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Abstract

This thesis considers the problem of open circuit voltage (OCV) to state of charge

(SOC) characterization in li-ion batteries for battery reuse applications. The tra-

ditional approach to OCV-SOC characterization is done by collecting voltage and

current data through a slow discharge and charge process; this process usually takes

about 60 hours. Such OCV-SOC characterization is performed on a few sample bat-

teries because the OCV-SOC characterization is considered to be the same for new

batteries coming out of the same manufacturing process. However, the characteristics

of a battery may change as it is used for years in different environmental and usage

conditions. Hence, they may need to be re-characterized before secondary use. Unlike

primary characterization, the secondary characterization may have to be done faster

in order to save time and cost. This thesis presents a faster approach for OCV-SOC

characterization. The proposed approach in this thesis consists of constant-current

profiles that halves in magnitude after a specified time. Such reductions allows us

to fully deplete the battery; similarly, the battery is charged back with a reducing

current profile in order to make sure the battery is fully charged. The resulting cur-

rent profile reduces the total characterization time by 1/5. Secondly, we explore the

idea of discharge and charge capacity of batteries. A traditional low-rate-OCV test

consists of constant-current charging which results in a voltage drop based on the in-

ternal resistance and charging/discharging current. This thesis presents an approach

to counteract this voltage drop, by appropriately over-charging and over-discharging

the battery to obtain the most accurate representation of the capacity of the battery.
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Chapter 1

Introduction

Li-ion batteries play a pivotal role in the landscape of hybrid and electric vehicles

today, standing as the linchpin technology that propels the sustainable mobility rev-

olution forward. The importance of these batteries lie in their exceptional energy

density, longevity, and re-chargeability, which enable vehicles to achieve extended

all-electric ranges and overall enhanced fuel efficiency. Their ongoing advancements

in terms of cost reduction and performance improvements continue to reshape the

automotive industry, accelerating the global shift towards eco-friendly transporta-

tion alternatives. For safety reasons, these li-ion battery pack need to be managed

in order to ensure the safety, dependability, and effectiveness of these batteries. A

Battery Management System (BMS) is responsible for overseeing the present flow,

temperature, and instantaneous voltage of the batteries while also executing various

corrective actions as described by [1]. The BMS operates by implementing corrective

measures to guarantee safety, relying on estimations of vital battery parameters in-

cluding impedance, State-of-Charge (SOC), capacity, State-of-Health (SOH), time to

shut down, and remaining useful lifespan.

Battery reuse is one of the growing concerns in our world today. For instance, bat-

tery packs of EVs that are not used anymore can be reused for different applications

such as energy storage systems, grid stabilization, and off-grid applications after the
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end of life of the EV. As of now, there are two routes for a battery at its end-of-life:

reuse or recycle. Currently, battery recycling is most prevalent as compared to reuse

primarily to re-obtain materials such as lithium, cobalt, and nickel to manufacture

new batteries. This process can be extremely long and the effort may not be worth

the gain. Also, recycling consumes a lot of energy. It makes more environmental sense

to reuse before recycling. To know if a battery can be reused, a full characterization

of the battery needs to be obtained to evaluate battery degradation. A traditional

characterization currently takes around 60 hours to obtain necessary parameters and

this is not feasible when hundreds of batteries need characterization.

Capacity estimation is important when determining factors such as SOH and

SOC. An incorrect estimation can lead to skewed data for these important parame-

ters. One issue that may occur is overall battery pack failure. In addition to this,

it directly impacts performance, reliability, and longevity of the batteries life cycle.

An accurate capacity estimation facilitates precise energy management, preventing

premature battery depletion or overcharging, which can lead to safety hazards. Cur-

rently, a traditional approach to capacity estimation does not consider the voltage

drop that occurs near the upper and lower bounds of charging. A full representation

of the capacity may not be seen when tests are done this way.

In this thesis, an improved characterization algorithm using higher C-rate charg-

ing/discharging is presented. This algorithm reduces the time to characterize a bat-

tery to a fifth of the conventional characterization method. This will allow for high

speed characterization while still keeping a low error in the different estimated pa-

rameters. Thus, the decision to reuse or recycle can be made much quicker and thus

allows a more efficient cycle. Additionally, an improved capacity estimation algorithm

including the factor of voltage drop in calculations is presented. This new addition

will provide a more accurate representation of the capacity due to over-charging and

over-discharging of the battery. Thus, more accurate parameter estimation can be

made overall to ensure safety, and reliability.

2



1.1 Organization of the Thesis

The thesis is presented in the manuscript format with 4 Chapters. The remainder of

the thesis is as followed: Chapter 2 details the Fast OCV characterization algorithm

created to reduce the characterization time by five fold to obtain the OCV parameters.

Chapter 3 details a comparison of a OCV offset approach to offset the voltage drop

to balance OCV parameters between C-rates. Chapter 4 concludes the thesis.
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Chapter 2

A Fast OCV Characterization

Approach for Battery Reuse

Applications
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2.1 Introduction

Li-ion batteries have been used in current-day electric vehicles (EVs). To provide

safety, reliability, and efficiency for these batteries, the battery packs must be moni-

tored. A Battery management system (BMS) monitors the current, temperature, and

instantaneous voltage and also performs different control operations [1]. The BMS

functions by performing corrective actions to ensure safety by estimating crucial pa-

rameters of the battery such as - battery impedance, State-of-charge (SOC), capacity,

state-of-health (SOH), time to shut down, and the remaining useful life.

SOC estimation is an important parameter for the functioning of a BMS [2,3]. It is

equivalent to a fuel gauge indicator in gasoline vehicles. The SOC of any battery gives

the percentage of the remaining charge as a function of the total battery capacity. The

SOC is computed usually through coulomb counting [4], voltage lookup method [5]

or by use of a combined estimation approach [6]. For the voltage-based approach to

SOC estimation, the OCV parameters are required. These parameters are calculated

using curve-fitting functions representing the non-linear relationship. However, the

OCV characterization test using slow and constant current takes approximately 60

hours.

Battery reuse is a common reoccurrence in today’s batteries [7]. Current batteries

in EVs outlive the life of the car itself [8]. From here, we are provided with two

options: reuse the battery, or recycle the battery into components for future use [9].

Currently, a traditional OCV method is employed to evaluate battery degradation.

This is a process which takes around 60 hours to completely characterize a battery.

Characterizing reused batteries must be done case by case due to the differences in

usage and environment the battery was used in.

Thus, it is evident that a new approach is needed to characterize a battery in short

time. The objective of this thesis is to explore a new OCV characterization approach

to reduce the time needed to characterize any battery. In summary, the contributions

6



are listed below:

1. In this thesis, we propose a data collection plan for OCV-SOC characterization

that reduces the characterization time to 1/5 of the time it would take using a

traditional approach.

2. A new approach is presented for the OCV-SOC characterization when the cur-

rent is changing.

The proposed approach was tested on 4 batteries for consistency. Additional tests of

SOC and OCV error modelling was done and an error of less than 3% was observed.

The rest of the thesis is organized as follows: A review of the traditional OCV mod-

elling approach is done in section 2.2. In section 2.3 we explore the current charging

strategies in depth that are used within the experiment. We explain the slow tradi-

tional OCV method as well as our proposed fast charging method. Section 2.5 shows

our experimental details, such as batteries, and testing equipment, as well as a data

collection plan for both our methods. The results of our findings are presented in

section 2.6. Section 2.7 concludes the thesis.

2.2 OCV Modeling Approaches

2.2.1 Traditional OCV modelling approach

In figure 3.16, the equivalent circuit model (ECM) of the battery used to derive the

parameter estimation equations is shown.

From the ECM, the measured voltage across the battery terminals is

zv[k] = v[k] + nv[k] (2.1)

where v[k] is the true voltage across the battery terminals and nv[k] is the voltage

7
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Figure 2.1: DC equivalent circuit model.

measurement noise which is modeled as white Gaussian. During the OCV experi-

ment i.e., when the battery is being slowly charged/discharged, the terminal voltage

zv[k]can be written as

zv[k] = Vo(s[k]) + h[k] + i[k]R0 + nv[k] (2.2)

where h[k] is the hysteresis or voltage ”pull” which is a function of current and

SOC of the battery[*ref*]. Since the OCV test is performed at a very low current,

it is assumed that the hysteresis is proportional to the current only and hence, the

measurement can be written as

zv[k] = Vo(s[k]) + i[k]R0,h + nv[k] (2.3)

where the effective resistance is

R0,h = R0 +Rh (2.4)

is the sum of the battery series resistance R0 and the constant current hysteresis equiv-

alent resistance Rh.With this information, the parameter estimation for the models

can be derived.

8



The SOC can be computed as

s[k] = s[k − 1] +
∆i[k]

3600Q
i = 1, . . . , N (2.5)

where the initial SOC is s[0] = 1, Q is the battery capacity, and ∆ is the sampling

time. Considering that the OCV characterization requires the battery to be emptied

and charged back, the final SOC value will be s[N ] = 1 as well.

Due to the numerical instability that may happen when SOC, s = 0 and 1, the

linear scaling approach is applied to the system. The scaling approach allows us to

map the SOC ∈ [0,1] to SOC ∈ [0+ϵ,1-ϵ]. Doing this, prevents s′ from reaching 0 or

1, thereby avoiding instability [10]. First, the new SOC will be scaled as

s′ = (1− 2ϵ)s+ ϵ (2.6)

where ϵ is selected based on each model. It can be seen through [10] that ϵ = 0.175

gives the most optimal results in the Combined model as well as its variants. Due to

this, ϵ = 0.175 will be utilized for the entirety of the tests.

2.2.1.1 Combined+3 Model

The Combined +3 model is a variation of the combined model. It allows for the

capturing of the ”sharp decline” [11] by additionally adding the 3 terms: 1/s2, 1/s3,

and 1/s4. The Combined+3 model parameters can therefore be derived as

V0(s) = k0 + k1s+ k2s
−2 + k3s

−3 + k4s
−4 (2.7)

+k5s+ k6ln(s) + k7ln(1− s)

Thus, 2.3 can then be written as

zv[k] = Vo(s[k]) + i[k]R0,h + nv[k] (2.8)

9



This is written in vector form as

zv[k] =
[
po(s[k])

T i[k]
]

︸ ︷︷ ︸
p[k]T

 ko

R0,h


︸ ︷︷ ︸

k

+nv[k] (2.9)

where

ko =
[
k0 k1 k2 k3 k4 k5 k6 k7

]
(2.10)

and

po(s[k])
T = [1 1

s[k]
1

s2[k]

1

s3[k]
1

s4[k]
s[k] ln(s[k]) ln(1−s[k])] (2.11)

By considering a batch of N voltage measurements, equation 2.9 can be written

in the form

v = Pk+ n (2.12)

where

v =
[
zv[1] zv[2] · · · zv[tN ]

]T
(11)

P =
[
p[1] p[2] · · · p[tN ]

]T
(12)

k =
[
k0 k1 k2 k3 k4 k5 k6 k7 R0,h

]T
(13)

n =
[
n[1] n[2] · · · n[tN ]

]T
(14)

The least-square estimate of the parameter vector is given by

k = (PTP)−1PTv (2.15)

Now, for a given SOC, the corresponding estimate V̂o is computed as

Vo = po(s)
Tko (2.16)

10



2.2.2 OCV Modelling Through Averaging

In this section, a second approach to OCV-SOCmodelling is presented. This approach

is suitable to obtain OCV-SOC parameters without the current assumption made in

Section 2.2.1.

For example, consider a current profile that is not slow and constant. Then the

OCV modelling approach given in the previous section cannot be applied. Thus, in

this thesis, an approach to estimate the OCV of the battery using the terminal voltage

is proposed when the current assumption fails. For the equivalent circuit model in

Figure 3.16, the estimate of the resistance is used to calculate the voltage drop across

the resistor i(k)× R̂0. Using this, an estimate of OCV is obtained as

V̂o(k) = v(k)− i(k)R̂0 k = 1, . . . , N (2.17)

The estimate of OCV in (2.17) suffers from hysteresis and relaxation effects, especially

if the current i(k) changes during the experiment.

The corresponding SOC values s[k] (see (2.5)) are now divided into Tb bins. Table

2.1 shows the SOC values and the corresponding OCV for each bin. The ith values

in the bin is computed as follows:

V̄o(i) =
1

L

L∑
l=1

V̂o(l) i = 1, . . . , Lb (2.18)

s.t. (i− 1)/Lb < s(l) < i/Lb (2.19)

Figure 2.2 shows the computed V̂o(k) values (blue) and the averaged V̄o(i) values

(red) for data collected from a sample battery.

Now, the vector observation model (2.12) can be rewritten as

v = Pk+ n (2.20)

11
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Figure 2.2: An estimate of OCV is calculated by averaging V̂ ′
o(k) over a window of

the length Tw.

Table 2.1: Pairs of OCV-SOC values

Bin number 1 2 . . . i . . . Lb

SOC 1/Lb 2/Lb i/Lb 1
OCV V̄o(1) V̄o(2) V̄o(i) V̄o(Lb)

where

v =
[
V̄o(1) V̄o(2) · · · V̄o(Lb)

]T
(2.21)

P =
[
po(s̄[1]) po(s̄[2]) · · · po(s̄[Lb])

]T
(2.22)

k =
[
k0 k1 k2 k3 k4 k5 k6 k7

]T
(2.23)

n =
[
n[1] n[2] · · · n[Lb]

]T
(14)
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and

s̄[i] =
i

Lb

, i = 1, . . . , Lb (2.24)

Now, the OCV parameters can be estimated through least squares similar to (2.15).

2.3 Charging Strategies for OCV test

Common charging strategies include different constant-current methods [12]. Present

OCV-SOC modelling requires C/30 discharge and then C/30 Charge described in

Section 2.3.1. The corresponding OCV estimation is found in Section 2.2.1. Another

is the multi-step constant-current method (MCC) which involves multiple step drops

of current every hour. The proposed approach consists of this changing current as

seen in Section 2.3.1 and 2.3.2. These methods are discussed and experimented on.

2.3.1 Characterization approach (Slow Method)

A constant current-constant voltage (CC-CV) charging strategy is followed to fully

charge the battery before conducting an OCV-SOC test. A low current slow discharge

charge of the battery is pursued to perform the OCV-SOC test.

1. A constant current is supplied to the battery until the terminal voltage reaches

4.2V.

2. The terminal voltage is maintained at 4.2V for constant voltage charging until

the current drops to 0.005A

3. The battery is rested for one hour.

4. A constant current of C/30 is supplied to slowly discharge the battery for thirty

hours until the SOC reaches 0%. A rest of 1 hour follows, before the battery is

charged back again by C/30 for thirty hours until the SOC reaches 100%
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2.3.2 Characterization approach (Fast Method)

The solution to reducing the characterization time is a change in the current profile

to charge and discharge the battery. This is done by charging the battery at a higher

current in order to reduce the time. The approach we will take is a multi-step constant

current (MCC) approach. Starting by discharging at a high C rate and dividing by

a fraction every hour. A detailed collection plan is shown in figure 2.3. This solution

will allow for a characterization time of 11 hours and greatly reduce the time needed

to characterize any battery.

Figure 2.3: Fast Charge collection plan tested during the experiment as well
as the expected SOC after each step

A constant current-constant voltage (CC-CV) charging strategy is followed to

fully charge the battery before conducting an OCV-SOC test. A multistep-constant

current (MCC) charging strategy then follows to discharge and charge the battery to

perform the OCV-SOC test. A data collection plan can visual can be referred to in

Figure 2.3.
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1. A constant current is supplied to the battery until the terminal voltage reaches

4.2V.

2. The terminal voltage is maintained at 4.2V for constant voltage charging until

the current drops to 0.005A

3. The battery is rested for one hour.

4. A constant current of C/2 is supplied to discharge the battery for 1 hour, then

C/4 for 1 hour, then C/8, C/16, an finally C/32 for an hour.

5. After the battery is fully discharged, this process similarly continues for the

charging process, where the battery is charged at C/2 for 1 hour, then C/4,

then C/8, C/16, and finally C/32 for an hour.

6. The battery is then finally rested for one hour.

2.4 Performance metrics

To evaluate the error in SOC and OCV estimation in the proposed fast OCV-SOC

characterization method and to compare its accuracy with the traditional OCV ap-

proach, two error metrics are defined. The error in SOC s[k] is defined as the percent-

age of difference in SOC estimated between the fast s[k] and slow s′[k] characterization

method.

Error(s[k]) = 100× (s[k]− s′[k])2 ∀ k = 1, 2, 3, ....N (2.25)

The error in OCV s[k] is defined as the percentage of difference in OCV estimated

between the fast V0[k] and slow V ′
0 [k] characterization method.

Error(V0[k]) = 100× (V0[k]− V ′
0 [k])

2 ∀ k = 1, 2, 3, ....N (2.26)
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2.5 Experimental Details

The experiment was done using 4 LG 18650 batteries with a 3.4Ah capacity using the

characterization techniques described previously in Section 2.3. The data collection

is performed using an Arbin BT-2000 battery cycler shown in Figure 2.4. It has 16

independently controlled channels, each with a voltage range of 0-5V and a current

range of ±10A. Four of these channels are used simultaneously to collect OCV-SOC

data such as current and voltage from all four cells at room temperature. A current

profile, shown in Figure 2.6(top) is applied to the battery and the voltage across the

battery terminals shown in Figure 2.6(bottom) is recorded.

To employ both the slow and fast approaches, the traditional OCV method is fol-

lowed by the proposed plan for fast characterization. The voltages, current, and time

data are recorded for both approaches. The traditional OCV test took approximately

70 hours and the proposed Fast OCV test took 11 hours. Furthermore, the SOC and

OCV error metrics in Section 2.4 are calculated.

Figure 2.4: Experimental setup for battery testing [13]

2.6 Results

The voltage and current data recorded using the Arbin BT-2000 battery cycler is

used to obtain a typical OCV-SOC curve represented by the Combined+3 model.

The OCV characterization is done using three approaches:

1. Slow OCV characterization using the traditional OCVmodelling approach (Slow).
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Figure 2.5: The current profile recorded for all four batteries is shown here. The
traditional OCV test is followed by the fast OCV characterization test.
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Figure 2.6: The current profile recorded for the fast characterization method is shown
here.

2. Fast OCV characterization using the traditional OCV modelling approach (Fast

OCV - I).

3. Fast OCV characterization using the OCV modelling through the averaging

approach (Fast OCV - II).

Figure 2.7 shows the plots of the OCV-SOC curve found using the Combined +3

model for all three methods. It can be seen that the three methods are comparable in

the OCV-SOC characterization and that the proposed approach has the capability of

characterizing the OCV-SOC relationship faster than the traditional OCV approach.

Table 2.2 is a comparison between the capacities of the slow method against the

fast method. A small difference in capacity can be seen between the Slow vs Fast

where we see a decrease in capacity in the fast charging method. This is subject to
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Figure 2.7: OCV-SOC curves estimated for all four batteries using the Combined+3
model.

happen due to the differences in prior charging methods compared to that during the

experiment

Table 2.2: Capacites of both charging methods Slow vs. Fast

Cell Slow Approach (C/32) Fast MCC Approach
Cell 1 3.3860 3.3207
Cell 2 3.3847 3.3142
Cell 3 3.3421 3.3067
Cell 4 3.3870 3.3028

Shown in Table 2.3 is the internal resistance of all 4 cells at all points of SOC.

We see very small differences near the low SOC regions. This internal resistance is

calculated utilizing the change in current as well as the change in voltage that occurs 5

times during charge and discharge. From here we can calculate the internal resistance

of the battery.

Figure 2.8 shows the OCV error calculated using (2.25) for Method 2 of OCV

characterization. This error is calculated as the difference in voltage with the tradi-

tional slow OCV characterization. It can be seen that the error is at its highest during

the low SOC regions and only minimal error is observed at higher SOC regions. This

shows the benefits of the Fast method in terms of voltage error. In Figure 2.8, the

SOC error for each battery cell is shown for Method 2. Using (2.26), the SOC error is

calculated as the difference between the SOC estimated using traditional slow and fast
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Table 2.3: Internal resistances of all 4 cells at different SOCs

SOC (%) Cell - 1 Cell - 2 Cell - 3 Cell - 4
99.99 0.3951 0.4088 0.3990 0.3554
48.38 0.3993 0.4066 0.4114 0.3575
22.58 0.3891 0.3972 0.4027 0.3490
9.67 0.3975 0.4061 0.4105 0.3568
3.22 0.4233 0.4349 0.4369 0.3831
0 0.3936 0.4014 0.4061 0.3514
0 0.4408 0.4487 0.4514 0.3931

51.61 0.3991 0.4060 0.4113 0.3578
77.42 0.3888 0.3963 0.3988 0.3492
90.32 0.3870 0.3952 0.3977 0.3483
96.77 0.3887 0.3977 0.3994 0.3505

OCV characterization methods. The errors found in Figure 2.8, are also translated

into the SOC error in this figure. It can be observed that the Fast OCV modelling

approach has a maximum SOC error in the lower SOC regions of approximately 2%.
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Figure 2.8: OCV error obtained through the difference in voltages between the true
voltage (slow method) compared to the fast OCV characterization using the tradi-
tional OCV modelling approach (Fast OCV - I).

Similarly, Figures 2.9 show the OCV and SOC estimation error for Method 3

of Fast OCV characterization. Higher errors in OCV estimation again were found

at lower SOC values. The approximation of voltage drop using the OCV averaging

approach also resulted in a SOC error of approximately 2.2%. Thus, these results show
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that our fast OCV characterization approach successfully characterized the battery

faster than a traditional approach while keeping minimal error and providing similar

results. Future improvements are explored in the conclusion on methods to create

a more optimized current profile to possibly speed up the time to characterize even

further.
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Figure 2.9: OCV error obtained through the difference in voltages between the true
voltage (slow method) compared to the Fast OCV characterization using the OCV
modelling through the averaging approach (Fast OCV - II).

2.7 Conclusions

This thesis presents a new Fast charge OCV characterization approach for the charac-

terization of batteries with an emphasis on reducing the time to characterize a battery

through a multi-step constant current approach. Differences in capacities and differ-

ences in characterization are seen and analyzed. The proposed approach was tested

on 4 batteries and it was found to be consistent. Overall, it is seen that the pro-

posed approach provides an accurate and reliable characterization of the battery at

a fraction of the time of the compared approach.

Some works that are being looked at and experimented on currently are starting

the current profile at a higher current. This will allow for a faster charge overall

and will reduce the time of characterizing greatly. Another would be to experiment
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with different current profiles such as C/32, C/64, or even C/128 to change the

results or provide results different from the current expectations. Right now, our

experiment ends with C/32 for 1 hour. Will adding a C/64 and C/128 cycle prove

to be more effective in characterizing the battery or is up to C/32 enough for the

application? These works can allow for a more rounded and optimized approach and

will be explored in the future.
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Chapter 3

Offsetting Approach for Capacity

Estimation in Li-ion Batteries
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3.1 Introduction

The global shift from gasoline-powered vehicles to electric vehicles has sparked in-

creased attention toward Li-ion batteries. Li-ion batteries have been consistently

used in the past 30 years in wide-ranging portable applications that require high

energy capacity [1]. A big application is in electric vehicles (EVs). Lithium-ion

batteries have become an important component within EVs, serving as the primary

power source. Multiple battery cells are organized in series, parallel, or hybrid series-

parallel arrangements to fulfill the specifications for voltage and power demands. For

monitoring of these packs, electric vehicles are equipped with a battery management

system (BMS) [2]. The BMS functions by performing corrective actions to ensure

safety by estimating crucial parameters of the battery such as - battery impedance,

State-of-charge (SOC), capacity, state-of-health (SOH), time to shut down, and the

remaining useful life.

State of Charge (SOC) estimation stands as a critical factor influencing the oper-

ation of a Battery Management System (BMS) [3, 4]. Comparable to a fuel gauge in

conventional gasoline vehicles, SOC represents the remaining charge as a percentage

of total battery capacity. SOC is typically determined through techniques such as

coulomb counting [5], voltage lookup methods [6], or a hybrid estimation approach [7].

This characterization is done using multiple methods and allows for a wide range of

time taken and accuracy of data.

The characterization of OCV-SOC relationship varies in standardization when ap-

plied in industrial settings, typically conducted using a representative battery sample.

Subsequently, the OCV-SOC characterization data is compiled into a table format

for utilization across various battery cells or packs. Usually, the characterization

techniques are divided into two main categories: Galvanostatic Intermittent Titra-

tion Technique (GITT) and the low-rate cycling method [8]. The GITT technique

involves discharging the sample battery in increments of 10% across the entire SOC
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range. During each of these steps, a brief 10-second charge/discharge pulse is applied

to obrain the estimation of additional battery parameters. The low-rate cycling ap-

proach involves fully discharging a full sample battery until depletion, followed by

recharging it to maximum capacity. During this process, voltage and current data

are collected and subsequently subjected to curve-fitting methods to characterize the

OCV relationship. Unlike the standardized GITT technique, the low-rate cycling

method lacks standardization, and the literature does not define a specific current

rate for conducting this test. Additionally, these current rates create an error in

capacity due to the low-rate cycler stopping prematurely at set voltages.

The cycle rate creates a uncertainty in the capacity due to the cycling process of a

set battery. The inaccuracies that result from the cycling process can be attributed to

internal resistance of the battery as well as the cycle rate. Currently, battery charging

algorithms are not accounting for the increase in voltage due to the internal resistance

which in turn, causes an inaccuracy in the calculated charge and discharge capacity

of the battery. This thesis emphasizes a focus on neutralizing that inaccuracy in the

capacity by offsetting the battery voltage parameters by a predetermined amount of

voltage.

The remainder of this paper is organized as follows: Section 3.2 present the voltage

difference approach and ideology behind the approach. Section 3.3 presents an expla-

nation in the proposed charging algorithm utilized in the paper. Section3.4 presents

a detailed representation of the algorithm used and the detailed approach. Section3.5

presents the values used to perform the new algorithm created based on previous

experiments. Section 3.6 presents the details of the (identical) batteries used for the

analysis and the details of the scientific grade high-precision data collection system.

Section 3.7 clearly defines the capacity comparison metrics to be computed based on

the collected data. Section 3.8 presents the capacity comparison metrics, defined in

Section 3.7. Finally, the paper is concluded in Section 3.9.
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3.2 Voltage Difference

Voltage difference can be described as the voltage drop seen when charging/discharging

a battery near its OCVmax and OCVmin, where OCVmax is the high voltage limit of the

selected battery and OCVmin is the low voltage limit. This causes the voltage limits

set to be reached at a much earlier time, which leads to a non full charge/discharge

cycle. This voltage will change based on charge rate as well as the internal resistance

of the battery, thus the voltage drop value will vary between batteries. The value of

voltage difference can be defined through the formula

vd = IR0 (3.27)

where I is the charge/discharge current and R0h is the internal resistance of the given

battery.

3.3 Battery Cycling

The planned experiment involves utilizing constant-current(CC) charging and dis-

charging. The battery is charged and discharged at multiple c-rates to check for

accuracy. The algorithm 1 involves a constant current constant voltage charge until

OCVmax plus the calculated voltage difference. This will ensure an overcharge so that

we can account for the voltage difference stated in 3.5. After this, an over discharge

constant current of C/N is applied until the battery reaches OCVmin minus the volt-

age difference. Finally, the battery is once again overcharged back to OCVmax plus

the calculated voltage difference. This test ensures that the battery capacity can be

observed and compared to previous results. The collected data is parsed offline and

findings are observed.
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3.4 Low-Rate-OCV-Test (N)

In this section, the detailed approach to performing the low-rate open circuit voltage

test is presented. Utilizing previous information, we are able to compensate by reset-

ting the OCVmin and OCVmax by the calculated voltage difference. Here, the input N

refers to C/N the constant charging current used to perform the test. The algorithm

1 describes the Low-Rate-OCV testing.

Algorithm 1 Low-Rate-OCV-Test (N, T )

1: Set Temperature: T
2: CC-CV-Charge(C/N,OCVmax +Vd, 1C)
3: 1-hour Rest
4: while v > OCVmin − Vd do
5: CC-discharge (C/N)

Sample data at 1/60 Hz
6: end while
7: while v < OCVmax + Vd do
8: CC-charge (C/N)

Sample data at 1/60 Hz
9: end while
10: 1-hour Rest
11: Discharge Internal Resistance Test

3.5 Value of Vd at different OCV rates

In [9], the voltage difference was calculated at each C-rate 4 times with unique ba-

teries. In this section we discuss the averaging of the value of Vd by averaging the 4

cells at each rate. The values are shown in Table 3.5.

3.6 Experimental Details

This section outlines the configuration for data collection and the batteries employed

to gather low-rate OCV test data within a controlled laboratory environment.
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3.6.1 Data Collection System

The voltage and current data from the battery were collected using a scientific-grade

battery cycler made by Arbin Inc. The MITS Pro is Arbin’s comprehensive battery

testing software that allows programming each channel to a specific data collection

plan. Figure 3.10 shows a picture of the Arbin laboratory battery testing (LBT)

system which can be used to cycle 16 batteries simultaneously at a given time. Figure

3.10 shows a block diagram of the data collection system.

Figure 3.10: Arbin battery cycler.

Table 3.4: Vd at different OCV rates

OCV rate Value of Vd (mV)
C/2 73.42 V
C/4 51.30 V
C/8 37.63 V
C/16 31.57 V
C/32 26.07 V
C/64 23.23 V
C/128 21.93 V
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3.6.2 Batteries

The data for the demonstration was based on Molicel INR-21700-P42A battery cells

[10]. In total, 28 identical cells of the above serial number were used in the present

study; these cells are labelled E3201, E3202, . . . , and E3228 using a permanent

marker. Figure 3.11 shows a picture of five cells in the experiment. Each battery

cell possesses a nominal voltage of 3.6V, accompanied by a typical capacity of 4 Ah

and an internal resistance of approximately 16 mΩ. Table 3.5 summarises important

features of the battery cell from the data sheet [10].

Figure 3.11: Molicel INR-21700-P42A batteries.

Table 3.5: Specifications of Li-ion battery.

Specification Value
Nominal voltage 3.6V
Typical capacity 4000 mAh
Discharge current 45A

Height 70.2 mm
Diameter 21.7 mm
Weight 70g

Internal resistance 16 mΩ

Table 3.6 summarizes the entire data collection plan carried out in this work.

In summary, four batteries were selected and the OCV characterization data was

collected from them according to the data collection plan described by the routine
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‘Low-Rate-OCV-Offset’. The details and rationale of the low-rate OCV characteriza-

tion data collection routine can be found in 1; in short, the details of

(a) charging the battery before the experiment: the battery was first charged using

a CC-CV approach with C/N as the shutdown current.

(b) Then, the low-rate OCV test was carried out using a C/N current.

(c) Finally, a current pulse series was applied to estimate the resistance.

are presented in 1. The data collection was repeated for seven different current rates

(C/2 to C/128) at room temperature as shown in Table 3.6. Performance evaluation

at different temperatures is deferred for future work.

Table 3.6: List of complete data collection

Test Battery numbers
Low-Rate-OCV-Offset (C/2,Room) E3201, E3202, E3203, E3204
Low-Rate-OCV-Offset (C/4,Room) E3225, E3226, E3227, E3228
Low-Rate-OCV-Offset (C/8,Room) E3221, E3222, E3223, E3224
Low-Rate-OCV-Offset (C/16,Room) E3217, E3218, E3219, E3220
Low-Rate-OCV-Offset (C/32,Room) E3213, E3214, E3215, E3216
Low-Rate-OCV-Offset (C/64,Room) E3209, E3210, E3211, E3212
Low-Rate-OCV-Offset (C/128,Room) E3205, E3206, E3207, E3208

3.6.3 Voltage-Current Data

Figure 3.12 shows the voltage and current data for two different experiments (at C/2

rate and C/128 rate) listed in Table 3.6. Figure 3.12(a) and Figure 3.12(b) show

the voltage and current data, respectively, collected during the low-rate OCV test at

C/2 rate (i.e, using the data collection algorithm Low-Rate-OCV-Test(C/2,Room)).

Similarly, Figure 3.12(c) and Figure 3.12(d) show the voltage and current data, re-

spectively, collected using the data collection algorithm Low-Rate-OCV-Test (C/128,
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Room). A zoomed version of the curve shows the variations among the different C-

Rates. It can be noticed from the zoomed portion that while the data collected at

C/128 (from four different battery cells) overlays without many visible deviations,

the data collected at the C/2 rate shows visible deviations. The goal of this thesis

is to quantify the effect of such differences on the ultimate performance of the BMS,

particularly in SOC estimation. Additionally, figure 3.13 shows a comparison of the

terminal voltage of the offset and low-rate method. From here, we are able to clearly

see that in the offset voltage, the terminal voltage reaches higher values at maximum

when discharging as well as charging.

3.6.4 Analyzing the OCV curve

To begin the experiment, some assumptions were made with regards to the overcharge

and over discharge process of the battery. From Figure 3.14, we can see that most

of the batteries OCV and capacity comes from 10% SOC and on wards. We see that

as the battery is between 10% and 0% SOC the batteries voltage starts to become

volatile and rapid changes in OCV are seen. Due to this, we believed that we would

be able to obtain accurate data when overcharging compared to over discharging.

From figure 3.15, we can see the effect of the low-rate-OCV charging method. We

can see that when charging to a normal 4.2V the SOC reached is only about 96% of

the full SOC of the battery due to the voltage drop of the low-rate-OCV charging

method. Overcharging by the value Vd allows for a full range of SOC when modeled

and allows for a highly accurate representation of the batteries voltage and SOC. Sd

is represented by the soc difference when overcharging vs the conventional charging

method. When examining the low SOC regions, we can clearly see that overdischarg-

ing impacts a minute portion of the SOC, thus no clear examinations can be made at

that volatile SOC region. In this test, we expect to obtain accurate data pertaining

to the capacity while overcharging, while the over discharging data may be uncertain.

This hypothesis is proven to be correct later on in this thesis, where the capacity gain
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Figure 3.12: Low-rate OCV characterization data collected at the C/2 and C/128
rate.
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Figure 3.13: Terminal Voltage Comparison
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is analyzed.
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Figure 3.14: Generic OCV model

Figure 3.15: Charge/Discharge and Average OCV curve
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3.6.5 Battery Voltage Drop

The main idea behind a overcharge and over discharge is to overcome the voltage drop

that is seen due to the internal resistance of each battery. Each battery has a different

internal resistance so this drop can be higher or lower determined by the capacity as

well as the constant current charging rate. This voltage drop can be calculated as

vd = IcR0h during charging and vd = IdR0h during discharging. From figure 3.16, we

can see the relationship of the voltage drop through a DC equivalent circuit model,

where R0h represents the internal resistance and i(k) represents the charge/discharge

rate.

−
+

EMF

− +

h(k)
R0h i(k)

+

−

v(k)

Figure 3.16: DC equivalent circuit model.

3.7 Computation of Comparison Metrics

In this section, the computations of the capacity comparisons at different C-rates

is explained. Here, the data collected will be compared with previous literature

[9] to understand the differences in capacity while using a voltage offset during the

experiment process.
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3.7.1 Computing the Battery Capacity

According to the OCV characterization data (shown for a C/2 experiment in Figure

3.12 the battery was full (s = 1) at the start of the experiment; and it was empty

(s = 0) at the end of discharge. Initially, this could only be an approximation due

to the fact that there is a voltage drop at the amount of vd = IcR0h during charging

and vd = IdR0h during discharging. But after the offset is accounted for in the

charging algorithm, the capacity can be calculated due to the battery OCV reaching

OCVmax and OCVmin during the charge/discharge process. This process counteracts

the internal resistance of the battery and allows for a accurate representation of the

capacity.

Thus, the capacity of the battery during discharging, denoted as Qd and charging,

denoted as Qc can be defined as

Qc = Ictc and Qd = −Idtd (3.28)

where Ic and Id are the charge and discharge currents respectively, and tc and td are

the charge and discharge times respectively.

An average of these computed charge and discharge capacities can be defined as

Qcavg and Qdavg which is the average of the charge and discharge capacities at each

C-rate Similarly, the capacity of the offset test can similarly be defined as

Qco = Icotco and Qdo = −Idotdo (3.29)

where Ico and Ido are the charge and discharge currents respectively during the offset

experiment, and tco and tdo are the charge and discharge times respectively during

the offset experiment.

An average of these computed charge and discharge capacities can be defined as

Qcoavg and Qdoavg which is the average of the charge and discharge capacities at each
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C-rate

3.8 Results

Shown in Figure 3.17 and 3.18, are the charge and discharge capacities comparisons of

every battery at all C-rates tested with a voltage offset. From the figures, we see that

our hypothesis that the lower the c-rate the higher the capacity due to the internal

resistance of the battery. From figure 3.17, we see a considerable gain in capacity at

all C-rates. This supports our idea of an increased capacity due to a voltage offset.

Table 3.7 denotes individual charge and discharge capacities for non offset tests as

well as with a voltage offset. From here we can see a similar pattern in which the

charge capacity is greater than the discharge capacity for both methods.

From the average charge and discharge graphs and tables shown in Figure 3.19

and Table 3.8. We notice a increase in charge capacity going from non offset to offset.

This further proves that capacity calculations are loss due to the internal resistance

of the battery. Additionally, a clear outlier in the C/2 batteries can be seen in Figure

3.19. This can be due to the high effects of hysteresis at the highest charging rate.

This causes the voltage to jump and leads to an inaccuracy as seen through the C/2

section in the figure. Apart from this c-rate, the other charging rates stay consistent

with the hypothesis stated and allows for a further understanding of the effects of

overcharging and overdischarging. Through overcharging, we are able to see a more

accurate representation of the capacity of the battery due to the voltage drop that

is seen while charging. For the discharge capacity, we are able to see an increase in

capacity in the high C-rate charging experiments.
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Table 3.7: Battery capacity estimates calculated at different C-Rates

C-Rate i Qc Qd Qco Qdo

(A) (Ah) (Ah) (Ah) (Ah)
C/2 2 3.7860 3.9491 3.9061 4.0635
C/2 2 3.8023 3.9645 3.9589 4.1138
C/2 2 3.8268 3.9338 3.9213 4.0761
C/2 2 3.8071 3.9168 3.9640 4.1187

C/4 1 3.9107 3.9567 4.0261 3.9914
C/4 1 3.9218 3.9674 4.0255 3.9889
C/4 1 3.9151 3.9615 4.0449 4.0120
C/4 1 3.9076 3.9534 4.0562 4.0198

C/8 0.5 4.0421 4.0300 4.0533 3.9975
C/8 0.5 4.0371 4.0246 4.0802 4.0263
C/8 0.5 4.0389 4.0256 4.0665 4.0096
C/8 0.5 4.0394 4.0264 4.0798 4.0198

C/16 0.25 4.0731 4.0566 4.1271 4.0563
C/16 0.25 4.0885 4.0722 4.0939 4.0268
C/16 0.25 4.0781 4.0610 4.1181 4.0454
C/16 0.25 4.0903 4.0741 4.1077 4.0364

C/32 0.125 4.0269 4.0369 4.1147 4.0355
C/32 0.125 4.0446 4.0542 4.1284 4.0508
C/32 0.125 4.0543 4.0649 4.1337 4.0540
C/32 0.125 4.0359 4.0467 4.1236 4.0461

C/64 0.0625 4.1123 4.0974 4.1871 4.0976
C/64 0.0625 4.1060 4.0898 4.1112 4.0246
C/64 0.0625 4.1201 4.1052 4.1519 4.0676
C/64 0.0625 4.1077 4.0906 4.1572 4.0650

C/128 0.0312 4.1144 4.1103 4.1562 4.1280
C/128 0.0312 4.1318 4.1283 4.1335 4.1094
C/128 0.0312 4.1216 4.1196 4.1293 4.1059
C/128 0.0312 4.1314 4.1293 4.1483 4.1224

38



Table 3.8: Average charge and discharge capacity for both approaches

C-Rate Qcavg Qcoavg Qdavg Qdoavg

(Ah) (Ah) (Ah) (Ah)
C/2 3.8056 3.9376 3.9411 4.0930
C/4 3.9138 4.0381 3.9598 4.0030
C/8 4.0394 4.0699 4.0266 4.0140
C/16 4.0825 4.1117 4.0660 4.0412
C/32 4.0404 4.1251 4.0507 4.0466
C/64 4.1115 4.1581 4.0957 4.0637
C/128 4.1248 4.1481 4.1219 4.1164
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Figure 3.17: Charge Capacity Comparison
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Figure 3.18: Discharge Capacity Comparison
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Figure 3.19: Charge and Discharge Capacity visual for both cases
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3.9 Conclusions

This thesis presents a comparison analysis for accurate capacity estimation for li-

ion batteries with an emphasis to find a more accurate representation capacity of

any battery. A voltage difference approach to over-charge and over-discharge the

battery was used to offset the voltage drop observed in a battery due to its internal

resistance and the charging rate. The proposed approach was tested and compared

to other approaches and charging algorithms, and an increase in charge capacity was

observed. It followed our hypothesis of an overall increased capacity and an more

accurate value of the battery was calculated. Additionally, minimal differences at

the low SOC regions due to the volatility of the battery in these low SOC regions

were observed. Future work that can be considered is testing on a different variety

of chemistry’s in batteries to ensure accuracy of the algorithm on different types of

batteries. This will allow for a more in-depth look into the accuracy of the capacity of

any given battery. Additionally, other work would be to monitor temperature of these

batteries to provide us with insights on the effects of the over charge and discharge on

the battery over time. These insights will allow us to further improve the algorithm

and allow a method to obtain an accurate representation of the capacity of any battery

to obtain a more accurate SOC to reduce variations in battery management systems.
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Chapter 4

Thesis Conclusion

The need for battery characterization and estimation is at an all time high with the

increase in use of batteries. This means highest accuracy and faster estimations are

critical to continue development and drive the battery industry in a positive direction.

In this thesis, we presented an approach to fast OCV characterization to cut the time

to characterize any battery to 1/5th of the time. This will reduce the characterization

time needed to characterize any battery and allow for more robust testing on reused

batteries. This approach utilizes high charging and discharging rates to obtain the

fast characterization needed. Next, we explored the voltage drop that occurs when

charging and discharging. To counteract this, a voltage offset is applied to obtain the

a closer representation of the charge and discharge capacity of the battery. This offset

is needed due to the internal resistance as well as effects that come from hysteresis.

Future works would be to apply the fast charge algorithm on batteries with different

capacities/ different chemistry’s to obtain a wider set of data. Additionally, testing

the voltage offset and fast charge algorithm while monitoring temperature will allow

for an analysis on battery health while testing.
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