
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2023 

Comparative Analysis of Membership Inference Attacks in Comparative Analysis of Membership Inference Attacks in 

Federated Learning Federated Learning 

Saroj Dayal 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Dayal, Saroj, "Comparative Analysis of Membership Inference Attacks in Federated Learning" (2023). 
Electronic Theses and Dissertations. 9069. 
https://scholar.uwindsor.ca/etd/9069 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 



4. COUNTERMEASURES

training, that is, when using fit(), the layer normalizes its output using the mean and

standard deviation of the current batch of inputs. During inference, that is, when

using evaluate() or predict(), the layer normalizes its output using a moving average

of the mean and standard deviation of the batches it has noticed during training. As

such, the layer will only normalize its inputs during inference after training on data

with similar statistics to the inference data. For our experiments, we used TensorFlow

Keras Batch normalization [7] to implement this countermeasure. An illustration of

BN is shown in Figure 4.5.1. Normalization is used as a defense in label-only MIA,

and results show that regularisation and normalization can slightly reduce average

attack accuracy [20].

Fig. 4.5.1: Batch normalization layers [21]

4.6 Masking

Masking (M) informs sequence-processing layers that specific timesteps in the input

are missing and should be skipped when processing the data [5]. If all values in

the input tensor at that timestep are equal to the mask value, the timestep will be

27



4. COUNTERMEASURES

masked in all downstream layers. For our experiments, we used TensorFlow Keras

Masking [5] to implement this countermeasure. A general visualization of masking is

shown in an MNIST example in Figure 4.6.1. Our work is the first to utilize it as a

protection against MIA in both CL and FL setting.

Fig. 4.6.1: Masking on MNIST images [50]

4.7 Activity Regularization

Activity Regularization (AR) is a neural network method to learn the data’s internal

representations. L1 regularizer and L2 regularizer are the two regularisation tech-

niques [3]. L1 regularization penalizes the sum of absolute values of the weights,

whereas L2 regularization penalizes the sum of squares of the weights. The L1 and

L2 have stated as the L1 norm allows some weights to be significant while driving oth-

ers to zero. It penalizes the actual value of a weight. The L2 norm causes all weights

to decrease in size. It penalizes the square value of a weight. For our experiments,

we used TensorFlow Keras Activity regularization [6] to implement this countermea-

sure and set the L1 and L2 regularization factors at 0.01. Shokri et al. [46] used the

conventional L2-regularizer as a defense technique in the CL setting to overcome the

MIA on ML models trained using a neural network.

4.8 Differential Privacy

Differential Privacy (DP) is a framework for estimating the privacy provided by an

algorithm [8]. Through DP, one can design machine learning algorithms that respon-

sibly train models on private data. Learning with DP guarantees privacy, mitigating

28



4. COUNTERMEASURES

the risk of exposing sensitive training data in machine learning. Single or small train-

ing examples should not influence a model trained with DP in its dataset, which

helps mitigate the risk of exposing sensitive training data in ML. The basic idea of

Differentially Private Stochastic Gradient Descent (DP-SGD) is to modify the gra-

dients used in Stochastic Gradient Descent (SGD), which is the core of almost all

deep learning algorithms. DP-SGD algorithm incorporates Gaussian additive noise

with the gradient updates in SGD to ensure DP during model training [12]. Models

trained with DP-SGD provide DP guarantees for their input data. There are two

changes made to the SGD algorithm:

• First, the sensitivity of each gradient needs to be determined. In other words,

there must be a limit to how much each training point sampled in a minibatch

can affect gradient computations and the resulting updates applied to model

parameters, which can be done by clipping each gradient computed on each

training point.

• Random noise is sampled and added to the clipped gradients to make it statis-

tically impossible to know whether or not a particular data point was included

in the training dataset by comparing the updates SGD applies when it operates

with or without this particular data point in the training dataset. TensorFlow

Privacy delivers code that covers an existing TensorFlow optimizer to create a

variant that implements DP-SGD.

DP [26, 25, 27] is a strong standard for ensuring privacy in distributed datasets.

For our experiments, we used TensorFlow Keras Differential privacy [8] to implement

this countermeasure.

4.9 Knowledge Distillation

Knowledge Distillation (KD) distills and transfers knowledge from one deep neural

network to another deep neural network [55]. It is a method to compress the model

while maintaining accuracy. The larger network that gives the knowledge is called a

29



4. COUNTERMEASURES

Teacher network, and the smaller network that receives the knowledge is called a Stu-

dent network. The teacher network is first trained separately until full convergence.

Afterward, the distiller then transfers knowledge from the teacher to the student. The

student network is trained in coordination with the fully trained teacher network.

A generic illustration of knowledge distillation is shown in Figure 4.9.1. According

to many works in ML against MIA, KD outperforms other mitigating approaches [56,

45], while other works in FL claim that it facilitates effective communication [51,

30, 33]. Our experiments used Keras knowledge distillation [4] to implement this

countermeasure.

Fig. 4.9.1: A generic illustration of knowledge distillation [13]

4.10 Conclusion

In this chapter, we discussed various countermeasures in detail and discussed whether

they were used in earlier work. Countermeasures such as Dropout, Gaussian Noise,

and Activity Regularization are already used to mitigate membership inference at-

tacks in a centralized learning setting, we implemented them in a Federated learning

setting as well. Batch Normalization, Differential Privacy, and Knowledge Distilla-

tion are used as a countermeasure in the federated learning environment. Our work

is the first to utilize Gaussian Dropout, Monte Carlo Dropout, and Masking as a

countermeasure against MIA in both CL and FL settings.

30



CHAPTER 5

Performance Analysis

In this chapter, we described the experimental setup and results. In the experimental

setup, we discussed the datasets and dataset preprocessing. Then we discussed the

architecture of our model and its training settings. We also discussed the comparison

techniques and evaluation metrics we applied for our experiments. Next, we discuss

the experimental results for CL and FL with and without countermeasures.

5.1 Experimental Setup

This section explained the datasets we used, the model architecture, and its train-

ing parameters. We also detailed evaluation metrics and comparison techniques to

conduct various MIA attacks in the FL environment.

5.1.1 Datasets

We conducted experiments on three datasets MNIST [22], FMNIST [52], and CIFAR-

10 [31] to evaluate the attacks in the FL setting. Table 5.1.1 shows general informa-

tion about all the datasets we used. These datasets are the benchmark to validate

MIA and are the same as those used in related work. Figure 5.1.1 and Figure 5.1.2

show grayscale visualization of MNIST [22] and FMNIST [52], respectively whereas

Figure 5.1.3 shows RGB visualization of CIFAR-10 [31].

• MNIST is a freely accessible dataset that contains 70,000 images of handwrit-

ten digits, 60,000 images of the training set, and 10,000 images of the testing

set. Each image is formatted as 28 x 28 and processed so that the digit is in

31



5. PERFORMANCE ANALYSIS

Fig. 5.1.1: Visualization of MNIST Dataset [22]

the center. The MNIST dataset is a 10-class classification problem in which the

task is to determine which digit between 0 and 9, inclusive, is present in a given

image.

• FMNIST is a dataset that consists of 70,000 images of Zalando’s article images,

60,000 images of the training set, and 10,000 images of the testing set. Each

image is a 28 x 28 grayscale image associated with a label from 10 classes.

• CIFAR-10 dataset is also freely accessible and contains 60,000 color images,

32



5. PERFORMANCE ANALYSIS

Fig. 5.1.2: Visualization of FMNIST Dataset [52]

50,000 images of the training set, and 10,000 images of the test set. Each image

is again formatted to be 32 x 32. There are also ten classes in the CIFAR-10

dataset: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Each class has 6,000 images available. The problem is a 10-class classification

problem to determine which of the ten classes is depicted in a given image.

33



5. PERFORMANCE ANALYSIS

Fig. 5.1.3: Visualization of CIFAR-10 Dataset [31]

Table 5.1.1: General information of the datasets

Name Type Number of Classes Number of Training Records Number of Testing Records

MNIST Image 10 60,000 10,000

FMNIST Image 10 60,000 10,000

CIFAR-10 Image 10 50,000 10,000

5.1.2 Dataset Preprocessing

We divided each of the datasets into 30,000 for training and 10,000 for testing to set

up the FL environment, as shown in Table 5.1.2. Then the dataset is divided into

34



5. PERFORMANCE ANALYSIS

each participant 10,000 for training and 1,000 for teasing, to train separately using

the FedAvg [35] algorithm, as shown in Table 5.1.3.

Table 5.1.2: Size of the dataset to train and test in the FL environment

Dataset for FL Setting

Datasets Training Dataset Testing Dataset

MNIST 30,000 10,000

FMNIST 30,000 10,000

CIFAR-10 30,000 10,000

We normalized the image data to the range [0,1], which allows the model to train

more efficiently.

Table 5.1.3: Number of participants and size of the dataset to train and test partici-
pants in the FL environment

Number of Participants dataset for FL setting

Participants Training Dataset Testing Dataset

Participant 1 10,000 1,000

Participant 2 10,000 1,000

Participant 3 10,000 1,000

5.1.3 Model Architecture

We performed our experiments on 1.90GHz Intel(R) Core(TM) i3-4030U processor

with 4.00 GB RAM on the x64-based processor. We used open-source frameworks and

standard libraries, such as Keras and Tensorflow, that can be deployed on endpoints.

We created a model using Keras’ Sequential function Object and then added a

linear stack of network layers. Our model first defines the flattened input layer,

followed by three Dense layers. MNIST and FMNIST input sizes are 28,28,1, while

CIFAR-10 input sizes are 32,32,3. Between the dense layers, we added countermeasure

35



5. PERFORMANCE ANALYSIS

layers as shown in Figure 5.1.4. We used the countermeasure layers as our experiment

demanded. We specify an output size of 10 and set the activation function for this

layer to softmax because we are using our network to solve a multi-class classification

problem.

5.1.4 Training Setting

For the learning process, we used three optimizers: SGD, RMSProp, and Adagrad,

with a learning rate of 0.01. We used categorical cross-entropy loss for the loss

function and included the accuracy metric, with a batch size of 32 and epochs of 10,

for training the participants’ models. The FL process is replicated, including local

participant training and client-server aggregation. We used the FedAvg [35] algorithm

to update the FL global model with three participants, as illustrated in Figure 5.1.5.

5.1.5 Evaluation Metrics

We used the test accuracy as an evaluation metric for the FL model. The standard

metric for measuring attack accuracy is recall. We used recall as an evaluation metric

for comparing MIA attacks in the FL environment. The recall represents the fraction

of the training dataset members correctly inferred as members by the attacker.

5.1.6 Comparison Methods

We compared four attacks as shown in Table 5.1.4. Attack 1 uses multiple shadow

models with the same structure and training data distribution as the target model.

Attack 2 uses a single shadow model; its structure is different, and training data

distribution is the same as the target model. In contrast, Attack 3 training data

distribution differs from the target model and uses a single shadow model. Lastly,

Attack 4 uses the Jacobian matrix and prediction sensitivity technique.

36


