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ABSTRACT 

The ever-growing demands to meet the exhaust emission regulations and 

fuel economy requirements have driven the development of modern spark ignition 

(SI) engines towards lean/diluted combustion strategies and engine downsizing. 

Currently, the transistor coil ignition (TCI) system is still the dominant ignition 

system applied in SI engines. This work investigates the effects of electrode 

diameters on the spark discharge characteristics. 

In this study, different electrode diameters (0.2 mm, 0.7 mm, 1.5 mm, and 

3.5mm) are used. The electrical waveforms of the discharge process are recorded, 

including the breakdown voltage, the glow voltage, and the secondary current. 

Results show that the breakdown voltage increases with the increase of electrode 

diameters (including high-voltage (HV) and ground electrodes). Besides, the glow 

voltage decreases with the electrode diameters increase. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

In recent years, the need to improve vehicle fuel economy, and reduce CO2 emissions, 

has been gaining significant attention because of climate change and energy sustainability 

concerns. One of the ways to realize this target is to enhance the engine thermal 

efficiency by adapting technologies such as high compression ratio, boosted intake 

pressure, lean burn, and charge dilution, i.e., exhaust gas recirculation (EGR) [1]. While 

these techniques have proved to be effective in improving engine efficiency, they also 

induce challenges to the combustion process including ignition difficulties, slow burn 

rate, partial burn or misfire, and escalated cycle-to-cycle variations [2-3]. 

For the ignition system in spark ignition engines, one of the greatest challenges is to meet 

the increased ignition energy requirements of lean mixtures (𝜙 < 0.7) and therein to 

generate a flame kernel reliably under high in-cylinder pressures associated with intake 

boosted high-load lean-burn conditions [4-5].  

1.2 Ignition System and Spark Discharge Principle  

A spark-ignition engine (SI engine) is an internal combustion engine, where the 

combustion process of the air-fuel mixture is initiated by using an electrical discharge 

from a spark plug [6]. At present, the transistor coil ignition (TCI) system is the most 

prevalent system in automotive SI engines owing to its design simplicity, low cost, and 

robust performance. [7]. 
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A typical TCI ignition system, as shown in Figure 1.1, includes a power supply, a control 

switch, an ignition coil, spark plugs, and necessary wiring [8]. The ignition coil works on 

the transformer principle [9], and it consists of a primary coil with a smaller number of 

windings and a secondary coil with a larger number of windings [10]. The primary circuit 

is controlled via an insulated-gate bipolar transistor (IGBT) switch by an ignition control 

signal (spark command) [11]. To prepare for a spark, a charging process is initiated when 

the primary circuit is closed by the IGBT. The primary current increases until the circuit 

is opened by the IGBT. This time interval is usually termed as the charging duration. 

When the transistor switch is turned off, the primary current drops rapidly to 0 A [11]. 

Correspondingly, a high voltage (in the order of tens of kilovolts) is generated in the 

secondary coil because of the abrupt current change in the primary circuit [11]. The ratio 

of the primary voltage to the secondary voltage in this process depends on the ratio of the 

number of windings in the primary coil to the number of windings in the secondary coil 

[12]. The high voltage from the secondary coil results in a gas ionization process across 

the spark gap [12], termed as the breakdown event. After the breakdown event, the 

energy stored in the magnetic field is gradually released to the spark gap, often in a few 

milliseconds. The time interval for the whole spark discharge process is termed as the 

spark discharge duration [13].  

In an SI engine, the combustion of the air-fuel mixture is initiated by a spark discharge 

that creates a flame kernel. The spark discharge process can be generally characterized by 

two phases: a breakdown phase and an arc/glow phase [10]. 
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Figure 1.1 Circuit of an ignition system 

Breakdown Phase 

The spark discharge process begins with a breakdown phase, which occurs at the start of 

spark discharge. An electric field is developed between the high voltage (HV) electrode 

and the ground electrode of the spark plug, aided by the energy stored in the ignition coil. 

The electrons start to move to the anode with the increasing strength of the electrode 

field. These electrons can also ionize the gas molecules between the spark gap during the 

collisions, which tends to result in an avalanche effect, i.e., creating a massive increase in 

the number of electrons and ions. At the same time, the excited atoms also emit low 

wavelength UV radiation [13-15]. A schematic of the breakdown phase is shown in 

Figure 1.2. 

or 
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Figure 1.2 Schematic of the breakdown phase (adapted from [16]) 

The ionized streamers flow between the anode and cathode and create a conductive 

plasma channel in the spark gap. While the conduction is built up across the HV electrode 

and the ground electrode of the spark plug, the impedance massively decreases. The 

energy stored in the parasitic capacitor inside the spark plug, wire, and coil starts to 

release. The breakdown phase is often characterized by the high voltage as shown in 

Figure 1.3 (e.g., up to 40 kV), high current (e.g., ~ 200 A), and short duration (e.g., ~ 2 

ns) [13-15]. 

 

Figure 1.3 The secondary voltage waveform of a breakdown phase 
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Arc/glow Phase 

In the glow phase as shown in Figure 1.4, typically, there is a voltage of 300 to 500 V 

between the HV and ground electrodes. The glow phase generally lasts for a few 

milliseconds. In this relatively long discharge process, the ignition circuit releases most 

of its energy (typically tens of millijoules or higher) [16]. 

 

Figure 1.4 The secondary voltage and secondary current waveforms of a glow phase 

1.3 Challenges of the Current Ignition Systems 

Lean and diluted combustion, along with engine downsizing using turbocharging, are 

employed to reduce the pumping work of intake throttling, especially at lower engine 

loads [17]. On the other hand, turbocharged SI engines tend to suffer from greater risk of 

knocking, and this tendency of knocking may prevent an optimum combustion phasing 

[17]. EGR, as reported in the literature, has been shown effective in suppressing knock in 

SI engines [18]. EGR re-uses a percentage of exhaust gas to dilute the engine intake, and 

it is widely used in diesel engines because of its significant NOx reduction potential. In 
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recent years, EGR is being adopted in SI engines to reduce exhaust emission, especially 

NOx formation, and to improve the overall thermal efficiency [19]. 

Although intake charge dilution (either with excessive air or EGR) may help improve 

engine efficiency and exhaust emissions, dilution often causes challenges for combustion 

initiation and completion [17]. An excessively lean mixture reduces the propensity for 

ignition in the vicinity of the spark gap. Charge dilution, especially with EGR, tends to 

reduce the speed of flame propagation. All of these can lead to a slower burn rate, partial 

burns or even misfires. Along with stronger air motion that is often implemented to 

enhance flame propagation in diluted mixtures, significant cycle-to-cycle variations are 

often observed. Moreover, turbocharging or supercharging (intake boost) causes higher 

intake charge density, which in turn requires higher breakdown voltage supplied from the 

ignition system [20-22]. 

In order to ensure stable ignition and complete combustion under the above conditions, it 

is important to stabilize the initial flame kernel propagation. Consequently, to-date 

ignition systems for SI engines should be improved to accommodate these challenging 

conditions. 

1.4 Literature Review 

The published research results indicate that different geometrical parameters of spark 

plug electrodes (both HV electrode and ground electrode), including shape, surface 

roughness, and material, can affect the discharge characteristics, early flame kernel 

growth, and overall combustion stability [23-27].  
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Electrode shape and surface roughness 

Liu et al. [23] characterized the peak value of electric field strength with the modification 

of the spark gap. He found that the peak value of electric field strength decreases with the 

increase of the electrode gap. The arc resistances were higher for the larger electrode 

gaps, which increased the discharge efficiencies. Spherical electrode had the smallest 

peak field strength, making it more difficult to achieve the breakdown. The electrode 

shape had no significant effect on spark resistance and spark energy release efficiency. 

A correlation between the electrode surface roughness and the breakdown voltage has 

been theoretically and experimentally discussed in the literature [24-26]. Sato et al. [26] 

studied a high-voltage electrode made of copper. The following equation describes the 

relationship between the breakdown voltage and electrode surface roughness: 

                                        𝑉50 = 𝐴𝑅−𝑛                          (1) 

Where 𝑉50 is the 50% of the breakdown voltage, R is defined as the centerline average 

roughness (ISO 468-1982 and ISO 4284/11984), and A and n are the constants 

formulated as a function of the gap length. This relationship indicates that the increasing 

electrode surface roughness exponentially decreases the breakdown voltage [25]. 

Electrode material 

Liu et al. [23] used copper and tungsten to test the impact of electrode materials on spark 

discharge: copper and tungsten were found to have no effect on the distribution of the 

electrostatic field strength across the gap. The differences in the energy losses of tungsten 

and copper electrodes were insignificant.  
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Impact of electrode geometry on combustion 

Bane et al. [27] suggested that the plasma channel emitted a blast wave that was spherical 

near the electrode surfaces and cylindrical near the center of the spark gaps, and thus, the 

spark was highly influenced by the electrode geometry. Initially, the flow field following 

a spark discharge was induced by the blast wave emitted from the high-temperature, 

high-pressure spark channel. The nature of the blast wave depended on the electrode 

geometry; and consequently, the details of the fluid mechanics of the evolving spark 

kernel were greatly influenced by the electrode shape and spacing. 

1.5 Objective of the Thesis 

It is evident from the published literature that for the spark plugs used in SI engines, 

different diameters of electrode influence the spark discharge process. The objective of 

this work is to investigate the effects of electrode diameters on the spark discharge 

parameters, including the breakdown voltage, secondary voltage during the glow phase 

(hereafter named “glow voltage”), discharge energy, and discharge duration. The 

secondary current and voltage were measured. The impacts of the diameters of the HV 

and ground electrodes on the discharge characteristics have been investigated. 

1.6 Structure of the Thesis 

The general structure of the thesis is outlined in Figure 1.5. 
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Figure 1.5 General structure of the thesis 
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CHAPTER 2 

EXPERIMENTAL SETUP 

2.1 Overview of the Experimental Setup 

To investigate the effects of electrode diameters on the spark discharge behavior, an 

ignition research platform was used. A simplified schematic of the research platform is 

shown in Figure 2.1. A National Instruments (NI) real-time (RT) controller with an 

embedded device of field-programmable gate arrays (FPGA) was used to control the 

ignition system. A host computer with LabVIEW software was used as a user interface 

linked to the RT-FPGA via an ethernet cable to promptly deliver the command signals. 

An oscilloscope was used to acquire the trigger, secondary voltage, and secondary current 

during a spark discharge event for later analysis. 

 

Figure 2.1 The spark ignition research platform 

Ignition

coil
Driver box

13.8V

Power supply

Secondary 

Current
Secondary

Voltage

Command

Signal

Trigger SignalSignal

splitter

HV Cable

Spark plug fixture
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One spark plug was used for spark discharge, and the opposing spark plug was used as 

the ground. A laser alignment tool was used for spark plug alignment to ensure the 

electrode surfaces could be parallel to each other, as shown in Figure 2.2. 

 

Figure 2.2 Laser alignment for electrodes position adjustment 

2.2 Spark Plug 

In this research, single electrode spark plugs were used as shown in Figure 2.3. This 

spark plug had an extended stainless-steel electrode with no ground electrode.  

 

Figure 2.3 The single electrode spark plug used in this research 

The spark plug electrodes were shaped to four different diameters, as shown in Figure 

2.4. The original diameter of the electrodes was 3.5 mm diameter while the electrode tips 

were machined to three other diameters, i.e., 0.2 mm,0.7 mm, and 1.5 mm (Figure 2.4). 
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Figure 2.4 Testing electrodes with different diameters 

2.3 Ignition Coil 

As shown in Figure 2.5 below, an MSD Ignition 5527 coil [28] was used as the ignition 

coil. The specifications of this coil are summarized in Table 2.1.  

 
Figure 2.5 MSD Ignition 5527 coil 

Table 2.1 Specifications of MSD Ignition 5527 coil 

Product line MSD-5527 

Primary resistance 0.40 Ω 

Turns ratio 100:1 

Secondary resistance 3.60 kΩ 

Primary inductance 5.20 mH 

Maximum voltage 40 kV 
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2.4 Control System 

In this research platform, the ignition command was generated by the NI RT-FPGA 

system, and the ignition command was split to the ignition coil driver and measurement 

hardware. The overview of the control system is shown in Figure 2.6. 

 

Figure 2.6 Control system overview 

2.4.1 Signal Splitter 

The command signal was split to be used for the drive command of the ignition coil and 

the trigger for the data acquisition system. The signal splitter contained a Texas 

Instruments SN74HC08N AND gate chip [29]. By using this circuit, the signal could be 

split with negligible voltage loss.  

2.4.2 Ignition Coil Driver 

An ignition coil driver was used to energize the ignition coil. A schematic of the ignition 

coil hardware is shown in Figure 2.7. A TTL signal, as the spark command signal, was 

delivered to a GATE driver (Texas Instruments UCC 37322) [30], which provides high 

gate drive currents to control the insulated-gate bipolar transistor (IGBT) (ISL9V3040P3) 

[31]. 

RT controller

And FPGA

Signal
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system

Ignition coil

driver

Ignition coil

Duration
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Figure 2.7 The ignition coil driver circuit of an inductive ignition system 

2.5 Measurement and Data Acquisition Devices 

2.5.1 Measurement Devices 

A Tektronix P6015A high voltage probe [32] was used to measure the secondary voltage. 

The secondary current was measured by a Pearson 411 wideband current monitor [33]. 

When electric current flows through a conductor, a magnetic field is generated around the 

conductor. The magnetic field amplitude is proportional to the current flow. The Pearson 

411 current monitor measures the strength of the magnetic field and outputs a 

corresponding electric signal. The specifications of the high voltage probe and the current 

monitor are shown in Table 2.2. 

Table 2.2 Specifications of the data acquisition devices 

Picture 
Model 

Number 

Measurement 

Range 
Bandwidth 

 

Tektronix 

P6015A 

20 kV DC / 

40 kV Pulsed 

DC to 75 

MHz 

 

PearsonTM 

411 

Wideband 

Up to 5000 A 

1 Hz to 

approximately 

20 MHz 

IGBT

GATE

driver

Ignition coil

Charging command

R Gate

Collector

Emitter

13.8 V DC
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2.5.2 Data Acquisition Devices 

Electric waveforms from the signal splitter, secondary voltage, and secondary current 

were collected by the oscilloscope [34] as shown in Figure 2.8. An overview of the 

oscilloscope specifications is summarized in Table 2.3. 

 

Figure 2.8 PicoScope 4425 four-channel automotive oscilloscope [34] 

 

Table 2.3 Specifications of the PicoScope 4425 

Model PicoScope 4425 

Channels 4 

Bandwidth 20 MHz 

Resolution 12 bits 

Sampling rate 400 MS/s 

Buffer memory 250 M samples 

Input range (full scale) ±50 mV to ±200 V in 12 ranges 
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CHAPTER 3 

THE IMPACT OF ELECTRODES DIAMETERS ON BREAKDOWN VOLTAGE 

 

In this chapter, the impact of electrode diameter on the breakdown voltage is discussed.  

3.1 Data Processing and Calculation Method of the Breakdown Voltage 

Even under the same boundary condition, the breakdown voltages show random 

scattering within a certain range. The breakdown voltage measurements were repeated 

one hundred times under each test condition. The average value of breakdown voltage 

was reported for each testing condition. 

The electric waveforms of discharge voltage during the breakdown phase are shown in 

Figure 3.1. The boundary conditions are listed as follows: the spark gap size varies from 

0.5 mm to 1.5 mm in 0.2 mm increments, under 1 bar abs. ambient pressure, and a 

temperature of 25 oC. The gas media was air, and the diameters of the HV electrode and 

ground electrode were both 0.2 mm. The sampling rate was 20 MHz. 

As shown in Figure 3.2, it is observed that the breakdown voltage increases with the 

increase of spark gap size, which is already proven in previous research extensively and 

is verified in this study [35]. The error bars indicate the range of the values of the one 

hundred events and same as all following figures with error bars in this thesis. When the 

spark gap size is 0.5 mm, the breakdown voltage is 8.07 kV, and with the spark gap size 

of 1.5 mm, the breakdown voltage is increased to 10.59 kV.  
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Figure 3.1 Electric waveforms of the discharge voltage during the breakdown phase 
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Figure 3.2 Breakdown voltages of different spark gaps (0.2 mm HV electrode and 0.2 

mm ground electrode) 

3.2 Impact of Electrodes Diameter on the Breakdown Voltage 

The impact of electrode diameter on breakdown voltage is shown in Figure 3.3. At 1.5 

mm spark gap size, the setup with 3.5 mm diameter of both the HV and ground electrodes 

needed 16.58 kV to breakdown. Meanwhile, once the 0.2 mm diameter electrode was 

used as either the HV or the ground electrode, the breakdown voltages were much lower. 

However, when the spark gap size was small (0.5 mm and 0.7 mm), the impact of 

electrode diameters on breakdown voltage was less significant. 

0

2

4

6

8

10

12

14

0.5 0.7 0.9 1.1 1.3 1.5

B
re

ak
d

o
w

n
 v

o
lt

ag
e 

[k
V

]

Spark gap size [mm]



 

19 

 

 

Figure 3.3 HV and ground electrodes diameters impact on breakdown voltage 

To further investigate the effect of electrode diameters on breakdown voltage, more tests 

were performed with two other ground electrode diameters of 0.7 mm and 1.5 mm. 

Results were shown in Figure 3.4. The uses of 0.7 mm and 1.5 mm diameters of ground 

electrodes produced similar breakdown voltages under various spark gap sizes. The 0.2 

mm diameter of the ground electrode produced the lowest breakdown voltages under all 

spark gap sizes. 
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Figure 3.4 Ground electrode diameter impacts on breakdown voltages  

Further tests were conducted using the 0.2 mm diameter electrode as the HV electrode, as 

shown in Figure 3.5. The breakdown voltages when the diameter of ground electrode 

changes from 0.7 to 3.5 mm were remarkably close. While the 0.2 mm HV and 0.2 mm 

ground electrode setup resulted in the lowest breakdown voltages, on average 10% to 

15% lower compared with other conditions. The point discharge theory can be considered 

to explain the phenomenon: under the action of a strong electric field, where the surface 

of the object has a large curvature (such as the top of a sharp and small object), it is easier 

to cause the gas near the surface to be ionized to generate discharge [15]. 
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Figure 3.5 Ground electrode diameter impacts on breakdown voltages with 0.2 mm 

diameter of HV electrode 
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CHAPTER 4 

THE IMPACT OF ELECTRODE DIAMETER ON GLOW PHASE 

 

In this chapter, empirical results are reported and discussed on the impact of various sizes 

of HV and ground electrodes diameters on discharge energy, discharge duration, and the 

glow voltage. The sampling rate was set to 1 MHz. 

Figure 4.1 shows the secondary voltage curves of 100 repeated spark events under the 

same condition (0.7 mm spark gap size, 0.2 mm diameter of HV electrode, and 0.2 mm 

diameter of ground electrode). Unlike the breakdown voltage, the secondary voltages 

exhibited much better consistency. 

 

Figure 4.1 Electric waveforms of secondary voltage during glow phase 

Figure 4.2 shows the curve of averaged glow voltage using the average value of 100 

repeated spark events. In this work, the glow voltage value is subtracted from the average 

glow voltage from 0.5 ms to 1 ms after the spark command (shown in the blue 

highlighted zone in Figure 4.2).  

 

Spark gap size: 0.7 mm 

Electrodes diameters: 

HV: 0.2 mm 

Ground: 0.2 mm 
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Figure 4.2 Glow voltage curve waveform 

The secondary current data was shown in Figure 4.3. 

 

Figure 4.3 Electric waveform of secondary current curves 

Figure 4.4 (a) shows the curve of calculated secondary current using the average value of 

100 repeats, for various spark gap sizes. 
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(a) 

 

(b) 

Figure 4.4 (a) Calculated secondary current curves using the average value of 100 

repeats, (b) The zoomed-in ending of the discharge processes 

Figure 4.4 (b) shows the end of the spark discharge process. The time interval between 

the start of the discharge and the end of discharge is termed as the spark discharge 

duration. 
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4.1 Impact of Electrodes Diameter on the Glow Voltage 

Figure 4.5 shows impact of ground electrode diameter on glow voltage. The 3.5 mm 

diameter HV and 3.5 mm ground electrodes showed in the lowest glow voltage, and the 

smallest (0.2 mm) diameter of the ground electrode for this test showed the highest glow 

voltages under all spark gap sizes. It is indicated that smaller diameter electrodes resulted 

in higher glow voltages. 

 

Figure 4.5 Ground electrode diameter impacts on glow voltages with 3.5 mm diameter of 

HV electrode 

The tests were repeated using the 0.2 mm diameter HV electrode and the results were 

shown in Figure 4.6. The glow voltage was not sensitive to ground electrode diameters 

when HV electrode diameter was 0.2 mm. 
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Figure 4.6 Ground electrode diameter impacts on glow voltages with 0.2 mm diameter of 

HV electrode 

4.2 Impact of Electrodes Diameter on the Discharge Energy 

The discharge energy, i.e., the electric energy delivered to the spark gap, was calculated 

by integrating the product of secondary voltage and current over the discharge duration, 

as expressed in the equation below. 

                                  𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =  ∫ 𝑈𝑔𝑙𝑜𝑤(𝑡)𝐼𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦(𝑡)𝑑𝑡
𝑡

0
   (2) 

Where E is the discharge energy, Uglow is the secondary voltage, I is the secondary current, 

and t is the time. 

Figure 4.7 shows the impact of electrode diameter on discharge energy. All setups except 

using the 3.5 mm for both HV and ground electrode diameters, exhibited very similar 

discharge energies for all spark gaps. The test with 3.5 mm HV and ground electrodes on 

different spark gap sizes showed an average of 7 mJ lower discharge energy than those of 

smaller ground electrodes.  
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Figure 4.7 Ground electrode diameter impacts discharge energy with the 3.5 mm 

diameter of the HV electrode 

Compared with the discharge energy when using a 3.5 mm diameter HV electrode, using 

the 0.2 mm diameter HV electrode exhibited similar results over various ground electrode 

diameters, as shown in Figure 4.8. Nonetheless, while using the 3.5 mm diameter ground 

electrode, the discharge energy is <5% lower than those of smaller ground electrodes, for 

all spark gaps. 

 

Figure 4.8 Ground electrode diameter impacts on discharge energy with 0.2 mm diameter 

of HV electrode 
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4.3 Impact of Electrodes Diameter on the Discharge Duration 

Figure 4.9 shows the impact of electrode diameter on the discharge duration. The 

diameter of the HV electrode was 3.5 mm. Compared with other setups, the 3.5 mm 

diameter ground electrodes provided the longest discharge duration; and the difference 

increased under smaller spark gap sizes. The diameter of ground electrode showed 

minimum impacts on discharge duration when the spark gap was above 1.3 mm. 

 

Figure 4.9 Ground electrode diameter impacts on discharge durations with the 3.5 mm 

diameter of the HV electrode 

As shown in Figure 4.10, a 0.2 mm diameter HV electrode showed a larger scatter with 

the ground electrode diameter. Further, when the diameter of the HV electrode was fixed 

at 0.2 mm, the larger diameters of the ground electrodes resulted in shorter discharge 

durations. 
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Figure 4.10 Ground electrode diameter impacts on discharge durations with 0.2 mm 

diameter of HV electrode  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This work focused on the impact of the electrode diameters (0.2 mm, 0.7 mm, 1.5 mm, 

and 3.5 mm) on the spark discharge processes. This chapter provides a summary of the 

research results and conclusions from the work performed.  

Recommendations for future research are also provided. 

5.1 Conclusions 

The impacts of electrode diameter on the spark discharge characteristics were analyzed, 

and the conclusions are summarized below. 

• Under the present testing conditions, the increased diameter of electrodes 

(including HV and ground) resulted in higher breakdown voltages. 

• When the diameter of the HV electrode was 3.5 mm, a larger diameter of the 

ground electrode resulted in a lower glow voltage. On the other hand, when the 

diameter of the HV electrode was 0.2 mm, the size of the ground electrode does 

not show an obvious impact on the glow voltage. 

• When the diameter of the HV electrode was fixed at 3.5 mm, an increase in 

ground electrode diameter resulted in lower discharge energy. When the HV 

electrode diameter was 0.2 mm, the diameter of the ground electrode did not show 

an obvious impact on the discharge energy. 

• When the diameter of the HV electrode was fixed at 3.5 mm, the size of the 

ground electrode did not show an obvious impact on the discharge duration. 
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When the diameter of the HV electrode was fixed at 0.2 mm, the bigger diameter 

of the ground electrode resulted in a shorter discharge duration.  

5.2 Future Work 

The experiment was performed under atmospheric conditions. More tests can be carried 

out under pressurized conditions, which can be related to engine operating conditions.  
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