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Abstract

In this thesis, we consider the estimation problem of the mean matrix of a multivariate normal
distribution in high-dimensional data. Building upon the groundwork laid by Chételat and
Wells (2012), we extend their method to the cases where the parameter is the mean matrix
of a matrix normal distribution. In particular, we propose a novel class of James-Stein’s
estimators for the mean matrix of a multivariate normal distribution with an unknown row
covariance matrix and independent columns. Given a realistic assumption, we establish that
our proposed estimator outperforms the classical maximum likelihood estimator (MLE) in
the context of high-dimensional data. Furthermore, we investigate the conditions for which
this assumption remains valid. Additionally, we identify and rectify a notable error in the
proofs of a crucial result presented in Chételat and Wells (2012). Notably, the novelty of the
obtained results lies in the fact that the estimator for the row covariance matrix is singular
almost surely and its rank is a random variable. Finally, we present simulation results that

confirm the validity of our theoretical findings.



Acknowledgements

First of all, I would like to thank my supervisor Dr. Nkurunziza for his constant support
during the career of my master. He is patient and kind all the time. Under his supervision,
I feel relaxed and energized, which make me finish this thesis smoothly. I am also very
grateful to all the members in my defense committee. Particularly, I would like to thank Dr.
Li from department of Economics for agreeing to be my external program reader. I would

also like to thank Dr. Hussein for his constant support during my graduate program.

Besides professors, I am grateful to my parents for their significant support. Without their

support and care I could not finish my courses and thesis.

Finally, I would like to offer my sincere thanks to all students, faculty members and staff
in the department of Mathematics and Statistics for the harmonic, friendly and positive

studying and working environment.

Vi



Contents

Declaration of Co-Authorship / Previous Publication
Abstract

Acknowledgments

List of Figures

1 Introduction and Contributions

1.1 Organization of the thesis . . . . . . ... .. ... ... .. ... ...

2 Improved Multivariate Normal Mean Estimation
2.1 Important Preliminary Results . . . . . ... ... ... ... ... .....

2.2 Main results . . . . . . s

3 The Case of Matrix Normal Mean Estimation
3.1 TImportant Preliminary Results . . . . . .. ... ... ... .. .......

3.2 Mainresults . . . . . . L e
4 Numerical study
5 Conclusion

Appendices

vii

iii

vi

ix

17

33
34
47

60

62



CONTENTS

Appendix A Some Technical Proofs

A.1 Distribution of Sample Covariance

A.2 On the Moore-Penrose inverse and Stein’s Lemma . . . . . . . . ... ...

A.3 Some Technical Proofs of Chapter 2

A.4 Some Technical Proofs of Chapter 3

Appendix B R code

Bibliography

Vita Auctoris

viii

64
64
70
73
87

97

102

103



List of Figures

4.1 The risk difference between the proposed estimator J, and the MLE

ix

61



Chapter 1

Introduction and Contributions

Chételat and Wells (2012) introduced a new type of estimator, based on the class of
estimators proposed by Baranchik (1970). This estimator dominates the classical maximum
likelihood estimator (MLE) of the mean vector in a multivariate normal distribution in
high-dimensional settings. However, an error in proving one of the main results presented
by Chételat and Wells (2012) motivates us to revise some of their findings. This revision not
only prompts a reconsideration of their work but also encourages us to explore the problem
of estimating the mean matrix in a matrix normal distribution.

In particular, we consider to estimate the mean matrix of a random matrix from a matrix
normal distribution. Initially, it might seem that the classical MLE is the most suitable
estimator for the mean matrix. However, in 1956, Charles Stein (refer to Stein (1956))
discovered that the classical MLE of mean vector of a p-dimensional normal random vector
loses its admissibility under the quadratic loss in high-dimensional data. This finding implies
the existence of alternative estimators for the mean vector that outperform the classical
MLE under the aforementioned loss function. Stein (1960) introduced a novel class of biased
but minimax estimators. This class of estimators dominates the classical MLE under the
invariant quadratic loss.

In this thesis, our primary focus is on the generalized estimator introduced by Baranchik
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(1970), particularly in the context of unknown covariance in high-dimensional data. The
classical estimator in Baranchik (1970) relies on the use of traditional inverse of the covariance
matrix estimator, which becomes impractical in high-dimensional settings. Indeed, in high-
dimensional data, the estimator of the covariance matrix becomes singular almost surely.
To overcome this problem, we utilize the Moore-Penrose inverse, instead of the traditional
inverse. Because of that, classical techniques cannot be used to prove the risk dominance of
the proposed class of estimators over classical MLE. Thus, the additional novelty of this
thesis lies in deriving some mathematical results which are useful in establishing the risk

dominance of the proposed estimators over MLE.

1.1 Organization of the thesis

This thesis is organized in 5 chapters including this chapter which gives an introduction.
In Chapter 2, we begin by discussing key concepts that play a pivotal role in proving the
main results and lemmas throughout this thesis. Subsequently, we present the central
thesis result within the multivariate setting. Additionally, we introduce several propositions
and lemmas that are essential components in demonstrating the main result outlined in
Theorem 2.2. In Chapter 3, we extend the findings from Chapter 2 to the matrix normal
distribution setting with an unknown row covariance and independent columns. In Chapter
4, we conduct a simulation study to validate numerically the theoretical findings presented
in this thesis. In Chapter 5, we give some concluding comments. We also introduce in
Chapter 5 valuable insights and ideas to serve as potential directions for future research.
Finally, for the convenience of the reader, some technical proofs as well as the simulation R

code are given in the Appendix A.



Chapter 2

Improved Multivariate Normal

Mean Estimation

In this chapter, suppose that Z1, ..., Zy are independent and identically distributed random
samples from MN,(6,¥) where U represents the covariance matrix and is an unknown
matrix. Then, Z = [Z1,...,Zy]" follows Nyx,(ef', Iy @ ¥) where e = [1,...,1]" is an
N-dimensional vector. Let X = Z = % SN | Z;. Therefore, X ~ N'p(d,%) where ¥ = X
Let us consider S = + SN (Zi— Z)(Z; — Z)7 as an estimator of ¥ and n = N — 1. In
Appendix A.1, We show that S can be written as S = Y'Y, where Y is independent
of X and follows a matrix normal distribution ¥ ~ N;»,(0,1, ® ¥). This implies that

S ~ Wishart,(n, ).

Based on the findings from Srivastava and Khatri (1979), it is established that the matrix S
is almost surely invertible when the dimensionality p is less than or equal to the sample size
n, i.e., p < n. Conversely, it is almost surely singular when the dimensionality p exceeds
the sample size n, i.e., p > n. Moreover, it has been demonstrated in Srivastava and Khatri
(1979) and Srivastava (2003) that the rank of the estimator of the covariance matrix, denoted

as 9, is equal to the minimum of the number of observations n and the number of features
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(p), almost surely.

In estimating the mean vector, denoted as @, the unbiased maximum likelihood estimator
is 6 = X. However, according to the findings presented by Stein (1956), X becomes
inadmissible under the quadratic loss function defined as L(6,8) = (§ — )T (§ — ) when

n>p2>3.

To address the limitations of the estimator §° = X, especially when n > p > 3, Baranchik
(1970) introduced a new James-Stein type of estimator, given by:
r(XTS1X)
(X, 8)=I-—— 1| X.
( ) < XTS-1x
Here, the function r represents a positive, bounded, and differentiable real valued function.
When the conditions n > p > 3 hold, this estimator is known to dominate the estimator X
under the invariant quadratic loss. However, when p exceeds the sample size n, the estimator
S is singular almost surely, rendering the above estimator unusable in such cases.
To overcome this issue, the Moore-Penrose inverse of S, denoted as S*, is employed to
formulate a modified Baranchik (1970) estimator:
r(XTStX)
§(X,8) =1 - —=——72855"| X.

( ) < XTS+X

This modification allows for a robust estimator that can handle situations where p > n,

making it a valuable tool for estimating the mean vector # under the given conditions.

In Section 2.2, we show that under the invariant quadratic loss, the above estimator dominates
the usual estimator X. We also provide in Appendix A.2, some important concepts on the
Moore-Penrose inverse and Stein’s Lemma (see Stein (1981)). These concepts play a crucial

role in establishing Theorem 2.2 and Theorem 3.3 which are the main results of this thesis.

To simplify the presentation of this thesis, let us introduce some notations. For m x n
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matrices A and B, define

A.B = ZAZ-J»BU.
2Y)

For special case of m-dimensional vectors A and B, we have
=Y AB;=A"B
i

Let vec(A) and vec(B) be the transformation of A and B to vectors of dimension mn. We
have

A.B = vec(A).vec(B) = vec(A) vec(B Z A;;jBij.

o)

Similarly, for V.4 = (54 define

z‘j)lgigm,lgjgn’

. . 0B;;
divaB = V4.B = divye(ayvec(B) = - 8Aij-7
and
OBy
B), =L
(V)i =2 (Val B = 2 55,
1 ifi=j
Furthermore, let 0;; = , be the Kronecker delta.
0 ifi#j

Before delving into the main result of this thesis in multivariate normal distribution setting,
we provide the important lemmas, propositions and their corresponding proofs. These

propositions lay the groundwork for the proof of Theorem 2.2.

2.1 Important Preliminary Results

In this section, we present crucial lemmas and propositions which are vital for proving some
of the main results of this thesis as given in Section 2.2. To ensure the coherence of this

thesis, several proofs have been moved to Appendix A.
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Lemma 2.1. Let Y be an n x p matriz and S =Y 'Y . Let X be a p vector
and F = XTSTX. Let A € Mgy, and B € My, it then follows that

. oS
(i) < ) = 0k Yol + 951 Yok,

. 08
(i) (A B) = Aps(Y B) ot + (AY ")1o B,
ki

(441 6§/F = 2XTSTY ) (STX)s +2(XTSTSTY ) ((I — SST)X)g,
ap

+yxT Qg+
(iv) <w> S (YSTXXTSS )y — (STYT)a(STXXTSS )
@ kl

+ (I = SSM)ka(YSTSXXTSSH) 0+ (STSTY D)0 (I — SSTHXXTSST) g
+ (STXXT)g (VST )ar + (STXXTYT) oS — (STXXTSST)15(Y ST )

— (STXXTISTYT) 00 + (STXXTSTY T ) (I — S5) 1.

Proof. The proof of this result is given in Appendix A.3. O

Lemma 2.2. Let Y be ann x p matriz and S =Y 'Y . Let X be a p vector, F = X"STX,

and G(X,S) = %(SJ“XXTSSJF), where r is a differentiable function. Then

G OCu _2(P)r(F) OF
6Ya5 F? ayag
r2(F) 0

F2 0Y,3

2r2(F) , OF

+yyTacty  _
JSTXX S5 ) — —3 (3ya5

(STXXTSSH )y

(STXXT55M),
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g oF

(i) azkjﬂ Yo ( Ve )(SSTXXTST)g, = —2F2,
(iii) > Yai 0 (SSTXXTST) g = F(p — 2tr(SST) — 1),

ohs 0Yap

2
F

(iv) Z YakaGk’B —4r(F)r'(F) + r(F) (p —2tr(SST) + 3> .

Bk Yag F
Proof. The proof of this result is given in Appendix A.4. O

Lemma 2.3. Let Y be ann x p matriz and S =Y 'Y . Let X be a p vector, F = XTSTX,

and g(X,S) = T(}f (SSTX), where r is a differentiable function. Then

OF .
() 5x =257 X

y 0SS+TX
(44) ( X, )k—(SSJr)M,

. Ogr  2(Fr'(F)—
(7i7) 8X,;: 7

"D s xyucss X+ " (550

(iv) Z 691 = 2r( +@(tr(55+)—2).

Proof. The proof of this result is given in Appendix A.3. O
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The first part of the following proposition is referenced in the proof of the main result in
Chételat and Wells (2012) but it is left without proof. In this thesis, we offer a detailed
proof utilizing Corollary A.2 (Stein’s Lemma). Additionally, it is essential to note that the
existence of the right-side expectation must hold. The conditions for the existence of this

expectations will be given in Theorem 2.1.

Proposition 2.1. Let X ~ N,(6,X). Let g(X,S) be a differentiable p vector function. Then

Ep [QT(Xv S)E X - 9)] = Ey

provided that E9[|VX.Q(X, S)]} < 00.

Proof. Let X = A~'(X — ) where A is a symmetric positive definite square root of ¥. Thus
X ~ Np(0,1,). Therefore X; ~ N(0,1). Let h = A~1g(X,S). Then, we have

g (X, 90 HX —0)=g"(X,9)A T AH (X —0).

Then,

g (X, S N(X—0)=h"X=> ;X (2.1)
J

Therefore, by (2.1), we have

Elg"(X,5)57' (X ~0)] =E {Z thjXﬂ] =Y B[ %] = Y B [ X)),
J J J

Therefore, by Corollary A.2, we get

. ) ) )
Y EXjh{] =) E|l—=h{;| =) E|—=hji| =E|>_ —=—h;
7 i) [‘9le ”] J [6le Jl} [ X1 ]1]7

J j J
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then,

%:E[Xﬂhfj] =E ganl(A‘lg(X S) ] [ZE)X 2 Ak 9(X, S

Jl

This gives
> E[Xj1hi;] = [ZAM e 9(X, )k ]
J

Now, by applying the chain rule in (2.2), we have

0 0X
-1 1
’ %Ajk D ] [ZA Z aX o 3591]
4 0 00X
—u[Y a2 g s>k1~].
L k,l ’ E)X X1

Since X = A~'(X — 6), we have
Xn =) AuXn + 04,
t

thus

0Xp
— = A
Py

t

8Xﬂ

= Z Ay = Ayj.

Therefore, by replacing (2.4) in (2.3) we get

3Xl1

_ElzaX XSMZAZJ ]k‘|: [Z8X XSM(AA )‘|

9

(2.2)

(2.3)
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This gives

oXn| 9 _
jz:klA]k aX g S)klaXJ1] —E[zk: anlg(Xas)kl] —E[ng(Xvs)}v

which completes the proof. O

In the upcoming proposition, we present an enhanced version of Lemma 3 from Chételat and
Wells (2012). In Part (4i7), we utilize Corollary A.2. This outcome relies on the existence of
E [\divvec(y)vec(?H )]}, a concept that will be thoroughly examined in Part (i) of Theorem
2.1.

Proposition 2.2. Let X ~ N,(0,%) and Y ~ Nyxp(0,1, ®%). Let S =Y'Y. For A
symmetric positive definite square root of ¥ (i.e. A2 =13) define Y=YA1, S=Y"Y and

H = AGA™! where G(X,S) is a p x p differentiable matriz function. Then

() tr(271SG) = tr(SH),

(ii) tr(SH) = vec(Y).vec(Y H),

(ii1) B [vec(V).veo(V H)| = B [div gy vee(V H)|

vec

provided that E [[dlv y)vec(f/H)” < 00

(i) Vg (YH) = div o gy-vee(Y H) = ntr(G) + tr(Y T (VyGT))

0Gy3
=ntr(G) + > Yoi .
ogr  Map

Proof.

(1) tr(SH)=tr(A'SATTAGA™Y) = tr(A71SGA™Y).
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This gives

tr(SH) = tr(A™'A71SG) = tr(472SG) = tr(2718G).

(it) tr(SH)=> (SH)y=> SyH;=> (Y'Y)yH;=> Yy VijHji
ij

i iJ B.J:k
=Y ViiViHji =Y Y > Vi Hji.
irjok ik j
Hence,
tr(SH) = ZYM(?H)M = vec(Y).vec(Y H).

(i43)  Since Y ~ Npxp(0,I, @ %), we get Y = VAT ~ Ny (0, I, @ I,).

Then

Therefore,

Also, we have

11
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Therefore, we have

E lVGC(?).VeC(?H)l = E[ Z ?ai?ajHji] = Z E l?ai?ajHji] = Z E [?aigj (ffoﬂ)‘| y

a?l’] a727.] a’lhj

where g; (Yoi) = YOU'H ji-Therefore, by Corollary A.2, we get

- - 0 - 0 ~
O%;jE {Yaigj(yai)} - O%;JE [mgj(yai)] =E O%’:] 870”;9] (Yaz)

Then,

_ ~ 0 = 0 ~
ZE {Yaigj(yoai)} =E Z 6? 'YoéjHji =K Z 8{/ ‘ ZYa]sz
,i,j ,i,j i Qi a4
Therefore,

. . o - . _ .
Z}ﬂmﬂﬁ@ﬂ:E X%MJYHM =B |Vg.(VH)| = B |div 5 vec(YH)] .
) oyl

. . - P -
(iv) Vy(YfU::dwwd?ﬁ@deﬂ:ZE:(&VyMAYfUM::E:ay'E:Ygfgl
oyl €2 ar g

Vo (YH) = > (5z—Yoj) Hji + Y Yaj(so—Hji)- (2.5)
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By applying the chain rule in the second term we get

o Mg 0 . O(VA)g
Yo Y, Y, Hj;
2 Yol -2 ”Z an Wt = 2 Yorgy, iy,
a,i,] a,,] a,i,7,k,0
0 0 -
Ya Hii(—— Yi.iAig).
X;C ]aY J (3Ym- Z kl 1,8)
a,i,7,k,0 l
This gives
~ 0 Y
ZYa] Hj)= > YojroHj(—=") A= > Y H;i(6ak0i) Arg-
a,i,j a,i,j,k,B,1 aYkB aYm a,i,g,k,8,1 aY
Hence,
o9 ) 9 »
> Yajoo—Hi) = Y. Yajgp— oy, Tiidhin = S Yojro— oY (AGA™Y);iAs.
a,i,] at a,i,j,8 a,i,j,8
Then,
- 0
> Yaj(oo—Hi) = 3. Yajgp— aY ZA]kalAlz JAig = > YajAjg— Nos Gy Aig.
a,t,j a,i,5,0 a,i,7,B,k,l
This gives,
- 0 - 8le 0GR, .
ZYOU(WHJ%): Z (ZYaJAJk 8Y ZAlzlAz,B): Z (YA)ockayﬁ(A 1A)l,3
a,i,j ar a,Bkl g a,B,k,l @

- 0 0Gyp
> Yoj(zo—Hji) = Y Yo . (2.6)
a,i,] aYO‘i a,B,k 8Yaﬁ
Also, we have
Z (3;2 Hj; = Z 0ijHji = ZH“ = Ztr = ntr(H) = ntr(AGA™!).

a,t,j o,i,g
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Then

> (?Yfaj)sz‘ = ntr(ATAG) = ntr(G). (2.7)

—. ai
a727-]

Therefore, by (2.6) and (2.7), we get

div Vec(y)vec(YH ) = ntr(G Z YakaGkﬂ
7/8 k:
Further, we have
tr(Y T (VyG ) =Y (YT (VyG ik =D Vi (VyG T
k k,a
Then,
aG aGkﬂ
tr(Y T (VyGT)) ZYkaZ (V¥)asGhr =Y Yin = > Yarao b, (2.8)
3 Bk 0Ya5 e 0Yap
which completes the proof. O

In Propositions 2.1 and Propositions 2.2, we considered general vector g and general matrix
G. Now, in the forthcoming proposition, we utilize these results for specific forms of g and G
to unveil intriguing discoveries. These findings will play a pivotal role in proving Proposition
2.4. Additionally, it is worth noting that Parts (ii) and Parts (iv) of the following proposition

were initially established in Lemma 1 and Lemma 2 of Chételat and Wells (2012).

Proposition 2.3. Let Y be an n x p matriz and S =Y 'Y. Let X be a p vector, F =
XTStX, and r be a differentiable function. Let Y =Y A~', G(X,S) = %S*XXTSJFS,

9(X,S) = w, and H = AGA™L. Then, under the conditions of Theorem 2.2 we have
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r?(F)
F

(i)t (YTVyGT) = —4r(F)r/(F) + (p—26(55%) +3),

v r?(F)

/
i) div, _vec(YH) = M
vec(Y') Ia

F2

(n+p—26(SS%) +3) -

(iv) Vx.g(X,S)=2r"(F)+ @(tr(SSJ“) —9),

(v) ¢ (X,8)57g(X, ) = tr (718G ,

(vi) Ey[g (X, )% 1g(X,S)| = B |div,eyyvec(YH)] ,

vec

provided that E [|div (Y)Vec(f/Hﬂ] < 00.
Proof.

(i) tr(G) =tr (i@sﬂﬂsm) = @tr(swfﬁa

Then,

_rF) ()
=—F=—"

2 F 2
tr(G) = - Pﬂz (X Ts+S5+x) = " lff; ) (X7 5+ X)

(74)  From (2.8), we have

0Gp

tr (YT(VyGT)) = 3 Yar Y

a767k

15
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Therefore, by Part (iv) of Lemma 2.2, we get

r?(F)
F

tr (YT(VyGT)) = —ar(F)r'(F) + (p—2t2(55%) +3) .

(tit) By Part (i) and Part (i7) together with Part (iv) of Proposition 2.2, we get

divvec(f,)vec(f/H) = ntr(G) + tr(Y TVyG ')

_ mifF) — 4r(F)(F) +

r?(F)
F

(p—2tr(55%) +3).

Therefore,

. ~ r2(F
div gy vee(Y H) = l(V )

vec

4r(F)r'(F)
F? '

(n+p—20(58%) +3) -

(t7v) By Lemma 2.3, we have

Vx.9(X,S) = 09i _ 2r'(F) + @(tr(SSJF) —2).

- X,

() ¢ (X, 827 g(X, 8) = tr(g7 (X, )7 'g(X, 8)) = tr(B71g(X, $)g" (X, 5)).

Then,

r?(F)
F2

g7 (X, 82 1g(X, S) = tr(E_l SS+XXTSS+) - tr(z—lsG).

(vi)  From Part (ii) to (v), we have

Elg"(X,9)2g(X,9)] = B [x(271SG)| = B [tr(SH)| = B [vee(¥).vec(V H)] .

16
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Therefore,

E g7 (X, 92 "g(X, )| = B [div, g vee(VH)]

which completes the proof. O

2.2 Main results

In this section, we introduce the primary result of this chapter, as stated in Theorem 2.2.
Additionally, in Example 1, we demonstrate the improper application of the Cauchy-Schwarz
inequality in the proof of Theorem 2 in Chételat and Wells (2012). Furthermore, in Example
2, we illustrate that the main result of this chapter, presented in Theorem 2.2, cannot be

derived without making an assumption regarding the rank of the random matrix S.

In the following example, we show that the bound obtained in Theorem 2 of Chételat and
Wells (2012) is not correct. To this end, we use the same notations as used in Chételat and
Wells (2012). Let T be a symmetric matrix and A a positive definite matrix. Specifically,

for a given X a column vector, in contrast with the statement in Chételat and Wells (2012)

XT(TTTAN(TTTAX £ XT(TTTA)T(ATTT) " XXT(ATTT)(TTTA)X.

7T 711
T LT T 1

Example 1. Let A = Iy, X = {1 0 0 0f andT = 4 . Therefore
1177

11 77
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. Then,
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oS O

oS O
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+
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<
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—N

—N

AN

N N

— |

—N

(ATTT)(TTTA) =

Hence,

— | N

— o o o

o o —la —HleN

@) S HI —HA

N~ O @)

N =N O (e

XT(TTTANTTTA)X = [1 0 0 0}

XU T AN AT T) " X XT(ATTT)(TTTA)X

N

—

Hence,

XUTTTAT(TTTA)X £ XT(TTTA)TATTT) " XX (ATTT)(TTTA)X.
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In the following lemma, we investigate the relationship between the existence of E {%} and
the rank of the random matrix S. In Example 2, we show that when P(R <2) >0, E {%}
may not exist. This observation leads us to conduct a more in-depth analysis. We aim to
establish that P(R > 2) = 1 is both necessary and sufficient for the existence of E {%] This
lemma holds significant importance in deriving the results presented in Theorem 2.1. In
Theorem 2.1, we demonstrate that the existence of E {|divvec(y)vec(l~/H ) |} can be determined
by the existence of E [%} To be more precise, E [\divvec(y)vec(YH)ﬂ is upper-bounded by

terms that involve E {%}

Lemma 2.4. Let X ~ N,(0,X) and Y ~ Npyp(0,1, @ X). Let F = X TSt X where
S=Y'Y and R = rank(S). Then,

E H_,] < o0 if and only if P(R > 2) = 1.

Proof. Assume that P(R > 2) = 1. Further, we have
XTSHX = XTATASTAATIX = (A'X)TASTA(AIX) =UTASTAU  (2.9)

where U = A1 X.

Since X ~ N,(0,%), we have U = A7t X ~ N,(A7%9,1,). Let C be R x p-matrix of the
form C' = [IREORX(p_R)] and let U;y = CU. We have

Upy|R ~ Na(CA™'0, In)

Let )\fm-n and \F _ be the smallest and biggest nonzero eigenvalues of AS™A respectively.

max

Since AST A is semi-positive definite, we have

ManUnhUay SUTASTAU < N, UL U, (2.10)
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Therefore, together with (2.9), we get

1o 1 N (2.11)
F — A;mU(Tl)U(l) U(TI)U(l)’

where Al .. is the biggest nonzero eigenvalue of (ASTA)* = A~1SA~!. Note that A/

max

depends on S and U(;) depends on R and X. Since, S and X are independent, we get

A;[naa: A;[naa: T 1
E |- = BB |5 |R| | =B |E | Myw|R| B || R
UnUn UnUn UnUa)

Further, we have
Moge Str(ATISA™) = tr(ATYYTYA™) =tr(YA™)TYA™) = vec (YA H)vec(YA™)
where vec(Y A™1) ~ Ny,p(0, I, ® I,). Therefore, we get

E[\

Ve <Elvec (YA Yyvec(YA™ )] =tr(I, @ I,,) = tr(I,,) = np.
Hence,

E[N 0] < np. (2.12)
Since U(l)’R ~ Nr(CA10,IR), we get

UL U R ~ x(3r), (2.13)

-
where p = (CA19) CA~10.
Let Z be a random variable such that Z‘R ~ Poisson(0r/2). By (2.13), We have

:E[E

E {(U(Tl)U(l))_l ‘R} —E

E[(UJ)U@))_I R, Z] R (ﬁmz)_l R, Z] R
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This gives
- -1 1 22 )
E|(U5Uw) ‘R} —E[ R
(559)
We have 2D L Therefore, since P(R > 2) = P(R > 3) = 1 and
) F(R-EQZ) - R+27-2° ’ - - -

P(Z >0) =1, we have, R+ 2Z — 2 > 1 with probability one and then,

El (U(Tl)

U(1)>_1 ‘R] —E

1
+2Z2‘R] <1 almost surely.
q fe——

Therefore, together with (2.11) and (2.12), we get

1
E{ }_E E[Amw

Hence,

R]E

1
Uny

‘R <E

max

0 E [AT R” = B [Muas| <.

1
E[F] < np < 0.

Now, assume that E {%] < oo. Further, from (2.10), we have

1 A

)\#_naan)U(D U(—E)U(l) - F’

where )\jm-n is the smallest nonzero eigenvalue of A~1SA~!. Again, note that )\jnm depends

on S and U(;) depends on R and X. Since, S and X are independent, we get

A _
UhUn

=E

_)\T

[\
)‘min

—nn__ |\ R
U<T1>U<1>’

min
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Then,
P|E [/\Inm R]E UTlU‘R <oo| =1 (2.14)
(1~ @
Since 0 < E [)\Imn R} < 00, we get
E L ‘R <oo| =1
Vbl

Therefore, by (2.13), we get
P (E [(X%(cSR))l‘R] < oo) =1.
Hence,
P(R>2)=1,

which completes the proof. O

Part (i) of Proposition 2.1, and Part (vi) Proposition 2.3, are valid under the assumption
that E [|[Vx.g(X,S)|] and E [|divvec(3~,)vec(l~/H)|}, respectively, exist. This motivates us to

explore the conditions under which these expectations are well-defined.

In the subsequent theorem, we establish that the condition P(R > 2) = 1 ensures the

existence of these expectations.

Theorem 2.1. Let X ~ N,(0,%),Y ~ Nypxp(0,1, ® X) and for A the symmetric positive
definite square root of &, let Y = Y A~L. Let r be any bounded differentiable non-negative
function r : R — [0, C1] with bounded derivative |r'| < Cy. Define G = %SJFXXTSJFS,
and g(X,95) = w, where F = XTS*X and H = AGA™'. Let R = rank(S) and
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suppose that P(R > 2) = 1. Then

(i) B [[div, gy vee(VH)|| < oo,

(i) E[|[Vx.9(X,9)]] < oc.

Proof. (i) By Proposition 2.3 and triangle inequality we get

2
div ooy vee(Y H )’ =|- ;F) (n +p—2tr(SST) + 3) -~ 4r(F)r’(F)‘
2
<- ;F) \n +p—2tr(SST) + 3] + 4r(F)r'(F).
This gives
. . C?
divyeo () vec(Y H)| < 71 ‘n +p—2tr(SST) + 3) +4C1C.

Therefore, since tr(SS™) = min(n, p) almost surely, we have

E Udivvec(y)vec(f/H)]} <C%n +p — 2min(n,p) — 1

1
E M + 40105, (2.15)

Further, since P(R > 2) = 1 then by Lemma 2.4, we get E [%} < 00. Then,
B [[div, o 5 vee(V H)|| < oc.

(73)  Similarly to Part (), by Part (iv) of Proposition 2.2, we get

B{IVx-g(X,8)) = B |[20(F) + " (ir(s5%) - )| < 204+ Cumin(ap) — 20 [ 7] < .

F

which completes the proof. O
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In the previous theorem, we demonstrated that P(R > 2) = 1 is a sufficient condition for

the existence of E [[div Y)vec(f/H )]} Now, in the following corollary, we explore the

vec(
conditions under which P(R > 2) =1 is both necessary and sufficient for the existence of

E Ddivvec({,)vec(f/H)]}.

Corollary 2.1. Let X ~ N,(0,%),Y ~ Nyuxp(0, I, ® X) and for A the symmetric positive
definite square root of ¥, let Y = YA~ Let r be any bounded differentiable positive function
r:R — [C*,C4] with bounded derivative |r'| < Cy. Suppose that |p —n| > 1. Define G =
SELSTXXTSTS, where F = XTSTX and H = AGA™". Then, B [|div., s vec(Y H)|| <
o0, if and only if P(R > 2) = 1.

Proof. If P(R > 2) = 1 then, by Theorem 2.1, we get

[|dlvVe )vec(YH)|] < 00

C

Now, assume that E [|divvec(y)vec()7H)|} < 00. We have

r?(F)

div Vec(y)vec(YH) ==

(n +p — 2min(p,n) + 3) — 4r(F)r'(F).

Therefore since n + p — 2min(p,n) = |p — n|, we get

r?(F)
F

(|p — n| — 1) — 40102.

vec

div (Y)Vec(YH) >

Therefore since |p —n| > 1, we get

r?(F) 1
F “|lp—n|-1
_ 1
Clp—n[-1

(diV (Y)vec(f/H) + 40102)

vec

(‘dwveC )Vec(f/H) + 4ClC'gD .
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Then,

r2(F) 1
<
F —|lp—n|—-1

(‘divvec(y)vec(l}H)‘ + 40102) .

Therefore,

r2(F) 1 . -
E l Fa < =1 E Udlvvec(f,)vec(YH)H +4C1Cy | < 0.

Further, we have

Therefore,

1 r2(F)
*\ 2
E|l=|<E
|5 < [ Dl <o,
which implies that
1

Therefore, by Lemma 2.4, we get,

P(R>2)=1,
which completes the proof. O

In the following example, we consider a positive function r such that E [[divvec(f,)vec()}H ) ]} =
oo. This emphasizes the significance of the assumption regarding R > 2 with probability one,
where R = rank(S). In particular, we demonstrate that when P(R < 2) > 0, it is possible

to have E [%} = 00, rendering obsolete the Theorem 2 of Chételat and Wells (2012).
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1

Example 2. Let X ~ N> I | and Y = {U{V} where U and V' are independent
1

random variable distributed as N (0, 1) i.e. Y ~ Nix2(0,1® ). let r(z) = H—% Let

St = PD* PT be the spectral decomposition of ST where D* = diag(dy,0). Since
F=X'"S"X=X"PD"P'X=(P'X)"DTP"X.

Therefore,

1
Note that dy and P are functions of (U,V) and note that P" X|U,V ~ Ny | PT D)

1

Then,
XTStx
e CAGP(CY
1 0 1
where dg = [1 1} P pPT . Therefore,
00 1

E[?\U,V]:E[XTS+X\UV1 [(Xl 50)) ‘UV}—OO

almost surely. Then,

[ ‘UV] dll [?‘U,V]zoo
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with probability one. Hence,

Further, we have

2
Y)Vec(f/H) = (F) (n+ p — 2min(n,p) + 3) — 4r(F)r'(F),

di
v ia

vec(

where min(n, p) = 1. Therefore, we get

L)

div, ooy vee(Y H) = 7 (1+2—-2+3)—4r(F)r'(F) = . 4r(F)r'(F).

Then,

) _ gy yvec(Y H) + 4r(F)r'(F) = ‘div yvee(YH) + 4r(F)r’(F)’ :
2 vec vec

Hence,

472(F)
F

< |div, oy vee (Y H)| + 4r(F) (F),

Since r(F) and r'(F) are bounded by 1 we get

472(F)
F

< | div oo 5y vee Y H)| + 4. (2.16)

We also have,

F F(1+e )2
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Since 1 <1+ e F <2 thus 1 < (1 +e )2 < 4. Therefore,

1 < 4
F =~ F(1+eF)2

Then, we get

But, since E {%} = 00, we get

4
E[M]:O@

Then from (2.16), we get

E Udivvec(y)vec(?H)H = 00.

Finally, we are now ready to present and substantiate the primary proposition that plays a

crucial role in establishing the main result of this chapter in Theorem 2.2.

Proposition 2.4. Let X ~ Np(0,%), Y ~ Npxp(0,I, ® 2) and F = XTSTX where
S=YTY. Let g(X,S) = w, where r is a differentiable function. Let R = rank(S)

and suppose P(R > 2) =1, then

(i) Eog" (X, 987X ~0)] =By [QT’(F) + T(}f)(tr(SSﬂ - 2)] ,

r?(F)
F

(n+p—26(SS%) +3) -

(i1) Eolg"(X,9)57'g(X,9)] = Fy [ ‘”(F}?;(F)] .
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Proof. (i) By, Part (i) of Proposition 2.1, we have
Eolg" (X, $)Z7H(X — 6)] = Eg[Vx.9(X, 5)],
and from, Part (iv) of Proposition 2.3, we have
Vx.9(X,8)=2r'(F) + @(tr(SSJ“) —2).
This gives
Eg {gT(X, S)nHX - 9)} =Ey [27“’(F) + @(tr(SSﬂ - 2)] :

(¢4)  Since P(R > 2) =1, by Theorem 2.1, we get E [|divvec(f/)vec(f/H)|] < 00. Therefore

from Part (vi) of Proposition 2.3, we have
Eg |?T (X, S)Z_lg(X, S)] =Ey ldivvec(y)vec(?H)] .

Further from Part (4i7) of Proposition 2.3 we have

)

AV ooy vee (Y H) = (n +p—2tr(SSH) + 3) _ ArE)(E)

F2

vec F
Hence

r?(F)
F

Eglg' (X, 92 1g(X, S)] = Egl (n +p—2tr(SST) + 3) -

which completes the proof. ]

The upcoming theorem serves as the central finding in this chapter. Utilizing Proposition
2.4, we are ready to provide a high-dimensional Baranchik (1970) type estimator, for the

mean vector of a p-dimensional multivariate normal distribution. This result was initially
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introduced by Chételat and Wells (2012) in their Theorem 1. However, in Example 2, we
demonstrated that this result might not hold without an additional assumption on the
rank of the random matrix S. Hence, it is essential to integrate this assumption into the

statement of the theorem.

Theorem 2.2. Let X ~ Ny(0,2),Y ~ Npyp(0,1, ® %) and S =Y Y. Let F = XTS*TX,
0 (X, 9) = <I — T(F)FSSHL) X, where v is a differentiable function, and 6°(X) = X. Suppose
that P(R > 2) = 1, where R = rank(S). Suppose that

2(min(n, p) — 2)

. t 0<r<
(i) 7 satisfies 0 <7 < n + p — 2min(n,p) + 3

(ii) r is non-decreasing
(i7) ' is bounded
Then, under invariant quadratic loss, L(0,6) = (6 — 0)TX7Y(6 — 0), 6, dominates 6°.

Proof. Let g(X,S) = w Thus 6, = X — g(X,S). The risk difference under the

quadratic loss between 6, and ¢° is

Ag =Fy {(X —9(X,8) = 0)") 27 (X - g(X,9) ~ 9)]
~Bp [(X - 0)T =7 (X —0)]

= —2By [¢" (X, )21 (X = 0)] + By |97 (X, )27 'g(X, 9)] . (2.17)

From Proposition 2.4, we have

r?(F)
F

2r(F)

AQZEG[ (n+p—2tr(SS+)+3) — (tI’(SS+)2)4T,(F)(1+T(F))‘|

F2

Since r is non-negative and non-decreasing, therefore —4r'(F)(1 + %) < 0. Under the
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condition (i) on 7, we have

2(min(n,p) — 2)
r(F) < n+p — 2min(n, p) + 3’

Then,

72 r
;F) (n+ p — 2min(n,p) + 3) < 2 f(PF)

(min(n,p) — 2).

Therefore, since tr(SS™) = min(n, p) almost surely, we get

E TQ;F) (n+p—2tr(SST) +3) — @(tr(SSJ“) —2)| <0.

Therefore,

Ay <0, which completes the proof.

32



Chapter 3

The Case of Matrix Normal Mean

Estimation

In this chapter, we suppose that Zi,...,Zy are independent and identically distributed
random samples from Ny, (0, ¥®I,) where U represents the row covariance matrix and is an
unknown matrix. Then, Z = [Z1,...,Zy]" follows Nngxp(70", Ing ® V) where v = e ® I,
and e = [1,...,1]T is an N-dimensional vector. Let X = Z = &>~ Z;. Therefore,
X ~ Npxq(0, 8 ® I,) where ¥ = %. Let us consider S = & SN (Z; — Z)(Z; — Z)" as an
estimator of ¥ and n = N —1. In Appendix A.1, We show that S can be writtenas S =YY,
where Y is independent of X and follows a matrix normal distribution Y ~ Nygx(0, I, @ 2).
This implies that S ~ Wishart,(ng, X).

This chapter is divided into two main sections. In Section 3.1, we introduce crucial Lemmas
and propositions that play pivotal roles in proving the results outlined in Section 3.2. Section
3.2 focuses on essential results that form the basis for the main result of this chapter, as

presented in Theorem 3.3.

In Theorem 3.3, we extend the findings of Theorem 2.2, as discussed in Chapter 2. The

outcomes detailed in this chapter also serve as generalizations of the key results established

33
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in Chételat and Wells (2012). In particular, in Theorem 3.3, we establish that the Baranchik

(1970) type estimator

B rtr(XTSTX))
(X, 8) = (I— tr(XTSTX) SS+> X,

outperforms the usual estimator 6° = X under the invariant quadratic loss,
L(0,0) = tr (0 - 0" 713 - 9)),

when P(¢R > 2) = 1, where R = rank(S). Once again, it is worth noting that the function r

in the above estimator represents a positive, bounded, and differentiable real-valued function.

3.1 Important Preliminary Results

In Section 3.1, we introduce several technical lemmas and propositions that play a pivotal
role in the development of results presented in Section 3.2. For the sake of maintaining the

simplicity and clarity of this thesis, most proofs have been relocated to the Appendix A.

Lemma 3.1. Let Y be an ng x p matriz and S = Y'Y . Let X be a p x ¢ matriz and
F=tr(XTStX). Let Ac Mpyp and B € My, it then follows that

oS
(i) < ) = 08K Yol + 951 Yaks
v, ) = E

. 0S
(1) (ABY p B> = Aps(Y B) ot + (AY "o B,
« kl

o (0XTSTX
(ii7) _

= —2(X " STY ) (STX)s1
Yap )kkz
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+2(XTSTSTY Do (I = SST)X) g,

(iv) ng = —2(8TXXTSTY )0 +2((I = SSTXXTSTSTY T4,
ap

+XXT —+
(v) (W) S (YSTXXTSS oy — (STYT ) (STXXTSS )
« Kl

+ (I —8SM)ka(YSTSXXTSST) 0 + (STSTY )10 (I — SSTXXTSST) g
+ (STXXT)g (VST )t + (STXXTYT)o S — (STXXTISH)15(Y )i

— (STXXTSSTYT) 1St + (STXXTSHY o (I = S5 a1

Proof. The proof of this result is given in the Appendix A.4. O

Lemma 3.2. Let Y be an ng x p matriz and S = Y'Y. Let X be a p x q matriz,

F=tr(XT5*X), and G(X,S) = Tigf) (STXXTSST), where r is a differentiable function.

Then
OGy  2r(F)'(F), OF |, 4 v oT aat 2r2(F) , OF | i o T crot
7’2(F) 8 T
F2 aYa,B(S+XX SS+)kl,
.. or + T o+ T o+ 2
(i)Y Yarl gy (SSTXXTS ) = —2ur((XTSTXP),

a’kﬂﬁ

i) Y Yo 85 (85T XXTS ) = Flp—2(S57) < 1),

a7k’/3
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) 0Grg  4r(F)r'(F) T ot v 2
(iv) azﬁ:kyak Wos TR ((X STX) )

r2(F) [ 4tr ((XTS+X)2)
F F?

+ +p—2tr(SST) -1

Proof. The proof of this result is given in the Appendix A.4. O

Lemma 3.3. Let Y be an ng x p matriz and S =Y 'Y. Let X be a p x ¢ matriz and
F=tr(XTS*X), and g(X,S) = T(F—F)(SSJFX), where 1 is a differentiable function. Then

. oF
0 oy

=2(STX),

(i) <8SS+X

= (SST)kidyj,
0Xij )kl ’

.. Og 2(Fr'(F) —r(F r(F
(i) e = HED T (53,55 X0 + T (5 s
, 99ij _ o4 r(F) +
(1v) 2 X, 2r'(F) + I (qtr(SST) — 2).
Proof. The proof of this result is given in the Appendix A.4. O

The forthcoming proposition can be seen as an expansion of proposition 2.1. The proof for
this Proposition can be established by applying Corollary A.2 once again. In this chapter,
we investigate the existence of the expectation on the right-hand side of part (i) in Theorem

3.1 for a specific form of ¢g(X, S).
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Proposition 3.1. Let X ~ Npyxq(0, X ® I;). Let g(X,S) be a differentiable p x q¢ matriz
function. Then

(1) Eg ltr(gT(Xy S)ETHX - 9))1 = Eg [tr(VXQT(X, S))],

provided that Eg [|tr(VXgT(X, S))” < 00,

g 0gi;
(44) tr(VXgT(X,S)> = > 0)9(2'

Proof. (i) Let X = A~'(X — ) where A is a symmetric positive definite square root of 3.
Thus X ~ Npsxg(0, I, ® I,). Therefore, X;; ~ N(0,1). Let h = A~'g(X,S). Then, we have

tr(g (X, S)E7HX — 0)) = tr(g" (X, $)ATTATH (X —0) = tr(h"X) = > (A X)ss.

Then,

tr(g" (X,9)S7 X —0)) = hj;Xji. (3.1)
,J

Therefore, by (3.1), we have

E[tr (gT(X,S)E—l(X—Q))} —E [Zhg)?ﬂ] _ZE[hTX i = ZE[X ).

Therefore, by Corollary A.2, we get
Y E[Xjhj] =) E =Y E 0 —hji| =E Zﬂhﬂ :
> i BX i 8X i 0X i

Then,

ZEX hij) = [Za;(A 9(X,9)) ] [Zax DAL 9(X, 9 ]
1,J Je

Jiok
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Hence,

.
%:EX ihg] [ZAJ’“aXﬁ (X, ) ]

J5k

Now, by applying the chain rule in (3.2), we have

8AXVla
ZA ]_E[ZAJ ZaX 8)21
4,5,k sk Jjt
aXloz
7.7 77a

Since X = A~1(X — 6), we have
Xla = ZAltXtoz + ela;
¢
then,

8Xla aXta
—=> A Api00i = A1
= S A = 3 Myt = A

Therefore, by replacing (3.4) in (3.3), we get

8)(loz
[ Z A]k aX gX S)k@aX ]_ [ Z A]k aX gX7S)kiAlj5ai]7

1,9,k Ji 1,7,k,l,0
and then,
8)(loz
AL X, S - 9(X,9)u S A
o 5 At ] o[ on T ]

9(X, S)ki(AA™), ]

-o| S

38

(3.2)

(3.3)
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This gives

[ S Al g(X. ) ‘;ﬁ] ﬂ[%jaikig(x,sm] :E[yvxmﬂx,sm],

1,7,k,l,0 o
and then,
0Xio | - .
l ];QAJ'“ 8X o, I e aXﬂ] lzk: Vo ] = Btr(Vxg' (X,9))].

(i) tr (VXQT()Q 5)) = (Vxg )i =Y (Vx)ijgji = Y (Vx)ijgij = 4 9915

i iy i.j w7 0%
which completes the proof. ]

In the following proposition, we build upon the ideas from Lemma 3 in the work by Chételat
and Wells (2012). Our approach refines and organizes their lemma, providing a detailed
breakdown of each step in the proof that leads to the end result stated in Lemma 3 of

Chételat and Wells (2012).

Proposition 3.2. Let X ~ Ny (0,2 ®1,) and Y ~ Npgxp(0,Ig®X). Let S=Y Y. For
A symmetric positive definite square root of ¥ (i.e. A2 =) define Y=YA"1S8=YTY

and H = AGA™Y where G(X, S) is a differentiable p x p matriz function. Then,

(i) tr(X71SG) = tr(SH),
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(iii) B [vec(V).veo(Y H)| = B [div gy vee(V H)|
provided that E [[dw Y)Vec(YH)|]

(iv) Vy.(YH)= divvec(f,)vec(f/H) = ngtr(G) + tr(Y T (VyG"))
0Gp
Yap

= ngtr(G) + Z Yok
a,Bk
Proof.
(i) tr(SH) =tr(A'SATTAGA™Y) = tr(A71SGA™Y) = tr(A71471SG) = tr(A725G).

Then,

tr(SH) = tr(X7'SG).

(i) tr(S‘H) Z(SH )i = ZSZJHN = Z(Y Y )ijHji = Z kYkJ Ji

i i,j ,J i,5,k
Then,
tr(SH) = Z Y/]ﬂ'f/ijji = Z Ykz ZijHji = Zi/kz(YH)kz = VGC(Y) . VGC(?H).

1,9,k i,k J i,k

(i17)  Since Y ~ Npgxp(0, Ing ® X), we have Y = Y A™ ~ Ny (0, Ing @ I,).
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Then,

vec(Y') ~ Nipg(0, Inpg)-

Therefore,
Also, we have

Therefore, we have

E lvec(f’).vec(ffﬂ)] =E

where g; (}7}12-) = ?ajH ji-Therefore, by Corollary A.2, we get

- . 0 - 0 . 0 -
E|Yaigi(Yai)| =Y E|—=—g;(Ya)| =E ——g;(Yai)| =E ——Y,.Hi|.

> Yo o) > P [gayaigj< ] [zay i
Then,

- ~ o - o - -
Y EYaigi(Yai)| =E| Y. =Y YyHi| =E|> —=(YH)a| =E|Vy - (YH)|.
a,i,] o aYai j i GYM-
Hence,
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Vs - (YH) = div YH O VH), - 0 Yo iH
(ZU) ( ) Vec(Y)VeC( ) — aYai( )az - ; 8Yai ZJ: ajilyg
Then
- o - o -~
Vy.(YH) = Z F(YQJHJZ) - Z (8~ 'YaJ)H]l + Yo (55— Hji)
RN B o,i,j el ai
Hence
~ 0
VY/(YH) = Z (85} ]z + Z Yaj 'i . (35)

ayi,j Qi j

By applying the chain rule in the second term of (3.5), we get
8Yk5 ~ 0 8(YA)]€3
Ya Y, Yo H;; - .
D Yoy =2 Jzayﬂ Y Zk YOV Tt OV
a,i,] a,i,] a,i,7,k,0
Then,
~ 0 OYM
> Ya] = Y Y Z wAp) = Y Yajro—Hii(o=)Ais.
a,i,j a,i,j,k,B aY Yai l a,i,7,k, 8,1 aYk/B 8YO”
Hence,
0

> Ya] Hji) = Y Yo Hji(0arbin)Aip = Y Yajzo—HjiAig.

8Y — 0Yop
a,t,j a,i,j,k, 58,1 a,i,5,0
This gives

0
> Ya] Hji)= ) Yojzo— Vs (AGA™)jidig = Y Yajzi— aY ZA kG A ) Aig,

o /L?J (X?Zh] ﬁ (X?Z?]?ﬁ
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and then,
0 ~ 0Gy 1
D Yaj(oo— Hji) = ) YaJAJkay Gy Aig = D (3 VajAje) 5 (D Ay Aig).
g 0,5, B,k Bkl j af
Hence,
- 0Gr , .4 0Gp
Z Ya] 'i = Z (YA)ak: (A A)lﬂ = Z Yok . (36)
a,t,j a, Bk, 8YO‘B a,fB.k 8Ya5
Also, we have
0 -~
Z (WYQJ-)H]-Z- = Z 0ijHj = ZH“ = Ztr = ngtr(H) = ngtr(AGA™!)
a,i,j ar a,i,j
Then,
9 s -1
Z ( Yoj)Hji = ngtr(A™"AG) = ngtr(G). (3.7)
aﬂ"j at

Therefore, by (3.6) and (3.7), we get

8Gk5
DWog

divveC(Y)VeC(Y/H) = nqtr(G) + %k Yok

Further, we have

tr(Y T (VyGT)) Z YT (VyG ) = ZYka (VyG ok = ZYk Z (Vy) aBGﬂk
k k,a k,a B

Then,

tr(Y T (VyGT)) ZYka =Y Yu : (3.8)
Tk oY, Tk aYaﬁ

which completes the proof.
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In Propositions 3.1 and Propositions 3.2, we considered matrices g and G in their general
forms. In the following proposition, we apply these general results to specific forms of
matrices g and G. This proposition combines and extends the ideas presented in Lemma
1 and Lemma 2 of Chételat and Wells (2012). Specifically, Parts (ii) and (iv) present
generalized versions of the results found in Lemma 1 and Lemma 2 of Chételat and Wells

(2012).

Proposition 3.3. Let Y be an ng x p matriz and S = Y'Y. Let X be a p X ¢ ma-
trir, F' = tr(XTSTX) and r be a differentiable function. Let Y = YA™', G(X,S) =
%S"‘XXTS‘FS, 9(X,8) = w and H = AGA™'. Then, under the conditions of

Theorem 3.3, we have

r2(F) [ 40 ((XTS*X)?)

I 72 +p—2tr(SST) -1,

= —72Ftr (XTs7x)?) +

() a0 (XTSHX2)\ an(P)(F)

ng+p—2tr(SST) -1+ -

(4i7) divvec(y)vec(YH): = 72 7

(iv) tr(Vxg(X, S)T) =2r'(F) + @(qtr(SSﬂ —2),

(v) tr (gT(X, S)21g(X, S)) =tr (Z_lSG) ,
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(vi) Eeh(f1xs»r&m&sn}_Eﬁmﬁdhwd?ﬂﬂ,
provided that E [[dw Y)Vec(YH)”

Proof.

2(F 2(F 2(F
(i) tr(Q) =tr <7§2)s+XXTS+s> = 7”1§2)tr(5+XXTS+S) = %m«(fﬁssw).

Then,

(74)  From (3.8), we have

3Gk5

w (YT(VyGT)) = 2 Yoigyr

76 k
Therefore, by Part (iv) of Lemma 3.2, we get

tr (YT(VvG))

r2(F) (40 ((XTSTX)?)
F2

:&-ﬁiﬁﬁﬁfzn(prS+X)ﬂ-+

72 +p—2tr(SST) —

(1it) By Part (i) and Part (i7) together with Part (iv) of Proposition 3.2, we get

div vec(Y)VeC(YH) = ngtr(G) —l—tr(YTVyGT) _ an;(F) _ 4T(F}3€,(F) tr ((XTS+X)2)
r2(F) [ Atr ((XTS+X)2>

F F?

+ +p —2tr(SST) —
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Then,

v r?(F)

atr (X TSTX)? (F)
et = 7 ( )\ _ )

ng+p—2tr(SST) — 1+ -

div 72 72

vec(

(tv)  From Part (i7) of Proposition 3.1, we get

dgij
tr (vngo@ s>) = o
1,5 v

and by Part (iv) of Lemma 3.3, we have

09ij _ o r(F) +
e =2r'(F)+ I (qtr(SS™) —2).

(v) tr(gT(X, S)slg(X, S)) = tr(zflg(x, S)g (X, 5)).
Then,
tr(g" (X, 9)27g(X, 9)) = tr(E_lrig?SS*XXTSSJF) = tr(27156).
(vi)  From Part (if) to (v) we have
E {tr (gT(X, )8 1g(X, 5))} —E [tr(z—lsc)} —E [tr(S*H)} .
Therefore,

B [tr (97 (X8 g (x, S))] — B [vec(V).vec(V H)| = E [div, o vee(VH))|

which completes the proof. O
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As previously mentioned, Parts (i) and Part (iv) of Proposition 3.3 provide generalizations
of Chételat and Wells (2012)’s Lemma 1 and Lemma 2. Indeed in special case where ¢ = 1,
we have F' = tr(XTS*X) = XTSTX, and this yields the results established in Chételat

and Wells (2012) (Lemma 1 and Lemma 2).

3.2 Main results

In this section, we show the main theorem of this thesis, as stated in Theorem 3.3. We
demonstrate that the proposed Baranchik (1970) type estimator, outperforms the classical
maximum likelihood estimator (MLE) for the mean matrix in the context of matrix normal

distribution.

The following Lemma establishes an intriguing connection between the existence of E [%} and
the rank of the matrix S, denoted as R. It highlights the significance of having P(¢R > 2) = 1.

Without this condition, the result of Theorem 3.1 does not hold.

Lemma 3.4. Let X ~ Npx(0,S®1,) and Y ~ Nygxp(0, Ing ® 2). Let F = tr(X ' STX)
where S =YY and R = rank(S). Then, E [%} < o0 if and only if P(¢qR > 2) = 1.

Proof. Assume that P(qR > 2) =1. Let U = A1 X. Then, we have
XTSTX =XTATTASTAATIX = (A'X)TASTA(AIX) =UTASTAU. (3.9
Since X ~ Npxq(0, 2 ® I,), thus U = A7LX ~ Npyy(A710, 1, ® 1,). Therefore,
vec(U) ~ Npg(vec(A™10), I,,). (3.10)
Let C be R x p-matrix of the form C = [IREORX(p_R)] and let U(;y = CU. We have

vec(Uyy) = vec(CU) = (I; ® C)vec(U).
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Then,
Vec(U(l))(R ~ Nyr((I, @ C)vec(A™10), (I, ® C)(I, ® C)T).
Therefore,
vec(U(l))\R ~ Nyr((I, @ C)vec(A™10), I g). (3.11)
Let At. and A} be the smallest and biggest nonzero eigenvalues of AS* A respectively.

Since AST A is semi-positive definite, we have

/\+

min

UnUny SUTASTAU < AL UL U (3.12)

Therefore, together with (3.9), we get

1 1 )\Inax )\inaf
= < — — = i = —=77 TANT (3.13)
)\mmtr(U(l)U(l)) tr(U(l)U(l)) vec' (Uyy)vec(Upyy)

where A

max

is the biggest nonzero eigenvalue of (ASTA)T = A"1SA~!. Note that A,

depends on S and U(;y depends on R and X. Since, S and X are independent, we get

AITLG/.’,E >\T

E =E|E R
VecT(U(l))vec(U(l))] lvecT(U(l))vec(U(l))‘ ]

=E E[AT

max

1
R] E lvecT(U(l))vec(U(l)) ‘R]

Further, we have

Al

max

<tr(ATNSAT) = tr(A7YTY A ) =tr (YA H)TYA™Y) = vee (YA Hvec(Y A7),



CHAPTER 3. THE CASE OF MATRIX NORMAL MEAN ESTIMATION 49

where vec(Y A7) ~ Nypg(0, I, ® I,). Therefore, we get

E[\

T ae]l <E[vec (YA vec(YA™ )] = tr(I, ® Ing) = tr(Lnpg) = npq.
Hence

E[A00] < npg. (3.14)
Since vec(U(l))‘R ~ Nyr((I; ® C)vec(A710), I,r), we get

vee! (Uy)vee(Un)|R ~ X2r(0r), (3.15)

-
where 0 = ((Iq ® C)vec(Aflﬁ)) ((Iq ® C’)Vec(Aflﬁ)).
Let Z be a random variable such that Z‘R ~ Poisson(0r/2). By (3.15), we have

E[ (vee (Uyvee(Uyy)) ‘R] —E [E[ (vee (U vee(Uy))) R, Z] ‘R]

B lEl (Crsaz)  |R Z] ‘R]

271D (22 )
R+27Z
L($55%)

=E

‘R.

_ R+2Z
P VI 1
p(%) T qRA2Z-2

P(Z > 0) =1, we have ¢R + 2Z — 2 > 1 with probability one, and then,

We have Therefore, since P(¢R > 2) = P(¢R > 3) = 1 and

- 1
T _
El (vec (U(l))vec(U(l))) ‘R} =E Py - 2‘R <1 almost surely.
Therefore, together with (3.13) and (3.14), we get
E[1}<E E[AT R]E ! ‘R <E E{AT R} :E[AT ]<npq.
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Hence,

1
E [F] < npg < 0.

Now, assume that E[£] < co. Further, from (3.12), we have

)\ﬁwzvecT(U(l))vec(U(l)) vec (Uqy)vee(Uy) ~— F

where )\Im-n is the smallest nonzero eigenvalue of A='SA~!. Again note that )\jm-n depends

on S and U(;) depends on R and X. Since, S and X are independent, we get

T
mwn

=E|E
{VecT(U(l))vec(U(l)) ’R

Ay
E min
VeCT(U(l))VeC(U(l))

This gives
E Aunin E E[AT R}E ! ‘R <EL)<
= ; —] <o
VeCT(U(l))VeC(U(l)) man VeCT(U(l))VeC(U(l)) - F
Then,
P E{Aim.n R}E B B[ <oo) =1. (3.16)
vec ' (U(yy)vec(Upyy)

Since 0 < E [)\T

min

R} < 00, we get

<oo):1.

P (E (2al0r)) 7[R < oo> 1,

1
P (E [VGCT(U(l))VeC(U(l)) ’R

Therefore, by (3.15), we get



CHAPTER 3. THE CASE OF MATRIX NORMAL MEAN ESTIMATION 51

This implies that

P(gR >2) =1,
which completes the proof. O

In Part (7) of Proposition 3.1, and Part (vi) of Proposition 3.3, we suppose that the quantities
E [[tr(VXg(X, S)T)ﬂ and E [\divvec(y)vec(f/Hﬂ] exist. Now, in the following theorem, we

give the conditions under which these expectations are well-defined.

Theorem 3.1. Let X ~ Npyy(0, X ® 1,),Y ~ Npgxp(0,Ing @ X) and for A the symmetric
positive definite square root of ¥, let Y = YA, Let r be any bounded differentiable
non-negative function r : R — [0, C1] with bounded derivative |r'| < Cy. Define

_r’(F)
=

r(F)SSTX

G(X,S) =

STXXTStS and g(X, S) =

where F = tr(X ST X) and H = AGA™'. Let R = rank(S) and suppose that P(q¢R > 2) = 1.
Then

(i) B |[div, ey vee(VH)|| < oo,

(ii) B [[r(Vxg(X,$)T)]] < oo

Proof. (i) By Proposition 3.3, we get

) 2 Atr (X TSTX)?
divvec(y)vec(YH)‘ = ](f) (nq +p—2tr(SST) -1+ (( - ) ))
_ Wtr ((x7s%x)?) ‘
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Then, by triangle inequality, we have

4r ((XTSX)?)
F2

r?(F)

<
- F

divvec(f/)vec(f/H) ng+p—2tr(SST) -1+

Wu (xTstx)?).

Hence,

g% ng+p—2tr(SST) — 1+

=

4r ((XTS*X)?)
F2

divvec(y)vec(f/H)

4C1Cy
F2

tr (X751 X)),

and then,

AC?tr ((XTS+X)2)
F3

: - Ct
diveo - vec(Y H)| < ?1 ‘nq +p—2tr(SST) — 1‘ +

4C1Co
2

+ tr (XT57X)?).

Therefore, since tr(SS™) = min(ngq, p) almost surely, we have

52

tr ((XT8%X)?)

- 1
E [\divvec(y)vec(YH)]] <C%|ng + p — 2min(ng, p) — 1|E {F] +4C?E

tr ((XT$X)?)
F2

+4C1C5E

F3

(3.17)

Let d;’s be the eigenvalues of X TSTX. Since X" STX is semi-positive definite, we have

tr (XT8%X)?) = Sldi< (X d)=u (x7stx) = F2
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Then,
" ((X;S;X)Q) <1. (3.18)
Therefore,
o ((x;iw)?) . 510
and then
tr (XT8*X)?) - tr((XTS+X)2>l 1
F3 B F? F~F
Therefore,
e ((X;§+X)2) <e[1]. 520

Then, by (3.19) and (3.20) together with (3.17), we get

1
F

1

E Udivvec(};)vec(f/H)]} < Cf |ng + p — 2min(ng,p) — 1|E [ 7

] + 4C?E [ } + 401 Cy.

(3.21)

Further, since P(¢R > 2) = 1, by Lemma 3.4, we get E [%} < 0.

(74)  Similarly to Part (7) , by Part (iv) of Proposition 3.3, we get

E[[r(Vxg(X,9)T)| =E

2r'(F) + @(qtr(SSJr) — 2)“

1
< 203 + Cy|gqmin(ng,p) — 2|E [F} < 00,

which completes the proof. ]

The following corollary demonstrates that if the number of columns of X, denoted as ¢,
is greater than or equal to 3, then the result stated in Theorem 3.1 can be automatically

derived.
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Corollary 3.1. Let X ~ Ny (0,2 1,),Y ~ Npgxp(0, Ijg ® X) and for A the symmetric
positive definite square root of ¥, let Y = YA™'. Let r be any bounded differentiable
non-negative function r : R — [0, C1] with bounded derivative |r'| < Cy. Define

_(F)

7 STXXTSHS, where F =tr(X'STX), and H= AGA™".

G(X,S)

If ¢ > 3, then, for all n and p

E [[div (Y,)Vec(f/H)]] < 0.

vec

Proof. Since ¢ > 3 and R > 1, we have ¢R > 2. Therefore, P(¢R > 2) = 1. Then, by

Theorem 3.1, we get

E [|divvec()~,)vec(}7H)|] < 00,

which completes the proof. O

The subsequent corollary shows that under some conditions, P(¢R > 2) = 1 becomes both

necessary and sufficient for the existence of E [[div (f/)vec(f/H )|} . In essence, this corollary

vec
generalizes the findings of Corollary 2.1, where similar results were derived in the context of

p-dimensional normal distribution.

Corollary 3.2. Let X ~ Npy (0,2 ® 1,),Y ~ Npgxp(0, Ing @ X) and for A the symmetric
positive definite square root of ¥, let Y = YA~ Let r be any bounded differentiable positive
function r : R — [C*, C1] with bounded derivative |r'| < Cy. Suppose that |p — ng| > 1.
Define G(X,S) = %S*XXTSJFS, where F = tr(X ST X) and H = AGA™!. Then

B [[div, oo 5 vee(Y H)|| < o

if and only if P(¢R > 2) = 1.
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Proof. If P(qR > 2) = 1, then by Theorem 3.1, we get
E [|divvec()~,)vec(}7H)|] < 00.

Now, assume that E [\divvec(?)vec(}}H)ﬂ < 00. We have

. - r?(F . 4tr (X TSTX)?
levec(ff)VeC(YH) = ; ) ng + p — 2min(p,ng) — 1 + ( = )
4r(F)r'(F) T ot o2
- Ttr ((X S X) ) .
Therefore, since 0 < (3D <1 and ng + p — 2min(p, ng) = |p — ngl, we get

. ~ r2(F
div oo (gyvee(YH) > (F)

vec

(Ip —ng| — 1) — 4C1Cs.

Therefore, since [p —ng| > 1, we get

r2(F 1 ~
; ) P (i, oy vee(VH) + 4C1Cy )
1 ‘ i
1 -
S m <‘diVV8C(Y)VeC(YH)‘ + 40]_02) .
Therefore,

r2(F) 1 . %
E l = < b ng =1 E “dlvvec(y)vec(YH)H +4C1Cy | < 0.

Further, we have

95
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which implies that

which completes the proof. O

Now, we introduce the main results of this chapter, crucial in proving Theorem 3.3, where
we establish that the proposed estimator, §,, outperforms the MLE, X. These results give a
generalized version of Proposition 2.4. Specifically, by setting ¢ = 1, F' = tr(X TstXx ) =

X TS*X. This leads to the results presented in Proposition 2.4.

Theorem 3.2. Let X ~ Npyq(0,201,), Y ~ Npugxp(0, [,;@%) and F = tr(X T ST X) where
S=YTY. Let g(X,5) = w, where r is a differentiable function. Let R = rank(S)

and suppose that P(qR > 2) =1, then

(i) Eg {tr (gT(X, S)NHX — 9))} =Ey lQT/(F) - r(}f) (qtr(SST) — 2)] ,

(i1) By |tr (g7 (X, 92 "g(X, S))]

r?(F)

—E
"1 F

(nq +p—2tr(SST) —1 72 72

N 4tr((XTS+X)2)> _Ar(F)r'(F)

Proof. (i) From Part (i) of Proposition 3.1, we have
Egltr(g" (X, $)S7H(X = 0))] = Eg[tr(Vxg ' (X, 9))],
and from Part (iv) of Proposition 3.3, we have

(Vg (X.9)) =2 (F) + ") (qur(55%) - 2),
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then
Ey [tr (gT(X, ST X - 9))} =Ey [27“’(F) + @(qtr(ssﬂ — 2)1 .

(73)  Since P(¢R > 2) =1, by Theorem 3.1, we get E [[divvcc(y)vec(YH)” < 00. Therefore,

from Part (vi) of Proposition 3.3, we have
Eg [tr (gT<X7 S)21g(X, S)) ] =FEy [divvec(};)vec()}H)] .

Further from Part (ii7) of Proposition 3.3, we have

r?(F)
F

divvec(?)vec(?H) —

<nq +p—20(S5T) — 1+ 4“((XTS+X)2)> _ Ar(E)(F)

F? F?

Hence

Ey [tr (gT(X, S)xlg(X, S))}

= Ey [TQ(F) (nq +p—2tr(SST) -1+ aer((

XTSTX)?) 4r(F)r'(F)
F - )

F2
which completes the proof. O

We are now prepared to present the central finding of this thesis. In Theorem 3.3, we establish
that under the invariant quadratic loss, the proposed Baranchik (1970) type estimator for
the mean matrix of a matrix normal distribution with independent columns and unknown
row covariance outperforms the maximum likelihood estimator. The proof of this theorem
relies heavily on Theorem 3.2. Notably, this theorem extends the primary result of Chételat

and Wells (2012) and Theorem 2.2 in Chapter 2 to the case of matrix normal distribution.
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Theorem 3.3. Let X ~ Npug(0,5 ® 1,),Y ~ Npugxp(0,Ing ® X) and S = Y'Y, Let
F=tr(XTSTX), 6.(X,5) = (I — T(F)I;g‘%) X, where r is a differentiable function, and
§%(X) = X. Let R =rank(S). Suppose that P(qR > 2) = 1, and suppose that

2(g.min(ng, p) — 2)

1) r satisfies 0 < r < -
(9 Jies 0 < ~ ng+p — 2min(ng,p) + 3

(#i) 7 is non-decreasing

(i73) v’ is bounded
Then, under invariant quadratic loss L(0,0) = tr ((5 0TS 16— 9)), S, dominates 0°.

Proof. Let g(X,S) = w Therefore, 6, = X — g(X,5). The risk difference under the

quadratic loss between 6, and 6° is

Ay =E, [tr ((X —g(X,S) - e)T) S (X - g(X,S) - 9))]
oot

_ _9E, [tr (7 (X 8)m (x - 9))] B [tr (97 (x, )8 "g(X, 5))} . (3.22)

From Theorem 3.2 we have

r?(F) N 4tr((XTSTX)?) 2r(F) N
A@—Eg[ fa ng+p—2tr(SST) -1+ 7 -~ (gtr(SS™) —2)
r(F
—4r'(F)(1 + ;2))] :
Since r is non-negative and non-decreasing, —4r'(F)(1 + %) < 0. Further, since
“((XTF#)Q) < 1 we have
r2(F) 4tr((XTSTX)?)
7 (ng+p—2tr(SST) — 1+ 7 )
2
F
<! (F) (ng +p — 2tr(SST) + 3). (3.23)

F
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Under the condition (i) on r, we have

r(F) < 2(qm1n(ng,p) —2) ,
nq +p — 2min(ng, p) + 3

then,

r2(F) 2r(F)

fa (ng + p — 2min(ng, p) + 3) < N (gmin(ng, p) — 2).

Therefore, by (3.23) and since tr(SS™) = min(ng, p) almost surely, we get

4er(XTSTX)%), 2r(F)
F? )= F

2
F
E T;)(nq—l—p—2tr(5’5+)—1+

Hence, Ay < 0, which completes the proof.

(qtr(SST) —2)| <o0.
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Chapter 4

Numerical study

In Chapter 2 and Chapter 3, we illustrated that under certain conditions outlined in
Theorem 2.2 and Theorem 3.3, the proposed §, estimator outperforms the Maximum
Likelihood Estimator (MLE) under the invariant quadratic loss function. This significant
finding motivates us to carry out some simulations in order to conduct a comparative analysis

of the two estimators.

Namely, in this chapter, we conduct a comprehensive simulation study to highlight the risk
dominance of the proposed estimator over the maximum likelihood estimator (MLE). We
illustrate that, according to the conditions outlined in Theorem 3.3, the proposed estimator
outperforms the MLE in high-dimensional settings for specific functions of r. The R code
for this simulation is given in Appendix B. In this simulation, we consider F' = tr(X 'St X),

r= and the proposed estimator is 6, = (I — @S ST)X. For the sake of simplicity,

_1
14+e=
we assume that ¥ = I,. We generate samples for various values of p(24, 32,56 and 104)
along with 11 different matrix 6 configurations for ¢ = 3 fixed. For each value of p, we
explore four distinct sample sizes: n = £,%,p — 1 and 2p. This comprehensive approach
allows us to investigate the impact of different p, n and ||f|| combinations on the results of

the simulation.

The Figure 4.1 gives the simulation results. One can see that the simulation study supports
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the theoretical findings. As expected, the risk difference between the suggested estimator 9,

and the classical MLE §y = X is not positive. This leads to the dominance of 9, over dg.

Furthermore, as presented in Figure 4.1, a consistent pattern becomes evident across all
four cases. The risk difference between the two estimators diminishes as the norm of the
mean matrix, ||0||, increases. This intriguing observation serves as a compelling incentive
for potential future research. Further, exploring how the mean matrix 6 is related to the
difference in risk between these estimators under the invariant quadratic loss opens up an

interesting path for further investigation.

p=24 p=32
0 o ——— 0- S
4 ”’
-2 7’ =24 ,'
,4.
_4.
Sample size
3 -6 P
c
© T 2p
> 0 50 100 0 50 100
E == p-1
kel p=56 p=104
X = pl4
w0 ,..__..-..--_.—-.v.-_.-. 0 ,_——_ e ——— —————n
o / /] p/8
1 #
-24 ¢ 2 II
_4.
_4.
_6.
0 50 100 150 0 50 100 150
el

Figure 4.1: The risk difference between the proposed estimator J, and the MLE



Chapter 5

Conclusion

In this thesis, we demonstrated the risk dominance of our Baranchik (1970) type estimator
over the classical MLE in high-dimensional data, where the number of features surpasses the
number of observations, under the invariant quadratic loss. Additionally, thanks to some
explorations of the estimator’s rank of the unknown row covariance matrix, we established
a new methodology highlighting specific conditions crucial for this dominance. Moreover,
this innovative approach allowed us to revise Theorem 2 of Chételat and Wells (2012).
As a direction for future research, we could aim to discover a function r that establishes
dominance of the proposed estimator J, over the high-dimensional James-Stein estimator,
§79(X,S) = (I — £SST)X, for any constant c¢. Moreover, it would be interesting to explore
whether it is possible to relax the bounds discussed in Theorem 3.3. This gives us greater

flexibility to select the function r, while maintaining the dominance of §, over Jg.
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Appendix A

Some Technical Proofs

A.1 Distribution of Sample Covariance

Theorem A.1. Let Z = [Zy,...,Zy]" follows ./\/'pr(eHT,IN ® W) where Z1,...,ZN are
independent and identically distributed random samples from Np(0,¥) and e = [1,..., 1]T 18

an N-dimensional vector. Let X = 7 = % SN Z; and

S—~ 3 (Zi = Z)(Z;i — 2)"
_lel (2 7 .

Letn=N —1 andZ:%. Then,

(i) S is independent of X and can be rewritten as S =Y 'Y where Y ~ Npsxp(0, 1, @ 3),

(11) X ~Ny(0,%) and S ~ Wishart,(n,X).

Proof. (i) LetQ=N,(Z;— X)(Z; — X)". Let U = T'Z where I is an N x N orthogonal

matrix with a last row N~ 2e'. Since I is orthogonal, the Jacobian of transformation is
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J(Z — U) = |det(I")?| = 1. Furthermore, U can be partitioned as
WT

n X p matrix and W = N 2Zisa p-dimensional vector. Then,
Z'z=0')'t'u=v"Tr'v=v'v=v'v+ww'.
Therefore, by (A.1), we get

N — — —_ — —_ —
Q=>(Zi-2)2;-2) =2"Z-NZZ"=V'V+WW' —-NZZ".

i=1
Since WWT =NZZT, we get

Q=V'V4+NzZZ' -NzZZ" =V'V.

We also have,

(Z—ed) (Z—e0")=2"2—-2Te0" —0e"Z+ NOOT

—VIV+WWT —ZTed" —(ZTed")T + N6HT.
Since the first n rows of I' are orthogonal to the N-dimensional vector e, we get
ZTe0T =UTed” = [VTW][0...0N2]T6T = N2Wo'.
Therefore, By using A.4 in A.3, we get
(Z—e0N)\T(Z—e0T)=v v+ (W —N20)(W — N26) .
The probability density function (pdf) of Z ~ Nyxp(ed, Iy @ ¥) is given by

F2(2) = (2m) 2 (det ()~ Fetr —%\I’_l(z—GGT)T(z—GGT) .

65
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(A.4)

(A.6)
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Therefore, by A.5, the joint pdf of (V, W) can be written as

_(nt1)p

fvw) (v, w) = (2m)~ 2 (det(‘l’))_%letr {—;‘11_1 (’UT’U + (w — N%G)(w _ N%Q)T)

Since

tr <\Ifl(w — N26)(w — Néef> = tr((w ~Nz26) O (w — N%9)>
= (w—N26)TU(w — N2§),

then,

ya
2

fovw(v,w) = (277)*%(det(\11))*%etr [ - ;\IllvTv] (2m)~ (det(\If))*%
exp( - %(w - N%G)T\Ifl(w - N;9)>.
(A.7)

Therefore, by A.7, we get V' ~ Np»p(0, I, ® ¥) independent of W ~ Np(N%Q, ).
Let Y = N"2V. Then, S=N"1Q=N"VTV =YY and ¥ ~ Nyxp(0, I, ® ).

(it) Since Y ~ Npuxp(0, I, @ X), by the definition of wishart distribution we get,
S =YY ~ Wishart,(n, ¥).

We also have X = Z = N™3W ~ N, (6, %), which completes the proof. O
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Theorem A.2. Let Z =[Zy,...,ZN]" follows /\/'qup(WGT, Ing ® V) where Zy,...,ZN are
independent and identically distributed random samples from Npxq(0,¥ ® 1), v = e ® I,

and e =[1,...,1]" is an N-dimensional vector. Let X = Z = % SN Z; and

S—~ 3 (Zi = Z)(Z; — 2)"
_lel (2 7 .

Letn=N—1 (de:%. Then,

(i) S is independent of X and can be rewritten as S =YY where Y ~ Npugxp(0, Ing @ %),

(17) X ~Npxq(0,2®1,) and S ~ Wisharty(ng, X).

Proof. (i) Let U = (I'® I;)Z where I' is an N x N orthogonal matrix with a last row

N 7%eT. The Jacobian of transformation is

J(Z = U)=|det (T ®I)°|= ’(detN(F)detq(Iq)>p =1.

U can be partitioned as

where V' is an ng X p matrix and W is a p X ¢ matrix.
WT
Then,

.
272 =(rel)'U) CTel)'U=U"C"el) ™ el)U

=U'TelL)(I''eI,)U.
Therefore,

z'z=U" ((Fr—l) ® (Iqlq)> U=U"(In®I)U=U"InU=U"U. (A.8)
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We also have,

U'u=v'v+ww'.
Hence, by A.8 and A.9, we get

N
Q=>(Z;-2)(2;-2)" =2"2-NZ2Z"=V'V+WW' —-NZZ".
=1

We also have,

N
WT = (N3¢ @1,)Z =N"3[l,...1)Z =N"2% 2] =N3Z".
=1

Therefore, by A.10 and A.11, we get

Q=V"V.

The probability density function (pdf) of Z ~ N qup(vﬁT, Ing ® V) is given by

F2(2) = (27) " (et (0))~ F et —%\I/_l(z—'yﬁT)T(z—’yHT) .

We also have,
27907 =UT T @I)(e® )0 =UT ((Te) ® (I,1,)) 60"

Since the first n rows of I' is orthogonal to e, we get

ZT0T =UT([0...0N2]T @ I)0T = [VT'W][0,...0,N2I,] 70T = Nawg",

where 04 is ¢ x ¢ square matrix of zeros.

68

(A.9)

(A.10)

(A.11)
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We also have,

Yiy=(eal) (exl)=("@L)(exl,)=(c"e)® (1) =N®cI,=NI,
Therefore,

(Z =70 (Z =0 =2T2-2ZT40T — (ZT40")T + Noo ™.

By using A.8, A.9 and A.14, we get

(Z -0V (Z 70" =272 -~ NiWgT — N20W T + NogT

— VTV 4+ (W - N26)(W — N26) 7. (A.15)
Therefore the joint pdf of (V, W) can be shown as

Fovmy (v, w) = (27r)_n§w(det(\11))_n2qetr[— ;\I/_lvTv] (27) % (det(V)) 2

etr( —

Therefore, by A.16, we get V' ~ Npgxp(0, I, ® V) independent of W ~ pxq(N%H, U®l).

N —

(w—N26)T T (w— N§9)>.

(A.16)
Let Y = N"2V. Then, S= N"'Q = N"VTV =YTY and Y ~ Nyyup(0, Ing @ ).
(i7) Since Y ~ Npygxp(0, Ing ® X), by the definition of wishart distribution we get,
S=Y'Y ~ Wishart,(ng, ).

We also have X = Z = N"3W ~ pxq(0, X ® 1), which completes the proof. O
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A.2 On the Moore-Penrose inverse and Stein’s Lemma

Proposition A.1. Let A be a m x n matriz. Then

(Z) AT = A+(A+)TAT

(ii) AT =ATAAT

Proof. (i) By properties of Moore-Penrose inverse we have

(AAT)T = 44T,

Since AT = ATAAT, we get

AT = ATAAT = AT(AAT)T = AT(AT)TAT.

(79)  Similar to Part (i), we get

A=AATA=(AAT)TA=(ATTATA.

Hence,

AT = (AN TATA)T = ATAAT.

Corollary A.1. Let S =Y Y. Then, we have

Ssty T =yT,

Proof. The proof follows from Proposition A.1.
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Proposition A.2. For A(t) a differentiable matriz function of constant rank, we have

OAT 0A 0AT 0AT
) = — AT AT 4 (I - AAT) (AT T AT AT(AT)T (T — AAT),
W % JAA 1 (1 - a0 2D anyTar g aran) (- aat)
(ii)  For the symmetric matriz, S, we have
oS+ L0S o oS oS
90 _ _+9° 7 — 5522 g+g+ +g+92 1 oo+
5 S 8tS + ( SS)@tSS +87S at( SST)

Proof. The proof of this proposition is given in Theorem 4.3 of Golub and Pereyra (1973). [

The following proposition generalizes Lemma 1 from Stein (1981) to distributions with
probability density functions that exhibit the property:

lim fy(y) = ety fy(y) =0.

Y——00

This proposition can be employed as a foundational step in deriving Lemma 1 from Stein

(1981).

Proposition A.3. Let Y be a random variable with pdf fy(y) and

lim fy(y) = yli_>nc}o fr(y) =0. Let g : R — R be an indefinite integral of the Lebesgue

Yy—+—00

measurable function g’ the derivative of g. Suppose El|g’(Y)\] < 00. Then

Proof. Since ygl;noo fr(y) = ylLrglo fr(y) =0, we get

[ R = (v - (o) = frw)
- [T R ==t - ) = )
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Therefore, we have

Elgl(y)] - [ gm0 :/O SO (¥)dy + [T g () dy
_/ (/ >d9+/ ( /y )dz)dy
:/_oo /_oogl(y)f/Y(Z) dz dy —/0 /y g W) fy(z)dz dy .

Therefore,

[ ] / / y)fy(2)dy dz — / / z)dy dz
_/ oz (/g dy)dz—/ firlz (/g dy)
_ /_ B@)60) — gz d= — /0 S (2)(9(2) — 9(0)) dz

= [ R0 - g0 ds + [T R0 - o)) de

This gives
E[g’m] - [ B0 -g@nds = [ feed - [

90 [ iz dz—[ 9 () dz

= g(0)(fr (o0 D= [ a S

Hence,
Elgm] _ /oo YL 1C PP [gm fx’/(Y)]

—00 fY(Z) fY(Y) ’
which completes the proof. O

With the assistance of the aforementioned results, we can now directly derive Lemma 1 from

Stein (1981).
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Corollary A.2 (Stein (1981) Lemma 1). Let Y ~ N(0,1) and g : R — R be an indefinite

integral of the Lebesgue measurable function g' the derivative of g. Suppose E[|g' (Y)|] < co.

Then
E [g’(Y)] =E lYg(Y)] .
Proof.
_ 1 e ! () — 1 12
fr(y) = Vo fy(y) = v —yfy(y)

Therefore, by Proposition A.3, we get

which completes the proof. O

A.3 Some Technical Proofs of Chapter 2
Proof of Lemma 2.1. (i) Let 6;; be the Kronecker delta. We have

s\ o o O [ vy Yy
<8Y0¢/B>kl = v zq:ququ = Xq: o (YaYa) = Zq: (8Ya/3)qu + ng(&Yaﬁ) :

Then,

oS Yy oYy
=D (7 )Wa+ D Yau(=5) =D aeYa+ > Yada.
(aYaﬁ )kl ; 0Yop™ ; T 0Yag ; e ; e

Hence,

0S
= 0K Yor + 951 Yok
<8Ya5>k1 ’ ’
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(79) By part (i) we get

oS oS oS
A B = (Ai)kBl = Akz () B
( ap )kl ; OVag ; (; Yap ij ’
= Z (Z Aki{dﬁiyaj -+ (55ij'}> le.

J %

Then,

J

J

7 %

a8
(A o BB) =Y (Z ApibpiYoj + > Akiaﬂjym) Bji=>Y_ (Akﬁyaj +> Akiaﬂjym>

Then,

a8
<A Y ﬁB) =Y AwgYajBj+ ) (Z Akiéﬁjyai) Bji =Awz Y YajBji
o Kl J j i j

J

+ Z A Yo Z (55ij1.
i J

This gives,

a8 L
<A o ﬁB) = Akg(YB)ar + > ApiYaiBai = Akg(YB)ar + Bar > AriYig,-
@ Kl i i

Therefore,

oS
<A8Y 5B> = Aks(YB)as + Bai(AY "o = A (Y B)ar + (AY ") o B
a Kl

25+
B

oF 0

_ Totyy— vT
oy~ ar, X ST =X

(71) We have

)X.

From, Proposition A.2, we get

05+
B

X7 S

8Ya5 aYaﬁ 8YO¢5

)X =X ( _ 5+ 95 gt (19512 gt L grst 90 ss+)>X.

74
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This gives

oS+ Tl 08 . . o8 o8
— e X+ XT(I— 2~ g+tgtx XT +q+ Y~
gy )X = XTSI ST 4 XT(1 - 857) 057X + XSS o0

08 08 08
— _y gt + Trr + + o+ XT + o+ I — +X
XSG STX - XTI = 85T) 52§78 TX 4 XTSTST 52 (1 - 85

X7

(I —8ST)X

Now, by Part (ii), for k=1 and [ =1 we get

0XTStX
v, — (XT8N 1p(Y ST X)a1 — (X TSTY 1) 1a(STX) 1
+ (XTI =S5 15(YSSTX)o1 + (X T(I = SST)Y )14(SSTX) 1
+(XTSTSM)15(Y(I - SST)X) a1 + (X TSTSTY 1) 10((I — SST)X) 51
Since

(XTS+)15(Y5+X)011 = (XT5+YT)1a(S+X)Bla
(XT(I—S5M))1p(YSSTX)o1 = (XTSTSTY ) 1a((I — SST)X )51 and

Y(I-8ST)=(T-SSHYT =0,

we get

aXTS+X

oy —2(XTSTY )10 (STX) 51 + 2(X TSTSTY ) 10((I — SST)X) 5
ap

<85+XXTSS+ )
O¥as kl

s s
I— 56+ +ot . gtagt
T4 (I-8S )Waﬁs St StSt g

+ +
(85 XTSS+> <S+XXT ég/s S ) + (sﬂoﬂsi}g )
Y. ki af Kl af /

I—-SSTH)XxXxTsst
aYaﬁ (I—857)) SS )

+ <S+XXT 85 )
Yap Kl

kl
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aS as a8
+xxTS(—st + I — + + ¢+ +q+ I — +
+<S S(=8" gy 8"+ (1= S8T) 52 ST 4 ST g (1~ 557)) )

Then,

+ T +
(‘W) _ <_S+£/‘_§S+XXTSS+> + ((I - SS+)88YSS+S+XXTSS+>
af Kl of ki o &
I 5+5+875(]—SS+)XXTSS+ + stxxT 22 g
8Ya,8 kl aYaB kl
- <S+XXTSS+855+> + <S+XXTS(I— 55+)355+5+>
OYap Kl OYap kl

+ <S+XXTSS+S+85(I — 55+)>

0Yap y

Now, by using Part (ii), we get

<_S+£fsgs+XXT55+> = =SV STXX TS ) — (STY T )a(STXXTSST) 4.

kl
(A.17)

Further,

(I — 55+)ﬁS+S+XXTSS+
Yop y
=(I—SSM)s(YSTSTXXTSST) 0+ (I — SSTY )a(STSTXXTSST) g

=(I—-SSM)s(YSTSTXXTSST) . (A.18)
Since, Y (I —SST) =0 (see Corollary A.1), we get

<S+S+£/S(I — Ss+)XXTSS+>
af kl

= (STS M) kp(Y (I — SSTXXTSSH) 0y + (STSTY o (I — SST)XXTSST) g

= (STSTY Nia((I — SST)XXTSST) 4. (A.19)
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We also have

<S+XXT(3§25+> = (STXX g (VST + (STXXTY T)aSH. (A.20)
@ kl

Further, we have

dS
(—S+XXTSS+8YQBS+>M = —(5TXXTISM) k(Y ST)ar(STXXTSSTY ST

Since SSTY T =Y (see Proposition A.1), we get
28

(—S+XXTSS+MS+> = —(STXX TSN ks(Y S ar(STXXTY T)paSa (A.21)
a Kl

Since S(I —SS*) = ST(I —SST) =0, we get

STXXTS(I— SS*)a—SS+S+ =0, (A.22)
Yo y
then,
<S+XXTSS+S+85(I - ss+)> = <S+XXTS+8S(I — Ss+)>
ayoc,ﬁ kl aYaﬂ kl

oS
= <A8Y B) = Akﬁ(YB)al + (AYT)kaB,Bl
B ) ki

= (STXXTSM)s(Y(I =SSt + (STXXTSTY T)0(I — S5T) 5
&) B

= (STXXTSTY )l — SST)g. (A.23)

Therefore, by (A.17), (A.18),---,(A.23), we get

+ Tgg+
<aS‘X‘XSS> — —S;ﬁ(YS+XXTSS+)al _ (S+YT)ka(S+XXTSS+)Bl
kl

Vs
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78
+ (I —SSM)a(YSTSXXTSST) 0y + (STSTY ) (I — SST)XXTSST) 5
+ (STXX Drg(YST)ar + (STXXTY oS5 — (STXXTSSH)1a(Y ST
—(STXXTSSTY oS+ (STXXTSTY 1o (I — S51) 4,

which completes the proof. O

Proof of Lemma 2.2.

N 0G0 r*(F) + Tog+
(7) Do _8Yo¢6< 72 (STXX 'SST )

O (F)\ ot v T aat r2(F) 0 vy Taot
= gy (ST XXTSS )+ e (ST XX

Then,

oGy 2r(F)r(F) () F? —2F (g

2 F)
Oyap 3yaﬁ)r ( + T oo+
= XX
Y Fi (5 S5
7“2(F) 8 + T +
7 OYOCB(S XX 'S5k
Hence,

Gy 2r(F)r'(F), OF | i v vTaqry,  2r°(F) OF
ap ~ F? (8yaﬁ)(s AX85 = =5

ayaﬁ
r2(F) 0
;2 ) V. (STXXTSST)p.

)(STX XTS5

(ii) By Part (iii) of Lemma 2.1, we get

F
> Yar( O (55X XT5%) 5
ak,B 8yo¢,8

2> Yar(STXXTSTY T)ga(SSTXXTST) g1
a,k,B



APPENDIX A. SOME TECHNICAL PROOFS 79
+2 3 Yor((I = SSHXXTSTSTY )50 (SSTXXTST) g,
a,k,B

=-2> Y Y (YSTXXTST)p(SSTXXTSH) g
a,k B

+2> Yar D (YSTSTXXT(I = S8M))ap(SSTXXTST) g
a,k B

This gives

> Yau( aayF ; J(SSTXXTS g = =2 Yor(VSTXXTSTSSTXXTST),,
ok, @ a,k

+2) Vo (YSTSTXX (I — 8ST)SSTXX TS ).
a,k

Since (I — SST)SST =0, we get

F
> Yau( a?/ B)(SS+XXTS+)Bk =-2) VL (VSTXXTSTXXTST) o
ok, « a,k

=2 (VTYSTXXTSTXX TS5

k
=-2) (SSTXXTSTXXTS).
k

This gives
oF + T o+ + T o+ T o+
> Yol Y(SSTXX ST g = —2tr(SSTXX 'STXX'ST)
ak,pB 83/016
= 2tr(X'STXXTSTSSHX).
Hence,
> Yau( oF J(SSTXXTST) g, = —2tr(X TSTXXTSTX) = —2tr(X ' STX)?) = —2F2

akp s



APPENDIX A. SOME TECHNICAL PROOFS 80

(iid) > Yak (SSTXXTST) =Y Yo

a (STXXTSST ks
ok, ak,B Yop

By Part (iv) of Lemma 2.1, for appropriate A?’k’ﬁ, Ag"k’ﬁ, - ,Ag"k’ﬁ and for | = /3, we get

Y Yok s —(STXXTSST s = Y Yau(ATHT + AGHF o aghP), (A.24)
a,k,B aya a,k,B

Further, we have

3 Yar AT = = 3 VoS (Y STXXTSSY) 00
ok, o,k,B3

== Y > (YSTXXTSSM)0p5%,

== Yau(YSTXXTSSTSH) 0
a,k

Then,

3 Yo AP™ = 3 (VST X TSV = - S (VSTXXTSTY T,
aakzﬁ a,k' «

= —tr(YSTXX'STY ") = —tr(XTSTYTYSTX).
Hence,

S VAP = —tr(XTSTSSTX) = —tr(X ST X) = —F, (A.25)
a.k,B

ST VA = = 3 Yor(STY Dia(STXXTSST) g5
a,k,/a’ Oé7k7ﬁ

== YVor(STY Do D (STXXTSST) 55 = = Var(STY Npatr(STXXTSST).
a,k B a,k
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Then,

3 Yopds™ = —tr(X TS5t STX) Y (Y STY ).
a,k,B «

—tr(XTSTX)tr(YSTY ") = —Ftr(STY'Y) = —Ftr(S*89).

Further,

S Ve AFHP = N7 Yo (I — S5H)s(Y STSX XTS5 ) 0

a,k,B ok,
= Yo Y (YSTSXXTSS)ap(I — STk
o,k B

= > Yar(YSTSXXTSSH(I = 85%))ar = 0.
a.k

Similarly, we have

ST VAP = 3 Yo (STSTY a((I - SSTH)X XTS5 55
a,k,B ak,

=) Yar(STSTY Mo > (I = SST)XX TS84

o,k B
= Yor(STSTY patr((I — SSTXXTSST)
o,k

=tr(SST(I = SSTHXX )Y You(STSTY Mo = 0.
a,k

We also have

ST VAP = N Yo (STXX i (VS )ap = > Yo O (STXX ) is(STY Mg

a,k,B ak,B o,k B

=) Yar(STXXTSTY e =) (VSTXXTSTY T)aq

o,k «Q

81

(A.26)

(A.27)

(A.28)
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Then,

Yo AYRP — p (VST X XTSHYT) = tr(X T STY TY St X
5
a7k76

=tr(X'STSSTX) =tr(XTSTX)=F. (A.29)
Further,

Yo AGFP = Yor(STXXTY a8t =S Yor(STXX YT )o S 5
Ap 8p
avkvﬁ Oé,k’,ﬁ Oé,k’ B

=) Yar(STXXTY)atr(ST) = tr(S) Y Yor(STXXTY Mg
o,k a,k

=tr(ST) Y (YSTXX Y Nga.

«

Then,

YakAa’k’ﬁ =tr(SHtr(YSTXXTY ) = tr(ST)tr(STXXTY 'Y
6
a.k,B

= tr(STtr(STXXTS). (A.30)
We also have

ST VAP = = N V(ST X XTS5 )5(Y ST )as
a,k,B a,k,B

== Yo > (STXXTSS)s(STY Nga = =D Var(STXXTSSTSTY o
a,k B a,k

Then,

S VAP = STV (STXXTSTY T = = Y (YSTXXTSTY ).
Oé,k,ﬂ O[,k} (0%
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Hence,

YakAa’k’ﬁ = —tr(YSTXXTSHYT) = —~tr(XTSTYTYStX
7
a7k76

= —tr(X'StSSTX) = —tr(X 'SYX) = —F. (A.31)
Further, we have

3 YarAS™ = = 3 Yar(STXXTSSTY 1S
O!,k‘,ﬁ avkvﬁ

= =D Ya(STXXTISTY o DSk = =D Yar(STXXTSSTY T )patr(ST)
a,k B ak

= —tr(ST) Y (VSTXXTSSTY Moo = —tr(ST)tr(YSTXXTSSTYT).

o

Then,

YakAa’k’ﬁ = —tr(STHtr(STXXTSSTYTY) = —tr(SHtr(STXXTSSTS
8
ok,

= —tr(SHtr(STXXTS). (A.32)

We also have,

Y, ASHRS — Yo (STXXTSTY D), (I — SST
9 BB

a.k,B ak,B
=) Yor(STXXTSTY 1 )a > (I — 8578
ok B
=) Yar(STXXTSTY N)patr(I — SST)
a,k

=) Yor(STXXTSTY Npa(p — tr(SSH)).
o,k
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84

Then,

3 Vardgh = (p - t2(SST) Y (YSTXXTSTY )00

a,k,B o}
=(p—tr(SSNHtr(YSTXXTSHYT) = (p — tr(SS))tr(X TSTY TY ST X)
= (p—tr(SS)tr(XTSTSSTX).

Therefore,

S Ve AgHP = (p — t2(SSH))tr(X TSTX) = (p — tr(SST))F.
a,k,B

Therefore, by (A.25), (A.26),---,(A.33), we get

ST VAP 4+ 3 vt =0

ok, a.k,B

ST Vardgh + 3 vuAgtt =0

ok, a.k,B
ST VarAd™ = 3 YorAdH =0,
a,k,B a,k,B

(A.33)

(A.34)

(A.35)

(A.36)

Then, by replacing (A.34),(A.35) and (A.36) in (A.24) together with (A.26), (A.31) and

(A.33), we get

Z Yak(Alll?k’ﬂ + Ag’kﬂ +-- 4+ Ag’kﬁ) - Z YakAgJCﬁ + Z YakA?JC’B + Z YakAghk”B‘

a7k76 a7k7/8 a7k7B

Then,

ST Var(APPP 4 AR 4 AGEP) = P(p — 2t2(SST) — 1).

a7k76

8Gk5 27’

(iv) > Yak Z Yo (

@Bk Yag @Bk 8%‘

)(SSTXXTST)s

aﬂk?ﬂ
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)(SSTXXTST) s
a,f,k y 6
Z Yok (SSTXX 5% 5
F2 kB 83/@13
2r(F)r'(F) oy 2r3(F) oy, T(F)
=T (—2F?) - 7 (—2F?) + o (o —2tr(S5%) 1),
Then,
4r2(F)  r*(F
S Va0 _ gy (1) + 2 D () gu(sst) - 1)
S 0Yag F
/ TQ(F) +
= —Ar(F)r'(F) + —; (p—26(55%) +3)
which completes the proof. O

Proof of Lemma 2.5.

oOF 0

T o+ —
8Xi_8Xi(X §TX) =

(4)

0STX
= Xk: X, (ST X )k + ZX“(T)Q)“

0
= Z(Ski(SJrX)kl + ZXkl(i Z S];;Xll).
k k 0Xi 9
This gives

OF L OX
e = (ST X)i +2Xk1 Z p aXll (ST X)u +Xk:Xk1 ;Skléll
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Then,

OF
i % .

Hence,

oF
0X;

= (S+X)i1 + (S+X)i1 = 2(S+X)Z~1.

0

. dSSTX 0Xa
(”) ( X, >k = 0X Z (SS+)kaXa1 = Z (SS+)ka = Z (SS+)ka5ai-

i o 8X,

«

Then,

5% = (575

(ii1) By Part (i) and (i) ,we get
dg d r(F) r(F), 8
a)é ~Gx,F ST X+ 5 (3x;
e SIRRACTEE N
_ 2(Fr(F) —r(F)) r(F)
F2 F

(SSTX)y)

F
(S+X)Z(SS+X)]€ —+

(S5 ki-

(iv) By Part (iit) for k = i, we have

Zaa:)g(z :Z{QFT’(F) _T(F)(S+X)i(SS+X)i+T(FF)(SSJF)M}

2
Fr'(F) —r(F)
2
Fr'(F) —r(F)
2

=2 D (STX)(XTST); + T(FF)tr(SS+)

D (SSTXXTST) +

7

=2 @tr(5’5+).

86



APPENDIX A. SOME TECHNICAL PROOFS 87

This gives
dg;  JFr'(F)—r(F) t T oty TEF) "
X, =2 72 tr(SSTXX'ST) + Ttr(SS )
, —
= 2Mtr(XTS+SS+X) + @tr(55+).
F?2 F
Then,

- F? F
Hence,
0gi o r(F) | r(F) +\ ot r(F) +
. ox, =2r'(F)—2 = T r tr(SST) = 2r'(F) + Ia (tr(SS™) —2),
which completes the proof. ]

A.4 Some Technical Proofs of Chapter 3
Proof of Lemma 3.1.

i

Then,
0S Y oY
= S Y+ S Vi) = Y daYa + 3 Yadar
<8Ya,3>kl Z(aYaﬁ) l+zl.: ’“(ayag) Z ok l+; Kot
Therefore,

oS
= 08 Yo + 051 Yok
<6Ya5>kz ’ ’
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(79) By Part (i), we get

oS

oS oS
A B = (Ai)kBl = Ay () B
(15752) - Sugtn- £ (S (5) )

7 (2

Then,

i .

J

oS
(Aay 5B> (E Aki{csﬁiyaj + 5ﬁij’}> Bji =) (E AyiGpiYaj + ) Akifs,BjYai) Bji.
@ kl J ‘ i i

Then,

a5
<A 7 B) = Z ApgYo; + Z AkidpiYai | Bj
af )

7 %

= ApgYo;Bj+ > (Z Akiéﬁjyai) Bji
J J i

= Akg Z Yaijl + Z AkiYai Z 5Bijl-
J i J

Hence,

a8 L
<A o ﬁB) = Akg(YB)ar + > ApiYaiBai = Akg(YB)ar + Bar > AriYig,-
@ Kl i i

Hence,

oS
<A8Y 5B> = Aks(YB)as + Bai(AY "o = A (Y B)ar + (AY ") o B
a Kl

0 aS™
(441 (%(XTS+X)>kk = <XT(8YQB)X> "

From Proposition A.2, we get

oSt
(" Gy %)
af kk
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aS oS S
_ T _ ot + (I —SSt + g+ + ot _ ga+
= (X ( S aYaﬁS +(I-8S )(mﬁs St 4+ 8tS aYaﬁ(I SS ))X)kk

8S S S
[ _xTgt + T(7r_ gg+ +a+ Totat
_< xXTs aYaﬁS X+X"(I-8S8 )(WQBS StX +X'8tS 7Y

+ (XTS+S+

(I — SS+)X>

kk
oS

~(xTsr 9% g x) 4 XT(I—SSJF)a—SS*S*X
kk 0Yap

I—8ST)X
s s (L=557) )

kk kk

Now by Part (ii) for | = k, we get

T o+
OX SN (X 8)p(VS X — (XTSY (84 X
Nop ),
+ (XTI =SS Nks(YSSTX) o + (X (I — SST)Y )ra(SSTX) g1,

+ (X TSP ) s(Y(I = SST) X )ak + (X TSTSTY (I — SST)X) g
Since

(XTS5 kp (VST X ) ot = (X T SHY D)o (ST X) g,
(XTI = SS™))s(YSSTX)or = (X STSTY T )ia((I — SST)X)x and

Y(I-S8ST)=(I—-585)YT =0,

then,

0XTSTX Tty T + Tot gty T +
« kk

(iv) By Part (ii) we get

OF 0 T O(XTS X))
= (X'STX),
8Ya6 8Ya5 zk: s Xk: 8Yaﬁ

= { 2(X T STY Nia(STX) g1 +2(X TSTSTY )0 (I - SS+)X)ﬁk}
k

«

=2 (S+XXTS+YT)BQ +2((1- 85T XX 5tstyT)
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0STXXTSs+ )
O¥as ki

+ +
(‘95 XXTSS+> <S+XXT 05 S ) +<S+XXT585 )
kl kil

B EX

05 grg+ 4 grsr 05

+ (I —88T)———
OYap OYap

(I— ss+))XXTSS+>

8Ya5 Kl

+ <S+XXT 05 g )
O¥as kl

L3S . as dS
I —S§S+ + g+ + g+

( aﬁs +(—-8S )6Ya55 ST+S8TS Vos

+(STxXTS(— (I—- SS*)))

kl
Then,

08
B

+otyvvT gt
Vs 3Ya5 STSTXX'SS )

<8S+XXTSS+>
kl

( g+ 95 S+XXTSS+> +<(I—SS+)
kl

_|_

(I—S8SHX XTSS+> <S+XXT af/S S)
kl of kl

oS
B

as
OV

oS

S+> + <S+XXTS(I - 851
y Y op

S+S+>
ki

+(SstXxXXxTsstst

(
-
(

(I — SS+)>

kl

Now, by using Part (ii), we get

(—S+ 8(2/56 S+XXTSS+> = —S:ﬂ(YSJFXXTSS*)al _ (S+YT)ka(S+XXTSS+)5l
“ kl

(A.37)
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Further,

((I - SS+)885

5+5+XXTSS+>
af

kl

= (I —SST)g(YSTSTXXTSST) o+ (I — SST)Y )a(STSTXXTSST) 5

=(I—-SSM)s(YSTSTXXTSST) . (A.38)
Since Y (I — SST) =0 (see Corollary A.1), we get

<S+S+£f(1 — Ss+)XXTSS+>
of kl

= (STS M) p(Y (I — SSTXXTSSH) 0y + (STSTY o (I — SST)XXTSST) g

= (STSTY ia((I — SST)XXTSST) 4. (A.39)

We also have

a8
(S*XXTMW) = (STXX N)g(Y SN + (STXXTY T)raSH (A.40)
« Kl
Further,
(—S+XXT55+£/SS+> = —(STXXTSISM)s(YST)ar(STXXTSSTY T )10 ST
of kl

Since SSTYT =Y T (see Corollary A.1), we get

<—S+XXTSS+£/5;S+> = —(5TXX IS ka(Y S ar(STXX Y T)paSa (A.41)
o kl

Since S(I —SS*T) =St — SST) =0, we get

STXXTS(I - SS+)ﬁS+S+ =0. (A.42)
Yop y
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Further,
S+XXTSS+S+ﬁ(I -88H)| = 5+XXTS+ﬁ(I - S88)
Y op " Y, "

a8
— (A B) = Akﬁ<YB>al + (AYT)kaBBl
Nag )

— (STXX TS )Y (I = S5 et + (ST XXTSHY ) = S54)

= (STXXTSTY )il — SST)a
Therefore by (A.37), (A.38),---,(A.43), we get

= =5 (YSTXXTS5H) 0 — (STY )i (STXXTSST)g

<85+XXTSS+>
Y u

+ (I —8SSM)a(YSTSXXTSST) 0y + (STSTY ) (I — SSTXXTSST) 5
+ (STXX Nrg(YST)ar + (STXXTY oS5 — (STXXTSSH)1a(Y ST
— (STXXTSSTY oS+ (STXXTSTY T)o (I — S51) 4,

which completes the proof.

Proof of Lemma 3.2.

L G 0 r*(F) + T oo+ o r*(F) + Tog+
_ — XX
7"2(F) 6 + T T
T v, (STXXTS55M).
Then,
OGu  2r(E)(F), OF |t v oT oot 2r2(F) , OF | i o oT aot
= — XX ' SS
Vs 72 (8ya5)(s XX 'S8T 73 (3ya5)(s )kl
2
) 9 et xXT8S)

F2 0Y,g

92

(A.43)
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(7i) By Part (iii) of Lemma 3.1, we get

F
> Yar( O ) (55X XT5%) 5
ak,B 82/04,8

=23 You(STXXTSTY T)pa(SSTXXTST) g
a,k,B

+2 > Yar((I = SSHXXTSTSTY )5 (SSTXXTST) g,
a,k,B

=-2> Y Y (YSTXXTST)0p(SSTXXTSH) g
a,k B

+2> Yar Y (YSTSTXXT(I— S81))ap(SSTXXTST) g
a,k B

=2 YVor(YSTXXTSTSSTXXTS) o
a,k

+23 Yor(YSTSTXX (I - 58T)SSTXX TS ).
a,k

Since (I — SST)SST =0 then we get

> Yo ;f 5)(55+XXTS+)Bk = -2 Vi (VSTXXTSTXXT5T)
ok, @ ak

=2 (YTYSTXXTSTXXTST)=—-2) (SSTXX'STXXTST),
k k

= 2tr(SSTXXTSTXXTSH) = 2tr(X TSTXXTSTSSHX).

Then,

> Yau( aiF )(SSTXXTSH) g, = —2tr(XTSTXXTSTX) = —2tr((XTSTX)?).
kB of

(747) Similar to the proof of Part (iii) of Lemma 2.2.
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. oG 2r(F)r'(F oF
(iv) > Yak "”ﬂ ( F)2( ) > You( 5 )(SSTXXTST)s
aﬁk ﬁ Bk yaﬁ
ozk S+XXTS+ ak S+XXTS+)5k
aﬁ a,k,B
QT(F)T,(F) T 2 2r*(F) T 2
= (—Ztr ((xTstx) )) -7 (—2tr ((xTstx) ))
r2(F
+ ;)F(p —2tr(SS5T) - 1).
Then,
2 T o+ v)2
Sy, P _ AU, (X757 xP) 4 4r?(F)tr (XTS5 X)?)
Y s F? F3
o, B,k
2
F
+2 ( )(p —2tr(SS1) - 1)
F
4r(F)r'(F) T 9
= - ((XTsx)?)
r2(F) (40 ((XTSTX)?) N
+ fa 7 +p—2tr(SST)—-11,
which completes the proof. O
Proof of Lemma 3.5.
. OF 0 R
(i) X, T ox, 2 S (XTSTX ) 8ij kZﬁXka ST5 X
oo \OXi IR o %o 9%

= ZS{;XM + ZXJESO—Z
B

= (5T X)ij + (X T8)ji = (STX)ij + (STX)i; = 2(STX)y5.
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(i) 0SSTX
1 X,

Then,

) = Y55 ke
kl

LV et

Xy = Z(Ss+)ka

8Aonl
GXij

085TX
< 9X,; ) = (55%) i
K Kl

(7it) By Parts (i) and (i7), we get

0 r(F)

Ogr

r'(F)F

0X;; F

) (SST X)) + Ia

2(Fr'(F) —r(F))

r(F)

0
( e (SSTX)y >

(iv) By Part (iiz), we have

Ogm _
Z 5ij - Z

Fr'(F)
tr

ZQFT’(F)

2
Fr'(F) —
2

This gives

0gi j

=2

2Fr(F) —

%,J {

—r(F)

2 aci (S*X);

R o (TS

1,J

—r(F)

%

r(F)

Fr'(F)

tr(SSTXXTST)

—r(F)

D (SSTXXTST) i+ gt

i 8Xij

F2

tr(X ' STSs+t

(95T X)) +

F;T(F ) <a§j>(55+x T(lf) (af( (SSTX) )
)

T‘(F
F (55+)k15lj

r

r(F)
Ttr(SSJr)

") (58%)

+ q@tr(SS‘*‘).

)+ ¢ (o)

Z(SS—’_)ka(sai(Slj'

F)
- (SS*)ii}

95
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= — Tg+ r(F) +
=2 fa2 tr(X ' STX) +¢ Ia tr(SST).
Hence,
0gij _ o Er'(F) —r(F) r(F) Y o r(F)  r(F) +
— 8Xij72 2 Faq F tr(S87) =2r'(F) — 2  ta— tr(SST).
Therefore,

99ij _ o4 r(F) +y
20X,y =2r'(F) + fa (qtr(SS™) —2),

which completes the proof. O



Appendix B

R code

####Important Libraries

library (MASS)

library(corpcor) # to calculate Moore - Penrose inverse
library(matrixsampling) # to simulate a Random matriz normal
library(ggplot2)

library(tidyr)

library(dplyr)

library(gridExtra)

RUHARBHHRRHHARBHARBHHARRBHARBHHRRBHARBH A
##Defining Trace Function
e
trace = function(x) {

dim(x) [1]

if (is.null(dim(x) [1])==TRUE){

return(x)

97
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else{
tr = 0
for (i in 1:dim(x)[1]) {
s = x[i,i]
tr = tr + s
}

return(tr[[1]])

}
T
##Defining function r
HARRHRBHRHHRH AR HRRARH AR BB AR AR HRH BB HRBHRRARH AR
r = function(f){

library(psych)

a = 1/(1+exp(-trace(£)))

return(a)
}
HARRHRBHRH AR AR R H AR AR R AR HRRRRHRRH AR H AR A
##Defining our proposed estimator
RARRHARBHRH AR A AR HRR AR AR R AR ARG AR R AR AR
JS_est <- function(x, sigma) {

f = trace(t(x)/*/pseudoinverse (sigma)*%x)

est = x - r(f)+*sigmal*/pseudoinverse(sigma)’%*x/f

return(est)

set.seed(13144)

g=20
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q=3

e =20

#to store nmorm of theta

ntheta = c()

#to store all mean risk difference

df_p = matrix(O,nrow = 4,ncol = 44)

#to store the risk of usual estimator

R_ L n = matrix(0,nrow = 30,ncol = 4)

#to store the risk of proposed estimator

R_J_n = matrix(0,nrow = 30,ncol = 4)

#Starting simulation:

for(p in c(24,32,56,104)){
#Defining the covariance matrixz for each choice of p
cov_matrix = diag(p)
# to store mean of risk difference after each 10 repetitions
md = c(O
#to create 11 different theta for each choice of p:

for(1 in seq(0,10,1)){

e = e+l
k=0
g=gt1

theta = matrix(1l, nrow = p, ncol = q)
nthetale] = norm(theta, type = "F")
#different sample stizes for each choice of p
for(n in c(p/8,p/4,p-1,2%p)){

k = k+1
cQ

RL=c(

d
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R.J =cO
#30 Repetitions for each sample size

for(i in 1:30){

Z = rmatrixnormal(n, M = theta,U = diag(p),
V = diag(q),keep = FALSE)
s = matrix(0, nrow = p, ncol = q)
for (h in 1:n){
s =s + Z[,,h]
}
X =s/n
Q = matrix(0, nrow = p, ncol = p)

for(h in 1:n){
Q = Q+(Z[, ,h]-X)%*%t(Z[, ,h]-X)
}
S = Q/n
theta_J= JS_est(X,S)

R_L[i]

trace (t (X-theta) *%cov_matrix%+*/ (X-theta))

R_J[i] trace(t(theta_J - theta)l*%
cov_matrix’*%(theta_J - theta))
d[i] = R_J[i] - R_L[i]
3
#storing the mean of risk differences in each 30 repetitions
md[k] = mean(d)
X

df_pl,gl=md

3

df _p = data.frame(df_p)
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colnames(df_p) = rep(c("24","32","56","104"),11)
df _long p = as.data.frame(df_p/>/pivot_longer(cols = everything(),
names_to = "P")%>Y

mutate(theta_norm = rep(ntheta,4),"P" = as.numeric(P)) %>%

mutate("Sample size" = rep(c("p/8","p/4","p-1","2p"), each = 44),

P = replace(P, P == 24, "p=24"),
P = replace(P, P == 32, "p=32"),
P = replace(P, P == 56, "p=56"),

P = replace(P, P 104, "p=104")))

ggplot(df_long_p,aes(x = theta_norm, y = value))+
geom_line(size = 1,aes(linetype= ~Sample size~,

color = ~“Sample size ))+
facet_wrap(~factor(P,levels = c("p=24","p=32","p=56","p=104")),

scales="free")+

theme_bw()+

labs(x = expression(paste('||', theta,'|[')),

y = "Risk diffference")
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