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ABSTRACT

Given a federated learning model and a record, a membership inference attack

can determine whether this record is part of the model’s training dataset. Federated

learning is a machine learning technique that enables different parties to train a

model without the need to centralize or share their local data. Membership inference

attack risks the private datasets if those datasets are used to train the federated

learning model and access to the generated model is available. There is a need

to study the membership inference attack in the federated learning setting. In this

thesis, we empirically investigated and compared various membership inference attack

approaches in a federated learning environment. We evaluated these attacks on three

datasets(MNIST, FMINST, CIFAR-10) using different optimizers(SGD, RMSProp,

AdaGrad) and analyzed them with and without countermeasures. The experimental

results show that the membership inference approach using the prediction sensitivity

approach is the worst for attackers. Additionally, among all the countermeasures,

knowledge distillation has significant advantages in handling the trade-off between

privacy and utility.
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CHAPTER 1

Introduction

In this chapter, we briefly address the motivation, objectives, and contributions of

this thesis work.

1.1 Motivation

Machine Learning (ML) is a field of study that tries to make computers learn and

behave as humans do by providing data and information in the form of observations

and interactions with people in the actual world [23]. ML is getting more attention

from researchers in many fields because of the accessibility of a vast amount of data

and technological advancements [39]. Leveraging ML and enormous amounts of data

can provide a potential solution to the critical issues faced in many fields of study.

ML can provide improved data pattern differentiation by efficiently revealing more

data.

Managing vast amounts of data has been challenging to maintain the efficiency

and scalability of the ML algorithms. As a result, it is vital to investigate learning

techniques that can handle distributed datasets. Traditional centralized ML tech-

niques are not the best choice in these situations since they demand the transfer and

processing of data at a centralized server, which may not be practical given the ac-

cessibility of private data. The participants are connected to the centralized server to

upload their data, as shown in Figure 1.1.1. The centralized server manages all com-

putational activities necessary to train the data when the participants upload their

local data to it [15]. Centralized training is resource-efficient for the participants since
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1. INTRODUCTION

they are relieved of the computation-related duties that demand more resources [15].

However, because a centralized server could be malicious or compromised by attack-

ers, participants’ information confidentiality is seriously threatened. A large amount

of data uploading might also increase participants’ time to communicate with the cen-

tralized server [15]. To achieve the best model possible, more data is needed. Now,

what if those participants do not want to share their data but still want to aggregate

it to build an excellent ML model? Decentralized learning approaches are needed,

where all the private data is held locally, and only locally-trained models are sent to

the central server. There comes Federated Learning.

Federated Learning (FL) has expanded into a distributed ML paradigm since

Google first proposed it in 2017 [35]. Its objective is to improve privacy by allowing

data owners to successfully train a model on their shared training data with the

support of a central server without revealing their potentially sensitive data to either

the central server or each other. While FL uses the enormous amount of data now

accessible at edge devices, it increases data privacy by allowing data to be kept locally

at the clients. This is very important when dealing with sensitive and personal data,

such as in the health industry, where ML is gaining more interest, especially with the

existence of legal obligations like the GDPR [2] and HIPAA [1].

A Centralized Learning (CL) model raises privacy concerns because participants

must upload their data to the central server to train the model. However, FL enables

participants to train models on local data collaboratively without revealing sensitive

information to the central server. As a result, the FL model could be wisely applied

to any domain because it protects user-sensitive data that does not need to be sent

to the server. Rather than traditional ML, FL is the best solution when massive

amounts of data and participants’ private information are involved.

1.2 Objective

Despite the advantages, FL is vulnerable to several inference attacks; one such attack

is a membership inference attack (MIA), which attempts to find information about

2



1. INTRODUCTION

Fig. 1.1.1: Centralized learning environment

the training data used. In this inference attack, the attacker can infer whether the

data is part of the training dataset. This is actually against FL’s primary design

purpose, which is protecting data privacy.

A successful MIA can pose a severe risk to private datasets, like healthcare data,

if these are used to train an FL model and access to the resulting model is made

available to the general public. For instance, if a FL model is trained using data

gathered from people with a particular disease, an attacker may learn the patient’s

health status by being aware that the patient’s data are included in the model training

data. As a result, the individual’s privacy may be compromised. This is also essential

for ML services like Google Prediction because they would lose many clients if they

could not ensure the privacy of training data. MIA has been successfully executed

on healthcare data [16]. The success of privacy attacks on ML models depends on

the training data nature and the type of modeling technique. A FL system with

several participants and datasets can be complex, and various factors can significantly

influence the effectiveness of privacy attacks. Therefore, it is equally crucial to study

trends in inference risk with parameter variations since some configurations can be

more vulnerable than others. Investigating those configurations and evaluating the

3



1. INTRODUCTION

associated risks enable one to make informed decisions regarding the system design

choices.

Our main objective is to investigate the membership inference attack in the FL

setting where the attacker tries to know if the data is part of the training dataset and

investigate the effectiveness of different countermeasures against this attack.

1.3 Contributions

Related work investigates the MIA in the centralized setting where one data owner

owns data. There is a desideratum to study the MIA in the FL setting. In this

thesis, we analyze different techniques [46, 44, 34] of the MIA, initially proposed

in the centralized setting, in the FL setting together with the effectiveness of the

countermeasures to mitigate those attacks. To the best of our knowledge, this thesis

is the first to conduct such an experiment. The contributions of our thesis work are

summarized below.

• We implemented four attacks on the FL setting [46, 44, 34].

• We compared the FL model accuracy and attack recall with three optimiz-

ers: Stochastic Gradient Descent (SGD) [18], Root Mean Squared Propagation

(RMSProp) [49], and Adaptive Gradient (Adagrad) [36], on three real-world

datasets, MNIST [22], Fashion-MNIST (FMNIST) [52], and CIFAR-10 [31].

• We investigated the impact of various countermeasures on FL model accuracy

and attack recall in the FL setting. We experimentally showed that Knowledge

Distillation (KD) and Monte-Carlo Dropout (MCD) are the best mitigations in

the FL environment. We also showed that Shokri et al.’s attack [46] is the best

choice for attackers, whereas Liu et al.’s attack [34] is the worst for them.

• We conducted a comparative study in terms of FL model accuracy and attack

recall, both of which are important for the design of future models.

4



1. INTRODUCTION

1.4 Thesis Organization

The rest of the thesis paper is structured as follows. In Chapter 2, we introduced the

related work. We explained various membership inference techniques in Chapter 3.

Countermeasures are explained in Chapter 4. The experimental setup and results are

provided and analyzed in Chapter 5. Finally, we conclude our work in Chapter 6.

5



CHAPTER 2

Related Work

In this chapter, we outlined the related work of the Membership Inference Attack

(MIA) in Centralized Learning (CL) and Federated Learning (FL). The related work

targeting MIA in CL and FL is summarized in Table 2.4.1.

2.1 MIA in Centralized Learning

Shokri et al. [46] performed the first MIA against ML models to determine the pres-

ence of a data sample while training a model from a black-box target model. They [46]

made two necessary assumptions to conduct the MIA against ML models. The first

is to create multiple shadow models with the same structure as the target model to

imitate the target model’s behavior. The second assumption relates to the data gen-

erated for the shadow model training. They used the same distribution as the target

model’s training data to generate the data to train the shadow models. They [46]

created several attack models, each representing a specific prediction class of the tar-

get model. When used for training, the data are labeled “in” and labeled “out” when

used for testing. The label “in/out” and the probability score vector are applied to

train the attack model. The attack model is a binary classifier that infers the target

model’s members based on the probability score vector of the target model output

since the attack model’s final class label is either “in” or “out”.

Afterward, Salem et al. [44] expanded the scope of the MIA by relaxing the as-

sumptions of Shokri et al. [46]. First, they relaxed the assumption regarding the

number of shadow models by using a single model to produce the data for the attack

6



2. RELATED WORK

model training. However, having a single shadow model decreases the data to train

the attack model. Attack accuracy is affected and is lower than when using multiple

shadow models. Later, they showed that the structure and distribution of the data

used to train the shadow model must differ from those of the target data. They also

revealed that only one shadow and attack model would be enough to perform MIAs.

However, this work requires previous knowledge of the target model’s training data.

Finally, they presented the attack without any shadow model training by relying just

on the output of the target model queried with the target data points.

Lan Liu. [34] looked into feature space perturbation and presented Aster, a brand-

new MIA for ML models, solely using a black-box API. They find that the training

data’s sensitivity to a fully trained ML model is lower than that of the untrained data.

They [34] utilize the Jacobian matrix to quantify the link between the target model’s

prediction and the target sample’s feature value to get the sensitivity and perform

MIAs by distinguishing the sensitivity values of different data samples. Experiments

on various target models and datasets confirm that Aster outperforms other MIAs

without the previous details about the target model and the statistical information

of its training dataset.

2.2 MIA in Federated Learning

Nasr et al. [38] presented the attack in both CL and FL environments. They derived

a membership score for the target model based on the model activations, predictions,

and losses in the CL setting. This work requires a prior understanding of the target

model’s structure and parameters. They attacked white-box deep learning models

to infer the data records. The attacker used the privacy exposure of the stochastic

gradient descent of the deep learning model to collect the data sample’s features and

conduct the MIA.

Researchers have discovered that attackers can still retrieve a participant’s private

information in the FL setting by listening to the messages it exchanges with the

server. Passive MIA [38] allows the attacker to determine whether the participant

7



2. RELATED WORK

owns a specific data instance. In the FL setting, Nasr et al. [38] demonstrate that

adversarial participants can run active MIA against other participants, even when

the global model achieves high prediction accuracy.

2.3 Defense against MIA in Centralized Learning

Related work carried out many defense mechanisms to reduce MIA. Conti et al. [20]

proposed a label-only MIA against Graph Neural Networks (GNNs) inspired by Con-

volutional Neural Networks (CNNs). They examine how the attack performance

of label-only MIA is affected by the sampling technique, the model selection strat-

egy, and the degree of overfitting. Then, they consider scenarios where assumptions

regarding the attacker’s additional dataset (shadow dataset) and other information

about the target model are relaxed. Finally, they examined the effectiveness of poten-

tial defenses, such as dropout, regularization, normalization, and jumping knowledge.

To better handle the trade-off between privacy and utility, Zheng et al. [56] propose

Complementary Knowledge Distillation (CKD) and Pseudo-Complementary Knowl-

edge Distillation (PCKD) as two deep learning algorithms. In CKD, the transfer

data of knowledge distillation all come from the private training set, but their soft

targets are generated from the teacher model trained using their complementary set.

With a similar idea, they propose PCKD, which reduces the training set of each

teacher model and uses model averaging to generate soft targets of transfer data.

PCKD uses pre-training to increase the utility of teacher models because a smaller

training set results in less utility. According to experiment results, CKD and PCKD

have a considerable advantage over other defense strategies, such as Distillation for

membership privacy (DMP), adversarial regularisation, dropout, and Differential Pri-

vacy Stochastic Gradient Descent (DP-SGD), in addressing the privacy and utility

trade-off.

Other defense methods use differential privacy mechanisms or adversarial training

that struggle to balance privacy and utility. Methods based on knowledge transfer

to improve model utility need unlabeled public data in the same distribution as pri-
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vate data, and this requirement may not be satisfied in some scenarios. The serious

privacy concerns due to the membership inference have motivated multiple defenses

against MIAs, e.g., differential privacy and adversarial regularization. Unfortunately,

these defenses produce ML models with unacceptably low classification performances.

DMP, a novel defense against MIAs proposed by Shejwalkar et al. [45], preserves the

utility of the resulting models substantially better than earlier defenses. DMP lever-

ages knowledge distillation to train ML models with membership privacy. To train

ML models with membership privacy, DMP makes use of knowledge distillation. To

enhance the membership privacy of DMP, they offered a novel criterion for tuning the

data used for knowledge transfer. They demonstrate that, as compared to other MIA

defenses, DMP offers noticeably better tradeoffs between membership privacy and

classification accuracy.

2.4 Defense against MIA in Federated Learning

FL is susceptible to a variety of MIAs. This MIA aims to uncover the data used to

train the model, which has implications for participants using their data to train the

shared model. FL is mainly attacked because of its unique model training mechanism.

Attacks in FL aim to destroy the model’s integrity, availability, and confidentiality.

Recent research on countermeasure techniques has limits in terms of ensuring

privacy while reducing the loss of the model and mainly focuses on protecting the pa-

rameters. Xie et al. [54] proposed a defense method for FL against MIA. To achieve a

trade-off between privacy security and the utility loss of the target model, Authors [54]

suggested an adversarial method to generate the noise added to the attack features of

the attack model. Before the central server distributes the confidence score vector of

the global model with the participants, Authors [54] introduce noise with a specific

probability in each iteration.

According to another study by Lee et al. [32], a common defense against such

attacks is the differential privacy scheme, which intensifies each update with enough

noise to make a recovery difficult. Unfortunately, it suffers from a considerable loss in

9
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the FL’s classification accuracy. The Digestive Neural Network (DNN) will process

each participant’s private data before being used to train the FL. To increase the clas-

sification accuracy of FL while reducing the accuracy of inference attacks, the DNN

alters the input data, which distorts updates. This work has supported the proposed

scheme’s scalability by demonstrating its excellent performance on the FedAvg and

FedSgd protocols.

Another paper, Su et al. [48], proposes a new privacy mechanism named the

federated regularization learning model, a novel FL model that can protect data pri-

vacy from gradient leakage and black-box MIA. The proposed [48] protection scheme

makes the data hard to reproduce and distinguish from predictions. A small simulated

attacker network is embedded as a regularization punishment to defend against ma-

licious attacks. They introduce a gradient modification method to secure the weight

information and remedy the additional accuracy loss.

2.5 Conclusion

In this chapter, we summarize various research work in CL and FL against MIA,

along with some defense approaches. Most of the MIA techniques are implemented

in the CL setting, but there is a need to analyze the MIA techniques in the FL

setting. We implemented these attacks [46, 44, 34], which were initially carried out

in the CL environment in the FL setting. We also implemented these attacks with

countermeasures in the FL setting to mitigate MIA in our experiments.
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Table 2.4.1: Summary of the related work

Paper CL
or
FL

Attack or
Defense

Contribution Techniques Limitations

Shokri et al. [46] CL Attack,
Defense

Determine if the record is in the
model’s training dataset

Target Model, Shadow Model,
Attack Model

-

Salem et al. [44] CL Attack,
Defense

Propose three adversaries and
two defense.

Single Shadow model, Data not
from the same distribution, No
Shadow model, Dropouts, Model
Stacking

Utility loss of the model

Liu et al. [34] CL Attack Determine if the record is used to
train the given ML model

Target Model, Jacobian Matrix,
Clustering Algorithms

-

Nasr et al. [38] CL,
FL

Attack Various categories of inference
attacks against machine learn-
ing models, based on their prior
knowledge

Exploiting the privacy vulnerabil-
ities of the stochastic gradient de-
scent algorithm

-

Conti et al. [20] CL Attack,
Defense

Propose a label-only MIA against
Graph Neural Networks (GNNs)
inspired by Convolutional Neural
Networks (CNNs)

Model selection strategy,
Dropout, Regularization,
Normalization, and Jumping
knowledge

None of those four de-
fenses prevent the attack
completely

Zheng et al. [56] CL Defense Propose complementary knowl-
edge distillation (CKD) and
pseudo-complementary knowl-
edge distillation (PCKD)

Knowledge Distillation Assumption of an ad-
ditional dataset with a
close distribution to the
private dataset

Shejwalkar et
al. [45]

CL Defense Propose distillation for member-
ship privacy (DMP)

Knowledge Distillation Low classification perfor-
mances

Xie et al. [54] FL Defense
(server)

Propose Fedefend Central server adds noise to the
confidence score vector of the
model before sharing the global
model with the participants

Utility loss of the model

Lee et al. [32] FL Defense
(partici-
pants)

Propose Digestive Neural Net-
work (DNN)

DNN modifies the input data,
which results in distorting up-
dates

Degree of noise has little
impact on the classifica-
tion accuracy

Su et al. [48] FL Defense
(partici-
pants)

Propose regularization punish-
ment to prevent malicious attacks

Used gradient modification algo-
rithm in the training procedure

Model performs slightly
worse on test accuracy
than the baseline
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CHAPTER 3

Membership Inference Attack

techniques

In this chapter, we discussed the techniques used to carry out membership inference

attacks as described by Shokri et al. [46], Salem et al. [44] and Liu et al. [34]. We

carried out these attacks in the federated learning setting in our thesis.

3.1 Shokri et al.’s MIA

ML models behave differently with the data they see for the first time than the data

they are trained on. An attacker uses this behavior of ML models to construct an

attack model which infers the members of a training dataset based on the output of

the target model. Shokri et al. [46] constructed multiple shadow models to mimic the

target model’s behavior and used the output of the shadow models to train the attack

model. The target model has a private dataset containing the labeled data records

(xi, yi) where xi is a feature of the data point, and yi is an actual output of the data

point. The input of the target model is xi, whereas the output from the target model

is the probability vector. The predicted label for the data record is the class with the

highest probability. Shadow models are created to mimic the target model. However,

the shadow and target models are trained using separate datasets, such that Dtarget

∩ DShadowi = ϕ. The inputs and outputs of the shadow models are used to train the

attack models.

To construct the attack model’s training data, the training set of the shadow
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models is queried and labeled “in” and the test dataset of the shadow models is also

queried and labeled “out”. As a result, the attack model’s training dataset contains

the trained dataset’s output probabilities with the label “in” or “out”. The output

of the target model infers the members using the attack model. The overview of the

MIA is shown in Figure 3.1.1. To understand the MIA, let us discuss the following

three models:

• Target model

• Shadow model

• Attack model

Fig. 3.1.1: Overview of Shokri et al.’s MIA [46]

3.1.1 Target Model

The target model captures the relationship between the content of the data records

and their actual labels by taking the data records as input and, after training, outputs

the prediction vector of probabilities. The class with the highest confidence level is

chosen as the predicted label for the data record. Assume that DTrain
Target be the private

training dataset of the target model (MTarget) where (xi, yi) are the labeled data

records. In this labeled data record, (xi) represents the input to the target model,

whereas (yi) represents the actual label of the data record, which takes the values

from a set of classes of size CTarget. The target model’s output (MTarget) is a vector

of probabilities of size CTarget where the elements range from 0 to 1, and the sum

of the vector is equal to 1. The accuracy of the target model is evaluated by how

13



3. MEMBERSHIP INFERENCE ATTACK TECHNIQUES

the model predicts the labels of other data records from the same population. The

attacker has black-box query access to the target model to obtain the prediction

vector for any record. The attacker also knows both the input and output formats.

The attacker may have some background knowledge about the population from which

the target model’s training dataset was drawn. Alternatively, the attacker may know

some general statistics about the population. MIA takes advantage of the notion

that ML models respond differently when presented with data different from that on

which they were trained. The attacker’s goal is to construct an attack model that

can recognize the behavior differences of the target model to distinguish members

from non-members of the target model’s training dataset based on the target model’s

output.

3.1.2 Shadow Model

The shadow models are created to overcome the challenge of training the attack

model to distinguish the members from non-members of the target model’s training

dataset. These shadow models mimic the target model’s behavior and create the

data required for the attack model’s training. Multiple shadow models are created to

train the attack model similar to the target model. The attacker creates n number of

shadow models M i
Shadow() where each shadow model i is trained on dataset Di

Shadow.

The attacker first splits its dataset Di
Shadow into two sets DiTrain

Shadow and DiTest

Shadow, such

that,

DiTrain

Shadow ∩DiTest

Shadow = ϕ (1)

The attacker then trains each shadow modelM i
Shadow using the training setDiTrain

Shadow

and tests the same using DiTest

Shadow set of the data. Di
Shadow dataset for each shadow

model i follows the same format and distribution of the target model’s training dataset

(DTarget), which is generated using one of the methods described in the later part of

this section. Shokri et al. [46] considered the worst case for the attacker such that

the dataset used for training the shadow models is disjoint from the private dataset
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used to train the target model such that,

∀DiTrain

Shadow ∩DiTest

Shadow = ϕ (2)

The attack model is trained to recognize differences in shadow models’ behavior

when these models operate on inputs from their training datasets versus inputs they

saw for the first time. The more shadow models, the more accurate the attack model

will be. As a result, multiple shadow models will provide more data to the attack

model for training. The overview of the MIA is shown in Figure 3.1.2.

3.1.3 Attack Model

The attack model is a collection of models, one for each output class of the target

data. To train the attack model, Shokri et al. [46] used multiple shadow models,

which behave similarly to the target model. For each shadow model, if a given record

is in the training set, it is labeled as “in” whereas if it is in the testing set, it is labeled

as “out”. That is why supervised training on the outputs of shadow models is used to

teach the attack model how to distinguish the output of shadow models on members

of the training datasets from the output of non-members.

Let DTrain
Attack be the training dataset of the attack model, which contains labeled

data records (xi, yi) together with the probability vector generated by the shadow

model for each record xi and “in” if xi is used for training the shadow model or

“out” if xi is used for testing it. During the prediction of the attack model, its input

comprises a correctly labeled record and a prediction vector of probabilities generated

by the target model for the corresponding record. Since the Attack’s goal is decisional

membership inference, the attack model is a binary classifier with two output classes,

“in” and “out”.

The training data for the attack model comes from the inputs and outputs of the

shadow models. Each shadow model is queried using all the records of its training

dataset and the disjoint test dataset of the same size to get the output. First, a

particular shadow model is queried with its training dataset to get the output vectors
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labeled “in” and added to the attack model’s training dataset. Then the same shadow

model is queried with the test dataset disjoint from its training dataset to obtain the

output vectors labeled ”out” and added to the attack model’s training set. The exact

process is repeated for all the shadow models to construct the training dataset of the

attack model. This dataset shows the black-box behavior of the shadow models on

their training and test data.

Let (x, y) ∈ DTraini

Shadow be the training dataset of the ith shadow model. For all

training data of the ith shadow model, the prediction vector Y = M i
Shadow(x) is

generated. The record (y, Y , in) is added to the training dataset of the attack model

where the prediction vector is Y = MShadow(x). Again, let D
Testi

Shadow be the test dataset

disjoint from the training dataset of the ith shadow model. Then, ∀(x,y) ∈ DTesti

Shadow,

the prediction vector Y =M i
Shadow(x) is computed, and the record (y, Y , out) is added

to the training dataset of the attack model. The same procedure is applied to all the

shadow models to get the training set, DTrain
Attack for the attack model. Shokri et al. [46]

splits the dataset DTrain
Attack into CTarget partitions, each representing an independent

class of the target model, and trains a separate model for each class that predicts the

“in” or “out” status of x.

Fig. 3.1.2: Overview of Shokri et al. [46]’s inference technique
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3.2 Salem et al.’s MIA

The early demonstrations made by Shokri et al. [46] of the feasibility of the MIA have

many assumptions about the attacker, including the use of several shadow models,

familiarity with the target model’s structure, and knowledge of a dataset from the

same distribution as the target model’s training data. Salem et al. [44] relaxed all

these fundamental assumptions, demonstrating that such attacks are widely accurate

at low cost and pose a more severe risk than previously believed.

The dataset used by the first attacker is drawn from the same distribution as the

training set for the target model. Here, the focus is on relaxing the shadow models’

assumption. Instead of several shadow models, just one mimics the behavior of the

target model. Using one shadow model dramatically lowers the cost of carrying out

the MIA since shadow models are created through MLaaS, which applies the pay-

per-query business model.

The data for the second attacker does not come from the same distribution as the

training set for the target model. Also, the attacker does not know the structure of

the target model. Compared to the prior attack scenario, this one is more realistic.

Salem et al. [44] suggest a data transferring attack for MIA. Here, the shadow model

is merely used to record the membership status of data points in an ML training set,

not to imitate the behavior of the target model.

3.3 Prediction Sensitivity MIA

The key idea of this attack is that the training data of a fully trained ML model

usually have lower prediction sensitivities than that of the non-training data, i.e.,

testing data. Less sensitivity indicates that when perturbing a training sample’s fea-

ture value in the corresponding feature space, the prediction of the perturbed sample

received from the target model tends to be consistent with the original prediction.

This work [34] measures the prediction sensitivity with the Jacobian matrix, which

reflects the relationship between each feature’s perturbation and the related predic-
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tion’s change, and then clusters the samples based on their prediction sensitivity.

This can breach the membership privacy of the target model’s training data with no

previous knowledge about the target model or its training data.

The goal is to determine whether a sample was used to train the target model.

This does not assume previous information about the target model or training data.

In other words, the attacker only has the black-box API of the target model.

In a more realistic situation, an attacker only has black-box access to the target

model. This assumption restricts the Attack since the attacker does not obtain in-

formation about the target model’s structure, type, parameters, training algorithm,

settings, or training data statistics. Thus, the only information to obtain from the

target model is the prediction probability vector of a given input. The only inter-

action allowed between the attacker and the target model M is to query M with a

sample x and then get the prediction output: M(x) = [y1, y2, . . . , yc, . . . , y|C|] where

C is the set of class labels that the target model and yc is the probability that the

input sample belongs to class c. The only detail the attacker can receive from the

target model M is the prediction probability vector. Given the target model M and

a target sample xt, the attacker tries to decide whether xt is from M ’s training set:

A(xt,M)→ In/Out. The attacker is abstracted by A. Its inputs are M and xt;

its output is either In or Out. The output In means that xt is from M ’s training

set, while Out has the opposite meaning. Given a target sample xt and the target

model M with only black-box access, the focus is on whether xt was used to train

M . First, the Jacobian matrix is approximated for xt and derives the prediction sen-

sitivity regarding M . Then clusters the target samples according to the sensitivity,

determining whether xt is from M ’s training set. Therefore, there are primarily two

steps to execute this MIA, as shown in Figure 3.3.1:

• Jacobian Matrix Approximation

• Membership Inference
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Fig. 3.3.1: Overview of Prediction Sensitivity inference technique [34]

3.3.1 Jacobian Matrix Approximation

For the target sample, input the target model M , and the target model will return the

prediction probability vector. Each value in the vector defines the probability that the

target sample is predicted to belong to the related class by the target model. The sum

of the probability vector should be equal to 1.0. Then, standardize the procedure:

y = M(x), where x is the input sample, and y is the predicted probabilities vector.

M here denotes the target model’s black-box API.

An ML model can be considered as a function M : Rn → Rm that maps n-

dimensional vector x ∈ Rn to m-dimensional output y ∈ Rm. Then the Jacobian

matrix of M is determined to be an m×n matrix, whose element located in i-th row

and j-th column is Jij =
∂yi
∂xj

(i ∈ [1, 2, . . . , n] and j ∈ [1, 2, . . . ,m]):

J(x;M) =

[
∂M(x)
∂x1

. . . ∂M(x)
∂xn

]
=



∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...

∂ym
∂x1

. . . ∂ym
∂xn


(3)

where y = M(x). The input sample is x = [x1, x2, . . . , xn], and the corresponding

prediction is y = [y1, y2, . . . , ym].
∂yi
∂xi

describes the relationship between the change

of the input sample’s i-th feature value and the change of the prediction probability

that this sample belongs to j-th class. From the Jacobian matrix’s definition, the
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matrix contains a series of first-order partial derivatives. Even the internal states are

not present in the function M ; derivatives can still be approximated by computing

the numerical differentiation with the following equation:

∂yj
∂xi

≈ M(x+ ϵ)−M(x− ϵ)

2ϵ
(4)

where ϵ is a small value added to the i-th feature value of the input sample. For

the target sample xt whose membership property is interested, add ϵ to (resp. minus

ϵ from) the i-th feature value of the target sample and get two altered samples.

Then query the target model with the two altered samples, and derive the partial

derivatives of i-th feature concerning the target model: ∂M(x)
∂xi

=

[
∂y1
∂xi

, ∂y2
∂xi

. . . , ∂ym
∂xi

]
.

Repeat the above process for each feature in x consecutively and combine the partial

derivatives into the Jacobian matrix. Now the approximation of the Jacobian matrix

is estimated, which is defined as J(x;M) for clarity. Then we need to extract the

prediction sensitivity of the target sample for the target model. Novak et al. [40] use

the L-2 norm of J(x;M) to describe the prediction sensitivity for the target sample.

For a mn matrix A, the L-2 norm of A can be computed by:

||A||2 = (
m∑
i=1

n∑
j=1

|aij |2)
1
2 (5)

where i and j are the row number and the column number of the matrix element ai,j,

respectively.

3.3.2 Membership Inference

With the norm of the Jacobian matrix approximation J(x;M), it is possible to de-

cide whether the target sample is from the target model’s training set. This work

is based on the remark that ML models usually exhibit less sensitivity concerning

the prediction behavior of the training data. The prediction sensitivity of samples

from the training set is typically lower than that of the samples from the testing

set. It comes inherently to leverage an unsupervised clustering method to group a

set of target records into 2 clusters and then choose the cluster with lower mean sen-
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sitivity than the members of the M ’s training set. However, the experiments show

that performance is even better when the cluster number is more significant. There-

fore, different numbers of clusters are tried, and setting the number 6 is based on

the average attack performance against various models and datasets. Then, several

clustering algorithms were compared, and the spectral clustering algorithm was used

to construct the attack clustering model. At the inference stage, cluster the samples

into three or more groups and then order the groups by the average norm. The groups

with more minor average norms are from the target model’s training set, and others

are not.

3.4 Conclusion

This chapter summarizes three MIA techniques [46, 44, 34]. These techniques are

initially implemented in a centralized learning setting. We implemented these tech-

niques in the federated learning setting to provide a comparative analysis in our

experiment.
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CHAPTER 4

Countermeasures

This chapter covered countermeasures we applied to CL and FL models to mitigate

MIA.

Attackers take advantage of the fact that ML models behave differently during

the prediction with new data than with training data to differentiate members from

nonmembers. This property is associated with the degree of overfitting, which mea-

sures the difference between training and test accuracy. The deeper the overfitting

of the target model, the more vulnerable it is to MIA. In this chapter, we detailed a

variety of possible countermeasures to reduce overfitting in the target model.

4.1 Dropout

Dropout (D) prevents overfitting by randomly dropping out units in a neural network

and allows for the approximate efficient combination of many different neural network

architectures [47]. The term “dropout” refers to dropping out units (hidden and

visible) in a neural network. Dropping a unit out means temporarily removing it from

the network and all its incoming and outgoing connections, as shown in Figure 4.1.1.

The choice of which units to drop is random. In the simplest case, each unit is

retained with a fixed probability p independent of other units, where p can be chosen

using a validation set or set at 0.5, which seems to be close to optimal for a wide

range of networks and tasks [47]. However, for our experiments, we used TensorFlow

Keras Dropout [9] to implement this countermeasure and set the optimal probability

of retention at 0.2. This is implemented as a mitigation technique against MIA in
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ML models in the CL setting by Salem et al. [44].

Fig. 4.1.1: Network without and with dropout [47]

4.2 Gaussian Dropout

During a forward pass, the training process aims to minimize loss. Excessive attempts

to minimize this loss leads to overfitting. This random ignoring of nodes ensures that

the error is calculated for the remaining nodes during training, but the weights are
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updated nonetheless. However, by applying standard dropout the model is dimin-

ished. For a dropout-trained model, the time complexity for back-propagation is

more, as the dropped nodes must be accounted for in the update of weights. In addi-

tion, a thinner model due to dropped nodes can risk the loss of valuable information

extracted. Gaussian dropout (GD) presents a better alternative in this regard.

GD integrates Gaussian noise into a random probability of nodes. In contrast to

standard dropout, nodes are not dropped entirely; instead of ignoring nodes, they

are subjected to Gaussian noise, as shown in Figure 4.2.1. According to the exper-

iments conducted by Srivatsava et al. [47], using GD resulted in less computation

time because the weights did not need to be scaled each time to fit the ignored nodes,

as in standard dropout. For our experiments, we used TensorFlow Keras Gaussian

dropout [10] to implement this countermeasure and set the drop probability at 0.4.

As a regularization layer, it is only active at training time. In the context of both CL

and FL, our study is the first to use this countermeasure against MIAs.

Fig. 4.2.1: Network with Gaussian dropout

4.3 Monte Carlo Dropout

Monte Carlo Dropout (MCD) is a method for capturing model uncertainty proposed

by Gal and Ghahramani [28]. The different networks (with various neurons removed)
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can be considered Monte Carlo samples from the space of all available models. This

provides mathematical grounds for the model to reason about its uncertainty, fre-

quently improving its performance. It works by allowing dropout during testing [41].

Then, instead of making a single prediction, it makes several, one for each model,

and averages or analyses their distributions. Figure 4.3.1 shows a simple use of MCD

layers. For our experiments, we used TensorFlow Keras Monte Carlo dropout [41] to

implement this countermeasure and set the optimal probability of retention at 0.2.

Our work is the first to implement it as a countermeasure against MIA in both CL

and FL settings.

Fig. 4.3.1: Monte Carlo dropout

4.4 Gaussian Noise

Gaussian Noise (GN) is the most practical perturbation-based model for describing

nonlinear effects induced by additive Gaussian noise [43]. GN is used to replace

adversarial attacks to reduce the dependency of the models on specific adversarial

attacks [53]. From this, we try to implement it as a countermeasure against MIA in

the FL setting. Figure 4.4.1 shows examples of MNIST images by various amounts of

GN. This is useful to mitigate overfitting. It is a natural choice as a corruption process

for real-valued inputs. For our experiments, we used TensorFlow Keras Gaussian
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noise [11] to implement this countermeasure and set the standard deviation of the

noise distribution at 0.4. As a regularization layer, it is only active at training time.

Our work is the first to implement it as a countermeasure against MIA in the FL

setting.

Fig. 4.4.1: MNIST images by various amounts of Gaussian noise [14]. (a) Without
noise. (b) Gaussian noise with 0.1 STD. (c) Gaussian noise with 0.5 STD. (d) Gaus-
sian noise with 1.0 STD.

4.5 Batch Normalization

Batch Normalization (BN) technique improves accuracy by normalizing activation’s

in intermediate layers of deep neural networks [17]. BN naturally extends this idea

across the intermediate layers within a deep network [29]. However, for speed reasons,

the normalization is performed across mini-batches, not the entire training set. It

applies a change that holds the mean output close to 0 and the output standard

deviation close to 1. It performs differently during training and inference. During
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training, that is, when using fit(), the layer normalizes its output using the mean and

standard deviation of the current batch of inputs. During inference, that is, when

using evaluate() or predict(), the layer normalizes its output using a moving average

of the mean and standard deviation of the batches it has noticed during training. As

such, the layer will only normalize its inputs during inference after training on data

with similar statistics to the inference data. For our experiments, we used TensorFlow

Keras Batch normalization [7] to implement this countermeasure. An illustration of

BN is shown in Figure 4.5.1. Normalization is used as a defense in label-only MIA,

and results show that regularisation and normalization can slightly reduce average

attack accuracy [20].

Fig. 4.5.1: Batch normalization layers [21]

4.6 Masking

Masking (M) informs sequence-processing layers that specific timesteps in the input

are missing and should be skipped when processing the data [5]. If all values in

the input tensor at that timestep are equal to the mask value, the timestep will be
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masked in all downstream layers. For our experiments, we used TensorFlow Keras

Masking [5] to implement this countermeasure. A general visualization of masking is

shown in an MNIST example in Figure 4.6.1. Our work is the first to utilize it as a

protection against MIA in both CL and FL setting.

Fig. 4.6.1: Masking on MNIST images [50]

4.7 Activity Regularization

Activity Regularization (AR) is a neural network method to learn the data’s internal

representations. L1 regularizer and L2 regularizer are the two regularisation tech-

niques [3]. L1 regularization penalizes the sum of absolute values of the weights,

whereas L2 regularization penalizes the sum of squares of the weights. The L1 and

L2 have stated as the L1 norm allows some weights to be significant while driving oth-

ers to zero. It penalizes the actual value of a weight. The L2 norm causes all weights

to decrease in size. It penalizes the square value of a weight. For our experiments,

we used TensorFlow Keras Activity regularization [6] to implement this countermea-

sure and set the L1 and L2 regularization factors at 0.01. Shokri et al. [46] used the

conventional L2-regularizer as a defense technique in the CL setting to overcome the

MIA on ML models trained using a neural network.

4.8 Differential Privacy

Differential Privacy (DP) is a framework for estimating the privacy provided by an

algorithm [8]. Through DP, one can design machine learning algorithms that respon-

sibly train models on private data. Learning with DP guarantees privacy, mitigating
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the risk of exposing sensitive training data in machine learning. Single or small train-

ing examples should not influence a model trained with DP in its dataset, which

helps mitigate the risk of exposing sensitive training data in ML. The basic idea of

Differentially Private Stochastic Gradient Descent (DP-SGD) is to modify the gra-

dients used in Stochastic Gradient Descent (SGD), which is the core of almost all

deep learning algorithms. DP-SGD algorithm incorporates Gaussian additive noise

with the gradient updates in SGD to ensure DP during model training [12]. Models

trained with DP-SGD provide DP guarantees for their input data. There are two

changes made to the SGD algorithm:

• First, the sensitivity of each gradient needs to be determined. In other words,

there must be a limit to how much each training point sampled in a minibatch

can affect gradient computations and the resulting updates applied to model

parameters, which can be done by clipping each gradient computed on each

training point.

• Random noise is sampled and added to the clipped gradients to make it statis-

tically impossible to know whether or not a particular data point was included

in the training dataset by comparing the updates SGD applies when it operates

with or without this particular data point in the training dataset. TensorFlow

Privacy delivers code that covers an existing TensorFlow optimizer to create a

variant that implements DP-SGD.

DP [26, 25, 27] is a strong standard for ensuring privacy in distributed datasets.

For our experiments, we used TensorFlow Keras Differential privacy [8] to implement

this countermeasure.

4.9 Knowledge Distillation

Knowledge Distillation (KD) distills and transfers knowledge from one deep neural

network to another deep neural network [55]. It is a method to compress the model

while maintaining accuracy. The larger network that gives the knowledge is called a
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Teacher network, and the smaller network that receives the knowledge is called a Stu-

dent network. The teacher network is first trained separately until full convergence.

Afterward, the distiller then transfers knowledge from the teacher to the student. The

student network is trained in coordination with the fully trained teacher network.

A generic illustration of knowledge distillation is shown in Figure 4.9.1. According

to many works in ML against MIA, KD outperforms other mitigating approaches [56,

45], while other works in FL claim that it facilitates effective communication [51,

30, 33]. Our experiments used Keras knowledge distillation [4] to implement this

countermeasure.

Fig. 4.9.1: A generic illustration of knowledge distillation [13]

4.10 Conclusion

In this chapter, we discussed various countermeasures in detail and discussed whether

they were used in earlier work. Countermeasures such as Dropout, Gaussian Noise,

and Activity Regularization are already used to mitigate membership inference at-

tacks in a centralized learning setting, we implemented them in a Federated learning

setting as well. Batch Normalization, Differential Privacy, and Knowledge Distilla-

tion are used as a countermeasure in the federated learning environment. Our work

is the first to utilize Gaussian Dropout, Monte Carlo Dropout, and Masking as a

countermeasure against MIA in both CL and FL settings.
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CHAPTER 5

Performance Analysis

In this chapter, we described the experimental setup and results. In the experimental

setup, we discussed the datasets and dataset preprocessing. Then we discussed the

architecture of our model and its training settings. We also discussed the comparison

techniques and evaluation metrics we applied for our experiments. Next, we discuss

the experimental results for CL and FL with and without countermeasures.

5.1 Experimental Setup

This section explained the datasets we used, the model architecture, and its train-

ing parameters. We also detailed evaluation metrics and comparison techniques to

conduct various MIA attacks in the FL environment.

5.1.1 Datasets

We conducted experiments on three datasets MNIST [22], FMNIST [52], and CIFAR-

10 [31] to evaluate the attacks in the FL setting. Table 5.1.1 shows general informa-

tion about all the datasets we used. These datasets are the benchmark to validate

MIA and are the same as those used in related work. Figure 5.1.1 and Figure 5.1.2

show grayscale visualization of MNIST [22] and FMNIST [52], respectively whereas

Figure 5.1.3 shows RGB visualization of CIFAR-10 [31].

• MNIST is a freely accessible dataset that contains 70,000 images of handwrit-

ten digits, 60,000 images of the training set, and 10,000 images of the testing

set. Each image is formatted as 28 x 28 and processed so that the digit is in

31



5. PERFORMANCE ANALYSIS

Fig. 5.1.1: Visualization of MNIST Dataset [22]

the center. The MNIST dataset is a 10-class classification problem in which the

task is to determine which digit between 0 and 9, inclusive, is present in a given

image.

• FMNIST is a dataset that consists of 70,000 images of Zalando’s article images,

60,000 images of the training set, and 10,000 images of the testing set. Each

image is a 28 x 28 grayscale image associated with a label from 10 classes.

• CIFAR-10 dataset is also freely accessible and contains 60,000 color images,
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Fig. 5.1.2: Visualization of FMNIST Dataset [52]

50,000 images of the training set, and 10,000 images of the test set. Each image

is again formatted to be 32 x 32. There are also ten classes in the CIFAR-10

dataset: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Each class has 6,000 images available. The problem is a 10-class classification

problem to determine which of the ten classes is depicted in a given image.
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Fig. 5.1.3: Visualization of CIFAR-10 Dataset [31]

Table 5.1.1: General information of the datasets

Name Type Number of Classes Number of Training Records Number of Testing Records

MNIST Image 10 60,000 10,000

FMNIST Image 10 60,000 10,000

CIFAR-10 Image 10 50,000 10,000

5.1.2 Dataset Preprocessing

We divided each of the datasets into 30,000 for training and 10,000 for testing to set

up the FL environment, as shown in Table 5.1.2. Then the dataset is divided into
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each participant 10,000 for training and 1,000 for teasing, to train separately using

the FedAvg [35] algorithm, as shown in Table 5.1.3.

Table 5.1.2: Size of the dataset to train and test in the FL environment

Dataset for FL Setting

Datasets Training Dataset Testing Dataset

MNIST 30,000 10,000

FMNIST 30,000 10,000

CIFAR-10 30,000 10,000

We normalized the image data to the range [0,1], which allows the model to train

more efficiently.

Table 5.1.3: Number of participants and size of the dataset to train and test partici-
pants in the FL environment

Number of Participants dataset for FL setting

Participants Training Dataset Testing Dataset

Participant 1 10,000 1,000

Participant 2 10,000 1,000

Participant 3 10,000 1,000

5.1.3 Model Architecture

We performed our experiments on 1.90GHz Intel(R) Core(TM) i3-4030U processor

with 4.00 GB RAM on the x64-based processor. We used open-source frameworks and

standard libraries, such as Keras and Tensorflow, that can be deployed on endpoints.

We created a model using Keras’ Sequential function Object and then added a

linear stack of network layers. Our model first defines the flattened input layer,

followed by three Dense layers. MNIST and FMNIST input sizes are 28,28,1, while

CIFAR-10 input sizes are 32,32,3. Between the dense layers, we added countermeasure
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layers as shown in Figure 5.1.4. We used the countermeasure layers as our experiment

demanded. We specify an output size of 10 and set the activation function for this

layer to softmax because we are using our network to solve a multi-class classification

problem.

5.1.4 Training Setting

For the learning process, we used three optimizers: SGD, RMSProp, and Adagrad,

with a learning rate of 0.01. We used categorical cross-entropy loss for the loss

function and included the accuracy metric, with a batch size of 32 and epochs of 10,

for training the participants’ models. The FL process is replicated, including local

participant training and client-server aggregation. We used the FedAvg [35] algorithm

to update the FL global model with three participants, as illustrated in Figure 5.1.5.

5.1.5 Evaluation Metrics

We used the test accuracy as an evaluation metric for the FL model. The standard

metric for measuring attack accuracy is recall. We used recall as an evaluation metric

for comparing MIA attacks in the FL environment. The recall represents the fraction

of the training dataset members correctly inferred as members by the attacker.

5.1.6 Comparison Methods

We compared four attacks as shown in Table 5.1.4. Attack 1 uses multiple shadow

models with the same structure and training data distribution as the target model.

Attack 2 uses a single shadow model; its structure is different, and training data

distribution is the same as the target model. In contrast, Attack 3 training data

distribution differs from the target model and uses a single shadow model. Lastly,

Attack 4 uses the Jacobian matrix and prediction sensitivity technique.
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Fig. 5.1.4: Visualization of model architecture
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Fig. 5.1.5: Overview of a FL system

Table 5.1.4: General information of the attacks

Attack Shadow model Target’s model Prediction

type No. of. shadow models Target model structure training data distribution sensitivity

Attack 1 [46] multiple ✓ ✓ -

Attack 2 [44] 1 - ✓ -

Attack 3 [44] 1 - - -

Attack 4 [34] - - - ✓

5.2 Experimental Results

In this section, we presented our experimental results. We started by comparing

CL and FL model accuracy with their attack recall. Then we presented FL model

accuracy and compared all the MIA attacks in the FL environment.

5.2.1 CL vs FL

Many studies thoroughly compared CL and FL approaches [15, 42]. FL is concluded

as a network-efficient alternative to CL [24]. In our comparison of the two approaches,

as shown in Figure 5.2.1, CL outperformed FL regarding accuracy, which is expected.
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Generally, the recall of all Attacks 1, 2, 3, and 4 is almost the same, if not less, in FL

compared to the recall in CL, considering different mitigation techniques. Comparison

of CL and FL attacks using SGD optimizer on MNIST dataset is shown in Figure 5.2.2,

Figure 5.2.3, Figure 5.2.4 and Figure 5.2.5.

We achieved the highest CL model accuracy(92.8) using BN with SGD on the

MNIST dataset and the lowest CL model accuracy(72.6) using MCD with Adagrad

on the CIFAR-10 dataset with countermeasures, as shown in Table 5.2.1. Generally,

for each optimizer, CL model accuracy is the lowest for CIFAR-10 and the highest

for MNIST, which is the same as in the FL case.

As shown in Table 5.2.1, BN does not affect the MNIST model accuracy. For

FMNIST and CIFAR-10, the countermeasure that does not affect the model accuracy

depends on the considered optimizer.

Fig. 5.2.1: CL vs FL model accuracy on SGD optimizer - MNIST

The CL attack recall for all the optimizers, countermeasures, and datasets con-

sidering the four attacks is shown in Table 5.2.2. It is observed that countermeasures

on Attack 4 decrease the attack recall significantly. Generally, KD and MCD are

considered the best mitigation on CL settings with all datasets because they decrease

the attack recall more than other countermeasures.
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Table 5.2.1: CL model accuracy

Datasets Optimizers WC D MCD BN GD AR GN M KD DPSGD

MNIST

SGD 93.1 81.6(-11.5) 88.3(-4.8) 92.8(-0.3) 89.1(-4) 92.1(-1) 91.4(-1.7) 91.6(-1.5) 92.8(-0.3) 85.5(-7.6)

Adagrad 92.6 86.5(-6.1) 85.7(-6.9) 92.1(-0.5) 89.6(-3) 91.6(-1) 91.1(-1.5) 90.3(-2.3) 92(-0.6) -

RMSProp 92.8 92.5(-0.3) 90.9(-1.9) 92.7(-0.1) 91.3(-1.5) 90.4(-2.4) 90.7(-2.1) 91.5(-1.3) 91.2(-1.6) -

FMNIST

SGD 88.6 84.7(-3.9) 84.1(-4.5) 86.4(-2.2) 85.2(-3.3) 87.3(-1.3) 85.8(-2.8) 88.1(-0.5) 86.9(-1.7) 84.2(-4.4)

Adagrad 85.8 78.6(-7.2) 75.9(-9.9) 84.6(-1.2) 81.9(-3.9) 83.8(-2) 79.1(-6.7) 88.7(+2.9) 82.3(-3.5) -

RMSProp 83.6 79.5(-4.1) 78.5(-5.1) 82.9(-0.7) 78.7(-4.9) 82.6(-1) 81.7(-1.9) 83.1(-0.5) 81.9(-1.7) -

CIFAR-10

SGD 85.7 74.2(-11.5) 74.9(-10.8) 82.8(-2.9) 83.1(-2.6) 84.3(-1.4) 78.6(-7.1) 82.5(-3.2) 83.9(-1.8) 74.6(-11.1)

Adagrad 88.4 75.7(-12.7) 72.6(-15.8) 85.8(-2.6) 83.6(-4.8) 87.2(-1.2) 81.9(-6.5) 82.5(-5.9) 85.3(-3.1) -

RMSProp 86.3 81.6(-4.7) 76.4(-9.9) 85.7(-0.6) 84.9(-1.4) 84.2(-2.1) 82.1(-4.2) 83.6(-2.7) 81.5(-4.8) -

Fig. 5.2.2: CL vs FL Attack 1 recall on SGD optimizer - MNIST

5.2.2 Analysis of FL Model Accuracy

The effects of various optimizers and countermeasures on FL model accuracy on the

three datasets are shown in Figure 5.2.6, Figure 5.2.7, and Figure 5.2.8. The y-

axis represents the test accuracy of the FL model, and the x-axis represents various

countermeasures. We used DP-SGD to perform DP only on the SDG optimizer. The

first bar in all the plots represents the accuracy without countermeasures.
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Table 5.2.2: CL Attack Recall

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DPSGD

MNIST

SGD

Attack-1 95.4 94.2(-1.2) 83.4(-12) 94.4(-1) 87.9(-7.5) 94(-1.4) 79.8(-15.6) 93.1(-2.3) 84.6(-10.8) 89.2(-6.2)

Attack-2 94.9 93.7(-1.2) 83.2(-11.7) 94.8(-0.1) 86.8(-8.1) 93.6(-1.3) 93.2(-1.7) 93.9(-1) 82.4(-12.5) 88.3(-6.6)

Attack-3 90.7 85.3(-5.4) 74.5(-16.2) 88.7(-2) 82.9(-7.8) 83.2(-7.5) 88.6(-2.1) 89.3(-1.4) 80.5(-10.2) 82.4(-8.3)

Attack-4 87.1 32(-55.1) 34.6(-52.5) 28.7(-58.4) 24.5(-62.2) 35.3(-51.8) 37.4(-49.7) 24.6(-62.5) 22.6(-64.5) 26.8(-60.3)

Adagrad

Attack-1 97.8 97.2(-0.6) 93.8(-4) 96.6(-1.2) 95.2(-2.6) 96.9(-0.9) 95.4(-2.4) 96.9(-0.9) 94.6(-3.2) -

Attack-2 97.7 92.4(-5.3) 93.5(-4.2) 95.7(-2) 95.1(-2.6) 96.4(-1.3) 93.6(-4.1) 95.9(-1.8) 76.1(-21.6) -

Attack-3 91.3 87.4(-3.9) 76.6(-14.7) 89.5(-1.8) 86.2(-5.1) 86.3(-5) 81.3(-10) 85.4(-5.9) 74.9(-16.4) -

Attack-4 86.9 33.6(-53.3) 32.1(-54.8) 35.2(-51.7) 34.1(-52.8) 39.7(-47.2) 31.8(-55.1) 35.3(-51.6) 31.4(-55.5) -

RMSProp

Attack-1 99.4 98.9(-0.5) 98.3(-1.1) 99.3(-0.1) 98.8(-0.6) 99.1(-0.3) 98.6(-0.8) 98.4(-1) 98.2(-1.2) -

Attack-2 99.2 98.6(-0.6) 97.3(-1.9) 98.7(-0.5) 97.2(-2) 98.3(-0.9) 97.7(-1.5) 97(-2.2) 96.4(-2.8) -

Attack-3 98.6 96.3(-2.3) 94.1(-4.5) 98.2(-0.4) 93.1(-5.5) 95.6(-3) 94.3(-4.3) 94.8(-3.8) 92.5(-6.1) -

Attack-4 89.9 23(-66.9) 38.7(-51.2) 39.5(-50.4) 37.3(-52.6) 39.4(-50.4) 34.6(-55.3) 32.8(-57.1) 31.3(-58.6) -

FMNIST

SGD

Attack-1 95.8 93.7(-2.1) 85.6(-10.2) 95.3(-0.5) 88.9(-6.9) 94.7(-1.1) 86.5(-9.3) 93.4(-2.4) 83.5(-12.3) 86.3(-9.5)

Attack-2 93.6 86.4(-7.2) 83.2(-10.4) 93.1(-0.5) 85.9(-7.7) 92.8(-0.8) 86.1(-7.5) 92.5(-1.1) 82.9(-10.7) 85.7(-7.9)

Attack-3 90.2 82.2(-8) 81.6(-8.6) 89.6(-0.6) 84.9(-5.3) 89.1(-1.1) 83.7(-6.5) 88.5(-1.7) 81.9(-8.3) 83.1(-7.1)

Attack-4 82.1 27(-55.1) 25.8(-56.3) 33.6(-48.5) 38.4(-43.7) 42.8(-39.3) 29.5(-52.6) 37.5(-44.6) 21.7(-60.4) 27.9(-54.2)

Adagrad

Attack-1 90.6 83.2(-7.4) 82.4(-8.2) 85.4(-5.2) 83.6(-7) 86.9(-3.7) 87.6(-3) 89.5(-1.1) 84.2(-6.2) -

Attack-2 87.2 82.6(-4.6) 81.6(-5.6) 84.3(-2.9) 81.9(-5.3) 85.3(-1.9) 86.8(-0.4) 85.7(-1.5) 81.8(-5.4) -

Attack-3 85.7 82.4(-3.3) 81.1(-4.6) 82.8(-2.9) 78.4(-7.3) 82.9(-2.8) 82.7(-3) 83.6(-2.1) 79.3(-6.4) -

Attack-4 80.9 46.2(-34.7) 26.9(-54) 36.7(-44.2) 26.4(-54.5) 35.4(-45.5) 32(-48.9) 43.2(-37.7) 31.2(-49.7) -

RMSProp

Attack-1 91.5 76.4(-15.1) 73.8(-17.7) 89.4(-2.1) 86.9(-4.6) 88.4(-3.1) 85.2(-6.1) 87.5(-4) 72.6(-18.9) -

Attack-2 89.2 73.6(-15.6) 72.7(-16.5) 86.3(-2.9) 82.8(-6.4) 87.2(-2) 83.1(-6.1) 85.3(-3.9) 71.8(-17.4) -

Attack-3 85.3 71.9(-13.4) 70.6(-14.7) 84.3(-1) 81.4(-3.9) 82.8(-2.5) 80.1(-5.2) 81.6(-3.7) 69.3(-16) -

Attack-4 70.8 20.1(-50.7) 20.5(-50.3) 35.9(-34.9) 26.2(-44.6) 34.8(-36) 28.6(-42.2) 29.6(-41.2) 26.1(-44.7) -

CIFAR-10

SGD

Attack-1 92.6 82.8(-9.8) 80.5(-12.1) 91.7(-0.9) 91.5(-1.1) 89.4(-3.2) 85.3(-7.3) 90.4(-2.2) 81.3(-11.3) 84.2(-8.4)

Attack-2 90.4 80.2(-10.2) 79.9(-10.5) 89.2(-1.2) 89.6(-0.8) 84.2(-6.2) 83.7(-6.7) 86.9(-3.5) 79.4(-11) 81.8(-8.6)

Attack-3 84.7 77.9(-6.8) 75.1(-9.6) 82.8(-1.9) 82.6(-2.1) 81.7(-3) 82.3(-2.4) 82.8(-1.9) 75.2(-9.5) 76.4(-8.3)

Attack-4 78.4 36.8(-41.6) 35.6(-42.8) 42.7(-35.7) 40.9(-37.5) 40.5(-37.9) 39.1(-39.3) 40.6(-37.8) 33.9(-44.5) 35.2(-43.2)

Adagrad

Attack-1 91.3 76.8(-14.5) 75.7(-15.6) 90.2(-1.1) 89.4(-1.9) 90.4(-0.9) 87.6(-3.7) 88.1(-3.3) 74.2(-17.1) -

Attack-2 89.4 73.6(-15.8) 72.4(-17) 88.3(-1.1) 87.9(-1.5) 85.3(-4.1) 84.1(-5.3) 83.8(-5.6) 72.8(-16.6) -

Attack-3 83.6 68.9(-14.7) 65.7(-17.9) 83.1(-0.5) 80.7(-2.9) 81.5(-2.1) 81.6(-2) 82.4(-1.2) 66.9(-16.7) -

Attack-4 72.5 28.6(-43.9) 25.3(-47.2) 36.4(-36.1) 34.9(-37.6) 37.7(-34.8) 30.3(-42.2) 33.4(-39.1) 25.9(-46.6) -

RMSProp

Attack-1 89.3 83.6(-5.7) 82.9(-6.4) 88.4(-0.9) 87.3(-2) 88(-1.3) 87.6(-1.7) 89.1(-0.2) 82.5(-6.8) -

Attack-2 84.2 78.4(-5.8) 75.9(-8.3) 83.9(-0.3) 82.4(-1.8) 81.9(-2.3) 82.8(-1.4) 82.7(-1.5) 76.8(-7.4) -

Attack-3 81.6 74.9(-6.7) 72.9(-8.7) 80.6(-1) 78.5(-3.1) 77.3(-4.3) 78.2(-3.4) 80.1(-1.5) 71.4(-10.2) -

Attack-4 68.5 24.7(-43.8) 22.6(-45.9) 32.9(-35.6) 30.5(-38) 31.8(-36.7) 29.2(-39.3) 31.3(-37.2) 23.4(-45.1) -

5.2.2.1 FL model accuracy without countermeasure

We achieved the highest FL model accuracy using RMSProp on the MNIST dataset

and the lowest FL model accuracy using RMSProp on the CIFAR-10 dataset as

shown in Table 5.2.3. Generally, for each optimizer, FL model accuracy is the lowest

for CIFAR-10 and the highest for MNIST. This can be justified by the nature of the

dataset.
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Fig. 5.2.3: CL vs FL Attack 2 recall on SGD optimizer - MNIST

Fig. 5.2.4: CL vs FL Attack 3 recall on SGD optimizer - MNIST
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Fig. 5.2.5: CL vs FL Attack 4 recall on SGD optimizer - MNIST

Fig. 5.2.6: FL model accuracy on all optimizer - MNIST
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Fig. 5.2.7: FL model accuracy on all optimizer - FMNIST

Fig. 5.2.8: FL model accuracy on all optimizer - CIFAR-10
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Countermeasures

WC Without Countermeasure

D Dropout

MCD Monte Carlo Dropout

BN Batch Normalization

GD Gaussian Dropout

AR Activity Regularization

GN Gaussian Noise

M Masking

DPSGD Differential Privacy-SGD

KD Knowledge Distillation

Table 5.2.3: FL model accuracy

Datasets Optimizers WC D MCD BN GD AR GN M KD DPSGD

MNIST

SGD 87 72(-15) 80(-7) 86.7(-0.3) 85.5(-1.5) 85.4(-1.6) 85.6(-1.4) 86.2(-0.8) 86.9(-0.1) 79.9(-7.1)

Adagrad 88.7 88.2(-0.5) 84.9(-3.8) 88.3(-0.4) 88.1(-0.6) 88.5(-0.2) 88.3(-0.4) 87(-1.7) 88.2(-0.5) -

RMSProp 91.7 91.6(-0.1) 89.5(-2.2) 91.1(-0.6) 87.4(-4.3) 86(-5.7) 90(-1.7) 91.7(0) 87.9(-3.8) -

FMNIST

SGD 81.3 79.8(-1.5) 76.4(-4.9) 81(-0.3) 75.7(-5.6) 80.5(-0.8) 74.9(-6.4) 80.3(-1) 80.9(-0.4) 77.6(-3.7)

Adagrad 82.6 82(-0.6) 78.9(-3.7) 81.6(-1) 79.9(-2.7) 82.2(-0.4) 78.4(-4.2) 80.6(-2) 80.7(-1.9) -

RMSProp 91.7 76.8(-14.9) 74.4(-17.3) 71(-20.7) 72.3(-19.4) 68.2(-23.5) 55(-36.7) 76.1(-15.6) 75.8(-15.9) -

CIFAR-10

SGD 79.5 73(-6.5) 65.9(-13.6) 79.3(-0.2) 73.2(-6.3) 74.6(-4.9) 74.9(-4.6) 73.1(-6.4) 79.3(-0.2) 75.7(-3.8)

Adagrad 76.3 67(-9.3) 54(-22.3) 76.2(-0.1) 72.9(-3.4) 71.4(-4.9) 71.1(-5.2) 69.9(-6.4) 75.7(-0.6) -

RMSProp 72.8 61.2(-11.6) 53.6(-19.2) 72.4(-0.4) 70.9(-1.9) 72.2(-0.6) 71(-1.8) 68.6(-4.2) 72.1(-0.7) -

5.2.2.2 FL model accuracy with countermeasures

As shown in Table 5.2.3, BN does not affect the CIFAR-10 model accuracy. For

MNIST and FMNIST, the countermeasure that does not affect the model accuracy

depends on the considered optimizer.
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5.2.3 Analysis of the Attack Recall

Reducing the attacks’ recall is the best way to mitigate the MIA. Figure 5.2.9, Fig-

ure 5.2.10, Figure 5.2.11, Figure 5.2.12, Figure 5.2.13, Figure 5.2.14, Figure 5.2.15,

Figure 5.2.16 and Figure 5.2.17 shows the results of the four attacks using three opti-

mizers, with and without countermeasures on three datasets, respectively. The y-axis

represents the recall of the attack, and the x-axis represents various countermeasures

on a particular optimizer.

Fig. 5.2.9: A comparison of the four attacks using SGD optimizers with and without
countermeasures - MNIST

5.2.3.1 Attacks without countermeasure

Attack 4 has the lowest attack recall with MNIST. Attack 4 and Attack 3 have the

lowest attack recall with FMNIST and CIFAR-10. On the other hand, Attack 1 has

the highest attack recall for all datasets, as shown in Table 5.2.4.
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Table 5.2.4: FL Attack Recall

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DPSGD

MNIST

SGD

Attack-1 95.2 79.3(-15.9) 82.4(-12.8) 94.5(-0.7) 91.6(-3.6) 93.6(-1.6) 81(-14.2) 93.4(-1.8) 75.7(-19.5) 88(-7.2)

Attack-2 94.5 74.6(-19.9) 82(-12.5) 94.3(-0.2) 91(-3.5) 93.1(-1.4) 78.2(-16.3) 93(-1.5) 72.8(-21.7) 86.7(-7.8)

Attack-3 88.2 71.7(-16.5) 68.4(-19.8) 86.2(-2) 82.5(-5.7) 81.1(-7.1) 69.4(-18.8) 85(-3.2) 68.9(-19.3) 81.2(-7)

Attack-4 86 24.8(-61.2) 34(-52) 24.4(-61.6) 24.1(-61.9) 34.5(-51.5) 28(-58) 24.3(-61.7) 18(-68) 22.1(-63.9)

Adagrad

Attack-1 97.6 97(-0.6) 93.4(-4.2) 95.8(-1.8) 96.4(-1.2) 96.7(-0.9) 93.5(-4.1) 97(-0.6) 73.4(-24.2) -

Attack-2 97.5 89(-8.5) 93.1(-4.4) 94(-3.5) 96.1(-1.4) 96.3(-1.2) 92.1(-5.4) 95(-2.5) 70.3(-27.2) -

Attack-3 89.2 88.1(-1.1) 74.7(-14.5) 86(-3.2) 86.2(-3) 84.5(-4.7) 79(-10.2) 81.9(-7.3) 64.2(-25) -

Attack-4 82 16(-66) 38(-44) 34.3(47.7) 32(-50) 38.4(-43.6) 20(-62) 16(-66) 17.8(-64.2) -

RMSProp

Attack-1 99 98.7(-0.3) 97.4(-1.6) 98.6(-0.4) 92.8(-6.2) 93.5(-5.5) 97(-2) 96.6(-2.4) 83.6(-15.4) -

Attack-2 98.9 98.2(-0.7) 97(-1.9) 98.3(-0.6) 89.4(-9.5) 87.7(-11.3) 91.9(-7) 91.3(-7.6) 78.6(-20.4) -

Attack-3 93.5 90.8(-2.7) 83.4(-10.1) 92.9(-0.6) 85.3(-8.2) 91(-2.5) 91.7(-1.8) 91.05(-2.4) 72.5(-21) -

Attack-4 88 7(-81) 31(-57) 36(-52) 32(-56) 36.2(51.8) 30(-58) 28(-60) 22.6(-65.4) -

FMNIST

SGD

Attack-1 82.4 71(-11.4) 74.6(-7.4) 76.7(-5.7) 80.5(-1.9) 77.5(-4.9) 77(-5.4) 81.9(-0.5) 74.8(-7.6) 75.1(-7.3)

Attack-2 82.1 70.3(-11.8) 69.8(-12.3) 74.4(-7.7) 77.2(-4.9) 79.1(-3) 76.9(-5.2) 81.1(-1) 70.2(-11.9) 71.6(-10.5)

Attack-3 76.8 64.1(-12.7) 63.2(-13.6) 69.8(-7) 71.9(-4.9) 71.1(-5.7) 69.7(-7.1) 68.3(-8.5) 65.6(-11.2) 65.8(-11)

Attack-4 72 9(-63) 16(-56) 32.8(-39.2) 36.2(-35.8) 44(-28) 36(-36) 32(-40) 26.1(-45.9) 23.8(-48.2)

Adagrad

Attack-1 83.6 80.2(-3.4) 78.2(-5.4) 81.1(-2.5) 81(-2.6) 80.6(-2) 78.9(-4.7) 82.5(-1.1) 73.2(-10.4) -

Attack-2 82.2 80(-2.2) 77.5(-4.7) 80.9(-1.3) 81(-1.2) 80.2(-2) 78.1(-4.1) 82(-0.2) 71.2(-11) -

Attack-3 75.1 73.4(-1.7) 71.3(-3.8) 71.1(-4) 69.9(-5.2) 70(-5.1) 72.1(-3) 74.2(-0.9) 69.4(-5.7) -

Attack-4 80 68(-12) 24(-56) 36.4(-43.6) 24(-56) 36.8(-43.2) 34(-46) 36(-44) 26.3(-53.7) -

RMSProp

Attack-1 74.2 69.9(-4.3) 72.3(-1.9) 67.8(-6.4) 66(-8.2) 64.3(-9.9) 67.5(-6.7) 73.6(-0.6) 63.9(-10.3) -

Attack-2 73.9 69.4(-4.5) 71.7(-2.2) 66.7(-7.2) 66.5(-7.4) 63.8(-10.1) 66.1(-7.8) 73(-0.9) 60.8(-13.1) -

Attack-3 68.2 61.3(-6.9) 55.8(-12.4) 59(-9.2) 58.3(-9.9) 59.6(-8.6) 59.3(-8.9) 64.6(-3.6) 58.1(-10.1) -

Attack-4 69 12(-57) 16(-53) 38(-31) 14(-55) 32.3(-36.7) 34(-35) 32(-37) 24.7(-44.3) -

CIFAR-10

SGD

Attack-1 79 68.5(-10.5) 62.2(-16.8) 78.3(-0.7) 77.8(-1.2) 76.3(-2.7) 75.2(-3.8) 73.6(-5.4) 68.9(-10.1) 69.1(-9.9)

Attack-2 78.6 68.2(-10.4) 61.1(-17.5) 78.1(-0.5) 77.4(-1.2) 74.3(-4.3) 76.7(-1.9) 74.2(-4.4) 63.1(-15.5) 67.6(-11)

Attack-3 74.3 67.4(-6.9) 60.9(-13.4) 73.4(-0.9) 73.2(-1.1) 71.5(-2.8) 71.2(-3.1) 72.8(-1.5) 60.4(-13.9) 69.6(-4.7)

Attack-4 75.6 31(-44.6) 28(-47.6) 33.9(-41.7) 32.6(-43) 30(-45.6) 29.8(-45.8) 23.4(-52.2) 25.8(-49.8) 30.9(-44.7)

Adagrad

Attack-1 74.2 65(-9.2) 61(-13.2) 73.8(-0.4) 73.1(-1.1) 72.4(-1.8) 73(-1.2) 70(-4.2) 65.8(-8.4) -

Attack-2 73.7 64.3(-9.4) 60(-13.7) 73.1(-0.6) 72.6(-1.1) 72.2(-1.5) 72.8(-0.9) 69.5(-4.2) 63.1(-10.6) -

Attack-3 67.4 56.9(-10.5) 53(-14.4) 62.4(-5) 62.2(-5.2) 60.4(-7) 61.5(-5.9) 58.4(-9) 60.4(-7) -

Attack-4 70.1 17(-53.1) 13(-57.1) 28.4(-41.7) 25(-45.1) 27.1(-43) 25.2(-44.9) 12(-58.1) 26.2(-43.9) -

RMSProp

Attack-1 68.2 58.6(-9.6) 55(-13.2) 65.8(-2.4) 64.2(-4) 65.3(-2.9) 64(-4.2) 62.1(-6.1) 62.3(-5.9) -

Attack-2 67.9 57.3(-10.6) 53.2(-14.7) 65.1(-2.8) 63.6(-5.3) 61.9(-6) 62.4(-5.5) 60.8(-7.1) 60.6(-7.3) -

Attack-3 63.7 56(-7.7) 52.9(-10.8) 62.3(-1.4) 60.8(-2.9) 61.7(-2) 59(-4.7) 59.4(-4.3) 57.2(-6.5) -

Attack-4 65.6 23(-42.6) 12(-53.6) 34(-31.6) 32.1(-33.5) 32.7(-32.9) 30.3(-35.3) 25.6(-40) 21.9(-43.7) -

5.2.3.2 Attacks with countermeasure

The attack recall for all the optimizers, countermeasures, and datasets considering the

four attacks is shown in Table 5.2.4. It is observed that countermeasures on Attack 4

decrease the attack recall significantly. Generally, KD and MCD are considered the

best mitigation with all datasets because they decrease the attack recall more than

other countermeasures.
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Fig. 5.2.10: A comparison of the four attacks using Adagrad optimizers with and
without countermeasures - MNIST

5.2.3.3 Privacy and Utility

It is noted that KD has significant advantages over other countermeasures in handling

the trade-off between privacy and utility. In general, KD decreases attack accuracy

with negligible utility loss.

5.3 Conclusion

In this chapter, we studied our experimental setup with the results. We discussed the

datasets, their preprocessing, the architecture of the model, and its training settings.

We also discussed the comparison techniques and evaluation metrics applied to our

experiments. We first compared CL and FL with and without countermeasures.

In our comparison of the two approaches, CL outperformed FL regarding accuracy,

which is expected. The recall in FL is similar or lower compared with the recall in CL,

considering different mitigation techniques. Then we provided a comparative analysis
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Fig. 5.2.11: A comparison of the four attacks using RMSProp optimizers with and
without countermeasures - MNIST.

of all the attacks in the FL setting. The experimental results show that Attack 4 using

prediction sensitivity is the worst for attackers. Among all the countermeasures,

Knowledge Distillation has significant advantages in handling the trade-off between

privacy and utility.

49



5. PERFORMANCE ANALYSIS

Fig. 5.2.12: A comparison of the four attacks using SGD optimizers with and without
countermeasures - FMNIST

Fig. 5.2.13: A comparison of the four attacks using Adagrad optimizers with and
without countermeasures - FMNIST
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Fig. 5.2.14: A comparison of the four attacks using RMSProp optimizers with and
without countermeasures - FMNIST

Fig. 5.2.15: A comparison of the four attacks using SGD optimizers with and without
countermeasures - CIFAR-10
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Fig. 5.2.16: A comparison of the four attacks using Adagrad optimizers with and
without countermeasures - CIFAR-10

Fig. 5.2.17: A comparison of the four attacks using RMSProp optimizers with and
without countermeasures - CIFAR-10
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CHAPTER 6

Conclusion

Federated Learning improves privacy by allowing data owners to successfully train

a model on their shared training data with the support of a central server without

revealing their potentially sensitive data to either the central server or each other.

While federated learning uses the enormous amount of data now accessible at edge

devices, it increases data privacy by allowing data to be kept locally at the clients.

Despite the advantages, federated learning is vulnerable to a membership inference

attack, which attempts to find information about the training data used.

In this thesis, we first compared federated learning with centralized learning. In

our comparison of the two approaches, centralized learning outperformed federated

learning regarding the accuracy, which is expected. The recall of the attacks in feder-

ated learning is similar or lower compared with the recall of the attacks in centralized

learning, considering different mitigation techniques. In centralized learning setting

Batch Normalization and Activity Normalization does not affect the centralized model

accuracy much. Knowledge Distillation and Monte-Carlo Dropout are considered the

best mitigation in centralized learning settings with all datasets because they decrease

the attack recall more than other countermeasures.

Next, we investigated these membership inference attacks in a federated learning

scenario where the attacker tries to infer if the data is part of the training dataset

and investigate these results with countermeasures. We also have provided a compar-

ative analysis of federated learning model accuracy and the attack recall of different

membership inference attacks accompanied by the effect of various countermeasures

against those attacks in the federated learning environment. The experimental results
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show that Attack 1 [46] is best for the attackers, whereas Attack 4 [34] is the worst

for attackers. Batch Normalization, Activity Normalization, and Knowledge Distil-

lation do not affect the federated model accuracy much. Knowledge Distillation and

Monte-Carlo Dropout are the best mitigation in the federated learning environment.

Among all the countermeasures, Knowledge Distillation has significant advantages in

handling the trade-off between privacy and utility. This comparison is critical for

future model development.

Our work uses a single countermeasure for a single experiment. As per our con-

clusion, future work can be done combining Knowledge Distillation with other coun-

termeasures to analyze the effect on FL model accuracy and attack recall.
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