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ABSTRACT

This thesis introduces an innovative framework aimed at addressing the complex-

ities of predicting outcomes in multivariate multi time series datasets in regression

analysis. By applying this framework to a novel COVID-19 dataset, it enhances pre-

dictive analytics by providing accurate forecasts for epidemic trends at regional or

provincial levels, going beyond national-level analysis. The framework incorporates

advanced data preprocessing, feature selection, engineering, encoding, and model

architecture, effectively capturing intricate variable interactions and temporal depen-

dencies. This makes it a powerful tool for tackling multivariate multi time series

regression challenges, offering valuable insights for informed decision-making.

Predicting outcomes in such datasets is challenging due to variable interconnec-

tions and temporal dynamics. The framework presented in the thesis adeptly mod-

els dependencies and latent patterns while considering real-world uncertainties. It

demonstrates its practical value in localized epidemic trend forecasting, where deep

data understanding is crucial for effective decision-making. Extensive experimenta-

tion shows that the framework outperforms traditional regression models and time

series models in terms of various performance metrics, such as R2, MAE, MaxAE,

and RMSE. A novel model, DeepAREstimator, is introduced to balance performance

and training time, offering a maintainable and scalable solution for real-world ap-

plications. The findings contribute to advancing predictive analytics, and providing

essential insights for decision-making, particularly in localized epidemic trend fore-

casting.
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CHAPTER 1

Introduction

1.1 Background

In recent years, the field of data science and predictive analytics has been transformed

by a burgeoning wealth of multivariate multi time series datasets. These datasets are

characterized by their complexity, involving numerous variables and intricate tem-

poral dependencies. The intersection of these data characteristics poses substantial

challenges for traditional regression prediction models. The conventional models that

have been effective in simpler, univariate time series data struggles to cope with the

intricate relationships, temporal dynamics, and intertwined nature of variables found

in these complex datasets.

The relevance of this challenge extends across a spectrum of domains, including

finance, healthcare, climate science, epidemiology, and more. In these fields, data

is collected over time, with each data point being associated with a multitude of

variables. For instance, consider healthcare, where patient data involves a myriad

of physiological parameters, such as heart rate, blood pressure, and temperature,

recorded at regular intervals. In epidemiology, understanding the dynamics of disease

outbreaks requires analyzing data across regions, each characterized by a diverse set

of factors, including population density, healthcare infrastructure, and local policies.

In finance, stock prices, influenced by various external factors, illustrate the complex

relationships between variables over time. Accurate prediction and understanding of

outcomes in these datasets are imperative for making informed decisions and crafting

effective strategies.
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1. INTRODUCTION

The intricacy of these datasets arises from the intricate web of dependencies be-

tween variables, both within the same time point and across different time points.

Variables often exhibit non-linear and dynamic interactions, compounding the chal-

lenge. For example, in a financial dataset, the stock prices of different companies may

be interrelated, with external economic events exerting further influence on these re-

lationships.

Adding to this complexity are real-world uncertainties, which introduce an addi-

tional layer of challenges. Missing data, measurement errors, and unexpected events

can introduce noise and disrupt regular patterns within the data. As such, it is

imperative that any effective predictive model accounts for these uncertainties.

As a result, there is a growing demand for innovative approaches that can effec-

tively handle multivariate multi time series data. Such approaches need to capture

dependencies, patterns, and uncertainties while providing accurate predictions. The

need for such models was prominently highlighted during the COVID-19 pandemic,

where understanding and forecasting regional epidemic trends became a critical task.

National-level analysis, while informative at a high level, does not provide the gran-

ularity required for localized decision-making. This underscores the importance of

bridging the gap between national and regional-level analysis, which is one of the key

motivations behind this research.

The importance of addressing this challenge is underscored by its practical ap-

plications. As we have seen during the COVID-19 pandemic, understanding and

forecasting regional epidemic trends became an urgent and critical task. National-

level analysis, while informative at a high level, could not provide the granularity

required for localized decision-making. Thus, the need for models that can bridge the

gap between national and regional-level analysis becomes evident.

Solving this problem has profound implications for informed decision-making and

strategy development across diverse domains. It not only advances the field of pre-

dictive analytics but also empowers policymakers and decision-makers with the tools

to make targeted and effective decisions. This research aims to develop a framework

that is poised to meet this challenge, offering innovative solutions to enhance our
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1. INTRODUCTION

understanding and prediction of outcomes in multivariate multi time series datasets.

The applications of this work span domains as varied as healthcare, finance, and

epidemiology, underlining its critical importance in the current data-driven era.

In summary, the background of this thesis is rooted in the evolving landscape of

data science, where complex multivariate multi time series datasets pose significant

challenges to traditional regression prediction models. Understanding and effectively

predicting outcomes in such datasets is essential for informed decision-making in

various domains, with the COVID-19 pandemic serving as a prime example of the

need for more localized and accurate forecasts. This research aims to develop a

framework that addresses these challenges and provides valuable contributions to the

field of predictive analytics.

1.1.1 Regression Prediction Problem

In the realm of predictive analytics, the Regression Prediction Problem stands as a

fundamental and enduring challenge. At its core, it is a task concerned with under-

standing and modeling the relationships between a dependent variable and one or

more independent variables. In essence, this problem seeks to answer the question:

”Given a set of input variables, what can we predict about the outcome?” This out-

come, typically a continuous numerical value, may represent various phenomena, such

as stock prices, patient health indicators, or economic indicators.

Traditional regression models, like linear regression, are often employed to address

this problem, assuming that the relationships between variables are linear. However,

as datasets have become increasingly complex, with a multitude of variables and intri-

cate temporal dependencies, the linear assumptions underlying traditional regression

models are frequently challenged. Consequently, there arises a need for innovative

approaches, particularly in the context of multivariate multi time series datasets.
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1.1.2 Regression Time Series Prediction Problem

Extending the scope of the Regression Prediction Problem, the Regression Time Se-

ries Prediction Problem addresses scenarios where data is collected over time. This

problem encapsulates an array of challenges distinct from standard regression due to

the temporal nature of the data. Specifically, it involves modeling how a dependent

variable evolves over time, given one or more independent variables.

The significance of the Regression Time Series Prediction Problem becomes all

the more apparent in the context of multivariate multi time series datasets. In these

datasets, variables exhibit temporal dependencies, and the interactions among them

can be highly dynamic and nonlinear. For instance, in the case of forecasting regional

COVID-19 trends, the number of cases in one region may influence the number of

cases in neighboring regions over time. Additionally, external factors, like vaccination

campaigns or policy changes, may introduce non-trivial temporal dependencies into

the dataset.

As the world grapples with increasingly complex data, characterized by intricate

relationships between variables and intricate temporal dynamics, the need for novel

solutions to the Regression Time Series Prediction Problem intensifies. These so-

lutions must address the challenges of modeling dependencies, handling real-world

uncertainties, and providing accurate predictions, all while considering the implica-

tions for informed decision-making.

Solving the Regression Time Series Prediction Problem is of paramount impor-

tance in various domains, including epidemiology, finance, and healthcare. Effective

solutions are not only poised to advance the field of predictive analytics but also

to empower decision-makers with the tools to make targeted and effective decisions,

particularly in scenarios that necessitate localized epidemic trend forecasts, regional

financial predictions, and patient health monitoring. This research endeavors to pro-

vide innovative and robust solutions to this challenge, shaping the landscape of pre-

dictive analytics in the face of evolving data complexities.

4



1. INTRODUCTION

Fig. 1.1.1: Number Of COVID-19 Daily Cases in Alberta Time Series

Fig. 1.1.2: Number Of COVID-19 Daily Hospitalizations in Alberta Time Series
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1.1.3 State-of-the-Art Prediction Algorithms for Regression

Time Series

In the domain of regression time series prediction, several advanced algorithms and

models have risen to prominence, each offering unique capabilities and suitability for

different scenarios. Here, we provide more in-depth descriptions of these state-of-the-

art techniques:

1.1.3.1 Deep Neural Networks (DNNs)

Deep Neural Networks represent a class of machine learning models characterized

by their depth and capacity to learn intricate, non-linear relationships within data.

These networks consist of multiple hidden layers, enabling them to capture complex

patterns and dependencies in regression time series data. DNNs[30] have demon-

strated remarkable adaptability, proving effective in a wide range of domains. Their

ability to handle high-dimensional data and learn hierarchical features makes them

invaluable for modeling intricate temporal dynamics.

1.1.3.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks are specialized deep learning models designed for

sequential data, making them well-suited for time series analysis. What sets RNNs[23]

apart is their capacity to maintain a memory of past time steps. This memory

mechanism enables them to capture temporal dependencies within the data, which is

essential for accurate regression time series predictions. Variants such as Long Short-

Term Memory (LSTM)[20] and Gated Recurrent Unit (GRU)[14] have been

introduced to address issues like vanishing gradients, providing more robust solutions

for modeling longer-range dependencies.

1.1.3.3 K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a non-parametric and instance-based algorithm. It op-

erates on the principle of similarity, where predictions are made by identifying the
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k-nearest data points to a given instance and using their values to infer the target

value. KNN[22] is particularly effective when dealing with local patterns and small-

scale trends in regression time series data. It is non-parametric, meaning it doesn’t

make strong assumptions about the data distribution, allowing it to adapt to various

patterns. However, its effectiveness may diminish when facing data with intricate

dependencies and substantial noise.

1.1.3.4 ARIMA/VAR Models

AutoRegressive Integrated Moving Average (ARIMA)[19] and Vector Au-

toregression (VAR)[24] models are classical approaches with a strong foundation

in time series analysis. ARIMA[19] models are well-suited for capturing linear tempo-

ral dependencies within univariate time series data. They consist of auto-regressive,

integrated, and moving average components. VAR models extend this capability to

multivariate time series data, making them valuable for studying the interactions be-

tween multiple variables over time. These models are effective in situations where

the data exhibits clear and stationary patterns, making them valuable for simple,

linear relationships. However, they may struggle when dealing with more complex,

non-linear relationships and non-stationary data.

1.1.3.5 Prophet

Prophet[36], developed by Facebook, is a time series forecasting model designed

for datasets with daily observations and seasonal patterns. It is characterized by its

ability to handle data with missing values, outliers, and holidays effectively. This

makes it a valuable tool in situations where data is noisy or has gaps. Prophet has

found applications in various domains, including e-commerce, social media analytics,

and more. Its adaptability to handling real-world complexities and noisy data makes

it a noteworthy addition to the suite of time series forecasting tools.

Each of these state-of-the-art prediction algorithms for regression time series offers

unique strengths and capabilities. The choice of algorithm depends on the specific

characteristics of the data, the nature of the relationships between variables, and the
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objectives of the analysis. This thesis will investigate the performance and limitations

of these algorithms within the context of multivariate multi time series datasets, with

a focus on localized epidemic trend forecasts. The research aims to harness the

advantages of these state-of-the-art techniques while addressing the complexities and

intricacies of the data at hand, thereby advancing the field of predictive analytics.

1.1.4 High Cardinality Multivariate Multi-time series Datasets

The advent of the data-driven era has ushered in a deluge of information across diverse

domains, and the intricacy of this data often defies simple categorization. Among

the most complex and challenging datasets encountered are those characterized by

high cardinality, multivariate attributes, and temporal dependencies. These datasets,

often referred to as High Cardinality Multivariate Multi-time series datasets, pose

a unique set of challenges and opportunities for data analysts and machine learning

practitioners.

1.1.4.1 Complexity and Challenges

These datasets present a unique set of complexities and challenges that have direct

implications for the regression prediction problem and, more specifically, the predic-

tion of epidemic trends at regional or provincial levels, as explored in this thesis. The

complexity arises from several key factors:

• Interwoven Variables: The term ”high cardinality” in this context refers to

the presence of a vast number of unique entities, such as regions or provinces.

Each entity is associated with a multitude of variables. For instance, in the

context of COVID-19 prediction, each region might be characterized by data

on population density, healthcare infrastructure, local policies, and more. The

interplay between these variables is far from linear, making it a challenge to

understand their relationships

• Temporal Dynamics: High cardinality multivariate multi-time series datasets

involve data collected over time, and each time point is associated with a multi-
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tude of variables. In the case of the COVID-19 dataset, this temporal aspect is

particularly relevant, as the number of cases, hospitalizations, and testing rates

evolve over time. This temporal aspect introduces dynamic dependencies and

patterns that require sophisticated modeling techniques.

• Real-World Uncertainties: In these datasets, uncertainties often abound.

Data can be missing, noisy, or subject to unforeseen events. For instance,

disruptions in testing capacity, changes in reporting standards, or regional lock-

downs during the COVID-19 pandemic introduce uncertainty into the dataset.

Addressing these real-world uncertainties is paramount for building reliable pre-

diction models.

• Non-Linear Dependencies: High cardinality multivariate multi-time series

datasets often exhibit complex non-linear dependencies between variables. Tra-

ditional linear regression models may not effectively capture these intricate re-

lationships. Understanding and modeling these non-linear interactions pose a

significant challenge.

• High Dimensionality: With a multitude of variables for each entity and

multiple time points, these datasets are characterized by high dimensionality.

High-dimensional data introduces computational challenges and may require

dimensionality reduction techniques to avoid the curse of dimensionality.

• Heterogeneity of Entities: Each entity within the dataset may exhibit dif-

ferent characteristics and behaviors. For instance, when analyzing COVID-19

data across regions, urban and rural areas may have distinct patterns. Handling

this heterogeneity while preserving the interdependencies between entities is a

complex task.

• Data Imbalance: In certain applications, some entities or regions may have

significantly more data points or observations than others. Data imbalance can

introduce bias and affect the model’s ability to generalize to less represented

entities.
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• Computation and Resource Intensiveness: Processing high cardinality

multivariate multi-time series datasets often requires substantial computational

resources. Advanced modeling techniques, such as deep learning, can be com-

putationally intensive, and managing large-scale data efficiently is a challenge.

1.1.4.2 Importance of HCMVMT Dataset in the Context of Thesis

The significance of understanding and effectively modeling high cardinality multi-

variate multi-time series datasets becomes particularly pronounced when considered

in the context of this thesis. The thesis, as previously detailed, is designed to ad-

vance the field’s approach to predictive analytics in the face of such complex datasets

and, specifically, to provide accurate predictions of epidemic trends at regional or

provincial levels.

Localized epidemic trend forecasts are of paramount importance in situations like

the COVID-19 pandemic, where a granular understanding of the data is essential

for effective decision-making. A broad, national-level analysis often falls short of

providing the precise insights needed for region-specific strategies and policies. It

is at this juncture that the complexities of high cardinality multivariate multi-time

series datasets are thrust into the spotlight.

The data analyzed in this thesis, which encompasses multiple regions or provinces,

each with its unique set of variables, is a quintessential example of high cardinality

multivariate multi-time series data. It exhibits the intertwined nature of variables,

dynamic temporal dependencies, and the impact of real-world uncertainties. Effec-

tively addressing these complexities, as the proposed framework aims to do, becomes

pivotal in the journey to provide reliable and targeted predictions, thus informing

decisions that have far-reaching implications.
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1.1.5 Limitations of State-of-the-Art Methods for HCMVMT

Dataset:

The state-of-the-art methods discussed in the previous section offer powerful tools for

time series prediction. However, when applied to high cardinality multivariate multi-

time series datasets, they face a series of limitations that hinder their effectiveness.

These limitations must be considered when choosing an appropriate approach for

addressing the complexities of such datasets.

1.1.5.1 Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs)[30], while highly versatile, exhibit limitations when

applied to high cardinality multivariate multi-time series datasets:

• Incompatible with Raw Data: DNNs may excel at capturing the total tar-

get value over time but might struggle to efficiently capture changes in the

target value. This limitation can impact the modeling of dynamic trends and

dependencies within the data.

• Challenges in Capturing Change: DNNs may excel at capturing the total

target value over time but might struggle to efficiently capture changes in the

target value. This limitation can impact the modeling of dynamic trends and

dependencies within the data.

• Dependency Handling: DNNs, despite their depth and complexity, may not

efficiently capture dependencies across previous time series steps. This is a

critical limitation when dealing with time series data that exhibits intricate

temporal relationships.

1.1.5.2 ARIMA Based Models

ARIMA (AutoRegressive Integrated Moving Average) [19] models, while effective for

simpler time series, have specific limitations when handling high cardinality multi-

variate multi-time series datasets:
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• Univariate Limitation: ARIMA models are inherently designed for univari-

ate time series and may not directly handle multiple variables. This limitation

complicates their application to high cardinality datasets characterized by mul-

tiple interacting variables.

• Complex Dependency Handling: These models assume that the current

value can be predicted based on a linear combination of its previous values. In

scenarios where complex dependencies exist between multiple time series, this

assumption may not hold, impacting predictive accuracy.

• Multivariate Extensions: Multivariate versions of ARIMA models exist, but

their applicability and performance can be constrained by the complexity and

non-linearity of interactions between variables.

1.1.5.3 Vector Autoregression (VAR)

Vector Autoregression (VAR)[24], a multivariate extension of ARIMA, faces its own

set of limitations when applied to high cardinality multivariate multi-time series

datasets:

• Linear Assumption: Like ARIMA, VAR models also assume that the current

value can be predicted based on a linear combination of its previous values.

In cases where non-linear relationships exist, the models may not effectively

capture these dynamics.

• Performance with Many Variables: The performance of VAR models can

degrade when handling a high number of variables, as the complexity of in-

teractions increases. This limitation poses challenges when dealing with high

cardinality datasets with numerous variables.

• Nonlinear Relationships: VAR models are primarily designed for linear rela-

tionships between variables. In high cardinality datasets, nonlinear relationships

may dominate, impacting the model’s predictive accuracy and reliability.
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1.1.5.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)[23], with their temporal modeling capabilities,

offer advantages for time series data. However, they encounter specific limitations

when applied to high cardinality multivariate multi-time series datasets:

• Difficulty in Capturing Long-Term Dependencies: RNNs may struggle

with capturing long-range dependencies in time series data. While they have

memory mechanisms, the vanishing gradient problem can hinder their ability

to efficiently capture long-term patterns.

• Computationally Intensive: Training deep RNNs, especially on high-dimensional

and high cardinality datasets, can be computationally intensive. Managing the

resources required for these models is a practical challenge.

• Data Pre-processing and Feature Engineering: RNNs often require ex-

tensive data pre-processing and feature engineering, including scaling and nor-

malizing the data, which can add complexity to the modeling process.

• Handling Irregular Time Intervals: When dealing with datasets containing

irregular time intervals, RNNs may face difficulties. Ensuring that the model

effectively handles gaps and irregularities in the data can be challenging.

• Scalability: RNNs might face challenges in scaling effectively to generalize well

for different distribution series, especially in high cardinality datasets where

numerous entities exhibit varying behavior.

1.1.5.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN)[22], a proximity-based algorithm, offers simplicity and

interpretability. However, it exhibits several limitations when applied to high cardi-

nality multivariate multi-time series datasets:

• Computationally Expensive: KNN can be computationally expensive, par-

ticularly when dealing with large datasets and higher values of k (number of
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neighbors to consider). This computational intensity may hinder practical ap-

plications.

• Sensitive to k: The choice of k is a critical hyperparameter in KNN. Selecting

the right value of k is essential for the model’s performance, and it may require

experimentation, which can be time-consuming.

• Capturing Long-Term Dependencies: KNN struggles with capturing long-

term dependencies in time series data, particularly when patterns extend over

multiple time steps. It excels at capturing local patterns but may miss global

trends.

• Incompatible with Raw Data: KNN typically cannot be applied directly to

raw, unprocessed time series data. Data preprocessing and transformation are

often necessary, making the workflow more intricate.

1.2 Problem Definition

Let X ∈ R represent the feature space, where R = {Xi,j} for i ∈ [1, n], j ∈ [1,m].

Let Z be the set of target variables, where Z = yi.

Our objective is to establish a prediction framework with the purpose of training

a machine learning function Fm : X → y, such that Fm(Xi,j) = yi.

The feature space X is characterized by i× j feature vectors Xi,j, where i ∈ [1, n]

represents the data samples in the dataset, and j ∈ [1,m] represents the independent

variables or features.

The target variables yi correspond to the data samples in the dataset, with n

denoting the total number of samples and m representing the number of independent

variables in the dataset.

The function Fm strives to learn patterns within the information contained in X

in order to provide accurate predictions for y based on this information.

For example, yi could represent the number of cases, deaths, or hospitalizations.
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Xi might correspond to a single timestamp or data point for which the target

variable needs to be predicted.

Xj could represent the percentage of vaccination coverage for a specific dose (e.g.,

dose 1).

1.3 Problem Motivation

The endeavor to predict and understand COVID-19 epidemic trends, encompassing

critical aspects such as the number of cases, deaths, and hospitalizations, has been

a profound motivation guiding the research journey embarked upon in this thesis.

This motivation arises from a recognition of the pressing need to address complex

challenges and make informed decisions in the face of a global health crisis. The core

motivations behind the choice to focus on provincial-level epidemic prediction are

multi-fold, and they align closely with the essence of this thesis.

1.3.1 Beyond Limitations Of Previous Works

The motivation behind this research extends far beyond simply addressing the lim-

itations of previous works in dealing with the prediction of epidemic trends. While

recognizing the shortcomings of existing approaches, our motivation encompasses a

broader scope, driven by a multitude of factors that underpin the relevance and sig-

nificance of this work.

This motivation revolves around the exploration of three major questions:

1. How does the COVID-19 problem and its corresponding dataset relate to the

concept of High Cardinality Multivariate Multi-time Series (HCMVMT) datasets?

2. Why should COVID-19 be dealt with in a manner that leads to the creation of

HCMVMT datasets?

3. What are the advantages of the results obtained when COVID-19 is approached

as an HCMVMT dataset?

The research conducted in this thesis aims to provide comprehensive answers to

these questions, shedding light on the deeper connections between COVID-19 and
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HCMVMT datasets, the rationale for approaching COVID-19 in this unique manner,

and the tangible benefits that arise from this novel perspective. By doing so, it

transcends the limitations of previous works and underscores the holistic approach

taken in addressing the complexities of epidemic trend prediction.

1.3.2 High Cardinality Multivariate Multi-time Series Datasets

and COVID-19

Predicting COVID-19 epidemic trends at the provincial level leads to the generation

of such high cardinality multivariate multi-time series datasets. Each province’s data

represents a unique, evolving time series characterized by multiple variables. The

complexity arises from the interplay of these variables over time, making the dataset

intricate and challenging to analyze.

This complexity and the scale of data align directly with the motivation of this

research. The understanding is that addressing the challenges posed by high cardi-

nality datasets, where each region’s dynamics are influenced by numerous interrelated

factors, is a pivotal step in advancing the field of predictive analytics. It is within

this intricate web of data that critical insights are waiting to be discovered.

The thesis’s objective is to introduce a framework tailored to deal with the com-

plexities of these high cardinality multivariate multi-time series datasets. This frame-

work aims to provide reliable predictions by modeling the dependencies, interactions,

and temporal dynamics inherent in such data. By focusing on this unique dataset

structure, the research aims to bridge the gap between the complexity of real-world

epidemic trends and the capabilities of data analysis and prediction, highlighting the

intricate nature of the data and its significance in informing effective decision-making

at the provincial, national, and international levels.

1.3.3 The Significance of Provincial-Level Predictions

The importance of predicting COVID-19 at the provincial level extends to numerous

critical aspects of managing a pandemic. This approach recognizes the dynamic and
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diverse nature of the COVID-19 crisis and seeks to address these challenges with a

localized, nuanced perspective. Several key reasons underscore the significance of

provincial-level predictions:

1.3.3.1 Localized Decision Making

Different provinces or regions may experience varying infection rates, healthcare ca-

pacities, and vaccination coverage. Models that offer predictions at the provincial

level allow policymakers and public health officials to make more informed decisions

tailored to the specific needs of each region. This approach can help optimize re-

source allocation and response strategies based on the unique circumstances in each

province.

1.3.3.2 Targeted Interventions

Understanding the potential trajectory of the virus at the province level enables au-

thorities to implement targeted interventions and containment measures in areas that

are likely to be most affected. This proactive approach can help prevent widespread

outbreaks and mitigate the impact on public health and the economy. By identifying

hotspots early, authorities can deploy resources more efficiently.

1.3.3.3 Resource Planning

Healthcare systems may vary significantly from province to province, both in terms of

capacity and readiness. Predictive models at the province level can aid in estimating

the demand for medical resources, such as hospital beds, ventilators, and medical

personnel. This, in turn, allows for better preparedness and resource allocation.

Knowing which provinces are at higher risk of surges in cases enables healthcare

systems to plan and allocate resources strategically.

1.3.3.4 Risk Assessment

Provincial-level predictions provide valuable insights into which areas are at higher

risk of experiencing surges in cases. This information can be used to prioritize surveil-
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lance, testing, contact tracing, and vaccination efforts in regions that are most vul-

nerable. Risk assessment at the province level enables a more targeted and effective

public health response.

1.3.3.5 Monitoring and Evaluation

Comparing model predictions with actual outcomes at the province level is crucial for

continuous evaluation. Health authorities can assess the accuracy of their models and

improve their forecasting capabilities over time. This iterative process helps refine

strategies and responses as the pandemic evolves, ensuring that interventions remain

effective.

1.3.3.6 Research and Collaboration

COVID-19 models at the provincial level can foster research collaborations and infor-

mation sharing between provinces and countries. Scientists and health experts can

learn from each other’s experiences and adapt successful strategies to their own re-

gions. This collaborative approach accelerates the development of effective responses

to the pandemic.

In essence, predicting COVID-19 at the provincial level is not merely an ana-

lytical exercise but a strategic imperative. It acknowledges the diverse nature of the

pandemic and emphasizes the importance of localized decision making, targeted inter-

ventions, resource planning, risk assessment, monitoring and evaluation, research col-

laboration, and information sharing. By understanding the unique dynamics within

each province, we can tailor responses and interventions to effectively combat the

virus, ultimately reducing its impact on public health and the economy. This ap-

proach offers a comprehensive and localized solution to managing the complexities of

the COVID-19 pandemic.
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1.3.4 Abstraction to National and International Levels

Dealing with the COVID-19 pandemic at the provincial level and generating predic-

tions for each province brings with it a unique advantage that extends well beyond

local response. The results obtained from provincial-level predictions can be effi-

ciently abstracted to the national and international levels, facilitating a seamless and

accurate transfer of insights. This abstraction process is underpinned by several key

factors:

1.3.4.1 Data Granularity

The provincial-level approach provides a high degree of data granularity. Each

province is considered individually, accounting for the specific characteristics and

conditions within that region. This granularity allows for a detailed understanding of

how the virus behaves within different settings and under varying circumstances. As

a result, the insights gained at the provincial level are highly granular and specific.

1.3.4.2 Aggregation and Summation

One of the advantages of working with granular data is the ability to aggregate and

sum the results. Aggregation involves combining the data and insights from individual

provinces to create a broader view. This process is relatively straightforward, as it

involves summing up the predictions, metrics, and findings from each province to

create a national-level perspective.

1.3.4.3 Comparisons and Contrasts

The granular data from provincial-level predictions also enables meaningful compar-

isons and contrasts. Health authorities, policymakers, and researchers can readily

compare the experiences and responses of different provinces. These comparisons

are valuable for identifying best practices and strategies that have been particularly

effective in one region and may be applicable elsewhere.
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1.3.4.4 Hierarchical Modeling

Hierarchical modeling is a powerful tool that leverages provincial-level data to build

models that can be applied at national or international levels. By understanding

the relationships between provinces and the factors that influence the virus’s spread,

hierarchical models can provide insights at various scales. Provincial-level data serves

as a foundational element in constructing these models.

1.3.4.5 Fine-Tuning and Generalization

The provincial-level data provides a robust foundation for fine-tuning models and

generalizing findings. It allows for the refinement of predictive models and strategies

at the provincial level. Once these models are fine-tuned and proven effective, they

can be scaled up and applied to national and international scenarios with greater

confidence.

1.3.4.6 Policy and Strategy Sharing

Provincial-level predictions are a valuable resource for sharing policies and strategies

that have yielded positive outcomes. By understanding what has worked in one

province, policymakers in other regions can adopt similar measures. This sharing of

successful strategies can be highly beneficial on a larger scale.

1.3.4.7 Consistency and Standardization

Working at the provincial level promotes consistency and standardization in data

collection, reporting, and response strategies. This uniformity facilitates the creation

of a cohesive and standardized approach to the pandemic. When the same proce-

dures are followed across provinces, the data generated is more easily integrated and

compared.

In essence, dealing with COVID-19 at the provincial level not only offers a local-

ized and targeted response but also simplifies the process of abstracting results to

national and international levels. The granularity of data, ease of aggregation, poten-
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tial for hierarchical modeling, and opportunities for policy and strategy sharing make

the transition from provincial insights to broader applications smoother and more

effective. This hierarchical approach, driven by granular data and localized decision-

making, ensures that the knowledge and insights gained are readily applicable on a

larger scale, ultimately contributing to more effective pandemic management at the

national and international levels.

1.4 Thesis Statement

This research introduces a novel and innovative hybrid framework designed to address

the intricate challenges posed by High Cardinality Multivariate Multi-time Series

(HCMVMT) datasets, with the overarching objective of achieving improved predic-

tive performance. The proposed framework is meticulously crafted to excel on key

performance metrics, including R2 (Coefficient of Determination), RMSE (Root Mean

Square Error), Mean Absolute Error (MAE), and Max Absolute Error (Max AE).

To fulfill this objective, a practical and meticulously constructed COVID-19 dataset,

enriched with HCMVMT characteristics, is developed. This dataset serves as the

foundation for predicting epidemic trends at the provincial level. The incorporation

of HCMVMT features allows for a comprehensive understanding of the multifaceted

factors influencing epidemic dynamics.

Central to this research is a rigorous comparative analysis. The hybrid frame-

work is rigorously evaluated against individual state-of-the-art methods to ascertain

its effectiveness in enhancing predictive performance across the specified metrics. By

directly contrasting the novel hybrid framework with established methodologies, this

study provides critical insights into its strengths and its capacity to outperform ex-

isting approaches.

Through the development of this hybrid framework and the creation of a practical

COVID-19 dataset, this research advances the field of predictive analytics, partic-

ularly in the context of high cardinality multivariate multi-time series datasets. It

not only showcases the framework’s potential to tackle the complexities of such data
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but also underscores its practical significance in informing critical decisions for man-

aging epidemic trends at the provincial level. The findings of this study hold the

promise of offering more accurate and targeted predictions, thus contributing to ef-

fective decision-making in healthcare, public policy, and beyond.

1.5 Thesis Objectives and Contributions

This section outlines the objectives of this thesis and the contributions it makes to

the field of predictive analytics. The primary objectives of this research encompass

the following key areas:

1.5.1 Comprehensive Canadian Dataset

One of the core objectives of this research is the development of a Comprehensive

Canadian Dataset tailored for predicting epidemic trends. This dataset goes beyond

traditional data sources, incorporating critical features related to COVID-19 and its

impacts on the Canadian provinces. It serves as a foundational resource for under-

standing and predicting the multifaceted dynamics of the pandemic at the provincial

level. The dataset aims to capture the complexities of high cardinality multivariate

multi-time series datasets, enabling a nuanced analysis of epidemic trends.

1.5.2 Framework to Deal with Multivariate Multi-timeseries

Datasets

A fundamental contribution of this research is the introduction of a novel and in-

novative Framework specifically designed to address the intricacies of multivariate

multi-time series datasets. This framework seamlessly integrates advanced data pre-

processing, feature selection, feature engineering, feature encoding, and model ar-

chitecture. It is meticulously crafted to capture the dependencies, interactions, and

temporal dynamics inherent in complex datasets. By providing a comprehensive solu-

tion to the challenges of such datasets, this framework advances the field of predictive
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analytics and opens avenues for robust predictions across various domains.

1.5.3 Comprehensive Single AI Model for Epidemic Trends

The development of a Comprehensive Single AI Model represents a significant mile-

stone in this research. The objective is to create a unified model that performs

exceptionally well in predicting various epidemic trends, such as the number of cases,

deaths, and hospitalizations. This single model is designed to work effectively for all

epidemic trends, streamlining the prediction process and ensuring consistent accu-

racy. It simplifies the predictive analytics workflow and provides a versatile tool for

decision-makers and researchers.

1.5.4 Critical Feature Identification

Identification of Critical Features is another vital objective of this research. By dis-

cerning the most influential variables and factors in the context of epidemic trends, the

research aims to provide decision-makers with actionable insights. The identification

of these features contributes to the development of more precise and effective pre-

dictive models. It also enhances the understanding of the key determinants shaping

epidemic trends.

In summary, this thesis sets forth a multifaceted agenda aimed at advancing the

field of predictive analytics, particularly in the context of high cardinality multivari-

ate multi-time series datasets. The objectives outlined here, including the creation

of a comprehensive Canadian dataset, the development of a novel framework, the

establishment of a single AI model for epidemic trends, and the identification of crit-

ical features, collectively contribute to the enhancement of predictive analytics and

its practical significance in informing critical decisions for managing epidemic trends

at the provincial level. The outcomes of this research hold the potential to trans-

form the way we approach predictive analytics in the face of complex, real-world data

challenges.
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1.6 Thesis Organization

The structure of this research/thesis work is outlined as follows:

In Chapter 2, we embark on an exhaustive exploration of previous research en-

deavors within the realms of predicting COVID-19 epidemic trends, delving into both

regression and time series methodologies, while also examining their inherent con-

straints. Additionally, we engage in a critical discussion regarding the limitations of

contemporary methodologies and models, particularly focusing on their efficacy when

confronted with the challenges posed by High Cardinality Multivariate Multi-Time

Series (HCMVMT) datasets.

In Chapter 3, we will explore critical concepts encompassing feature engineering,

selection, dimension reduction techniques, deep learning and machine learning models,

as well as the evaluation metrics employed. These elements collectively serve as the

bedrock for our framework, which extends its utility beyond the prediction of COVID-

19 epidemic trends to offer a comprehensive solution for HCMVMT datasets across

diverse domains.

In Chapter 4, we embark on an exploratory journey into the heart of our research,

where we delve into the intricacies of data, data handling, and the foundations upon

which our analysis is built. We introduce a novel dataset, meticulously collected over

an extensive timeframe, serving as the bedrock for our investigations. The chapter

unravels the nuances of data collection and description, providing a comprehensive

overview of the wealth of information encapsulated within. Furthermore, we address

the challenges posed by missing values and null entries, employing innovative tech-

niques to ensure the completeness of our dataset. We also unveil our approach to

data versioning, leading us to the discovery of the best-performing dataset. These

critical components are the cornerstone of our analytical journey, paving the way for

profound insights and impactful conclusions.

In Chapter 5, we unveil a unified framework that seamlessly combines High Cardi-

nality Multivariate Multi Time Series (HCMVMT) datasets and COVID-19 epidemic

trend prediction. Recognizing the inherent similarities in these domains, the frame-
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work is divided into two dimensions: one focusing on regression-based forecasting

and the other on time series modeling. This comprehensive approach addresses the

distinct challenges of both realms while fostering interdisciplinary insights, ultimately

elevating the accuracy of our predictions.

In Chapter 6, we delve into the meticulous details of the Experimentation Setup for

both the Regression Framework and the Deep Learning Time Series Framework. We

outline the specific configurations and parameters employed in each framework, pro-

viding transparency into the choices made during the experimentation process. Fol-

lowing this, we elucidate the comprehensive Evaluation Metrics utilized to assess the

performance of these frameworks, covering critical aspects such as R-squared, Mean

Absolute Error, Max Absolute Error, and Root Mean Squared Error. The subsequent

section unveils the Results, encompassing the identification of critical features in the

Regression Model and the detailed outcomes of the Time Series Models, including

specific configurations for Prophet, LSTMs[20], GRU[14], and DeepAREstimator[25].

The Discussions section critically examines the statistical stability and reliability of

the obtained results, elucidates the assumptions inherent in both frameworks, delin-

eates the limitations faced during experimentation, and culminates with a reflection

on the contributions made by this research to the domain of epidemic trend prediction.

In Chapter 7, we encapsulate the journey of the Regression Framework and the

Deep Learning Time Series Framework, offering a comprehensive synthesis of their

performances, trade-offs, and advantages. Delving into the Regression Framework,

we examine its unparalleled outperformance in prediction metrics, showcasing its su-

periority over traditional models. However, a notable trade-off surfaces in the form of

extended training times, posing practical challenges. The framework’s scalability and

maintainability shine as pivotal achievements, streamlining model management and

reducing complexity. Transitioning to the Deep Learning Time Series Framework,

we dissect the performance metrics, emphasizing the noteworthy outperformance of

Time Series Models over statistical counterparts. While a trade-off emerges in terms

of training time, the introduction of the DeepAREstimator model offers a promising

compromise, maintaining competitive performance with reduced training times. The
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chapter concludes by navigating the terrain of selecting the optimal solution based

on specific priorities, emphasizing practical considerations such as time, performance,

and sustainability. Looking ahead, the chapter segues into Future Works, charting a

course for expanding datasets to a global scale, experimenting with alternative tech-

niques, exploring structural transformations like knowledge graphs, and embracing

advanced machine learning models. This exploration underscores the continuous evo-

lution and potential enhancements awaiting these frameworks in the realm of epidemic

trend prediction.
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Related Works

In the realm of predicting COVID-19 epidemic trends, a considerable body of research

has emerged, reflecting the collective efforts to decipher the complex dynamics of this

global health crisis. These previous works have sought to harness the power of data-

driven methodologies to anticipate the evolution of the pandemic and inform effective

public health strategies. While these endeavors have undeniably contributed valuable

insights, it is essential to critically evaluate their methodologies, findings, and inherent

limitations. This section embarks on a comprehensive exploration of prior research,

delving into the methodologies employed, the gaps they have left unaddressed, and

the constraints that have hindered their efficacy. By recognizing the shortcomings of

these earlier attempts, we can pave the way for a more robust and accurate approach

to predicting COVID-19 epidemic trends.

In the context of predicting the complex and dynamic patterns of the COVID-

19 epidemic, researchers and data scientists have predominantly gravitated toward

two distinct yet complementary methodological avenues. These approaches, namely

regression models and time series models, have emerged as the principal pillars of

analysis in the quest to forecast and comprehend epidemic trends. On one hand,

regression models offer the power of statistical inference, enabling the identification

of significant factors influencing the spread and impact of the virus. By establishing

relationships between independent variables and epidemic outcomes, these models

facilitate the quantification of the effects of interventions, socio-economic determi-

nants, and other crucial drivers. On the other hand, time series models specialize in

capturing the intricate temporal dependencies that characterize the evolution of the
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pandemic. Leveraging these models, researchers can account for seasonality, trends,

and autocorrelation in the data, thus providing a detailed understanding of how

the epidemic evolves over time. While each of these methodologies has its unique

strengths, they also exhibit inherent limitations, such as the potential oversimplifica-

tion of the problem in regression models or the complexity of fine-grained temporal

modeling in time series approaches. This section endeavors to scrutinize the suc-

cesses and constraints of these two major approaches, shedding light on the nuanced

interplay between them in the pursuit of accurate and comprehensive predictions of

COVID-19 epidemic trends.

2.1 Review of Models for Predicting COVID-19 as

Classification Problem

Zhang et al. [12] applied a Support Vector Machine (SVM) model for COVID-19 cases

detection and classification. The clinical information and blood/urine test data were

used in their work to validate SVM’s performance. Simulation results demonstrated

the effectiveness of the SVM model by achieving an accuracy of 81.48%, sensitivity

of 83.33%, and specificity of 100%.

Sun et al. [5] used SVM model for predicting the COVID-19 patients with sev-

ere/critical symptoms. 220 clinical/laboratory observations records and 336 cases of

patients infected COVID-19 divided into training and testing datasets were used to

validate the performance of the SVM model. Simulation results showed that the SVM

model achieves an Area Under Curve (AUC) of 0.9996 and 0.9757 in the training and

testing dataset, respectively.

Nour et al.[6] applied machine learning approaches such as SVM, Decision tree

(DT), and KNN for automatic detection of positive COVID-19 cases. The perfor-

mance of the proposed approaches was validated on a public COVID-19 radiology

database divided into training and test sets with 70% and 30% rates, respectively.

Tabrizchi et al. [35] used SVM with Naive Bayes (NB), Gradient boosting decision
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tree (GBDT), AdaBoost, CNN, and Multilayer perceptron (MLP) for rapid diagnosis

of COVID-19. A dataset of 980 CT scan images (430 with COVID-19 and 550 normal)

was used in the simulation, and results showed that SVM outperforms other machine-

learning approaches by achieving an average accuracy, precision, sensitivity, and F1-

score of 99.20%, 98.19%, 100%, and 99.0%, respectively.

2.2 Review of Regression Models for Predicting

COVID-19 Epidemic Trends

Predicting the trends of the COVID-19 epidemic is a challenging task with far-

reaching implications. Various research studies have attempted to tackle this problem

through regression models. In this section, we review the existing literature and high-

light the key limitations and gaps in previous works.

2.2.1 Utilization of Traditional Machine Learning Methods

Yue et al. [4] utilized a linear regression model for predicting COVID-19 infected

patients. CT images of 52 patients from five hospitals (Ankang, Lishui, Zhenjiang,

Lanzhou, and Linxia) were used to assess the performance of the regression model.

Simulation results demonstrated that the linear regression model outperforms the

Random Forest algorithm.

Salama et al. [1] employed the linear regression model with SVM and ANN for

predicting COVID-19 infected patients. The proposed models were assessed using an

Epidemiological dataset collected from real-time health reports. Simulation results

indicated that SVM had the lowest mean absolute error (0.21), while the regression

model had the lowest root mean squared error (0.46).

Yadav et al. [7] used three machine learning approaches (Linear Regression, Poly-

nomial Regression, and SVR) for COVID-19 epidemic prediction and analysis. The

dataset included the total number of COVID-19 positive cases from various coun-

tries, and results showed the superiority of SVR compared to Linear Regression and

29



2. RELATED WORKS

Polynomial Regression, with average accuracies of 99.47%, 65.01%, and 98.82%, re-

spectively.

Khanday et al. [3] proposed Logistic Regression with six machine learning ap-

proaches (Adaboost, Stochastic Gradient Boosting, Decision Tree, SVM, Multino-

mial Näıve Bayes, and Random Forest) for COVID-19 detection and classification.

Evaluation with 212 clinical reports divided into four classes (COVID, ARDS, SARS,

and Both) showed that logistic regression provided excellent performance, with 94%

precision, 96% sensitivity, an accuracy of 96.20%, and a 95% F1-score.

Saqib [2] developed a novel model (PBRR) by combining Bayesian Ridge Regres-

sion (BRR) with an n-degree Polynomial for forecasting COVID-19 outbreak progres-

sion. The PBRR model’s performance was validated using public datasets collected

from John Hopkins University available until May 11, 2020. Experimental results

revealed the good performance of PBRR, with an average accuracy of 91%.

Most of the current regression-based studies have predominantly relied on tradi-

tional machine learning methods. These methods include k-Nearest Neighbors (KNN)

and Random Forest, which are powerful techniques but may not fully capture the com-

plexity of epidemic trends. While these approaches have provided valuable insights,

they often lack the ability to uncover intricate relationships within the data.

2.2.2 Limited Exploration of Deep Learning Techniques

Chimmula et al. [8] employed an LSTM model to predict COVID-19 cases in Canada.

The effectiveness of the LSTM model was verified using data from Johns Hopkins Uni-

versity and the Canadian Health Authority, encompassing numerous confirmed cases.

The outcomes revealed that the LSTM model demonstrated superior performance

compared to alternative forecasting models.

A solitary study, conducted by [26], took a Multi-Factor Deep Learning approach

to predict COVID-19 epidemic trends. However, this study used a limited set of fea-

tures and achieved a relatively low R2 value (0.65) and less-than-optimal Root Mean

Square Error (RMSE) and Mean Squared Error (MSE) metrics. This highlights the

need for more comprehensive and accurate modeling techniques to better understand
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and predict epidemic dynamics.

2.2.3 Issues with Normalization

One common issue observed in previous work [26] is the incorrect normalization of

data. This misstep can lead to the inadvertent introduction of correlations between

features by a factor of − 1
p−1

, where p represents the number of features[28]. Such

normalization errors can significantly impact the validity of regression models, em-

phasizing the importance of proper data preprocessing.

2.2.4 Country-Level Models

Many prior studies have developed regression models at the national or country level.

While these models provide valuable insights into COVID-19 trends on a broad scale,

they are often insufficient for addressing specific regional or provincial concerns. The

effectiveness of preventive actions, which can be crucial for halting the spread of the

disease, may vary significantly across different regions.

2.2.5 Lack of Identifiable Epidemic Trend Identifiers

Previous research endeavors have struggled to identify and confirm critical factors

or variables that significantly influence epidemic trends. This limitation hinders our

ability to develop accurate predictive models and implement targeted interventions

effectively.

2.2.6 Generalizability Across Regions and Epidemic Trends

Perhaps one of the most significant shortcomings of previous studies is the lack of

a single, universally applicable model or architecture. These models often fail to

generalize well across various regions, encompassing provinces, states, and different

countries, and for all types of epidemic trends. The absence of a versatile framework

hinders the development of comprehensive epidemic forecasting models.
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In light of these limitations and gaps in existing literature, this thesis aims to ad-

dress these challenges and contribute to the development of more robust and accurate

regression models for predicting COVID-19 epidemic trends.

2.3 Review of Time Series Models for Predicting

COVID-19 Epidemic Trends

Previous research endeavors have delved into the formidable challenge of predicting

COVID-19 epidemic trends by primarily adopting time series models. These studies,

while valuable in their contributions, exhibit several common limitations that have

hindered the development of comprehensive and versatile predictive models.

2.3.1 Absence of Multi-Factor Time Series Approaches

Remarkably, none of the previous studies have explored the application of a multi-

factor time series approach or a multi-factor multi-time series approach to address

the intricate dynamics of COVID-19 epidemic trends. The absence of such multi-

dimensional modeling is a notable limitation, as it overlooks the potential interactions

and dependencies between multiple epidemic drivers, making it challenging to uncover

the complete causal web governing the pandemic’s progression. A comprehensive

model that integrates a multitude of relevant factors could offer a more nuanced

understanding and accurate predictions of COVID-19 trends.

2.3.2 Overreliance on ARIMA Models

Chakraborty and Ghosh [9] devised a hybrid approach (ARIMA–WBF) that com-

bines the ARIMA model with Wavelet-based forecasting (WBF) to predict the daily

confirmed COVID-19 cases. The efficacy of ARIMA-WBF was verified using datasets

comprising 346 cases from five countries (Canada, France, India, South Korea, and the

UK). Simulation results underscored the effectiveness and robustness of the ARIMA-

WBF method in forecasting COVID-19 cases.
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Singh et al. [10] proposed Least Square-SVM (LS-SVM) and Autoregressive Inte-

grated Moving Average (ARIMA) for the prediction of COVID-19 cases. A dataset of

COVID-19 confirmed cases collected from five the most affected countriesFootnote1

was used to validate the proposed models. It was demonstrated that the LS-SVM

model outperforms the ARIMA model by obtaining an accuracy of 80

Ribeiro et al. [11] conducted a comparable study, employing six machine learning

methodologies, including stacking-ensemble learning (SEL), support vector regres-

sion (SVR), cubist regression (CUBIST), auto-regressive integrated moving average

(ARIMA), ridge regression (RIDGE), and random forest (RF), to predict outcomes

in COVID-19 datasets.

A pervasive trend among prior studies is the extensive use of Autoregressive Inte-

grated Moving Average (ARIMA) based time series models. While ARIMA models

are a foundational tool in time series analysis, they come with inherent limitations.

These models assume linear relationships between variables, which may not ade-

quately capture the complex, often nonlinear, interactions within epidemic data. Fur-

thermore, ARIMA models struggle to capture long-term dependencies and intricate

patterns that extend beyond the chosen lag order, potentially leading to suboptimal

forecasting accuracy. Moreover, ARIMA models primarily focus on the time series

itself and do not explicitly incorporate external factors or predictors that could be

crucial in understanding and predicting COVID-19 dynamics.

2.3.3 Country-Level Predictions with Limited Generalizabil-

ity

Most of the previous studies have focused on producing time series models for country-

level COVID-19 predictions. While these models provide valuable insights into the

overall trends, they often lack the versatility required for more localized decision-

making and practical applications. The effectiveness of public health interventions

and containment strategies can vary significantly at regional or provincial levels, and

these country-level models may not sufficiently address such variations. As a re-
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sult, there remains a considerable gap in producing models that generalize well for

provinces, states, and countries, accommodating diverse epidemic trends and regional

disparities.

2.3.4 Lack of a Unified, Generalizable Model

Perhaps the most critical limitation observed in previous research is the failure to

develop a single unified model or architecture that can generalize effectively across

regions, provinces, and countries and for all types of epidemic trends. The absence

of such a versatile model hinders the development of comprehensive predictive tools

that can support decision-makers, healthcare professionals, and policymakers across

the globe.

This section underscores the common limitations in existing research, highlighting

the opportunities for more innovative and comprehensive time series modeling in the

prediction of COVID-19 epidemic trends. The following sections of this thesis seek

to address these limitations and contribute to the development of more accurate and

adaptable forecasting models.

2.4 Review of Datasets Used for Predicting COVID-

19 Epidemic Trends

The datasets employed in previous research on predicting COVID-19 epidemic trends

have played a pivotal role in shaping the capabilities and limitations of the models de-

veloped. While these studies have contributed valuable insights, they exhibit several

significant limitations with regard to dataset utilization.

2.4.1 Limited Use of the John Hopkins Dataset

A recurring trend in many of the previous studies is the predominant reliance on the

John Hopkins Dataset [16] as the primary source of data for predicting COVID-19

epidemic trends. However, a key limitation of this approach is that it often involves
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using this dataset without incorporating additional relevant features. Many of these

studies have focused primarily on predicting the number of cases and deaths, thus

limiting their scope and ability to capture the multifaceted dynamics of the pandemic.

The overreliance on this dataset restricts the exploration of a more comprehensive set

of factors that could enhance the accuracy of predictions.

2.4.2 Predictions at the National Level

Another limitation of relying solely on the John Hopkins Dataset is that it often leads

to predictions at the national level. Such predictions, while valuable for an overall

understanding of the pandemic’s trajectory, may lack practical applicability at more

localized levels. The effectiveness of public health interventions and containment

strategies can vary significantly between provinces, states, and regions, and national-

level models may not capture these variations adequately.

2.4.3 Sparse Consideration of Multi-Factor Features

Among the multitude of previous works, a solitary study [26] stands out for its attempt

to consider multiple feature groups, including environmental factors, human factors,

biological factors, and government actions. However, this endeavor is constrained by

several limitations. Notably, the study incorporates only a limited set of concrete

features (13) within these feature groups, falling short of fully capturing the complex

interplay of variables that influence the spread of COVID-19. Furthermore, the data

normalization technique applied is detrimental to the robustness and interpretability

of the models, potentially undermining the quality of predictions.

2.4.4 Opportunities for More Comprehensive Feature Groups

Emerging state-of-the-art studies focusing on the spread of COVID-19 underscore the

potential for utilizing a broader spectrum of feature groups. These studies have indi-

cated that incorporating factors such as vaccination coverage, mobility patterns, age

distribution, geographical and land characteristics, economic factors, medical char-
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acteristics, health characteristics, disease prevalence, and population behaviors can

lead to more accurate and informative models for predicting not only the number of

cases and deaths but also hospitalizations. This comprehensive approach acknowl-

edges the multi-faceted nature of the pandemic and the need to capture the complex

interdependencies between diverse factors.

2.4.5 Absence of Holistic Feature Integration

Despite the recognition of the importance of diverse feature groups, no previous study

has undertaken the ambitious task of considering all the concrete factors belonging to

these essential groups for predicting COVID-19 epidemic trends. This gap highlights

a critical limitation in the existing body of research and emphasizes the untapped

potential for the development of holistic, all-encompassing predictive models.

In light of these limitations associated with dataset utilization, this thesis aims

to address these shortcomings by comprehensively integrating diverse feature groups

and exploring the multifaceted dynamics of the COVID-19 pandemic. By doing so,

we strive to enhance the accuracy and depth of predictive models, providing a more

holistic understanding of COVID-19 epidemic trends.

2.5 Challenges of Handling High Cardinality Mul-

tivariate Multi-Time Series Datasets

High cardinality multivariate multi-time series (HCMVMT) datasets, characterized

by a multitude of variables and intricate temporal dependencies, present a unique

set of challenges for predictive modeling. Existing modeling techniques, particu-

larly ARIMA and VAR-based models, often fall short when applied to these complex

datasets.
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2.5.1 Limitations of ARIMA Models

2.5.1.1 Linearity Assumption

ARIMAmodels, which have been widely employed in time series analysis, are based on

the assumption that the relationships between variables are linear. This assumption

may not hold true for HCMVMT datasets, which can exhibit complex nonlinear

relationships. The linearity assumption can lead to potential model misspecification,

resulting in inaccurate predictions.

2.5.1.2 Inability to Incorporate External Factors

ARIMA models primarily focus on the time series itself and do not explicitly incor-

porate external factors or predictors. In the context of HCMVMT datasets, where

multiple influential variables may exist, ARIMA models may not fully capture the ef-

fects of these factors on the time series. This can result in limited predictive accuracy,

as important information remains unutilized.

2.5.1.3 Limited Lag Dependence

ARIMA models capture autocorrelation in the data by considering the lagged values

of the series. However, they may not effectively capture long-term dependencies or

complex patterns that extend beyond the chosen lag order. In HCMVMT datasets,

where temporal dependencies can span a wide range of lags, this limitation can hinder

the modeling of the underlying dynamics.

2.5.1.4 Long-Term Forecasting Limitations

ARIMA models are generally better suited for short- to medium-term forecasting.

When it comes to long-term forecasting, they face challenges due to inherent uncer-

tainty and potential structural changes in the data. This can limit the accuracy and

reliability of ARIMA model predictions when applied to HCMVMT datasets.
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2.5.2 Limitations of VAR Models

2.5.2.1 Nonlinear Relationships

Vector Autoregressive (VAR) models capture linear dependencies between variables

but may struggle to capture complex nonlinear relationships present in HCMVMT

datasets. The oversimplification of relationships between variables can result in a less

accurate representation of the data.

2.5.2.2 Endogeneity Assumption

VAR models assume that the variables in the system are endogenous, meaning they

depend on each other. In cases where external factors or exogenous variables play

a significant role in HCMVMT datasets, the endogeneity assumption may not hold,

leading to limited modeling flexibility and accuracy.

2.5.2.3 Curse of Dimensionality

As the number of variables in HCMVMT datasets increases, the number of parameters

in a VAR model also increases. This phenomenon, known as the ”curse of dimension-

ality,” can make parameter estimation more challenging and render the model more

susceptible to overfitting, especially when the dataset contains a limited number of

observations.

2.5.2.4 Limitations for Non-Stationary Time Series

VARmodels assume stationarity in the underlying data. However, HCMVMT datasets

often consist of non-stationary time series, making VAR modeling directly inapplica-

ble. This limitation can hinder the ability to capture the evolving dynamics of the

data accurately.

In summary, the absence of a comprehensive framework for handling

HCMVMT datasets and the limitations associated with ARIMA and VAR-

based models have motivated the need for more advanced and adaptable
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modeling techniques. This thesis seeks to address these challenges by de-

veloping novel approaches that can effectively handle the intricacies of

HCMVMT datasets and provide accurate predictions of COVID-19 epi-

demic trends.

39



CHAPTER 3

Feature Selection, Extraction,

DNN as Encoders and Important

models

In this chapter, we embark on a journey into the fundamental underpinnings of our re-

search, where we lay the essential groundwork for the comprehensive framework that

follows. We delve deep into the realm of feature engineering, feature selection, di-

mension reduction techniques, and the eclectic array of machine learning models that

constitute the heart of our analysis. These core concepts are the building blocks upon

which our framework is constructed, providing a solid foundation for our predictive

endeavors.

As we navigate through this chapter, we begin by elucidating the critical impor-

tance of feature engineering, where raw data is transformed into meaningful, infor-

mative features. We explore the nuances of feature selection, highlighting the art of

choosing the most pertinent attributes to enhance model performance. Dimension

reduction techniques, such as Principal Component Analysis (PCA) come into play

as we seek to distill complex data into more manageable dimensions.

The chapter also serves as a canvas for the introduction of diverse deep learn-

ing models as part of our framework, offering a fresh perspective on problem-solving

within the high cardinality, multivariate, multi-timeseries (HCMVMT) dataset do-

main. In place of classical models, we delve into the intricacies of deep learning,

leveraging neural networks to tackle the multifaceted challenges presented by these
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complex datasets. From recurrent neural networks (RNNs) for sequential data and

beyond, we present a diverse array of deep learning architectures that empower us to

address the intricate dynamics of high-dimensional, high-cardinality datasets.

Moreover, we shine a spotlight on the evaluation metrics that will be our guiding

compass throughout the research journey, ensuring that our models are rigorously

assessed against the highest standards.

As we traverse through this chapter, we invite you to join us on this journey of

exploration and discovery. The foundations we lay here will serve as the solid bedrock

upon which our methodology and framework are constructed. These are the building

blocks that pave the way for a profound understanding of the intricate dynamics

at play in our quest to predict and respond to the ever-evolving landscape of the

COVID-19 pandemic.

As we embark on this educational expedition, it’s crucial to recognize that the

framework we construct extends beyond the realm of COVID-19 epidemic trend pre-

diction. Its versatility and applicability transcend domains, offering a blueprint for

the analysis of high cardinality, multivariate, multi-timeseries datasets across various

fields. This framework is not only poised to enhance our understanding and prediction

of pandemic trends but also holds the potential to illuminate the intricate dynamics

of complex data in diverse disciplines, from healthcare to finance, and beyond. It is

a powerful tool, poised to redefine the way we approach data-driven decision-making

and predictive analytics, and it’s our pleasure to take you on this enlightening journey.

3.1 Feature Selection - Mutual Information Re-

gression (MIR)

Feature selection is a crucial step in data analysis and modeling, as it holds the

potential to uncover the most informative attributes while discarding noise and re-

dundancy. One prominent approach that has gained significant attention in recent

years is Mutual Information Regression (MIR)[34]. In this writeup, we delve into the
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workings of MIR[34], its advantages, and its remarkable effectiveness in identifying

the most relevant features for predictive modeling.

3.1.1 Mutual Information Regression (MIR): A Primer

Mutual Information (MI) is a concept borrowed from information theory, which quan-

tifies the dependence between two random variables. In the context of feature selec-

tion, MIR assesses the relationship between each feature and the target variable. It

measures how much information about the target variable can be extracted from each

feature. When MIR is applied to regression tasks, it helps us understand how well a

feature can predict the target variable.

3.1.2 The Working Mechanism of MIR

MIR operates on the principle of information gain. It calculates the reduction in

uncertainty about the target variable when the value of a particular feature is known.

The higher the information gain, the more valuable the feature is in predicting the

target.

To calculate the Mutual Information between a feature and the target variable,

MIR evaluates the joint distribution of the two variables. In a regression context, this

means measuring the dependency between the feature and the continuous values of

the target variable. MIR computes the reduction in uncertainty of the target variable

after considering the feature. This reduction in uncertainty, measured in bits, is the

Mutual Information.

3.1.3 Advantages of Mutual Information Regression

MIR offers several advantages that make it a powerful tool in feature selection:

• Non-linearity Tolerance: One of the significant advantages of MIR is its abil-

ity to capture non-linear relationships between features and the target variable.

Traditional linear methods may fail to recognize complex associations, but MIR

can reveal them effectively.
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• No Assumption of Linearity: MIR doesn’t make the assumption of linearity,

which is common in some feature selection techniques. It remains effective even

when the relationship between features and the target is non-linear.

• Robust to Irrelevant Features: MIR tends to assign low Mutual Information

values to irrelevant or noisy features. This robustness ensures that only the most

informative features are selected, leading to more precise models.

• Variable Selection: MIR not only quantifies the importance of features but

also performs variable selection. It identifies and ranks features according to

their predictive power.

• Feature Ranking: MIR provides a ranking of features based on their Mutual

Information with the target variable. This ranking is invaluable for understand-

ing the relative importance of each feature.

3.1.4 Effectiveness of Mutual Information Regression

The effectiveness of MIR lies in its ability to uncover intricate relationships between

features and the target variable. It excels in scenarios where traditional linear meth-

ods fall short. Researchers and data scientists have found that MIR often leads

to improved predictive models, as it captures essential non-linear dependencies that

would otherwise remain hidden.

In summary, Mutual Information Regression is a powerful feature selection tech-

nique that excels in non-linear, complex data relationships. Its ability to measure

the information gain between features and the target variable, along with its inherent

advantages, makes it a valuable asset in the data scientist’s toolkit. By using MIR,

one can unlock the potential of their data, leading to more accurate and insightful

predictive models across a wide range of applications.
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3.2 Feature Extraction - Principal Component Anal-

ysis (PCA)

Feature extraction plays a pivotal role in data analysis, where the goal is to uncover

the most salient patterns within a dataset while reducing its dimensionality. Principal

Component Analysis (PCA)[21] stands as one of the most prominent techniques in

this realm. In this writeup, we delve into the workings of PCA, its primary purpose,

and the array of advantages it offers, particularly its ability to remove correlation and

produce independent features.

3.2.1 Principal Component Analysis (PCA): An Overview

PCA[21] is a dimensionality reduction technique that allows us to transform a high-

dimensional dataset into a lower-dimensional one while retaining as much of the

original information as possible. The central idea behind PCA is to project the data

onto a new coordinate system where the axes (principal components) are orthogonal

and capture the most variance.

3.2.2 The Working Mechanism of PCA

• Decomposition: PCA starts by decomposing the dataset into its principal

components, which are linear combinations of the original features. These com-

ponents are chosen to maximize the variance explained.

• Variance Maximization: The first principal component captures the maxi-

mum variance in the data. Subsequent components are chosen in a way that

they are orthogonal to the previous ones and maximize the remaining variance..

• Dimension Reduction: By retaining a subset of the principal components,

PCA effectively reduces the dimensionality of the data. It is particularly use-

ful when dealing with high-dimensional datasets or datasets with correlated

features.
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3.2.3 Advantages of PCA

PCA offers a multitude of advantages that make it a powerful tool for feature extrac-

tion and dimensionality reduction:

• Correlation Removal: PCA excels at identifying and removing correlations

between features. This is particularly useful when working with datasets in

which features are interrelated.

• Independence: The principal components produced by PCA are orthogonal,

meaning they are independent of each other. This independence is invaluable

for feature extraction, as it ensures that the selected features do not carry

redundant information.

• Dimension Reduction: PCA’s ability to reduce the dimensionality of a

dataset is a critical advantage. It simplifies the data representation, making

it more manageable for modeling and analysis.

• Variance Retention: While reducing dimensionality, PCA strives to retain as

much variance as possible. This means that important patterns and structures

within the data are preserved, even with a lower number of features.

• Noise Reduction: PCA can filter out noise and capture the underlying signal

within a dataset, leading to more robust and accurate models.

3.2.4 Effectiveness of Principal Component Analysis

The effectiveness of PCA is evident in its widespread use across various domains,

from image and signal processing to finance and healthcare. By removing correlations,

extracting independent features, and reducing dimensionality, PCA not only simplifies

the data but also enhances the interpretability and predictive power of models.

In conclusion, Principal Component Analysis is a versatile and robust technique

for feature extraction and dimensionality reduction. Its ability to remove correlations,
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produce independent features, and reduce dimensionality while preserving essential in-

formation makes it an indispensable tool for data scientists and researchers. Whether

in the pursuit of clearer insights, more efficient modeling, or improved predictive

accuracy, PCA remains a powerful ally in the world of data analysis.

3.3 Neural Networks and Deep Learning in Time

Series Regression Prediction

Time series data, with its sequential nature and temporal dependencies, presents

a unique challenge for regression prediction. In recent years, the advent of neural

networks and deep learning models, such as Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTM) networks, has revolutionized the way we approach

time series regression problems. In this writeup, we explore how these sophisticated

models have redefined time series prediction, their advantages, and the immense po-

tential they offer.

3.3.1 Neural Networks in Time Series Regression

Neural networks, inspired by the human brain, have demonstrated remarkable capa-

bilities in capturing complex patterns within sequential data. In time series regression,

feedforward neural networks, with their ability to model non-linear relationships, have

paved the way for more accurate predictions. Deep neural networks, equipped with

multiple layers, are adept at hierarchically learning representations of the data.

3.3.1.1 Advantages of Neural Networks

• Non-linearity: Neural networks are not bound by the assumptions of linearity,

making them highly effective at capturing non-linear relationships present in

time series data.

• Temporal Dependencies: Recurrent neural networks, such as LSTMs, inher-

ently account for temporal dependencies in data. This makes them well-suited
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for sequential data analysis, as they can remember and utilize past information

in predictions.

• Feature Learning: Deep neural networks automatically learn relevant features

from the data, reducing the need for manual feature engineering.

3.3.2 Recurrent Neural Networks (RNNs) in Time Series Re-

gression

RNNs[23] are a class of neural networks that are specifically designed to handle se-

quential data. They maintain an internal state that evolves over time, allowing them

to consider past inputs while making predictions for the future. In time series regres-

sion, RNNs excel at modeling dynamic patterns and dependencies.

3.3.2.1 Long Short-Term Memory (LSTM) Networks in Time Series Re-

gression

LSTMs[20] are a specialized type of RNN designed to mitigate the vanishing gradient

problem, which often hinders training in traditional RNNs. LSTMs have proven to

be highly effective in modeling long-range dependencies and capturing subtle nuances

in time series data.

3.3.2.2 Advantages of RNNs and LSTMs

• Temporal Modeling: RNNs and LSTMs are explicitly designed for sequential

data, allowing them to capture complex temporal dependencies that may be

challenging for other models.

• Long-Term Memory: LSTMs, in particular, excel at retaining long-term

memory, making them effective at capturing patterns with extended temporal

dependencies.

• Variable Sequence Length: RNNs and LSTMs can handle variable-length

sequences, offering flexibility in real-world applications where data collection
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may not adhere to a fixed schedule.

3.3.3 Effectiveness of Deep Learning in Time Series Regres-

sion

The application of deep learning models like RNNs[23] and LSTMs[20] to time series

regression has yielded substantial improvements in predictive accuracy. These mod-

els are particularly valuable when dealing with data exhibiting complex, non-linear

patterns and temporal dependencies. Their ability to automatically learn relevant

features and capture intricate relationships within sequential data offers a signifi-

cant advantage in a wide range of domains, from finance and healthcare to climate

forecasting and beyond.

In conclusion, neural networks and deep learning models, particularly RNNs and

LSTMs, have redefined the landscape of time series regression prediction. Their non-

linearity, capacity to model temporal dependencies, and automatic feature learning

have made them invaluable tools for data scientists and researchers. By embracing

these advanced techniques, we unlock the potential to make more accurate, insightful,

and forward-looking predictions in the realm of time series regression.

3.4 Feedforward Neural Networks as Encoders for

Dimensionality Reduction in Time Series Re-

gression

In the ever-evolving landscape of predictive modeling, dimensionality reduction is

a key component in simplifying complex datasets while preserving their inherent

information. Feedforward neural networks, a class of artificial neural networks, can

be instrumental in this task by serving as encoders. In this writeup, we explore how

feedforward neural networks can be employed to encode features into lower dimensions

and how these encodings can empower deep learning models, such as RNNs and
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LSTMs, to tackle time series regression prediction with precision and efficiency.

3.4.1 Feedforward Neural Networks as Encoders

Feedforward neural networks, also known as multilayer perceptrons, are designed

to model complex relationships within data. When used as encoders, they trans-

form high-dimensional feature vectors into compact, lower-dimensional representa-

tions. The network architecture typically includes an input layer, one or more hidden

layers, and an output layer. During the encoding process, the network learns to cap-

ture and retain the most relevant features, effectively reducing the dimensionality of

the data.

3.4.1.1 Advantages of Feedforward Neural Networks as Encoders:

• Non-linearity: These networks are adept at modeling non-linear relationships,

making them suitable for encoding complex patterns within feature sets.

• Automatic Feature Selection: Feedforward neural networks automatically

perform feature selection, as they learn which attributes are most informative

for the task at hand.

• Generalization: The encoded representations often generalize well, making

them effective for capturing essential information while reducing noise and re-

dundancy.

3.4.2 Empowering Deep Learning Models with Encodings

Once the feedforward neural network has encoded the high-dimensional feature vec-

tors, the resulting lower-dimensional representations can be passed as input to deep

learning models designed for time series regression, such as RNNs and LSTMs. These

deep learning models are capable of understanding temporal dependencies and com-

plex patterns, allowing them to make accurate predictions based on the encodings.
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3.4.3 Effectiveness of the Combined Approach

The synergy between feedforward neural networks as encoders and deep learning

models like RNNs and LSTMs is a powerful one. It allows for feature reduction while

preserving the essential aspects of the data. By encoding features into lower dimen-

sions, the models become more efficient and capable of capturing intricate temporal

dependencies, resulting in accurate time series regression predictions.

In conclusion, feedforward neural networks, when utilized as encoders,

offer a means to reduce feature dimensionality and enhance the efficiency

of deep learning models. By leveraging this combined approach, we un-

lock the potential for more accurate and insightful time series regression

predictions, with applications spanning various domains, from finance to

healthcare and beyond.

3.5 Prophet Model: A Forecasting Marvel for Time

Series Regression

Prophet[36] is an open-source forecasting tool designed to handle time series data with

daily observations that display patterns on multiple time scales. It was specifically

engineered to address the challenges that arise when dealing with time series regres-

sion, such as holidays, seasonality, and abrupt changes in trends. Prophet employs a

decomposable time series model that accounts for these diverse components.

3.5.1 The Working Mechanism of Prophet

• Seasonality and Holidays: Prophet recognizes both yearly and weekly sea-

sonality. It allows the inclusion of holidays and special events, acknowledging

their impact on the data.

• Trend Components: Prophet decomposes the data into three key compo-

nents—trend, seasonality, and holiday effects. The trend captures the underly-
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ing trajectory of the time series.

• Flexibility: Prophet is highly adaptable and can handle missing data points,

outliers, and abrupt changes in trends. It does not require manual data prepro-

cessing.

• Automatic Changepoint Detection: The model automatically detects change-

points, where the time series’ trajectory shifts significantly.

3.5.2 Advantages of Prophet in Time Series Regression

• Ease of Use: Prophet is known for its simplicity and user-friendly design.

It allows analysts and data scientists to work efficiently without an extensive

background in time series forecasting.

• Holiday Effects: The model’s ability to account for holidays and special events

is particularly advantageous in various domains, from retail to healthcare.

• Transparency: Prophet offers transparency in forecasting, as it decomposes

the time series into interpretable components. This makes it easy to understand

the model’s predictions.

• Automatic Component Selection: The model automatically selects the rel-

evant components (trend, seasonality, holidays), reducing the need for manual

feature engineering.

3.5.3 Applications of Prophet Model

The versatility of the Prophet model extends across numerous domains, including but

not limited to sales forecasting, demand planning, financial market predictions, and

epidemiological modeling. Its intuitive interface, robust performance, and adaptabil-

ity to different data scenarios make it a valuable tool for data analysts and businesses

seeking reliable time series regression predictions.
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In conclusion, the Prophet model has established itself as a forecasting marvel in

the world of time series regression. Its ease of use, transparency, and adaptability

to diverse data scenarios have made it an invaluable asset for predictive modeling.

Whether predicting sales trends, disease outbreaks, or financial market movements,

Prophet has proven its mettle as an accurate and versatile forecasting tool.

3.6 DeepAREstimator: A Unified Solution for Multi-

Time Series Regression

DeepAREstimator[29], based on the DeepAR (Deep Autoregressive) architecture, is

designed to handle a multitude of time series together. It leverages a deep neural

network to capture complex temporal dependencies and patterns across the time series

data. The model excels in making accurate predictions and generating probabilistic

forecasts for multiple time series simultaneously.

3.6.1 Key Features of DeepAREstimator

• Shared Knowledge: DeepAREstimator capitalizes on the shared information

across the multiple time series. By training a single model, it harnesses the

commonalities and dissimilarities among the time series to enhance forecasting

accuracy.

• Autoregressive Structure: The model employs an autoregressive structure

that can model the time dependencies in each series effectively. This allows it

to understand how each series influences its future values.

• Probabilistic Forecasting: DeepAREstimator provides probabilistic fore-

casts, offering a range of possible outcomes. This is essential for risk assessment

and uncertainty management in real-world applications.

• Scalability: The model is highly scalable, making it suitable for a wide range of

use cases, from forecasting sales data for various products to predicting energy
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consumption across different regions.

3.6.2 Effectiveness of DeepAREstimator in Multi-Time Se-

ries Regression

The DeepAREstimator model has proven to be remarkably effective in making pre-

dictions across multiple time series. It capitalizes on the inherent similarities and

dependencies shared among the time series, resulting in more accurate and coherent

forecasts. This not only simplifies the modeling process but also ensures that insights

are extracted comprehensively from all the data.

In conclusion, the DeepAREstimator model is a powerful and versatile tool for

multi-time series regression prediction. Its ability to handle multiple time series

together while producing probabilistic forecasts makes it an invaluable asset in di-

verse fields. Whether forecasting sales for a range of products or predicting energy

consumption across various locations, DeepAREstimator has demonstrated its effec-

tiveness in simplifying the modeling process and generating accurate, comprehensive

predictions.
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CHAPTER 4

Building A New Novel COVID-19

Dataset

In response to the limitations of existing COVID-19 datasets, a novel and meticulously

curated dataset has been painstakingly constructed. This new dataset has been de-

veloped with a keen awareness of the shortcomings encountered in previous datasets,

aiming to overcome the challenges posed by limited feature sets, data quality issues,

and the absence of crucial contextual information. By addressing these limitations,

the novel COVID-19 dataset aspires to empower researchers and analysts with a more

comprehensive and reliable resource, capable of facilitating deeper insights and more

accurate predictions related to the COVID-19 pandemic.

4.1 Data Collection and Description

In our persistent endeavor to comprehend the profound impact of COVID-19 on

Canada, we have undertaken the compilation of a comprehensive and meticulously

curated dataset that spans all ten provinces: Alberta (AB), British Columbia (BC),

Manitoba (MB), New Brunswick (NB), Newfoundland and Labrador (NL), Nova Sco-

tia (NS), Ontario (ON), Prince Edward Island (PE), Quebec (QC), Saskatchewan

(SK), and the three territories: Northwest Territories (NT), Nunavut (NU), and

Yukon (YT). This extensive dataset, as presented in Tables 3.1.1 and 3.1.2, serves

as a foundational resource for the detailed analysis of the pandemic’s multifaceted

effects on various aspects of life in Canada.
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Our dataset is characterized by its encompassing nature, offering vital insights into

an array of factors that collectively contribute to the understanding of the COVID-

19 pandemic. These factors include Environmental Factors, Government Actions,

Medical Factors, Mobility, Weather Conditions, Age Distribution, Geographical and

Land Distribution, Economics, Health Characteristics, Diseases, and societal factors

like Bad Habits in the population. The information we provide seeks to unravel the

intricate interplay of these variables and their impact on the pandemic’s progression

in Canada.

Data collection for this extensive dataset commenced in early 2020, with a primary

focus on capturing the initial COVID-19 Total Daily Cases, Total Daily Dealths, Total

Daily Hospitalisations, Daily Cases, Daily Dealths, Daily Hospitalisations in each

province and territory. This rigorous data collection process continued uninterrupted

until mid-September 2022, thereby encapsulating a substantial time frame of the

pandemic’s evolution in the country. The dataset offers a panoramic view of the

pandemic’s progression in Canada, capturing pivotal moments, shifts, and trends.

Table 4.1.1: NON-MEDICAL FEATURES FOR DATA COLLECTION

Feature

Group

Feature

Date Date

Region Region

Government Ac-

tions

Action-Provincial-1 to 22; Intervention Category-Provincial-1 to 22;

Intervention Type-Provincial-1 to 22; Action-Country-1 to 4; Inter-

vention Category-Country- 1 to 4; Intervention Type-Country-1 to

4
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Mobility retail and recreation percent change from baseline region; grocery

and pharmacy percent change from baseline region; parks percent

change from baseline region; transit stations percent change from

baseline region; workplaces percent change from baseline region;

residential percent change from baseline region; retail and recre-

ation percent change from baseline country; grocery and phar-

macy percent change from baseline country; parks percent change

from baseline country; transit stations percent change from baseline

country; workplaces percent change from baseline country; residen-

tial percent change from baseline country; Holiday; Domestic move-

ments; Transborder movements; Other international movements;

International travellers entering or returning to Canada

Weather Condi-

tions

Mean Temp (°C); Total Precip (mm); SpeedOfWind(km/h)
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Age Distribution Males-0 to 4 years; Males-5 to 9 years; Males-10 to 14 years; Males-

15 to 19 years; Males-20 to 24 years; Males- 25-29 years; Males-

30-34 years; Males-35-39 years; Males- 40-44 years; Males-45 to

49 years; Males-50 to 54 year; Males-55 to 59 years; Males-60

to 64 years; Males-65- 69 years; Males-70-74 years; Males-75-79

years; Males- 80 to 84 years; Males-85 to 89 years; Males-90-94

years; Males-95-99 years; Males-100 years and over; Females-0 to

4 years; Females-5 to 9 years; Females-10 to 14 years; Females-15

to 19 years; Females-20 to 24 years,Females- 25-29 years; Females-

30-34 years; Females-35-39 years; Females-40-44 years; Females-

45 to 49 years; Females- 50 to 54 years; Females-55 to 59 years;

Females-60 to 64 years; Females-65-69 years; Females-70-74 years;

Females- 75-79 years,Females-80 to 84 years; Females-85 to 89 years;

Females-90-94 years; Females-95-99 years; Females- 100 years and

over; Total-All Ages-Male; Median Age- Male; Average Age-Male;

Total-All Ages-Female; Median Age-Female; Average Age-Female

Geographical

and land Distri-

bution

Total private dwellings, 2021; Private dwellings occupied by usual

residents, 2021; Land area in square kilometres, 2021; Population

density per square kilometre, 2021

Economical Gross domestic product (GDP) at basic prices; Life expectancy (in

years) at age 0; Food insecure, moderate or severe Percentage of

Males; Food insecure, moderate or severe Percentage of Females;

Unemployment rate Males; Participation rate Males; Employment

rate Males; Unemployment rate Females; Participation rate Fe-

males; Employment rate Females; Human Development Index 2019.

The data included in our dataset have been meticulously gathered from diverse
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sources, including Statistics Canada (StatsCan) [33], the Canadian Institute for Health

Information (CIHI) [13], Google Mobility [18], GitHub repositories [15] and various

other data repositories [32], [37] among others. These diverse sources collectively con-

tribute to the richness and comprehensiveness of the dataset, enabling a multifaceted

analysis of the COVID-19 pandemic in Canada.

Table 4.1.2: MEDICAL FEATURES FOR DATA COLLECTION

Feature

Group

Feature

Medical Factors Daily Tests Completed; Total ICU occupancy; No of Hospitals in

Province 2021

Vaccination

Coverage

Vaccine Coverage Percent Dose 1 to 4; Vaccine administration Total

Doses; Vaccine administration Dose 1 to 3
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Health Charac-

teristics of Popu-

lation

Perceived health, very good or excellent-Male; Perceived health,

fair or poor-Male; Perceived mental health, very good or excellent-

Male; Perceived mental health, fair or poor-Male; Perceived life

stress, most days quite a bit or extremely stressful-Male; Body mass

index, adjusted self-reported, adult (18 years and over), overweight-

Male; Body mass index, adjusted self-reported, adult (18 years and

over), obese-Male; Body mass index, self-reported, youth (12 to

17 years old), overweight or obese-Male; Arthritis-Male; Diabetes-

Male; Asthma-Male; Chronic obstructive pulmonary disease-Male;

High blood pressure- Male; Mood disorder-Male; Self-reported

physical activity, 150 minutes per week, adult-Female; Self-reported

physical activity, average 60 minutes per day, youth-Female; Breast

milk feeding initiation-Female; Exclusive breastfeeding, at least 6

months-Female; Fruit and vegetable consumption- Female; Sense

of belonging to local community, somewhat strong or very strong-

Female; Life satisfaction, satisfied or very satisfied-Female; Per-

centage of persons in low income-Male; Percentage of persons in

low income-Female; Percentage of persons with unmet health care

needs-Male(2020); Percentage of persons with unmet health care

needs-Female(2020).
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Diseases and

Bad Habits in

Population

Current smoker, daily or occasional-Male; Current smoker, daily-

Male; Cannabis use-Male; Cannabis frequency of use in the past

months, daily or almost daily-Male; Heavy drinking-Male; Selfre-

ported physical activity, 150 minutes per week, adult- Male; Self-

reported physical activity, average 60 minutes per day, youth-Male;

Fruit and vegetable consumption- Male; Sense of belonging to local

community, somewhat strong or very strong-Male; Life satisfaction,

satisfied or very satisfied-Male; Has a regular healthcare provider-

Male; Influenza immunization in the past 12 months-Male; Per-

ceived health, very good or excellent-Female; Perceived health, fair

or poor-Female; Perceived mental health, very good or excellent-

Female; Perceived mental health, fair or poor-Female; Perceived

life stress, most days quite a bit or extremely stressful-Female;

Body mass index, adjusted self-reported, adult (18 years and

over), overweight- Female; Body mass index, adjusted self-reported,

adult (18 years and over), obese-Female; Body mass index, self-

reported, youth (12 to 17 years old), overweight or obese-Female;

Arthritis-Female; Diabetes-Female; Asthma- Female; Chronic ob-

structive pulmonary disease-Female; High blood pressure-Female;

Mood disorder-Female; Current smoker, daily or occasional-Female;

Current smoker, daily-Female; Cannabis use-Female; Cannabis fre-

quency of use in the past months, daily or almost daily-Female;

Heavy drinking-Female; Has a regular healthcare provider- Female;

Influenza immunization in the past 12 months- Female.

Through our comprehensive framework, our ultimate objective is to harness the

power of data and cutting-edge predictive techniques to forecast a range of critical

target values. These values encompass the broader spectrum of the COVID-19 pan-

demic’s impact, spanning across multiple dimensions. Specifically, our framework
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is meticulously designed to predict essential indicators such as Total Daily Cases,

which serve as a key metric in understanding the overall progression of the virus.

Furthermore, we aim to provide insights into the Total Daily Deaths, shedding light

on the severity of the pandemic’s toll on human lives. Additionally, our predictive

capabilities extend to Total Daily Hospitalizations, a critical parameter that reflects

the strain on healthcare infrastructure. However, our commitment to precision and

timely insights doesn’t stop there; we delve into the realm of daily dynamics, offering

predictions for Daily Cases, Daily Deaths, and Daily Hospitalizations. By encompass-

ing this comprehensive array of target values, our framework equips stakeholders with

the invaluable ability to anticipate and respond effectively to the evolving landscape

of the COVID-19 pandemic.

Table 4.1.3: Target Values Table

Target Values/ Prediction Values

Total Daily Cases

Total Daily Dealths

Total Daily Hospitalisations

Daily Cases

Daily Dealths

Daily Hospitalisations

This expansive window of data collection encompasses the critical phases of the

COVID-19 pandemic, amounting to a total of 11,995 rows, with each row representing

a distinct day in this timeline. Within this dataset, a multitude of columns stands as

a testament to the breadth of information we’ve diligently gathered. These columns

are laden with a rich tapestry of features, each meticulously recorded on a daily

basis. This multifaceted approach allows us to encapsulate the dynamic nature of the

pandemic’s progression, unveiling a wealth of insights into its various facets. From

epidemiological statistics to environmental factors, government actions, and more,

our dataset provides a holistic view of the evolving COVID-19 landscape, enabling
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comprehensive analyses and informed decision-making.

4.2 Missing Values/Null Values Treatment

In our relentless pursuit of data accuracy and completeness, we encountered a minor

gap in our dataset: the absence of continuous values for certain features. To address

this gap, we employed a systematic and data-driven approach, harnessing the power of

time-based interpolation. This technique enabled us to seamlessly infill the missing

continuous values, ensuring the dataset’s integrity and reliability. By considering

the temporal context and leveraging data from related time points, we were able to

derive precise estimations for the missing continuous features, taking into account the

unique characteristics of each region. Through this interpolation process, we not only

bridged the data gaps but also maintained the temporal coherence of the dataset,

guaranteeing that our analytical endeavors are underpinned by a comprehensive and

robust foundation of information.

4.3 Data Versioning for Experimentation And Best

Performaning Dataset

Our meticulous data preprocessing efforts led to the creation of three distinct versions

of our database, each tailored to address the intricate nature of categorical features

and their one-hot encoding. In the first iteration, aptly named Version 1 (Transfer

Learning Dataset), we tackled the challenge by one-hot encoding all categorical fea-

tures, with the exception of Region and Provincial Action and Intervention Category

Group Features. For the former, we encoded the top 5 values, while the remaining

categorical attributes were transformed for all unique values. This approach resulted

in a database comprising 578 features.

In Version 2, we refined our strategy by expanding one-hot encoding to include

all categorical features, even encompassing the Region attribute. Here, the top 5

values for each feature were considered, resulting in a database with 438 features.
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The evolution of our data manipulation journey culminated in Version 3, a

database of 445 features. In this iteration, the Region feature was one-hot encoded

for all of its values, while the other categorical attributes were one-hot encoded for

their respective top 5 values.

Table 4.3.1: Dataset Comparison Table

Parameter/
Studies

Previous
Research
Study[25]

Motivational
Research
Study[26]

Our Research
Study[31]

Dataset John Hopkins
Dataset[16]

Custom Dataset Custom Dataset

Feature
Group

0 4 12

Total Ver-
sions

1 1 3

Total Fea-
tures other
than Target
Variables

0 13 445

Data Level Country Province Province

Intriguingly, our empirical analyses revealed that the utilization of Version 3 con-

sistently yielded the most promising results among the three iterations. This note-

worthy outcome underscores a compelling observation: surpassing the region’s

inclusion and expanding the feature set did not necessarily translate into

superior predictive performance. Instead, it emphasizes the importance of tar-

geted, data-driven decisions in feature engineering and the nuanced interplay between

feature richness and model effectiveness.
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CHAPTER 5

Methodology

In this chapter, we present a unified framework that bridges the realms of High

Cardinality Multivariate Multi Time Series (HCMVMT) datasets and the prediction

of COVID-19 epidemic trends. The pressing need for a comprehensive approach that

seamlessly integrates these domains becomes evident as we delve into the intricacies

of framework architecture. We dissect the framework into two key dimensions: one

designed to address the prediction problem as a regression task and another tailored

for time series forecasting. This unified framework not only offers a robust solution

to the challenges posed by both domains but also fosters interdisciplinary insights,

paving the way for more accurate and insightful predictions.

5.1 A Unified Framework for HCMVMT Datasets

and COVID-19 Epidemic Trend Prediction

The present research embarks on a comprehensive journey into the heart of its

methodology—a dynamic and adaptable framework designed to provide holistic solu-

tions for the intricate challenges posed by High Cardinality Multi-Variate Multi-Time

Series (HCMVMT) datasets. This framework transcends its immediate applications

to extend a helping hand to the realm of COVID-19 epidemic trend prediction, un-

veiling a versatile tool capable of illuminating the complex dynamics that underlie a

global health crisis. In this section, we delve into the architecture, components, and

strategies that collectively shape this transformative methodology.
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5.2 The Need for a Unified Framework

The contemporary landscape of data analytics and predictive modeling presents

an intriguing paradox. On one hand, there is a proliferation of high-dimensional,

multi-variate, multi-time series datasets, representing diverse domains from finance

to healthcare. On the other hand, the COVID-19 pandemic has ignited an urgent

demand for accurate, real-time predictions of epidemic trends, demanding the assimi-

lation of data from multiple sources and the incorporation of varying data structures.

The challenge before us is to not only unravel the intricacies of HCMVMT datasets

but to also cater to the pressing need for precise COVID-19 epidemic trend forecast-

ing. It is within this context that the unified framework takes center stage.
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5.3 Framework Architecture for Solving as a Re-

gression Problem

Data Collection

Data Preprocessing

Data Splitting

Feature Engineering

Feature Extraction ,

Correlation Removal

Model Selection,

Model Training,

Validation of Model,

Model Testing,

Model Optimization

Predictions

Proposed Hybrid Regression Framework Flowchart
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• Data Collection: Load the data from the new novel custom dataset built from

various sources.

• Data Preprocessing:

– Address null values in features through time-based interpolation for con-

tinuous features within the same region.

– Perform one-hot encoding of essential categorical features, the method of

which is version-dependent.

– Normalize all the features to ensure consistent scaling and prevent bias in

model training.

• Data Splitting: Divide the dataset into distinct sets for training (70%), vali-

dation (10%), and testing (20%). This partitioning facilitates the robust eval-

uation of the developed models.

• Feature Engineering: Utilize the Mutual Information Regression (MIR) method

to identify features that exhibit a strong correlation with the target values. This

step is pivotal for selecting the most informative attributes.

• Feature Extraction and Correlation Removal:To mitigate issues aris-

ing from high correlation among selected features, apply Principal Component

Analysis (PCA). PCA transforms the dataset into new, independent features,

reducing dimensionality and enhancing model performance.

• Model Selection and Development: Following feature extraction and Cor-

relation Removal, engage in multiple iterations to select or construct the best-

performing deep learning models for regression. Consider a variety of architec-

tures, including feed forward neural networks[30] and Random Forest.

• Model Training: Train the selected models using the training dataset. Imple-

ment state-of-the-art training techniques and optimization algorithms to ensure

convergence and the generation of reliable models.
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• Model Validation: Employ the validation dataset to fine-tune hyperparam-

eters and assess the model’s performance. Evaluate the models against vari-

ous metrics, including Mean Squared Error (MSE), Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and R-squared (R²).

• Model Testing: Verify the models’ generalization performance using the ded-

icated testing dataset. This step is essential for gauging how well the models

will perform on new, unseen data.

• Model Optimization: Continuously optimize the models based on the perfor-

mance indicators and insights derived from validation and testing phases. Make

necessary adjustments to enhance predictive accuracy.

This comprehensive framework is designed to address the complexities of the re-

gression problem while ensuring that the developed models can accurately predict

target values such as Total Daily Cases, Total Daily Deaths, Total Daily Hospitaliza-

tions, Daily Cases, Daily Deaths, and Daily Hospitalizations. The iterative nature of

the framework allows for continuous improvement, making it adaptable to evolving

data and research needs.

5.4 Regression Model Performance Variability in

Predicting COVID-19 Epidemic Trends

Our Deep Neural Network (DNN) based regression model framework has demon-

strated considerable success in predicting COVID-19 epidemic trends, particularly

when forecasting Total Daily Cases, Total Daily Deaths, and Total Daily Hospital-

izations. The incorporation of region-based features has played a pivotal

role in setting up a reliable baseline, allowing our framework to generate

accurate predictions in these cases. The performance of our model under these

circumstances has been commendable, aligning well with real-world data.

However, the scenario changes when we shift our focus to predicting the change in

Daily Cases, Daily Deaths, and Daily Hospitalizations. It becomes evident that
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the baseline established by region features is no longer a strong predictor

of these dynamic variables. The distribution of such changes can exhibit

similarities across multiple regions, making it challenging to discern pat-

terns and trends solely based on regional data.

One of the primary limitations we encounter is our model’s inability to

capture the temporal dependencies of previous dates and their associated

features when making predictions for the current date. In the context of

predicting changes in Daily Cases, Daily Deaths, and Daily Hospitalizations, under-

standing the historical context and its impact on the present is crucial. The lack of

mechanisms to account for such dependencies restricts the predictive capacity of our

regression framework.

As a result of these limitations, it becomes evident that a different

approach is required to address the prediction of changes in Daily Cases,

Daily Deaths, and Daily Hospitalizations. While our current framework excels

in forecasting cumulative numbers, the intricate dynamics involved in daily changes

necessitate the application of time series modeling techniques. Time series frameworks

are designed to handle dependencies over time and are better suited to capture the

nuances and fluctuations in the data. Therefore, it is imperative to develop and

implement a dedicated time series framework that can effectively predict the changes

in these critical COVID-19 statistics.

In the subsequent section, we will explore the development and integration of

time series models into our framework to address these limitations and enhance our

predictive capabilities for daily changes in COVID-19 epidemic trends.
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5.5 Framework Architecture for Solving as a Time

Series

Regression Framework

Model Output as Encoding

Encoding Extraction

Time Series Model Se-

lection Eg. Prophet,

LSTMs/GRU and

DeepAREstimator

Model Training, Validation

of Model, Model Testing,

Model Optimization

Predictions

Proposed Deep Learning Time Series Framework

To address the limitations encountered in our regression model framework, we

propose the integration of a dedicated time series framework. This new approach

is specifically designed to predict changes in Daily Cases, Daily Deaths, and Daily

Hospitalizations, where the dynamics differ significantly from forecasting cumulative

numbers. The proposed framework is a multi-step process aimed at optimizing the

prediction accuracy and reliability.
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• Input: Utilizing Neural Network Encoding

The input to our time series framework is based on the encoding derived from

the last layer of the neural network in our regression model framework. This

encoding encapsulates the predictive information extracted from the regression

model’s output for Total Daily Cases, Total Daily Deaths, and Total Daily

Hospitalizations.

The encoding acts as a condensed representation of the baseline predictions

generated by the regression framework. It captures the essential features and

trends observed in the cumulative statistics. This encoding is used as a starting

point for the time series models, facilitating a seamless transition from regression

to time series forecasting.

By incorporating this neural network encoding, we ensure that the relevant

information and patterns obtained from the regression model are leveraged in

our time series framework, enhancing the accuracy and reliability of predictions

for changes in Daily Cases, Daily Deaths, and Daily Hospitalizations.

• Encoding Extraction

Before proceeding with time series modeling, we employ encoding techniques to

distill the wealth of information generated by the regression framework. These

encodings encapsulate the essential features and patterns observed in the cu-

mulative statistics. The encoding process prepares the data for further analysis

by capturing the significant characteristics of the dataset.

• Time Series Model Selection

The heart of our time series framework lies in the selection of appropriate models

for predicting changes in Daily Cases, Daily Deaths, and Daily Hospitalizations.

We explore several time series models known for their effectiveness in captur-

ing temporal dependencies and dynamic patterns. The primary models under

consideration include:
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– Prophet: Prophet is a robust forecasting tool that excels in capturing

daily and weekly seasonality, as well as holidays and sudden changes in

trends.

– LSTMs/GRU: Long Short-Term Memory (LSTM) and Gated Recur-

rent Unit (GRU) networks are deep learning models designed for sequence

prediction. These models can effectively capture complex temporal depen-

dencies.

– DeepAREstimator: The DeepAREstimator model, known for its adapt-

ability and scalability, is particularly suitable for multi-variate, multi-time

series datasets. It offers a versatile approach to capturing intricate dynam-

ics.

The choice of model depends on the specific characteristics of the data and the

nature of the predictions required. We aim to identify the model that best suits

the complexity of the COVID-19 dataset.

• Model Training, Validation, Testing, and Optimization

Once the time series models are selected, we initiate the training phase. The

models are trained on the encoded dataset, where they learn to capture tem-

poral dependencies and patterns. After training, we move on to the valida-

tion stage, fine-tuning hyperparameters and assessing the models’ performance

against various evaluation metrics.

The testing phase follows, where the models are evaluated rigorously to ensure

their capability to predict changes in Daily Cases, Daily Deaths, and Daily Hos-

pitalizations. This comprehensive testing process helps us gauge the accuracy

and reliability of the predictions generated by each model.

To further enhance the predictive capabilities of the models, we undertake an

optimization phase, fine-tuning parameters and making necessary adjustments

based on the evaluation results.

• Predictions
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The final output of our time series framework is a set of predictions for changes

in Daily Cases, Daily Deaths, and Daily Hospitalizations. These predictions are

generated by the selected time series models and are critical for understanding

the dynamic nature of the COVID-19 epidemic trends. The predictions pro-

vide valuable insights into the fluctuating patterns and temporal dependencies,

enabling informed decision-making and proactive response strategies.

In the subsequent chapters, we will delve into the details of each stage of our

time series framework, exploring the model selection, training, validation, testing,

optimization, and the insights gleaned from the predictions. This comprehensive

approach aims to overcome the limitations of our regression framework and provide

a robust solution for predicting changes in COVID-19 epidemic trends.
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CHAPTER 6

Experiments and Results

In the chapter, we embark on an exhaustive exploration of the intricate experimen-

tation setup and evaluation framework that underpin our research. This chapter

serves as the fulcrum of our investigative efforts, where we meticulously delineate the

methodologies, configurations, and rigorous evaluation metrics harnessed to scrutinize

the performance of our unified framework. With meticulous precision, we navigate

the experimental landscape, offering comprehensive insights into each trial conducted,

the diverse data scenarios examined, and the variations in model deployments ex-

plored. These rigorous experiments culminate in the unveiling of results that validate

our framework’s prowess in predicting COVID-19 epidemic trends and tackling the

multifaceted challenges posed by High Cardinality Multivariate Multi Time Series

(HCMVMT) datasets. Join us on this journey of meticulous experimentation and

discovery, where empirical evidence illuminates the transformative potential of data-

driven decision-making in these complex domains. Embark on this comprehensive

exploration of meticulous experimentation and discovery, where empirical evidence

unveils the profound potential of data-driven decision-making within these multi-

faceted domains.

6.1 Experimentation Setup for Regression Frame-

work

In this section, we elaborate on the meticulous setup of our experiments for the regres-

sion framework, aimed at predicting the numbers of Total Daily Cases, Total Daily
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Deaths, and Total Daily Hospitalizations. The setup encompasses a range of input

data, algorithms/models employed, and the environment in which the experiments

were conducted.

6.1.1 Input: New Dataset

The cornerstone of our experimentation lies in the utilization of a new and comprehen-

sive dataset. This dataset acts as the bedrock upon which we conduct our predictive

analyses, encompassing a diverse array of features and temporal dependencies.

6.1.2 Algorithms/Models

To assess the performance of our regression framework, we explore multiple algorithms

and models:

• K-Nearest Neighbors (KNN)[22]: A traditional machine learning algorithm

for regression tasks.

• Random Forest: An ensemble learning method that leverages decision trees

for regression.

• Deep Neural Network[30]: A fundamental deep learning model for regres-

sion.

• Deep Neural Network with Regression Framework: Our proprietary

deep learning architecture, designed to handle High Cardinality Multivariate

Multi Time Series datasets.

These models are meticulously crafted and fine-tuned to address the complex task

of predicting COVID-19 epidemic trends.

6.1.3 Training Environment

All experimental studies were meticulously conducted within a controlled environment

to ensure the reproducibility and accuracy of our results. The training environment
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was established as follows:

• Operating System: A 64-bit Debian GNU/Linux 9.11 operating system pro-

vided the foundation for our experiments.

• Hardware: The experimental environment was powered by an Intel (R) Xeon

(R) Gold CPU @ 2.20GHz, complemented by 16 GB of RAM.

• GPU Acceleration: To enhance deep learning model training, we leveraged

NVIDIA Tesla K80, boasting 12GB of GPU memory.

• Deep Learning Framework: The PyTorch deep learning framework was em-

ployed to harness the potential of neural networks in our models.

This carefully orchestrated environment ensured that our experiments were con-

ducted under consistent and controlled conditions.

6.1.4 Output

The output of our experiments constitutes the core performance metrics that gauge

the effectiveness of our regression framework. The following output metrics were

assessed:

• Total Daily Cases

• Total Daily Deaths

• Total Daily Hospitalizations

These metrics are the yardstick against which we evaluate the predictive capabil-

ities of our models and framework.

In the subsequent sections, we delve into the results and insights derived from these

meticulously designed experiments, shedding light on the efficacy of our regression

framework in the domain of COVID-19 epidemic trend prediction.”
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6.2 Experimentation Setup for Deep learning Time

Series Framework

In this section, we provide a comprehensive insight into the meticulous setup of our

experiments for the Time Series Framework, tailored for predicting Daily Cases, Daily

Deaths, and Daily Hospitalizations. The setup encompasses the input data, a range

of algorithms and models employed, and the environment in which the experiments

were meticulously conducted.

6.2.1 Input: Encodings from Regression Framework

The foundational input for our Time Series Framework is the encodings derived from

the Regression Framework’s deep neural network model. These encodings, which

encapsulate the essence of the COVID-19 pandemic trends, serve as a bridge between

the two frameworks, enabling a seamless transition from regression to time series

analysis.

6.2.2 Algorithms/Models

To evaluate the capabilities of our Time Series Framework, we explore a spectrum of

algorithms and models, each tailored to handle the nuances of time series data:

• ARIMA[19]/Vector Autoregression (VAR)[24]: Classical time series mod-

els that provide a baseline for forecasting.

• Prophet[36]: A robust time series forecasting model designed to capture sea-

sonal patterns and special events.

• Long Short-Term Memory networks (LSTMs[23]): Deep learning models

adept at sequential data analysis.

• Gated Recurrent Unit (GRU[23]): Another deep learning architecture tai-

lored for time series forecasting.
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• DeepAREstimator[25]: Our proprietary deep learning model, engineered to

tackle High Cardinality Multivariate Multi Time Series datasets.

These models are thoughtfully selected to address the unique challenges of daily

COVID-19 trends and time series dynamics.

6.2.3 Training Environment

Rigorous experiments demand a controlled and consistent environment to ensure the

credibility and reliability of our findings. Our training environment is as follows:

• Operating System: A 64-bit Debian GNU/Linux 9.11 operating system was

chosen as the foundation for our experiments.

• Hardware: The experiments were executed on a computing infrastructure fea-

turing an Intel (R) Xeon (R) Gold CPU @ 2.20GHz and 16 GB of RAM.

• GPU Acceleration: For deep learning model training, we harnessed the power

of an NVIDIA Tesla K80 GPU, equipped with 12GB of memory.

• Deep Learning Framework: Our deep learning models were implemented

and trained using the PyTorch framework.

This controlled environment is pivotal in ensuring the reproducibility and relia-

bility of our experiments.

6.2.4 Output

The output of our experiments consists of vital performance metrics that gauge the

efficacy of our Time Series Framework. The following output metrics were assessed:

• Daily Cases

• Daily Deaths

• Daily Hospitalizations
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These metrics serve as the yardstick against which we measure the predictive

capabilities of our models and the robustness of our Time Series Framework.

In the subsequent sections, we delve into the results, findings, and insights derived

from these meticulously designed experiments, shedding light on the effectiveness of

our Time Series Framework in the realm of COVID-19 epidemic trend prediction.

6.3 Evaluation Metrics

In assessing the performance of our predictive models within the context of our frame-

work, it is essential to employ a set of rigorous evaluation metrics that provide insights

into the quality and accuracy of predictions. Here, we discuss and elaborate on the

primary metrics we have employed to gauge the effectiveness of our models.

6.3.1 R-squared (R²)

R-squared, also known as the coefficient of determination, serves as a fundamental

metric for assessing the quality of regression models. It quantifies the proportion

of the variance in the dependent variable (the variable being predicted) that can be

explained by the independent variables (the features utilized for prediction). The

R-squared value typically ranges from 0 to 1, with the following interpretations:

R2 = 1−
∑

(Predicted− Actual)2∑
(Actual − Actual)2

Here, ”Predicted” represents the predicted value, ”Actual” corresponds to the true

(observed) value, and Actual is the mean of the actual values. The R-squared value

typically ranges from 0 to 1, with interpretations as mentioned earlier. A higher R-

squared value indicates a better fit of the model to the data and its ability to explain

a significant portion of the variation in the target variable.

• R² = 0: The model fails to explain any variance in the dependent variable,

indicating a poor fit.
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• R² = 1: The model perfectly explains all the variance in the dependent variable,

representing a perfect fit.

A higher R-squared value signifies that the model effectively captures a significant

portion of the variation in the target variable. Therefore, when the objective is to

elucidate the variance in the target variable, a higher R² value is sought. However, it’s

crucial to note that in some instances, particularly when the model’s fit is worse than

a basic horizontal line (the ”null model”), the R-squared value can assume negative

values.

6.3.2 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) serves as a pivotal metric to assess the average

difference between the predicted values and the actual values. It is calculated by

taking the square root of the mean of the squared differences between the predictions

and the true values, as defined by the formula:

RMSE =

√∑
(Predicted− Actual)2

N

Here, ”Predicted” represents the predicted value, ”Actual” corresponds to the

true (observed) value, and ”N” is the number of data points.

RMSE is particularly sensitive to outliers and places a higher penalty on larger

prediction errors. A lower RMSE value indicates better model performance as it sig-

nifies that the model’s predictions closely align with the actual values. Consequently,

when the primary goal is to achieve accurate predictions, a lower RMSE value is

preferred.

6.3.3 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is akin to RMSE but differs in its approach to

error calculation. Instead of squaring the errors, it takes the absolute value of the

differences between the predicted values and the actual values. MAE is computed

using the formula:
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MAE =

∑
|Predicted− Actual|

N

In this formula, ”Predicted” represents the predicted value, ”Actual” corresponds

to the true (observed) value, and ”N” is the number of data points.

MAE is relatively less sensitive to outliers compared to RMSE since it does not

involve squaring the errors. Like RMSE, lower MAE values indicate superior model

performance, signifying that the model’s predictions exhibit smaller absolute differ-

ences from the actual values. Therefore, when the primary objective is to achieve

accurate predictions, a lower MAE value is sought.

6.3.4 Max Absolute Error (MaxAE)

The Max Absolute Error (MaxAE) is defined as the maximum absolute difference

between the predicted values and the actual values across the dataset. It is computed

using the following formula:

MaxAE = max |Predicted− Actual|

In this formula, ”Predicted” represents the predicted value, and ”Actual” corre-

sponds to the true (observed) value. The MaxAE metric provides insights into the

largest prediction error encountered in the model’s performance. A lower MaxAE

value signifies better model accuracy, implying that even the worst-case errors are

relatively small.

6.4 Results

6.4.1 Critical Feature Identifications

The most critical aspects of our analysis—the identification of key features that play

a pivotal role in predicting the daily cases, daily hospitalizations, and daily deaths.

These critical features, carefully selected through a rigorous evaluation process, serve
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Fig. 6.4.1: Critical features for Daily Cases

as the cornerstone of our predictive models. Understanding their significance not only

sheds light on the factors influencing the course of the COVID-19 pandemic but also

holds the potential to inform targeted interventions and strategies for managing its

impact. As we navigate through the results, we invite you to explore the intricate

web of relationships between these features and the epidemic trends, providing a com-

prehensive view of the data-driven insights that underpin our framework’s predictive

capabilities.

6.4.2 Regression Model Results

In our extensive evaluation of regression models within the context of our regression

framework, we have witnessed a remarkable performance that sets our framework

apart from other regression models, including K-Nearest Neighbors (KNN) and Ran-

dom Forest, across various critical aspects of model assessment. These aspects encom-

pass essential metrics such as R-squared (R2), Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), and Max Absolute Error (MaxAE). Our regression

framework excelled in all of these metrics, signifying its superior predictive capabili-
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Fig. 6.4.2: Critical features for Daily Deaths

Fig. 6.4.3: Critical features for Daily Hospitalisations
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ties when compared to the alternative models.

Specifically, our framework achieved a higher R2, indicating that it comprehen-

sively explained a significant portion of the variance in the dependent variable. It

also exhibited lower values for RMSE and MAE, signifying that its predictions were

consistently closer to the actual values, an essential characteristic when aiming for

precise and accurate predictions. Moreover, the MaxAE values were kept in check,

further underlining the framework’s ability to minimize extreme prediction errors.

After a series of meticulous experiments, we found that the Neural Net-

work model with four hidden layers emerged as the top performer. This

configuration, when combined with a batch size of 8, the Adam optimizer,

a dropout rate of 0.5, and a training duration spanning 150-250 epochs,

consistently delivered the most robust results. The choice of the Recti-

fied Linear Unit (ReLU) as the activation function also played a crucial

role in optimizing our framework’s predictive accuracy, particularly con-

cerning the total number of cases, total hospitalizations, and total deaths.

This combination of architectural elements represents a powerful recipe for successful

predictions in the context of our regression framework.

While our regression framework has proven its mettle in various aspects, it’s worth

noting that it does demand relatively more time in terms of computational resources

due to its deep neural network architecture. However, this investment in time is well-

justified, given the significant enhancements in predictive accuracy and the crucial

insights it provides in understanding and tackling the challenges posed by the COVID-

19 pandemic.

After conducting each experiment five times, we calculated the mean

values of the evaluated metrics to obtain a more robust and reliable mea-

sure of the model’s performance. This approach not only mitigates the impact of

outliers but also ensures that the reported results are a representative measure of the

model’s capabilities. By considering the mean values, we aim to provide a compre-

hensive and stable assessment of the model’s predictive accuracy and generalizability

across different scenarios.
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Fig. 6.4.4: Prediction Of Total Daily Cases KNN

Fig. 6.4.5: Prediction Of Total Daily Cases Random Forest

Fig. 6.4.6: Prediction Of Total Daily Cases Regression Framework
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Regression Al-
gorithms

R² RMSE MAE MaxAE Training
Time

KNN 0.79 32168.6486 9352.1366 417673.0000 0.04

Random Forest 0.87 16418.0310 8078.9526 133431.4375 36.36

Regression
Framework

0.99 2930.4405 924.9775 49195.6999 1515.69

Table 6.4.1: Predicting Total Daily Cases

Fig. 6.4.7: Prediction Of Total Daily Deaths KNN

Fig. 6.4.8: Prediction Of Total Daily Deaths Random Forest
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Fig. 6.4.9: Prediction Of Total Daily Deaths Regression Framework

Regression Al-
gorithms

R² RMSE MAE MaxAE Training
Time

KNN 0.81 590.0135 135.9663 9078.0000 0.04

Random Forest 0.88 198.5118 91.7215 1758.4102 26.47

Regression
Framework

0.99 41.9891 11.8251 747.0900 1455.26

Table 6.4.2: Predicting Total Daily Deaths

Fig. 6.4.10: Prediction Of Total Daily Hospitalisations KNN
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Fig. 6.4.11: Prediction Of Total Daily Hospitalisations Random Forest

Fig. 6.4.12: Prediction Of Total Daily Hospitalisations Regression Framework

Regression Al-
gorithms

R² RMSE MAE MaxAE Training
Time

KNN 0.78 590.0135 135.9663 9078.0000 0.04

Random Forest 0.85 68.4125 31.0935 1131.8500 32.63

Regression
Framework

0.98 61.1323 16.0368 499.9365 1539.64

Table 6.4.3: Predicting Total Daily Hospitalisations
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6.4.3 Time Series Model Results

When assessing the performance of time series models within our comprehensive time

series framework, we conducted a thorough evaluation to gauge the effectiveness of

various approaches. One of our primary objectives was to compare the results of

traditional ARIMA and VAR-based models with those obtained from a specialized

framework that harnessed the power of deep neural networks to generate essential

encodings. These encodings were subsequently employed as inputs for alternative

time series models, including Prophet, LSTMs, and the DeepAREstimator.

Our evaluation was multi-faceted, encompassing a range of metrics to compre-

hensively measure the models’ predictive capabilities. Among the critical metrics

considered were R-squared (R²), Root Mean Squared Error (RMSE), Mean Abso-

lute Error (MAE), and Maximum Absolute Error (MaxAE). These metrics provided

insight into the models’ accuracy, precision, and ability to capture the underlying

patterns and variations in the data.

R², or the coefficient of determination, offered a glimpse into how well each model

explained the variance in the target variables. RMSE quantified the average difference

between predicted and actual values, while MAE provided a measure of the mean

absolute differences. Finally, MaxAE highlighted the maximum error encountered in

the predictions.

In addition to these metrics, we also examined the time factor, recognizing the

importance of model efficiency in real-world applications. The time taken for model

training and prediction was a crucial consideration, as it directly impacts the feasi-

bility of deploying these models in real-time scenarios.

Through a systematic and rigorous assessment, we aimed to uncover which models

excelled in capturing the intricate dynamics of the time series data associated with

COVID-19 epidemic trends. This evaluation not only sheds light on the individual

strengths and weaknesses of each model but also aids in identifying the most promising

candidates for accurate and efficient predictions.

In the forthcoming results, we present a comprehensive analysis of our findings,
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showcasing how each model performed across these key evaluation metrics and high-

lighting their respective advantages and limitations. This exploration is instrumental

in providing a clear roadmap for selecting the most suitable time series model within

our framework for the prediction of COVID-19 epidemic trends.

6.4.3.1 Prophet Model Configuration for Time Series Framework

In our pursuit of finding the most suitable model for our time series framework,

Prophet, a robust forecasting tool developed by Facebook, emerged as a notable con-

tender. Prophet is celebrated for its ability to handle time series data with remarkable

accuracy and simplicity. During our evaluation, one of the noteworthy findings was

that the default configuration of Prophet yielded the best results for our framework,

showcasing its robust performance in capturing the intricacies of COVID-19 epidemic

trends.

Prophet, by design, is equipped to handle time series data with a particular em-

phasis on capturing seasonality, holidays, and other recurrent patterns. Its default

configuration settings have been meticulously crafted to provide an excellent starting

point for time series analysis. These defaults encompass various aspects, including

the treatment of seasonality, holiday effects, and trend flexibility.

One of the strengths of Prophet lies in its automatic detection of seasonality,

making it an ideal choice for time series data that exhibit regular patterns over time.

The default settings of Prophet are tailored to identify such seasonality components

and adjust the model accordingly, ensuring that these patterns are well-captured

during the prediction process.

Another noteworthy feature of Prophet is its consideration of holiday effects. It

can incorporate holidays or special events as additional input features, enabling the

model to account for sudden, non-seasonal changes in the time series. This inclusion

of holidays is pivotal, especially in scenarios like the prediction of COVID-19 epidemic

trends, where policy changes and public holidays can significantly impact the data.

Furthermore, Prophet’s default configuration includes provisions for adjusting the

flexibility of the underlying trend. The default settings automatically determine the
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best balance between seasonality, holidays, and the overall trend, allowing the model

to effectively capture the temporal dynamics of the data.

Our rigorous evaluation of Prophet revealed that these default settings consistently

outperformed alternative configurations. The default configuration proved to be not

only highly accurate but also robust, requiring minimal parameter tuning. This

simplicity and effectiveness make it a valuable asset within our time series framework.

The following section presents the comprehensive results of our experiments with

Prophet as part of our time series framework. The default configuration’s performance

is showcased across a range of evaluation metrics, highlighting its superiority in cap-

turing the nuanced dynamics of COVID-19 epidemic trends. Through our detailed

analysis and thorough experimentation, the default settings of Prophet have demon-

strated their prowess, reaffirming their status as an ideal choice for our predictive

endeavors.

6.4.3.2 Deep Learning Models(LSTMs/GRU) Configuration for Time Se-

ries Framework

In our pursuit of achieving the most accurate and effective model for time series

analysis within the COVID-19 epidemic trend prediction framework, we conducted a

meticulous examination of various architectural configurations. Our focus was partic-

ularly on Long Short-Term Memory (LSTM) networks, renowned for their exceptional

ability to capture sequential dependencies in time series data.

One of the significant milestones in our experimentation was the development of a

deep LSTM architecture with four hidden layers. Each of these layers played a pivotal

role in comprehending the intricate temporal patterns that characterize COVID-19

epidemic trends. We adopted the Adam optimizer to facilitate the convergence of

our model, working alongside a window length of 10 for features. In addition, the use

of past-day predictions as input features for current-day predictions proved to be a

crucial component of our framework.

Further fine-tuning of our LSTM network involved the careful selection of hyper-

parameters. Our choice of a batch size of 4, coupled with a relatively high number
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of epochs (1000), allowed our model to iteratively learn and adapt to the temporal

complexities within the data. To prevent overfitting and ensure robust generalization,

a dropout rate of 0.3 was employed, striking a balance between learning from data

and preventing model complexity.

Activation functions are central to the success of deep learning networks, and

we found that Leaky Rectified Linear Unit (LeakyReLU) activation functions worked

exceptionally well in tandem with the LSTM architecture. These activation functions

allowed for the exploration of both linear and non-linear relationships within the time

series data, further enhancing the model’s capacity to capture and predict COVID-19

epidemic trends.

One noteworthy observation from our experimentation was the superior perfor-

mance of LSTMs compared to Gated Recurrent Units (GRUs). While both LSTM

and GRU networks are proficient at modeling sequential data, the LSTM architecture

demonstrated greater effectiveness in this context. This observation is instrumental

in guiding our model selection process, ensuring that we employ the most suitable

deep learning architecture within our time series framework.

The combination of the above-mentioned architectural elements and hyperparam-

eter settings led to remarkable results in predicting COVID-19 epidemic trends. As

we delve into the results section, we will present a comprehensive analysis, providing

insight into the models’ performance and highlighting the potential of LSTM networks

within our framework for accurate and reliable time series prediction.

6.4.3.3 DeepAREstimator Model Configuration for Time Series Frame-

work

In the realm of time series modeling for the COVID-19 epidemic trend prediction

framework, we explored a wide array of powerful models, including the DeepAR es-

timator. DeepAR is a neural network-based approach designed for probabilistic time

series forecasting. Through meticulous experimentation, we identified the optimal

configuration that enabled the DeepAR model to achieve exceptional predictive ac-

curacy.
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One key aspect of our DeepAR experimentation involved setting the context length

to 10 for features. This context length, in essence, determines how many past ob-

servations the model considers when making predictions for the current day. In our

comprehensive study, a context length of 10 emerged as the most effective choice, al-

lowing the model to capture the essential temporal dependencies and patterns within

the COVID-19 epidemic trends.

Another crucial parameter we fine-tuned was the number of layers within the

DeepAR architecture. Our results demonstrated that a three-layered model config-

uration offered the best performance. This choice of the number of layers played a

pivotal role in balancing model complexity while preserving its capacity to understand

intricate temporal relationships in the data.

We further optimized our DeepAR model by conducting experiments with dif-

ferent hyperparameter settings. Notably, we found that running the model for 400

epochs yielded the most accurate predictions. An epoch represents one complete cy-

cle through the entire training dataset. This extensive training duration enabled the

model to converge to a state of high accuracy and predictive power, making it an

ideal choice for COVID-19 epidemic trend forecasting.

It’s worth noting that, in our experimentation, we adhered to the default settings

for various other parameters that DeepAR offers, such as batch size, the choice of

optimizer, and dropout rates. These default settings have been meticulously crafted

by the developers of the DeepAR framework and have proven to work effectively in

the context of our COVID-19 epidemic trend prediction.

The outcome of our comprehensive experiments with DeepAR is a highly accurate,

powerful model that provides probabilistic forecasts for COVID-19 epidemic trends.

As we delve into the results section, we will present in-depth insights into the per-

formance of the DeepAR estimator and demonstrate how it contributes to our time

series framework’s capacity to predict COVID-19 epidemic trends with precision and

reliability.

Now, with Alberta Province and Daily Cases Prediction problem we will be looking

at a complete example to understand our timeline and prediction views for better
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Fig. 6.4.13: Daily Cases Full Time Line (Region Alberta)

understanding of Results

6.4.4 Time Series Model Results Daily Cases

Results for Daily Cases are discussed below

In Fig 6.4.13 We have full time line view of all the points and corresponding

Daily Cases for Alberta Province

In Fig 6.4.14 We have Training Data time line view of all the points and cor-

responding Daily Cases for Alberta Province. This is the data that has been used

to train our different time series models such as Prophet, LSTMs(Deep Learning),

DeepAREstimator after encodings have been received for each date from Feed forward

neural network of our regression framework.

In Fig 6.4.15 We have Validation Data time line view of all the points and

corresponding Daily Cases for Alberta Province. This is the data that has been used

to validate our different time series models such as Prophet, LSTMs(Deep Learning),

DeepAREstimator after encodings have been received for each date from Feed forward

neural network of our regression framework.

In Fig 6.4.16 We have Test Data time line view of all the points and correspond-

ing Daily Cases for Alberta Province. This is the data that has been used to test our

different time series models such as Prophet, LSTMs(Deep Learning), DeepAREs-
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Fig. 6.4.14: Daily Cases Train Time Line (Region Alberta)

Fig. 6.4.15: Daily Cases Validation Time Line (Region Alberta)
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Fig. 6.4.16: Daily Cases Test Time Line (Region Alberta)

Fig. 6.4.17: Prediction Of Daily Cases Arima Model (Region Alberta)

timator after encodings have been received for each date from Feed forward neural

network of our regression framework.

In Fig 6.4.17 We have Test Data line Prediction view of all the points and

corresponding Daily Cases for Alberta Province. This is prediction done by ARIMA

model after it was trained and validated on respective data points.

In Fig 6.4.18 We have Test Data line Prediction view of all the points and

corresponding Daily Cases for Alberta Province. This is best prediction done by our

Framework which in this case used LSTMs based Deep Learning model after the same

was trained and validated on respective data points.
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Fig. 6.4.18: Prediction Of Daily Cases Deep Learning Time Series Framework-LSTM
Model (Region Alberta)

The Alberta Province exhibited optimal performance on the testing data when

predicting daily cases. The training and testing datasets closely followed similar

distributions, facilitating the model’s ability to generalize effectively.

In Fig 6.4.19 We have Test Data line Prediction view of all the points and

corresponding Daily Cases for Alberta Province. This is prediction done by our

Framework using DeepAREstimator model after the same was trained and validated

on respective data points.

In Fig 6.4.20 We have Full Time line Prediction view of all the points and

corresponding Daily Cases for Alberta Province. This is prediction done by our

Framework after the same was trained and validated on respective data points.

In Fig 6.4.21 We have Full Time line Prediction view with 95% boundary of all

the points and corresponding Daily Cases for Alberta Province. This is prediction

done by our Framework after the same was trained and validated on respective data

points.

In Fig 6.4.22 We have full time line view of all the points and corresponding

Daily Cases for Quebec Province

In Fig 6.4.23 We have Full Time line Prediction view of all the points and

corresponding Daily Cases for Quebec Province. This is prediction done by our
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Fig. 6.4.19: Prediction Of Daily Cases Deep Learning Time Series Framework-
DeepAREstimator (Region Alberta)

Fig. 6.4.20: Prediction Of Daily Cases Deep Learning Time Series Framework Full
Time Line (Region Alberta)
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Fig. 6.4.21: Prediction Of Daily Cases Deep Learning Time Series Framework-
DeepAREstimator Full Time Line Percentile View(Region Alberta)

Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -0.55 350.0980 320.0554 697.1910 1.25

DL-TS Framework-
Prophet

0.90 171.4782 135.5246 430.6880 2.53

DL-TS Framework-
LSTMs

0.95 79.3224 53.1890 401.9676 1410.65

DL-TS Framework-
DeerAREstimator

0.92 88.3984 58.2643 418.4246 338.46

Table 6.4.4: Predicting Daily Cases (Region Alberta)
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Fig. 6.4.22: Daily Cases Full Time Line (Region Quebec)

Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -0.13 889.1554 717.3580 2604.8109 1.25

DL-TS Framework-
Prophet

0.88 505.8036 377.3975 1577.3555 2.53

DL-TS Framework-
LSTMs

0.92 305.8036 223.1890 1213.9676 1415.65

DL-TS Framework-
DeerAREstimator

0.90 328.3984 246.4674 1346.4246 338.46

Table 6.4.5: Predicting Daily Cases (Region Quebec)

Framework after the same was trained and validated on respective data points.

In Fig 6.4.24 We have full time line view of all the points and corresponding

Daily Cases for Ontario Province

In Fig 6.4.25 We have Full Time line Prediction view of all the points and

corresponding Daily Cases for Ontario Province. This is prediction done by our

Framework after the same was trained and validated on respective data points.

In Fig 6.4.26 We have Full Time line Prediction view of all the points and

corresponding Daily Cases for British Columbia Province. This is prediction done by
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Fig. 6.4.23: Prediction Of Daily Cases Deep Learning Time Series Framework Full
Time Line (Region Quebec)

Fig. 6.4.24: Daily Cases Full Time Line (Region Ontario)
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Fig. 6.4.25: Prediction Of Daily Cases Deep Learning Time Series Framework Full
Time Line (Region Ontario)

Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -1.51 1477.0129 1334.4758 2450.3300 1.25

DL-TS Framework-
Prophet

0.90 616.2956 468.2510 2391.4608 2.53

DL-TS Framework-
LSTMs

0.92 556.2956 438.4735 2254.1346 1404.32

DL-TS Framework-
DeerAREstimator

0.89 576.3476 442.3165 2425.4342 338.46

Table 6.4.6: Predicting Daily Cases (Region Ontario)
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Fig. 6.4.26: Prediction Of Daily Cases Deep Learning Time Series Framework Full
Time Line (Region British Columbia)

Fig. 6.4.27: Prediction Of Daily Cases Deep Learning Time Series Framework Test
Time Line (Region British Columbia)
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Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -5.88 217.7841 195.2429 337.9356 1.25

DL-TS Framework-
Prophet

0.89 161.9411 113.6925 255.3342 2.53

DL-TS Framework-
LSTMs

0.96 31.9732 24.2660 102.4750 1462.54

DL-TS Framework-
DeerAREstimator

0.93 103.9015 84.2496 238.3783 338.46

Table 6.4.7: Predicting Daily Cases (Region British Columbia)

our Framework when using Prophet model after the same was trained and validated

on respective data points.

In Fig 6.4.27 We have Test Time line Prediction view of all the points and

corresponding Daily Cases for British Columbia Province. This is prediction done by

our Framework using LSTMs after the same was trained on respective data points.

6.4.5 Time Series Model Results Daily Deaths

Results for Daily Deaths are discussed below

In Fig 6.4.28 We have Full Time line Prediction view of all the points and

corresponding Daily Deaths for British Columbia Province. This is prediction done

by our Framework when using Prophet model after the same was trained and validated

on respective data points.

In Fig 6.4.29 We have Test Time line Prediction view of all the points and

corresponding Daily Deaths for British Columbia Province. This is prediction done

by our Framework using LSTMs after the same was trained on respective data points.

In Fig 6.4.30 We have Full Time line Prediction Percentile view of all the points

and corresponding Daily Deaths for Quebec Province. This is prediction done by our

Framework when using Prophet model after the same was trained and validated on
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Time Series
Models

R² RMSE MAE MaxAE [1455.26]
+ Train-
ing Time

ARIMA -1.39 14.8589 12.7556 57.9586 1.62

DL-TS Framework-
Prophet

0.89 8.8575 5.9920 78.3149 2.46

DL-TS Framework-
LSTMs

0.92 7.3667 5.1863 49.5068 1562.54

DL-TS Framework-
DeerAREstimator

0.90 7.9015 6.3532 54.5215 348.46

Table 6.4.8: Predicting Daily Dealths (Region Ontario)

Fig. 6.4.28: Prediction Of Daily Deaths Deep Learning Time Series Framework Full
Time Line (Region Ontario)
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Fig. 6.4.29: Prediction Of Daily Deaths Deep Learning Time Series Framework Test
Time Line (Region Ontario)

Fig. 6.4.30: Prediction Of Daily Deaths Deep Learning Time Series Framework Full
Time Line (Region Quebec)
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Fig. 6.4.31: Prediction Of Daily Deaths Deep Learning Time Series Framework Test
Time Line (Region Quebec)

respective data points.

In Fig 6.4.31 We have Test Time line Prediction view of all the points and

corresponding Daily Deaths for Quebec Province. This is prediction done by our

Framework using LSTMs after the same was trained on respective data points.

6.4.6 Time Series Model Results Daily Hospitalisations

Results for Daily Hospitalisations are discussed below

In Fig 6.4.32 We have Full Time line Prediction view of all the points and

corresponding Daily Hospitalisations for Quebec Province. This is prediction done

by our Framework when after the same was trained and validated on respective data

points.

In Fig 6.4.33 We have Test Time line Prediction view of all the points and

corresponding Daily Hospitalisations for Quebec Province. This is prediction done

by our Framework using LSTMs after the same was trained on respective data points.

In Fig 6.4.34 We have Test Time line Prediction view of all the points and

corresponding Daily Hospitalisations for Quebec Province. This is prediction done

by our Framework using Prophet after the same was trained on respective data points.

In Fig 6.4.35 We have Full Time line Prediction Percentile view of all the points
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Time Series
Models

R² RMSE MAE MaxAE [1455.26]
+ Train-
ing Time

ARIMA -2.60 12.9305 10.6060 25.6602 1.62

DL-TS Framework-
Prophet

0.86 5.8060 4.1024 41.3995 2.46

DL-TS Framework-
LSTMs

0.94 4.2593 3.4009 13.7902 1553.32

DL-TS Framework-
DeerAREstimator

0.90 4.9221 3.5213 16.5223 348.46

Table 6.4.9: Predicting Daily Dealths (Region Quebec)

Fig. 6.4.32: Prediction Of Daily Hospitalisations Deep Learning Time Series Frame-
work Full Time Line (Region Quebec)
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Fig. 6.4.33: Prediction Of Daily Hospitalisations Deep Learning Time Series Frame-
work Test Time Line (Region Quebec)

Fig. 6.4.34: Prediction Of Daily Hospitalisations Deep Learning Time Series Frame-
work Test Time Line (Region Quebec)
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Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -0.61 62.7439 50.4220 185.9979 1.89

DL-TS Framework-
Prophet

0.80 37.4074 28.5497 208.0080 2.30

DL-TS Framework-
LSTMs

0.87 26.0494 17.7143 153.4828 1505.32

DL-TS Framework-
DeerAREstimator

0.82 41.0655 27.8959 170.8992 342.46

Table 6.4.10: Predicting Daily Hospitalisations (Region Quebec)

and corresponding Daily Hospitalisations for Ontario Province. This is prediction

done by our Framework when after the same was trained and validated on respective

data points.

In Fig 6.4.36 We have Test Time line Prediction view of all the points and

corresponding Daily Hospitalisations for Ontario Province. This is prediction done

by our Framework after the same was trained on respective data points.

6.5 Discussions

The results showcased in the preceding section underscore the remarkable effective-

ness of our Regression Framework in predicting critical COVID-19 epidemic trends,

encompassing total daily cases, deaths, and hospitalizations. When compared to con-

ventional and contemporary regression models, it emerged as the superior performer,

excelling across a spectrum of key evaluation metrics, including R-squared (R2), Mean

Absolute Error (MAE), Max Absolute Error (MaxAE), and Root Mean Squared Error

(RMSE). This achievement was underpinned by the framework’s capacity to furnish a

scalable and sustainable model architecture, which exhibited exceptional proficiency

in capturing a broad spectrum of trends.

However, as the focal point shifted towards the intricate dynamics governing daily
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Time Series
Models

R² RMSE MAE MaxAE [1539.64]
+ Train-
ing Time

ARIMA -0.03 194.2205 109.8348 1394.4811 1.89

DL-TS Framework-
Prophet

0.80 147.3608 77.9118 1243.3523 2.30

DL-TS Framework-
LSTMs

0.85 89.1296 52.4412 1158.5178 1505.32

DL-TS Framework-
DeerAREstimator

0.81 109.3242 67.3422 1200.3536 342.46

Table 6.4.11: Predicting Daily Hospitalisations (Region Ontario)

Fig. 6.4.35: Prediction Of Daily Hospitalisations Deep Learning Time Series Frame-
work Test Time Line (Region Ontario)
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Fig. 6.4.36: Prediction Of Daily Hospitalisations Deep Learning Time Series Frame-
work Test Time Line (Region Ontario)

cases, deaths, and hospitalizations, the Regression Framework encountered its limita-

tions. Enter our specialized Deep Learning Time Series Framework, tailored to tackle

the intricate challenges of predicting these daily trends. The Regression Framework

assumed a pivotal role in this transition, functioning as the foundational element

upon which our Deep Learning Time Series Framework was constructed.

In a comprehensive analysis of Time Series Models within our framework, their ca-

pabilities and trade-offs have come to light. These models consistently outperformed

traditional statistical models, excelling in metrics such as R-squared, Mean Absolute

Error, Max Absolute Error, and Root Mean Squared Error. However, they incurred

a trade-off in training time, especially in the case of LSTMs. Despite the additional

time investment during training, the enhanced prediction accuracy more than jus-

tifies this drawback. In terms of maintainability and scalability, the complexity of

individual models for each region hindered the practicality of Prophet and LSTMs. In

contrast, DeepAREstimator, offering comparable performance to LSTMs with signif-

icantly reduced training time, emerged as the most practical and sustainable choice.

This comprehensive approach addresses multiple facets of epidemic trend prediction,

making it an ideal solution for real-world applications where prediction performance,

training time, and maintainability are essential considerations.
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To sum up, our research emphasizes the impressive performance of Time Series

Models within our framework, surpassing traditional models in prediction accuracy.

Training time is a factor to consider, but the trade-off is justified by the improved

predictions. DeepAREstimator, a single-model solution, offers a balance between per-

formance, training time, and sustainability, making it the optimal choice for practical

and reliable epidemic trend forecasting.

6.5.1 Statistical Stability and Reliability of Framework Re-

sults

The results achieved by both our Regression Framework and Deep Learning Time

Series Framework not only showcase their effectiveness but also reflect an excep-

tional degree of statistical stability. A detailed analysis of these results over five

repeated experiments has revealed an almost negligible variance, bordering on zero.

The standard deviation, which quantifies the extent of variability in these results, is

significantly smaller relative to the mean or expected values. This statistical insight

into our models’ performance indicates a level of stability and reliability that is truly

remarkable.

Furthermore, it is noteworthy that both frameworks yield results with a standard

deviation that is only a small fraction of the mean value. This observation suggests

that the model’s predictions consistently hover closely around the expected outcome.

Such a high level of consistency enhances the frameworks’ trustworthiness and reaf-

firms their potential to deliver dependable insights and predictions. The stability and

reliability demonstrated by these frameworks, with minimal variance and standard

deviation, reinforce their ability to provide valuable and consistent results.

6.5.2 Assumptions of Regression and Deep Learning Time

Series Framework

• Applicable Dataset Our frameworks can only be applied when the dataset

has all the features and properties of high cardinality multi variate multi-time
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series dataset.

• Stationary time series Our frameworks assumed that the data is close to

stationary, meaning that the statistical properties of the data, such as mean

and variance, do not change over time. Certain preprocessing techniques, like

differencing, can be used to achieve stationarity.

• Assumption of Computational Resources: Our frameworks assume that

the computational resources and training times specified in the experimenta-

tion setup for each framework are available. The specified hardware, software,

and computational infrastructure are assumed to be sufficient to train and run

the models effectively. Additionally, it is assumed that the available resources

can accommodate the computational demands of the deep learning models and

statistical approaches utilized in the frameworks. The results are contingent on

the availability and suitability of these computational resources.

6.5.3 Limitations of Regression and Deep Learning Time Se-

ries Framework

• Data Requirements: Our frameworks are limited in their applicability and

effectiveness. They can only be applied when the dataset possesses all the fea-

tures and properties of a high cardinality multivariate multi-time series dataset.

If the dataset lacks the necessary characteristics, the frameworks may not per-

form optimally and may even fail to produce meaningful results.

• Stationarity Assumption: The frameworks operate under the assumption

that the data is close to stationary, which means that the statistical properties

of the data, such as mean and variance, do not change significantly over time.

While certain preprocessing techniques like differencing can be employed to

achieve stationarity, the performance of the frameworks may be compromised

when applied to highly non-stationary data. This limitation affects

• Computational Resources: A critical limitation of our frameworks lies in

114



6. EXPERIMENTS AND RESULTS

their reliance on specific computational resources. They assume the availability

of the computational infrastructure, hardware, and software specified in the

experimentation setup. If these resources are not accessible or inadequate, the

frameworks’ performance may be compromised. Furthermore, the effectiveness

of the deep learning models and statistical approaches depends on the suitability

and capacity of the available computational resources. This limitation may

restrict the practicality of applying the frameworks in environments with limited

computational capabilities.

• Model Complexity: The frameworks, particularly the Deep Learning Time

Series Framework, can involve complex models with multiple layers and hyper-

parameters. This complexity can make them challenging to fine-tune and may

require significant computational resources. Consequently, there is a limitation

in their ease of use, especially for users without expertise in deep learning or

machine learning.

• Transferability: While the frameworks are designed to predict COVID-19 epi-

demic trends, their transferability to other domains or types of datasets may be

limited. They are tailored to the unique characteristics of epidemiological data

and may not generalize well to different contexts, restricting their versatility.

• Dependency on Training Data: The frameworks rely on historical data for

training. If the dataset does not cover a sufficiently long period, especially

for time series data, the models may not capture long-term trends or exhibit

less robust performance. This limitation is particularly relevant for forecasting

epidemics, where historical context is crucial.

• Resource Intensiveness: Both frameworks can be computationally intensive,

especially for training deep learning models. The need for substantial computa-

tional resources, including powerful GPUs and time, makes them less accessible

in resource-constrained settings.
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6.5.4 Contributions

• A Comprehensive COVID-19 Canadian Dataset: One of the foremost

contributions of this research is the development and curation of a comprehen-

sive COVID-19 Canadian dataset. This dataset serves as a foundational re-

source for understanding the dynamics of the pandemic across different regions

of Canada. It offers a rich collection of data, encompassing various aspects

of the epidemic, including environmental factors, government actions, medical

parameters, mobility trends, and socio-economic conditions. The availability of

such a dataset is invaluable for researchers, policymakers, and healthcare prac-

titioners seeking to gain insights into the pandemic’s multifaceted impact. This

dataset, made accessible to the scientific community, is a lasting contribution

to the fight against COVID-19 and future epidemic research.

• Frameworks for Multivariate Multi-Timeseries Dataset: The develop-

ment of two distinct frameworks tailored to address the complexities of multi-

variate multi-timeseries datasets is a pivotal contribution of this research. These

frameworks, specifically the Regression Framework and Deep Learning Time Se-

ries Framework, have been meticulously designed to cater to the intricacies of

COVID-19 epidemic trend prediction. They provide researchers and practition-

ers with versatile tools for analyzing and forecasting various epidemic trends,

ranging from total cases and deaths to daily fluctuations. These frameworks

extend their utility beyond epidemiology and hold promise for addressing analo-

gous challenges in other domains characterized by high-cardinality, multivariate,

and multi-timeseries datasets.

• Comprehensive Single AI Model for Epidemic Trends: Another notable

contribution is the development of a comprehensive single AI model capable

of predicting a diverse range of epidemic trends. In a field where the conven-

tional approach involves using distinct models for each type of prediction, this

unified model offers both efficiency and scalability. The AI model, as a founda-

tional element in the frameworks, exhibits robust performance across different
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trends, making it an attractive solution for applications requiring multifaceted

analysis of epidemic data. This singular model streamlines the modeling pro-

cess, enhancing maintainability and reducing complexity in the development of

predictive tools.

• Critical Feature Identification: A critical aspect of this research is the

identification of key features that significantly influence the prediction of epi-

demic trends. The frameworks systematically extract relevant features from

the dataset and pinpoint those that exhibit a strong correlation with the target

variables. The ability to discern these critical features enhances our understand-

ing of the underlying dynamics driving the epidemic. Moreover, it empowers

researchers and policymakers to prioritize interventions and allocate resources

effectively. By isolating these influential variables, this research simplifies the

complexity of multivariate data and equips decision-makers with actionable in-

sights.
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CHAPTER 7

Conclusion and Future Work

7.1 Regression Framework

The Regression Framework has proven its mettle as a formidable tool in the domain

of time series regression prediction. It has showcased its superiority over traditional

and state-of-the-art regression models, excelling in a diverse range of critical met-

rics, including R-squared (R2), Mean Absolute Error (MAE), Max Absolute Error

(MaxAE), and Root Mean Squared Error (RMSE). This distinguished performance

has underscored the Regression Framework’s efficacy in deciphering complex dynam-

ics and forecasting pivotal epidemic trends such as total daily cases, total daily deaths,

and total daily hospitalizations.

Nonetheless, the Framework does have one notable limitation—prolonged train-

ing times. In comparison to traditional models, its computational demands mean

a relatively lengthier training period. While its predictive capabilities are notewor-

thy, the longer training times may prove impractical in scenarios requiring real-time

decision-making or rapid response.

Despite this drawback, the Framework has managed to accomplish an extraordi-

nary feat: the establishment of a unified model architecture that efficiently predicts a

broad spectrum of epidemic trends. This scalability and maintainability are pivotal

achievements, streamlining model management and reducing complexity and resource

requirements.

However, the Regression Framework encounters certain challenges in specific sce-

narios, particularly when tasked with predicting daily cases, daily deaths, and daily
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hospitalizations. It struggles to establish a baseline for predicting these daily trends,

as regional features and other attributes in the dataset fail to capture the intricacies

of these fluctuations. Additionally, the distribution of these daily trends often ex-

hibits similarities across multiple regions, adding an extra layer of complexity to the

prediction task.

To address these limitations and delve deeper into the dynamics of daily trends,

a specialized approach becomes imperative. Thus, our Deep Learning Time Series

Framework was introduced, tailored to handle the nuances of predicting daily cases,

deaths, and hospitalizations. The Regression Framework plays a pivotal role in this

transition, serving as the foundational component. It contributes a vital element:

the initial encoding representation for each date and its associated features. These

encodings, meticulously generated by a deep neural network, serve as valuable input

for our time series models, including Prophet, Long Short-Term Memory networks

(LSTMs), and the potent DeepAREstimator.

This dual-pronged approach allows us to harness the strengths of both regression

and time series modeling, optimizing our prediction capabilities and enhancing the

depth of our insights. It offers a comprehensive solution that addresses the challenges

posed by the diverse nature of epidemic trend data. Consequently, the Regression

Framework’s pivotal role as a foundational element ensures the seamless transition

into a more specialized time series modeling framework, empowering us to unravel

the complex dynamics of daily cases, deaths, and hospitalizations with finesse and

precision.

7.2 Deep Learning Time Series Framework

The evaluation of Time Series Models within our framework has yielded remarkable

insights into their capabilities and trade-offs. The performance of these models was

benchmarked against traditional statistical models, revealing compelling results.
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7.2.1 Outperformance in Prediction Metrics

The Time Series Models, including Prophet and LSTMs, showcased superior perfor-

mance when compared to traditional statistical models. Across crucial evaluation

metrics such as R-squared (R²), Mean Absolute Error (MAE), Max Absolute Error

(MaxAE), and Root Mean Squared Error (RMSE), the Time Series Models con-

sistently outperformed their statistical counterparts. This marked improvement in

prediction accuracy emphasizes the power of these models in capturing the intricate

dynamics of epidemic trends.

7.2.2 Trade-off: Training Time

While the Time Series Models demonstrated excellence in prediction, a notable trade-

off emerged in terms of training time. These models, particularly LSTMs, required

more time to train compared to statistical approaches like ARIMA. The increased

training duration is a noteworthy consideration, especially in scenarios where timely

predictions are imperative. However, it is essential to recognize that the benefit of

enhanced prediction accuracy often outweighs the incremental time investment during

training.

7.2.3 Maintainability and Scalability

In the pursuit of models that not only perform well but are also practical for real-

world applications, the concept of maintainability and scalability takes precedence.

Prophet and LSTMs, although effective, pose challenges in this regard. Each region

necessitates its own model, rendering these approaches less sustainable and main-

tainable. This inherent complexity can be a hindrance, particularly in situations

demanding consistent and efficient model management.

7.2.4 The DeepAREstimator Advantage

To address the challenges of training time, sustainability, and maintainability, our

Time Series Framework offers the promising solution of DeepAREstimator. While it
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may not exhibit the same peak performance as LSTMs, it offers a performance that

is comparable or slightly inferior. This marginal difference in performance is counter-

balanced by a significantly reduced training time. DeepAREstimator also excels in

practicality, as it requires only a single model for all regions, ensuring sustainability

and maintainability. This approach presents an effective compromise, offering good

performance without overwhelming computational demands.

7.2.5 Selecting the Optimal Solution

The choice of the optimal model and framework combination depends on specific pri-

orities. If time is the sole concern, the framework with the Prophet model emerges

as the best option, offering timely predictions with decent performance. However, for

scenarios where prediction performance takes precedence, the framework with LSTMs

proves to be the most suitable choice. It exhibits the best results across multiple met-

rics but entails longer training times. When a balanced solution is sought, combining

good performance with decent training times and sustainable, maintainable models,

the framework with DeepAREstimator stands as the ideal choice. It presents a holistic

approach, effectively addressing multiple aspects of epidemic trend prediction.

In conclusion, our research reaffirms that Time Series Models, embedded within

our framework, significantly outperform traditional statistical models across various

evaluation metrics. The training time required for these models can be a limitation,

but this is often justified by the substantial improvement in prediction accuracy.

While Prophet, LSTMs, and DeepAREstimator each offer unique advantages, the

latter emerges as a well-rounded choice. It presents an effective blend of performance,

training time, sustainability, and maintainability, making it a practical option for

governments and organizations seeking reliable epidemic trend predictions.

7.3 Future Works

Future work in this domain offers a multitude of exciting opportunities to enhance

our current frameworks and extend their application.
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• Firstly, expanding the dataset to encompass not just Canadian provinces but

also those of other countries would open the door to international-level predic-

tions. This cross-border dataset could enable us to develop models capable of

forecasting epidemic trends on a global scale, offering valuable insights into the

dynamics of pandemics across countries and continents.

• Secondly, there’s ample room for experimentation within our feature selection,

feature extraction, and model selection processes. Exploring alternative tech-

niques and methods could potentially yield even more accurate and efficient

frameworks. This avenue of research offers the potential for fine-tuning and

optimizing our existing models to further improve their predictive performance.

• Thirdly, the problem at hand can be transformed into various structural repre-

sentations, including knowledge graphs, paving the way for the application of

sophisticated methods from the domain of graph theory and network analysis.

In this context, techniques such as graph embeddings and community detec-

tion can be harnessed to uncover hidden patterns and relationships within the

epidemic data. The incorporation of semantic web technologies, linked data,

and ontologies could facilitate a more comprehensive understanding of the un-

derlying factors affecting epidemic trends. By adopting a knowledge graph

framework, we can explore the use of graph-based algorithms like network cen-

trality measures to identify critical nodes and key influencers in the context of

pandemic dynamics.

• Additionally, Natural Language Processing (NLP) techniques can be employed

to extract valuable insights from textual data sources, augmenting our ability

to predict and respond to epidemic trends effectively. This expanded approach,

leveraging the power of knowledge graphs and graph-based analytics, promises

to provide a more holistic and nuanced understanding of the intricate dynamics

behind epidemics, ultimately leading to enhanced predictive models and decision

support systems.
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• Lastly, the application of more advanced machine learning techniques, such

as convolutional neural networks (CNNs), has the potential to significantly en-

hance our frameworks. Incorporating comprehensive and exhaustive deep learn-

ing models could pave the way for groundbreaking advancements in predictive

accuracy. These models, which have proven effective in various domains, can be

tailored to capture complex relationships in epidemic data, potentially leading

to more reliable and precise predictions.

7.4 Summary

In conclusion, the future of this research domain holds the promise of both broad-

ening our datasets to a global scale and deepening our methodologies by exploring

alternative techniques and approaches. The application of knowledge graphs and ad-

vanced machine learning models, such as CNNs, can open new horizons for epidemic

trend prediction, ushering in an era of more accurate, efficient, and globally applicable

forecasting models.

Leveraging Natural Language Processing (NLP) techniques, particularly the de-

coder transformer architecture, presents an opportunity for substantial performance

improvement. This is especially noteworthy when considering the availability of ad-

ditional data for training purposes. Transformer techniques, as demonstrated in var-

ious domains, have consistently outperformed traditional models such as LSTMs and

RNNs. The inherent capability of transformers to capture intricate patterns and rela-

tionships in data, coupled with their parallel processing capabilities, positions them as

a promising choice for tasks requiring nuanced understanding and predictive accuracy.

The potential for further enhancement becomes particularly pronounced when larger

and diverse datasets are employed for training these transformer models. Therefore,

the prospect of refining performance through the strategic integration of transformer

architectures, specifically decoder transformers, becomes even more compelling with

the prospect of gathering additional data for training.

Applying this framework to data from diverse domains holds the promise of en-
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hancing its robustness. By extending the analysis to multiple domains, the frame-

work can uncover patterns and insights that transcend specific contexts, providing a

more comprehensive understanding of its applicability. This cross-domain exploration

not only contributes to the framework’s versatility but also offers valuable insights

that can inform adjustments and refinements, making the framework more adaptable

across a broader spectrum of domains. The varied challenges and nuances encoun-

tered across different domains serve as invaluable inputs, guiding the identification of

potential improvements and tweaks to further optimize the framework’s performance

and applicability. Thus, a multi-domain approach not only fortifies the robustness of

the framework but also serves as a catalyst for continuous refinement and evolution.
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APPENDIX A

The Novel Canadian Dataset developed for this thesis is available on GitHub at the

following link:

https://github.com/swastikbagga03/Thesis
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