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ABSTRACT

We study two problems related to the City Guarding and the Art Gallery prob-

lems.

1. Given a city with k rectangular buildings, we prove that 3k+1 cameras of 180◦

field of view (half-sphere guards) are always sufficient to guard the free space

(the ground, walls, roofs, and the sky). This answers a conjecture of Daescu

and Malik (CCCG, 2020).

2. Given k orthogonally convex polygons of total m vertices in the plane, we prove

that m
2
+k+1 cameras of 180◦ field of view are always sufficient to guard the free

space (avoiding all the polygons). This answers another conjecture of Daescu

and Malik (Theoretical Computer Science, 2021).

Both upper bounds are tight in the sense that there are input instances that require

these many cameras. Our proofs are constructive and suggest simple polynomial-time

algorithms for placing these many cameras.

We then generalize each of the two mentioned problems in some sense with tight

bounds.

1. Given a city involving k buildings with any convex-shape base and a total of m

top corners, we prove that m− k + 1 cameras of 180◦ field of view (half-sphere

guards) are sometimes necessary and always sufficient to guard the ground,

walls, roofs, and the sky of the city.

2. Given k simple polygons (convex or non-convex) of total m vertices in the plane

which contains r reflex vertices, we prove that m − k − r + 1 cameras of 180◦

field of view are sometimes necessary and always sufficient to guard the free

space.
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CHAPTER 1

Introduction

The increasing availability and affordability of modern technologies have led to a grow-

ing interest in the use of drones, or unmanned aerial vehicles (UAVs), in metropolitan

areas. The technology has advanced to a point where UAVs are now being used for

a wide range of applications, from delivery services and emergency response to aerial

photography and surveying. Although these uncrewed aerial objects are approvingly

advanced in terms of security, they may cause safety issues in the cities, making mon-

itoring the whole city space (ground and sky) crucial. Therefore, this is an issue that

needs to be addressed adequately.

On the other hand, fixed cameras are used widely all over the world to monitor

the streets and buildings in cities. These cameras usually monitor the ground and

walls, but changing the placement and field of view lets us use them to guard the

total space of the city. While using cameras is an excellent solution to the guarding

problem, the budget is always limited, and the cost of digital devices is relatively

high. So, the goal is to minimize the number of cameras required to accomplish the

job.

The problem of monitoring the entire space with minimum number of cameras is

usually referred to as the City Guarding problem in computational geometry.

1



1. INTRODUCTION

1.1 Basic Terminology and Concepts

Before diving into the topic of City Guarding as a geometric problem, it is important

to first understand the main parts involved. This problem is a version of the famous

Art Gallery problem, which both fall under the category of visibility problems. The

Art Gallery problem is a well-studied problem that was first posed in 1973 by Victor

Klee. In this problem, we are given an art gallery in the form of a simple polygon

in 2D, and the goal is to place the minimum number of guards/cameras to cover the

entire polygon (interior of the gallery) [11]. In other words, each point of the polygon

is visible by some guard. A point p is said to be visible by a guard g if the line segment

pg lies inside the polygon.

In these kinds of problems, there are essential elements like the guards, the area

they need to watch or guard, and anything that might block their view. Each of these

parts has its own special features based on how we define the problem, which helps

us decide which specific version of the problem we are looking at.

Here are some of the key parts and their features:

• Visibility Region: The area which the goal of the problem is to guard. In

different versions of visibility problems, this region is mostly categorized as

follows:

– The interior space of a polygon or polyhedron. (e.g., the gallery’s interior)

See Figure 1.1.1.

– The exterior space of a polygon or polyhedron. (e.g., the free space around

a fortress)

There are problems where we want to guard both the interior and exterior of a

polygon (e.g., Prison Yard Problem).

• Guards: Cameras or persons who are monitoring the region we want to be

guarded. Based on the possible places we can put a guard, it can be categorized

into the following groups:

2



1. INTRODUCTION

(a) (b)

(c) (d)

Fig. 1.1.1: Some Art Gallery problem variants: (a) Point guards (360◦). (b) Orthogonal polygon
& point guards (360◦). (c) Vertex guards (180◦). (d) Polygon with holes & point guards (360◦).

– Point Guard: to be placed at any point inside or outside the visibility

region (e.g., polygon). See Figures 1.1.1(a), (b), and (d).

– Vertex Guard: to be placed only at the vertices of the polygon or polyhe-

dron. See Figure 1.1.1(c).

– Edge Guard: to be placed only on the edges of a polygon or polyhedron.

There is also another definition for edge guard where the whole edge rep-

resents a guard (like having guards on every point on the edge).

– Mobile Guard: They are permitted to traverse enclosed line segments (edge

or diagonal) within a polygon or polyhedron.

• Obstacles: All objects that obstruct the view of guards. In terms of the Art

Gallery problem, the obstacles are some simple polygons, which are called

3



1. INTRODUCTION

“Holes,” meaning that there is an area inside the main polygon that does not

belong to the polygon. Essentially, we have two types of problems in this regard.

They either contain holes or do not. See figure 1.1.1(d).

• Field of View and Direction of the Guards: Generally, guards can see 360◦;

however, in some variants, we can restrict them to only observe a smaller angle

like 180◦. See figure 1.1.1(c). The field of view can be only horizontal (in 2D

problems) or both horizontal and vertical (in higher dimensional problems). If

we have any restriction on the field of view of the guards, meaning that it is

smaller than 360◦, we need to determine each guard is looking toward which

direction.

(a) (b) (c)

Fig. 1.1.2: Guards’ Alignments: (a) Inward-facing. (b) Outward-facing. (c) Edge-aligned.

• Guards’ Alignment: If we have vertex guards and the field of view is restricted,

we may want to restrict the alignment of the guards as well. There are three

possible alignments:

– Inward aligned (Inward-facing): The guard is placed at vertex v, watch-

ing through the interior of polygon P , ensuring that the interior remains

disjoint from the two sides of P incident to v. See Figure 1.1.2(a).

– Outward aligned (Outward-facing): The guard is placed at vertex v, with

a view into the interior and exterior of polygon P , containing the two sides

of P incident to v. See Figure 1.1.2(b).

– Edge aligned: The guard is placed at vertex v, looking toward the interior

4



1. INTRODUCTION

of polygon P , aligned with one of the two sides of P incident to v. See

Figure 1.1.2(c).

In general, we may use any of these alignments, meaning that we do not restrict

the alignment of the guards.

Now that we know about the Art Gallery problem and some essential properties

involved in this problem and its variants, it is worth mentioning famous approaches

or methods that help researchers investigate this problem.

(a) (b)

Fig. 1.1.3: (a) Polygon triangulation. (b) Dual graph of the triangulation.

Triangulation is one of the most crucial techniques that is pivotal in addressing

the Art Gallery problem, as various bounds are established by leveraging the insights

gained from polygon triangulation.

A polygon P is considered triangulated when it is divided into a collection of

non-overlapping interior triangles. These triangles consist of edges from the original

polygon P or internal diagonals connecting two distinct vertices of P . See Figure

1.1.3(a). There are significant works that used triangulation in their proofs for the

Art Gallery problem, like [8, 5, 11].

The triangulation of a polygon exhibits intriguing characteristics, and one notable

aspect is the ability to create a dual graph based on this triangulation. In this

graph, triangles serve as the vertices and an edge exists between two vertices if their

5



1. INTRODUCTION

corresponding triangles share either a diagonal or a side. A noteworthy attribute

of the dual graph derived from polygon triangulation is its tree-like structure. See

Figure 1.1.3(b).

Fig. 1.1.4: Psuedo-triangulation of a polygon

Other related concepts include Pseudo-triangulation, where the polygon is subdi-

vided into pseudo-triangles. A pseudo-triangle is defined as a polygon with precisely

three convex vertices, referred to as corners. See Figure 1.1.4. Obviously, a triangle

is a pseudo-triangle as well. Pseudo-triangulation was first introduced and utilized

by Pocchiola and Vetger [14]. Other remarkable works like the work by Speckmann

and Tóth employed Pseudo-triangulation [16].

Convex partitioning of the polygon is another helpful technique in solving the Art

Gallery problem variants, which was first introduced by Chazelle [4]. The procedure of

this technique is straightforward. We only need to extend a diagonal from each reflex

vertex in any order to make two convex vertices out of them. This method entails

dividing the polygon into convex regions, characterized by the unique property that

every point within these regions is visible from any point inside or on the boundary

of the respective region. Through convex partitioning, the resulting regions are such

that each requires only one guard for monitoring. See Figure 1.1.5.

6



1. INTRODUCTION

Fig. 1.1.5: Convex partitioning of a polygon

1.2 Background

To the best of our knowledge, the problems related to guarding cities were first

introduced by Bao et. al [2]. They introduced three different variants of the problem

where the goal is to guard (1) only the roofs of the buildings, (2) the walls of the

buildings and the ground, and (3) the roofs, walls, and the ground. This latter version

is called “City Guarding”.

According to Bao et al. [2] the City Guarding problem can be interpreted as a

2.5-dimensional version of the well-studied Art Gallery problem. As we stated, in the

standard Art Gallery problem, we are given a simple polygon and the goal is to place

the minimum number of guards/cameras to cover the entire polygon [11]. The Art

Gallery problem and its variations have been well-studied in recent years [19]. The

variations usually enforce constraints on the shape of the polygon, the existence of

holes, the shape of holes, the orientation of holes, locations of guards, guards’ field

and range of vision, to name a few. We will mention important related ones in the

next section and elaborate on some of them. The City Guarding problem has the

same flavor as the Art Gallery problem with rectangular holes.

The City Guarding also has the same flavor as a free-space illuminating problem,

7



1. INTRODUCTION

studied by Blanco et al. [3], in which the input consists of pairwise disjoint rectangles

in the plane and the goal is to place minimum number of lights at the corners of the

rectangles to light up the free space (the entire plane minus the rectangles).

In the City Guarding problem, we should take into account many factors, such as

the city’s layout, buildings’ orientation, and the cameras’ field of view. These factors

usually led to different variations of the City Guarding problem.

In the next section, we will elaborate on the works on City Guarding, each of

which has studied a version considering some factors and constraints.

What we have studied (in Chapter 2) is a version of the City Guarding problem

that is introduced by Daescu and Malik [6]: Given k pairwise disjoint rectangular-base

buildings with arbitrary orientation, find a minimum number of cameras that guard

the city such that (i) each camera is a half-sphere with 180◦ field of view and infinite

range, and (ii) each camera is placed at a corner on top of the roof of a building in a

direction orthogonal to a wall.

We have also studied another problem by Daescu and Malik [7]: Given k disjoint

arbitrary oriented orthogonally convex polygons with a total of m vertices, find a

minimum number of guards required to guard the free space and the boundaries of the

polygons while the field of vision of each guard is limited to 180◦.

1.3 Related Works

In this section, our initial topic of discussion will be the Art Gallery problem and

its related versions to the City Guarding problem to give the reader a sense of how

guarding problems have been extensively studied over the past few decades and how

these two problems are closely related.

1.3.1 Art Gallery Problem

As previously stated, Victor Klee posed the Art Gallery problem to Chvátal in 1973

[11]. In 1975, Chvátal answered Klee’s question by demonstrating that ⌊n
3
⌋ vertex

guards are sufficient with n representing the number of vertices [5]. The approach of

8



1. INTRODUCTION

Chvátal was a bit sophisticated. So, later on in 1978, Fisk proved the same bound of

⌊n
3
⌋ vertex guards by applying a 3-coloring scheme to the triangulation of the polygon

and positioning the guards on the vertices with the fewest occurrences of color [8].

This gave a simpler proof.

In 1980, Chazelle established his naive convex partitioning, asserting that any

polygon can be divided into a maximum of r+1 convex segments [4]. Subsequently,

in 1982, O’Rourke utilized this finding to demonstrate that, for a simple n-gon with

r > 1 reflex vertices, r guards are sometimes necessary and always sufficient for

guarding the polygon’s interior [11].

We previously highlighted the close connection between City Guarding and the Art

Gallery problem, specifically, the variant involving polygons with holes, as depicted

in Figure 1.1.1(d). Some variants of City Guarding can be reduced to this version of

the Art Gallery.

Regarding the polygon with holes version, O’Rourke established a sufficiency

bound of ⌊n+2h
3

⌋ vertex guards using the dual graph of the polygon with holes trian-

gulation in 1983 [11], and in 1987, Shermer conjectured that the sufficiency bound is

⌊n+h
3
⌋ vertex guards and proved it for h = 1 [15]. This conjecture is still open after

more than 37 years. Although the conjecture is not proven yet, in 1990, for point

guards version of the problem, Hoffmann et al. demonstrated a sufficient bound of

⌊n+h
3
⌋ for point guards [9], where n is the sum of vertices of the polygon and holes,

and h is the number of holes.

In 2000, Tóth showed that for the π field-of-view version, ⌊n
3
⌋ point guards with n

as the number of vertices is sufficient [18]. Tóth also established some lower bounds for

the versions with a range of vision alpha that is less than π in 2002 [17]. Although the

bound of ⌊n
3
⌋ was the same bound of Chvátal and Fisk regardless of the restriction on

the field of view, Tóth had used point guards for guarding the polygon, and the bound

for vertex guards version could have been different. Therefore, in 2005, Speckmann

and Tóth proved a bound for vertex guards, saying that any simple polygon with

n vertices, k of which are convex, can be monitored by at most ⌊2n−k
3

⌋ edge-aligned

vertex π-guards [16].

9



1. INTRODUCTION

To achieve this, they employed a specific type of pseudo-triangulation known as

pointed pseudo-triangulation, which minimizes the number of pseudo-triangles within

the polygon to k − 2. They then demonstrated that each pseudo-triangle can be

guarded using ⌊2ℓ−3
3

⌋ guards where ℓ is the number of vertices in the pseudo-triangle.

Since the dual graph of pseudo-triangulation is a tree, Spekmann and Tóth utilized

a directed approach to identify three potential guard sets. Each of these sets was

capable of overseeing all the pseudo-triangles, and they showed that the union of

these sets encompassed all the vertices of each pseudo-triangle. Through detailed

calculations, they determined that the total number of vertices guarded across all

three sets amounted to 2n− k. Consequently, by selecting one of the three sets with

the minimum cardinality, they achieved a guard placement of ⌊2n−k
3

⌋.

The Art Gallery problem has been well-studied in the past, and we just explained

some important and related versions here. There is a rich literature on the Art Gallery

problem for which we refer the reader to [1, 3, 4, 5, 9, 11, 12, 16, 18, 17].

1.3.2 City Guarding

To the best of our knowledge there are two works giving bounds for the City Guarding

problem. The first one is the work by Bao et al. [2], and the latter is a work by Daescu

and Malik [6].

Bao et al. [2] studied the City Guarding problem for a city with a rectangular

border containing k rectangular-base buildings that are orthogonal (to the city bound-

ary) with arbitrary positive widths, lengths, and heights. In their study, the cameras

are assumed to have 360◦ field of view and be positioned only at the top corners of

the buildings or the four corners of the city border. They showed that ⌊2(k−1)
3

⌋ + 1

guards are always sufficient and sometimes necessary to guard the roofs. They also

showed that k+ ⌊k
4
⌋+1 guards are sufficient to guard walls and ground. For the city

guarding (roofs, walls, the ground), they showed the sufficiency of k+ ⌊k
2
⌋+1 guards.

For Roof Guarding, they made the assumption that the building heights can be

arranged in a way that avoids cycles for roof visibility. This allowed them to simplify

the problem by transforming it into a graph. In this graph, each roof is denoted

10



1. INTRODUCTION

by a node, and if a potential guard position on the roof a can monitor the roof b

completely, a directed edge from the roof a to roof b is added. Due to the ordered

heights of the buildings, the resulting graph takes the form of a directed acyclic graph

(DAG).

In Ground andWall Guarding, they simply reduced the problem to the Art Gallery

problem for orthogonal polygons with holes. it can be done by projecting each build-

ing vertically to the ground, which gives k rectangular holes inside a rectangle (the

city border) as the polygon. According to Hoffmann et al. results for this reduced

problem, ⌊n+h
4
⌋ vertex guards can always monitor an orthogonal polygon with h holes,

where n is the total number of vertices of polygon and holes [10]. Bao et al. applied

this bound to the Ground and Wall Guarding problem where n = 4 + 4k and k is

the number of buildings (which are the h holes, respectively). So, by calculation,

1 + k + ⌊k
4
⌋ is achievable.

In addressing the City Guarding variant, they applied an approach based on

O’Rourke’s method of partitioning orthogonal polygons into L-shaped polygons [13,

11]. They projected the buildings to the ground like the previous variant to achieve

rectangular holes. Then, they used a vertical cut to connect the top right vertex of

each hole to the enclosing rectangle to obtain an orthogonal polygon P without holes.

After this, Bao et al. conducted partitioning using the adapted L-shaped partition

algorithm as outlined in [13, 11]. For each histogram, they sequentially numbered

all reflex vertices from right to left, starting from 1. Subsequently, they partitioned

each histogram by introducing vertical cuts at every even-numbered indexed reflex

vertex. The outcomes of these steps resulted in a collection of k + ⌊k
2
⌋+ 1 L-shaped

orthogonal polygons, for which they then allocated guards to the possible positions

on the right.

Recently, Daescu and Malik [6] studied the City Guarding problem for cameras

with 180◦ field of view. They explored two versions: (a) axis-aligned buildings and (b)

arbitrary-orientated buildings. They proved that 2k+⌊k
4
⌋+4 cameras are sufficient to

guard axis-aligned buildings. For arbitrarily oriented buildings, they gave an example

that requires 3k+1 cameras for any k ≥ 1. They conjectured that 3k+1 cameras are

11
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also sufficient. See Figure 1.4.1(a) for an example of arbitrary-oriented rectangular

buildings.

The versions of the problem they have explored differ from the version studied by

Bao et al., primarily due to a crucial assumption regarding guard placement. While

Bao et al. positioned guards on the top corners of buildings and the four corners

of the city, Daescu and Malik constrained guard placement exclusively to the top

corners of buildings. This exclusion of city border’s corners differentiates the new

version from the former version notably.

Additionally, considering the cameras’ 180◦ field of view, it is essential to specify

the alignment of the guards. In this version, each guard is positioned in a way that

the visible and obscured regions are divided by a vertical plane parallel to one of the

building’s walls where the camera is installed. If we imagine buildings to be projected

into the plane, we can say the guards are edge-aligned.

It is worth mentioning that the field of view is restricted both horizontally and

vertically, and each guard is in the form of a half-sphere.

For problem version (a), in which the structure of the city is similar to Bao et

al., Daescu and Malik proved a tight bound of k for the Roof Guarding variant.

Sufficiency of the bound is obvious as we have k buildings. They proved the necessity

of the bound by giving an example of ordered buildings in terms of heights from high

to low in a way that each building blocks the vision of the previous building’ guards

over the next buildings. You can see this example and possible guard placements for

each of two consecutive buildings in Figure 1.3.1. As version (a) can be categorized as

a special case of version (b), this tight bound can be applied to both of the versions.

Daescu and Malik established a theorem that enables a more focused approach to

guard by specifically targeting the roofs, walls, and ground of buildings. According

to this theorem, if guards are positioned to cover the roofs, walls, and ground of the

city, then every point within the city’s aerial space is monitored.

Working on version (a) by using the aforementioned theorem, they concentrated

on guarding the walls and the ground in a way that the guards placement maintains

guarding roofs as well. They employed the strategy of constructing staircases and

12



1. INTRODUCTION

(a)

(i) (ii)

(b)

Fig. 1.3.1: (a) Configuration of buildings. (b) Potential guard positions, trying to see both of the
buildings; borrowed from [6].

extending walls to establish the sufficiency bound of 2k + ⌊k
4
⌋ + 4. Various possible

staircases are illustrated in Figure 1.3.2 sourced from [6]. Identifying the staircase

with the minimum number of involved buildings, denoted as δ to be equal to ⌊k
4
⌋ +

3, they placed δ + 1 = ⌊k
4
⌋ + 4 cameras to guard the staircase. Subsequently, by

extending the walls of all the buildings in the opposite direction of the staircase, they

demonstrated that 2k cameras suffice to guard the remaining regions. The guards are

positioned, ensuring that each building has a guard that is looking at both its roof

and the designated region it is assigned to monitor. This resulted in a total bound

of 2k + ⌊k
4
⌋ + 4. Importantly, this bound remains consistent for both the Walls and

Ground Guarding variant and the City Guarding variant.

In version (b), where buildings have arbitrary orientations, Daescu and Malik pro-

vided an example to establish the necessity bound of 3k+1 cameras. The illustrated

example can be seen in Figure 1.3.3. In this scenario, Bi is situated within the span

of Bj for all j < i. None of the edges of Bi are visible, either partially or completely,

13
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Fig. 1.3.2: Various staircases, which are different in orientation, are shown with red
dash-dot, orange dash-dot, blue dotted, and green dashed; borrowed from [6].

from any vertex of Bj, where j < i− 1, and from any vertex of Bm, where m > i+1.

For each potential position of a vertex guard on Bi, the guard can observe at most

one edge of Bi+1. Essentially, there is no guard position on Bi from which both an

edge of Bi−1 and an edge of Bi are visible. Given this setup, they demonstrated that

each area between two successive buildings, encompassing a wall of Bi and two walls

of Bi+1, can be guarded by at least two guards leading to 2(k− 1) cameras. Further-

more, each left wall of a building necessitates at least one guard (since guards in the

intermediate regions cannot monitor them), requiring an additional k cameras. The

top and right walls of B1 and the lower wall of Bk remain uncovered, each requiring a

camera, adding a total of 3 more cameras. Consequently, they reached the necessity

bound of 2(k − 1) + k + 3 = 3k + 1.

In a companion paper, Daescu and Malik [7] studied another problem of the

same flavor; guard free space formed by orthogonally convex polygons. Given k

pairwise disjoint orthogonally convex polygons with total m vertices, the goal is to

place cameras of 180◦ field of view to guard the free space and the boundaries of

the polygons (cameras should be placed at corners of polygons and orthogonal to its

sides). An orthogonal polygon is a polygon whose edges are orthogonal to each other

(not necessarily orthogonal to the xy-axis). An orthogonal polygon is orthogonally

14



1. INTRODUCTION

B1

B2

B3

B4

Fig. 1.3.3: A city with k = 4 buildings that needs 3k + 1 guards; borrowed from [6].

convex if its intersection with any line orthogonal to its edges is either empty or a

single line segment; see for example, polygon C in Figure 1.4.1(b). Daescu and Malik

showed that for axis-aligned polygons m
2
+⌊k

4
⌋+4 cameras are always sufficient, and for

arbitrary-oriented polygons m
2
+k+1 cameras are sometimes necessary for any k ≥ 1

and any valid m. They conjectured that m
2
+ k + 1 cameras are also sufficient. See

Figure 1.4.1(b) for an example of arbitrary-oriented orthogonally convex polygons.

The primary distinction of Guarding Orthogonally Convex Polygons, setting it

apart from the City Guarding problem (Walls and Ground variant), is that, unlike

dealing with k specific shapes like rectangles, each with precisely four vertices, or-

thogonally convex polygons vary in the number of vertices, and these vertices can

be either reflex or convex. Hence, this latter problem is more generalized than City

Guarding in the context of guarding free space. Correspondingly, as we mentioned,

in tackling this problem, Daescu and Malik generalized their approach of using stair-

cases and extensions on the orthogonally convex polygons utilizing these polygons’

special characteristic, that is, the count of convex vertices for each polygon equals to

mi

2
+ 2, where mi represents its number of vertices. Likewise, the number of reflex

vertices is mi

2
− 2. Therefore, the total number of convex vertices and reflex vertices
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can be calculated as follows:

c = m− r =
k∑

i=1

mi − ri =
k∑

i=1

mi − (
mi

2
− 2)

k∑
i=1

mi

2
+ 2 =

m

2
+ 2k

r = m− c = m− (
m

2
+ 2k) =

m

2
− 2k

where c is the total number of convex vertices, and r is the total number of reflex

vertices.

Fig. 1.3.4: A configuration of k = 3 polygons with m = 44 that needs m
2
+ k+1 = 26

guards; sourced from [7]

Moreover, the proposed example of polygons’ configuration and the given argu-

ment for delivering the necessity bound for the arbitrary version of this problem is

similar to the one for City Guarding, but in this case, they employ orthogonally

convex polygons instead of rectangles. The example is shown in Figure 1.3.4.
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C

(a) (b)

Fig. 1.4.1: (a) A city with rectangular buildings. (b) Orthogonally convex polygons.

1.4 Our Contributions

In Chapter 2, We prove both conjectures of Daescu and Malik [6, 7] that 3k + 1

cameras are sufficient to guard arbitrary-oriented rectangular buildings, and m
2
+k+1

cameras are sufficient to guard arbitrary-oriented orthogonally convex polygons. Our

proofs are constructive and suggest polynomial-time algorithms for finding these many

guards. The two proofs share some similarities in the sense that both partition the

free space into convex regions and then provide an upper bound for the number of

these regions. We explain our proof for rectangular buildings first as it is easier

to explain. Then, we give a short description of how to generalize it for monotone

orthogonal polygons.

In Chapter 3, we generalize each of the two mentioned problems with tight bounds.

We prove that m − k + 1 cameras of 180◦ field of view (half-sphere) are sometimes

necessary and always sufficient to guard the city containing k buildings with any

convex-shape base and a total of m top corners, and m− k − r+ 1 such cameras are

sometimes necessary and always sufficient to guard k polygons (convex or non-convex)

of total m vertices in the plane which contains r reflex vertices.
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[17] Csaba D. Tóth. “Art galleries with guards of uniform range of vision”. In:

Computational Geometry 21.3 (2002), pp. 185–192.
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CHAPTER 2

City Guarding with Cameras of

Bounded Field of View
Ahmad Biniaz, Mohammad Hashemi

In Proceedings of the 35th Canadian Conference on Computational Geometry

In this Chapter, we first provide our proofs for the City Guarding problem, and then

we will similarly present the proofs on Guarding Orthogonal Polygons.

2.1 City Guarding

In this section, we present our algorithm for the City Guarding problem. The following

lemma, borrowed from [3], implies that to guard the entire space, it suffices to guard

roofs, walls, and the ground. Therefore, in the algorithm, we focus on guarding roofs,

walls, and the ground.

Lemma 1 (Daescu and Malik [3]). If in a city the roofs, walls, and the ground are

guarded by a set of cameras, then every point in the aerial space of the city is visible

by a camera.

Recall that the city consists of k arbitrary-oriented buildings with rectangular

basis, and that the cameras have 180◦ field of view (half-sphere) and should be placed

at corners on top of the roofs orthogonal to a wall. (We clarify that a camera could

be placed in such a way that it sees the roof of the building, as in Figure 2.1.1.)

As we explained in the previous Chapter, Daescu and Malik [3] gave an example

that requires 3k+1 cameras. This example is given in Figure 1.3.3. They conjectured

that the bound 3k + 1 is tight.
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2. CITY GUARDING WITH CAMERAS OF BOUNDED FIELD OF VIEW

We show how to guard the city with at most 3k + 1 cameras, and thus proving

the conjecture of [3]. We project the buildings onto the plane to obtain rectangles

(in dimension 2). Then, we guard the rectangles (representing roofs), their sides

(representing walls), and the space between them (representing the ground). By

Lemma 1, this would give a guarding of the city in dimension 3.

Fig. 2.1.1: A city with k = 5 buildings. The sides are extended in order
h1, h2, h3, h4, h5. The pink area is a bad region. The green marks are corner guards
and the blue mark is an boundary guard.

We start by projecting the buildings vertically into the plane; this is a typical first

step for problems of this type, see e.g. [1, 3]. Thus we obtain k pairwise disjoint rect-

angles in the plane. We may assume without loss of generality that the k rectangles

lie in a bigger rectangle called P . One can think of P as a polygon and of rectangles

as holes. Thus after this projection, each building becomes a hole in P and each wall

becomes a side of some hole. One can think of this as an instance of the Art Gallery

problem consisting of a polygon with rectangular holes.

Our next step is to guard P by cameras with 180◦ field of view. This would give

(after lifting the rectangles back to their original height) a guarding of walls and the

ground. As we will see later, our placement of cameras would guard the roofs as well.

Let h1, h2, . . . , hk denote the rectangular holes ordered arbitrarily. For each hi in

this order, we extend the sides of hi in counterclockwise direction and stop as soon
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2. CITY GUARDING WITH CAMERAS OF BOUNDED FIELD OF VIEW

as reaching another hole, an extension of a previous side, or the boundary of P ; see

Figure 2.1.1. Each extension is essentially a directed line segment whose initial point

is a hole corner. These extensions partition P into some regions that we denoted

R1, R2, . . . ; notice that we exclude the holes.

Lemma 2. Each region Ri is convex.

Proof. The region Ri is an intersection of a set of quadrants (which are convex).

Each quadrant is defined by extensions of two adjacent sides of the same hole. Since

the intersection of any set of convex objects is known to be convex, the region Ri is

convex.

Therefore, by extending the sides of the holes, the free space of the polygon

is divided into some convex regions. Chazelle, by a similar approach of extending

diagonals, proved a convex partitioning of r + 1 regions where r is the number of

reflex vertices [2].

Lemma 3. The number of regions R1, R2, . . . is 3k + 1.

Proof. We define a plane graph G = (V,E) as follows. The vertex set V consists of

the corners of the holes and the intersection points of the extended sides. We refer

to them by corner and intersection vertices, respectively. The edges in E are formed

by the sides of the holes, the extensions of sides, and the boundary of P .

We claim that each vertex of G has degree 3, and thus G is 3-regular. Each

corner vertex is incident to two sides of a hole and an extension, thus has degree 3.

Each intersection vertex is incident to an extension and two segments obtained from

the intersected segment, and thus has degree 3. Degenerate cases are rather easy to

handle, for example if two extensions hit a segment at the same point p, then we treat

p as two vertices of degree 3 instead of one vertex of degree 4.

The number of corner vertices is 4k. Each extension (of a side of a hole) defines

an intersection vertex. Thus the number of intersection vertices is the same as the

total number of sides of holes, which is 4k. Therefore |V | = 8k. Since the sum of the
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2. CITY GUARDING WITH CAMERAS OF BOUNDED FIELD OF VIEW

vertex degrees in any graph is twice the number of edges (
∑

v∈V deg(v) = 2|E|) and

G is 3-regular (
∑

v∈V deg(v) = 3|V |), we have the following equality,

2|E| = 3|V |.

Therefore,

|E| = 3|V |
2

=
3 · 8k
2

= 12k.

Let F be the set of faces of G, which includes the holes, the outerface (exterior of

P ), and the regions R1, R2, . . . . Using Euler’s formula for connected planar graphs,

we have

|F | = |E| − |V |+ 2 = 12k − 8k + 2 = 4k + 2.

Excluding the outerface and the k holes, the number of regions R1, R2, . . . is

3k + 1.

Lemma 4. Each region Ri contains a corner of a hole on its boundary.

Proof. Recall the extensions of h1, . . . , hk in this order. Observe that the boundary of

Ri contains (parts of) some extensions. Consider the last extension that was added

to the boundary of Ri, or say, closes the region Ri. The entire directed line segment

that defines this extension is part of the boundary of Ri. The initial point of this

directed line segment is a corner of a hole.

By Lemma 4 each region Ri has a hole corner on its boundary. If the boundary

of Ri has a 90◦ angle at some corner, then we call it a good region, and otherwise a

bad region; see Figure 2.1.1.

Camera Placement: Take any region Ri. If Ri is a bad region then let c be an

arbitrary corner on the boundary of Ri. We place a camera at c facing towards the

interior of Ri and perpendicular to the boundary segment of Ri containing c. We call

this camera a boundary guard—it lies on the boundary of Ri. If Ri is a good region

then let c be the lowest (i.e. with the smallest y-coordinate) corner at which the

boundary of Ri has angle 90◦. We place a camera at c facing towards the interior of
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2. CITY GUARDING WITH CAMERAS OF BOUNDED FIELD OF VIEW

Ri and perpendicular to the clockwise boundary segment at c (which is the extension

at c). We call this camera a corner guard—it lies on a corner of Ri.

Since Ri is convex (by Lemma 2) the camera that is placed on the boundary of

Ri covers the entire interior of Ri. Since we place exactly one camera for each region

Ri, (i) all regions R1, R2, . . . are guarded, and (ii) the number of cameras is equal to

the number of regions Ri which is 3k + 1 by Lemma 3. Therefore we have guarded

the polygon P by 3k + 1 guards. As discussed earlier, this gives a guarding of walls

and the ground in the city.

We claim that our camera placement, also guards the roofs. Observe that for each

hole h it holds that one of its corners is the lowest corner of angle 90◦ on the boundary

of some good region Ri. Notice that such a lowest corner of Ri is uniquely defined

by h. The camera that is placed at that corner (perpendicular to the extended side),

guards the roof of h. The following theorem summarizes our result of this section.

Theorem 5. Given k arbitrary-oriented rectangular-base buildings, we can guard the

entire space (the ground, walls, roofs, and the sky) with at most 3k + 1 cameras of

180◦ field of view that are placed at top corners of buildings orthogonal to a wall. The

bound 3k + 1 is the best achievable.

2.2 Guarding Orthogonally Convex Polygons

In this section we present our algorithm for guarding the free space formed by or-

thogonally convex polygons. Recall that the scene consists of k arbitrary-oriented

orthogonally convex polygons, and that the cameras have 180◦ field of view and

should be placed on corners of polygons orthogonal to a side. We may assume with-

out loss of generality that the k polygons lie in a rectangular polygon called P . The

free space, that we need to guard, is the interior of P minus the k given polygons.

As outlined in the preceding chapter, Daescu and Malik [4] presented an instance

requiring m
2
+k+1 cameras. The details of this example are provided in Figure 1.3.4.

They conjectured that the bound m
2
+k+1 is tight and here we prove this conjecture.
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2. CITY GUARDING WITH CAMERAS OF BOUNDED FIELD OF VIEW

Fig. 2.2.1: Three orthogonally convex polygons in the plane. The green marks are
corner guards.

Similar to our algorithm for the City Guarding in previous section we extend the

sides of the polygons to partition the free space into convex region and then use one

camera for each region. Let h1, h2, . . . , hk denote the polygons in an arbitrary order.

For each hi in this order, we extend the sides of hi in counterclockwise direction

and stop as soon as reaching another polygon, an extension of a previous side, or

the boundary of P . We only extend the sides whose extensions do not intersect the

interior of hi; see Figure 2.2.1. Thus we extend one side for every convex corner of a

polygon. These extensions partition the free space into some regions that we denoted

R1, R2, . . . .

By an argument similar to that of Lemma 2 we can show that each Ri is convex.

By an argument similar to that of Lemma 3 we can show that the number of

regions Ri is
m
2
+ k + 1. We define a 3-regular plane graph G = (V,E) as before.

Among all corners, we only introduce vertices for convex ones. By a simple counting

argument that we showed in the preceding Chapter, the total number of convex

corners is c = m
2
+2k; see also [4]. Thus the number of vertices of G is 2c, one vertex

for each convex corner and one vertex for its extension. Thus |V | = 2c = m + 4k.
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Since the graph is 3-regular, the total degree is 3|V | = 3m + 12k, which is equal to

2|E|. Hence |E| = 3m
2
+ 6k. Thus, for the number of faces we get

|F | =
(
3m

2
+ 6k

)
− (m+ 4k) + 2 =

m

2
+ 2k + 2.

Excluding the outerface and the k holes, the number of regions Ri is
m
2
+k+1. Similar

to Lemma 4 we can show that each Ri has a corner on its boundary. We classify the

regions by good and bad and then place cameras on the corners (one camera for each

Ri) similar to our placement in the previous section. This would guard the free space

with m
2
+k+1 cameras. The following theorem summarizes our result in this section.

Theorem 6. Given k pairwise disjoint arbitrary-oriented orthogonally convex poly-

gons of total m vertices in the plane, we can guard the entire free space with at most

m
2
+ k + 1 cameras of 180◦ field of view that are placed at the corners of the polygons

orthogonal to a side. The bound m
2
+ k + 1 is the best achievable.

Remark. It is easily seen that the algorithm of this subsection can be generalized

to guard cities with buildings that have orthogonally convex bases. In fact, the City

Guarding in the previous subsection is a special case of this problem where m = 4k.
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CHAPTER 3

Guarding Free-space of Polygons

using Vertex Half Guards
Ahmad Biniaz, Mohammad Hashemi

In this Chapter, we first generalize the City Guarding problem, and then we will

similarly generalize Guarding Orthogonally Convex Polygons to Guarding the Free-

space of Simple Polygons.

3.1 City Guarding with Convex-shape Base Build-

ings

We have observed that our established bounds in the City Guarding problem can

be extended when the city border and the ground bases of buildings are any convex

polygon, not limited to rectangles.

The achieved result obtained for the City Guarding problem in Chapter 2 was

expressed in terms of k, representing the number of buildings. To generalize the

problem, we may face buildings with varying numbers of walls (at least 3), resembling

the scenario encountered in Guarding Orthogonally Convex Polygons. This implies

the need to introduce the total number of top corners of the buildings as a variable

in the problem.

The generalized theorem we have derived is as follows:

Theorem 7. Given k arbitrary-oriented convex-shape-base buildings with a total of m

corners inside a convex-shape city border, we can guard the entire space (the ground,
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walls, roofs, and the sky) with at most m− k + 1 cameras of 180◦ field of view (half-

sphere guards) that are placed at top corners of buildings orthogonal to a wall. The

bound m− k + 1 is tight.

B1 B2

B3

Fig. 3.1.1: A city with k = 3 buildings and a total of m buildings’ corners that needs
m− k+1 guards. m− k+1 points are shown with a red cross, each of which can be
guarded by one distinct guard.

Proof. The sufficiency bound can be derived as a corollary of Theorem 5. Since each

side is extended, resulting in the creation of a new vertex with each extension, we

maintain a 3-regular graph. Therefore, the bound can be attained by substituting

2m as the number of vertices in the formula for the sum of the degrees and the Euler

Formula.

|E| = 3|V |
2

=
3 · 2m

2
= 3m.

|F | = |E| − |V |+ 2 = 3m− 2m+ 2 = m+ 2.

Subsequently, by excluding both the outerface and the k holes, we obtain m + 2 −
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k − 1 = m− k + 1 convex regions. Likewise, each of these regions can be monitored

by either a corner or a boundary guard, ensuring that each roof is covered by at least

one of the designated corner guards.

To establish the necessity bound, we propose a city structure illustrated in Figure

3.1.1. This city structure involves k buildings with any arbitrary size which have m

corners in total. Given this arrangement, we have demonstrated m − k + 1 points

near the walls of the buildings with a red cross. Considering the restrictions on the

potential cameras (they can be placed on the top corners orthogonal to a wall with

180◦ horizontal and vertical field of view), it is clear that no potential camera can

monitor two of these points. Therefore, we need at least one camera to guard these

points, and we can calculate the number of required cameras to be m− k + 1, which

gives us the necessary bound.

Consequently, the bound of m− k + 1 is tight.

3.2 Guarding Free-space of Simple Polygons

In monitoring the open spaces within polygons, as opposed to City Guarding, there

is no requirement to cover the interior of the polygons. This flexibility enables us to

extend this problem to contain any simple polygon.

The generalization can be suggested as a corollary as follows:

Theorem 8. Given k pairwise disjoint arbitrary-oriented simple polygons of total m

vertices in the plane surrounded by a rectangular border, we can guard the entire free

space with at most m− r − k + 1 cameras of 180◦ field of view that are placed at the

corners of the polygons orthogonal to a side. This achieved bound is tight.

Proof. The sufficiency bound can be derived as a corollary of Theorem 6. Likewise,

only sides ending to a convex vertex are extended, resulting in the creation of c = m−r

new vertices, where c is the total number of convex vertices, and r is the total number

of reflex vertices. By a similar argument, this gives us a 3-regular planar graph
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(we ignore reflex vertices and consider each segment of the boundary of polygons or

the rectangular border as a single edge). Therefore, the bound can be attained by

substituting 2c as the number of vertices in the formula for the sum of the degrees

and the Euler Formula:

|E| = 3|V |
2

=
3 · 2c
2

= 3c.

|F | = |E| − |V |+ 2 = 3c− 2c+ 2 = c+ 2.

Subsequently, by excluding both the outerface and the k holes, we obtain c+2−k−1 =

c− k+1 = m− r− k+1 convex regions. Each of these regions can be monitored by

either a corner or a boundary guard, ensuring that each roof is covered by at least

one of the designated corner guards.

To establish the necessity bound, we can simply add some reflex corners to the

example in Figure 3.1.1. In fact, we can show that reflex corners do not increase the

need for cameras. in that example, c = m and c − k + 1 were necessary, and after

adding reflex corners, we have c = m− r. So, subbing it in the c− k+ 1 gives us the

bound of m− r − k + 1.
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CHAPTER 4

Conclusion

In this thesis, we addressed two problems related to city guarding and the art gallery.

First, we established that for a city with k rectangular buildings, it always takes

3k + 1 cameras with a 180◦ field of view to sufficiently guard the entire free space,

including ground, walls, roofs, and the sky, proving a previously proposed conjecture.

Similarly, for k orthogonally convex polygons with a total of m vertices in the plane,

we demonstrated that it requires at least m
2
+ k+1 cameras with a 180◦ field of view

to guard the free space.

Furthermore, we generalized the previously mentioned problems to more complex

scenarios. For a city composed of k buildings with arbitrary convex-shaped bases and

a total of m top corners, we established that to guard the entire city, including its

ground, walls, roofs, and sky, it is sometimes necessary and always sufficient to use

m− k + 1 cameras with a 180-degree field of view. Similarly, for a set of k polygons,

whether convex or non-convex, with a combined total ofm vertices in the plane, which

includes r reflex vertices, it is sometimes necessary and always sufficient to employ

m− k− r+ 1 cameras with a 180-degree field of view to guard the free space. These

results provide precise bounds for camera placement in these generalized scenarios.

4.1 Discussion

We investigated a specific version of city guarding, considering particular constraints

and assumptions, and we also extended our analysis to more generalized scenarios.
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However, it is worth mentioning that this problem has many applications, and to

address them, various assumptions in the problem can be generalized. Below, we

explain some ideas for discussion, each presenting potential future research:

One of the assumptions in the studied versions of city guarding is that the buildings

are disjoint and have some arbitrary width, length, and height. However, one can

suggest a scenario where buildings are stacked on top of each other like the tower

structures commonly found in metropolitan cities. It can be an amazing case to

study.

Another limitation was that the shape of the buildings’ bases were polygonal. An

interesting idea can be to consider buildings with a curved base or explore the concept

of circular structures. The idea of this scenario comes from the modern architectural

designs of circular buildings.

In urban environments, specific high-importance areas, including buildings, streets,

and open spaces, require enhanced monitoring, especially during peak hours or periods

of high traffic. The need for effective coverage in these regions increases the number

of required cameras. For this purpose, there exists a guarding problem known as the

k-guarding problem, which has been explored in previous studies such as [1, 2]. The

objective of this problem is to place a minimum of k guards to ensure the security of

the designated area. We can study k-guarding in the context of city guarding.

In the studied versions of city guarding, each guard can see an infinite range if

there is no obstacle within its vision. However, it is clear that this assumption is

not real, as even the most advanced cameras experience a loss of resolution when

monitoring over long distances. Therefore, one awesome idea is to study a version of

the problem where the range of vision is given, meaning each guard can only observe

within a defined radius.

While we have explored several interesting versions of the problem, particularly

those involving constraints on the definition, there are still many more unexplored

variations to study.
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