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ABSTRACT

Deep learning models have recently achieved remarkable progress in Natural Language

Processing (NLP), specifically in classification, question-answering, and machine transla-

tion. However, NLP models face challenges related to security and privacy. security-wise,

even small perturbations in the input can significantly impact a model’s prediction. This

highlights the importance of generating natural adversarial attacks to analyze the weak-

nesses of NLP models and bolster their robustness through adversarial training (AT). Con-

versely, Large Language Models (LLMs) are trained on vast amounts of data, which may

include sensitive information. If exposed, this poses a risk to personal privacy. LLMs can

memorize portions of their training data and reproduce them verbatim when prompted by

adversaries. To address these limitations, we delve into the potential of reinforcement learn-

ing (RL) based methods in tackling these issues and surmounting the shortcomings present

in the existing literature. RL excels in achieving specific objectives guided by a reward

function. In pursuit of this, we introduce an End-to-End framework that employs a proxi-

mal policy gradient—a reinforcement learning approach—to cultivate a self-learned policy

directed by the chosen reward function. The language model (LM) takes on the role of a

policy learner. For adversarial attacks, we opt for a combination of the mutual implication

score and the negative likelihood of samples generated by the victim classifier. This ap-

proach allows us to craft perplexing samples while preserving their semantic significance.

In addressing memorization, we employ the negative similarity function, BERTScore, to

develop a ”Dememorization Privacy Policy.” This policy effectively mitigates the risks as-

sociated with memorization. Our findings indicate that our framework has proven effective

in enhancing the performance of the vanilla classifier by 2% when generating adversarial

attacks and reducing LM memorization by 34% to mitigate privacy risks while maintaining

the general LM performance.
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CHAPTER 1

Introduction

In recent years, the advancements in Deep Learning models have been awe-inspiring, par-

ticularly in Natural Language Processing (NLP). These models have significantly revolu-

tionized various tasks, such as classification, question-answering, and machine translation.

However, despite these remarkable achievements, NLP models continue to face critical

challenges that deserve attention: security and privacy.

One of the most pressing performance-related challenges is the vulnerability of NLP

models to even slight input perturbations. These minor changes in input can cause signif-

icant alterations in their predictions, as extensively documented in studies like [10, 12, 1,

19, 11, 5]. Such susceptibility to adversarial attacks can undermine the reliability of these

otherwise powerful models.

On a different front, we encounter the rise of Large Language Models (LLMs), trained

on vast datasets containing billions of tokens, as seen in [16, 2, 6, 7]. While these models

have shown remarkable capabilities, a significant concern arises due to their potential ac-

cess to sensitive and private information in the training data. The extraction of private data

by malicious actors poses a severe threat to personal privacy.

Notably, LLMs have demonstrated the disconcerting ability to memorize portions of

their training data and accurately reproduce them when prompted by adversaries [4]. This

memorization phenomenon raises profound concerns about data privacy and the need for

effective privacy-preserving mechanisms. Addressing this challenge becomes crucial to

ensuring the integrity and trustworthiness of intelligent systems.

In the forthcoming sections, we will delve deeper into the issues of adversarial attacks
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1. INTRODUCTION

and data memorization problems, shedding light on some hypotheses that offer explana-

tions for these phenomena. Understanding these challenges and finding robust solutions

is essential to unlocking the full potential of NLP models while safeguarding individual

privacy and data integrity.

1.1 Textual Adversarial Attacks

Generating adversarial attacks against NLP models is more challenging than for vision

models [15]. NLP models rely on discrete word representations, where even slight adjust-

ments can drastically change the meaning or validity of a phrase. Unlike images, NLP

models require a deeper understanding of context and language structure, making success-

ful attacks difficult.

Attacks Properties. For a victim classification model, denoted as Fθ, tested on dataset

Dt with samples (xt, yt), an adversarial attacker aims to perturb xt to maintain semantic

similarity to humans but destroy its meaning when classified by the model. This generates

an adversarial example, x′
t, that the model misclassifies.

According to the researchers, the source of adversarial behavior in Deep Learning mod-

els is an insufficient generalization of the models on unseen data due to a lack of diversity

in training samples or a lack of the number of samples necessary to make the model gen-

eralize well on unseen data [18]. Another hypothesis is that the linear behavior of Deep

Learning models in high-dimensional space leads to the adversarial example problem [8].

Textual adversarial attacks have received less attention than computer vision approaches

because the development process of textual adversarial examples has more constraints than

computer vision. The text’s discrete nature is regarded as the first constraint. In contrast

to modifying a few pixels in an image, a slight adjustment of characters or words may be

realized, which is regarded as a second constraint. The last constraint is semantic; adding,

replacing, or removing a character or word alters the entire meaning of the phrase, as op-

posed to images, where changing the values of pixels does not affect the overall semantics.

Crafting successful adversarial text examples is difficult due to the stated constraints for

textual adversarial generation, such as semantic consistency and syntactic legitimacy. In

2



1. INTRODUCTION

general, attacks can be noise added to the text to disrupt the model and expose a vulnerabil-

ity, such as adding many commas or repeated phrases, which may confuse the model and

modify its prediction. However, these attacks are frequently unnatural and lack semantic

significance. Furthermore, these adversarial examples show the models’ unnatural blind

spots; as a consequence, the generated instances are not the examples that the classifier

is likely to encounter when deployed [8]; even if they exist, they can be easily detected,

and eliminated. On the other hand, natural adversarial instances [20] are semantic/syntac-

tic consistent. Furthermore, the generated instances would be similar to those seen by the

model during real-world deployment. Textual adversarial attack generation may be divided

into four categories: text granularity, model access, target type, and generation approach.

Text granularity refers to the level of detail or the size of the textual units within a text. It

involves examining how text is divided and organized into smaller components or segments

and can be classified as follows:

• Character-level attacks can be generated by inserting, replacing, deleting, or swap-

ping characters in the text. This type may lack semantic/syntactic consistency be-

cause it has an easily detectable misspelling or grammatical error.

• Word-level attacks: the attack can be generated using the same actions mentioned in

the character level but on the words.

• Sentence-level attacks: the attack can be generated by inserting new sentences or

changing the whole structure of the sentence by paraphrasing or style-transfer meth-

ods.

Model access refers to the knowledge that can be accessed through the model to initial-

ize the attack; it can be classified into two categories:

• White-box attack: all of the knowledge available about the model can be accessed

in this scenario, including but not limited to inputs, outputs, architecture, activation

functions, and loss functions. Therefore, white-box attacks can generate a high suc-

cess attack rate because of the available information about the entity to be attacked.

3



1. INTRODUCTION

• Black-box attack: only has access to the output by injecting some examples into the

model.

Based on the attack’s purpose, it falls into two categories:

• Targeted attack, where the objective is to force the model to produce a specific incor-

rect prediction

• Untargeted attack, which aims to alter the model’s prediction without a specific out-

come in mind.

Studies proposed a data augmentation-based approach and an adversarial training-based

approach to enhance the model’s generalization ability and mitigate the robustness issues.

The main idea of data augmentation methods is to augment the training data to add new

features that assist the model in generalizing better on unseen data; the methods can use

back-translation, paraphrasing, replacing, removing, or adding new words based on the

context. One of the drawbacks of data augmentation methods is that it does not guarantee

that the generated examples lie in the subset, which confuses the model or which the model

fails to classify correctly; in other words, it is not directly designed to generate examples

that add new features to the model in order to improve its robustness on the unseen data.

Adversarial learning-based approaches solve the previous limitations by generating exam-

ples that confuse or classify the model incorrectly to enhance the model’s ability on this

subset.

1.2 Data Memorization

In the context of Language Models (LMs), data memorization refers to the undesirable

behavior where the LM inadvertently reproduces parts of its training data [4]. This phe-

nomenon raises concerns about privacy violations as it exposes sensitive user data. Ex-

tensive research [4] has shown that the size of the language model directly influences the

degree of memorization. More extensive models tend to exhibit higher levels of memoriza-

tion, making it crucial to address this issue in developing LMs. Furthermore, when trained
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on corpora containing duplicated instances, certain model families demonstrate heightened

memorization capabilities. In such cases, the LM becomes remarkably adept at reproduc-

ing these duplicated sentences verbatim, exacerbating data exposure’s privacy and security

concerns [13]. Another factor contributing to memorization is the length of the prompt or

context used during LM training or interactions. As the number of tokens in the prompt or

context increases, so does the level of memorization. This increase in memorization can

be perceived as an adversary gaining access to more information, making targeted attacks

more specific, aiming to extract exact information from the LM.

For evaluating memorization in language models, two primary definitions are com-

monly used. The first one is known as ”Eidetic memorization,” [3] which identifies a string

S as memorized if a prompt P exists, such that the model generates a response Q that in-

cludes string S. Both the prompt and the response are present in the training dataset. This

definition mainly focuses on measuring verbatim cases of memorization and has found

wide usage in the literature [13, 14, 4]. However, a notable drawback of this approach is

that even a minor edit in the generated sequence could render it a non-memorized instance,

leading to a reduced memorization ratio and creating a false impression of privacy. To ad-

dress this limitation, the second definition for quantifying memorization is called ”approx-

imate memorization,” [9], which offers a more accurate way to encompass various types

of memorization. In this definition, the model’s output for a given prompt p is considered

memorized if it falls within a chosen edit distance of the prompt’s true continuation present

in the training set. This approach allows for a more lenient memorization assessment, cap-

turing cases where the model may produce slightly different but semantically equivalent

responses compared to the training data.

Language models memorize data due to their training objective [3]. During the train-

ing process, a language model is designed to maximize the likelihood of the data found in

its training set, denoted as D. This set comprises various examples, such as specific news

articles or webpages from the internet. The primary goal of training is to minimize the loss

of predicting the next token accurately, given the previous sequence of tokens, across each

training example in the dataset, represented as D. Consequently, this training setup encour-

ages the language model to strive for an ”optimal” solution, which involves memorizing
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the answer to the question ”what token follows the sequence x1, ..., xi−1” for every prefix

present in the training set.

In essence, language models become proficient at memorization because they are trained

to predict tokens based on contextual information from the data they have been exposed to.

As they encounter various sequences repeatedly during training, they develop the capability

to recall and generate appropriate tokens, enabling them to mimic coherent and contextually

relevant language. However, while memorization may be advantageous during training, it

can have drawbacks in real-world scenarios where models need to generalize effectively to

previously unseen data. Striking a balance between memorization and generalization is a

crucial challenge in developing and deploying robust language models.

1.3 Reinforcement Learning Methods

Reinforcement learning (RL) is a machine learning paradigm focused on training models

to make sequences of decisions to maximize cumulative rewards, even when these rewards

may not be differentiable. It involves an agent interacting with an environment, taking ac-

tions, and learning from their consequences. RL plays a pivotal role in language models in

enhancing their performance across various natural language understanding and generation

tasks. The critical elements of reinforcement learning pertinent to language models can be

briefly outlined as follows:

1. Agent: Within the realm of RL, the agent serves as the decision-maker. The agent

is essentially the model itself in language models, such as a neural network-based

language model like GPT-3.

2. Environment: The environment represents the external system that the agent engages

with. This environment could encompass various applications for language models,

including dialogue systems, games, recommendation engines, and more.

3. Actions: In the context of language models, actions correspond to the generation of

tokens. The model takes action by producing tokens that directly impact the ongoing

dialogue or interaction.
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4. Rewards: Rewards are numerical values that the RL agent receives from the envi-

ronment following actions (in our case, generating tokens). These rewards act as

feedback, signaling the agent’s performance. In language models, rewards can be

determined using metrics or human feedback, such as accuracy, perplexity, ROUGE,

and BLEU.

5. Policy: The policy in RL serves as a strategy guiding the agent in action selection

based on its current state. For language models, this policy is often embodied by the

model’s parameters, refined during training to enhance its ability to generate text that

maximizes rewards.

6. Learning: RL encompasses the process of the agent learning from its interactions

with the environment. Language models facilitate this learning through policy gra-

dient methods like the proximal policy gradient or natural language optimization

policy. The model adjusts its policy to elevate the likelihood of choosing actions

leading to higher rewards.

7. Exploration vs. Exploitation: In RL, models must balance exploring new actions to

discover improved strategies and exploiting known actions that yield high rewards.

This trade-off also holds significance in language models, where they must harmo-

nize creativity and coherence in text generation.

1.3.1 Language Models & Policy Gradient

Given tokens x<t = {x0, x1, . . . , xt−1} and accumulated hidden states hθ<t before time

step t. An auto-regressive language model (LM) is trained to maximize the probability of

the next step token x̂t. LM as a generatorG selects the token that has the highest probability

xt as the t-th step decoding output:

xt ∼ argmaxx̂t
p(x̂t|x<t) = G(x<t, hθ<t) (1)

In the reinforcement learning framework, we define the state at step t as all the se-

quences generated before t st = x<t, and the action at step t as the t-th output token
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(at = xt). The policy πθ represents the probability of selecting token xt (action at) given

the preceding state st = x<t. This probability is derived from the softmax output of the

hidden states πθ(at|st) = softmax(hθ<t), and this interpretation extends to the conditional

case as well. The single-step reward for token xct at step t can defined as follows:

R(xct) = Et

[
πθc(at|st)
πθ(at|st)

r(xct)

]
− βKL(θ||θc) (2)

Where r(xct) is the selected reward function. The KL penalty is applied per token using

a reference model, which is the original model that does not receive the signal reward to

prevent significant deviations.

KL Penalty. The policy of the fine-tuned model may deviate significantly from the old

policy (the model before fine-tuning), potentially leading to a less coherent and relevant

generation. To address this issue, we introduce a KL divergence penalty term to quantify

the dissimilarity between these two policies. This step helps ensure that our optimization

process remains within a trustworthy region. The KL divergence, calculated for the poli-

cies, is expressed as:

KL(θ||θc) =
∑
i∈[1,t]

πθ(ai|si) · log
πθ(ai|si)
πθc(ai|si)

(3)

Policy Gradient. Proximal policy gradient approach with top-p sampling 0.95, known

as Natural Language Policy Optimization [17]. Given the reward and the definitions de-

scribed above, we update our policy at t-th step as:

θnew = argmaxθE [min (rt(θ), clip (rt(θ), 1− ϵ, 1 + ϵ))At] (4)

where rt(θ) =
πθ(at|st)
πθold (at|st)

. The optimization objective is to find the new policy parameters

that maximize expected rewards while keeping the policy update bounded within a certain

range defined by the clipping parameter. This helps maintain stability during training. PPO

also balances the trade-off between exploration and exploitation by encouraging actions

that have higher estimated advantages while avoiding drastic policy changes that could

disrupt learning.
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1.4 Thesis Contribution

The primary objective of this research study was to investigate the impact of RL-based

solutions on issues like data memorization and adversarial attacks. Through extensive em-

pirical experiments and analysis, this study has contributed to addressing the literature’s

limitations. The main contributions of the thesis can be summarized as follows:

• Advancing Understanding of RL in LM Limitations: This research significantly

advances our understanding of how RL can effectively address LM limitations. For

the memorization problem, we demonstrate that employing RL for learning unlearn-

ing policies is more effective than likelihood-based methods and pre-processing tech-

niques. This approach effectively tackles the issue without compromising the LM’s

overall performance in downstream tasks. Moreover, employing RL to generate tar-

geted attacks for LM-based classifiers successfully exposes model vulnerabilities

while preserving the semantic meaning of the generated sentences.

• Empirical Evidence of Framework Effectiveness: This research provides com-

pelling empirical evidence supporting the effectiveness of the developed framework.

We conducted comprehensive experiments across various classification tasks, includ-

ing sentiment analysis, offensive detection, topic classification, and hate speech de-

tection for an adversarial generation. Our findings reveal that employing adversarial

training significantly enhances the performance of the vanilla classifier. Regarding

the memorization problem, we applied the framework to nine classification bench-

marks and observed minimal to no degradation in the LM’s overall performance.

• Insights into LM Weaknesses: The findings of this study offer valuable insights

for the design and implementation of future work. We identify vital weaknesses of

LM-based classifiers, such as their susceptibility to changes in writing style or the in-

troduction of new words, which can confuse the classifier. Additionally, we provide a

geometric interpretation by visually comparing the generated and original sentences.

Furthermore, the research underscores the importance of providing a practical solu-

tion to the memorization problem, as our proposed approach is independent of the
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number of protected samples and requires only one training phase, unlike current

methods in the literature.

1.5 Thesis Overview

The remaining sections of the thesis are organized as follows: chapter 2 introduces our

approach to address the pressing privacy challenges by formulating a ”Dememorization

Privacy Policy.” This chapter delves into the core of our methodology and its potential

for privacy protection. chapter 3 is dedicated to an in-depth exploration of the adversarial

generation challenges, where we unveil our framework for achieving natural adversarial

generation. This chapter showcases our dedication to tackling intricate problems. Finally,

the thesis concludes with chapter 4, where we summarize our findings, draw insightful con-

clusions, and propose a forward-looking discussion of potential future research avenues.
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CHAPTER 2

Preserving Privacy Through

Dememorization: An Unlearning

Technique For Mitigating Memorization

Risks In Language Models
ALY M. KASSEM, OMAR MAHMOUD, SHERIF SAAD

In Proceedings of The 2023 Conference on Empirical Methods in Natural Language Pro-
cessing

2.1 Introduction

Large language models (LLMs) have experienced exponential growth in recent years, scal-

ing up from millions to billions to trillions of parameters [33, 10, 13, 16]. As their scale

increases, the training sets for these models also expand to billions of tokens [18], leading

to overall performance improvements, even in few-shot learning scenarios [10]. However,

this growth in model size and training data has raised practical concerns regarding pri-

vacy risks associated with memorizing the training data. Adversaries can extract individual

sequences from a pre-trained model, even if the training dataset is publicly available [11].

Studies have shown that a language model with 6 billion parameters (GPT-J) can mem-

orize at least 1% of its training data [12]. One potential cause of this memorization is

the training strategy of the language model, as its objective is to identify the relationships

between tokens, either in an auto-regressive LM setup or through masked language mod-

elling (MLM) [15], where the model predicts the masked tokens based on their surrounding
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context [32]. Additionally, repeated instances in the training corpus can contribute to mem-

orization, as more frequent examples are more likely to be memorized [23]. To address the

issue of memorization in LLMs, several approaches have been proposed, including data

sanitization [26], the application of differential privacy algorithms[1, 3, 24, 40, 4], data

deduplication [22], and knowledge unlearning [20]. These techniques aim to prevent the

generation of memorized content. However, they also come with certain drawbacks. Data

sanitization assumes that private information can be easily identified and is not context-

dependent. Differential privacy can lead to lower-quality generative models [3]. On the

other hand, knowledge unlearning restricts the number of samples that can be forgotten at

once to avoid degrading the overall capability of the language model, which may limit its

effectiveness in real-world scenarios.

In this study, we propose a Dememorization framework for mitigating memorization

in language models by fine-tuning those models using a efficient reinforcement learning

feedback approach with just a few parameter updates.

Given samples of prefixes and suffixes from the original pre-training data of the lan-

guage model, we use a prefix as input for the language model to generate the suffix; then,

we compute the negative BERTScore [44] to measure the dissimilarity between the true

suffix and generated suffix, the dissimilarity scores are then regarded as a reward signal

to maximize in the training process, which guarantees that the approximate memorization

will be mitigated.

We experimented on GPT-Neo & OPT LMs (125M, 1.3B, 2.7B) [7, 43] with reward

functions such as BERTScore [44], the weighted sum between perplexity, and SacreBLEU.

The dememorization aims to learn a policy πD that can paraphrase the suffix given some

prefix. For example, in” Alice Green lives at 187 bob street”, the prefix is” Alice Green

lives at.” The suffix is” 187 bob street” We aim that the fine-tuned language model para-

phrase the suffix to be: 12 red street. As the suffix is paraphrased, the memorization

relationship between the prefix and suffix is minimized with little to no performance degra-

dation on the initial LM capabilities measured via nine common NLP classification bench-

marks (Hellaswag [42], Lambada [29], Winogrande [36], COPA [35], ARC-Easy, ARC-

Challenge [14], Piqa[6], MathQA [2], and PubmedQA [21]).
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We also evaluate dememorization on increasing the context of the prefix, as many stud-

ies show that as a longer context is provided, the memorization ratio increases [11, 12].

The proposed framework does not make any explicit, implicit assumptions or limitations

about the data’s structure or size to be protected. Also, unlike the DP methods, the pro-

posed framework does not apply any partition mechanism to split the data into public data

and private data; as language data cannot be partitioned[9], we apply the policy on all train-

ing data as defining, partitioning data into private and public, and limiting the number of

samples inadequate in the real-world scenarios.

To summarize, our main findings are the following:

• Using a reinforcement learning feedback approach results in little to no performance

degradation of general capabilities while being practical, consistent, & independent

of increasing the number of protected samples, and the fluency and coherence of the

generated samples are maintained.

• As the language model size increases, the convergence rate improves. Convergence

refers to the model-generated suffixes diverging significantly from the original ones

while the perplexity difference between generated and original examples decreases.

In our experiments, GPT-Neo & OPT 125M converged in four steps with four PPO

epochs per batch, GPT-Neo & OPT 1.3B converged in two steps with four PPO

epochs per batch, and GPT-Neo & OPT 2.7B also converged in two steps with four

PPO epochs per batch.

• As the size of a language model increases, the dissimilarity score increase, which the

difference between negative SacreBLEU can measure before and after applying the

framework. This suggests that larger models may tend to ”forget” the memorized

data faster.

• Combining Deduplication with Dememorization enhances privacy with insignificant

degradation(∼0.5%) in the Language model performance.
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2.2 Background

2.2.1 Memorization Definitions

In the context of memorization in large language models, we follow the definition proposed

by [23], which introduced approximate memorization. Given a string S, if a prompt P

exists, the model generates ‘s’ given ‘P,’ and the model output is memorized with some

chosen edit distance of the prompt’s true continuation in the training set. In our study, we

choose the edit distance to be a similarity measure (SacreBLEU) as proposed in [19], to be

able to capture the approximate memorization, not just the “Eidetic memorization” [11] as

the definition of verbatim memorization fails to include more subtle forms of memorization

[19].

2.2.2 RL In Language Models

Recently, instruction fine-tuning [45, 28] has emerged as a powerful technique for enhanc-

ing LM performance, particularly in reasoning abilities. One approach is to use RL with

language models, leveraging feedback from a reward function [34, 45, 28]. This feedback

improves the model’s performance by maximizing the reward. The reward function can

be based on human feedback or automated metrics like BLEU [30] or ROUGE score [25].

While RL has succeeded in various NLP tasks, such as machine translation and question-

answering, its application to address memorization in LMs still needs to be explored. In this

paper, we investigate using RL with a language model to mitigate privacy risks associated

with memorization.

2.3 Related Work

In this section, we delve into recent studies to mitigate memorization in language models,

which can be categorized into three main approaches: data pre/post-processing, differential

privacy methods, and knowledge unlearning.

Data Pre/Post-Processing: This approach reduces memorization in training data by
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applying filters before or after feeding it into the language model. One method is data

deduplication [22], which removes duplicates and improves model performance. How-

ever, it only partially protects against memorization as the model can still memorize non-

duplicate sequences. Another approach is ”MemFREE decoding” [19], which efficiently

checks the memorization in the LM generation by an n-gram in the training dataset.

Differential Privacy (DP): DP is a widely-used technique for training models to pre-

vent memorization of individual training examples [1]. While effective for fine-tuning

language models [41, 24], DP often reduces performance compared to non-private models

[3]. State-of-the-art language models are typically trained without DP, using large amounts

of data and computational resources. DP algorithms are computationally expensive, slower

to converge, and have lower utility compared to non-private methods [3]. Applying DP to

language data is challenging due to defining private information boundaries [9].

Knowledge Unlearning (UL): UL[20] is an effective method that reverses the training ob-

jective of minimizing the negative log-likelihood for forgotten tokens. It minimally affects

language modeling performance in larger models. UL has two approaches: batch unlearn-

ing for multiple samples and sequential unlearning for smaller chunks. However, unlearn-

ing a large number of samples at once significantly degrades average language model per-

formance. While UL effectively addresses memorization, it has not been tested on sample

sizes larger than 128. It does not preserve fluency or coherency for memorized prefixes,

which are crucial for practical applications.

In this work, we compare our proposed method with a data-preprocessing approach pro-

posed by [22], which shows that deduplicating helps minimize data memorization. While

this method is effective, we show that memorization is still high in the LMs pre-trained

with this approach; thus, we show that combining pre-processing with our approach, “De-

memorization,” effectively mitigates memorization. We also compare our method with UL

and show it is not inadequate or impractical in real-world scenarios due to a limited number

of samples to forget at once.
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Training Corpora Data Preprocessing LM

Pretraining LM

Negative 
Similarity

Reward FnGeneratedDeMEM-Policy-LMSubset

RL Fine-tuning

Fig. 2.3.1: First LM is pretrained on a Large Corpora in which Deduplication is Applied.
Then Subset of training Corpora is employed to learn the LM a DeMEM Policy Via Nega-
tive Similarity Feedback.

2.4 Methodology

2.4.1 Dememorization Via Dissimilarity Policy

We propose an efficient RL feedback loop with the objective of maximizing the dissimilar-

ity between the true & generated suffix (Figure 2.3.1). Using the proximal policy gradient

(PPO), we fine-tuned the pre-trained language model in our environment. The environment

used is GENERATION AS A TOKEN-LEVEL MDP, similar to the bandit environment in

that it presents a random customer prompt and expects a response. The only difference

between the employed and bandit environments is that in the bandit, we utilize a discount

factor γ = 0.95 instead of γ = 1 known as Natural Language Policy Optimization [34](see

Appendix A for more details).

Given a dataset with memorized samples, we sample a prefix P and true suffix ST , the

prefix is fed into the pre-trained LM, which generates a suffix SG; we see how it is dissimilar

to the true suffix using BERTScore, and regard that as a reward that encourages the LM to

generate dissimilar tokens which minimize the memorization. Each episode starts with a

specific prefix which generates the new token in suffix conditioned on this prefix, then by

iteratively sampling ˆxi+1 ∼ fθ(xi+1|x1, ..., xi) and then feeding xi+1 back into the model
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to sample xi+2 ∼ fθ(xi+2|x1, ..., xi+1).

P, ST ∼ Dt (1)

SG = fθ(sGi+1
|xP1 , ..., xPi

) (2)

DisScore = −BERTScore(SG, ST ) (3)

This process ends when a certain number of steps have been taken(in our case, the

number of steps means some tokens that have been generated) or an end-of-sentence token

is generated. The reward for an episode is based on how well the final state(generated

suffix) is dissimilar to the target output measured by BERTScore. Furthermore, the KL

penalty is applied per token using a reference model (the pre-trained model before fine-

tuning.) This prevents the fine-tuned model from generating a suffix that deviates too much

from the reference language model (e.g., generating white spaces). A value network V

is included beside the language modeling head to estimate the value function. The batch

size is 32 for all models; we selected a specific number of steps for each model as the

convergence rate for each model is different; we mean by convergence in this context that

the model-generated suffixes become significantly different from the original suffixes but

without a considerable loss in the perplexity as the difference between the perplexity of the

generated examples and original examples becomes smaller, so we selected the appropriate

number of steps that balance between these goals.

2.4.2 Measuring Memorization In Language Models

We adopt the concept of approximate memorization, as it provides a more precise and

adaptable approach to capturing subtle forms of memorization compared to the limitations

of exact memorization. We employ a widely accepted text similarity measure from stan-

dard Natural Language Processing (NLP) evaluation techniques to quantify approximate

memorization accurately: the SacreBLEU metric. SacreBLEU is an improved version of

BLEU, known for its stability in measuring the quality of machine-generated text. The

BLEU score calculates precision for n-grams ranging from one to four, effectively captur-
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ing the degree of overlap between the generated and reference texts. Additionally, a brevity

penalty is applied to account for differences in length between the generated and reference

texts as follows:

BLEU(SG,ST ) = min(1, SG

ST
)(
∏4

i=1 precisioni)
1
4 (4)

To measure forgetting, we consider the negative of SacreBLEU. By utilizing Sacre-

BLEU as a metric for estimating approximate memorization, we define dememorization

or forgetting as the process of minimizing the relationship between the given prefix P and

suffix S. This relationship represents the information that the adversary seeks to extract

based on the given prefix. The metric we mentioned quantifies this relationship. In an

example scenario, an adversary has the personal email address ”bob@adam.com” and

seeks to obtain the password. If the LM has memorized this association, it can provide

the password ”12345” when given the email. However, by minimizing or altering their

relationship to ”bob@adam.com” and the password ”0912,” the LM can generate valid

and meaningful output without memorizing sensitive information. This approach achieves

the dual objectives of preserving the LM’s general capability and the fluency of generated

suffixes while ensuring privacy. This solution is more practical in real-world situations than

completely removing all information, which can negatively impact the capabilities of the

language model (LM).

2.5 Experiments

We assess the effectiveness of the Dememorization approach on forgetting the memorized

instances. Next, we evaluate its impact on increasing the context length, as some research

suggests that a longer context enhances memorization by providing the adversary with

more information. Finally, we evaluate the Dememorized model on downstream tasks to

assess its general language model capabilities.

20



2. PRESERVING PRIVACY THROUGH DEMEMORIZATION

2.5.1 Experimental Settings

2.5.1.1 Memorization Dataset

We employed a subset of the Pile dataset, which was released as a benchmark for training

data extraction attacks on large Language Models. Generally, the Pile dataset contains data

from 16 different sources (e.g., books, Web scrapes, open source code). We used this ver-

sion of the subset 1, designed to be easy to extract to assess the performance of targeted

attacks. The dataset contains only 15,000 samples since the full version is not released

yet. Each sample consists of 200 tokens sampled randomly from the Pile training set. The

topics included in the subset are code, news, logs, conversations-replies, copyrights, links,

etc. Most of them are in the English language. The dataset is splitted into 13,500 samples

for training and 1,500 samples for testing.

Training & Evaluation Data. Each sample consists of a 200-token sequence divided

into 100 pre-prefix tokens, 50 prefix tokens, and 50 suffix tokens. During the training

phase, we exclusively utilized the prefix and suffix tokens. However, we tested the model

in two different settings during the evaluation phase. In the first setting, we evaluated the

model’s ability to predict the suffix when provided with only the prefix. In the second

setting, we evaluated the model’s capability to predict the suffix when given the pre-prefix

and prefix. This evaluation was designed to assess the model’s capacity to protect against

acquiring additional information or knowledge. as a longer context in a language model

can be considered a form of attack [12].

2.5.1.2 Downstream Tasks

We conduct a thorough evaluation that considers both privacy risks and the expected perfor-

mance of LMs. This evaluation involves assessing LMs’ general capabilities by measuring

their performance across diverse classification tasks. The tasks include Hellaswag [42] and

Lambada [29] benchmarks, which gauge linguistic reasoning abilities, as well as Wino-

grande [36] and COPA [35], which measure commonsense reasoning abilities. Addition-

1https://github.com/google-research/lm-extraction-benchmark
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ally, we utilize ARC-Easy, ARC-Challenge [14], Piqa [6], MathQA [2], and PubmedQA

[21] benchmarks to assess scientific reasoning abilities. In addition to these classification

tasks. We also measure the perplexity on the Wikitext [27] and Lambada [29] datasets to

gain insights into the LMs’ language understanding and modeling. Whenever possible, we

use the test sets for these evaluations; otherwise, we resort to the validation sets. Also, we

did not report Lambada’s perplexity & accuracy as it shows so high values for perplexity

& low value for accuracy for UL baseline, so to discard the anomaly and better assess the

performance.

2.5.1.3 Baseline Methods

For our experiments, we utilized the GPT-NEO family (125M, 1.3B, 2.7B), pre-trained

on the publicly available 825GB Pile dataset. Additionally, we employed the OPT family

(125M, 1.3B, 2.7B) [43], which was pre-trained on a subset of the deduplicated version

of the Pile, along with other corpora from diverse domains. OPT served as our baseline

method for deduplication, as per [20], since the deduplicated version of GPT-NEO LMs by

[22] were not publicly accessible. We also applied dememorization to the OPT LMs, which

can be seen as a combination of the deduplication approach and dememorization, resulting

in a significant enhancement in the privacy of these models. Furthermore, we included UL

[20] as a second baseline method to highlight weaknesses and distinctions.

2.5.1.4 Implementation Details

For training, we utilized the training subset and fine-tuned the GPT-Neo & OPT LMs fine-

tuned them for multiple iterations depending on the model size. To compare our proposed

method with UL & deduplication, we followed the configuration proposed by [20] to en-

sure an adequate comparison, as we randomly sample s samples from the test subset and

evaluate the models on those samples for UL since it forgets s samples only at once, we

make the LM forget the s samples and then evaluated. To follow the same configuration,

we show the average results of 5 random samplings of s samples for all of our experimental

settings.

To explore the impact of increasing the sample size to be forgotten, we performed five
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random samplings of 32, 128, and 256. Dememorization was carried out using a batch

size of 32, and a default value of learning rate of 1.41 × 10−5 was applied to all models.

We use the default value of KL Beta of 0.2 and a clip range of 0.2. The GPT-Neo & OPT

LMs were employed using the official release in the Hugging Face library. For UL training

and memorization evaluation, we utilized the official code provided by the authors, for

the selection of hyperparameters see Appendix E. In downstream tasks, we employed the

lm-evaluation-harness framework [17] for all baseline methods.

2.5.1.5 Evaluation Metrics

We conducted a comprehensive evaluation of dememorization and baseline methods, em-

ploying a multi-perspective approach to assess their effectiveness in three key areas:

(1) Measuring Forgetting: As mentioned in subsection 2.4.2, we employed negative

Sacre-BLEU and MA to quantify memorization.

(2) Evaluating Generated Suffixes: To assess text fluency, we utilized the perplexity score

of the underlying original model before forgetting. This metric enabled us to assess the

grammatical correctness and coherence of the generated suffixes.

(3) Performance on Downstream Tasks: We assessed the performance of the unlearned

models across nine classification tasks, employing accuracy scores, and perplexity mea-

surements on Wikitext and Lambada.

2.5.2 Experimental Results & Discussion

We conducted comprehensive experiments to assess the performance of dememorization

against the baseline methods. Our main observations are as follows:

2.5.2.1 Overview of The DeMemorization Performance

We comprehensively evaluated the dememorization approach on nine classification tasks,

wikitext for perplexity, and the generated samples. The evaluation results, as shown in Ta-

ble 2.5.1, demonstrate that the dememorization approach effectively provides privacy and

decreases the memorization for GPT-NEO while maintaining the LM general capability,
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which is measured by evaluating the classification tasks. It also maintains the fluency of

the general LM and generated suffix. On the other hand, the UL approach provides more

robust protection since it removes the data points completely from the training data, which

lowers the general LM capability by a large margin. This is effective privacy-wise but

needs to be more practical from the performance perspective. Thus, we tried to balance

this tradeoff by employing the dememorization approach..

Model #Samples N-SacreBLEU↑ LM(ACC)↑ LM (PPL)↓ GEN(PPL)↓ Epochs/Steps

NEO125M

32 58.44 3.46 -

128 58.41 43.36 32.28 3.83 -

256 58.82 3.79 -

+UL

32 99.19 38.62 31098.06 19.77 18

128 99.69 36.87 9683877.08 6.54 18

256 99.63 36.34 25146.84 6.03 18

+DeMEM

32 67.07 3.74

128 66.21 43.46 33.13 3.93 4

256 67.05 3.95

NEO1.3B

32 30.76 2.02 -

128 34.7 48.93 16.16 2.18 -

256 33.95 2.18 -

+UL

32 99.57 48.61 24.38 4.37 14

128 98.33 41.55 188.65 5.83 8

256 99.15 41.34 62.34 5.37 7

+DeMEM

32 52.03 2.44

128 51.34 49.40 16.70 2.62 2

256 52.58 2.65

NEO2.7B

32 26.26 1.8 -

128 27.25 52.67 13.93 1.92 -

256 27.37 1.92 -

+UL

32 99.54 49.70 324.68 4.93 11

128 97.77 47.42 41.50 9.67 8

256 99.37 39.80 118.68 4.53 8

+DeMEM

32 49.24 2.3

128 50.81 52.48 14.15 2.38 2

256 50.91 2.35

Table 2.5.1: Main Results: GPT-NEO averaged 5 random samples (s = 32, 128, and 256)
for UL. NEO = initial GPT-NEO LM. UL+ = knowledge unlearning, DeMEM = dememo-
rization. LM ACC. = average accuracy of 8 classification datasets, LM PPL = perplexity of
Wikitext dataset, GEN PPL = perplexity of generated suffix. Steps for DeMEM & Epochs
for UL
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2.5.2.2 Deduplication + (DeMemorization & UL)

We included OPT LMs as a baseline for the pre-processing technique, which applies dedu-

plication to decrease memorization. Deduplicating the training data has effectively miti-

gated memorization, as demonstrated in Tables 1 and 2. OPT models (deduplicated) ex-

hibit higher N-sacreBLEU scores than NEO (non-duplicate version) models while achiev-

ing similar or better performance in downstream tasks. However, even in these models,

memorization remains high, as only a portion of the memorized samples are duplicates.

Therefore, we explored the UL approach and dememorization.

The models that utilized both frameworks benefited significantly and became more ro-

bust privacy LMs. While UL reduced memorization by approximately 99% of N-sacreBLEU,

it also negatively impacted the general capability of the LM, resulting in an ∼11% differ-

ence from the original LM across various configurations. On the other hand, dememo-

rization achieved comparable results to UL, with a reduction of ∼94% in memorization,

without the need to completely remove data points from the training data. In comparison,

the loss in general LM capability was insignificant, at around ∼0.5%, in the case of 125M

and NEO 1.3B dememorization even enhanced performance. These findings suggest that

employing a combination of deduplication and dememorization effectively mitigates mem-

orization while maintaining the general capability of the LM. Since data deduplication is

applied in most of the recent & large language models [31, 39, 5, 38, 37, 8], we believe our

approach combined with deduplication will effectively mitigate memorization.

2.5.2.3 Number of Samples, Stability, & Universal Policy

We investigated the impact of increasing the number of samples on the performance of both

UL and dememorization. In line with the findings from [20], UL is sensitive to the num-

ber of samples being unlearned simultaneously. Our experimental results in Table 2.5.1,

Table 2.5.2 validate this observation. As the number of samples increases, we observe a

decrease in the LM’s performance. On the other hand, dememorization demonstrates a

different behavior as it is unaffected by the number of samples. In dememorization, the

LM is fine-tuned one-time using negative similarity as a reward during training, followed
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Model #Samples N-SacreBLEU↑ LM(ACC)↑ LM (PPL)↓ GEN(PPL)↓ Epochs/Steps

OPT125M

32 89.24 9.69 -

128 90.98 41.28 31.94 9.76 -

256 91.03 9.67 -

+UL

32 99.23 37.06 449131.90 12.16 9

128 99.35 36.48 54917065.46 10.44 9

256 99.21 37.19 114952.53 13.64 9

+DeMEM

32 94.88 10.86

128 95.30 42.25 33.13 10.78 4

256 95.61 10.58

OPT1.3B

32 71.63 6.72 -

128 71.96 51.65 16.41 6.92 -

256 71.7 6.80 -

+UL

32 99.50 39.16 ⋆ 11.19 7

128 99.84 38.67 ⋆ 7.93 8

256 99.52 36.85 ⋆ 10.7 7

+DeMEM

32 92.51 9.78

128 91.56 51.40 17.39 9.47 2

256 91.91 9.25

OPT2.7B

32 71.80 6.27 -

128 67.56 53.74 14.31 6.48 -

256 66.32 6.3 -

+UL

32 99.15 38.60 ⋆ 7.15 11

128 97.87 41.06 ⋆ 13.43 7

256 99.48 38.20 ⋆ 7.6 8

+DeMEM

32 94.53 8.28

128 93.08 52.20 15.25 8.31 2

256 93.24 8.16

Table 2.5.2: Main Results: OPT averaged 5 random samples (s = 32, 128, and 256) for UL.
UL = knowledge unlearning, DeMEM = Dememorization. LM ACC = average accuracy of
8 classification datasets, LM PPL = perplexity of Wikitext dataset, GEN PPL = perplexity
of generated suffix. ⋆ means that the value is so high, Reaching infinity. Epochs for UL &
Steps for DeMeM.
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by evaluation on a separate test set. This allows the model to learn a universal policy to

forget an unlimited number of samples. Here, the term ”unlimited” signifies the absence

of any restrictions, assumptions, or re-training of the LM regarding the number of sam-

ples to be unlearned. In UL, however, the model is fine-tuned and evaluated on the same

samples to forget them at a time. To unlearn or forget multiple samples, the model needs

to undergo fine-tuning multiple times, whether through sequential or batch unlearning. In

each iteration, the model is fine-tuned with a specific number of samples (typically 32, as

suggested by the authors) to prevent a decrease in the LM’s overall capability, this can be

regarded as an assumption about a number of samples to be protected at once, which leads

to an incomplete solution. See Appendix F for highlighting more assumptions about the

UL framework.

2.5.2.4 Perplexity of WikiText & Generated Suffix

Perplexity is a metric used to evaluate the general performance of the LM. We computed

perplexity for Wikitext and presented the results in Tables 1 and 2. Dememorization had a

minimal impact on perplexity for all models. UL showed significantly higher perplexity in

some cases, even reaching infinity. UL’s high perplexity is attributed to its gradient ascent

approach, which softens the probability distribution and leads to a more uniform distribu-

tion and higher perplexity. However, this softening procedure degrades LM performance

as the model becomes less confident in generating tokens. We also evaluated the perplex-

ity of unlearned samples, which is crucial in practical applications where the unlearned

data domain is used. DeMemorization caused an average degradation of approximately

0.5% in NEO models and around 1.5% in OPT models. UL exhibited higher degradation

in both models due to the complete removal of corresponding data points from the model

parameters. Dememorized samples can be found in Appendix C.

2.5.2.5 Protection Against Discoverability Phenomenon

Discoverability phenomenon refers to the observation that some memorization only be-

comes apparent when a model is prompted with a sufficiently long context. [12] found that

the fraction of extractable sequences increases in a log-linear fashion with the number of
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((a)) Before DeMem ((b)) After DeMem

Fig. 2.5.1: Threshold of 75% SacreBLEU of The Generated Samples Before & After De-
Memorization For Neo 2.7B Longer Context

tokens in the context. For example, with a context of 50 tokens, approximately 33% of

training sequences can be extracted from the NEO-6B model. However, with a context of

450 tokens, this percentage rises to 65%. We evaluated our dememorization approach by

increasing the prefix context from 50 to 150 tokens. The results in Table 2.5.1 show that

extending the context does not significantly impact the 125M model in NEO, with a forget-

ting rate decrease from 58.44% to 45.47%, and has no effect in OPT-125M. However, for

larger models like 1.3B and 2.7B, a longer context considerably reduces the forgetting rate

by approximately 49% in NEO and around 10% in OPT. Nevertheless, dememorization ef-

fectively counters this type of attack, increasing the forgetting rate by approximately 10%

for the 125M model and approximately 30% for larger sizes in OPT & NEO as shown in

Table 2.5.3. This demonstrates the universality and generalizability of the learned policy

across various scenarios.

2.5.2.6 Approximate Memorization Threhold

Based on [19], a BLEU score of 75% for the generated suffix is considered a suitable

threshold for determining approximate memorization. However, our investigation found

that even a threshold as low as 50% after applying the framework can mitigate this issue.

Nevertheless, we chose to use the widely accepted threshold of 75% to demonstrate the ef-

fectiveness of our framework. Applying dememorization to the LM resulted in a significant

decrease in memorized samples. For GPT-Neo 1.3B and 2.7B, approximate memorization

examples decreased from 910 to 497 and 1036 to 321, respectively (refer to Appendix B
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Model
BEFORE AFTER

N− SacreBLEU ↑ PPL ↓ N− SacreBLEU ↑ PPL ↓

NEO125M 45.74 4.12 55.04 4.15

NEO1.3B 9.11 1.55 36.08 1.71

NEO2.7B 10.55 1.41 32.66 1.54

OPT125M 89.35 11.99 94.47 12.38

OPT1.3B 59.58 6.64 88.91 7.68

OPT2.7B 56.35 5.95 89.37 6.76

Table 2.5.3: Comparsion of Negative SacreBLEU & Perplexity Means Before & After
Applying The Framework On a Longer Context; 100 Extra Tokens Combined With The
Prefix

for other models). The red region in Figure 2.5.1 represents samples with scores equal to or

above 75%. After dememorization, the distribution of samples spreads more evenly across

different values instead of being concentrated beyond the 75% threshold. Box plots (see

Appendix D) confirm the efficiency of the dememorization approach, as evidenced by the

median of the sample’s distribution before and after dememorization.

2.6 Conclusion

In this paper, we present a novel framework that tackles the problem of training data mem-

orization in LLMs. We achieve this by employing an RL Dememorization policy. Through

extensive evaluations conducted in diverse settings, we demonstrate the effectiveness of our

approach. Our framework successfully reduces memorization by significantly decreasing

the SacreBLEU score while preserving the overall capabilities of the LM as measured by 9

classification benchmarks.
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Limitations

One of the limitations of our work is that it relies on a single scalar reward for optimiza-

tion, as the problem has dual objectives: dissimilarity and perplexity. To overcome this

limitation, we suggest exploring other techniques, such as Multi-objective Reinforcement

Learning, which can potentially enhance performance and optimize both objectives simul-

taneously.

Ethics Statement

Improving the large language model to be privacy-preserving is crucial since the language

models have become more prominent and involved in many applications in multi-aspect

of life. Ensuring the data privacy of those models is vital since some adversary may be

able to reach that information. To make those models widely used, we have to guarantee

they cannot emit private data. In this paper, we hope our work will serve as a foundation

for developing new and innovative solutions to the problem of approximate memorization

in large language models since verbatim memorization can give a false sense of privacy,

as earlier work suggested. Our proposed framework provides a promising approach to ad-

dressing this issue. Further research and experimentation in this area can lead to even more

effective methods for reducing memorization in these models. Our work also highlights

the importance of considering both the computational cost and the performance trade-off

when developing new techniques for addressing memorization in large language models.
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Approach For Uncovering Edge Cases

with Minimal Distribution Distortion
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putational Linguistics

3.1 Introduction

Disclaimer: This paper contains real-world cases which are offensive/hateful in nature.

Deep learning models in NLP have made impressive advancements in classification,

question-answering, and machine translation. However, they are susceptible to adversarial

attacks, which exploit their vulnerability to small input changes [19, 21, 2, 50, 20, 6].

These attacks introduce variations not encountered during training. Two approaches to

address these vulnerabilities are data augmentation-based techniques [29, 53, 23, 60] and

adversarial training-based approaches [65, 59, 57]. Expanding training data using pre-

designed samples generated by data augmentation methods can assist in classifier training.

However, generated samples may lack an adversarial nature [1], leading to confusion and

inaccurate classification. Adversarial training-based approaches [57, 27, 9, 18, 2] address

this limitation by generating challenging examples. This improves the model’s ability to

handle difficult subsets of data, enhancing robustness and performance.
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Generating diverse and semantically meaningful adversarial examples is challenging

due to limited operations like word addition, deletion, or substitution. This lack of diversity

in word-level generation often results in generated sentences that have identical vectors to

the original, offering little insight into the model’s behavior.

Recent studies [27, 64] show that character manipulation or word swap methods can

produce irrelevant and incoherent samples, altering the original text’s meaning. These

methods are unsuitable for real-world applications and can harm the model. Attacks lacking

semantic significance expose the model’s blind spots, are easily detectable and removable,

and do not represent real-world examples encountered during deployment.

To address this, researchers have explored sentence-level generation methods. GAN-

based approaches [64, 51] show promise in generating diverse examples but can be ir-

relevant [64]. Incorporating controllable attributes can help mitigate this issue, although

obtaining labeled data for some tasks is challenging [51]. Another approach involves para-

phrasing using pre-trained language models, which produce diverse examples that fool the

classifier but don’t target the main weakness for enhancing model performance on the orig-

inal test set [38]. However, this method lacks targeted fine-tuning to break the classifier

and has limited available styles. In this paper, we propose a natural adversarial generation

approach through targeted paraphrasing using the FLAN-T5 language model [8] as a gen-

erator and a classifier task as a discriminator. We train our generator with a self-learned

policy via proximal policy gradient (PPO), a reinforcement learning technique [44]. Our

framework consists of two steps: training a paraphrasing model using FLAN-T5 (seq2seq)

on seven datasets, carefully filtered to ensure maximum diversity in the generated para-

phrases. Then, we fine-tune the paraphraser using RL, taking into account the reward func-

tion based on the classifier’s confusion and mutual implication scores. This ensures that the

meaning of the text is preserved while generating adversarial examples. We evaluated our

proposed framework, Targeted Paraphrasing via RL (TPRL), on four classification tasks:

sentiment analysis, news classification, hate speech, and offensive speech. We conducted

both automatic and human evaluations. Our experiments showed that TPRL could generate

adversarial examples that enhance the classifier’s performance. Incorporating challenging

adversarial samples during training makes the classifier more robust and powerful. Our
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findings can be summarized as follows:

• Utilizing the generated examples for adversarial training improves classifier perfor-

mance on original and adversarial test sets.

• Our work demonstrates that the learned policy for one classifier is universal and can

generalize to unseen classifiers in the same dataset.

• Experiments show that TPRL outperforms strong baselines and improves results on

various models and datasets.
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3.2 Background

This section briefly introduces and formalizes textual adversarial attacks for text classifi-

cation and employs RL in language models for generating adversarial attacks and other

tasks.

3.2.1 Textual Adversarial Attacks

Generating adversarial attacks against NLP models is more challenging than for vision

models [39]. NLP models rely on discrete word representations, where even slight adjust-

ments can drastically change the meaning or validity of a phrase. Unlike images, NLP

models require a deeper understanding of context and language structure, making success-

ful attacks difficult.

Attacks Properties. For a victim classification model, denoted as Fθ, tested on dataset

Dt with samples (xt, yt), an adversarial attacker aims to perturb xt to maintain semantic

similarity to humans but destroy its meaning when classified by the model. This generates

an adversarial example, x′
t, that the model misclassifies.

3.2.2 RL In Language Models

Reinforcement Learning (RL) is a powerful technique for training machine learning models

to learn complex tasks. RL has gained interest in enhancing performance, particularly

in natural language processing (NLP) tasks using Transformer-based models [49, 10, 40,

4]. Language models like Transformer-based models have excelled in NLP tasks such

as machine translation, language generation, and question-answering. RL can be applied

to language models through fine-tuning, using a reward function to guide policy learning

[42]. The reward function, based on human feedback [66, 35] or an automatic metric like

BLEU [36] or ROUGE score [28], provides feedback to improve the model’s performance.

Despite RL’s success in NLP tasks, its potential for generating adversarial attacks remains

largely unexplored. This paper presents the first investigation of using RL with a language

model for generating natural adversarial attacks.

38



3. FINDING A NEEDLE IN THE ADVERSARIAL HAYSTACK

3.3 Collecting Labeled Paraphrasing Pairs

This section will review the selected datasets for training the paraphrase model. After-

ward, we will outline a systematic procedure for filtering those datasets to maximize the

paraphrase pairs’ diversity, similarity, and relevance.

3.3.1 Paraphrasing Datasets

The first stage of our approach involves collecting seven diverse paraphrase datasets. Most

of the datasets undergo meticulous human judgment annotation, ensuring our models are

trained on high-quality paraphrasing examples.

We have developed a comprehensive and varied paraphrasing corpus, compiled from seven

distinct paraphrasing datasets, namely the APT dataset [34], Microsoft Research Para-

phrase Corpus (MSRP) [11], The PARANMT-50M corpus [55], TwitterPPDB [25], PIT-

2015 [58], PARADE [15], and QQP (Quora Question Pairs) [17]. To ensure optimal qual-

ity, we employed the filtered version of the PARANMT-50M corpus, as suggested by [24].

Furthermore, we retained only sentence pairs with similarity labels of 4, 5, and 6 from Twit-

terPPDB, thereby ensuring high relevance and diversity. Similarly, we only incorporated

sentences with semantic similarity labels of 5 and 4 from PIT-2015. Finally, we selected

samples labeled as duplicates from QQP. The merged dataset comprises 560,550 samples,

which we subjected to a filtering procedure to promote high-quality similarity and diversity

in the subsequent stage.

3.3.2 Improving Diversity & Relevance Via Data Filtering

In the second stage of our approach, we select appropriate training data for the paraphrase

model using inspiration from [24]. Despite the availability of human annotations, it is still

possible for noise and irrelevant samples to exist in the dataset. We employ aggressive

filtering with four filters to address noise and irrelevant samples in the dataset. Firstly, we

remove sentence pairs with over 50% unigram overlap, ensuring lexical diversity computed

using SQUAD evaluation scripts based on the F1 score [41]. Secondly, we discard pairs

with less than 50% reordering of shared words, promoting syntactic diversity measured
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Fig. 3.4.1: Components of our framework TPRL for Natural Adversarial Generation. (1)
Employing Data filtering and then paraphraser fine-tuning. (2) Targetted paraphrasing
through employing RL on classification Datasets.

by Kendall’s tau [22]. Thirdly, we eliminate pairs with less than 50% semantic similarity,

measured by cosine similarity using the ”all-MiniLM-L12-v2” model [52, 43]. Finally, we

remove sentences with over 70% trigram overlap to improve diversity further. After ap-

plying these filters, the refined dataset contains 96,073 samples, split into training (76,857

samples), validation (9,608 samples), and testing (9,608 samples) sets. These filters ensure

a diverse and representative sample for effective training and evaluation.

3.4 Targeted-Paraphrasing Via RL

Figure 3.4.1 illustrates the framework’s structure. After filtering data for diverse and rele-

vant paraphrase pairs, we proceed with the initial fine-tuning of the model. Subsequently,

we utilize the proximal policy gradient, a reinforcement learning technique, to further fine-

tune the model. This approach generates paraphrases that exploit the classifier’s weak-

nesses, resulting in complex and effective adversarial samples.
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3.4.1 Paraphraser Model

We fine-tune the FLAN-5-large language model, a variation of T5, on over 1000 additional

tasks using chain-of-thought data. This instruction fine-tuning improves performance on

various tasks. The model is fine-tuned for nine epochs as more epochs showed to make

the model over-fitting, with the first paraphrase pair going through the encoder and the

second through the decoder. Using the BERT-Score metric [62], the model achieves an

F1-score of 75.925%. Pre-training the LM enhances output fluency, diversity, relevance,

and paraphrasing capability. It also addresses task-irrelevant generation in sentence-based

attack methods by employing LM and data filtering techniques. The LM is trained on

relevant pairs, maximizing task-specific outputs. Utilizing an LM enhances paraphrasing

capability, as LMs serve as a knowledge base with not only linguistic knowledge but also

relational knowledge present in pre-training data[37]. This knowledge improves generation

quality by introducing new information about entities or objects in the input text.

3.4.2 Fine-Tuning Paraphraser Via RL

After the initial fine-tuning, the paraphraser model can generate various relevant and fluent

paraphrases. To enhance its performance, our approach includes a guiding component.

This involves further fine-tuning the model using reinforcement learning (PPO), enabling

it to produce targeted adversarial examples that confuse the classifier.

RL Feedback Loop. The language generation process is a discrete sequence of ac-

tions where the generator, represented by G, interacts with the classifier, represented by

C, which acts as an environment. We use a proximal policy gradient approach with top-p

sampling 0.95, known as Natural Language Policy Optimization [42](see Appendix A for

more details).

To maximize the reward rt returned from the environment, we start with an original

example (x, y) from dataset D and choose a vocabulary word as an action at based on the

current input and previous actions as follows:

ât ∼ pG(at|x, θ) (1)
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where θ represents the parameter of the generator. Each episode starts with a specific

prompt x and ends when a certain number of steps have been taken, defined as the maxi-

mum length of the original sentence to prevent the generator from adding irrelevant tokens.

Additionally, we use early stopping to prevent the model from generating meaningless or

irrelevant tokens. With these constraints, we allow the generator to add new, relevant in-

formation or remove and replace existing tokens, giving it complete freedom to sample

diverse, relevant, and new tokens from the action space.

After sampling the action sequences ât, we get a new example (x
′
, y) through gener-

ation. We then feed this generated example (x
′
, y) into the classifier to obtain the reward

r(ât), which is defined as a weighted sum of confusion (1 − confidence) and Mutual

Implication as follows:

r(ât) = β ∗ (1− pC(y|x̂;ψ) + α ∗MI(x, x̂) (2)

Where ψ represents the parameter of the classifier. β & α are the weighting factors, we set

them to 0.5

The first term encourages the generator to learn a policy that generates confused sam-

ples, while the second term ensures the similarity & naturalness of meaning and semantic

equivalence, which evaluates the degree to which the paraphrases imply the same meaning

as the original text. We estimate the Mutual Implication using ALBERT XXLarge v2 [26]

trained on various datasets [32, 3, 56, 32, 33]. The KL penalty is applied per token using

a reference model to prevent significant deviations. In the RL feedback loop, we generate

ten alternative samples and assess their adequacy and fluency using the Parrot Tool1 2, and

select the best one for reward computation to maximize the fluency and relevance. The

model was trained for thirty epochs with a batch size of 32 and optimized using the Lion

optimizer [5], using a learning rate of 4.9 × 10−6; see Appendix K for more details about

the hyperparameters.

1https://huggingface.co/prithivida/parrot_adequacy_model
2https://huggingface.co/prithivida/parrot_fluency_model
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3.4.3 Adversarial Training

After fine-tuning the paraphraser with RL feedback, we use its improved performance to

generate adversarial samples from the original training set. These samples are added to

the training set, creating an updated dataset. Using the same random seed, we train a new

classifier from scratch, employing adversarial training.

We generate counterparts for each sample in the original training set to create adversar-

ial samples. However, not all generated counterparts are useful for training, as discussed by

[57], because we specifically target the edge cases that can improve classifier performance.

To filter out irrelevant counterparts, we exclude those with a mutual implication score be-

low 50%, ensuring that only semantically equivalent samples are included in the updated

dataset. The number of generated samples depends on the dataset and classifier used.

For the classifiers, we began by fine-tuning the classification models (subsubsection 3.5.1.2)

on the respective dataset (subsubsection 3.5.1.1) and reported their performance. Each

model achieved a different performance and made different errors. We then leveraged

these classifiers within the RL feedback loop.

3.5 Experiments

We assess the effectiveness of Targeted-Paraphrasing Via RL adversarial attacks (TPRL) on

four distinct classification tasks: sentiment analysis, news topic classification, hate speech

detection, and offensive speech detection. To this end, we carefully select relevant datasets,

outline our implementation details, establish baseline methods, and specify evaluation met-

rics.

3.5.1 Experimental Settings

3.5.1.1 Tasks & Datasets

Sentiment Analysis. SST-2 & SST-5 datasets for sentiment analysis in movie reviews

from the Stanford Sentiment Treebank [45]. SST-2 (N=6920)has binary sentiment labels

(positive or negative), while SST-5(N=8540) has more fine-grained sentiment labels (very
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positive, positive, neutral, negative, and very negative) with an average of 19 words per

sample.

New Topic Classification. AG News dataset [63] with a number of samples 120,000,

categorizing news articles into four classes: World, Sports, Business, and Science/Technol-

ogy with an average of 38 words per sample.

Offensive Speech Detection. SemEval2019 Task 6 (OffensEval) dataset (N=11916)[61]

for offensive detection in tweets has binary classes: offensive and non-offensive tweets with

an average of 19 words per sample.

Hate Speech Detection. Hate speech dataset(N=7071), a collection of sentences ex-

tracted from Stormfront, a white supremacist forum [12]. Based on their content, sentences

are categorized into two different classes: HATE and NoHate, with an average of 16 words

per sample.

We eliminated all punctuation, mentions, hashtags, and URL links from the samples of all

datasets. Furthermore, we employed lowercase for all samples. The maximum sequence

length was implemented as the maximum length parameter in all BERT models. The train-

ing, validation, and test sets officially released by the creator of the datasets were utilized.

3.5.1.2 Victim Models

To assess the effectiveness of our approach across different models, we selected five popular

pre-trained language models: BERT-base, BERT-large [10], RoBERTa-base, RoBERTa-

large [30], and DeBERTa-v3-large [14], which vary in architecture and size.

3.5.1.3 Baseline Methods

TTPRL is compared to SCPN [18] and StyleAdv [38], other sentence-level adversarial

attack techniques. SCPN uses a seq2seq Bi-directional LSTM [16] with the PARANMT-

50M corpus and syntactic templates. StyleAdv utilizes the STRAP model [24] for style

transfer, incorporating five distinct styles. Also, we considered an untargeted paraphrasing

model (UNTP) without the guiding component. However, these methods have limitations

in diversity and robustness of adversarial sample generation. We used official code or
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Classifier SST2 SST5 AG’s News HS‡ OFF‡

BERTBase 90.88 53.52 93.97 ⋆ 84.76

+SCPN 89.67 51.71 93.26 ⋆ 83.60

+StyAdv 87.91 52.35 93.19 ⋆ 81.86

+UNTP ⋆ 51.90 94.17 ⋆ ⋆

+TPRL 91.15 52.39 94.46 ⋆ 85.11

BERTLarge 91.43 53.52 94.18 ⋆ 85.11

+SCPN 90.66 53.61 93.17 ⋆ 72.09

+StyAdv 90.17 23.07 93.57 ⋆ 72.09

+UNTP ⋆ 54.84 94.42 ⋆ ⋆

+TPRL 92.58 54.93 94.36 85.58

RoBERTaBase 94.34 54.79 93.78 91.90 83.95

+SCPN 92.31 53.89 93.61 91.30 82.67

+StyAdv 91.81 52.21 93.32 91.55 82.32

+UNTP ⋆ 56.19 93.78 91.90 ⋆

+TPRL 94.00 56.15 93.93 92.45 85.00

RoBERTaLarge 93.73 58.30 93.92 92.45 85.93

+SCPN 49.91 23.07 93.80 92.30 72.093.

+StyAdv 49.91 23.07 93.73 91.75 72.09

+UNTP ⋆ ⋆ 93.86 92.45 ⋆

+TPRL 94.72 58.95 94.21 92.05 84.53

DeBERTa-V3Large 94.89 58.46 93.92 89.50 84.65

+SCPN 93.52 59.23 93.75 89.50 84.76

+StyAdv 93.41 55.42 ⋆ 92.95 80.93

+UNTP ⋆ 58.09 93.85 89.50 ⋆

+TPRL 95.82 58.77 94.22 92.30 85.93

Table 3.5.1: The Classifier-Dataset Experiments For Five Classifiers. We Show The Accu-
racy Results On The Original Test Set Before & After We Apply AT With TPRL & The
Three Baseline Methods. ‡ Refer to Hate Dataset, OFF to Offensive Dataset. * Refer to not
deployed experiments. The best comparable performances are bolded

followed the same methodology and hyperparameters for the baselines (see Appendix H

for implementation details). UNTP failed to meet the criteria for the SST2, Hate speech,

and offensive speech datasets. Generator collapse occurred during training for BERTBase

in the hate speech dataset. For a fair comparison, AG’s News with DeBERTa-V3Large was

excluded due to low accuracy in adversarial training.
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Classifier/Framework
SCPN StyleAdv UNTP TPRL

(%) (%) (%) (%)

BERTBase 69.37 30.62 64.43 34.84

+AT 68.70 54.28 66.24 42.28

BERTLarge 70.86 29.97 64.89 41.51

+AT 68.00 51.73 64.35 44.36

RoBERTaBase 95.53 29.29 67.52 37.27

+AT 74.01 57.42 67.27 43.41

RoBERTaLarge 82.49 28.02 89.78 40.27

+AT 75.55 52.28 90.19 49.22

DeBERTa-v3Large 74.77 36.79 63.38 34.66

+AT 75.01 45.33 64.83 47.82

Table 3.5.2: The Classifier-Framework Experiments For Five Classifiers. We Show The
Accuracy Results On The Adversarial Test Set Before & After We Apply AT With TPRL
& The Three Baseline Methods..

3.5.2 Evaluation Metrics

We thoroughly evaluated TPRL’s effectiveness in four key areas, ensuring the following:

(1) Improving Performance: We evaluated TPRL’s impact on the accuracy of the orig-

inal test set, alone and in combination with other methods, to assess its overall performance

enhancement.

(2) Fluency and Quality: We assessed fluency using perplexity (PPL) from GPT-2-

XL [40] and a RoBERTa-large classifier trained on the CoLA corpus [54], to overcome the

limitations of perplexity in evaluating fluency as the model provides accurate grammatical

acceptability judgments.

(3) Semantic Similarity (SIM): We assessed semantic similarity between input sen-

tence and generated samples using the ”all-MPNet-Base-v2” embedding-based SIM model

[46, 43], known for its performance on semantic textual similarity (STS) benchmark [31].

We also used the mutual implication (MI) metric to capture inferential semantics compre-

hensively, addressing the limitations of STS.
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(4) Validity: We conducted human evaluations to determine the percentage of sam-

ples that produced adversarial examples without altering the original label. To overcome

human evaluation cost, we employed ChatGPT, which has demonstrated comparable or su-

perior performance to crowd-workers in text annotation tasks [13, 47, 7]. This assessment

validated the credibility of TPRL-generated samples.

Classifier Framework
PPL ↓ FL ↑ SIM ↑ MI ↑

(%) (%) (%)

BERTBase

SCPN 567.66 50.57 74.49 80.58

StyleAdv 670.47 57.65 74.62 58.34

UNTP 498.61 85.20 77.33 92.41

TPRL 368.41 87.1 73.56 89.9

BERTLarge

SCPN 565.61 50.71 74.67 80.94

StyleAdv 863.50 56.42 74.14 57.40

UNTP 373.52 85.97 77.64 91.25

TPRL 372.51 86.84 73.88 89.82

RoBERTaBase

SCPN 563.46 50.31 74.43 80.28

StyleAdv 708.28 57.26 75.66 58.99

UNTP 254.37 83.31 78.32 89.92

TPRL 492.52 85.58 71.22 89.99

RoBERTaLarge

SCPN 555.02 50.43 74.43 80.19

StyleAdv 579.80 57.34 74.30 56.81

UNTP 230.73 83.32 78.44 88.49

TPRL 302.76 87.38 70.84 90.61

DeBERTa-v3Large

SCPN 560.70 50.29 74.28 79.91

StyleAdv 845.76 57.69 74.92 57.46

UNTP 372.44 73.21 68.86 73.14

TPRL 393.06 87.27 73.90 89.67

Table 3.5.3: Automatic Evaluation Results Showing The Average of Generated
Adversarial Training Samples of The Five Datasets Across Selected Classifiers &

Baselines. The best comparable performances are bolded

3.5.3 Experimental Results & Discussion

We conducted comprehensive experiments to answer the following three overarching ques-

tions regarding TPRL:
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3.5.3.1 Does TPRL Enhance The Performance?

We evaluated TPRL on multiple datasets, tasks, and victim models, comparing it to three

baseline methods. The results in Table 3.5.1 consistently demonstrate that TPRL improves

performance on the original test set across diverse datasets and victim models. TPRL

also excels in fluency and relevance, essential factors for an effective adversarial genera-

tion. In contrast, SCPN, StyleAdv, and UNTP did not consistently enhance performance

on the test set across various classifiers and datasets. This inconsistency is due to the ab-

sence of a guiding component specifically targeting classifier weaknesses. While UNTP

outperformed SCPN and StyleAdv in performance enhancement, it still lacked consistent

effectiveness. TPRL’s generated sample count varied by dataset and classifier, with no cor-

relation between the number of samples and improvement gained after Adversarial train-

ing. TPRL focuses on targeting classifier weaknesses rather than simply changing labels.

TPRL’s average number of generated samples for each dataset on the five classifiers are as

follows: SST-2: 359, SST-5: 2993, HS: 135, OFF: 407, and AG’s News: 3825. In terms

of the adversarial test set, SCPN did not enhance classifier performance, StyleAdv showed

significant improvement but not consistently on the original test set, and UNTP had a small

and sometimes non-existent improvement. TPRL achieved an ∼8% improvement on the

adversarial test set while maintaining a balance in the tradeoff between the performance on

both the original and adversarial sets.

3.5.3.2 Does TPRL Generate Relevant Samples?

In an adversarial generation, maintaining topic and meaning while fooling the classifier is

crucial since a sample can easily change the classifier’s decision if the meaning changes.

This concern is even more significant for sentence-level methods that create new sentences.

We evaluated the generated samples using three approaches: (1) Automatic evaluation for

similarity and fluency, including PPL for accurate fluency assessment. (2) Human evalua-

tion for validity. (3) Visualization techniques for observing the geometric interpretation of

samples. Table 3.5.2 shows the results, with TPRL and UNTP achieving the lowest PPL

and superior generation quality. TPRL also outperforms other baselines in fluency, ranging
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from 86% to 87%, across classifiers and datasets, thanks to including the MI score in the

reward function to encourage natural sentence generation.

Original: i complain all the time about seeing the same ideas repeated in films over and over again ,

but the bourne identity proves that a fresh take is always possible.

Adversarial: ive always been complaining that movies repeat the same ideas but the identity of bourne

proves that you dont need to reinvent the wheel

Original: something must be done to halt this terrible wave of immigrants entering britian

Adversarial: in order to stop a terrible wave of immigration into britian it is necessary to do something

Original: i live in oslo and race mixing is a huge problem

Adversarial: theres a huge problem of race mixing in oslo

Original: william shatner as a pompous professor is the sole bright spot

Adversarial: the only bright spot of the movie is william shatner in a pompous professor

Original: if you enjoy more thoughtful comedies with interesting conflicted characters; this one is for you

Adversarial: this is a good comedy for those who like thoughtful comedies with interesting characters

Original: any ways smearing a single dna steam with black dna is horrible

Adversarial: any way it seems disgusting to smear one steam with black dna

Original: we spend so much time on black people when the real problem is asians and hispanics

Adversarial: we spend too much time and effort worrying about black while the asians and hispanics were the ones

Table 3.5.4: Comparing Original & Adversarial Examples Generated by TPRL.

Regarding The Relevance: TPRL surpasses baseline methods in MI. For specific con-

figurations, cosine similarity scores are low (∼74%), while MI scores are high (∼89%).

This discrepancy arises because cosine similarity struggles to capture the inferential role

accurately (further explanation given in section 3.6). See Appendix J for dataset-specific

results.

For Human evaluation: Following [38], considering the cost, we conducted a validity

evaluation on SST2. We randomly selected 100 adversarial samples for TPRL, SCPN, and

StyleAdv (36, 33, and 31 samples, respectively). Each sample was evaluated by three an-

49



3. FINDING A NEEDLE IN THE ADVERSARIAL HAYSTACK

15 10 5 0 5 10

15

10

5

0

5

10

15 Original
Generated

Fig. 3.5.1: T-SNE visualization of the vectorized original and TPRL-adversarial sentences
in the SST-2. The adversarial sentences (circles) mostly overlap with the original sentences
(triangles), suggesting that generated sentences maintain the original class distribution.

notators who determined if the sentiment matched the original example. The final decision

was made by voting. The percentage of valid adversarial samples was: TPRL 72%, SCPN

51.5%, and StyleAdv 32.2%. TPRL achieved the highest validity, confirming minimal dis-

tortion to the original distribution. To evaluate the similarity of larger generated samples,

we employed ChatGPT (GPT-3.5). Randomly choosing 100 samples from each framework

in the SST-2 dataset, we rated them on a scale of 1 to 5, where 1 indicated significant dis-

similarity, and 5 denoted substantial similarity. TPRL exhibited superior performance to

the three baselines, receiving the highest similarity ratings across categories 5, 4, and 3.

Further details can be found in Appendix L.

For Visualization: We randomly selected 60 samples from the SST-2 dataset of the same

class and transformed them into vectors using Sentence-BERT (”all-MPNet-Base-v2” model).

T-SNE [48] was used to generate a 2D representation of the vectorized samples (see Fig-

ure 3.5.1). TPRL-generated samples closely resemble the original data, overlapping or

partially overlapping with the original sentences. This observation highlights that even a

slight movement in the semantic space can deceive the classifier, exposing LM-based clas-

sifiers’ vulnerabilities. We obtained similar outcomes consistently across various datasets,

classifiers, and random samples.
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Policy/Classifier
BERTBase BERTLarge RoBERTaBase RoBERTaLarge DeBERTa-v3Large

(%) (%) (%) (%) (%)

None 90.88 91.43 94.34 93.73 94.89

Policy-BERTBase 91.15 92.09 93.35 ⋆ 95.38

Policy-BERTLarge 91.04 92.58 94.45 94.94 96.15

Policy-RoBERTaBase 90.06 93.24 94.0 ⋆ 95.60

Policy-RoBERTaLarge 91.87 92.36 ⋆ 94.72 95.60

Policy-DeBERTa-v3Large 90.93 93.24 94.12 95.49 95.82

Table 3.5.5: Accuracy Results of Different Classifiers Trained With The Examples Gener-
ated By Various Attacking Policies On The SST-2 Dataset. Showing the Universal Policy.
The best comparable performances policy for the classifier is bolded

3.5.3.3 Does TPRL Learned Attacking Policy Universal?

To investigate this question, we employed a fine-tuned generator to target specific classi-

fiers, such as BERT-Base. The generated samples were then utilized to fine-tune another

classifier, for instance, BERT-Large, to observe the impact on performance. Since we had

five classifiers, we employed the generated samples from one classifier to fine-tune the re-

maining four. Table 3.5.5 displays the outcomes in SST-2 dataset(see Appendix I for the

remaining datasets), revealing that most classifiers benefited from the samples generated

by other classifiers, surpassing the naive baseline. This underscores the universality of the

learned attacking policy. Notably, in certain instances, the improvement achieved for the

attacked classifier equaled that of the transferred classifiers despite each classifier having

distinct errors prior to adversarial training(Appendix M). This can be interpreted as dif-

ferences in size, architecture modifications, and training data; all the classifiers share a

common architecture based on Transformers models, and even the errors are different, but

the policy targets the universal weakness. The universal policy holds across most config-

urations, encompassing datasets and classifiers, demonstrating that the learned attacking

policy possesses both universal and model-specific features.
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3.6 Ablation studies

In this section, we perform ablations on TPRL to understand its key components’ impact

on improvements over baselines. We also validate the accuracy of MI’s similarity measure-

ment and distinguish it from cosine similarity.

TRPL Diversity Enhances Classifier Performance: We investigate the role of diversity in

performance improvement. Through qualitative inspections, we compare TPRL and base-

line methods that lack diverse dataset training & data filtering. Interestingly, we observed

that higher SIM (Similarity) scores correlate with reduced diversity and classifier perfor-

mance after adversarial training. In contrast, the MI (Mutual Information) metric maintains

diversity in generations, explaining the higher SIM scores but lower MI and Accuracy met-

rics of baseline methods since they don’t generate diverse samples. Human evaluations

confirm the alignment of MI with their assessments. Furthermore, we confirm our obser-

vation by utilizing ChatGPT (GPT-3.5) to assess the diversity of generated samples for the

three baselines as TPRL outperformed the three; see Appendix L for more details.

The Importance of Targeted Component: Our TPRL implementation has a targeted

component using RL. However, we evaluated using only the fine-tuned paraphraser without

RL (UNTP) showed inconsistent performance compared to TPRL (Table 3.5.1). Similarly,

other baselines requiring a targeted component also yielded minor improvements. TPRL

outperformed other models across most metrics (Table 3.5.3), emphasizing the importance

of the targeted component.

3.7 Conclusion

In this work, we introduce TPRL, a novel adversarial generation approach aimed at en-

hancing the robustness of classification models. Our key innovation lies in incorporating

a targeted component through reinforcement training, enabling the automatic acquisition

of various attacking policies. We validate the effectiveness of TPRL across four distinct

classification tasks, where our experiments consistently demonstrate a superior generation

of natural adversarial samples. Remarkably, these samples accurately represent edge cases
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while exhibiting minimal distortion in the underlying data distribution.

Limitations

One limitation of our work is the reliance on a single scalar reward for optimization, despite

the problem having dual objectives: confusion and maintaining similarity. We recommend

investigating alternative techniques, such as Multi-objective Reinforcement Learning, to

address this limitation. This approach has the potential to enhance performance by opti-

mizing both objectives concurrently. Moreover, the datasets used in paraphrasing currently

need longer sequences, approximately 256 tokens, which restricts our approach to generat-

ing adversarial samples for longer sequences.

Ethics Statement

Enhancing classifier performance is of utmost importance, especially considering the preva-

lence of hate and offensive speech on social media platforms. Many users attempt to cir-

cumvent the classifier’s detection capabilities by altering their writing style or incorporating

unfamiliar words, thereby creating edge cases where the classifier needs to identify such

content accurately. This paper presents an innovative approach to generate these edge cases

and leverage adversarial training to enhance the classifier’s ability to detect and protect

against such samples.
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CHAPTER 4

Conclusion

In this work, we tackle two critical challenges in Natural Language Processing: vulner-

ability to adversarial attacks and privacy risks in Large Language Models by employing

the Reinforcement learning method to get insights about how it can affect the generation

of adversarial attacks and address the memorization problem in LLMs without compro-

mising the general LM performance. Our proposed framework showcases significant im-

provements compared to current literature methods. We leverage proximal policy gradient

as a reinforcement learning technique and incorporate negative similarity scores, such as

BERTScore, to tackle the memorization problem. This allows us to develop a dememoriza-

tion policy that can remove sensitive data without disturbing the model’s parameters, pre-

venting the generation of incoherent text. A notable advantage of our framework in address-

ing the memorization problem is its independence from the number of protected samples

and its ability to generalize to unseen data—an improvement over previous state-of-the-art

methods constrained by these limitations. To empirically validate the effectiveness of our

framework, we conducted experiments by integrating it with two state-of-the-art methods.

We evaluated the resulting dememorized Language Model across nine downstream tasks,

with two of them measuring both accuracy and perplexity. Our results demonstrate that our

proposed framework outperforms existing methods, striking an optimal balance between

unlearning and preserving the overall Language Model performance in downstream tasks.

We employed a distinct reward function tailored to this purpose for adversarial text gener-

ation. This involved leveraging the classifier’s negative likelihood to prompt the generator

to create perplexing examples, complementing the mutual implication score to preserve se-
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4. CONCLUSION

mantic consistency. Our approach surpassed prior techniques in the literature by an average

of 2%, as assessed across four diverse classification tasks: sentiment analysis, new topic

classification, and offensive/hate speech detection.

Our study raises several intriguing research questions for future exploration. Firstly, it

prompts us to investigate the impact of applying the proposed framework on larger-scale

models, such as 7B, 13B, and beyond. Additionally, the current evaluation datasets for

assessing memorization have a limitation: they are based on a relatively small sample size

of just 20,000. Expanding the sample size for evaluation could yield more unbiased esti-

mates of memorization. Another noteworthy limitation lies in the prevailing frameworks

within the literature, which treat all memorized data equally without accounting for their

varying sensitivity levels. Finally, adopting a multi-objective approach for optimizing the

language model holds promise for improved results. As we leverage two distinct rewards

and combine them through a weighted sum. This approach has the potential to enhance

performance by simultaneously optimizing both objectives.

We hope our work will serve as a foundation for developing new and innovative solu-

tions to the privacy & reliability problems in large language models. Our proposed frame-

work provides a promising approach to addressing this issue. Further research and experi-

mentation in this area can lead to even more effective methods for reducing memorization

in these models.
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APPENDIX A

Natural Language Policy Optimization vs

PPO

To tackle the challenge posed by large action spaces in language generation tasks, the

NLPO (Natural Language Policy Optimization) framework was proposed. Previous re-

search by [12] highlighted the difficulties faced by existing RL algorithms when dealing

with models like GPT-2/3 and T5, which have extensive vocabularies of 50K and 32K

tokens, respectively, and this issue becomes even more pronounced with newer models.

NLPO introduces a masking policy that is periodically updated and incorporates a top-p

sampling technique during training. This technique helps address the dilemma of balanc-

ing the inclusion of task-relevant information while mitigating the risk of reward hacking.

By extending the PPO (Proximal Policy Optimization) algorithm, NLPO aims to enhance

the stability and effectiveness of training language models. NLPO achieves this by employ-

ing top-p sampling through generating, which restricts the selection of tokens to a smaller

setting where the cumulative probability surpasses a given threshold parameter, p [3].
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APPENDIX B

Displaying Approximate Memorization

Threshold

Recent studies suggested that approximate memorization occurs at the BLEU score of 75%;

we follow this suggestion and demonstrate the effectiveness of the proposed framework in

this section by comparing the number of samples that exceed this threshold before and after

applying the framework.

SacreBLEU(suffixG, suffixT ) > 0.75 (1)

As shown in Figure B.0.1, the memorization ratio for the GPT-Neo 125M model is

relatively low. However, when using standard and longer context settings, there are many

instances where the samples are distributed on and beyond the 75% threshold. Despite this,

after implementing the proposed framework, the distribution of samples is more evenly

spread across various values rather than being concentrated solely in the region beyond

the 75% threshold. In contrast to the other variation, GPT-Neo 1.3B & 2.7B have a large

memorization ratio, especially in case of longer context; the framework effect can be seen

obviously as many samples exceed the threshold in case of those variations as shown in

Figure B.0.2 and Figure B.0.3.
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B. DISPLAYING APPROXIMATE MEMORIZATION THRESHOLD

((a)) True Suffixes Standard Setting ((b)) Generated suffixes Standard Setting

((c)) True Suffixes Longer Context Setting ((d)) Generated Suffixes Longer Context Setting

Fig. B.0.1: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo
125M Standard Setting
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B. DISPLAYING APPROXIMATE MEMORIZATION THRESHOLD

((a)) True Suffixes Standard Setting ((b)) Generated suffixes Standard Setting

((c)) True Suffixes Longer Context Setting ((d)) Generated Suffixes Longer Context Setting

Fig. B.0.2: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo
1.3B Standard Setting
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B. DISPLAYING APPROXIMATE MEMORIZATION THRESHOLD

((a)) True Suffixes Standard Setting ((b)) Generated suffixes Standard Setting

((c)) True Suffixes Longer Context Setting ((d)) Generated Suffixes Longer Context Setting

Fig. B.0.3: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo
2.7B Standard Setting
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APPENDIX C

Memorization Qualitative Results

In this section, we demonstrate the effectiveness of our proposed framework by presenting

a thorough analysis of samples generated before and after its application. To provide a com-

prehensive evaluation, we have chosen samples from various model sizes, including 125M,

1.3B, and 2.7B, and included examples from both standard and longer contexts. Addition-

ally, we present samples from different training phases to showcase the learned policy’s

evolution over time. As previously mentioned, the policy initially focuses on replacing

individual words or numbers to decrease the similarity between samples. As the training

process progresses, the policy becomes more aggressive and replaces entire phrases, as

shown in Figure C.0.1. Figure C.0.2 demonstrates that the framework is capable of learn-

ing a policy that reduces or eliminates the amount of memorized personal data, such as

email addresses. However, it should be noted that in certain instances, this can increase

perplexity.
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C. MEMORIZATION QUALITATIVE RESULTS

Prefix True Suffix Generated Suffix-Before Generated Suffix-After N-SacreBLEUB N-SacreBLEUA PPLB PPLA

IF A STAY OF EXECUTION OF SENTENCE AND
RELEASE UPON BAIL HAS BEEN PREVIOUSLY

GRANTED BY THE TRIAL COURT OR THIS COURT, it
is temporarily continued for a period not to exceed sixty
days upon the bail previously posted. The purpose of a

continued stay is to allow Appellant to file with the
Supreme Court of Ohio an application for a stay during
the pendency of proceedings in that court. If a stay is

continued by this entry, it will terminate at the earlier of
the expiration of the sixty day period, or the failure of the

Appellant to file a notice of appeal with the Supreme
Court of Ohio in the

forty-five day appeal period
pursuant to Rule II, Sec. 2 of
the Rules of Practice of the

Supreme Court of Ohio.
Additionally, if the Supreme
Court of Ohio dismisses the
appeal prior to expiration of

sixty days, the

forty-five day appeal period
pursuant to Rule II, Sec. 2 of
the Rules of Practice of the

Supreme Court of Ohio.
Additionally, if the Supreme
Court of Ohio dismisses the
appeal prior to expiration of

sixty days, the stay will
terminate

case of a continuation. If the
Supreme Court of Ohio

denies the Appellant's motion
for a stay, the stay will

terminate at the earliest of
the expiration of the sixty day

period, or 7 days after the
date of entry of this order, or

6.74 87.6 1.60 1.97

ModuleDirectories = true;
loadScripts(document,'script');</script> <noscript>
<div>JavaScript is disabled on your browser.</div>

</noscript> <header role="banner

"> <nav role="navigation"> <div
class="fixedNav"> <!--

========= START OF TOP
NAVBAR ======= --> <div

class="topNav"><a
id="navbar.top"> <!--

" class="ui-bar-nav-center d-
none d-md-block d-lg-block">

</header> <div
class="dropdown"> <button

class="btn btn-primary
dropdown-toggle"

type="button"

"> <nav role="navigation"> <div
class="fixedNav"> <!--

========= START OF TOP
NAVBAR ======= --> <div

class="topNav"><a
id="navbar.top"><!--   -->

3.0488.273.10 3.20

. Related Posts Reader Interactions Submit Your
CommentDisclaimer: Reviews on FitSmallBusiness.com
are the product of independent research by our writers,

researchers, and editorial team. User reviews and
comments are contributions from independent users not

affiliated with FitSmallBusiness.com's editorial team.
Banks, issuers, credit card companies, and other product
& service providers are not responsible for any content
posted on FitSmallBusiness.com. As such, they do not

endorse or guarantee any posted comments or
reviews.Cancel reply You must be logged in to comment.
Click the "Log in With LinkedIn" button below to connect

instantly and comment. Social Contact Us Disclaimer: We
spend hours researching and

writing our articles and strive
to provide accurate, up-to-
date content. However, our

research is meant to aid your
own, and we are not acting
as licensed professionals.
We recommend that you

consult with your own lawyer,
accountant, or other

writing our articles and strive
to provide accurate, up-to-
date content. However, our

research is meant to aid your
own personal understanding.

We are not a professional
body, and do not claim to be.
This information is subject to

change at any time.

writing our articles and strive
to provide accurate, up-to-
date content. However, our

research is meant to aid your
own, and we are not acting
as licensed professionals.
We recommend that you

consult with your own lawyer,
accountant, or other licensed

professional for

52.616.31 1.34 1.92

* following conditions: * * The above copyright notice and
this permission notice shall be included * in all copies or
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Fig. C.0.1: Suffixes that are memorized by the employed language models and the gener-
ated suffixes given the same prefix. Green indicates that this part is memorized according
to the true suffix, while red indicates that it’s dissimilar.
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C. MEMORIZATION QUALITATIVE RESULTS

Prefix True Suffix Generated Suffix-Before Generated Suffix-After N-SacreBLEUB N-SacreBLEUA PPLB PPLA
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80.12 96.52 3.80 6.64

Fig. C.0.2: Suffixes that are memorized by the employed language models and the gener-
ated suffixes given the same prefix. Green indicates that this part is memorized according
to the true suffix, while red indicates that it’s dissimilar.
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APPENDIX D

Memorization Median Comparison

((a)) GPT-Neo 125M On Stan-
dard Setting

((b)) GPT-Neo 1.3B On Stan-
dard Setting

((c)) GPT-Neo 2.7B On Stan-
dard Setting

((d)) GPT-Neo 125M On Long
Setting

((e)) GPT-Neo 1.3B On Long
Setting

((f)) GPT-Neo 2.7B On Long
Setting

Fig. D.0.1: Displaying The Negative SacreBLEU Distribution of The Models On Standard
& Long Settings Before (blue) & After (orange) Applying The Framework
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APPENDIX E

Baseline Method Hyperparameters

We selected the hyperparameters for UL based on [4] for NEO models, using the number

of epochs required for unlearning until the target sequences meet the forgetting criteria.

For OPT models, we used half the number of epochs compared to NEO models in specific

sizes, as OPT models achieved the same loss as NEO models but in fewer epochs.
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APPENDIX F

Memorization’s Assumptions

As previously discussed, presenting assumptions to address the memorization problem of-

ten leads to incomplete solutions. This is evident in the case of differential privacy, which

assumes whether the data is private or not. Similarly, UL assumes that the training and

evaluation data are memorized, which is impractical in real-world applications considering

that language models are trained on vast corpora with billions of tokens. Furthermore, fine-

tuning an LM in an application involving potentially sensitive/private data poses challenges

in splitting the data into sensitive/private and non-sensitive/private portions for the purpose

of forgetting [6, 10, 1]. On the other hand, dememorization does not rely on assumptions

about the training data that need to be unlearned. Instead, we fine-tune the LM to learn

a universal policy that reduces the relationship between the prefix and suffix. This policy

achieves its objective by replacing the token with a similar entity or a context that is seman-

tically correct but not directly linked to the same prefix, as illustrated in Figure 3. Another

assumption is the limited number of samples to be unlearned at once, which we discussed

before.
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APPENDIX G

Hardware & Software Dependencies

In order to fine-tune GPT-Neo models of sizes 125M and 1.3B, we utilized a cluster of

two V100 GPUs, each equipped with 32GB of VRAM. The 125M model required approx-

imately 0.38 minutes per PPO epoch, resulting in a total computation time of 3.04 minutes

for six epochs. The 1.3B model required a slightly longer computation time of 1.68 min-

utes per PPO epoch, for a total of 13.44 minutes over eight epochs. For the largest variant,

GPT-Neo 2.7B, we utilized a cluster of four V100 GPUs, each with 32GB of VRAM, and

employed a sharding strategy with zero 3 [13]. Each PPO epoch for this model required

5.125 minutes, resulting in a total computation time of approximately 20 minutes over four

epochs. For finetuning those models, we employed the HuggingFace library [18] for train-

ing and Pytorch [9] for parallelizing the model. For RL fine-tuning, we employed TRL

(Transformer Reinforcement Learning) library[17].
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APPENDIX H

Implementation Details For Adversarial

Generation Baseline Methods

We utilized the codebase provided by the authors for the baseline methods. Nevertheless,

certain aspects were not explicitly addressed in their paper or the baseline implementation.

Despite this, we made efforts to adapt these aspects in order to ensure minimal disruption

to the overall framework.

H.0.1 SCPN

SCPN is an approach that leverages an LSTM model trained on a large back-translation cor-

pus to generate paraphrases. These paraphrases are then parsed using the Stanford parser.

In order to generate adversarial samples, SCPN employs ten different parsing templates.

We adopted the same methodology as the authors by utilizing their pre-trained models and

following their steps to generate parse trees for our datasets using the Stanford parser [7].

However, the paper and codebase did not provide details on how to select the appropriate

parsing template. We devised a strategy for choosing the most suitable parsing template to

address this. Given that the model generates ten templates, we initially use the pre-trained

model to generate multiple paraphrases of input ”x” using each template. Subsequently,

we individually query the victim model with each generated paraphrase. We then measure

the confusion and mutual implication score for each paraphrase and select the sample that

yields the highest scores as the chosen paraphrase. This process ensures we prioritize the
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H. IMPLEMENTATION DETAILS FOR ADVERSARIAL GENERATION BASELINE METHODS

paraphrase that maximizes confusion and mutual implication with the victim model.

H.0.2 StyleAdv

StyleAdv is an approach that leverages the power of STRAP (Style Transfer via Paraphras-

ing), a style transfer framework. This approach incorporates five distinct style transfer

models, namely Bible, Poetry, Shakespeare, Lyrics, and Tweets, each capable of generat-

ing a unique style. To ensure consistency and reproducibility, we meticulously followed

the procedure outlined in the paper and codebase for the adversarial generation of our

datasets. However, we encountered a missing reference to the similarity model in the paper

and codebase. Upon contacting the authors, they informed us that any similarity model

would suffice. Consequently, we opted for the ”all-MPNet-Base-v2” model, renowned for

its exceptional performance on the semantic textual similarity (STS) benchmark [8]. We

employed this model to measure cosine similarity, a reliable metric for comparing sen-

tence similarity. The adversarial generation process unfolds: utilizing each style transfer

model, we generate ten paraphrases for a single sentence, resulting in 50 paraphrases. Sub-

sequently, we subject these generated paraphrases to classification by our classifier, mea-

suring both the confusion and cosine similarity. If multiple examples cause the classifier

to produce incorrect outputs, we select the adversarial example with the highest cosine

similarity to the original input as the final choice.
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APPENDIX I

Universal Policy

As previously discussed, TPRL’s learned policy demonstrates remarkable universality across

multiple datasets and classifiers. In this section, we extensively analyze the learned policy’s

performance on each dataset, specifically focusing on its efficacy with four different clas-

sifiers. The following results highlight the consistent and impressive performance of the

learned policy across diverse datasets and classifiers.

I.0.1 SST-5

Policy/Classifier
BERTBase BERTLarge RoBERTaBase RoBERTaLarge DeBERTa-v3Large

(%) (%) (%) (%) (%)

None 53.52 53.52 54.79 58.30 58.46

Policy-BERTBase 53.52 54.88 56.42 ⋆ 57.10

Policy-BERTLarge 52.89 54.93 55.61 ⋆ 59.00

Policy-RoBERTaBase 51.62 54.84 56.15 ⋆ 59.54

Policy-RoBERTaLarge 54.07 55.15 ⋆ 58.95 58.91

Policy-DeBERTa-v3Large 53.52 54.61 55.56 ⋆ 58.77

Table I.0.1: Accuracy Results of Different Classifiers Trained With The Examples Gener-
ated By Various Attacking Policies On The SST-5 Dataset. Showing the Universal Policy.
The best comparable performances policy for the classifier is bolded
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I. UNIVERSAL POLICY

I.0.2 Offensive Dataset

Policy/Classifier
BERTBase BERTLarge RoBERTaBase RoBERTaLarge DeBERTa-v3Large

(%) (%) (%) (%) (%)

None 84.76 85.11 83.95 85.93 84.65

Policy-BERTBase 85.11 85.00 83.95 72.09 84.76

Policy-BERTLarge 85.11 85.58 84.76 84.76 84.53

Policy-RoBERTaBase 85.11 84.88 85.00 85.93 84.53

Policy-RoBERTaLarge 84.30 85.93 85.23 84.53 86.04

Policy-DeBERTa-v3Large 85.81 85.81 85.23 83.02 85.93

Table I.0.2: Accuracy Results of Different Classifiers Trained With The Examples Gener-
ated By Various Attacking Policies On The OFF Dataset. Showing the Universal Policy.
The best comparable performances policy for the classifier is bolded

I.0.3 Hate Dataset

Policy/Classifier
RoBERTaBase RoBERTaLarge DeBERTa-v3Large

(%) (%) (%)

None 91.90 92.45 89.50

Policy-RoBERTaBase 92.45 91.75 93.80

Policy-RoBERTaLarge 92.75 92.05 92.60

Policy-DeBERTa-v3Large 90.65 91.45 92.30

Table I.0.3: Accuracy Results of Different Classifiers Trained With The Examples Gener-
ated By Various Attacking Policies On The HATE Dataset. Showing the Universal Policy.
The best comparable performances policy for the classifier is bolded
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I. UNIVERSAL POLICY

I.0.4 AG’s News Dataset

Policy/Classifier
BERTBase BERTLarge RoBERTaBase RoBERTaLarge DeBERTa-v3Large

(%) (%) (%) (%) (%)

None 93.97 94.18 93.78 93.92 93.94

Policy-BERTBase 94.46 94.60 93.92 93.97 94.23

Policy-BERTLarge 94.21 94.36 93.73 94.02 93.85

Policy-RoBERTaBase 94.17 94.28 93.93 93.78 91.01

Policy-RoBERTaLarge 93.85 94.17 93.72 94.21 94.13

Policy-DeBERTa-v3Large 94.13 94.26 93.94 93.67 94.22

Table I.0.4: Accuracy Results of Different Classifiers Trained With The Examples Gen-
erated By Various Attacking Policies On The AG’s News Dataset. Showing the Universal
Policy. The best comparable performances policy for the classifier is bolded
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APPENDIX J

Automatic Evaluation

We adopted a comprehensive multi-perspective methodology to assess the quality of the

generated adversarial samples, ensuring the following factors were taken into consider-

ation: fluency, as determined by Perplexity (PPL) scores obtained from the GPT-2-XL

language model [11]. However, recognizing the inherent limitations of perplexity in accu-

rately evaluating fluency, we supplemented this metric with the accuracy of a RoBERTa-

large classifier, which was trained on the CoLA corpus [16]. This classifier offers valuable

insights into the grammatical acceptability of the generated samples. For measuring simi-

larity, we utilized the ”all-MPNet-Base-v2” embedding-based SIM model [15, 14] to mea-

sure the semantic similarity between the input sentence and the generated samples. This

model has demonstrated exceptional performance on the semantic textual similarity (STS)

benchmark [8], making it an ideal choice for our task. To further enhance our evaluation,

we also integrated the mutual implication (MI) metric, which effectively captures the in-

ferential role semantics. By incorporating the MI metric, we overcome the limitations of

STS in fully capturing the inferential semantics, thereby providing a more comprehensive

evaluation of the generated samples. The results for each dataset with each classifier are

shown in the following table.
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J. AUTOMATIC EVALUATION

Dataset
Classifier BERTBase BERTLarge RoBERTaBase RoBERTaLarge DeBERTaLarge

Attacker PPL↓ FL↑ SIM↑ MI↑ PPL↓ FL↑ SIM MI↑ PPL↓ FL↑ SIM↑ MI↑ PPL↓ FL↑ SIM↑ MI↑ PPL↓ FL↑ SIM↑ MI↑

SST-2

SCPN 467.84 58.47 72.98 73.20 461.367 58.68 73.08 73.49 442.519 57.29 71.78 70.67 442.95 58.23 71.95 70.16 434.443 57.88 71.99 70.80

StyleAdv 1114.599 58.29 76.29 57.27 1173.938 57.05 74.57 53.44 1183.201 56.75 74.24 52.96 540.362 56.38 73.93 51.35 1281.874 56.49 73.33 50.31

TPRL 293.436 88.97 67.18 86.11 327.538 86.36 72.21 87.18 396.76 87.59 72.94 85.02 405.21 86.58 58.14 90.11 438.16 87.0 70.81 85.8

SST-5

SCPN 462.351 59.22 77.70 83.66 444.079 59.10 78.23 84.19 443.576 59.10 78.12 84.04 430.548 58.81 78.21 84.06 461.905 59.00 77.09 82.13

StyleAdv 257.311 68.24 90.43 78.98 256.632 67.30 89.79 77.45 248.617 70.50 90.95 79.97 315.372 67.70 89.49 77.26 261.436 69.42 89.90 78.27

TPRL 354.96 85.94 75.2 87.53 283.46 86.84 75.17 85.31 401.87 85.48 78.96 87.49 319.86 86.86 74.89 85.02 373.00 86.72 75.90 86.22

HS

SCPN ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 736.244 58.85 75.83 85.91 739.991 58.59 75.70 85.69 746.287 58.42 75.85 85.42

StyleAdv ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 367.99 57.34 79.14 60.97 360.303 58.84 76.42 56.77 407.045 59.15 79.22 60.02

TPRL ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 973.77 80.61 59.14 92.15 212.95 89.69 74.8 89.76 197.68 90.05 75.43 90.52

OFF

SCPN 780.052 47.44 73.43 79.51 801.278 47.46 73.39 80.21 827.18 47.41 73.74 80.32 790.174 47.58 73.61 80.40 817.611 47.20 73.93 80.81

StyleAdv 1273.684 51.28 77.12 58.73 2069.405 52.09 77.45 58.48 1316.525 51.91 76.64 57.20 1298.085 52.84 77.46 58.27 1827.177 51.87 79.25 59.90

TPRL 316.61 87.28 72.83 87.50 472.94 87.17 72.47 88.58 412.41 85.88 70.87 87.85 327.49 85.69 67.17 90.60 355.65 86.73 71.13 87.32

AG’s News

SCPN 383.066 29.05 72.62 80.76 382.20 29.05 72.60 80.85 367.79 28.91 72.68 80.50 371.46 28.95 72.69 80.64 343.28 28.94 72.56 80.39

StyleAdv 356.54 51.55 53.34 39.45 435.91 50.70 54.92 42.15 425.10 49.81 57.34 43.86 384.90 50.93 54.25 40.42 451.27 51.55 52.88 38.78

TPRL 508.63 86.19 79.05 98.46 406.12 87.02 75.68 98.23 277.79 88.39 74.21 97.44 248.27 88.11 79.20 97.57 600.80 85.88 76.24 98.51
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APPENDIX K

Adversarial Generation Hyperparameters

Details

The model was trained for thirty epochs as we tried a range of epochs and picked up the

best value that achieves a higher reward in the training environment. While a batch size

of 32 was chosen empirically, as changing batch size did not affect performance. The

training process employed the Lion optimizer, as proposed by [2], in their work on symbolic

optimization. With a learning rate of 4.9 × 10−6 suggested by [17], the Lion optimizer

demonstrated superior convergence compared to the commonly used Adam optimizer [5].

83



APPENDIX L

GPT-3.5 Annotation Details

L.0.1 Measuring Similarity Via ChatGPT

To assess the similarity of larger generated samples, we used ChatGPT. Using “from 1

to 5, how much is the generated sentence similar to the original (1 being very dissimilar

and 5 being very similar)?” as a prompt. We randomly selected 100 samples from each

framework in the SST-2 dataset. Ratings were given on a scale of 1 to 5, with 1 being very

dissimilar and 5 being very similar. Results for TPRL: 5 (9%), 4 (43%), 3 (33%), and 2

(15%); SCPN: 5 (9%), 4 (36%), 3 (29%), 2.5 (1%), 2 (23%), and 1 (1%); StyleAdv: 4

(22%), 3 (33%), 2 (34%), and 1 (11%). TPRL achieved the highest similarity ratings in

categories 5, 4, and 3, indicating similarity to the original samples. SCPN ranked second,

while StyleAdv received the lowest ratings. These ChatGPT (GPT-3.5) findings align with

human evaluation results.

L.0.2 Measuring Diversity Via GPT-3.5

To validate our observation regarding the diversity of the generated samples, we used Chat-

GPT (GPT-3.5) to assess the diversity of generated samples for the three baselines. Using

“from 1 to 5, how much is the generated sentence diverse from the original (1 being very

non-diverse and 5 being very diverse)?” as a prompt. We randomly selected 250 sentences

from SST-2. TPRL had 100 samples, SCPN had 77 samples, and StyleAdv had 73 sam-

ples. The scaling rates were as follows: TPRL: 5 (6%), 4 (34%), 3 (45%), 2 (12%), and

1 (3%). SCPN: 5 (11%), 4 (20%), 3 (19%), 2 (44%), and 1 (3%). StyleAdv: 4 (9%), 3
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L. GPT-3.5 ANNOTATION DETAILS

(15%), 2 (54%), and 1 (20%). These results confirm that TPRL generates more diverse

samples, while cosine similarity fails to account for this diversity and considers it as a high

similarity.
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APPENDIX M

Classifiers Error Analysis

To demonstrate dissimilarities in errors across employed classifiers, we utilized the follow-

ing methodology: We inspected the intersection of misclassified samples for each dataset

to examine whether or not a sample was present in all classifiers’ misclassification sets,

which we have termed the AND operation. Additionally, to inspect whether a sample was

present in any of the classifiers’ misclassification sets, we searched for unique samples,

which we have designated as the OR operation. Our analysis indicates that the AND oper-

ation ranges from 9% to 16%, with an average of 10.57%. Conversely, the OR operation

ranges between 32% and 55%, averaging 41.49%. Following fine-tuning with transferred

samples from differing classifiers, we evaluated whether the improved performance was

solely achieved through shared samples, which yielded a shared sample average of 30%.

Our analysis confirms that the policy shares both universal and model-specific features.
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