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Abstract

In this thesis, we consider the estimation problem of the mean matrix of a multivariate normal

distribution in high-dimensional data. Building upon the groundwork laid by Chételat and

Wells (2012), we extend their method to the cases where the parameter is the mean matrix

of a matrix normal distribution. In particular, we propose a novel class of James-Stein’s

estimators for the mean matrix of a multivariate normal distribution with an unknown row

covariance matrix and independent columns. Given a realistic assumption, we establish that

our proposed estimator outperforms the classical maximum likelihood estimator (MLE) in

the context of high-dimensional data. Furthermore, we investigate the conditions for which

this assumption remains valid. Additionally, we identify and rectify a notable error in the

proofs of a crucial result presented in Chételat and Wells (2012). Notably, the novelty of the

obtained results lies in the fact that the estimator for the row covariance matrix is singular

almost surely and its rank is a random variable. Finally, we present simulation results that

confirm the validity of our theoretical findings.
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Chapter 1

Introduction and Contributions

Chételat and Wells (2012) introduced a new type of estimator, based on the class of

estimators proposed by Baranchik (1970). This estimator dominates the classical maximum

likelihood estimator (MLE) of the mean vector in a multivariate normal distribution in

high-dimensional settings. However, an error in proving one of the main results presented

by Chételat and Wells (2012) motivates us to revise some of their findings. This revision not

only prompts a reconsideration of their work but also encourages us to explore the problem

of estimating the mean matrix in a matrix normal distribution.

In particular, we consider to estimate the mean matrix of a random matrix from a matrix

normal distribution. Initially, it might seem that the classical MLE is the most suitable

estimator for the mean matrix. However, in 1956, Charles Stein (refer to Stein (1956))

discovered that the classical MLE of mean vector of a p-dimensional normal random vector

loses its admissibility under the quadratic loss in high-dimensional data. This finding implies

the existence of alternative estimators for the mean vector that outperform the classical

MLE under the aforementioned loss function. Stein (1960) introduced a novel class of biased

but minimax estimators. This class of estimators dominates the classical MLE under the

invariant quadratic loss.

In this thesis, our primary focus is on the generalized estimator introduced by Baranchik

1



CHAPTER 1. INTRODUCTION AND CONTRIBUTIONS 2

(1970), particularly in the context of unknown covariance in high-dimensional data. The

classical estimator in Baranchik (1970) relies on the use of traditional inverse of the covariance

matrix estimator, which becomes impractical in high-dimensional settings. Indeed, in high-

dimensional data, the estimator of the covariance matrix becomes singular almost surely.

To overcome this problem, we utilize the Moore-Penrose inverse, instead of the traditional

inverse. Because of that, classical techniques cannot be used to prove the risk dominance of

the proposed class of estimators over classical MLE. Thus, the additional novelty of this

thesis lies in deriving some mathematical results which are useful in establishing the risk

dominance of the proposed estimators over MLE.

1.1 Organization of the thesis

This thesis is organized in 5 chapters including this chapter which gives an introduction.

In Chapter 2, we begin by discussing key concepts that play a pivotal role in proving the

main results and lemmas throughout this thesis. Subsequently, we present the central

thesis result within the multivariate setting. Additionally, we introduce several propositions

and lemmas that are essential components in demonstrating the main result outlined in

Theorem 2.2. In Chapter 3, we extend the findings from Chapter 2 to the matrix normal

distribution setting with an unknown row covariance and independent columns. In Chapter

4, we conduct a simulation study to validate numerically the theoretical findings presented

in this thesis. In Chapter 5, we give some concluding comments. We also introduce in

Chapter 5 valuable insights and ideas to serve as potential directions for future research.

Finally, for the convenience of the reader, some technical proofs as well as the simulation R

code are given in the Appendix A.



Chapter 2

Improved Multivariate Normal

Mean Estimation

In this chapter, suppose that Z1, . . . , ZN are independent and identically distributed random

samples from Np(θ, Ψ) where Ψ represents the covariance matrix and is an unknown

matrix. Then, Z = [Z1, . . . , ZN ]⊤ follows NN×p(eθ⊤, IN ⊗ Ψ) where e = [1, . . . , 1]⊤ is an

N -dimensional vector. Let X = Z̄ = 1
N

∑N
i=1 Zi. Therefore, X ∼ N p(θ, Σ) where Σ = Ψ

N .

Let us consider S = 1
N

∑N
i=1 (Zi − Z̄)(Zi − Z̄)⊤ as an estimator of Σ and n = N − 1. In

Appendix A.1, We show that S can be written as S = Y ⊤Y , where Y is independent

of X and follows a matrix normal distribution Y ∼ Nn×p(0, In ⊗ Σ). This implies that

S ∼ Wishartp(n, Σ).

Based on the findings from Srivastava and Khatri (1979), it is established that the matrix S

is almost surely invertible when the dimensionality p is less than or equal to the sample size

n, i.e., p ≤ n. Conversely, it is almost surely singular when the dimensionality p exceeds

the sample size n, i.e., p > n. Moreover, it has been demonstrated in Srivastava and Khatri

(1979) and Srivastava (2003) that the rank of the estimator of the covariance matrix, denoted

as S, is equal to the minimum of the number of observations n and the number of features

3



CHAPTER 2. IMPROVED MULTIVARIATE NORMAL MEAN ESTIMATION 4

(p), almost surely.

In estimating the mean vector, denoted as θ, the unbiased maximum likelihood estimator

is δ0 = X. However, according to the findings presented by Stein (1956), X becomes

inadmissible under the quadratic loss function defined as L(θ, δ) = (δ − θ)⊤(δ − θ) when

n ≥ p ≥ 3.

To address the limitations of the estimator δ0 = X, especially when n ≥ p ≥ 3, Baranchik

(1970) introduced a new James-Stein type of estimator, given by:

δ(X, S) =
(

I − r(X⊤S−1X)
X⊤S−1X

)
X.

Here, the function r represents a positive, bounded, and differentiable real valued function.

When the conditions n ≥ p ≥ 3 hold, this estimator is known to dominate the estimator X

under the invariant quadratic loss. However, when p exceeds the sample size n, the estimator

S is singular almost surely, rendering the above estimator unusable in such cases.

To overcome this issue, the Moore-Penrose inverse of S, denoted as S+, is employed to

formulate a modified Baranchik (1970) estimator:

δ(X, S) =
(

I − r(X⊤S+X)
X⊤S+X

SS+
)

X.

This modification allows for a robust estimator that can handle situations where p > n,

making it a valuable tool for estimating the mean vector θ under the given conditions.

In Section 2.2, we show that under the invariant quadratic loss, the above estimator dominates

the usual estimator X. We also provide in Appendix A.2, some important concepts on the

Moore-Penrose inverse and Stein’s Lemma (see Stein (1981)). These concepts play a crucial

role in establishing Theorem 2.2 and Theorem 3.3 which are the main results of this thesis.

To simplify the presentation of this thesis, let us introduce some notations. For m × n
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matrices A and B, define

A.B =
∑
i,j

AijBij .

For special case of m-dimensional vectors A and B, we have

A.B =
∑

i

AiBi = A⊤B.

Let vec(A) and vec(B) be the transformation of A and B to vectors of dimension mn. We

have

A.B = vec(A).vec(B) = vec(A)⊤vec(B) =
∑
i,j

AijBij .

Similarly, for ∇A =
(

∂
∂Aij

)
1≤i≤m,1≤j≤n

, define

divAB = ∇A.B = divvec(A)vec(B) =
∑
i,j

∂Bij

∂Aij
,

and

(∇AB)ij =
∑

α

(∇A)iα Bαj =
∑

α

∂Bαj

∂Aiα
.

Furthermore, let δij =


1 if i = j

0 if i ̸= j

, be the Kronecker delta.

Before delving into the main result of this thesis in multivariate normal distribution setting,

we provide the important lemmas, propositions and their corresponding proofs. These

propositions lay the groundwork for the proof of Theorem 2.2.

2.1 Important Preliminary Results

In this section, we present crucial lemmas and propositions which are vital for proving some

of the main results of this thesis as given in Section 2.2. To ensure the coherence of this

thesis, several proofs have been moved to Appendix A.
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Lemma 2.1. Let Y be an n × p matrix and S = Y ⊤Y . Let X be a p vector

and F = X⊤S+X. Let A ∈ Mk×p and B ∈ Mp×h, it then follows that

(i)
(

∂S

∂Yαβ

)
kl

= δβkYαl + δβlYαk,

(ii)
(

A
∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + (AY ⊤)kαBβl,

(iii) ∂F

∂Yαβ
= −2(X⊤S+Y ⊤)α(S+X)β + 2(X⊤S+S+Y ⊤)α((I − SS+)X)β,

(iv)
(

∂S+XXT SS+

∂Yαβ

)
kl

= −S+
kβ(Y S+XXT SS+)αl − (S+Y T )kα(S+XXT SS+)βl

+ (I − SS+)kβ(Y S+SXXT SS+)αl + (S+S+Y T )kα((I − SS+)XXT SS+)βl

+ (S+XXT )kβ(Y S+)αl + (S+XXT Y T )kαS+
βl − (S+XXT SS+)kβ(Y S+)αl

− (S+XXT SS+Y T )kαS+
βl + (S+XXT S+Y T )kα(I − SS+)βl.

Proof. The proof of this result is given in Appendix A.3.

Lemma 2.2. Let Y be an n × p matrix and S = Y ⊤Y . Let X be a p vector, F = X⊤S+X,

and G(X, S) = r2(F )
F 2 (S+XX⊤SS+), where r is a differentiable function. Then

(i) ∂Gkl

∂Yαβ
=2r(F )r′(F )

F 2 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl − 2r2(F )

F 3 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl,
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(ii)
∑

α,k,β

Yαk( ∂F

∂Yαβ
)(SS+XX⊤S+)βk = −2F 2,

(iii)
∑

α,k,β

Yαk
∂

∂Yαβ
(SS+XX⊤S+)βk = F (p − 2tr(SS+) − 1),

(iv)
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
= −4r(F )r′(F ) + r2(F )

F

(
p − 2tr(SS+) + 3

)
.

Proof. The proof of this result is given in Appendix A.4.

Lemma 2.3. Let Y be an n × p matrix and S = Y ⊤Y . Let X be a p vector, F = X⊤S+X,

and g(X, S) = r(F )
F (SS+X), where r is a differentiable function. Then

(i) ∂F

∂Xi
= 2(S+X)i,

(ii)
(

∂SS+X

∂Xi

)
k

= (SS+)ki,

(iii) ∂gk

∂Xi
= 2(Fr′(F ) − r(F ))

F 2 (S+X)i(SS+X)k + r(F )
F

(SS+)ki,

(iv)
∑

i

∂gi

∂Xi
= 2r′(F ) + r(F )

F
(tr(SS+) − 2).

Proof. The proof of this result is given in Appendix A.3.
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The first part of the following proposition is referenced in the proof of the main result in

Chételat and Wells (2012) but it is left without proof. In this thesis, we offer a detailed

proof utilizing Corollary A.2 (Stein’s Lemma). Additionally, it is essential to note that the

existence of the right-side expectation must hold. The conditions for the existence of this

expectations will be given in Theorem 2.1.

Proposition 2.1. Let X ∼ Np(θ, Σ). Let g(X, S) be a differentiable p vector function. Then

Eθ

[
g⊤(X, S)Σ−1(X − θ)

]
= Eθ

[
∇X .g(X, S)

]
,

provided that Eθ

[
|∇X .g(X, S)|

]
< ∞.

Proof. Let X̃ = A−1(X − θ) where A is a symmetric positive definite square root of Σ. Thus

X̃ ∼ Np(0, Ip). Therefore Xi ∼ N (0, 1). Let h = A−1g(X, S). Then, we have

g⊤(X, S)Σ−1(X − θ) = g⊤(X, S)A−1A−1(X − θ).

Then,

g⊤(X, S)Σ−1(X − θ) = h⊤X̃ =
∑

j

h⊤
1jX̃j1. (2.1)

Therefore, by (2.1), we have

E
[
g⊤(X, S)Σ−1(X − θ)

]
= E

∑
j

h⊤
1jX̃j1

 =
∑

j

E
[
h⊤

1jX̃j1
]

=
∑

j

E
[
X̃j1h⊤

1j

]
.

Therefore, by Corollary A.2, we get

∑
j

E[X̃j1h⊤
1j ] =

∑
j

E
[

∂

∂X̃j1
h⊤

1j

]
=
∑

j

E
[

∂

∂X̃j1
hj1

]
= E

[∑
j

∂

∂X̃j1
hj1

]
,
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then,

∑
j

E[X̃j1h⊤
1j ] = E

[∑
j

∂

∂X̃j1
(A−1g(X, S))j1

]
= E

[∑
j

∂

∂X̃j1

∑
k

A−1
jk g(X, S)k1

]
.

This gives

∑
j

E[X̃j1h⊤
1j ] = E

[∑
j,k

A−1
jk

∂

∂X̃j1
g(X, S)k1

]
. (2.2)

Now, by applying the chain rule in (2.2), we have

E
[∑

j,k

A−1
jk

∂

∂X̃j1
g(X, S)k1

]
= E

[∑
j,k

A−1
jk

∑
l

∂

∂Xl1
g(X, S)k1

∂Xl1

∂X̃j1

]

= E
[∑

j,k,l

A−1
jk

∂

∂Xl1
g(X, S)k1

∂Xl1

∂X̃j1

]
. (2.3)

Since X̃ = A−1(X − θ), we have

Xl1 =
∑

t

AltX̃t1 + θl1,

thus

∂Xl1

∂X̃j1
=
∑

t

Alt
∂X̃t1

∂X̃j1
=
∑

t

Altδtj = Alj . (2.4)

Therefore, by replacing (2.4) in (2.3) we get

E
[∑

j,k,l

A−1
jk

∂

∂Xl1
g(X, S)k1

∂Xl1

∂X̃j1

]
= E

[∑
j,k,l

A−1
jk

∂

∂Xl1
g(X, S)k1Alj

]

= E
[∑

k,l

∂

∂Xl1
g(X, S)k1

∑
j

AljA−1
jk

]
= E

[∑
k,l

∂

∂Xl1
g(X, S)k1(AA−1)lk

]
.
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This gives

E
[∑

j,k,l

A−1
jk

∂

∂Xl1
g(X, S)k1

∂Xl1

∂X̃j1

]
= E

[∑
k

∂

∂Xk1
g(X, S)k1

]
= E

[
∇X .g(X, S)

]
,

which completes the proof.

In the upcoming proposition, we present an enhanced version of Lemma 3 from Chételat and

Wells (2012). In Part (iii), we utilize Corollary A.2. This outcome relies on the existence of

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
, a concept that will be thoroughly examined in Part (i) of Theorem

2.1.

Proposition 2.2. Let X ∼ Np(θ, Σ) and Y ∼ Nn×p(0, In ⊗ Σ). Let S = Y ⊤Y . For A

symmetric positive definite square root of Σ (i.e. A2 = Σ) define Ỹ = Y A−1, S̃ = Ỹ ⊤Ỹ and

H = AGA−1 where G(X, S) is a p × p differentiable matrix function. Then

(i) tr(Σ−1SG) = tr(S̃H),

(ii) tr(S̃H) = vec(Ỹ ).vec(Ỹ H),

(iii) E
[
vec(Ỹ ).vec(Ỹ H)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

provided that E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞,

(iv) ∇Ỹ .(Ỹ H) = divvec(Ỹ ).vec(Ỹ H) = ntr(G) + tr(Y ⊤(∇Y G⊤))

= ntr(G) +
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.

Proof.

(i) tr(S̃H) = tr(A−1SA−1AGA−1) = tr(A−1SGA−1).
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This gives

tr(S̃H) = tr(A−1A−1SG) = tr(A−2SG) = tr(Σ−1SG).

(ii) tr(S̃H) =
∑

i

(S̃H)ii =
∑
i,j

S̃ijHji =
∑
i,j

(Ỹ ⊤Ỹ )ijHji =
∑
i,j,k

Ỹ ⊤
ik ỸkjHji

=
∑
i,j,k

ỸkiỸkjHji =
∑
i,k

Ỹki

∑
j

ỸkjHji.

Hence,

tr(S̃H) =
∑
i,k

Ỹki(Ỹ H)ki = vec(Ỹ ).vec(Ỹ H).

(iii) Since Y ∼ Nn×p(0, In ⊗ Σ), we get Ỹ = Y A−1 ∼ Nn×p(0, In ⊗ Ip).

Then

vec(Ỹ ) ∼ Nnp(0, Inp),

Therefore,

Ỹαi ∼ N (0, 1).

Also, we have

vec(Ỹ ).vec(Ỹ H) =
∑
α,i

Ỹαi(Ỹ H)αi =
∑
α,i

Ỹαi

∑
j

ỸαjHji =
∑
α,i,j

ỸαiỸαjHji.
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Therefore, we have

E
[
vec(Ỹ ).vec(Ỹ H)

]
= E

[ ∑
α,i,j

ỸαiỸαjHji

]
=
∑
α,i,j

E
[
ỸαiỸαjHji

]
=
∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
,

where gj(Ỹαi) = ỸαjHji.Therefore, by Corollary A.2, we get

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
=
∑
α,i,j

E
[

∂

∂Ỹαi
gj(Ỹαi)

]
= E

∑
α,i,j

∂

∂Ỹαi
gj(Ỹαi)

 .

Then,

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
= E

∑
α,i,j

∂

∂Ỹαi
ỸαjHji

 = E

∑
α,i

∂

∂Ỹαi

∑
j

ỸαjHji

 .

Therefore,

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
= E

∑
α,i

∂

∂Ỹαi
(Ỹ H)αi

 = E
[
∇Ỹ .(Ỹ H)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
.

(iv) ∇Ỹ .(Ỹ H) = divvec(Ỹ )vec(Ỹ H) =
∑
α,i

(divỸ )αi(Ỹ H)αi =
∑
α,i

∂

∂Ỹαi

∑
j

ỸαjHji.

Then,

∇Ỹ .(Ỹ H) =
∑
α,i,j

∂

∂Ỹαi
(ỸαjHji) =

∑
α,i,j

(
( ∂

∂Ỹαi
Ỹαj)Hji + Ỹαj( ∂

∂Ỹαi
Hji)

)
.

Hence,

∇Ỹ .(Ỹ H) =
∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji +

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji). (2.5)
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By applying the chain rule in the second term we get

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j

Ỹαj

∑
k,β

∂

∂Ykβ
Hji

∂Ykβ

∂Ỹαi
=

∑
α,i,j,k,β

Ỹαj
∂

∂Ykβ
Hji

∂(Ỹ A)kβ

∂Ỹαi

=
∑

α,i,j,k,β

Ỹαj
∂

∂Ykβ
Hji(

∂

∂Ỹαi

∑
l

ỸklAlβ).

This gives

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,k,β,l

Ỹαj
∂

∂Ykβ
Hji(

∂Ỹkl

∂Ỹαi
)Alβ =

∑
α,i,j,k,β,l

Ỹαj
∂

∂Ykβ
Hji(δαkδil)Alβ.

Hence,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
HjiAiβ =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
(AGA−1)jiAiβ.

Then,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
(
∑
k,l

AjkGklA
−1
li )Aiβ =

∑
α,i,j,β,k,l

ỸαjAjk
∂

∂Yαβ
GklA

−1
li Aiβ.

This gives,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,β,k,l

(
∑

j

ỸαjAjk) ∂Gkl

∂Yαβ
(
∑

i

A−1
li Aiβ) =

∑
α,β,k,l

(Ỹ A)αk
∂Gkl

∂Yαβ
(A−1A)lβ.

Hence,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,β,k

Yαk
∂Gkβ

∂Yαβ
. (2.6)

Also, we have

∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji =

∑
α,i,j

δijHji =
∑
α,i

Hii =
∑

α

tr(H) = ntr(H) = ntr(AGA−1).
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Then

∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji = ntr(A−1AG) = ntr(G). (2.7)

Therefore, by (2.6) and (2.7), we get

divvec(Ỹ )vec(Ỹ H) = ntr(G) +
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.

Further, we have

tr(Y ⊤(∇Y G⊤)) =
∑

k

(Y ⊤(∇Y G⊤))kk =
∑
k,α

Y ⊤
kα(∇Y G⊤)αk

Then,

tr(Y ⊤(∇Y G⊤)) =
∑
k,α

Y ⊤
kα

∑
β

(∇Y )αβG⊤
βk =

∑
α,β,k

Y ⊤
kα

∂G⊤
βk

∂Yαβ
=
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
, (2.8)

which completes the proof.

In Propositions 2.1 and Propositions 2.2, we considered general vector g and general matrix

G. Now, in the forthcoming proposition, we utilize these results for specific forms of g and G

to unveil intriguing discoveries. These findings will play a pivotal role in proving Proposition

2.4. Additionally, it is worth noting that Parts (ii) and Parts (iv) of the following proposition

were initially established in Lemma 1 and Lemma 2 of Chételat and Wells (2012).

Proposition 2.3. Let Y be an n × p matrix and S = Y ⊤Y . Let X be a p vector, F =

X⊤S+X, and r be a differentiable function. Let Ỹ = Y A−1, G(X, S) = r2(F )
F 2 S+XX⊤S+S,

g(X, S) = r(F )SS+X
F , and H = AGA−1. Then, under the conditions of Theorem 2.2 we have

(i) tr(G) = r2(F )
F

,



CHAPTER 2. IMPROVED MULTIVARIATE NORMAL MEAN ESTIMATION 15

(ii) tr
(
Y ⊤∇Y G⊤

)
= −4r(F )r′(F ) + r2(F )

F

(
p − 2tr(SS+) + 3

)
,

(iii) divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

F 2

(iv) ∇X .g(X, S) = 2r′(F ) + r(F )
F

(tr(SS+) − 2),

(v) g⊤(X, S)Σ−1g(X, S) = tr
(
Σ−1SG

)
,

(vi) Eθ

[
g⊤(X, S)Σ−1g(X, S)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

provided that E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞.

Proof.

(i) tr(G) = tr
(

r2(F )
F 2 S+XX⊤S+S

)
= r2(F )

F 2 tr(S+XX⊤S+S).

Then,

tr(G) = r2(F )
F 2 tr(X⊤S+SS+X) = r2(F )

F 2 tr(X⊤S+X) = r2(F )
F 2 F = r2(F )

F
.

(ii) From (2.8), we have

tr
(
Y ⊤(∇Y G⊤)

)
=
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.
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Therefore, by Part (iv) of Lemma 2.2, we get

tr
(
Y ⊤(∇Y G⊤)

)
= −4r(F )r′(F ) + r2(F )

F

(
p − 2tr(SS+) + 3

)
.

(iii) By Part (i) and Part (ii) together with Part (iv) of Proposition 2.2, we get

divvec(Ỹ )vec(Ỹ H) = ntr(G) + tr(Y ⊤∇Y G⊤)

= nr2(F )
F

− 4r(F )r′(F ) + r2(F )
F

(
p − 2tr(SS+) + 3

)
.

Therefore,

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

F 2 .

(iv) By Lemma 2.3, we have

∇X .g(X, S) =
∑

i

∂gi

∂Xi
= 2r′(F ) + r(F )

F
(tr(SS+) − 2).

(v) g⊤(X, S)Σ−1g(X, S) = tr
(
g⊤(X, S)Σ−1g(X, S)

)
= tr

(
Σ−1g(X, S)g⊤(X, S)

)
.

Then,

g⊤(X, S)Σ−1g(X, S) = tr
(
Σ−1 r2(F )

F 2 SS+XX⊤SS+
)

= tr
(
Σ−1SG

)
.

(vi) From Part (ii) to (v), we have

E
[
g⊤(X, S)Σ−1g(X, S)

]
= E

[
tr(Σ−1SG)

]
= E

[
tr(S̃H)

]
= E

[
vec(Ỹ ).vec(Ỹ H)

]
.
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Therefore,

E
[
g⊤(X, S)Σ−1g(X, S)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

which completes the proof.

2.2 Main results

In this section, we introduce the primary result of this chapter, as stated in Theorem 2.2.

Additionally, in Example 1, we demonstrate the improper application of the Cauchy-Schwarz

inequality in the proof of Theorem 2 in Chételat and Wells (2012). Furthermore, in Example

2, we illustrate that the main result of this chapter, presented in Theorem 2.2, cannot be

derived without making an assumption regarding the rank of the random matrix S.

In the following example, we show that the bound obtained in Theorem 2 of Chételat and

Wells (2012) is not correct. To this end, we use the same notations as used in Chételat and

Wells (2012). Let T be a symmetric matrix and A a positive definite matrix. Specifically,

for a given X a column vector, in contrast with the statement in Chételat and Wells (2012)

XT (T +TA)+(T +TA)X ≰ XT (T +TA)+(AT +T )+XXT (AT +T )(T +TA)X.

Example 1. Let A = I4, X =
[
1 0 0 0

]T

and T = 1
48



7 7 1 1

7 7 1 1

1 1 7 7

1 1 7 7


. Therefore
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T + = 1
4



7 7 −1 −1

7 7 −1 −1

−1 −1 7 7

−1 −1 7 7


. Then,

T +T =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


.

This gives,

T +TA = AT +T = (T +TA)+ = (AT +T )+ =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


.

Thus,

(T +TA)+(AT +T )+ =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


=



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


,

(T +TA)+(T +TA) =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


=



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


,
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(AT +T )(T +TA) =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


=



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


.

Hence,

XT (T +TA)+(T +TA)X =
[
1 0 0 0

]


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1

0

0

0


= 1

2 ,

XT (T +TA)+(AT +T )+XXT (AT +T )(T +TA)X

=
[
1 0 0 0

]


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1

0

0

0


[
1 0 0 0

]


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2





1

0

0

0


= 1

4 .

Hence,

XT (T +TA)+(T +TA)X ≰ XT (T +TA)+(AT +T )+XXT (AT +T )(T +TA)X.
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In the following lemma, we investigate the relationship between the existence of E
[

1
F

]
and

the rank of the random matrix S. In Example 2, we show that when P(R ≤ 2) > 0, E
[

1
F

]
may not exist. This observation leads us to conduct a more in-depth analysis. We aim to

establish that P(R > 2) = 1 is both necessary and sufficient for the existence of E
[

1
F

]
. This

lemma holds significant importance in deriving the results presented in Theorem 2.1. In

Theorem 2.1, we demonstrate that the existence of E
[
|divvec(Ỹ )vec(Ỹ H)|

]
can be determined

by the existence of E
[

1
F

]
. To be more precise, E

[
|divvec(Ỹ )vec(Ỹ H)|

]
is upper-bounded by

terms that involve E
[

1
F

]
.

Lemma 2.4. Let X ∼ Np(θ, Σ) and Y ∼ Nn×p(0, In ⊗ Σ). Let F = X⊤S+X where

S = Y ⊤Y and R = rank(S). Then,

E
[ 1

F

]
< ∞ if and only if P(R > 2) = 1.

Proof. Assume that P(R > 2) = 1. Further, we have

X⊤S+X = X⊤A−1AS+AA−1X = (A−1X)⊤AS+A(A−1X) = U⊤AS+AU (2.9)

where U = A−1X.

Since X ∼ Np(θ, Σ), we have U = A−1X ∼ Np(A−1θ, Ip). Let C be R × p-matrix of the

form C = [IR
...0R×(p−R)] and let U(1) = CU . We have

U(1)

∣∣∣R ∼ NR(CA−1θ, IR)

Let λ+
min and λ+

max be the smallest and biggest nonzero eigenvalues of AS+A respectively.

Since AS+A is semi-positive definite, we have

λ+
minU⊤

(1)U(1) ≤ U⊤AS+AU ≤ λ+
maxU⊤

(1)U(1). (2.10)
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Therefore, together with (2.9), we get

1
F

≤ 1
λ+

minU⊤
(1)U(1)

= λ†
max

U⊤
(1)U(1)

, (2.11)

where λ†
max is the biggest nonzero eigenvalue of (AS+A)+ = A−1SA−1. Note that λ†

max

depends on S and U(1) depends on R and X. Since, S and X are independent, we get

E

 λ†
max

U⊤
(1)U(1)

 = E

E

 λ†
max

U⊤
(1)U(1)

∣∣∣R

 = E

E
[
λ†

max

∣∣∣R]E

 1
U⊤

(1)U(1)

∣∣∣R

 .

Further, we have

λ†
max ≤ tr(A−1SA−1) = tr(A−1Y ⊤Y A−1) = tr((Y A−1)⊤Y A−1) = vec⊤(Y A−1)vec(Y A−1)

where vec(Y A−1) ∼ Nnp(0, Ip ⊗ In). Therefore, we get

E[λ†
max] ≤ E[vec⊤(Y A−1)vec(Y A−1)] = tr(Ip ⊗ In) = tr(Inp) = np.

Hence,

E[λ†
max] ≤ np. (2.12)

Since U(1)

∣∣∣R ∼ NR(CA−1θ, IR), we get

U⊤
(1)U(1)

∣∣∣R ∼ χ2
R(δR), (2.13)

where δR =
(
CA−1θ

)⊤
CA−1θ.

Let Z be a random variable such that Z
∣∣∣R ∼ Poisson(δR/2). By (2.13), We have

E
[(

U⊤
(1)U(1)

)−1 ∣∣∣R] = E

E
[ (

U⊤
(1)U(1)

)−1 ∣∣∣R, Z

]∣∣∣R
 = E

E
[ (

χ2
R+2Z

)−1 ∣∣∣R, Z

]∣∣∣R
 .
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This gives

E
[(

U⊤
(1)U(1)

)−1 ∣∣∣R] = E
[

2−1Γ(R+2Z
2 − 1)

Γ(R+2Z
2 )

∣∣∣R] .

We have, 2−1Γ( R+2Z
2 −1)

Γ( R+2Z
2 ) = 1

R+2Z−2 . Therefore, since P(R > 2) = P(R ≥ 3) = 1 and

P (Z ≥ 0) = 1, we have, R + 2Z − 2 ≥ 1 with probability one and then,

E
[ (

U⊤
(1)U(1)

)−1 ∣∣∣R] = E
[

1
q + 2Z − 2

∣∣∣R] ≤ 1 almost surely.

Therefore, together with (2.11) and (2.12), we get

E
[ 1

F

]
≤ E

E
[
λ†

max

∣∣∣R]E

 1
U⊤

(1)U(1)

∣∣∣R

 ≤ E

[
E
[
λ†

max

∣∣∣R]] = E
[
λ†

max

]
≤ np.

Hence,

E
[ 1

F

]
≤ np < ∞.

Now, assume that E
[

1
F

]
< ∞. Further, from (2.10), we have

1
λ+

maxU⊤
(1)U(1)

= λ†
min

U⊤
(1)U(1)

≤ 1
F

,

where λ†
min is the smallest nonzero eigenvalue of A−1SA−1. Again, note that λ†

min depends

on S and U(1) depends on R and X. Since, S and X are independent, we get

E

 λ†
min

U⊤
(1)U(1)

 = E

E

 λ†
min

U⊤
(1)U(1)

∣∣∣R



= E

E
[
λ†

min

∣∣∣R]E

 1
U⊤

(1)U(1)

∣∣∣R

 ≤ E

[ 1
F

]
< ∞.
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Then,

P

E
[
λ†

min

∣∣∣R]E

 1
U⊤

(1)U(1)

∣∣∣R
 < ∞

 = 1. (2.14)

Since 0 < E
[
λ†

min

∣∣∣R] < ∞, we get

P

E

 1
U⊤

(1)U(1)

∣∣∣R
 < ∞

 = 1.

Therefore, by (2.13), we get

P
(

E
[
(χ2

R(δR))−1
∣∣∣R] < ∞

)
= 1.

Hence,

P (R > 2) = 1,

which completes the proof.

Part (i) of Proposition 2.1, and Part (vi) Proposition 2.3, are valid under the assumption

that E
[
|∇X .g(X, S)|

]
and E

[
|divvec(Ỹ )vec(Ỹ H)|

]
, respectively, exist. This motivates us to

explore the conditions under which these expectations are well-defined.

In the subsequent theorem, we establish that the condition P(R > 2) = 1 ensures the

existence of these expectations.

Theorem 2.1. Let X ∼ Np(θ, Σ),Y ∼ Nn×p(0, In ⊗ Σ) and for A the symmetric positive

definite square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable non-negative

function r : R −→ [0, C1] with bounded derivative |r′| ≤ C2. Define G = r2(F )
F 2 S+XX⊤S+S,

and g(X, S) = r(F )SS+X
F , where F = X⊤S+X and H = AGA−1. Let R = rank(S) and
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suppose that P(R > 2) = 1. Then

(i) E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞,

(ii) E
[
|∇X .g(X, S)|

]
< ∞.

Proof. (i) By Proposition 2.3 and triangle inequality we get

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ =
∣∣∣∣∣r2(F )

F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

∣∣∣∣∣
≤ r2(F )

F

∣∣∣n + p − 2tr(SS+) + 3
∣∣∣+ 4r(F )r′(F ).

This gives

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ ≤ C2

1
F

∣∣∣n + p − 2tr(SS+) + 3
∣∣∣+ 4C1C2.

Therefore, since tr(SS+) = min(n, p) almost surely, we have

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
≤C2

1

∣∣∣∣∣n + p − 2min(n, p) − 1
∣∣∣∣∣E
[ 1

F

]
+ 4C1C2. (2.15)

Further, since P(R > 2) = 1 then by Lemma 2.4, we get E
[

1
F

]
< ∞. Then,

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞.

(ii) Similarly to Part (i), by Part (iv) of Proposition 2.2, we get

E
[
|∇X · g(X, S)|

]
= E

∣∣∣∣∣2r′(F ) + r(F )
F

(tr(SS+) − 2)
∣∣∣∣∣
 ≤ 2C2 + C1|min(n, p) − 2|E

[ 1
F

]
< ∞,

which completes the proof.
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In the previous theorem, we demonstrated that P(R > 2) = 1 is a sufficient condition for

the existence of E
[
|divvec(Ỹ )vec(Ỹ H)|

]
. Now, in the following corollary, we explore the

conditions under which P(R > 2) = 1 is both necessary and sufficient for the existence of

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
.

Corollary 2.1. Let X ∼ Np(θ, Σ),Y ∼ Nn×p(0, In ⊗ Σ) and for A the symmetric positive

definite square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable positive function

r : R −→ [C∗, C1] with bounded derivative |r′| ≤ C2. Suppose that |p − n| > 1. Define G =
r2(F )

F 2 S+XX⊤S+S, where F = X⊤S+X and H = AGA−1. Then, E
[
|divvec(Ỹ )vec(Ỹ H)|

]
<

∞, if and only if P (R > 2) = 1.

Proof. If P(R > 2) = 1 then, by Theorem 2.1, we get

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞.

Now, assume that E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞. We have

divvec(Ỹ )vec(Ỹ H) =r2(F )
F

(
n + p − 2min(p, n) + 3

)
− 4r(F )r′(F ).

Therefore since n + p − 2min(p, n) = |p − n|, we get

divvec(Ỹ )vec(Ỹ H) ≥r2(F )
F

(
|p − n| − 1

)
− 4C1C2.

Therefore since |p − n| > 1, we get

r2(F )
F

≤ 1
|p − n| − 1

(
divvec(Ỹ )vec(Ỹ H) + 4C1C2

)
= 1

|p − n| − 1

(∣∣∣divvec(Ỹ )vec(Ỹ H) + 4C1C2
∣∣∣) .
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Then,

r2(F )
F

≤ 1
|p − n| − 1

(∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣+ 4C1C2

)
.

Therefore,

E
[

r2(F )
F

]
≤ 1

|p − n| − 1

(
E
[∣∣∣divvec(Ỹ )vec(Ỹ H)

∣∣∣]+ 4C1C2

)
< ∞.

Further, we have

(C∗)2

F
≤ r2(F )

F
.

Therefore,

(C∗)2E
[ 1

F

]
≤ E

[
r2(F )

F

]
< ∞,

which implies that

E
[ 1

F

]
< ∞.

Therefore, by Lemma 2.4, we get,

P(R > 2) = 1,

which completes the proof.

In the following example, we consider a positive function r such that E
[
|divvec(Ỹ )vec(Ỹ H)|

]
=

∞. This emphasizes the significance of the assumption regarding R > 2 with probability one,

where R = rank(S). In particular, we demonstrate that when P(R ≤ 2) > 0, it is possible

to have E
[

1
F

]
= ∞, rendering obsolete the Theorem 2 of Chételat and Wells (2012).
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Example 2. Let X ∼ N2


1

1

 , I2

 and Y =
[
U

...V
]

where U and V are independent

random variable distributed as N (0, 1) i.e. Y ∼ N1×2(0, 1 ⊗ I2). let r(x) = 1
1+e−x . Let

S+ = PD+P ⊤ be the spectral decomposition of S+ where D+ = diag(d1, 0). Since

F = X⊤S+X = X⊤PD+P ⊤X = (P ⊤X)⊤D+P ⊤X.

Therefore,

F

d1
= (P ⊤X)⊤

1 0

0 0

P ⊤X.

Note that d1 and P are functions of (U, V ) and note that P ⊤X
∣∣∣U, V ∼ N2

P ⊤

1

1

 , I2

.

Then,

X⊤S+X

d1

∣∣∣U, V ∼ χ2
1(δ0)

where δ0 =
[
1 1

]
P

1 0

0 0

P ⊤

1

1

 . Therefore,

E
[

d1
F

∣∣∣U, V

]
= E

[
d1

X⊤S+X

∣∣∣U, V

]
= E

[
(χ2

1(δ0))−1
∣∣∣U, V

]
= ∞,

almost surely. Then,

E
[ 1

F

∣∣∣U, V

]
= 1

d1
E
[

d1
F

∣∣∣U, V

]
= ∞,
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with probability one. Hence,

E
[ 1

F

]
= ∞.

Further, we have

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(n + p − 2min(n, p) + 3) − 4r(F )r′(F ),

where min(n, p) = 1. Therefore, we get

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(1 + 2 − 2 + 3) − 4r(F )r′(F ) = 4r2(F )
F

− 4r(F )r′(F ).

Then,

4r2(F )
F

= divvec(Ỹ )vec(Ỹ H) + 4r(F )r′(F ) =
∣∣∣divvec(Ỹ )vec(Ỹ H) + 4r(F )r′(F )

∣∣∣ .
Hence,

4r2(F )
F

≤
∣∣∣divvec(Ỹ )vec(Ỹ H)

∣∣∣+ 4r(F )r′(F ).

Since r(F ) and r′(F ) are bounded by 1 we get

4r2(F )
F

≤
∣∣∣divvec(Ỹ )vec(Ỹ H)

∣∣∣+ 4. (2.16)

We also have,

4r2(F )
F

= 4
F (1 + e−F )2 .
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Since 1 < 1 + e−F ≤ 2 thus 1 < (1 + e−F )2 ≤ 4. Therefore,

1
F

≤ 4
F (1 + e−F )2 .

Then, we get

E
[ 1

F

]
≤ E

[
4

F (1 + e−F )2

]
.

But, since E
[

1
F

]
= ∞, we get

E
[

4
F (1 + e−F )2

]
= ∞

Then from (2.16), we get

E
[∣∣∣divvec(Ỹ )vec(Ỹ H)

∣∣∣] = ∞.

Finally, we are now ready to present and substantiate the primary proposition that plays a

crucial role in establishing the main result of this chapter in Theorem 2.2.

Proposition 2.4. Let X ∼ Np(θ, Σ), Y ∼ Nn×p(0, In ⊗ Σ) and F = X⊤S+X where

S = Y ⊤Y . Let g(X, S) = r(F )SS+X
F , where r is a differentiable function. Let R = rank(S)

and suppose P(R > 2) = 1, then

(i) Eθ

[
g⊤(X, S)Σ−1(X − θ)

]
= Eθ

[
2r′(F ) + r(F )

F
(tr(SS+) − 2)

]
,

(ii) Eθ

[
g⊤(X, S)Σ−1g(X, S)

]
= Eθ

[
r2(F )

F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

F 2

]
.
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Proof. (i) By, Part (i) of Proposition 2.1, we have

Eθ[g⊤(X, S)Σ−1(X − θ)] = Eθ[∇X .g(X, S)],

and from, Part (iv) of Proposition 2.3, we have

∇X .g(X, S) = 2r′(F ) + r(F )
F

(tr(SS+) − 2).

This gives

Eθ

[
g⊤(X, S)Σ−1(X − θ)

]
= Eθ

[
2r′(F ) + r(F )

F
(tr(SS+) − 2)

]
.

(ii) Since P(R > 2) = 1, by Theorem 2.1, we get E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞. Therefore

from Part (vi) of Proposition 2.3, we have

Eθ

[
g⊤(X, S)Σ−1g(X, S)

]
= Eθ

[
divvec(Ỹ )vec(Ỹ H)

]
.

Further from Part (iii) of Proposition 2.3 we have

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

F 2 .

Hence

Eθ

[
g⊤(X, S)Σ−1g(X, S)

]
= Eθ

[
r2(F )

F

(
n + p − 2tr(SS+) + 3

)
− 4r(F )r′(F )

F 2

]
,

which completes the proof.

The upcoming theorem serves as the central finding in this chapter. Utilizing Proposition

2.4, we are ready to provide a high-dimensional Baranchik (1970) type estimator, for the

mean vector of a p-dimensional multivariate normal distribution. This result was initially
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introduced by Chételat and Wells (2012) in their Theorem 1. However, in Example 2, we

demonstrated that this result might not hold without an additional assumption on the

rank of the random matrix S. Hence, it is essential to integrate this assumption into the

statement of the theorem.

Theorem 2.2. Let X ∼ Np(θ, Σ),Y ∼ Nn×p(0, In ⊗ Σ) and S = Y ⊤Y . Let F = X⊤S+X,

δr(X, S) =
(

I − r(F )SS+

F

)
X, where r is a differentiable function, and δ0(X) = X. Suppose

that P(R > 2) = 1, where R = rank(S). Suppose that

(i) r satisfies 0 ≤ r ≤ 2(min(n, p) − 2)
n + p − 2min(n, p) + 3

(ii) r is non-decreasing

(iii) r′ is bounded

Then, under invariant quadratic loss, L(θ, δ) = (δ − θ)⊤Σ−1(δ − θ), δr dominates δ0.

Proof. Let g(X, S) = r(F )SS+X
F . Thus δr = X − g(X, S). The risk difference under the

quadratic loss between δr and δ0 is

∆θ =Eθ

[(
X − g(X, S) − θ)⊤

)
Σ−1 (X − g(X, S) − θ

)]
− Eθ

[
(X − θ)⊤ Σ−1 (X − θ)

]
= −2Eθ

[
g⊤(X, S)Σ−1(X − θ)

]
+ Eθ

[
g⊤(X, S)Σ−1g(X, S)

]
. (2.17)

From Proposition 2.4, we have

∆θ = Eθ

[
r2(F )

F

(
n + p − 2tr(SS+) + 3

)
− 2r(F )

F
(tr(SS+) − 2) − 4r′(F )(1 + r(F )

F 2 )
]
.

Since r is non-negative and non-decreasing, therefore −4r′(F )(1 + r(F )
F 2 ) ≤ 0. Under the
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condition (i) on r, we have

r(F ) ≤ 2(min(n, p) − 2)
n + p − 2min(n, p) + 3 .

Then,

r2(F )
F

(n + p − 2min(n, p) + 3) ≤ 2r(F )
F

(min(n, p) − 2).

Therefore, since tr(SS+) = min(n, p) almost surely, we get

E
[

r2(F )
F

(n + p − 2tr(SS+) + 3) − 2r(F )
F

(tr(SS+) − 2)
]

≤ 0.

Therefore,

∆θ ≤ 0, which completes the proof.



Chapter 3

The Case of Matrix Normal Mean

Estimation

In this chapter, we suppose that Z1, . . . , ZN are independent and identically distributed

random samples from Np×q(θ, Ψ⊗Iq) where Ψ represents the row covariance matrix and is an

unknown matrix. Then, Z = [Z1, . . . , ZN ]⊤ follows NNq×p(γθ⊤, INq ⊗ Ψ) where γ = e ⊗ Iq

and e = [1, . . . , 1]⊤ is an N -dimensional vector. Let X = Z̄ = 1
N

∑N
i=1 Zi. Therefore,

X ∼ Np×q(θ, Σ ⊗ Iq) where Σ = Ψ
N . Let us consider S = 1

N

∑N
i=1 (Zi − Z̄)(Zi − Z̄)⊤ as an

estimator of Σ and n = N −1. In Appendix A.1, We show that S can be written as S = Y ⊤Y ,

where Y is independent of X and follows a matrix normal distribution Y ∼ Nnq×p(0, Inq ⊗Σ).

This implies that S ∼ Wishartp(nq, Σ).

This chapter is divided into two main sections. In Section 3.1, we introduce crucial Lemmas

and propositions that play pivotal roles in proving the results outlined in Section 3.2. Section

3.2 focuses on essential results that form the basis for the main result of this chapter, as

presented in Theorem 3.3.

In Theorem 3.3, we extend the findings of Theorem 2.2, as discussed in Chapter 2. The

outcomes detailed in this chapter also serve as generalizations of the key results established

33
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in Chételat and Wells (2012). In particular, in Theorem 3.3, we establish that the Baranchik

(1970) type estimator

δr(X, S) =
(

I − r(tr(X⊤S+X))
tr(X⊤S+X) SS+

)
X,

outperforms the usual estimator δ0 = X under the invariant quadratic loss,

L(θ, δ) = tr
(
(δ − θ)⊤Σ−1(δ − θ)

)
,

when P(qR > 2) = 1, where R = rank(S). Once again, it is worth noting that the function r

in the above estimator represents a positive, bounded, and differentiable real-valued function.

3.1 Important Preliminary Results

In Section 3.1, we introduce several technical lemmas and propositions that play a pivotal

role in the development of results presented in Section 3.2. For the sake of maintaining the

simplicity and clarity of this thesis, most proofs have been relocated to the Appendix A.

Lemma 3.1. Let Y be an nq × p matrix and S = Y ⊤Y . Let X be a p × q matrix and

F = tr(X⊤S+X). Let A ∈ Mk×p and B ∈ Mp×h, it then follows that

(i)
(

∂S

∂Yαβ

)
kl

= δβkYαl + δβlYαk,

(ii)
(

A
∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + (AY ⊤)kαBβl,

(iii)
(

∂X⊤S+X

∂Yαβ

)
kk

= − 2(X⊤S+Y ⊤)kα(S+X)βk
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+ 2(X⊤S+S+Y ⊤)kα((I − SS+)X)βk,

(iv) ∂F

∂Yαβ
= −2(S+XX⊤S+Y ⊤)βα + 2((I − SS+)XX⊤S+S+Y ⊤)βα,

(v)
(

∂S+XXT SS+

∂Yαβ

)
kl

= −S+
kβ(Y S+XXT SS+)αl − (S+Y T )kα(S+XXT SS+)βl

+ (I − SS+)kβ(Y S+SXXT SS+)αl + (S+S+Y T )kα((I − SS+)XXT SS+)βl

+ (S+XXT )kβ(Y S+)αl + (S+XXT Y T )kαS+
βl − (S+XXT SS+)kβ(Y S+)αl

− (S+XXT SS+Y T )kαS+
βl + (S+XXT S+Y T )kα(I − SS+)βl.

Proof. The proof of this result is given in the Appendix A.4.

Lemma 3.2. Let Y be an nq × p matrix and S = Y ⊤Y . Let X be a p × q matrix,

F = tr(X⊤S+X), and G(X, S) = r2(F )
F 2 (S+XX⊤SS+), where r is a differentiable function.

Then

(i) ∂Gkl

∂Yαβ
=2r(F )r′(F )

F 2 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl − 2r2(F )

F 3 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl,

(ii)
∑

α,k,β

Yαk( ∂F

∂Yαβ
)(SS+XX⊤S+)βk = −2tr((X⊤S+X)2),

(iii)
∑

α,k,β

Yαk
∂

∂Yαβ
(SS+XX⊤S+)βk = F (p − 2tr(SS+) − 1),
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(iv)
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
= − 4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)

+ r2(F )
F

4tr
(
(X⊤S+X)2

)
F 2 + p − 2tr(SS+) − 1

 .

Proof. The proof of this result is given in the Appendix A.4.

Lemma 3.3. Let Y be an nq × p matrix and S = Y ⊤Y . Let X be a p × q matrix and

F = tr(X⊤S+X), and g(X, S) = r(F )
F (SS+X), where r is a differentiable function. Then

(i) ∂F

∂Xij
= 2(S+X)ij ,

(ii)
(

∂SS+X

∂Xij

)
kl

= (SS+)kiδlj ,

(iii) ∂gkl

∂Xij
= 2(Fr′(F ) − r(F ))

F 2 (S+X)ij(SS+X)kl + r(F )
F

(SS+)kiδlj ,

(iv)
∑
i,j

∂gij

∂Xij
= 2r′(F ) + r(F )

F
(qtr(SS+) − 2).

Proof. The proof of this result is given in the Appendix A.4.

The forthcoming proposition can be seen as an expansion of proposition 2.1. The proof for

this Proposition can be established by applying Corollary A.2 once again. In this chapter,

we investigate the existence of the expectation on the right-hand side of part (i) in Theorem

3.1 for a specific form of g(X, S).
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Proposition 3.1. Let X ∼ Np×q(θ, Σ ⊗ Iq). Let g(X, S) be a differentiable p × q matrix

function. Then

(i) Eθ

[
tr(g⊤(X, S)Σ−1(X − θ))

]
= Eθ

[
tr(∇Xg⊤(X, S))

]
,

provided that Eθ

[
|tr(∇Xg⊤(X, S))|

]
< ∞,

(ii) tr
(

∇Xg⊤(X, S)
)

=
∑
i,j

∂gij

∂Xij
.

Proof. (i) Let X̃ = A−1(X − θ) where A is a symmetric positive definite square root of Σ.

Thus X̃ ∼ Np×q(0, Ip ⊗ Iq). Therefore, Xij ∼ N (0, 1). Let h = A−1g(X, S). Then, we have

tr(g⊤(X, S)Σ−1(X − θ)) = tr(g⊤(X, S)A−1A−1(X − θ)) = tr(h⊤X̃) =
∑

i

(h⊤X̃)ii.

Then,

tr(g⊤(X, S)Σ−1(X − θ)) =
∑
i,j

h⊤
ijX̃ji. (3.1)

Therefore, by (3.1), we have

E
[
tr
(
g⊤(X, S)Σ−1(X − θ)

)]
= E

∑
i,j

h⊤
ijX̃ji

 =
∑
i,j

E
[
h⊤

ijX̃ji

]
=
∑
i,j

E
[
X̃jih

⊤
ij

]
.

Therefore, by Corollary A.2, we get

∑
i,j

E[X̃jih
⊤
ij ] =

∑
i,j

E
[

∂

∂X̃ji
h⊤

ij

]
=
∑
i,j

E
[

∂

∂X̃ji
hji

]
= E

[∑
i,j

∂

∂X̃ji
hji

]
.

Then,

∑
i,j

E[X̃jih
⊤
ij ] = E

[∑
i,j

∂

∂X̃ji
(A−1g(X, S))ji

]
= E

[∑
i,j

∂

∂X̃ji

∑
k

A−1
jk g(X, S)ki

]
.
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Hence,

∑
i,j

E[X̃jih
⊤
ij ] = E

[∑
i,j,k

A−1
jk

∂

∂X̃ji
g(X, S)ki

]
. (3.2)

Now, by applying the chain rule in (3.2), we have

E
[∑

i,j,k

A−1
jk

∂

∂X̃ji
g(X, S)ki

]
= E

[∑
i,j,k

A−1
jk

∑
l,α

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]

= E
[ ∑

i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]
(3.3)

Since X̃ = A−1(X − θ), we have

Xlα =
∑

t

AltX̃tα + θlα,

then,

∂Xlα

∂X̃ji
=
∑

t

Alt
∂X̃tα

∂X̃ji
=
∑

t

Altδtjδαi = Aljδαi. (3.4)

Therefore, by replacing (3.4) in (3.3), we get

E
[ ∑

i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]
= E

[ ∑
i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)kiAljδαi

]
,

and then,

E
[ ∑

i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]
= E

[∑
i,k,l

∂

∂Xli
g(X, S)ki

∑
j

AljA−1
jk

]

= E
[∑

i,k,l

∂

∂Xli
g(X, S)ki(AA−1)lk

]
.
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This gives

E
[ ∑

i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]
= E

[∑
i,k

∂

∂Xki
g(X, S)ki

]
= E

[∑
i,k

(∇X)kig
⊤(X, S)ik

]
,

and then,

E
[ ∑

i,j,k,l,α

A−1
jk

∂

∂Xlα
g(X, S)ki

∂Xlα

∂X̃ji

]
= E

[∑
k

(∇Xg⊤(X, S))kk

]
= E

[
tr(∇Xg⊤(X, S))

]
.

(ii) tr
(

∇Xg⊤(X, S)
)

=
∑

i

(∇Xg⊤)ii =
∑
i,j

(∇X)ijg⊤
ji =

∑
i,j

(∇X)ijgij =
∑
i,j

∂gij

∂Xij
,

which completes the proof.

In the following proposition, we build upon the ideas from Lemma 3 in the work by Chételat

and Wells (2012). Our approach refines and organizes their lemma, providing a detailed

breakdown of each step in the proof that leads to the end result stated in Lemma 3 of

Chételat and Wells (2012).

Proposition 3.2. Let X ∼ Np×q(θ, Σ ⊗ Iq) and Y ∼ Nnq×p(0, Inq ⊗ Σ). Let S = Y ⊤Y . For

A symmetric positive definite square root of Σ (i.e. A2 = Σ) define Ỹ = Y A−1, S̃ = Ỹ ⊤Ỹ

and H = AGA−1 where G(X, S) is a differentiable p × p matrix function. Then,

(i) tr(Σ−1SG) = tr(S̃H),

(ii) tr(S̃H) = vec(Ỹ ).vec(Ỹ H),
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(iii) E
[
vec(Ỹ ).vec(Ỹ H)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

provided that E
[
|divvec(Ỹ )vec( ˜Y H)|

]
< ∞.

(iv) ∇Ỹ .(Ỹ H) = divvec(Ỹ )vec(Ỹ H) = nqtr(G) + tr(Y ⊤(∇Y G⊤))

= nqtr(G) +
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.

Proof.

(i) tr(S̃H) = tr(A−1SA−1AGA−1) = tr(A−1SGA−1) = tr(A−1A−1SG) = tr(A−2SG).

Then,

tr(S̃H) = tr(Σ−1SG).

(ii) tr(S̃H) =
∑

i

(S̃H)ii =
∑
i,j

S̃ijHji =
∑
i,j

(Ỹ ⊤Ỹ )ijHji =
∑
i,j,k

Ỹ ⊤
ik ỸkjHji.

Then,

tr(S̃H) =
∑
i,j,k

ỸkiỸkjHji =
∑
i,k

Ỹki

∑
j

ỸkjHji =
∑
i,k

Ỹki(Ỹ H)ki = vec(Ỹ ) · vec(Ỹ H).

(iii) Since Y ∼ Nnq×p(0, Inq ⊗ Σ), we have Ỹ = Y A−1 ∼ Nnq×p(0, Inq ⊗ Ip).
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Then,

vec(Ỹ ) ∼ Nnpq(0, Inpq).

Therefore,

Ỹαi ∼ N (0, 1).

Also, we have

vec(Ỹ ).vec(Ỹ H) =
∑
α,i

Ỹαi(Ỹ H)αi =
∑
α,i

Ỹαi

∑
j

ỸαjHji =
∑
α,i,j

ỸαiỸαjHji.

Therefore, we have

E
[
vec(Ỹ ).vec(Ỹ H)

]
= E

∑
α,i,j

ỸαiỸαjHji)

 =
∑
α,i,j

E
[
ỸαiỸαjHji

]
=
∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
,

where gj(Ỹαi) = ỸαjHji.Therefore, by Corollary A.2, we get

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
=
∑
α,i,j

E
[

∂

∂Ỹαi
gj(Ỹαi)

]
= E

[ ∑
α,i,j

∂

∂Ỹαi
gj(Ỹαi)

]
= E

[ ∑
α,i,j

∂

∂Ỹαi
ỸαjHji

]
.

Then,

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
= E

[∑
α,i

∂

∂Ỹαi

∑
j

ỸαjHji

]
= E

[∑
α,i

∂

∂Ỹαi
(Ỹ H)αi

]
= E

[
∇Ỹ · (Ỹ H)

]
.

Hence,

∑
α,i,j

E
[
Ỹαigj(Ỹαi)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
.
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(iv) ∇Ỹ · (Ỹ H) = divvec(Ỹ )vec(Ỹ H) =
∑
α,i

∂

∂Ỹαi
(Ỹ H)αi =

∑
α,i

∂

∂Ỹαi

∑
j

ỸαjHji.

Then,

∇Ỹ .(Ỹ H) =
∑
α,i,j

∂

∂Ỹαi
(ỸαjHji) =

∑
α,i,j

(
( ∂

∂Ỹαi
Ỹαj)Hji + Ỹαj( ∂

∂Ỹαi
Hji)

)
.

Hence,

∇Ỹ .(Ỹ H) =
∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji +

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji). (3.5)

By applying the chain rule in the second term of (3.5), we get

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j

Ỹαj

∑
k,β

∂

∂Ykβ
Hji

∂Ykβ

∂Ỹαi
=

∑
α,i,j,k,β

Ỹαj
∂

∂Ykβ
Hji

∂(Ỹ A)kβ

∂Ỹαi
.

Then,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,k,β

Ỹαj
∂

∂Ykβ
Hji(

∂

∂Ỹαi

∑
l

ỸklAlβ) =
∑

α,i,j,k,β,l

Ỹαj
∂

∂Ykβ
Hji(

∂Ỹkl

∂Ỹαi
)Alβ.

Hence,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,k,β,l

Ỹαj
∂

∂Ykβ
Hji(δαkδil)Alβ =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
HjiAiβ.

This gives

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
(AGA−1)jiAiβ =

∑
α,i,j,β

Ỹαj
∂

∂Yαβ
(
∑
k,l

AjkGklA
−1
li )Aiβ,
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and then,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,i,j,β,k,l

ỸαjAjk
∂

∂Yαβ
GklA

−1
li Aiβ =

∑
α,β,k,l

(
∑

j

ỸαjAjk) ∂Gkl

∂Yαβ
(
∑

i

A−1
li Aiβ).

Hence,

∑
α,i,j

Ỹαj( ∂

∂Ỹαi
Hji) =

∑
α,β,k,l

(Ỹ A)αk
∂Gkl

∂Yαβ
(A−1A)lβ =

∑
α,β,k

Yαk
∂Gkβ

∂Yαβ
. (3.6)

Also, we have

∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji =

∑
α,i,j

δijHji =
∑
α,i

Hii =
∑

α

tr(H) = nqtr(H) = nqtr(AGA−1)

Then,

∑
α,i,j

( ∂

∂Ỹαi
Ỹαj)Hji = nqtr(A−1AG) = nqtr(G). (3.7)

Therefore, by (3.6) and (3.7), we get

divvec(Ỹ )vec(Ỹ H) = nqtr(G) +
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.

Further, we have

tr(Y ⊤(∇Y G⊤)) =
∑

k

(Y ⊤(∇Y G⊤))kk =
∑
k,α

Y ⊤
kα(∇Y G⊤)αk =

∑
k,α

Y ⊤
kα

∑
β

(∇Y )αβG⊤
βk.

Then,

tr(Y ⊤(∇Y G⊤)) =
∑

α,β,k

Y ⊤
kα

∂G⊤
βk

∂Yαβ
=
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
, (3.8)

which completes the proof.
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In Propositions 3.1 and Propositions 3.2, we considered matrices g and G in their general

forms. In the following proposition, we apply these general results to specific forms of

matrices g and G. This proposition combines and extends the ideas presented in Lemma

1 and Lemma 2 of Chételat and Wells (2012). Specifically, Parts (ii) and (iv) present

generalized versions of the results found in Lemma 1 and Lemma 2 of Chételat and Wells

(2012).

Proposition 3.3. Let Y be an nq × p matrix and S = Y ⊤Y . Let X be a p × q ma-

trix, F = tr(X⊤S+X) and r be a differentiable function. Let Ỹ = Y A−1, G(X, S) =
r2(F )

F 2 S+XX⊤S+S, g(X, S) = r(F )SS+X
F and H = AGA−1. Then, under the conditions of

Theorem 3.3, we have

(i) tr(G) = r2(F )
F

,

(ii) tr
(
Y ⊤∇Y G⊤

)
= −4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)
+ r2(F )

F

4tr
(
(X⊤S+X)2

)
F 2 + p − 2tr(SS+) − 1

 ,

(iii) divvec(Ỹ )vec(Ỹ H) = r2(F )
F

nq + p − 2tr(SS+) − 1 +
4tr

(
(X⊤S+X)2

)
F 2

− 4r(F )r′(F )
F 2 ,

(iv) tr(∇Xg(X, S)⊤) = 2r′(F ) + r(F )
F

(qtr(SS+) − 2),

(v) tr
(
g⊤(X, S)Σ−1g(X, S)

)
= tr

(
Σ−1SG

)
,
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(vi) Eθ

[
tr
(
g⊤(X, S)Σ−1g(X, S)

)]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

provided that E
[
|divvec(Ỹ )vec( ˜Y H)|

]
< ∞.

Proof.

(i) tr(G) = tr
(

r2(F )
F 2 S+XX⊤S+S

)
= r2(F )

F 2 tr(S+XX⊤S+S) = r2(F )
F 2 tr(X⊤S+SS+X).

Then,

tr(G) = r2(F )
F 2 tr(X⊤S+X) = r2(F )

F 2 F = r2(F )
F

.

(ii) From (3.8), we have

tr
(
Y ⊤(∇Y G⊤)

)
=
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
.

Therefore, by Part (iv) of Lemma 3.2, we get

tr
(
Y ⊤(∇Y G⊤)

)
= −4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)
+ r2(F )

F

4tr
(
(X⊤S+X)2

)
F 2 + p − 2tr(SS+) − 1

 .

(iii) By Part (i) and Part (ii) together with Part (iv) of Proposition 3.2, we get

divvec(Ỹ )vec(Ỹ H) = nqtr(G) + tr(Y ⊤∇Y G⊤) = nqr2(F )
F

− 4r(F )r′(F )
F 2 tr

(
(X⊤S+X)2

)
+ r2(F )

F

4tr
(
(X⊤S+X)2

)
F 2 + p − 2tr(SS+) − 1

 .
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Then,

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

nq + p − 2tr(SS+) − 1 +
4tr

(
(X⊤S+X)2

)
F 2

− 4r(F )r′(F )
F 2 .

(iv) From Part (ii) of Proposition 3.1, we get

tr
(

∇Xg⊤(X, S)
)

=
∑
i,j

∂gij

∂Xij
,

and by Part (iv) of Lemma 3.3, we have

∑
i,j

∂gij

∂Xij
= 2r′(F ) + r(F )

F
(qtr(SS+) − 2).

(v) tr
(
g⊤(X, S)Σ−1g(X, S)

)
= tr

(
Σ−1g(X, S)g⊤(X, S)

)
.

Then,

tr
(
g⊤(X, S)Σ−1g(X, S)

)
= tr

(
Σ−1 r2(F )

F 2 SS+XX⊤SS+
)

= tr
(
Σ−1SG

)
.

(vi) From Part (ii) to (v) we have

E
[
tr
(
g⊤(X, S)Σ−1g(X, S)

)]
= E

[
tr(Σ−1SG)

]
= E

[
tr(S̃H)

]
.

Therefore,

E
[
tr
(
g⊤(X, S)Σ−1g(X, S)

)]
= E

[
vec(Ỹ ).vec(Ỹ H)

]
= E

[
divvec(Ỹ )vec(Ỹ H)

]
,

which completes the proof.
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As previously mentioned, Parts (ii) and Part (iv) of Proposition 3.3 provide generalizations

of Chételat and Wells (2012)’s Lemma 1 and Lemma 2. Indeed in special case where q = 1,

we have F = tr(X⊤S+X) = X⊤S+X, and this yields the results established in Chételat

and Wells (2012) (Lemma 1 and Lemma 2).

3.2 Main results

In this section, we show the main theorem of this thesis, as stated in Theorem 3.3. We

demonstrate that the proposed Baranchik (1970) type estimator, outperforms the classical

maximum likelihood estimator (MLE) for the mean matrix in the context of matrix normal

distribution.

The following Lemma establishes an intriguing connection between the existence of E
[

1
F

]
and

the rank of the matrix S, denoted as R. It highlights the significance of having P(qR > 2) = 1.

Without this condition, the result of Theorem 3.1 does not hold.

Lemma 3.4. Let X ∼ Np×q(θ, Σ ⊗ Iq) and Y ∼ Nnq×p(0, Inq ⊗ Σ). Let F = tr(X⊤S+X)

where S = Y ⊤Y and R = rank(S). Then, E
[

1
F

]
< ∞ if and only if P(qR > 2) = 1.

Proof. Assume that P (qR > 2) = 1. Let U = A−1X. Then, we have

X⊤S+X = X⊤A−1AS+AA−1X = (A−1X)⊤AS+A(A−1X) = U⊤AS+AU. (3.9)

Since X ∼ Np×q(θ, Σ ⊗ Iq), thus U = A−1X ∼ Np×q(A−1θ, Ip ⊗ Iq). Therefore,

vec(U) ∼ Npq(vec(A−1θ), Ipq). (3.10)

Let C be R × p-matrix of the form C = [IR
...0R×(p−R)] and let U(1) = CU . We have

vec(U(1)) = vec(CU) = (Iq ⊗ C)vec(U).
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Then,

vec(U(1))
∣∣∣R ∼ NqR((Iq ⊗ C)vec(A−1θ), (Iq ⊗ C)(Iq ⊗ C)⊤).

Therefore,

vec(U(1))
∣∣∣R ∼ NqR((Iq ⊗ C)vec(A−1θ), IqR). (3.11)

Let λ+
min and λ+

max be the smallest and biggest nonzero eigenvalues of AS+A respectively.

Since AS+A is semi-positive definite, we have

λ+
minU⊤

(1)U(1) ≤ U⊤AS+AU ≤ λ+
maxU⊤

(1)U(1). (3.12)

Therefore, together with (3.9), we get

1
F

≤ 1
λ+

mintr(U⊤
(1)U(1))

= λ†
max

tr(U⊤
(1)U(1))

= λ†
max

vec⊤(U(1))vec(U(1))
, (3.13)

where λ†
max is the biggest nonzero eigenvalue of (AS+A)+ = A−1SA−1. Note that λ†

max

depends on S and U(1) depends on R and X. Since, S and X are independent, we get

E
[

λ†
max

vec⊤(U(1))vec(U(1))

]
= E

E
[

λ†
max

vec⊤(U(1))vec(U(1))

∣∣∣R]


= E

E
[
λ†

max

∣∣∣R]E
[

1
vec⊤(U(1))vec(U(1))

∣∣∣R]
 .

Further, we have

λ†
max ≤ tr(A−1SA−1) = tr(A−1Y ⊤Y A−1) = tr((Y A−1)⊤Y A−1) = vec⊤(Y A−1)vec(Y A−1),
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where vec(Y A−1) ∼ Nnpq(0, Ip ⊗ Inq). Therefore, we get

E[λ†
max] ≤ E[vec⊤(Y A−1)vec(Y A−1)] = tr(Ip ⊗ Inq) = tr(Inpq) = npq.

Hence

E[λ†
max] ≤ npq. (3.14)

Since vec(U(1))
∣∣∣R ∼ NqR((Iq ⊗ C)vec(A−1θ), IqR), we get

vec⊤(U(1))vec(U(1))
∣∣∣R ∼ χ2

qR(δR), (3.15)

where δR =
(
(Iq ⊗ C)vec(A−1θ)

)⊤ (
(Iq ⊗ C)vec(A−1θ)

)
.

Let Z be a random variable such that Z
∣∣∣R ∼ Poisson(δR/2). By (3.15), we have

E
[ (

vec⊤(U(1))vec(U(1))
)−1 ∣∣∣R] = E

[
E
[ (

vec⊤(U(1))vec(U(1))
)−1 ∣∣∣R, Z

]∣∣∣R]

= E
[
E
[ (

χ2
qR+2Z

)−1 ∣∣∣R, Z

]∣∣∣R]

= E

2−1Γ( qR+2Z
2 − 1)

Γ( qR+2Z
2 )

∣∣∣R
 .

We have 2−1Γ( qR+2Z
2 −1)

Γ( qR+2Z
2 )

= 1
qR+2Z−2 . Therefore, since P(qR > 2) = P(qR ≥ 3) = 1 and

P (Z ≥ 0) = 1, we have qR + 2Z − 2 ≥ 1 with probability one, and then,

E
[ (

vec⊤(U(1))vec(U(1))
)−1 ∣∣∣R] = E

[
1

Rq + 2Z − 2

∣∣∣R] ≤ 1 almost surely.

Therefore, together with (3.13) and (3.14), we get

E
[ 1

F

]
≤ E

E
[
λ†

max

∣∣∣R]E
[

1
vec⊤(U(1))vec(U(1))

∣∣∣R]
 ≤ E

[
E
[
λ†

max

∣∣∣R]] = E
[
λ†

max

]
≤ npq.
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Hence,

E
[ 1

F

]
≤ npq < ∞.

Now, assume that E[ 1
F ] < ∞. Further, from (3.12), we have

1
λ+

maxvec⊤(U(1))vec(U(1))
= λ†

min

vec⊤(U(1))vec(U(1))
≤ 1

F
,

where λ†
min is the smallest nonzero eigenvalue of A−1SA−1. Again note that λ†

min depends

on S and U(1) depends on R and X. Since, S and X are independent, we get

E

 λ†
min

vec⊤(U(1))vec(U(1))

 = E

E

 λ†
min

vec⊤(U(1))vec(U(1))

∣∣∣R

 .

This gives

E

 λ†
min

vec⊤(U(1))vec(U(1))

 = E

E
[
λ†

min

∣∣∣R]E
[

1
vec⊤(U(1))vec(U(1))

∣∣∣R]
 ≤ E[ 1

F
] < ∞.

Then,

P

E
[
λ†

min

∣∣∣R]E
[

1
vec⊤(U(1))vec(U(1))

∣∣∣R] < ∞

 = 1. (3.16)

Since 0 < E
[
λ†

min

∣∣∣R] < ∞, we get

P

E
[

1
vec⊤(U(1))vec(U(1))

∣∣∣R] < ∞

 = 1.

Therefore, by (3.15), we get

P
(

E
[
(χ2

qR(δR))−1
∣∣∣R] < ∞

)
= 1,
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This implies that

P (qR > 2) = 1,

which completes the proof.

In Part (i) of Proposition 3.1, and Part (vi) of Proposition 3.3, we suppose that the quantities

E
[
|tr(∇Xg(X, S)⊤)|

]
and E

[
|divvec(Ỹ )vec(Ỹ H)|

]
exist. Now, in the following theorem, we

give the conditions under which these expectations are well-defined.

Theorem 3.1. Let X ∼ Np×q(θ, Σ ⊗ Iq),Y ∼ Nnq×p(0, Inq ⊗ Σ) and for A the symmetric

positive definite square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable

non-negative function r : R −→ [0, C1] with bounded derivative |r′| ≤ C2. Define

G(X, S) = r2(F )
F 2 S+XX⊤S+S and g(X, S) = r(F )SS+X

F
,

where F = tr(X⊤S+X) and H = AGA−1. Let R = rank(S) and suppose that P(qR > 2) = 1.

Then

(i) E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞,

(ii) E
[
|tr(∇Xg(X, S)⊤)|

]
< ∞.

Proof. (i) By Proposition 3.3, we get

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ =

∣∣∣∣∣r2(F )
F

(
nq + p − 2tr(SS+) − 1 +

4tr
(
(X⊤S+X)2

)
F 2

)

− 4r(F )r′(F )
F 2 tr

(
(X⊤S+X)2

) ∣∣∣∣∣.
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Then, by triangle inequality, we have

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ ≤r2(F )

F

∣∣∣∣∣∣∣nq + p − 2tr(SS+) − 1 +
4tr

(
(X⊤S+X)2

)
F 2

∣∣∣∣∣∣∣
+ 4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)
.

Hence,

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ ≤C2

1
F

∣∣∣∣∣∣∣nq + p − 2tr(SS+) − 1 +
4tr

(
(X⊤S+X)2

)
F 2

∣∣∣∣∣∣∣
+ 4C1C2

F 2 tr
(
(X⊤S+X)2

)
,

and then,

∣∣∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣∣∣ ≤ C2

1
F

∣∣∣nq + p − 2tr(SS+) − 1
∣∣∣+ 4C2

1 tr
(
(X⊤S+X)2

)
F 3

+ 4C1C2
F 2 tr

(
(X⊤S+X)2

)
.

Therefore, since tr(SS+) = min(nq, p) almost surely, we have

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
≤C2

1 |nq + p − 2min(nq, p) − 1|E
[ 1

F

]
+ 4C2

1E

tr
(
(X⊤S+X)2

)
F 3


+ 4C1C2E

tr
(
(X⊤S+X)2

)
F 2

 . (3.17)

Let di’s be the eigenvalues of X⊤S+X. Since X⊤S+X is semi-positive definite, we have

tr
(
(X⊤S+X)2

)
=
∑

i

d2
i ≤ (

∑
i

di)2 = tr2
(
X⊤S+X

)
= F 2.
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Then,
tr
(
(X⊤S+X)2

)
F 2 ≤ 1. (3.18)

Therefore,

E

tr
(
(X⊤S+X)2

)
F 2

 ≤ 1, (3.19)

and then

tr
(
(X⊤S+X)2

)
F 3 =

tr
(
(X⊤S+X)2

)
F 2

1
F

≤ 1
F

.

Therefore,

E

tr
(
(X⊤S+X)2

)
F 3

 ≤ E
[ 1

F

]
. (3.20)

Then, by (3.19) and (3.20) together with (3.17), we get

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
≤ C2

1
∣∣nq + p − 2min(nq, p) − 1

∣∣E [ 1
F

]
+ 4C2

1E
[ 1

F

]
+ 4C1C2.

(3.21)

Further, since P(qR > 2) = 1, by Lemma 3.4, we get E
[

1
F

]
< ∞.

(ii) Similarly to Part (i) , by Part (iv) of Proposition 3.3, we get

E
[
|tr(∇Xg(X, S)⊤)|

]
= E

∣∣∣∣∣2r′(F ) + r(F )
F

(qtr(SS+) − 2)
∣∣∣∣∣


≤ 2C2 + C1|qmin(nq, p) − 2|E
[ 1

F

]
< ∞,

which completes the proof.

The following corollary demonstrates that if the number of columns of X, denoted as q,

is greater than or equal to 3, then the result stated in Theorem 3.1 can be automatically

derived.
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Corollary 3.1. Let X ∼ Np×q(θ, Σ ⊗ Iq),Y ∼ Nnq×p(0, Inq ⊗ Σ) and for A the symmetric

positive definite square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable

non-negative function r : R −→ [0, C1] with bounded derivative |r′| ≤ C2. Define

G(X, S) = r2(F )
F 2 S+XX⊤S+S, where F = tr(X⊤S+X), and H = AGA−1.

If q ≥ 3, then, for all n and p

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞.

Proof. Since q ≥ 3 and R ≥ 1, we have qR > 2. Therefore, P(qR > 2) = 1. Then, by

Theorem 3.1, we get

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞,

which completes the proof.

The subsequent corollary shows that under some conditions, P(qR > 2) = 1 becomes both

necessary and sufficient for the existence of E
[
|divvec(Ỹ )vec(Ỹ H)|

]
. In essence, this corollary

generalizes the findings of Corollary 2.1, where similar results were derived in the context of

p-dimensional normal distribution.

Corollary 3.2. Let X ∼ Np×q(θ, Σ ⊗ Iq),Y ∼ Nnq×p(0, Inq ⊗ Σ) and for A the symmetric

positive definite square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable positive

function r : R −→ [C∗, C1] with bounded derivative |r′| ≤ C2. Suppose that |p − nq| > 1.

Define G(X, S) = r2(F )
F 2 S+XX⊤S+S, where F = tr(X⊤S+X) and H = AGA−1. Then

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞

if and only if P(qR > 2) = 1.
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Proof. If P(qR > 2) = 1, then by Theorem 3.1, we get

E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞.

Now, assume that E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞. We have

divvec(Ỹ )vec(Ỹ H) =r2(F )
F

nq + p − 2min(p, nq) − 1 +
4tr

(
(X⊤S+X)2

)
F 2


− 4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)
.

Therefore, since 0 ≤ tr((X⊤S+X)2)
F 2 ≤ 1 and nq + p − 2min(p, nq) = |p − nq|, we get

divvec(Ỹ )vec(Ỹ H) ≥r2(F )
F

(
|p − nq| − 1

)
− 4C1C2.

Therefore, since |p − nq| > 1 , we get

r2(F )
F

≤ 1
|p − nq| − 1

(
divvec(Ỹ )vec(Ỹ H) + 4C1C2

)
= 1

|p − nq| − 1

(∣∣∣divvec(Ỹ )vec(Ỹ H) + 4C1C2
∣∣∣)

≤ 1
|p − nq| − 1

(∣∣∣divvec(Ỹ )vec(Ỹ H)
∣∣∣+ 4C1C2

)
.

Therefore,

E
[

r2(F )
F

]
≤ 1

|p − nq| − 1

(
E
[∣∣∣divvec(Ỹ )vec(Ỹ H)

∣∣∣]+ 4C1C2

)
< ∞.

Further, we have

(C∗)2

F
≤ r2(F )

F
⇒ (C∗)2E

[ 1
F

]
≤ E

[
r2(F )

F

]
< ∞,
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which implies that

E
[ 1

F

]
< ∞,

which completes the proof.

Now, we introduce the main results of this chapter, crucial in proving Theorem 3.3, where

we establish that the proposed estimator, δr, outperforms the MLE, X. These results give a

generalized version of Proposition 2.4. Specifically, by setting q = 1, F = tr(X⊤S+X) =

X⊤S+X. This leads to the results presented in Proposition 2.4.

Theorem 3.2. Let X ∼ Np×q(θ, Σ⊗Iq), Y ∼ Nnq×p(0, Inq ⊗Σ) and F = tr(X⊤S+X) where

S = Y ⊤Y . Let g(X, S) = r(F )SS+X
F , where r is a differentiable function. Let R = rank(S)

and suppose that P(qR > 2) = 1, then

(i) Eθ

[
tr
(
g⊤(X, S)Σ−1(X − θ)

)]
= Eθ

[
2r′(F ) + r(F )

F
(qtr(SS+) − 2)

]
,

(ii) Eθ

[
tr
(
g⊤(X, S)Σ−1g(X, S)

)]

= Eθ

r2(F )
F

(
nq + p − 2tr(SS+) − 1 + 4tr((X⊤S+X)2)

F 2

)
− 4r(F )r′(F )

F 2

 .

Proof. (i) From Part (i) of Proposition 3.1, we have

Eθ[tr(g⊤(X, S)Σ−1(X − θ))] = Eθ[tr(∇Xg⊤(X, S))],

and from Part (iv) of Proposition 3.3, we have

tr(∇Xg⊤(X, S)) = 2r′(F ) + r(F )
F

(qtr(SS+) − 2),
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then

Eθ

[
tr
(
g⊤(X, S)Σ−1(X − θ)

)]
= Eθ

[
2r′(F ) + r(F )

F
(qtr(SS+) − 2)

]
.

(ii) Since P(qR > 2) = 1, by Theorem 3.1, we get E
[
|divvec(Ỹ )vec(Ỹ H)|

]
< ∞. Therefore,

from Part (vi) of Proposition 3.3, we have

Eθ

[
tr
(
g⊤(X, S)Σ−1g(X, S)

) ]
= Eθ

[
divvec(Ỹ )vec(Ỹ H)

]
.

Further from Part (iii) of Proposition 3.3, we have

divvec(Ỹ )vec(Ỹ H) = r2(F )
F

(
nq + p − 2tr(SS+) − 1 + 4tr((X⊤S+X)2)

F 2

)
− 4r(F )r′(F )

F 2 .

Hence

Eθ

[
tr
(

g⊤(X, S)Σ−1g(X, S)
)]

= Eθ

[
r2(F )

F

(
nq + p − 2tr(SS+) − 1 + 4tr((X⊤S+X)2)

F 2

)
− 4r(F )r′(F )

F 2

]
,

which completes the proof.

We are now prepared to present the central finding of this thesis. In Theorem 3.3, we establish

that under the invariant quadratic loss, the proposed Baranchik (1970) type estimator for

the mean matrix of a matrix normal distribution with independent columns and unknown

row covariance outperforms the maximum likelihood estimator. The proof of this theorem

relies heavily on Theorem 3.2. Notably, this theorem extends the primary result of Chételat

and Wells (2012) and Theorem 2.2 in Chapter 2 to the case of matrix normal distribution.
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Theorem 3.3. Let X ∼ Np×q(θ, Σ ⊗ Iq),Y ∼ Nnq×p(0, Inq ⊗ Σ) and S = Y ⊤Y . Let

F = tr(X⊤S+X), δr(X, S) =
(

I − r(F )SS+

F

)
X, where r is a differentiable function, and

δ0(X) = X. Let R = rank(S). Suppose that P(qR > 2) = 1, and suppose that

(i) r satisfies 0 ≤ r ≤ 2(q.min(nq, p) − 2)
nq + p − 2min(nq, p) + 3

(ii) r is non-decreasing

(iii) r′ is bounded

Then, under invariant quadratic loss L(θ, δ) = tr
(
(δ − θ)⊤Σ−1(δ − θ)

)
, δr dominates δ0.

Proof. Let g(X, S) = r(F )SS+X
F . Therefore, δr = X − g(X, S). The risk difference under the

quadratic loss between δr and δ0 is

∆θ =Eθ

[
tr
((

X − g(X, S) − θ)⊤
)

Σ−1 (X − g(X, S) − θ
))]

− Eθ

[
tr
(
(X − θ)⊤ Σ−1 (X − θ)

)]
= −2Eθ

[
tr
(
g⊤(X, S)Σ−1(X − θ)

)]
+ Eθ

[
tr
(
g⊤(X, S)Σ−1g(X, S)

)]
. (3.22)

From Theorem 3.2 we have

∆θ = Eθ

[
r2(F )

F

(
nq + p − 2tr(SS+) − 1 + 4tr((X⊤S+X)2)

F 2

)
− 2r(F )

F
(qtr(SS+) − 2)

− 4r′(F )(1 + r(F )
F 2 )

]
.

Since r is non-negative and non-decreasing, −4r′(F )(1 + r(F )
F 2 ) ≤ 0. Further, since

tr((X⊤S+X)2)
F 2 ≤ 1 we have

r2(F )
F

(nq + p − 2tr(SS+) − 1 + 4tr((X⊤S+X)2)
F 2 )

≤ r2(F )
F

(nq + p − 2tr(SS+) + 3). (3.23)
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Under the condition (i) on r, we have

r(F ) ≤ 2(qmin(nq, p) − 2)
nq + p − 2min(nq, p) + 3 ,

then,

r2(F )
F

(nq + p − 2min(nq, p) + 3) ≤ 2r(F )
F

(qmin(nq, p) − 2).

Therefore, by (3.23) and since tr(SS+) = min(nq, p) almost surely, we get

E
[

r2(F )
F

(nq + p − 2tr(SS+) − 1 + 4tr((XT S+X)2)
F 2 ) − 2r(F )

F
(qtr(SS+) − 2)

]
≤ 0.

Hence, ∆θ ≤ 0, which completes the proof.



Chapter 4

Numerical study

In Chapter 2 and Chapter 3, we illustrated that under certain conditions outlined in

Theorem 2.2 and Theorem 3.3, the proposed δr estimator outperforms the Maximum

Likelihood Estimator (MLE) under the invariant quadratic loss function. This significant

finding motivates us to carry out some simulations in order to conduct a comparative analysis

of the two estimators.

Namely, in this chapter, we conduct a comprehensive simulation study to highlight the risk

dominance of the proposed estimator over the maximum likelihood estimator (MLE). We

illustrate that, according to the conditions outlined in Theorem 3.3, the proposed estimator

outperforms the MLE in high-dimensional settings for specific functions of r. The R code

for this simulation is given in Appendix B. In this simulation, we consider F = tr(X⊤S+X),

r = 1
1+e−F , and the proposed estimator is δr = (I − r(F )

F SS+)X. For the sake of simplicity,

we assume that Σ = Ip. We generate samples for various values of p(24, 32, 56 and 104)

along with 11 different matrix θ configurations for q = 3 fixed. For each value of p, we

explore four distinct sample sizes: n = p
8 , p

4 , p − 1 and 2p. This comprehensive approach

allows us to investigate the impact of different p, n and ||θ|| combinations on the results of

the simulation.

The Figure 4.1 gives the simulation results. One can see that the simulation study supports

60
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the theoretical findings. As expected, the risk difference between the suggested estimator δr

and the classical MLE δ0 = X is not positive. This leads to the dominance of δr over δ0.

Furthermore, as presented in Figure 4.1, a consistent pattern becomes evident across all

four cases. The risk difference between the two estimators diminishes as the norm of the

mean matrix, ||θ||, increases. This intriguing observation serves as a compelling incentive

for potential future research. Further, exploring how the mean matrix θ is related to the

difference in risk between these estimators under the invariant quadratic loss opens up an

interesting path for further investigation.
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Figure 4.1: The risk difference between the proposed estimator δr and the MLE



Chapter 5

Conclusion

In this thesis, we demonstrated the risk dominance of our Baranchik (1970) type estimator

over the classical MLE in high-dimensional data, where the number of features surpasses the

number of observations, under the invariant quadratic loss. Additionally, thanks to some

explorations of the estimator’s rank of the unknown row covariance matrix, we established

a new methodology highlighting specific conditions crucial for this dominance. Moreover,

this innovative approach allowed us to revise Theorem 2 of Chételat and Wells (2012).

As a direction for future research, we could aim to discover a function r that establishes

dominance of the proposed estimator δr over the high-dimensional James-Stein estimator,

δJS(X, S) = (I − c
F SS+)X, for any constant c. Moreover, it would be interesting to explore

whether it is possible to relax the bounds discussed in Theorem 3.3. This gives us greater

flexibility to select the function r, while maintaining the dominance of δr over δ0.
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Appendix A

Some Technical Proofs

A.1 Distribution of Sample Covariance

Theorem A.1. Let Z = [Z1, . . . , ZN ]⊤ follows NN×p(eθ⊤, IN ⊗ Ψ) where Z1, . . . , ZN are

independent and identically distributed random samples from Np(θ, Ψ) and e = [1, . . . , 1]⊤ is

an N-dimensional vector. Let X = Z̄ = 1
N

∑N
i=1 Zi and

S = 1
N

N∑
i=1

(Zi − Z̄)(Zi − Z̄)⊤.

Let n = N − 1 and Σ = Ψ
N . Then,

(i) S is independent of X and can be rewritten as S = Y ⊤Y where Y ∼ Nn×p(0, In ⊗ Σ),

(ii) X ∼ Np(θ, Σ) and S ∼ Wishartp(n, Σ).

Proof. (i) Let Q =
∑N

i=1 (Zi − X)(Zi − X)⊤. Let U = ΓZ where Γ is an N ×N orthogonal

matrix with a last row N− 1
2 e⊤. Since Γ is orthogonal, the Jacobian of transformation is

64
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J(Z → U) = |det(Γ)p| = 1. Furthermore, U can be partitioned as

 V

W ⊤

 where V is an

n × p matrix and W = N
1
2 Z̄ is a p-dimensional vector. Then,

Z⊤Z = (Γ⊤U)⊤Γ⊤U = U⊤ΓΓ⊤U = U⊤U = V ⊤V + WW ⊤. (A.1)

Therefore, by (A.1), we get

Q =
N∑

i=1
(Zi − Z̄)(Zi − Z̄)⊤ = Z⊤Z − NZ̄Z̄⊤ = V ⊤V + WW ⊤ − NZ̄Z̄⊤.

Since WW ⊤ = NZ̄Z̄⊤, we get

Q = V ⊤V + NZ̄Z̄⊤ − NZ̄Z̄⊤ = V ⊤V. (A.2)

We also have,

(Z − eθ⊤)⊤(Z − eθ⊤) = Z⊤Z − Z⊤eθ⊤ − θe⊤Z + Nθθ⊤

= V ⊤V + WW ⊤ − Z⊤eθ⊤ − (Z⊤eθ⊤)⊤ + Nθθ⊤. (A.3)

Since the first n rows of Γ are orthogonal to the N -dimensional vector e, we get

Z⊤eθ⊤ = U⊤Γeθ⊤ = [V ⊤...W ][0 . . . 0N
1
2 ]⊤θ⊤ = N

1
2 Wθ⊤. (A.4)

Therefore, By using A.4 in A.3, we get

(Z − eθ⊤)⊤(Z − eθ⊤) = v⊤v + (W − N
1
2 θ)(W − N

1
2 θ)⊤. (A.5)

The probability density function (pdf) of Z ∼ NN×p(eθ⊤, IN ⊗ Ψ) is given by

fZ(z) = (2π)− Np
2 (det(Ψ))− N

2 etr
[
−1

2Ψ−1(z − eθ⊤)⊤(z − eθ⊤)
]

. (A.6)
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Therefore, by A.5, the joint pdf of (V, W ) can be written as

f(V,W )(v, w) = (2π)− (n+1)p
2 (det(Ψ))− n+1

2 etr
[
−1

2Ψ−1
(
v⊤v + (w − N

1
2 θ)(w − N

1
2 θ)⊤

)]
.

Since

tr
(

Ψ−1(w − N
1
2 θ)(w − N

1
2 θ)⊤

)
= tr

(
(w − N

1
2 θ)⊤Ψ−1(w − N

1
2 θ)
)

= (w − N
1
2 θ)⊤Ψ−1(w − N

1
2 θ),

then,

f(V,W )(v, w) = (2π)− np
2 (det(Ψ))− n

2 etr
[

− 1
2Ψ−1v⊤v

]
(2π)− p

2 (det(Ψ))− 1
2

exp
(

− 1
2(w − N

1
2 θ)⊤Ψ−1(w − N

1
2 θ)
)

.

(A.7)

Therefore, by A.7, we get V ∼ Nn×p(0, In ⊗ Ψ) independent of W ∼ Np(N
1
2 θ, Ψ).

Let Y = N− 1
2 V . Then, S = N−1Q = N−1V ⊤V = Y ⊤Y and Y ∼ Nn×p(0, In ⊗ Σ).

(ii) Since Y ∼ Nn×p(0, In ⊗ Σ), by the definition of wishart distribution we get,

S = Y ⊤Y ∼ Wishartp(n, Σ).

We also have X = Z̄ = N− 1
2 W ∼ Np(θ, Σ), which completes the proof.
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Theorem A.2. Let Z = [Z1, . . . , ZN ]⊤ follows NNq×p(γθ⊤, INq ⊗ Ψ) where Z1, . . . , ZN are

independent and identically distributed random samples from Np×q(θ, Ψ ⊗ Iq), γ = e ⊗ Iq

and e = [1, . . . , 1]⊤ is an N-dimensional vector. Let X = Z̄ = 1
N

∑N
i=1 Zi and

S = 1
N

N∑
i=1

(Zi − Z̄)(Zi − Z̄)⊤.

Let n = N − 1 and Σ = Ψ
N . Then,

(i) S is independent of X and can be rewritten as S = Y ⊤Y where Y ∼ Nnq×p(0, Inq ⊗ Σ),

(ii) X ∼ Np×q(θ, Σ ⊗ Iq) and S ∼ Wishartp(nq, Σ).

Proof. (i) Let U = (Γ ⊗ Iq)Z where Γ is an N × N orthogonal matrix with a last row

N− 1
2 e⊤. The Jacobian of transformation is

J(Z → U) = |det
(
Γ ⊗ Iq

)p | =
∣∣∣∣∣
(

detN (Γ)detq(Iq)
)p∣∣∣∣∣ = 1.

U can be partitioned as

 V

W ⊤

 where V is an nq × p matrix and W is a p × q matrix.

Then,

Z⊤Z =
(
(Γ ⊗ Iq)−1U

)⊤
(Γ ⊗ Iq)−1U = U⊤(Γ−1 ⊗ Iq)⊤(Γ−1 ⊗ Iq)U

= U⊤(Γ ⊗ Iq)(Γ−1 ⊗ Iq)U.

Therefore,

Z⊤Z = U⊤
(
(ΓΓ−1) ⊗ (IqIq)

)
U = U⊤ (IN ⊗ Iq

)
U = U⊤INqU = U⊤U. (A.8)
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We also have,

U⊤U = V ⊤V + WW ⊤. (A.9)

Hence, by A.8 and A.9, we get

Q =
N∑

i=1
(Zi − Z̄)(Zi − Z̄)⊤ = Z⊤Z − NZ̄Z̄⊤ = V ⊤V + WW ⊤ − NZ̄Z̄⊤. (A.10)

We also have,

W ⊤ = (N
1
2 e⊤ ⊗ Iq)Z = N− 1

2 [Iq . . . Iq]Z = N− 1
2

N∑
i=1

Z⊤
i = N

1
2 Z̄⊤. (A.11)

Therefore, by A.10 and A.11, we get

Q = V ⊤V. (A.12)

The probability density function (pdf) of Z ∼ NNq×p(γθ⊤, INq ⊗ Ψ) is given by

fZ(z) = (2π)− Nqp
2 (det(Ψ))− Nq

2 etr
[
−1

2Ψ−1(z − γθ⊤)⊤(z − γθ⊤)
]

. (A.13)

We also have,

Z⊤γθ⊤ = U⊤(Γ ⊗ Iq)(e ⊗ Iq)θ⊤ = U⊤ ((Γe) ⊗ (IqIq)
)

θ⊤.

Since the first n rows of Γ is orthogonal to e, we get

Z⊤γθ⊤ = U⊤([0 . . . 0N
1
2 ]⊤ ⊗ Iq)θ⊤ = [V ⊤...W ][0q . . . 0qN

1
2 Iq]⊤θ⊤ = N

1
2 Wθ⊤, (A.14)

where 0q is q × q square matrix of zeros.
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We also have,

γ⊤γ = (e ⊗ Iq)⊤(e ⊗ Iq) = (e⊤ ⊗ Iq)(e ⊗ Iq) = (e⊤e) ⊗ (IqIq) = N ⊗ Iq = NIq.

Therefore,

(Z − γθ⊤)⊤(Z − γθ⊤) = Z⊤Z − Z⊤γθ⊤ − (Z⊤γθ⊤)⊤ + Nθθ⊤.

By using A.8, A.9 and A.14, we get

(Z − γθ⊤)⊤(Z − γθ⊤) = Z⊤Z − N
1
2 Wθ⊤ − N

1
2 θW ⊤ + Nθθ⊤

= V ⊤V + (W − N
1
2 θ)(W − N

1
2 θ)⊤. (A.15)

Therefore the joint pdf of (V, W ) can be shown as

f(V,W )(v, w) = (2π)− nqp
2 (det(Ψ))− nq

2 etr
[

− 1
2Ψ−1v⊤v

]
(2π)− qp

2 (det(Ψ))− q
2

etr
(

− 1
2(w − N

1
2 θ)⊤Ψ−1(w − N

1
2 θ)
)

.

(A.16)

Therefore, by A.16, we get V ∼ Nnq×p(0, In ⊗ Ψ) independent of W ∼ Np×q(N
1
2 θ, Ψ ⊗ Iq).

Let Y = N− 1
2 V . Then, S = N−1Q = N−1V ⊤V = Y ⊤Y and Y ∼ Nnq×p(0, Inq ⊗ Σ).

(ii) Since Y ∼ Nnq×p(0, Inq ⊗ Σ), by the definition of wishart distribution we get,

S = Y ⊤Y ∼ Wishartp(nq, Σ).

We also have X = Z̄ = N− 1
2 W ∼ Np×q(θ, Σ ⊗ Iq), which completes the proof.
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A.2 On the Moore-Penrose inverse and Stein’s Lemma

Proposition A.1. Let A be a m × n matrix. Then

(i) A+ = A+(A+)⊤A⊤

(ii) A⊤ = A⊤AA+

Proof. (i) By properties of Moore-Penrose inverse we have

(AA+)⊤ = AA+.

Since A+ = A+AA+, we get

A+ = A+AA+ = A+(AA+)⊤ = A+(A+)⊤A⊤.

(ii) Similar to Part (i), we get

A = AA+A = (AA+)⊤A = (A+)⊤A⊤A.

Hence,

A⊤ = ((A+)⊤A⊤A)⊤ = A⊤AA+.

Corollary A.1. Let S = Y ⊤Y . Then, we have

SS+Y ⊤ = Y ⊤.

Proof. The proof follows from Proposition A.1.
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Proposition A.2. For A(t) a differentiable matrix function of constant rank, we have

(i) ∂A+

∂t
= −A+ ∂A

∂t
A+ + (I − AA+)∂A⊤

∂t
(A+)⊤A+ + A+(A+)⊤ ∂A⊤

∂t
(I − AA+).

(ii) For the symmetric matrix, S, we have

∂S+

∂t
= −S+ ∂S

∂t
S+ + (I − SS+)∂S

∂t
S+S+ + S+S+ ∂S

∂t
(I − SS+).

Proof. The proof of this proposition is given in Theorem 4.3 of Golub and Pereyra (1973).

The following proposition generalizes Lemma 1 from Stein (1981) to distributions with

probability density functions that exhibit the property:

lim
y→−∞

fY (y) = lim
y→∞

fY (y) = 0.

This proposition can be employed as a foundational step in deriving Lemma 1 from Stein

(1981).

Proposition A.3. Let Y be a random variable with pdf fY (y) and

lim
y→−∞

fY (y) = lim
y→∞

fY (y) = 0. Let g : R −→ R be an indefinite integral of the Lebesgue

measurable function g′ the derivative of g. Suppose E
[
|g′(Y )|

]
< ∞. Then

E
[
g′(Y )

]
= −E

[
g(Y )f ′

Y (Y )
fY (Y )

]

Proof. Since lim
y→−∞

fY (y) = lim
y→∞

fY (y) = 0, we get

∫ y

−∞
f ′

Y (z) dz = (fY (y) − fY (−∞)) = fY (y)

−
∫ ∞

y
f ′

Y (z) dz = −(fY (∞) − fY (y)) = fY (y)
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Therefore, we have

E
[
g′(Y )

]
=
∫ ∞

−∞
g′(y)fY (Y ) dy =

∫ 0

−∞
g′(y)fY (Y ) dy +

∫ ∞

0
g′(y)fY (Y ) dy

=
∫ 0

−∞
g′(y)

(∫ y

−∞
f ′

Y (z) dz

)
dy +

∫ ∞

0
g′(y)

(
−
∫ ∞

y
f ′

Y (z) dz

)
dy

=
∫ 0

−∞

∫ y

−∞
g′(y)f ′

Y (z) dz dy −
∫ ∞

0

∫ ∞

y
g′(y)f ′

Y (z) dz dy .

Therefore,

E
[
g′(Y )

]
=
∫ 0

−∞

∫ 0

z
g′(y)f ′

Y (z) dy dz −
∫ ∞

0

∫ z

0
g′(y)f ′

Y (z) dy dz

=
∫ 0

−∞
f ′

Y (z)
(∫ 0

z
g′(y) dy

)
dz −

∫ ∞

0
f ′

Y (z)
(∫ z

0
g′(y) dy

)
dz

=
∫ 0

−∞
f ′

Y (z)(g(0) − g(z)) dz −
∫ ∞

0
f ′

Y (z)(g(z) − g(0)) dz

=
∫ 0

−∞
f ′

Y (z)(g(0) − g(z)) dz +
∫ ∞

0
f ′

Y (z)(g(0) − g(z)) dz .

This gives

E
[
g′(Y )

]
=
∫ ∞

−∞
f ′

Y (z)(g(0) − g(z)) dz =
∫ ∞

−∞
f ′

Y (z)g(0) dz −
∫ ∞

−∞
f ′

Y (z)g(z) dz

= g(0)
∫ ∞

−∞
f ′

Y (z) dz −
∫ ∞

−∞
g(z)f ′

Y (z) dz

= g(0)(fY (∞) − fY (−∞)) −
∫ ∞

−∞
g(z)f ′

Y (z)
fY (z)fY (z) dz .

Hence,

E
[
g′(Y )

]
= −

∫ ∞

−∞
g(z)f ′

Y (z)
fY (z)fY (z) dz = −E

[
g(Y )f ′

Y (Y )
fY (Y )

]
,

which completes the proof.

With the assistance of the aforementioned results, we can now directly derive Lemma 1 from

Stein (1981).
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Corollary A.2 (Stein (1981) Lemma 1). Let Y ∼ N(0, 1) and g : R −→ R be an indefinite

integral of the Lebesgue measurable function g′ the derivative of g. Suppose E[|g′(Y )|] < ∞.

Then

E
[
g′(Y )

]
= E

[
Y g(Y )

]
.

Proof.

fY (y) = 1√
2π

e− 1
2 y2 ⇒ f ′

Y (y) = −y
1√
2π

e− 1
2 y2 = −yfY (y)

Therefore, by Proposition A.3, we get

E
[
g′(Y )

]
= −E

[
g(Y )f ′

Y (Y )
fY (Y )

]
= −E

[
g(Y )−Y fY (Y )

fY (Y )

]
= E

[
Y g(Y )

]
,

which completes the proof.

A.3 Some Technical Proofs of Chapter 2

Proof of Lemma 2.1. (i) Let δij be the Kronecker delta. We have

(
∂S

∂Yαβ

)
kl

= ∂

∂Yαβ

∑
q

Y ⊤
kqYql =

∑
q

∂

∂Yαβ
(YqkYql) =

∑
q

[
( ∂Yqk

∂Yαβ
)Yql + Yqk( ∂Yql

∂Yαβ
)
]
.

Then,

(
∂S

∂Yαβ

)
kl

=
∑

q

( ∂Yqk

∂Yαβ
)Yql +

∑
q

Yqk( ∂Yql

∂Yαβ
) =

∑
q

δβkYql +
∑

q

Yqkδβl.

Hence,

(
∂S

∂Yαβ

)
kl

= δβkYαl + δβlYαk.
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(ii) By part (i) we get

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

(A ∂S

∂Yαβ
)kjBjl =

∑
j

∑
i

Aki

(
∂S

∂Yαβ

)
ij

Bjl

=
∑

j

∑
i

Aki

{
δβiYαj + δβjYαi

}Bjl.

Then,

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

∑
i

AkiδβiYαj +
∑

i

AkiδβjYαi

Bjl =
∑

j

AkβYαj +
∑

i

AkiδβjYαi

Bjl.

Then,

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

AkβYαjBjl +
∑

j

∑
i

AkiδβjYαi

Bjl =Akβ

∑
j

YαjBjl

+
∑

i

AkiYαi

∑
j

δβjBjl.

This gives,

(
A

∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl +
∑

i

AkiYαiBβl = Akβ(Y B)αl + Bβl

p∑
i

AkiY
⊤

iα .

Therefore,

(
A

∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + Bβl(AY ⊤)kα = Akβ(Y B)αl + (AY ⊤)kαBβl.

(iii) We have ∂F

∂Yαβ
= ∂

∂Yαβ
(X⊤S+X) = X⊤( ∂S+

∂Yαβ
)X.

From, Proposition A.2, we get

X⊤( ∂S+

∂Yαβ
)X = X⊤

(
− S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+)

)
X.



APPENDIX A. SOME TECHNICAL PROOFS 75

This gives

X⊤( ∂S+

∂Yαβ
)X = −X⊤S+ ∂S

∂Yαβ
S+X + X⊤(I − SS+) ∂S

∂Yαβ
S+S+X + X⊤S+S+ ∂S

∂Yαβ
(I − SS+)X

= −X⊤S+ ∂S

∂Yαβ
S+X + X⊤(I − SS+) ∂S

∂Yαβ
S+S+X + X⊤S+S+ ∂S

∂Yαβ
(I − SS+)X.

Now, by Part (ii), for k = 1 and l = 1 we get

∂X⊤S+X

∂Yαβ
= − (X⊤S+)1β(Y S+X)α1 − (X⊤S+Y ⊤)1α(S+X)β1

+ (X⊤(I − SS+))1β(Y SS+X)α1 + (X⊤(I − SS+)Y ⊤)1α(SS+X)β1

+ (X⊤S+S+)1β(Y (I − SS+)X)α1 + (X⊤S+S+Y ⊤)1α((I − SS+)X)β1.

Since

(X⊤S+)1β(Y S+X)α1 = (X⊤S+Y ⊤)1α(S+X)β1,

(X⊤(I − SS+))1β(Y SS+X)α1 = (X⊤S+S+Y ⊤)1α((I − SS+)X)β1 and

Y (I − SS+) = (I − SS+)Y ⊤ = 0,

we get

∂X⊤S+X

∂Yαβ
= −2(X⊤S+Y ⊤)1α(S+X)β1 + 2(X⊤S+S+Y ⊤)1α((I − SS+)X)β1.

(iv)
(

∂S+XX⊤SS+

∂Yαβ

)
kl

=
(

∂S+

∂Yαβ
XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl

+
(

S+XX⊤S
∂S+

∂Yαβ

)
kl

=
(

(−S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+))XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl
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+
(

S+XX⊤S(−S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+))

)
kl

.

Then,

(
∂S+XX⊤SS+

∂Yαβ

)
kl

=
(

−S+ ∂S

∂Yαβ
S+XX⊤SS+

)
kl

+
(

(I − SS+) ∂S

∂Yαβ
S+S+XX⊤SS+

)
kl

+
(

S+S+ ∂S

∂Yαβ
(I − SS+)XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl

−
(

S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

+
(

S+XX⊤S(I − SS+) ∂S

∂Yαβ
S+S+

)
kl

+
(

S+XX⊤SS+S+ ∂S

∂Yαβ
(I − SS+)

)
kl

.

Now, by using Part (ii), we get

(
−S+ ∂S

∂Yαβ
S+XX⊤SS+

)
kl

= −S+
kβ(Y S+XX⊤SS+)αl − (S+Y ⊤)kα(S+XX⊤SS+)βl.

(A.17)

Further,

(
(I − SS+) ∂S

∂Yαβ
S+S+XX⊤SS+

)
kl

= (I − SS+)kβ(Y S+S+XX⊤SS+)αl + ((I − SS+)Y ⊤)kα(S+S+XX⊤SS+)βl

= (I − SS+)kβ(Y S+S+XX⊤SS+)αl. (A.18)

Since, Y (I − SS+) = 0 (see Corollary A.1), we get

(
S+S+ ∂S

∂Yαβ
(I − SS+)XX⊤SS+

)
kl

= (S+S+)kβ(Y (I − SS+)XX⊤SS+)αl + (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl

= (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl. (A.19)
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We also have

(
S+XX⊤ ∂S

∂Yαβ
S+
)

kl

= (S+XX⊤)kβ(Y S+)αl + (S+XX⊤Y ⊤)kαS+
βl. (A.20)

Further, we have

(
−S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

= −(S+XX⊤SS+)kβ(Y S+)αl(S+XX⊤SS+Y ⊤)kαS+
βl.

Since SS+Y ⊤ = Y ⊤ (see Proposition A.1), we get

(
−S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

= −(S+XX⊤SS+)kβ(Y S+)αl(S+XX⊤Y ⊤)kαS+
βl. (A.21)

Since S(I − SS+) = S+(I − SS+) = 0, we get

(
S+XX⊤S(I − SS+) ∂S

∂Yαβ
S+S+

)
kl

= 0, (A.22)

then,

(
S+XX⊤SS+S+ ∂S

∂Yαβ
(I − SS+)

)
kl

=
(

S+XX⊤S+ ∂S

∂Yαβ
(I − SS+)

)
kl

=
(

A
∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + (AY ⊤)kαBβl

= (S+XX⊤S+)kβ(Y (I − SS+))αl + (S+XX⊤S+Y ⊤)kα(I − SS+)βl

= (S+XX⊤S+Y ⊤)kα(I − SS+)βl. (A.23)

Therefore, by (A.17), (A.18), · · · , (A.23), we get

(
∂S+XX⊤SS+

∂Yαβ

)
kl

= −S+
kβ(Y S+XX⊤SS+)αl − (S+Y T )kα(S+XX⊤SS+)βl
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+ (I − SS+)kβ(Y S+SXX⊤SS+)αl + (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl

+ (S+XX⊤)kβ(Y S+)αl + (S+XX⊤Y ⊤)kαS+
βl − (S+XX⊤SS+)kβ(Y S+)αl

− (S+XX⊤SS+Y ⊤)kαS+
βl + (S+XX⊤S+Y ⊤)kα(I − SS+)βl,

which completes the proof.

Proof of Lemma 2.2.

(i) ∂Gkl

∂Yαβ
= ∂

∂Yαβ

(
r2(F )

F 2 (S+XX⊤SS+)kl

)

= ∂

∂Yαβ
(r2(F )

F 2 )(S+XX⊤SS+)kl + r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl.

Then,

∂Gkl

∂Yαβ
=

2r(F )r′(F )( ∂F
∂yαβ

)F 2 − 2F ( ∂F
∂yαβ

)r2(F )
F 4 (S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl.

Hence,

∂Gkl

∂Yαβ
=2r(F )r′(F )

F 2 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl − 2r2(F )

F 3 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl.

(ii) By Part (iii) of Lemma 2.1, we get∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk

= −2
∑

α,k,β

Yαk(S+XX⊤S+Y ⊤)βα(SS+XX⊤S+)βk
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+ 2
∑

α,k,β

Yαk((I − SS+)XX⊤S+S+Y ⊤)βα(SS+XX⊤S+)βk

= −2
∑
α,k

Yαk

∑
β

(Y S+XX⊤S+)αβ(SS+XXT S+)βk

+ 2
∑
α,k

Yαk

∑
β

(Y S+S+XX⊤(I − SS+))αβ(SS+XX⊤S+)βk.

This gives

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = − 2

∑
α,k

Yαk(Y S+XX⊤S+SS+XX⊤S+)αk

+ 2
∑
α,k

Yαk(Y S+S+XX⊤(I − SS+)SS+XX⊤S+)αk.

Since (I − SS+)SS+ = 0, we get

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = −2

∑
α,k

Y ⊤
kα(Y S+XX⊤S+XX⊤S+)αk

= −2
∑

k

(Y ⊤Y S+XX⊤S+XX⊤S+)kk

= −2
∑

k

(SS+XX⊤S+XX⊤S+)kk.

This gives

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = −2tr(SS+XX⊤S+XX⊤S+)

= −2tr(X⊤S+XX⊤S+SS+X).

Hence,

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = −2tr(X⊤S+XX⊤S+X) = −2tr((X⊤S+X)2) = −2F 2.
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(iii)
∑

α,k,β

Yαk
∂

∂yαβ
(SS+XX⊤S+)βk =

∑
α,k,β

Yαk
∂

∂yαβ
(S+XX⊤SS+)kβ

By Part (iv) of Lemma 2.1, for appropriate Aα,k,β
1 , Aα,k,β

2 , · · · , Aα,k,β
9 and for l = β, we get

∑
α,k,β

Yαk
∂

∂yαβ
(S+XX⊤SS+)kβ =

∑
α,k,β

Yαk(Aα,k,β
1 + Aα,k,β

2 + · · · + Aα,k,β
9 ). (A.24)

Further, we have

∑
α,k,β

YαkAα,k,β
1 = −

∑
α,k,β

YαkS+
kβ(Y S+XX⊤SS+)αβ

= −
∑
α,k

Yαk

∑
β

(Y S+XX⊤SS+)αβS+
βk

= −
∑
α,k

Yαk(Y S+XX⊤SS+S+)αk.

Then,

∑
α,k,β

YαkAα,k,β
1 = −

∑
α,k

(Y S+XX⊤S+)αkY T
kα = −

∑
α

(Y S+XX⊤S+Y ⊤)αα

= −tr(Y S+XX⊤S+Y ⊤) = −tr(X⊤S+Y ⊤Y S+X).

Hence,

∑
α,k,β

YαkAα,k,β
1 = −tr(X⊤S+SS+X) = −tr(X⊤S+X) = −F. (A.25)

∑
α,k,β

YαkAα,k,β
2 = −

∑
α,k,β

Yαk(S+Y ⊤)kα(S+XX⊤SS+)ββ

= −
∑
α,k

Yαk(S+Y ⊤)kα

∑
β

(S+XX⊤SS+)ββ = −
∑
α,k

Yαk(S+Y ⊤)kαtr(S+XX⊤SS+).
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Then,

∑
α,k,β

YαkAα,k,β
2 = −tr(X⊤SS+S+X)

∑
α

(Y S+Y ⊤)αα

= −tr(X⊤S+X)tr(Y S+Y ⊤) = −F tr(S+Y ⊤Y ) = −F tr(S+S). (A.26)

Further,

∑
α,k,β

YαkAα,k,β
3 =

∑
α,k,β

Yαk(I − SS+)kβ(Y S+SXX⊤SS+)αβ

=
∑
α,k

Yαk

∑
β

(Y S+SXX⊤SS+)αβ(I − SS+)βk

=
∑
α,k

Yαk(Y S+SXX⊤SS+(I − SS+))αk = 0. (A.27)

Similarly, we have

∑
α,k,β

YαkAα,k,β
4 =

∑
α,k,β

Yαk(S+S+Y ⊤)kα((I − SS+)XX⊤SS+)ββ

=
∑
α,k

Yαk(S+S+Y ⊤)kα

∑
β

((I − SS+)XX⊤SS+)ββ

=
∑
α,k

Yαk(S+S+Y ⊤)kαtr((I − SS+)XX⊤SS+)

= tr(SS+(I − SS+)XX⊤)
∑
α,k

Yαk(S+S+Y ⊤)kα = 0. (A.28)

We also have

∑
α,k,β

YαkAα,k,β
5 =

∑
α,k,β

Yαk(S+XX⊤)kβ(Y S+)αβ =
∑
α,k

Yαk

∑
β

(S+XX⊤)kβ(S+Y ⊤)βα

=
∑
α,k

Yαk(S+XX⊤S+Y ⊤)kα =
∑

α

(Y S+XX⊤S+Y ⊤)αα.
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Then,

∑
α,k,β

YαkAα,k,β
5 = tr(Y S+XX⊤S+Y ⊤) = tr(X⊤S+Y ⊤Y S+X)

= tr(X⊤S+SS+X) = tr(X⊤S+X) = F. (A.29)

Further,

∑
α,k,β

YαkAα,k,β
6 =

∑
α,k,β

Yαk(S+XX⊤Y ⊤)kαS+
ββ =

∑
α,k

Yαk(S+XX⊤Y T )kα

∑
β

S+
ββ

=
∑
α,k

Yαk(S+XX⊤Y T )kαtr(S+) = tr(S+)
∑
α,k

Yαk(S+XX⊤Y ⊤)kα

= tr(S+)
∑

α

(Y S+XX⊤Y ⊤)αα.

Then,

∑
α,k,β

YαkAα,k,β
6 = tr(S+)tr(Y S+XX⊤Y ⊤) = tr(S+)tr(S+XX⊤Y ⊤Y )

= tr(S+)tr(S+XX⊤S). (A.30)

We also have

∑
α,k,β

YαkAα,k,β
7 = −

∑
α,k,β

Yαk(S+XX⊤SS+)kβ(Y S+)αβ

= −
∑
α,k

Yαk

∑
β

(S+XX⊤SS+)kβ(S+Y ⊤)βα = −
∑
α,k

Yαk(S+XX⊤SS+S+Y ⊤)kα.

Then,

∑
α,k,β

YαkAα,k,β
7 = −

∑
α,k

Yαk(S+XX⊤S+Y ⊤)kα = −
∑

α

(Y S+XX⊤S+Y ⊤)αα.
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Hence,

∑
α,k,β

YαkAα,k,β
7 = −tr(Y S+XX⊤S+Y ⊤) = −tr(X⊤S+Y ⊤Y S+X)

= −tr(X⊤S+SS+X) = −tr(X⊤S+X) = −F. (A.31)

Further, we have

∑
α,k,β

YαkAα,k,β
8 = −

∑
α,k,β

Yαk(S+XX⊤SS+Y ⊤)kαS+
ββ

= −
∑
α,k

Yαk(S+XX⊤SS+Y ⊤)kα

∑
β

S+
ββ = −

∑
α,k

Yαk(S+XX⊤SS+Y ⊤)kαtr(S+)

= −tr(S+)
∑

α

(Y S+XX⊤SS+Y ⊤)αα = −tr(S+)tr(Y S+XX⊤SS+Y ⊤).

Then,

∑
α,k,β

YαkAα,k,β
8 = −tr(S+)tr(S+XX⊤SS+Y ⊤Y ) = −tr(S+)tr(S+XX⊤SS+S)

= −tr(S+)tr(S+XX⊤S). (A.32)

We also have,

∑
α,k,β

YαkAα,k,β
9 =

∑
α,k,β

Yαk(S+XX⊤S+Y T )kα(I − SS+)ββ

=
∑
α,k

Yαk(S+XX⊤S+Y ⊤)kα

∑
β

(I − SS+)ββ

=
∑
α,k

Yαk(S+XX⊤S+Y ⊤)kαtr(I − SS+)

=
∑
α,k

Yαk(S+XX⊤S+Y ⊤)kα(p − tr(SS+)).
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Then,

∑
α,k,β

YαkAα,k,β
9 = (p − tr(SS+))

∑
α

(Y S+XX⊤S+Y ⊤)αα

= (p − tr(SS+))tr(Y S+XX⊤S+Y ⊤) = (p − tr(SS+))tr(X⊤S+Y ⊤Y S+X)

= (p − tr(SS+))tr(X⊤S+SS+X).

Therefore,

∑
α,k,β

YαkAα,k,β
9 = (p − tr(SS+))tr(X⊤S+X) = (p − tr(SS+))F. (A.33)

Therefore, by (A.25), (A.26), · · · , (A.33), we get

∑
α,k,β

YαkAα,k,β
1 +

∑
α,k,β

YαkAα,k,β
5 = 0 (A.34)

∑
α,k,β

YαkAα,k,β
6 +

∑
α,k,β

YαkAα,k,β
8 = 0 (A.35)

∑
α,k,β

YαkAα,k,β
3 =

∑
α,k,β

YαkAα,k,β
4 = 0. (A.36)

Then, by replacing (A.34),(A.35) and (A.36) in (A.24) together with (A.26), (A.31) and

(A.33), we get

∑
α,k,β

Yαk(Aα,k,β
1 + Aα,k,β

2 + · · · + Aα,k,β
9 ) =

∑
α,k,β

YαkAα,k,β
2 +

∑
α,k,β

YαkAα,k,β
7 +

∑
α,k,β

YαkAα,k,β
9 .

Then,

∑
α,k,β

Yαk(Aα,k,β
1 + Aα,k,β

2 + · · · + Aα,k,β
9 ) = F (p − 2tr(SS+) − 1).

(iv)
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
= 2r(F )r′(F )

F 2

∑
α,β,k

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk
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− 2r2(F )
F 3

∑
α,β,k

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk

+ r2(F )
F 2

∑
α,k,β

Yαk
∂

∂yαβ
(SS+XX⊤S+)βk

= 2r(F )r′(F )
F 2

(
−2F 2

)
− 2r2(F )

F 3

(
−2F 2

)
+ r2(F )

F 2 F (p − 2tr(SS+) − 1).

Then,

∑
α,β,k

Yαk
∂Gkβ

∂Yαβ
= −4r(F )r′(F ) + 4r2(F )

F
+ r2(F )

F
(p − 2tr(SS+) − 1)

= −4r(F )r′(F ) + r2(F )
F

(
p − 2tr(SS+) + 3

)
,

which completes the proof.

Proof of Lemma 2.3.

(i) ∂F

∂Xi
= ∂

∂Xi
(X⊤S+X) = ∂

∂Xi

∑
k

X⊤
1k(S+X)k1 =

∑
k

∂

∂Xi
(Xk1(S+X)k1).

Then,

∂F

∂Xi
=
∑

k

{
(∂Xk1

∂Xi
)(S+X)k1 + Xk1(∂S+X

∂Xi
)k1

}

=
∑

k

∂Xk1
∂Xi

(S+X)k1 +
∑

k

Xk1(∂S+X

∂Xi
)k1

=
∑

k

δki(S+X)k1 +
∑

k

Xk1( ∂

∂Xi

∑
l

S+
klXl1).

This gives

∂F

∂Xi
= (S+X)i1 +

∑
k

Xk1(
∑

l

S+
kl

∂Xl1
∂Xi

) = (S+X)i1 +
∑

k

Xk1(
∑

l

S+
klδli).
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Then,

∂F

∂Xi
= (S+X)i1 +

∑
k

Xk1S+
ki = (S+X)i1 +

∑
k

S+
ikXk1.

Hence,

∂F

∂Xi
= (S+X)i1 + (S+X)i1 = 2(S+X)i1.

(ii)
(

∂SS+X

∂Xi

)
k

= ∂

∂Xi

∑
α

(SS+)kαXα1 =
∑

α

(SS+)kα
∂Xα

∂Xi
=
∑

α

(SS+)kαδαi.

Then,

∂F

∂Xi
= (S+S+)ki.

(iii) By Part (i) and (ii) ,we get
∂gk

∂Xi
= ( ∂

∂Xi

r(F )
F

)(SS+X)k + r(F )
F

( ∂

∂Xi
(SS+X)k)

= r′F − r(F )
F 2 ( ∂F

∂Xi
)(SS+X)k + r(F )

F
(SS+)ki

= 2(Fr′(F ) − r(F ))
F 2 (S+X)i(SS+X)k + r(F )

F
(SS+)ki.

(iv) By Part (iii) for k = i, we have∑
i

∂gi

∂Xi
=
∑

i

{
2Fr′(F ) − r(F )

F 2 (S+X)i(SS+X)i + r(F )
F

(SS+)ii

}

= 2Fr′(F ) − r(F )
F 2

∑
i

(S+X)i(X⊤S+)i + r(F )
F

tr(SS+)

= 2Fr′(F ) − r(F )
F 2

∑
i

(SS+XX⊤S+)ii + r(F )
F

tr(SS+).
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This gives

∑
i

∂gi

∂Xi
= 2Fr′(F ) − r(F )

F 2 tr(SS+XX⊤S+) + r(F )
F

tr(SS+)

= 2Fr′(F ) − r(F )
F 2 tr(X⊤S+SS+X) + r(F )

F
tr(SS+).

Then,

∑
i

∂gi

∂Xi
= 2Fr′(F ) − r(F )

F 2 tr(X⊤S+X) + r(F )
F

tr(SS+) = 2Fr′(F ) − r(F )
F 2 F + r(F )

F
tr(SS+).

Hence,

∑
i

∂gi

∂Xi
= 2r′(F ) − 2r(F )

F
+ r(F )

F
tr(SS+) = 2r′(F ) + r(F )

F
(tr(SS+) − 2),

which completes the proof.

A.4 Some Technical Proofs of Chapter 3

Proof of Lemma 3.1.

(i)
(

∂S

∂Yαβ

)
kl

= ∂

∂Yαβ

∑
i

Y ⊤
ki Yil =

∑
i

∂

∂Yαβ
(YikYil) =

∑
i

[
( ∂Yik

∂Yαβ
)Yil + Yqk( ∂Yil

∂Yαβ
)
]
.

Then,

(
∂S

∂Yαβ

)
kl

=
∑

i

( ∂Yik

∂Yαβ
)Yil +

∑
i

Yik( ∂Yil

∂Yαβ
) =

∑
i

δβkYil +
∑

i

Yikδβl.

Therefore,

(
∂S

∂Yαβ

)
kl

= δβkYαl + δβlYαk.
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(ii) By Part (i), we get

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

(A ∂S

∂Yαβ
)kjBjl =

∑
j

∑
i

Aki

(
∂S

∂Yαβ

)
ij

Bjl.

Then,

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

∑
i

Aki

{
δβiYαj + δβjYαi

}Bjl =
∑

j

∑
i

AkiδβiYαj +
∑

i

AkiδβjYαi

Bjl.

Then,

(
A

∂S

∂Yαβ
B

)
kl

=
∑

j

AkβYαj +
∑

i

AkiδβjYαi

Bjl

=
∑

j

AkβYαjBjl +
∑

j

∑
i

AkiδβjYαi

Bjl

= Akβ

∑
j

YαjBjl +
∑

i

AkiYαi

∑
j

δβjBjl.

Hence,

(
A

∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl +
∑

i

AkiYαiBβl = Akβ(Y B)αl + Bβl

p∑
i

AkiY
⊤

iα .

Hence,

(
A

∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + Bβl(AY ⊤)kα = Akβ(Y B)αl + (AY ⊤)kαBβl.

(iii)
(

∂

∂Yαβ
(X⊤S+X)

)
kk

=
(

X⊤( ∂S+

∂Yαβ
)X
)

kk

.

From Proposition A.2, we get

(
X⊤( ∂S+

∂Yαβ
)X
)

kk
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=
(

X⊤
(

− S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+)

)
X

)
kk

=
(

−X⊤S+ ∂S

∂Yαβ
S+X + X⊤(I − SS+) ∂S

∂Yαβ
S+S+X + X⊤S+S+ ∂S

∂Yαβ
(I − SS+)X

)
kk

= −
(

X⊤S+ ∂S

∂Yαβ
S+X

)
kk

+
(

X⊤(I − SS+) ∂S

∂Yαβ
S+S+X

)
kk

+
(

X⊤S+S+ ∂S

∂Yαβ
(I − SS+)X

)
kk

.

Now by Part (ii) for l = k, we get

(
∂X⊤S+X

∂Yαβ

)
kk

= −(X⊤S+)kβ(Y S+X)αk − (X⊤S+Y ⊤)kα(S+X)βk

+ (X⊤(I − SS+))kβ(Y SS+X)αk + (X⊤(I − SS+)Y ⊤)kα(SS+X)βk

+ (X⊤S+S+)kβ(Y (I − SS+)X)αk + (X⊤S+S+Y ⊤)kα((I − SS+)X)βk.

Since

(X⊤S+)kβ(Y S+X)αk = (X⊤S+Y ⊤)kα(S+X)βk,

(X⊤(I − SS+))kβ(Y SS+X)αk = (X⊤S+S+Y ⊤)kα((I − SS+)X)βk and

Y (I − SS+) = (I − SS+)Y ⊤ = 0,

then,

(
∂X⊤S+X

∂Yαβ

)
kk

= −2(X⊤S+Y ⊤)kα(S+X)βk + 2(X⊤S+S+Y ⊤)kα((I − SS+)X)βk.

(iv) By Part (ii) we get

∂F

∂Yαβ
= ∂

∂Yαβ

∑
k

(X⊤S+X)kk =
∑

k

∂(X⊤S+X)kk

∂Yαβ

=
∑

k

{
− 2(X⊤S+Y ⊤)kα(S+X)βk + 2(X⊤S+S+Y ⊤)kα((I − SS+)X)βk

}

= −2
(
S+XX⊤S+Y ⊤

)
βα

+ 2
(
(I − SS+)XX⊤S+S+Y ⊤

)
βα

.
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(v)
(

∂S+XX⊤SS+

∂Yαβ

)
kl

=
(

∂S+

∂Yαβ
XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl

+
(

S+XX⊤S
∂S+

∂Yαβ

)
kl

=
(

(−S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+))XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl

+
(

S+XX⊤S(−S+ ∂S

∂Yαβ
S+ + (I − SS+) ∂S

∂Yαβ
S+S+ + S+S+ ∂S

∂Yαβ
(I − SS+))

)
kl

.

Then,

(
∂S+XX⊤SS+

∂Yαβ

)
kl

=
(

−S+ ∂S

∂Yαβ
S+XX⊤SS+

)
kl

+
(

(I − SS+) ∂S

∂Yαβ
S+S+XX⊤SS+

)
kl

+
(

S+S+ ∂S

∂Yαβ
(I − SS+)XX⊤SS+

)
kl

+
(

S+XX⊤ ∂S

∂Yαβ
S+
)

kl

−
(

S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

+
(

S+XX⊤S(I − SS+) ∂S

∂Yαβ
S+S+

)
kl

+
(

S+XX⊤SS+S+ ∂S

∂Yαβ
(I − SS+)

)
kl

.

Now, by using Part (ii), we get

(
−S+ ∂S

∂Yαβ
S+XX⊤SS+

)
kl

= −S+
kβ(Y S+XX⊤SS+)αl − (S+Y ⊤)kα(S+XX⊤SS+)βl.

(A.37)
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Further,

(
(I − SS+) ∂S

∂Yαβ
S+S+XX⊤SS+

)
kl

= (I − SS+)kβ(Y S+S+XX⊤SS+)αl + ((I − SS+)Y ⊤)kα(S+S+XX⊤SS+)βl

= (I − SS+)kβ(Y S+S+XX⊤SS+)αl. (A.38)

Since Y (I − SS+) = 0 (see Corollary A.1), we get

(
S+S+ ∂S

∂Yαβ
(I − SS+)XX⊤SS+

)
kl

= (S+S+)kβ(Y (I − SS+)XX⊤SS+)αl + (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl

= (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl. (A.39)

We also have

(
S+XX⊤ ∂S

∂Yαβ
S+
)

kl

= (S+XX⊤)kβ(Y S+)αl + (S+XX⊤Y ⊤)kαS+
βl. (A.40)

Further,

(
−S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

= −(S+XX⊤SS+)kβ(Y S+)αl(S+XX⊤SS+Y ⊤)kαS+
βl.

Since SS+Y ⊤ = Y ⊤ (see Corollary A.1), we get

(
−S+XX⊤SS+ ∂S

∂Yαβ
S+
)

kl

= −(S+XX⊤SS+)kβ(Y S+)αl(S+XX⊤Y ⊤)kαS+
βl. (A.41)

Since S(I − SS+) = S+(I − SS+) = 0, we get

(
S+XX⊤S(I − SS+) ∂S

∂Yαβ
S+S+

)
kl

= 0. (A.42)
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Further,

(
S+XX⊤SS+S+ ∂S

∂Yαβ
(I − SS+)

)
kl

=
(

S+XX⊤S+ ∂S

∂Yαβ
(I − SS+)

)
kl

=
(

A
∂S

∂Yαβ
B

)
kl

= Akβ(Y B)αl + (AY ⊤)kαBβl

= (S+XX⊤S+)kβ(Y (I − SS+))αl + (S+XX⊤S+Y ⊤)kα(I − SS+)βl

= (S+XX⊤S+Y ⊤)kα(I − SS+)βl. (A.43)

Therefore by (A.37), (A.38), · · · , (A.43), we get

(
∂S+XX⊤SS+

∂Yαβ

)
kl

= −S+
kβ(Y S+XX⊤SS+)αl − (S+Y T )kα(S+XX⊤SS+)βl

+ (I − SS+)kβ(Y S+SXX⊤SS+)αl + (S+S+Y ⊤)kα((I − SS+)XX⊤SS+)βl

+ (S+XX⊤)kβ(Y S+)αl + (S+XX⊤Y ⊤)kαS+
βl − (S+XX⊤SS+)kβ(Y S+)αl

− (S+XX⊤SS+Y ⊤)kαS+
βl + (S+XX⊤S+Y ⊤)kα(I − SS+)βl,

which completes the proof.

Proof of Lemma 3.2.

(i) ∂Gkl

∂Yαβ
= ∂

∂Yαβ

{
r2(F )

F 2 (S+XX⊤SS+)kl

}
= ∂

∂Yαβ
(r2(F )

F 2 )(S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl.

Then,

∂Gkl

∂Yαβ
=2r(F )r′(F )

F 2 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl − 2r2(F )

F 3 ( ∂F

∂yαβ
)(S+XX⊤SS+)kl

+ r2(F )
F 2

∂

∂Yαβ
(S+XX⊤SS+)kl.
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(ii) By Part (iii) of Lemma 3.1, we get∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk

= −2
∑

α,k,β

Yαk(S+XX⊤S+Y ⊤)βα(SS+XX⊤S+)βk

+ 2
∑

α,k,β

Yαk((I − SS+)XX⊤S+S+Y ⊤)βα(SS+XX⊤S+)βk

= −2
∑
α,k

Yαk

∑
β

(Y S+XX⊤S+)αβ(SS+XXT S+)βk

+ 2
∑
α,k

Yαk

∑
β

(Y S+S+XX⊤(I − SS+))αβ(SS+XX⊤S+)βk

= −2
∑
α,k

Yαk(Y S+XX⊤S+SS+XX⊤S+)αk

+ 2
∑
α,k

Yαk(Y S+S+XX⊤(I − SS+)SS+XX⊤S+)αk.

Since (I − SS+)SS+ = 0 then we get

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = −2

∑
α,k

Y ⊤
kα(Y S+XX⊤S+XX⊤S+)αk

= −2
∑

k

(Y ⊤Y S+XX⊤S+XX⊤S+)kk = −2
∑

k

(SS+XX⊤S+XX⊤S+)kk

= −2tr(SS+XX⊤S+XX⊤S+) = −2tr(X⊤S+XX⊤S+SS+X).

Then,

∑
α,k,β

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk = −2tr(X⊤S+XX⊤S+X) = −2tr((X⊤S+X)2).

(iii) Similar to the proof of Part (iii) of Lemma 2.2.
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(iv)
∑

α,β,k

Yαk
∂Gkβ

∂Yαβ
= 2r(F )r′(F )

F 2

∑
α,β,k

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk

− 2r2(F )
F 3

∑
α,β,k

Yαk( ∂F

∂yαβ
)(SS+XX⊤S+)βk + r2(F )

F 2

∑
α,k,β

Yαk
∂

∂yαβ
(SS+XX⊤S+)βk

= 2r(F )r′(F )
F 2

(
−2tr

(
(X⊤S+X)2

))
− 2r2(F )

F 3

(
−2tr

(
(X⊤S+X)2

))
+ r2(F )

F 2 F (p − 2tr(SS+) − 1).

Then,

∑
α,β,k

Yαk
∂Gkβ

∂Yαβ
= −4r(F )r′(F )

F 2 tr
(
(X⊤S+X)2

)
+

4r2(F )tr
(
(X⊤S+X)2

)
F 3

+ r2(F )
F

(p − 2tr(SS+) − 1)

= −4r(F )r′(F )
F 2 tr

(
(X⊤S+X)2

)
+ r2(F )

F

4tr
(
(X⊤S+X)2

)
F 2 + p − 2tr(SS+) − 1

 ,

which completes the proof.

Proof of Lemma 3.3.

(i) ∂F

∂Xij
= ∂

∂Xij

∑
k

(X⊤S+X)kk = ∂

∂Xij

∑
k,α,β

X⊤
kαS+

αβXβk

=
∑

k,α,β

(
∂

∂Xij
XT

kα

)
S+

αβXβk +
∑

k,α,β

X⊤
kαS+

αβ

(
∂

∂Xij
Xβk

)

=
∑

β

S+
iβXβj +

∑
α

X⊤
jαS+

αi

= (S+X)ij + (X⊤S+)ji = (S+X)ij + (S+X)ij = 2(S+X)ij .



APPENDIX A. SOME TECHNICAL PROOFS 95

(ii)
(

∂SS+X

∂Xij

)
kl

= ∂

∂Xij

∑
α

(SS+)kαXαl =
∑

α

(SS+)kα
∂Xαl

∂Xij
=
∑

α

(SS+)kαδαiδlj .

Then,

(
∂SS+X

∂Xij

)
kl

= (SS+)kiδlj .

(iii) By Parts (i) and (ii), we get

∂gkl

∂Xi,j
=
(

∂

∂Xij

r(F )
F

)
(SS+X)kl + r(F )

F

(
∂

∂Xij
(SS+X)kl

)

= r′(F )F − r(F )
F 2

(
∂F

∂Xij

)
(SS+X)kl + r(F )

F

(
∂

∂Xij
(SS+X)kl

)

= 2(Fr′(F ) − r(F ))
F 2 (S+X)ij(SS+X)kl + r(F )

F
(SS+)kiδlj .

(iv) By Part (iii), we have∑
i,j

∂gij

∂Xij
=
∑
i,j

{
2Fr′(F ) − r(F )

F 2 (S+X)ij(SS+X)ij + r(F )
F

(SS+)ii

}

= 2Fr′(F ) − r(F )
tr2(F )

∑
i,j

(S+X)ij(X⊤S+)ji + r(F )
F

tr(SS+)

= 2Fr′(F ) − r(F )
F 2

∑
i

(SS+XX⊤S+)ii + q
r(F )

F
tr(SS+)

= 2Fr′(F ) − r(F )
F 2 tr(SS+XX⊤S+) + q

r(F )
F

tr(SS+).

This gives

∑
i,j

∂gij

∂Xij
= 2Fr′(F ) − r(F )

F 2 tr(X⊤S+SS+X) + q
r(F )

F
tr(SS+)
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= 2Fr′(F ) − r(F )
F 2 tr(X⊤S+X) + q

r(F )
F

tr(SS+).

Hence,

∑
i,j

∂gij

∂Xij
= 2Fr′(F ) − r(F )

F 2 F + q
r(F )

F
tr(SS+) = 2r′(F ) − 2r(F )

F
+ q

r(F )
F

tr(SS+).

Therefore,

∑
i,j

∂gij

∂Xij
= 2r′(F ) + r(F )

F
(qtr(SS+) − 2),

which completes the proof.



Appendix B

R code

####Important Libraries

library(MASS)

library(corpcor) # to calculate Moore - Penrose inverse

library(matrixsampling) # to simulate a Random matrix normal

library(ggplot2)

library(tidyr)

library(dplyr)

library(gridExtra)

#########################################

##Defining Trace Function

#########################################

trace = function(x) {

dim(x)[1]

if (is.null(dim(x)[1])==TRUE){

return(x)

}
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else{

tr = 0

for (i in 1:dim(x)[1]) {

s = x[i,i]

tr = tr + s

}

return(tr[[1]])

}

}

#############################################

##Defining function r

#############################################

r = function(f){

library(psych)

a = 1/(1+exp(-trace(f)))

return(a)

}

########################################

##Defining our proposed estimator

########################################

JS_est <- function(x, sigma) {

f = trace(t(x)%*%pseudoinverse(sigma)%*%x)

est = x - r(f)*sigma%*%pseudoinverse(sigma)%*%x/f

return(est)

}

set.seed(13144)

g = 0
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q = 3

e = 0

#to store norm of theta

ntheta = c()

#to store all mean risk difference

df_p = matrix(0,nrow = 4,ncol = 44)

#to store the risk of usual estimator

R_L_n = matrix(0,nrow = 30,ncol = 4)

#to store the risk of proposed estimator

R_J_n = matrix(0,nrow = 30,ncol = 4)

#Starting simulation:

for(p in c(24,32,56,104)){

#Defining the covariance matrix for each choice of p

cov_matrix = diag(p)

# to store mean of risk difference after each 10 repetitions

md = c()

#to create 11 different theta for each choice of p:

for(l in seq(0,10,1)){

e = e+1

k= 0

g=g+1

theta = matrix(l, nrow = p, ncol = q)

ntheta[e] = norm(theta, type = "F")

#different sample sizes for each choice of p

for(n in c(p/8,p/4,p-1,2*p)){

k = k+1

d = c()

R_L = c()
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R_J = c()

#30 Repetitions for each sample size

for(i in 1:30){

Z = rmatrixnormal(n, M = theta,U = diag(p),

V = diag(q),keep = FALSE)

s = matrix(0, nrow = p, ncol = q)

for (h in 1:n){

s = s + Z[,,h]

}

X = s/n

Q = matrix(0, nrow = p, ncol = p)

for(h in 1:n){

Q = Q+(Z[,,h]-X)%*%t(Z[,,h]-X)

}

S = Q/n

theta_J= JS_est(X,S)

R_L[i] = trace(t(X-theta)%*%cov_matrix%*%(X-theta))

R_J[i] = trace(t(theta_J - theta)%*%

cov_matrix%*%(theta_J - theta))

d[i] = R_J[i] - R_L[i]

}

#storing the mean of risk differences in each 30 repetitions

md[k] = mean(d)

}

df_p[,g]=md

}

}

df_p = data.frame(df_p)
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colnames(df_p) = rep(c("24","32","56","104"),11)

df_long_p = as.data.frame(df_p%>%pivot_longer(cols = everything(),

names_to = "P")%>%

mutate(theta_norm = rep(ntheta,4),"P" = as.numeric(P)) %>%

mutate("Sample size" = rep(c("p/8","p/4","p-1","2p"), each = 44),

P = replace(P, P == 24, "p=24"),

P = replace(P, P == 32, "p=32"),

P = replace(P, P == 56, "p=56"),

P = replace(P, P == 104, "p=104")))

ggplot(df_long_p,aes(x = theta_norm, y = value))+

geom_line(size = 1,aes(linetype= `Sample size`,

color = `Sample size`))+

facet_wrap(~factor(P,levels = c("p=24","p=32","p=56","p=104")),

scales="free")+

theme_bw()+

labs(x = expression(paste('||', theta,'||')),

y = "Risk diffference")
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