone 0.04 24 -0.534 Approved [57, 72]
4 Tranilast 0.04 24 -0.523 Investigational [152]
5 Tadalafil 10 24 -0.521 Approved
6 Rimexolone 0.04 24 -0.515 Approved
7 Bardoxolone methyl 0.04 24 -0.511 Investigational [104, 220]
8 Sirolimus 0.04 24 -0.507 Approved [90, 140]
9 Crizotinib 0.04 24 -0.503 Approved [19, 116]

10 PF-04217903 0.04 24 -0.499 Investigational
11 Dofequidar 10 24 -0.498 Experimental [164, 175]
12 GSK-2636771 10 24 -0.495 Investigational
13 Edetic acid 10 24 -0.494 Approved
14 MK-1775 10 24 -0.490 Investigational [18]
15 MF-101 10 24 -0.478 Investigational
16 Ranolazine 0.04 24 -0.476 Approved [112]
17 Semaxanib 0.04 24 -0.475 Experimental [101]
18 Iniparib 10 24 -0.474 Investigational [62]
19 AKT-inhibitor 1/2 10 24 -0.473 Experimental
20 Rupatadine 0.04 24 -0.473 Approved
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Table 3.4: Top 20 drugs corresponding to subtype 2
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Bromocriptine 0.04 24 h -0.93 Approved [180]
2 Goserelin-Acetate 0.04 24 h -0.8 Approved [226]
3 Ruxolitinib 10 24 h -0.8 Approved [105, 193]
4 ICI-185,282 0.04 24 h -0.78 Experimental
5 SDZ-NKT-343 10 24 h -0.75 Experimental
6 Fingolimod 0.04 24 h -0.72 Approved [172]
7 L-690330 10 24 h -0.71 Investigational
8 PHA-767491 10 24 h -0.68 Experimental [132]
9 Tolvaptan 10 24 h -0.67 Approved

10 Ribavirin 10 24 h -0.65 Approved [43]
11 Hymecromone 0.04 24 h -0.64 Investigational [6]
12 Tranilast 0.04 24 h -0.64 Investigational [152]
13 Sapitinib 10 24 h -0.64 Investigational [78]
14 Deferiprone 0.04 24 h -0.63 Approved [57, 72]
15 Mibampator 0.04 24 h -0.63 Investigational
16 Citrulline 0.04 24 h -0.63 Investigational
17 Lidocaine 0.04 24 h -0.63 Approved [47, 119]
18 PD-173074 10 24 h -0.62 Experimental [50]
19 Ibuprofen 10 24 h -0.62 Approved [156, 222]
20 Garcinol 10 24 h -0.62 Experimental [10, 174]
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Table 3.5: Top 20 drugs corresponding to subtype 3
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Bromocriptine 0.04 24 h -0.72 Approved [180]
2 Ruxolitinib 10 24 h -0.68 Approved [105, 193]
3 Deferiprone 0.04 24 h -0.62 Approved [57, 72]
4 Tadalafil 10 24 h -0.61 Approved
5 Sirolimus 0.04 24 h -0.58 Approved [90, 140]
6 Rupatadine 0.04 24 h -0.58 Approved
7 Ribavirin 10 24 h -0.57 Approved [43]
8 Pha-767491 10 24 h -0.57 Experimental [132]
9 Etofylline-Clofibrate 10 24 h -0.57 Approved

10 EDTA 10 24 h -0.56 Approved [21]
11 Tranilast 0.04 24 h -0.56 Investigational [152]
12 MK-1775 10 24 h -0.56 Investigational [18]
13 Raclopride 10 24 h -0.54 Investigational
14 Iniparib 10 24 h -0.54 Investigational [62]
15 Bexarotene 10 24 h -0.54 Approved [49]
16 PF-04217903 0.04 24 h -0.54 Investigational
17 Swainsonine 0.05 24 h -0.53 Experimental [148]
18 JTC-801 0.04 24 h -0.53 Experimental [115]
19 Ofloxacin 10 24 h -0.53 Approved [137]
20 Mibampator 0.04 24 h -0.52 Investigational
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Table 3.6: Top 20 drugs corresponding to subtype 4
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Rupatadine 0.04 24 h -0.58 Approved
2 Ribavirin 10 24 h -0.52 Approved [43]
3 Palbociclib 0.04 24 h -0.5 Approved [204]
4 Raclopride 10 24 h -0.48 Investigational
5 PHA-793887 10 24 h -0.47 Investigational
6 Bafilomycin A1 0.05 6 h -0.46 Experimental
7 Raloxifene 0.04 24 h -0.46 Approved [45]
8 EDTA 0.04 24 h -0.46 Approved [21]
9 Maraviroc 10 24 h -0.46 Approved [158]

10 Ebselen 10 24 h -0.45 Investigational [200]
11 Dasatinib 10 24 h -0.45 Approved [203]
12 Labetalol 0.04 24 h -0.45 Approved
13 Amiprilose 0.04 24 h -0.44 Experimental
14 Dofequidar 10 24 h -0.44 Investigational [173]
15 Deferiprone 0.04 24 h -0.44 Approved [57, 72]
16 Sapitinib 10 24 h -0.44 Investigational [78]
17 Calcitriol 0.04 24 h -0.44 Approved [197]
18 PD-153035 0.04 24 h -0.43 Investigational [77]
19 Finasteride 10 24 h -0.43 Approved [133]
20 Etofylline-Clofibrate 10 24 h -0.43 Approved
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Table 3.7: Top 20 drugs corresponding to subtype 5
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Ruxolitinib 10 24 h -0.93 Approved [105, 193]
2 AMG-837 0.04 24 h -0.83 Experimental
3 Citrulline 0.04 24 h -0.82 Investigational
4 Loperamide 10 24 h -0.77 Approved [66]
5 SDZ-NKT-343 10 24 h -0.74 Experimental
6 TG-100801 0.04 24 h -0.72 Investigational
7 Tranilast 0.04 24 h -0.72 Investigational [152]
8 Bisoprolol 10 24 h -0.71 Approved [216]
9 Ribavirin 10 24 h -0.7 Approved [43]

10 PF-04217903 0.04 24 h -0.7 Investigational
11 Sirolimus 0.04 24 h -0.69 Approved [90, 140]
12 Lidocaine 0.04 24 h -0.69 Approved [47, 119]
13 PHA-767491 10 24 h -0.68 Experimental [132]
14 WZ-4-145 0.04 3 h -0.68 Experimental
15 Etofylline-Clofibrate 10 24 h -0.67 Approved
16 Fingolimod 0.04 24 h -0.67 Approved [172]
17 ICI-185,282 0.04 24 h -0.67 Experimental
18 EDTA 10 24 h -0.67 Approved [21]
19 Labetalol 0.04 24 h -0.66 Approved
20 MF-101 10 24 h -0.66 Experimental
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Table 3.8: Top 20 drugs corresponding to subtype 6
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Ruxolitinib 10 24 h -0.67 Approved [105, 193]
2 Rupatadine 0.04 24 h -0.5 Approved
3 Maraviroc 10 24 h -0.49 Approved [158]
4 Deferiprone 0.04 24 h -0.49 Approved [57, 72]
5 Phentermine 0.04 24 h -0.49 Approved
6 Iniparib 10 24 h -0.48 Investigational [151]
7 ICI-185,282 0.04 24 h -0.48 Experimental
8 Racecadotril 0.04 24 h -0.48 Investigational
9 Fingolimod 0.04 24 h -0.47 Approved [172]

10 Amiprilose 0.04 24 h -0.47 Experimental
11 Tranilast 0.04 24 h -0.46 Investigational [152]
12 Mibampator 0.04 24 h -0.46 Investigational
13 Favipiravir 0.04 24 h -0.45 Approved
14 Selisistat 0.04 24 h -0.45 Experimental
15 ZD-7288 10 24 h -0.45 Experimental
16 Proglumide 10 24 h -0.44 Experimental
17 TG-100801 0.04 24 h -0.44 Investigational
18 Ranolazine 0.04 24 h -0.44 Approved [112]
19 Semaxanib 0.04 24 h -0.44 Investigational [101]
20 Ribavirin 10 24 h -0.44 Approved [43]
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Table 3.9: Top 20 drugs corresponding to subtype 7
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Bromocriptine 0.04 24 h -1 Approved [180]
2 Ruxolitinib 10 24 h -0.83 Approved [105, 193]
3 Fingolimod 0.04 24 h -0.74 Approved [172]
4 Tranilast 0.04 24 h -0.72 Investigational [152]
5 Etofylline-Clofibrate 10 24 h -0.71 Approved
6 SDZ-NKT-343 10 24 h -0.71 Experimental
7 Isbufylline 0.04 24 h -0.71 Experimental
8 Raloxifene 0.04 24 h -0.7 Approved [45]
9 PHA-767491 10 24 h -0.69 Experimental [132]

10 PF-04217903 0.04 24 h -0.69 Investigational
11 TG-100801 0.04 24 h -0.69 Investigational
12 L-690330 10 24 h -0.69 Investigational
13 MK-1775 10 24 h -0.68 Investigational [26, 55]
14 ICI-185,282 0.04 24 h -0.68 Experimental
15 Rupatadine 0.04 24 h -0.67 Approved
16 Hymecromone 0.04 24 h -0.66 Investigational [6]
17 PD-173074 10 24 h -0.66 Experimental [50]
18 MG-132 20 24 h -0.66 Experimental [23]
19 Raclopride 10 24 h -0.65 Investigational
20 Deferiprone 0.04 24 h -0.65 Approved [57, 72]
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Table 3.10: Top 20 drugs corresponding to subtype 8
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Semaxanib 0.04 24 h -0.6 Investigational [101]
2 Ruxolitinib 10 24 h -0.56 Approved [105, 193]
3 Goserelin-Acetate 0.04 24 h -0.55 Approved [226]
4 Raloxifene 0.04 24 h -0.54 Approved [45]
5 XMD11-85h 0.04 3 h -0.49 Experimental
6 Deferiprone 0.04 24 h -0.49 Approved [57, 72]
7 Cinepazide 0.04 24 h -0.48 Investigational
8 Ebselen 10 24 h -0.48 Investigational [200]
9 WH-4-025 0.04 24 h -0.48 Experimental

10 Nimesulide 0.04 24 h -0.47 Approved [95]
11 Rupatadine 0.04 24 h -0.47 Approved
12 Phentermine 0.04 24 h -0.47 Approved
13 MF-101 10 24 h -0.47 Experimental
14 Amiprilose 0.04 24 h -0.47 Experimental
15 Etofylline-Clofibrate 10 24 h -0.47 Approved
16 XMD-1150 10 3 h -0.46 Experimental
17 Lidocaine 10 24 h -0.46 Approved [47, 119]
18 TG-100801 0.04 24 h -0.46 Investigational
19 Dasatinib 10 24 h -0.45 Approved [203]
20 Apitolisib 10 24 h -0.45 Investigational [93]
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Table 3.11: Top 20 drugs corresponding to subtype 9
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Rupatadine 0.04 24 h -0.72 Approved
2 Ruxolitinib 10 24 h -0.69 Approved [105, 193]
3 Raloxifene 0.04 24 h -0.65 Approved [45]
4 Emtricitabine 10 24 h -0.65 Approved [201]
5 L-690330 10 24 h -0.65 Investigational
6 Tepotinib 10 24 h -0.64 Approved [87]
7 Amiprilose 0.04 24 h -0.63 Experimental
8 TG-100801 0.04 24 h -0.61 Investigational
9 MG-132 20 24 h -0.61 Experimental [23]

10 Belinostat 0.04 24 h -0.59 Approved [124, 235]
11 Bromocriptine 0.04 24 h -0.59 Approved [180]
12 Vidarabine 0.04 24 h -0.59 Approved
13 Ranolazine 0.04 24 h -0.58 Approved [112]
14 Lisinopril 0.04 24 h -0.58 Approved [216]
15 PD-173074 10 24 h -0.57 Experimental [50]
16 Vilazodone 10 24 h -0.57 Approved [84]
17 Dexamethasone 0.04 24 h -0.57 Approved [39, 225]
18 Semaxanib 0.04 24 h -0.57 Investigational [101]
19 Mocetinostat 0.04 24 h -0.57 Investigational [102]
20 Fingolimod 0.04 24 h -0.56 Approved [172]
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Table 3.12: Top 20 drugs corresponding to subtype 10
Rank Drug Dosage

(µm)
Treatment
Time
(hours)

Score Drug Type References

1 Ruxolitinib 10 24 h -0.71 Approved [105, 193]
2 Bitopertin 10 24 h -0.66 Investigational
3 ICI-185,282 0.04 24 h -0.66 Experimental
4 Tranilast 0.04 24 h -0.65 Investigational [152]
5 Bafilomycin A1 0.05 6 h -0.65 Experimental
6 EDTA 10 24 h -0.64 Approved [21]
7 MK-1775 10 24 h -0.63 Investigational [26, 55]
8 Emtricitabine 10 24 h -0.63 Approved [201]
9 Etofylline-Clofibrate 10 24 h -0.63 Approved

10 PF-04217903 0.04 24 h -0.61 Investigational
11 Sapitinib 10 24 h -0.61 Investigational [78]
12 Bisoprolol 10 24 h -0.61 Approved [216]
13 Fingolimod 0.04 24 h -0.61 Approved [172]
14 XMD11-85h 0.04 3 h -0.61 Experimental
15 PHA-767491 10 24 h -0.6 Experimental [132]
16 Finasteride 10 24 h -0.6 Approved [133]
17 Ribavirin 10 24 h -0.6 Approved [43]
18 Labetalol 0.04 24 h -0.6 Approved
19 MG-132 20 24 h -0.6 Experimental [23]
20 Deferiprone 0.04 24 h -0.59 Approved [57, 72]
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in risk for invasive breast cancer. However, recent studies have shown that this drug might

be effective for breast cancer treatments [9,160]. Also, Ruxolitinib, which is among the top

three drugs for all but subtype 4, was approved by the FDA for the treatment of patients

with intermediate or high-risk myelofibrosis [134], though it is currently used in multiple

clinical trials in patients with metastatic breast cancer as well [127, 193].

The findings discussed above show that the proposed method is able to correctly identify

Raloxifene and Ruxolitinib drugs as very good candidates for most of the BC subtypes. We

also observe investigational and experimental drugs in the list for each of the subtypes that

could have therapeutic effects on each BC subtype. For example, PHA-793887 is a potent

inhibitor of multiple cyclin-dependent kinases such as CDK2, CDK5 and CDK7, and has

been shown to possess the ability to affect the differentiation of melanoma cells. [35, 60].

This drug is currently in a clinical trial phase [4].

In another comparison, Table 3.2 shows the top 30 drugs ranked by their median score

across all ten subtypes. As shown in the table, some drugs such as Palbociclib and PHA-

793887 demonstrate potential effectiveness across all of the subtypes by being ranked

among the top drugs. In contrast, some others such as Silmitasertib and Proglumide demon-

strate potential effectiveness in some of the subtypes, while being less effective in others.

Also, Figures 3.4 and 3.5 show the perturbation scores and drug-disease network of one

of the top identified drugs, Ruxolitinib, for Subtype 1. Ruxolitinib, as mentioned earlier in

this paper, is a small-molecule kinase inhibitor that is selective for the Janus Associated

Kinases (JAK) 1 and 2, which are responsible for the mediation of cytokine and growth

factor signaling, which, in turn, affects the immune function and hematopoiesis [211].



CHAPTER 3. 59

Figure 3.4: Perturbation scores across all genes involved in drug-disease network of top
repurposed drug (Ruxolitinib) corresponding to subtype 1. Red bars depict the scores of
subtype 1, while green bars depict the scores for the repurposed drug.
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Figure 3.5: Unified Global Human Pathway (UGHP) subnetwork corresponding to the top
repurposed drug (Ruxolitinib) and subtype 1. Blue nodes depict Drug related genes, while
red nodes depict Subtype 1 related candidate genes involved in this drug-disease pathway.
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3.3.2 Paired Drug Repurposing

Figures 3.6 to 3.15 depict the top pairs of drugs with the highest anti-correlation scores

with Subtypes 1-10 of breast cancer. Here, we show the pairs of drugs that have a better

anti-correlation score than the best single drug for each of these subtypes. Also, we limit

the number of pairs to a maximum of 100 top pairs of such drugs, if there is more than 100

pairs with better score than the best single drug.

Moreover, Tables 3.13 to 3.22 show top ten pairs of drugs for each of the ten breast

cancer subtypes. Observing these tables, we infer that many of the top ranked pairs of

drugs contain at least one individual top ranked drug, though there are some notable ex-

ceptions. For example, drugs TG-100801 and Phensuximide are not even among the top

50 repurposed drugs corresponding to Subtype 2 when administered independently with

mere correlation scores of -0.57 and -0.55 to subtype 2, respectively. However, when ad-

ministered together, the correlation between that pair and subtype 2 grows to a noticeable

-0.97 range, which places the pair in the second spot among the top repurposed pairs for

that subtype. We observe a similar catalyzing effect in combination of Pregnenolone and

Bromocriptine with respect to subtype 4, and combination of Amikacin and Tadalafil with

respect to subtype 5. Also, Figure 3.16 depicts drug-disease network (DDN) of two per-

turbation agents (Tadalafil and PF-04620110) and subtype 1 of breast cancer. Blue nodes

depict drug related genes, while red nodes depict candidate genes related to subtype 1. Also

solid arrows depict activating relationship between involved genes, while dotted arrow de-

picts a suppressing relationship.

Goserelin-Acetate, which is sold under brand name Zoladex among others, is as a sex

hormone suppression drug approved by FDA intended for use in the treatment of breast

and prostate cancer [113]. As shown in Tables 3.4 and 3.14, Goserelin-Acetate as a single
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Figure 3.6: Top pairs of drugs with highest anti-correlation corresponding to subtype 1.
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Figure 3.7: Top pairs of drugs with highest anti-correlation corresponding to subtype 2.



CHAPTER 3. 64

Figure 3.8: Top pairs of drugs with highest anti-correlation corresponding to subtype 3.
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Figure 3.9: Top pairs of drugs with highest anti-correlation corresponding to subtype 4.
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Figure 3.10: Top pairs of drugs with highest anti-correlation corresponding to subtype 5.
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Figure 3.11: Top pairs of drugs with highest anti-correlation corresponding to subtype 6.
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Figure 3.12: Top pairs of drugs with highest anti-correlation corresponding to subtype 7.
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Figure 3.13: Top pairs of drugs with highest anti-correlation corresponding to subtype 8.
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Figure 3.14: Top pairs of drugs with highest anti-correlation corresponding to subtype 9.
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Figure 3.15: Top pairs of drugs with highest anti-correlation corresponding to subtype 10.
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Figure 3.16: Drug-disease network (DDN) of Tadalafil and PF-04620110 drugs with sub-
type 1. Blue nodes depict drug related genes, while red nodes depict candidate genes related
to subtype 1.
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Table 3.13: Top 10 pairs of drugs with their correlation with subtype 1 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Ruxolitinib GSK-

2636771
-0.76 -0.59 -0.50 1 1 12

Tadalafil PF-
04620110

-0.70 -0.52 -0.42 2 5 66

Deferiprone Rimexolone -0.69 -0.53 -0.51 3 3 6
Deferiprone Rupatadine -0.69 -0.53 -0.47 4 3 22
Raclopride Racecadotril -0.69 -0.47 -0.45 5 24 35
Tranilast GSK-

2636771
-0.68 -0.52 -0.50 6 4 12

Tadalafil Amikacin -0.68 -0.52 -0.41 7 5 71
L-690330 Favipiravir -0.67 -0.45 -0.44 8 37 44

Deferiprone Etofylline-
Clofibrate

-0.67 -0.53 -0.48 9 3 16

Ruxolitinib Ribavirin -0.67 -0.59 -0.56 10 1 2

Table 3.14: Top 10 pairs of drugs with their correlation with subtype 2 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Goserelin-Acetate Norethindrone -0.97 -0.80 -0.54 1 2 75

TG-100801 Phensuximide -0.97 -0.57 -0.55 2 50 64
Goserelin-acetate Phensuximide -0.96 -0.80 -0.55 3 2 64
Goserelin-acetate Nimesulide -0.96 -0.80 -0.54 4 2 66

L-690330 Favipiravir -0.94 -0.71 -0.53 5 7 83
Dopamine Nimesulide -0.90 -0.57 -0.54 6 51 66

TG-100801 AMG-232 -0.89 -0.57 -0.56 7 50 59
Tolvaptan Zileuton -0.89 -0.67 -0.53 8 9 87

Emtricitabine Finasteride -0.89 -0.60 -0.57 9 33 53
Nimesulide Selamectin -0.89 -0.54 -0.54 10 66 72
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Table 3.15: Top 10 pairs of drugs with their correlation with subtype 3 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Tadalafil Acyclovir -0.79 -0.61 -0.45 1 4 73
Tadalafil Fomepizole -0.78 -0.61 -0.43 2 4 100

Rupatadine ICI-185282 -0.77 -0.58 -0.52 3 6 21
Deferiprone Etofylline-Clofibrate -0.76 -0.62 -0.57 4 3 9
Deferiprone Rupatadine -0.75 -0.62 -0.58 5 3 6
Ruxolitinib Ribavirin -0.74 -0.68 -0.57 6 2 7
L-690330 Favipiravir -0.74 -0.49 -0.47 7 38 54
Raclopride Hymecromone -0.74 -0.54 -0.48 8 13 48

EDTA pregnenolone -0.74 -0.56 -0.51 9 10 28
Raclopride Artesunate -0.74 -0.54 -0.47 10 13 59

Table 3.16: Top 10 pairs of drugs with their correlation with subtype 4 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Pregnenolone Bromocriptine -0.99 -0.42 -0.40 1 24 38

EDTA EMD-1214063 -0.69 -0.46 -0.35 2 8 81
Maraviroc Pregnenolone -0.68 -0.46 -0.42 3 9 24
Rupatadine TG-100801 -0.68 -0.58 -0.37 4 1 60
Maraviroc TG-100801 -0.67 -0.46 -0.37 5 9 60
Finasteride Emtricitabine -0.66 -0.43 -0.37 6 19 68
Maraviroc Tadalafil -0.66 -0.46 -0.35 7 9 89
Dofequidar Triflupromazine -0.66 -0.44 -0.36 8 14 78
Dofequidar PF-04620110 -0.66 -0.44 -0.38 9 14 55
Dofequidar Finasteride -0.65 -0.44 -0.43 10 14 19
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Table 3.17: Top 10 pairs of drugs with their correlation with subtype 5 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
TG-100801 Phensuximide -0.97 -0.72 -0.63 1 6 28
Ruxolitinib Phensuximide -0.89 -0.93 -0.63 2 1 28
Ruxolitinib AMG-837 -0.89 -0.93 -0.83 3 1 2
AMG-837 Phensuximide -0.89 -0.83 -0.63 4 2 28
Ruxolitinib Citrulline -0.89 -0.93 -0.82 5 1 3
Amikacin Tadalafil -0.88 -0.59 -0.57 6 47 65

L-citrulline PD-153035 -0.88 -0.82 -0.62 7 3 35
Ruxolitinib AMG-232 -0.88 -0.93 -0.56 8 1 73

Bardoxolone-methyl AP-26113 -0.88 -0.63 -0.58 9 33 52
Ruxolitinib Bisoprolol -0.88 -0.93 -0.71 10 1 8

Table 3.18: Top 10 pairs of drugs with their correlation with subtype 6 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Ruxolitinib Bitopertin -0.73 -0.67 -0.40 1 1 44
Raclopride Bitopertin -0.72 -0.41 -0.40 2 36 44
Maraviroc Tadalafil -0.70 -0.49 -0.43 3 3 23
Favipiravir L-690330 -0.70 -0.45 -0.42 4 13 32
Ruxolitinib MG-132 -0.68 -0.67 -0.38 5 1 55
Rupatadine Bitopertin -0.67 -0.50 -0.40 6 2 44
Maraviroc Bitopertin -0.66 -0.49 -0.40 7 3 44
Raclopride Cevimeline -0.66 -0.41 -0.36 8 36 74
Deferiprone Racecadotril -0.66 -0.49 -0.48 9 4 8
Rupatadine Deferiprone -0.66 -0.50 -0.49 10 2 4
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Table 3.19: Top 10 pairs of drugs with their correlation with subtype 7 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
L-690330 Favipiravir -0.93 -0.69 -0.54 1 12 87
MG-132 Finasteride -0.92 -0.66 -0.55 2 18 83

TG-100801 Phensuximide -0.91 -0.69 -0.61 3 11 37
Raclopride Ketorolac -0.89 -0.65 -0.57 4 19 57

Hymecromone Raclopride -0.88 -0.66 -0.65 5 16 19
Ruxolitinib ADMA -0.87 -0.83 -0.57 6 2 56
Ruxolitinib Dalfampridine -0.87 -0.83 -0.63 7 2 24
TG-100801 AMG-232 -0.87 -0.69 -0.59 8 11 51
Tolvaptan Zileuton -0.87 -0.64 -0.59 9 22 49
Isbufylline Favipiravir -0.86 -0.71 -0.54 10 7 87

Table 3.20: Top 10 pairs of drugs with their correlation with subtype 8 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Emaxanib Isradipine -0.71 -0.60 -0.42 1 1 34
Semaxanib Goserelin-Acetate -0.68 -0.60 -0.55 2 1 3

Goserelin-Acetate Formoterol -0.68 -0.55 -0.43 3 3 31
Goserelin-Acetate Camptothecin -0.66 -0.55 -0.38 4 3 72

Deferiprone Racecadotril -0.66 -0.49 -0.40 5 6 56
Deferiprone Etofylline-Clofibrate -0.65 -0.49 -0.47 6 6 15
Semaxanib Raloxifene -0.65 -0.60 -0.54 7 1 4
Lidocaine Romidepsin -0.64 -0.46 -0.41 8 17 49

Goserelin-Acetate Telatinib -0.64 -0.55 -0.41 9 3 44
Isradipine Telatinib -0.64 -0.42 -0.41 10 34 44
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Table 3.21: Top 10 pairs of drugs with their correlation with subtype 9 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Rupatadine TG-100801 -0.85 -0.72 -0.61 1 1 8
L-690330 Favipiravir -0.83 -0.65 -0.48 2 5 76

Rupatadine Lidocaine -0.82 -0.72 -0.51 3 1 51
Rupatadine MG-132 -0.82 -0.72 -0.61 4 1 9
Rupatadine ICI-185,282 -0.81 -0.72 -0.52 5 1 35
Rupatadine Telatinib -0.79 -0.72 -0.47 6 1 82
Rupatadine Vidarabine -0.79 -0.72 -0.59 7 1 12

Garcinol CL-218872 -0.78 -0.56 -0.49 8 24 60
Rupatadine Bitopertin -0.77 -0.72 -0.48 9 1 71

Emtricitabine Bitopertin -0.77 -0.65 -0.48 10 4 71

Table 3.22: Top 10 pairs of drugs with their correlation with subtype 10 of breast cancer,
considering both combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Tadalafil Telatinib -0.86 -0.55 -0.53 1 47 61

Bitopertin Lidocaine -0.85 -0.66 -0.57 2 2 35
Anecortave-Acetate Goserelin-Acetate -0.84 -0.56 -0.52 3 38 64

Finasteride Tadalafil -0.84 -0.60 -0.55 4 16 47
Bitopertin Raclopride -0.83 -0.66 -0.57 5 2 36

SDZ-NKT-343 Goserelin-acetate -0.83 -0.59 -0.52 6 24 64
Goserelin-Acetate Vardenafil -0.81 -0.52 -0.48 7 64 96

Favipiravir Isbufylline -0.81 -0.59 -0.58 8 25 28
Bisoprolol Finasteride -0.80 -0.61 -0.60 9 12 16
Finasteride Garcinol -0.80 -0.60 -0.55 10 16 48
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drug produces an correlation score of -0.8 with respect to subtype 2 of BC, which places it

in the top spot among the single drugs for this subtype. However, if combined with either

Norethindrone, Phensuximide or Nimesulide, the correlation score decreases to almost -

0.97. This means that combining either of the aforementioned drugs with Goserelin-Acetate

can result in a more effective therapeutic drug for this BC subtype.

3.3.3 Triple Negative Breast Cancer Subtype

Table 3.23 shows the identified driver genes corresponding to the TN group. Moreover,

Table 3.24 shows the top 20 single repurposed drugs for the triple negative breast cancer

(TNBC) subtype. As shown in the table, Ruxolitinib is by far the most negatively correlated

drug for TNBC subtype and can be investigated further for its effectiveness on this particular

type of breast cancer [105, 117, 193].

Moreover, Table 3.25 and Figure 3.17 show the top 10 pairs of repurposed drugs and

their corresponding scores with respect to TNBC subtype. We observe that despite being the

tenth repurposed single drug, Bromocriptine is managed to become one of the most effec-

tive repurposed drugs when paired with Isradipin, Emtricitabine and Etofylline-Clofibrate.

Although Bromocriptine has been suggested in earlier studies as a potential repurposed

drug in cancer therapy [180], these new combinations have not seem to be evaluated so

far for breast cancer treatment, which can be investigated further both computationally and

clinically. Another interesting observation from Tables 3.24, 3.25 is that there are only four

pairs of drugs with anti-correlation scores better than Ruxolitinib as the best single drug

identified for TNBC subtype.

Based on these observations, we infer that from both single drug and paired drug ex-

periments, there are some promising drugs that can be repurposed either individually or
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Figure 3.17: Top pairs of drugs with highest anti-correlation corresponding to TNBC sub-
type.
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Table 3.23: Identified driver genes associated with triple negative breast cancer subtype.
ACRV1 ADCY9 AKT2 ALOX12B APTX C17orf100
C1QBP CALM2 CARD18 CLPSL1 DARS2 DEFB136
DHX33 EEF1E1 EHHADH ELAC2 EPPIN FAXDC2
FOXO3 GAB2 GAL3ST3 GFER GJA10 GUCA2A
HACE1 HP HTR3D IFNA21 KLHDC8A LDOC1L

LINC00628 LINC00919 MFAP4 MPRIP MRGPRF MRPL13
MUC21 OR1S1 OR3A1 PLEKHA8 PMCHL1 PNPLA3
POGK POLR3G PRPH2 RFPL4B SDHC SIRT5

SLC1A4 SLC25A11 SLC35F2 SLFN12L SNX29 SRPK1
STOML2 SUV39H2 TAS2R20 TATDN1 THOC1 TOMM22
TRIM72 TRMT12 TWIST2 TXNDC17 URB2 VDAC3

WFDC10A ZC3H7B ZNF23

Table 3.24: Top 20 drugs along with their ranking corresponding to TNBC subtype.
Rank Drug Name Pearson Correlation Dosage Time

1 Ruxolitinib -0.765 10 24 h
2 Raloxifene -0.652 0.04 24 h
3 PF-04217903 -0.649 0.04 24 h
4 PD-173074 -0.603 10 24 h
5 TG-100801 -0.591 0.04 24 h
6 Dexamethasone -0.589 0.04 24 h
7 Semaxanib -0.588 0.04 24 h
8 Rupatadine -0.575 0.04 24 h
9 Tranilast -0.574 0.04 24 h

10 Bromocriptine -0.565 0.04 24 h
11 ICI-185282 -0.562 0.04 24 h
12 Hymecromone -0.558 0.04 24 h
13 Emtricitabine -0.556 10 24 h
14 Phentermine -0.554 0.04 24 h
15 Fludarabine-Phosphate -0.548 10 24 h
16 JTC-801 -0.547 0.04 24 h
17 AMG-232 -0.541 10 24 h
18 Lidocaine -0.525 0.04 24 h
19 Amiprilose -0.520 0.04 24 h
20 Labetalol -0.515 0.04 24 h
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Table 3.25: Top 10 pairs of drugs with their correlation with respect to TN breast cancer
subtype, both when they are combined and individually.

Drug1 Drug2 C. Cor. Cor. 1 Cor. 2 C. Rank Rank 1 Rank 2
Bromocriptine Isradipine -0.85 -0.57 -0.47 1 10 51

Cinepazide Vidarabine -0.80 -0.45 -0.45 2 74 75
Bromocriptine Emtricitabine -0.79 -0.57 -0.56 3 10 13
Bromocriptine Etofylline-Clofibrate -0.77 -0.57 -0.51 4 10 22
Emtricitabine Finasteride -0.76 -0.56 -0.50 5 13 26

JTC-801 Telatinib -0.75 -0.55 -0.47 6 16 47
Ruxolitinib Dalfampridine -0.74 -0.77 -0.50 7 1 31
Semaxanib Isradipine -0.74 -0.59 -0.47 8 7 51
Ruxolitinib Pregnenolone -0.74 -0.77 -0.48 9 1 40

Tadalafil Acyclovir -0.74 -0.47 -0.46 10 43 58

in combination with another drug (as a pair) with potential therapeutic effects for each of

the ten breast cancer subtypes. Some of these drugs such as Ruxolitinib have a high anti-

correlation score for most of the subtypes, while some of the drugs such as Maraviroc [158]

seem to be more effective on a particular subtype rather than on others. The fact that the

top single drug, Ruxolitinib, is currently in multiple clinical trials in patients with metastatic

breast cancer [127,193] shows that the proposed method is able to computationally predict

the potential therapeutic effect of this drug on multiple breast cancer subtypes, as well as

on TNBC subtype. Indeed, further wet lab analysis is needed to determine the therapeutic

level of identified drugs on each breast cancer subtype.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In Chapter 2 We have introduced a novel framework for identifying NBs related to each of

the ten breast cancer subtypes. In the proposed framework, we are :

• Using CNA/CNV information along with GE data to determine a set of candidate

genes for each breast cancer subtype.

• Using identified seeds from the previous step to find the differential NBs of a given

subtype with the candidate genes already generated for the subtype.

• Training a random forest classifier for each subtype using biomarkers in NB of the

corresponding BC subtype to measure the performance of each NB in separating one

BC subtype from the rest using different performance measures.

Our results show that NBs can separate one subtype from others with very high degree

of accuracy. This may provide great utility in properly stratifying patients for treatment.
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Moreover, the obtained NBs may also allow breast cancer researchers to gain insight into

the mechanisms driving different breast cancer subtypes.

Also, using the identified candidate genes in Chapters 2 and 3, we proposed a network-

based computational drug repurposing framework where we are :

• Creating a drug-disease network for each drug and BC subtype where drug genes ob-

tained from LINCS database and the disease genes coming from previously identified

candidate genes.

• Creating a universal pathway network by combining all available pathways in KEGG

database and super-imposing those drug and disease genes on the pathway network

and then finding all the shortest paths between each drug gene to each disease gene.

• Calculating the correlation of all the genes in the that network when we use drug

induced gene expression versus using disease induced gene expression data.

• Finding those drugs that have a highly negative correlation with each subtype as a

potential drug with therapeutic effects.

• Extending this analysis to use a combination of two drugs and measuring the effect

of each combination on the disease.

Some of the top identified drugs are either known (breast) cancer drugs or in different

trial phases to be repurposed for breast or other types of cancer, while some of the identified

single or paired drugs have not been used for breast cancer treatment yet, which provides

opportunity for further clinical experiments and trials. Using genomic and transcriptomic

data as well as both copy number variations and copy number aberrations would help the

initial process to identify the driver genes more effectively and hence finding the final set

of repourposed drugs that can be highly effective for treatment of other types of cancer.
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4.2 Future Work

Some of the potential future work related to Chapter 2 is as follows:

• Taking into the account other types of biological information such as pathway data

could help finding better NBs with ability of including that information during net-

work building process.

• While some of the candidate genes identified here are well known, there are some

other candidate genes that have not been explored generally in cancer and specifically

in breast cancer research. Some of those genes might act as one of the central hubs

in the network, which makes their impact even more prominent. Further research is

needed on those genes to understand the mechanism of action and how can they be

activated/inhibited.

Moreover, Some of the potential future work related to Chapter 3 is as follows:

• The proposed drug repurposing framework has the potential of identifying a combi-

nation of more than two drugs, which could help identifying new and enhanced sets

of drugs for various types of cancer as well as other types of diseases.

• The current framework can be extended to leverage more complex and nonlinear

combinations of drugs in order to find the most suitable sets of drugs for each disease.

• Since for the simplicity of the process we excluded pairs of drugs with known drug-

drug interference, potential drug-drug interactions have not been considered yet.

Thus, another possible future work could be extending the framework to include such

pairs of drugs with known interactions and their effect on the disease.
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[39] Frederic Buxant, Nadège Kindt, Guy Laurent, Jean-Christophe Noël, and Sven
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[194] Lovro Šubelj and Marko Bajec. Unfolding communities in large complex networks:

Combining defensive and offensive label propagation for core extraction. Physical

Review Letters, 83(3):036103, 2011.

[195] Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento, Jiayu Zhou,

and Fei Wang. Graph convolutional networks for computational drug development

and discovery. Briefings in Bioinformatics, 21(3):919–935, 2020.

[196] Yi Sun, Zhen Sheng, Chao Ma, Kailin Tang, Ruixin Zhu, Zhuanbin Wu, Ruling Shen,

Jun Feng, Dingfeng Wu, Danyi Huang, et al. Combining genomic and network char-

acteristics for extended capability in predicting synergistic drugs for cancer. Nature

Communications, 6:8481, 2015.

[197] Srilatha Swami, Aruna V Krishnan, Jennifer Y Wang, Kristin Jensen, Lihong Peng,

Megan A Albertelli, and David Feldman. Inhibitory effects of calcitriol on the growth



BIBLIOGRAPHY 115

of mcf-7 breast cancer xenografts in nude mice: selective modulation of aromatase

expression in vivo. Hormones and Cancer, 2(3):190–202, 2011.

[198] Rebecca R Swenson, Christie J Rizzo, Larry K Brown, Nanetta Payne, Ralph J Di-

Clemente, Laura F Salazar, Peter A Vanable, Michael P Carey, Robert F Valois,

Daniel Romer, et al. Prevalence and correlates of hiv testing among sexually ac-

tive african american adolescents in four us cities. Sexually Transmitted Diseases,

36(9):584, 2009.

[199] Ping Tang, Jianmin Wang, and Patria Bourne. Molecular classifications of breast

carcinoma with similar terminology and different definitions: are they the same?

Human Pathology, 39(4):506–513, 2008.

[200] Noura M Thabet and Enas M Moustafa. Synergistic effect of ebselen and gamma

radiation on breast cancer cells. International Journal of Radiation Biology,

93(8):784–792, 2017.

[201] Kutlwano Thabethe, Gbenga Adefolaju, and Margot Hosie. An in vitro study of

the effects of emtricitabine, tenofovir disoproxil fumarate and efavirenz on a breast

cancer cell line, mcf-7. Journal of Basic and Applied Scientific Research, 3:444–452,

2013.

[202] Jeffrey G Thomas, James M Olson, Stephen J Tapscott, and Lue Ping Zhao. An effi-

cient and robust statistical modeling approach to discover differentially expressed

genes using genomic expression profiles. Genome Research, 11(7):1227–1236,

2001.



BIBLIOGRAPHY 116

[203] Jun Tian, Fatmah Al Raffa, Meiou Dai, Alaa Moamer, Baharak Khadang, Ibrahim Y

Hachim, Khldoun Bakdounes, Suhad Ali, Bertrand Jean-Claude, and Jean-Jacques

Lebrun. Dasatinib sensitises triple negative breast cancer cells to chemotherapy by

targeting breast cancer stem cells. British Journal of Cancer, 119(12):1495–1507,

2018.

[204] Nicholas C Turner, Jungsil Ro, Fabrice André, Sherene Loi, Sunil Verma, Hiroji
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