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ABSTRACT

Establishing a competent team is crucial to the success of a project and is influ-

enced by skill distribution and geographic proximity. A team not only benefits from

the shared knowledge amongst the team members derived from geographic closeness

but also affects the outcome of the project the team is assigned to perform. A team

benefits by sharing resources among each member, collaborating efficiently on a given

task, brainstorming on an idea more effectively and saving time and money for both

the team members and the organization. This thesis uses a neural-based multi-label

classifier after a spatial team formation that uses graph neural networks to transfer in-

formation from a heterogeneous collaboration network among experts. Our approach

to maximizing the effectiveness of team composition considers the dynamic relation-

ship between members’ shared skill sets and geographic proximity to one another.

Specifically, we build a heterogeneous network with the nodes being experts, skills,

and places to represent the intricate connections between the specialized knowledge

of experts and the regions in which they are present. We use graph neural networks

to learn vector representations of skill profiles and geographic proximities using meta

paths. Then, we follow that up with a feedforward neural model to recommend a

ranked list of experts as a team. Following this pipeline allows us to maximize skill

coverage while minimizing geographic dispersion, balancing effective collaboration

and efficient communication among team members. We evaluate the accuracy of

the recommended teams of experts concerning the requisite abilities and geograph-

ical distribution by utilizing classification and information retrieval measures. Our

methodology was influential in building skilled and geographically coherent teams,

as evidenced by experimental assessments of our suggested method on a real-world

dataset of patents and computer science articles compared to baseline methods. We

experiment our methodology on uspt and dblp with range of graph and neural archi-

tectures across different hyperparameters. The outcomes of this study contribute to

the process of team creation by drawing attention to the advantages of using graph

neural networks that consider both a person’s skills and their location.
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CHAPTER 1

Introduction

1.1 What is Team Formation and Why is it im-

portant?

Variety of factors comes into play when one seeks people suitable for a specific task.

Individuals who usually react to such requests are candidates from all different fields.

Sometimes, employers organize a team that has experts who are skilled in all tasks.

However, it is not always possible. The need of an expert in one field is on the rise.

A wide variety of employers are spending more on a diverse collection of candidates.

Keeping task a priority, the longing for a close knit group of professional is higher.

Having a group of professionals where everyone is close to each other gives benefits.

A team formed with this thought in mind is successful and proves resourceful.

The art and science of team formation emerge as crucial threads in the complicated

fabric of organizational dynamics and project management. At its root, team forma-

tion is defined as finding the right group of people that fulfil certain requirements of a

task set by the organization and are fit in achieving success in the given task. But it

is more than just putting together a collection of people; it is a strategic endeavour.

It entails the laborious process of bringing together people from various backgrounds

with talents, experiences, and viewpoints to work cooperatively toward a common

goal. This approach goes beyond the simple act of grouping people based on avail-

ability or rank; it is about curating a team where members complement each other,

ensuring that the team’s collective capabilities not only meet but exceed the sum of

individual contributions. In many ways, effective team formation is critical. To begin
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1. INTRODUCTION

with, it ensures skill complementarity. Any complex project requires diverse skills,

ranging from analytical and technical to creative and interpersonal. A well-organized

team ensures that all these skills are available and can be employed effectively, ensur-

ing task efficiency and precision. Furthermore, diverse teams built through purposeful

formation processes function as innovation incubators. When people with various ex-

periences and expertise get together, they bring various perspectives. When properly

directed, variety may lead to out-of-the-box thinking, fostering innovation, and yield-

ing new ideas that a more homogeneous company might overlook. Productivity rises

dramatically in well-formed teams. With clear roles, complementing strengths, and

mutual respect, team members can operate smoothly, reducing redundancies and

achieving goals in a simplified manner.Furthermore, the sense of belonging and pur-

pose from being part of a cohesive team boosts morale and job satisfaction, increasing

productivity and minimizing turnover. In today’s rapidly changing global landscape,

organizations face increasingly challenging difficulties. These various issues demand

multidisciplinary and holistic solutions. Building strong, cohesive, and capable teams

becomes crucial in such a situation. It is no longer regarded as a luxury but a neces-

sity for ensuring organizational success in a competitive environment. This current

computing era has brought some new problems to team creation. While some firms

claim that this has enabled them to empower their staff to work from anywhere and

anytime, this has ignored the requirement for group members to work together to

achieve a goal. Working with experts in close proximity benefits the firm in terms

of saving resources per team. It allows members to share collective knowledge and

brainstorm ideas more effectively than working virtually. This may have been shown

historically when the ruler used to ask his ministers to operate from their different

offices rather than their quarters throughout the reign of kings and kingdoms. The

urge to establish this in every walk of life where a team is crucial for a project, has

opened up new paths of research in team building, where the need for having a phys-

ically cohesive team consisting of experts who not only have the essential skills but

have also been proven to generate credible and successful work has been identified.

2



1. INTRODUCTION

1.2 How has it been done?

The formation of teams has seen significant change throughout history, with changes

brought about by societal norms, technological advances, and organizational structure

alterations. The challenge of putting up effective teams has existed since the begin-

ning of time. Throughout history, the first teams comprised members of the same

family or tribe. Lineage was used to determine the formation of teams or groups,

and age, gender, and experience were considered for assigning tasks and duties. Craft

guilds were extremely important to the process of putting together teams during the

Middle Ages. Teams of journeymen and apprentices would work under the direction

of master artisans leading the teams. The formation was hierarchical, and the jobs

were determined by a person’s experience level and talent. Apprentices worked under

the direction of masters, intending to work their way through the ranks. A paradigm

shift occurred during the time of the Industrial Revolution. Around the various pieces

of machinery and industrial lines, teams were organized. The activities that needed to

be completed by each worker led to the forming of distinct groups of workers. Super-

visors or managers were in charge of supervising the teams. With the rise of corporate

culture, teams started to be formed around functions or departments, such as sales,

marketing, HR, and finance. Hierarchical structures were prevalent, with teams of-

ten formed top-down based on the company’s needs and strategies. As organizations

recognized the need for cross-functional collaboration, project-based teams became

more common. Such teams were temporary, formed to achieve specific project goals.

Team members were chosen based on the unique skills required for the project, often

pulling from different departments. Advances in communication technology enabled

team formation across geographies. Global teams and outsourcing became popular,

especially in the tech and service sectors. Teams were often formed based on skill sets,

time zones, or client needs. Team formation’s specifics have varied greatly by region,

culture, industry, and individual organizational philosophies. The common thread,

however, is the evolving understanding of the importance of team dynamics and the

quest for optimal productivity and innovation through effective team formation.

3



1. INTRODUCTION

Fig. 1.3.1: Taxonomy of TFP[19]

1.3 How we plan to do it?

The Team Formation Problem or the TFP may be informally defined as finding the

team members, out of a group of skillful experts, that would form a team of max-

imum “effectiveness” with minimum ”expenditure” to undertake a specific task. A

taxonomy[19] on the tfp breaks down the problem into two broader categories: As-

signment based and Community based. The vast nature of the tfp makes it even

more difficult to capture all the varying factors into one algorithm. We take in the

approach of involving physical location of experts in accordance with experts’ skills

to recommend the most probable set of experts for a given task. In this thesis, we

address the spatial team formation problem; that is, given a set of experts, skills and

locations, which includes experts’ geographical location in terms of country, province,

or city, the goal is to find the optimal team whose success is almost surely guaranteed.

Specifically, we aim to figure out whether the combination of skills and locations in

team formation has synergistic effects. Majority of existing team formation methods

address the problem of team formation by using skills as a primary factor [5], [43], [7]

but overlooking geographical location and the corresponding ties it leads to between

4



1. INTRODUCTION

experts within a team. Although remote work over online platforms has facilitated

today’s globalized work environment, geographical proximity remains important for

face-to-face interactions, cultural understanding, time zone differences, and access

to local resources such as availability of certain region-locked services by companies,

availability of cloud servers where the segregation of services is based on physical

location of employees [40], which can impact team dynamics, coordination, and ef-

fectiveness [48]. Organizations can strive to create skill-driven and geographically

cohesive teams by considering both skills and locations in team formation. For exam-

ple, forming team of experts from different time zones, e.g., from gmt and est time

zones, where the business hours/days of one expert are non-working/resting periods

for another expert, heavily discounts the efficiency of communication and accrue more

costs associated with time, effort, and resources.

Despite its importance, including geographical location as a criterion in conjunc-

tion with skill in team formation literature, little work has considered geographical

proximity when recommending experts for a team. Selvarajah et al. [40]is one such

work that considered the geolocation distance between pairs of experts in a weighted

homogeneous graph as communication costs as well as other factors like experts’ pro-

ficiency level followed by a search for an optimum subgraph using a multi-objective

optimization function. Their work, however, falls short for geolocations that are ge-

ographically close yet lawfully separated like cities situated at a country’s or federal

province’s border. Their work overlooked a geolocation’s direct relation to experts and

their complementary skills. Furthemore, subgraph optimization has been proved NP-

hard, hence computationally prohibitive for large-scale expert networks and [40] had

to use heuristics by cultural algorithms, a class of evolutionary algorithms inspired by

social learning in society. Meanwhile, recently a paradigm shift to a machine learning-

based approach has been observed due to technological improvements in computing

systems and methodological advances in graph neural network (gnn) techniques [46],

opening doors to the analysis of massive graph-structured data coming from different

fields. Graph neural network has provided an effective yet efficient way to solve the

graph analytics problem by converting a graph into a low dimensional space while pre-

5



1. INTRODUCTION

serving the graph information and has shown expressive performance for a vast array

of AI-hard problems such as natural language processing [44], knowledge graph [47],

recommender systems [45], and computer vision, among others. Hence, its application

in team formation received attention from a few works, particularly in incorporating

geolocation. Among the first, Rad et al. [34] proposed forming skill-based teams

of experts using a feedforward neural model to map the vector representation of re-

quired skills in the input layer onto a Boolean occurrence vector of experts in the

output layer to recommend members of a team. To learn the vector representation

of skills, Rad et al. formed a heterogenous graph whose nodes were skills, experts,

and geolocations, and applied Dang et al.’s metapath2vec [14] to learn the vector

representations of skills in the context of locations of the teams. Improving upon

Rad et al.’s work, Sagar et al [23] employed deep graph infomax, a graph convolution

network [15] with attention layer as an encoder to generate vector representations of

skill. As opposed to random walk in metapath2vec, deep graph infomax uses mutual

information that relies on contrastive training from the original graph for positive

samples and from the noise-added (corrupted) graph for negative samples. Sagar et

al.’s work yielded more effective vector representations in fewer training epochs ow-

ing to convolutional architecture and contrastive learning procedure. Such gnn-based

works, however, disregard the vector representations for geolocations when training

their feedforward neural model to learn recommending optimum teams. We aim to

take a step forward and build upon existing gnn-based work by leveraging the vector

representations for geolocations directly in the input layer of the feedforward neural

model next to the vector representation of skills. As shown in Figure 1, we form a

heterogeneous collaborative graph (network) whose nodes are experts, skills and lo-

cations connected through edges based on the training instances of teams. We utilize

metapath2vec to embed skills and geolocations into dense low-dimensional embed-

dings using predefined metapaths. A metapath is a random walk taken by a graph

neural network method from a source node to a destination node based on prede-

fined eligible sequences of different node types. Finally, we concatenated and fed the

learnt skills and locations’ embeddings into a Bayesian neural network to predict a

6



1. INTRODUCTION

ranked list of experts whose top-k most probable experts form the optimum team.

We benchmarked our proposed method against state-of-the-art baselines on two large-

scale datasets of US patents (uspt)[usp] and computer science research publications

(dblp)[dbl]. Our results show that:

• When the distribution of teams over geolocations is taken into account with

skills for predicting experts for a team, the resultant teams end up having more

optimal experts than just considering skills alone.

• Random walks with no predefined metapaths on a heterogeneous graph yield

better results compared to the metapath walks.

• Considering geolocations does gives an overall improvement in the reoprted

metrics in most of the experiments performed.

• Granularity of the location also plays a major role in swaying the results in

either direction when the location coverage is decreased to a much more smaller

level such as cities.

• Inclusion of teams as graph nodes does not improve the performance of the

reported metrics and the graph without the team nodes have better reported

results.

• We demonstrate the effect of negative sampling heuristics for neural team for-

mation on a host of information retrieval and classification metrics such as map,

ndcg, as well as precision, recall, and rocauc.

To support the reproducibility of work, we publicly release the codebase and

running settings at https://github.com/fani-lab/OpeNTF/tree/geo.

7



CHAPTER 2

Related Works

The dynamics of team formation have been studied in different approaches and

could be divided into two broad categories: search-based and learning-based meth-

ods. Search-based methods optimize every step via integer programming to find the

optimal team given some constraints. These methods take factors such as time con-

straints, personnel, and communications cost, spatial properties of a candidate, and

personal preferences. Although these factors offer a reliable foundation for forming

a team from scratch, they need to establish the condition where a task requires a

few additional members to complete its assigned duties rather than a whole new

team. In recent years, the team formation problem has gained significant attention

among researchers in computer science or, more specifically, in information retrieval

as researchers and practitioners recognize the crucial role of well-constructed teams

in effectively addressing complex information retrieval challenges. A project’s success

or failure dramatically depends upon the dynamics of a team assigned to perform

the tasks; coherence between team members, skills, interpersonal relationships and

ability to work in a group primarily affect the outcome. Hence, a significant focus has

been given to team formation processes in fields such as academia [42], industry [8]

and healthcare sector [10]. A survey by Julio Ju et al. [19], showcases the growing

importance of team formation among researchers. The authors show the problem’s

variability and complex nature and display the problem’s NP-hard nature. This

means that it is unlikely for any method to produce optimal solutions in a reasonable

amount of time. Instead, the approach usually focuses on developing algorithms that

deliver approximate solutions.

8



2. RELATED WORKS

Fig. 2.0.1: Histogram of estimated number of TFP publications per year, for the past
20 years.[19]

The author further proposed a taxonomy structure of the problem that divides the

team formation problem(tfp) into two constituents: assignment-based and community-

based. The assignment-based team formation is further divided into single teams,

many teams, and kindred teams approaches. At the same time, the community-

based section is split into binary skills, weighted skills and probabilistic team forma-

tion. The research approach for several solutions for the tfp problem falls under one

of these subsections. The growing interest in the team formation domain propels the

researchers to look for newer approaches, apply varying algorithms and techniques to

address the tfp problem and provide a solution that best assesses the problem and

produces the outcome as optimal as possible for the given use case. The research

on the team formation problem could be dated back to 1998 when Zzkarian et al.

[48] first introduced the problem to the masses. Zzkarian et al. [48] defines teams

as “a distinguishable set of two or more people who interact, dynamically, indepen-

dently, and adaptively toward a common and valued goal/objective/mission, who

have each been assigned specific roles or functions to perform, and who have limited

lifespan of membership”. The authors utilize a quality function deployment (qfd)

and the analytical hierarchy process (ahp) approach and formulate the problem as an

9



2. RELATED WORKS

integer programming model. Qfd is a systematic approach to product development

that translates customer requirements into relevant product design characteristics. It

identifies the general requirements a new product must satisfy to ensure customer

preference. In team formation, the qfd methodology is applied to collect and rep-

resent data for the multi-functional team selection model. AHP is a multicriteria

decision-making method that uses hierarchical structures to represent decision prob-

lems and develop alternative priorities. A significant issue regarding utilizing the ahp

approach in the team selection model is the considerable effort needed to complete

pairwise comparisons in extensive hierarchies. The eigenvalue approach employed in

the AHP requires a substantial number of comparisons, specifically (n(n-1))/2, to

determine the priorities of n elements. This can pose computational challenges when

dealing with a significant value of n, making the pairwise comparison process com-

putationally demanding. The setup for the approach also gives great importance to

the decision-maker making perfectly consistent judgments for the comparison process

requires a great deal of subjective knowledge, which in many cases is not achieved,

leaving the problem to have an almost mid-level pairwise comparison. Hence, the

authors do a great job in introducing the tfp and providing an analytical approach to

solving it, leaving the door open for further researchers to address these limitations

and offer different solutions to the problem. [32] states that virtual teams face chal-

lenges related to geographical distance, temporal distance, perceived distance, the

configuration of dispersed teams, and the diversity of workers. Physical factors such

as geographic, temporal, and perceived distance impact virtual teams. These factors

are tightly coupled with social and emotional factors, including trust, motivation, and

conflicts. [11] studies the collaboration rate of experts in the research domain. Some

of the problems of having distributed research projects, which the authors outline,

are that these research projects often have poor outcomes and coordination mecha-

nisms fail to address these problems. Coordination costs and effort required to sustain

strong working relationships are higher in distributed projects. The author points out

that collaborative tie strength is influenced by distance, interdisciplinarity, and prior

experience. Distance and interdisciplinarity reduce tie strength, while prior experi-
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ence increases it. In research projects, distributed project members are likely to use

different tools and technologies with different members of their research project rather

than a common suite of software for the entire project, hence increasing the project’s

overall cost. Virtual organizations involving large-scale cooperative work across dif-

ferent institutions can effectively bring together diverse sources of expertise. Still, the

distribution of knowledge and technology use can present barriers to open exchange

and discourse. These reasons compel the need to understand and research on how

incorporating physical location in different domains is going to help an organization

form an optimal team and increase the success rate of a project’s outcome. The rest

of this literature review breaks down the available research in tfp into two subsections:

search-based and learning-based approaches. This literature review discusses each of

them and the work available for them in detail.

2.0.1 Search-based Methods

Search-based methods form a prominent approach in team formation, leveraging op-

timization techniques to address the challenges of creating effective teams. These

methods involve systematically exploring the space of possible team compositions

to find optimal or near-optimal solutions based on predefined criteria or objectives.

Employing optimization algorithms, search-based methods aim to identify team com-

positions that maximize team performance, enhance diversity, ensure expertise cov-

erage, and minimize conflicts or skill gaps. Search-based methods offer a systematic

and algorithmic approach to team formation, enabling researchers and practitioners

to navigate the vast solution space and identify promising team compositions. These

methods provide a means to tackle the combinatorial nature of team formation prob-

lems, where the number of possible team configurations grows exponentially with

the size of the candidate pool. By applying optimization algorithms, search-based

methods can efficiently explore the solution space, evaluating different combinations

of team members based on various criteria and objectives

The choice of optimization algorithms plays a crucial role in the effectiveness

of search-based methods for team formation. Genetic algorithms, ant colony opti-
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mization, particle swarm optimization, and other metaheuristic techniques have been

widely employed in this context. These algorithms use iterative search processes

that mimic natural evolution, collective behaviour, or different intelligent strategies

to explore the solution space efficiently and converge toward optimal or near-optimal

solutions. Work by [4] proposes a unique way of quantifying collective intelligence(ci).

The authors make this work by combining three different factors into ci. These are the

experts’ knowledge competence, which measures team members’ relation with other

experts, a time-decayed trust measure, which gives more weightage to the experts who

collaborated recently, and a trust propagation technique that deals with the sparsity

of the tfp. The collective information of the above three factors is then subjected

to a genetic algorithm-based optimization model for team formation to maximize

the proposed quantification of collective intelligence. This method, although good

in theory, gives substantial importance to more recent collaborations among experts

for forming a probable team but assumes a vital piece of information, which is the

success or the favourable outcome of the experts from the most recent contribution,

is surely guaranteed which might not always be accurate. The authors themselves

also define the parameters for their ci function and leave no decision on the subject

matter experts that might be using their approach for team formation. In [26], given

some constraints, the author starts with a large group of individuals to make a per-

fect team. The authors state that the problem with these constraints is prevalent

in many fields of work where organizations struggle to find the best-suited subset

of individuals for a particular task. The authors tackle this problem with the in-

troduction of communication costs among experts. They define the communication

cost as an attribute of the edges in a social network or a graph between nodes of

experts. Communication cost is the weight between two nodes(experts), which can

be defined in multiple ways depending on the domain to which the tfp is applied.

For instance, in academia, the communication cost could be defined as the number

of collaborations between two authors. A low-weight edge between nodes implies

that the nodes can communicate or collaborate more quickly than the nodes with

a higher edge weight between them. Defining an appropriate communication cost
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function for a social network, the authors aim to find a team whose cumulative cost

is lower than other probable experts. The lower the communication cost, the better

the quality of the team. The authors propose two algorithms to address this specific

version of tfp for diameter-tf and mst-tf problems. Out of the proposed algorithms to

address the problems above, the authors propose rarestfirst algorithm for diameter-tf

problem and coversteiner and steinertree algorithms for the mst-tf problem. The au-

thors further state that the coversteiner algorithm completely ignores the network’s

underlying graph structure, leading to ignoring the complexities of the graph. To

address this author proposes enhancedsteiner algorithm. The authors test their pro-

posed method on dblp dataset only and lack further strengthening of their work by

not testing on other datasets. The authors do not explain the rationale behind select-

ing the communication cost. However, they do provide two alternative approaches

to calculating the cost via the graphs. This does not justify a team’s cost or how

they calculate the minimum cost required by the section to function optimally. The

authors do not provide any substantial quantitative evidence that the teams chosen

by their algorithms are the most optimal. The paper [6] solves the team formation

problem with a metaheuristic approach simulated annealing. While the authors does

take into account a good number of parameters for their optimization function, the

simulated annealing approach remains ineffective of incorporating a change in the

proposed methodology, leading to a problem of scalability. While these methods

could be computationally extensive, this provides another reason why the authors

did not consider more constraints during their research. The authors takes numerous

assumptions into consideration such as considering interpersonal skills, conflict reso-

lution, effective decision making, etc which are subjective to each project and requires

attentive modifcication based on the project’s requirement. The authors’ proposed

methodology also considers formation of new teams for a project and does not address

the scenarios where the teams are already present but only require few of the expert/s

to complete a specific task. The authors also does not take into account the cohesive

nature of location and skills which leaves an important gap in the formulation of a

solution for this problem. aims to propose a framework for analyzing and selecting
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project managers and team members based on their knowledge and social network.

In [3] proposes a general framework and algorithms for tfp, based on two optimization

goals: balancing the workload among people and minimizing the coordination cost of

each team. The paper also provides theoretical and experimental results that show

the effectiveness of the proposed approach. The authors use a bi-criteria optimization

technique that bounds the coordination cost for each task and minimizes the maxi-

mum load of a person while considering different measures of coordination cost, such

as the Steiner tree, the diameter, and the sum of distances, and different models of

team connectivity, such as implicitly or explicitly connected teams. A suitable allo-

cation cost function is defined that depends on the individual loads of the people and

solves a subproblem of social task assignment for each incoming task. The approach

applied here assumes that the skills and compatibility of people are known and fixed,

which may not be the case in practice. Over time, experts can adapt and learn new

skills, which this method fails to consider. Works of Selvarajah et al [40] addresses

the geographical proximity when recommending experts for a team. The authors

consider the geolocation of experts as a distance between two experts and interpret

it as a parameter for reducing communication costs. We use an example to explain

the flaw not addressed in this paper: Consider a city c situated at a border location

very close to another country or city. An organization in the city c wanting to find

experts, despite having a distance from the cities on the other side of the border,

cannot hire those experts due to restrictions in place because of geographical laws. A

more defined example of this could be a healthcare insurance provider is bound to hire

experts even from far-off places in its own country rather than going for a location

that is close to its in terms of distance but is in another country due to healthcare

laws not allowing the data to be transferred to another country. The paper also does

not address a location’s direct relation to experts and their complementary skills.

The authors of [22] describe the tfp as finding an affordable and collaborative team

in an expert network subject to cost constraints (communication cost and personnel

cost). The communication cost between two experts can be defined according to the

application’s need. The authors state that two types of costs are generally associated
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with team communication and personnel costs. Many recent methods overlook this

condition and only consider either one of the two costs. However, other costs, such as

overhead costs of forming a team that doesn’t belong in the same physical location

and infrastructure set-up costs, are frequently overlooked, which can be sought after

by incorporating location as a constraint. Also, The work only focuses on one aspect

of team formation: forming the team from scratch and not diving deep into the other

aspects, such as what if the team already exists and you only want to substitute one

player. The work by Kargar et al. [21] which targets the problem of team formation

by utilizing two costs as constraints, communication cost and personnel cost, which

the above work sidelines from its objective function. The authors propose four algo-

rithms that provide different trade-offs between solution quality and computational

efficiency. The approximation algorithm provides a performance guarantee with an

approximation ratio of 2, meaning that the solution returned by the algorithm is

guaranteed to be at most twice as large as the optimal solution. However, it may

not always return the best solution in practice. The iterative replace algorithm is

a simple and intuitive heuristic that can quickly find a good solution. Still, it may

get stuck in local optima and not find the global optimal solution. The minimal cost

contribution algorithm and the mcc-rare algorithm are more sophisticated heuris-

tics that consider both personnel and communication costs when selecting experts

to add to the team. They often find better solutions than the iterative replacement

algorithm, but they may require more computational time. Also, depending solely

on the rarest skill could form teams with unbalanced skill distribution. This might

result in incomplete or inefficient project execution due to missing complementary

skills. Another work by Selvarajh et al.[37] proposes a weighted structural clustering

algorithm called wscan to solve the tfp in social networks. It is an enhanced vari-

ant of the Structural Clustering Algorithm for Networks (scan) and is used to detect

clusters, hubs, and outliers in networks. The algorithm starts by finding a pool of

experts with the required skills and then searches for a highly connected (core) expert

among all the experts in the network. The cluster is then expanded from the core to

neighbourhood nodes within a threshold range of communication cost. The goal is to
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identify experts while minimizing communication costs for the project with specific

skills. The paper also introduces the concept of collective expertise, a phenomenon of

a certain level of expertise occurring among a group of individuals possessing a set of

skills necessary to complete a task as a team. The paper acknowledges the limiting

performance of the wscan algorithm compared to other genetic algorithms; however,

the WSCAN run-time was better than the other algorithms. Also, the limited testing

of the proposed algorithm leaves doubt on how the algorithm might perform on vast

real-scale data. Selvarajah et al. [37] also works by generalizes the tfp in palliative

care and argues that the limited work in tfp for palliative care has motivated the

need for research in this field. An agent-based model was proposed to improve the

quality of service in palliative care. The model aimed to find a group of suitable

care providers to satisfy the requirements of patients, considering contact costs and

resource limitations. This model showed a reduction in operational costs and im-

provements in the quality of service. An agent-based architecture was proposed to

facilitate communication and collaboration among patients and care providers in pal-

liative care. Multi-agent systems and Information and Communication Technologies

were used to improve clinical data management for palliative care patients. However,

the evaluation of the proposed model was done on synthetic networks, and it may

not fully capture the complexities and nuances of real-world palliative care systems

and other important factors such as patient preferences, cultural considerations, or

individual care provider expertise. The cultural algorithm is also susceptible to its

sensitivity to parameter settings and the potential for premature convergence, which

are not explicitly addressed in the paper. The most recent work by Selvarajh et al. in

[38], closely follows the work by Lappas et al. [26]. The paper proposes a knowledge-

based evolutionary optimization algorithm to solve the problem of identifying a team

of experts in a social network, considering their past collaboration and communi-

cation cost functions. The authors highlight the importance of past collaboration

among team members, as it expedites project completion by leveraging existing fa-

miliarity and rapport. The paper intends to solve the tfp by introducing the concept

of communication cost functions and proposing a method to optimize them while en-
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suring the coverage of required skills and proposing a knowledge-based evolutionary

optimization algorithm. The algorithm utilizes a cultural framework consisting of a

population and belief space that co-evolve during optimization. The algorithm starts

by producing a predefined number of random teams as the initial population, where

each team is represented by an array structure with cells representing required skills

filled by experts possessing those skills.

2.0.2 Learning-Based Methods

Recently, team formation has been approached by learning-based methods. For in-

stance, Li et al. [29] developed a recommendation system based on collaborative

filtering techniques to match individuals’ skills and preferences. Sapienza et al. [36]

utilized a deep neural autoencoder for team formation and introduced a computa-

tional framework to identify teammates who contribute to the growth of their peers.

However, in scenarios where data is limited, such as in team formation, where only

a few teams have successfully collaborated for a specific set of skills, autoencoder

neural networks are susceptible to overfitting and are inefficient in capturing data

uncertainty. Rad et al. [35] proposed a Variational Bayesian neural architecture to

address these limitations. By incorporating a Variational Bayesian framework, the

model can better handle uncertainty in the data and provide more robust assess-

ments for team formation. However, their model was trained on published scholarly

papers in computer science and lacks observing unsuccessful research (rejected pa-

pers). Works in graph neural networks, gnns [25] [27] [41] and in natural language

processing [31] [33] proves that inclusion of negative sampling does help in improving

the overall metrics but till date not much works have incorporated the use of location

where both the positive and negative samples are considered.

2.0.3 Location Inclusive Methods

Geographic factors are crucial in team dynamics, particularly in distributed or re-

mote work environments. Morrison-Smith et al. [32] examined the challenges of
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dispersed teams and identified communication and coordination as critical factors

for successful collaboration. Similarly, Cummings and Kiesler [11] explored the im-

pact of proximity on forming social ties within teams. They discovered that close

physical proximity fostered stronger relationships and higher levels of cooperation.

These studies emphasize the need for practical tools and strategies to overcome the

barriers imposed by geographical distance. However, despite the importance of lo-

cation in team dynamics, integrating geographic considerations into team formation

processes is still sparsely addressed. This research gap highlights the need to explore

the interplay between skills and locations to create skill-diverse and geographically

cohesive teams. More recent approaches utilize learning-based methods such as neu-

ral networks and graph neural network also addresses the team formation problem

considering different constraints for a given team. Hamidi Rad, R et al. [35] employ

learning-based neural methods to learn relations between experts and skills but do

not incorporate the importance of geographical location in their approach. Dashti

et al. [12]provide a convenient framework with negative sampling in its architecture.

While these methods give substantial results for team formation, they do not consider

location a constraint. Hamidi Rad R. et al. [34] takes a different approach from con-

ventional neural networks and use graph neural network with meta-paths. However,

given its importance, the cohesiveness of skills with location is yet to be answered

and the lack of original work in this domain, it calls for a novel research to be done

in tfp inlcusive of location.
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CHAPTER 3

Problem Definition

In this section, we formally define the geo-location team formation problem. Given

a set of experts with different skills and geographical locations, the problem of spa-

tial team formation aims to optimize the composition of teams by considering the

interplay between skill compatibility and geographic proximity. Formally,

Definition 1 (Team) Let S = {i}, L = {j}, and E = {k} be the set of skills,

geolocations, and experts, respectively. A team of experts e ⊆ E that collectively cover

the skill set s ⊆ S and are geographically located in l ⊆ L is a triple represented by

(s, l, e) along with its success status y ∈ {0, 1}. Further,

T = {(s, l, e)y : y ∈ {0, 1}, s ̸= ∅, l ̸= ∅, e ̸= ∅}

indexes all training instances of teams, both successful and unsuccessful.

Definition 2 (Team Formation) Given a subset of skills s, geolocations l, and all

teams T , the GeoSpatial Team Formation problem aims at identifying an optimal

subset of experts e∗ such that their collaboration in the predicted team (s, l, e∗) is suc-

cessful, i.e., (s, l, e∗)y=1, while avoiding a subset of experts e′ resulting in (s, l, e′)y=0.

More concretely, the Spatial Team Formation problem is to find a mapping function

f with parameters θ from the powerset of skills and geolocations to the powerset of

experts such that

fθ : P(S)× P(L) → P(E), fθ(s, l) = e∗

.
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CHAPTER 4

Methodology

In this chapter, we will explain the methods we used to tackle the problems introduced

in the Problem Definition section. Our main goal is to estimate f for forming a team

of experts that maximizes the overall skill coverage and minimizes the geographic

dispersion among the subset of experts based on the training instances of successful

teams satisfying the same property. We propose to learn f via a Bayesian feedforward

neural network that maps dense vector representations of required subsets of skills s

and geolocations l, obtained from a graph neural network, onto a subset of experts e

who can almost surely successfully accomplish the task in hand. Hence, our pipeline

consists of three stages, (1) starting from creating a heterogenous graph, (2) followed

by training a graph neural network to learn dense vector representations using meta-

paths, and (3) transferring the learnt vectors to a feedforward neural network to learn

f. We formally define each step in the following.

4.0.1 Team Graph Creation

We construct Team Graph G that captures the relationships between experts’ skills

and their geographic locations within the context of teams. Each expert, skill and

location is represented as a node in the graph. At the same time, the edges capture

the connections between a subset of skills s, a subset of experts e and the spatial

proximity between locations l within the team (s, l, e); s ⊆ S, l ⊆ L, e ⊆ E .

Formally, Definition 3.3.

Definition 3 (Teams Graph) Teams Graph is a heterogeneous unweighted undi-

rected graph G(V,E) where V is the set of its nodes including nodes of types skills S,
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Fig. 4.0.1: Proposed Workflow Architecture

geolocations L, experts E, and teams T , i.e., V = S ∪ L ∪ E ∪ T , and E is the edge

set. Given a team (s, l, e) ∈ T , edges exist to connect the team’s node to all the skills

i ∈ s, to all geolocations j ∈ l, and to all experts k ∈ e.

To create Team Graph G, we map each team (s, l, e) onto an induced subgraph in

G. As shown in Figure *, if an expert e1 has worked on a team t1 with skills s1

and s2 and belongs from a location l1, an edge here would be represented as e1-¿s1,

e1-¿s2 and e1-¿l1. This graph models the interdependencies between skills, locations,

and experts within the context of teams, forming the basis for recommending new

teams. Depending on the underlying benchmark dataset, the skill subset might not

be predefined by nature and should be inferred based on what makes intuitive sense.

For instance, in dblp [dbl] collection of computer science research papers where each

paper is considered as a team whose members e are the paper’s authors, the skill
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subset s have been inferred by the keywords in the paper’s title [26], [28], [30], [20] or

by the paper’s field of study (fos). Furthermore, the skill subset s of the paper (i.e., all

the keywords or fields of study in the paper) would be considered for all the paper’s

authors even though the authors of the paper may be skillful in a few, not all, of

the skills in subset s. Also, the team’s location subset l can be either the geographic

locations of the authors’ affiliations (e.g., universities), or the venue(s) where the

paper has been submitted [35]. Another popular dataset is uspt[usp], which includes

information about patents issued by the USPTO. To form the Teams Graph G based

on the uspt dataset, each patent is considered as a team whose expert members e

are the inventors, the patent’s classes and subclasses can be the team’s required skill

subset s, and the geolocations of the inventors’ living places can be the team’s location

subset l.

4.0.2 Vector Representation Learning

Once the Teams Graph G has been created, we utilize a graph neural network (gnn)

to encode skills, locations, and experts’ relationships and their high-order topological

structures in the discrete space of the graph into low-dimensional (dense) vectors in

a continuous vector space. A graph neural network can be formally defined at an

abstract level as: Definition 3.4.

Definition 4 (Graph Neural Network) Given a Teams Graph G, a graph neural

network method is a mapping function gφ parameterized by φ that learns the nodes’

dense low-rank d-dimensional vector representations vu ∈ Rd;∀u ∈ V with respect to

a graph G for Spatial Team Formation task.

Graph neural network is to address the challenges of traditional graph processing

methods, esp., for large-scale graphs, including: (1) most of them are combinatorial

computation steps, resulting in high computational complexity. For example, almost

all graph-based team formation methods rely on the shortest or average path length

between two nodes to represent their distance, which involves enumerating many

possible paths between two nodes, (2) they defy parallelizability as the nodes in a
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graph are coupled to each other explicitly by edges and distributing nodes in different

shards or servers causes demandingly high communication cost among servers, and

holds back speed-up ratio, (3) Inapplicability of machine learning methods. Recently,

machine learning methods, especially deep learning, are very powerful in many areas.

These methods provide standard, general and effective solutions to various problems.

For traditionally represented network data, however, most off-the-shelf machine learn-

ing methods may not be applicable. Those methods usually assume that independent

vectors can represent data samples in a vector space. In contrast, the samples in

network data The gnns effectively capture the complex dependencies and interactions

among experts’ skills and locations. GNN embeddings enable extracting valuable

features that capture skill-based profiles and geographic characteristics by propagat-

ing information through the graph structure. To construct our graph neural network

pipeline, we utilize two graph layers [24], a dropout layer followed by a relu activation

function. We concatenate the input nodes into a single node x with edges distin-

guishing between each node type. These nodes and edge indices are then fed into the

graph layers to facilitate the training of node embeddings. The input and output to

the graph can be represented in a more concrete mathematical notion as follows: -

Input: g(x = (e, s, l), edges = (expert → skill, expert → loc))

Output: g′(x′ = (e′, s′, l′))

Where x is a collection of nodes from each node type expert, skill, and location respec-

tively, g′ denotes the trained output of embeddings consisting of x′. The collection

of x′ contains trained embeddings of expert, skill, and location uniquely identified by

their respective node ids.

We utilize our gnn module as a reproducible graph network and structure it in a

way where an input of a graph with node features and edges between those nodes can

be fed to obtain consecutive node embeddings. These embeddings can be utilized in

several downstream tasks, such as node classification and link prediction. We extract

the trained embeddings based upon their indices and restructure it to represent teams
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Fig. 4.0.2: Depiction of metapaths. (i) represents the original graph. (ii - iv) repre-
sents our choice of three metapaths and how graphs walk from one node to another
based on those metapaths.

where each team is a collection of skills vector, expert vector and location vector

extracted from the trained embeddings.

4.0.3 Integration of Metapaths

To incorporate a deeper connection of relationships in which a graph takes a prede-

fined path between experts, skills and locations, we explore using metapaths within

the graph representation. Metapaths [14] represent domain-specific paths connect-

ing experts based on shared attributes or characteristics. By integrating metapaths,

we aim to capture relations among nodes that a random walk-based approach can-

not, enabling a more comprehensive understanding of team dynamics and potential

synergies. Integrating metapaths can enhance the understanding of expertise inter-

connections beyond direct skill-based or geographic relationships in team formation

using skills and locations. We incorporate three metapaths, such as a = [”experts”,

”skills”, ”experts”], b = [”experts”, ”skills”, ”experts”, ”skills”, ”experts”], c = [”ex-

perts”, ”skills”, ”loc”, ”skills”, ”experts”]. The selection of metapaths is made to

ensure maximum connectivity. For metapath a, the traversal from experts-¿skills-

¿experts ensures that a common skill is shared between two experts and that an

expert node can be reached by using another expert’s skills. For metapath b, we

extend this relationship by adding additional skill and expert. We do this to increase

the connectivity by traversing from one expert to another with skill in between. Meta-
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path c incorporates location when traversed from expert to skill and then further to

another or set of skills of an expert. This enables us to include location in graph

traversal. We use an example to illustrate the integration of metapaths: Let’s say we

have a metapath that represents the relationship ”expert e1 from a location l1 has

worked with expert e2 from location l2 in team x. The subset of the skills between

these two experts is represented as s. The metapath in this scenario would be like

e1− > s− > e2. This would enable someone outside of team x to connect from

expert e1 to e2 by using our defined metapath ” This metapath connects two ex-

perts based on their shared project experience. By incorporating this metapath into

the graph representation, we can capture experts’ collective history and teamwork

abilities. By including metapaths in the team formation process, we enhance the

richness and depth of the analysis, enabling a more holistic evaluation of team com-

positions and the potential for effective collaboration and knowledge exchange[14].

Using metapaths, we can identify experts who have collaborated on similar projects

or possess complementary project-related expertise. This information can be valuable

in team formation as it helps identify experts with a proven track record of successful

collaboration, improving the likelihood of effective teamwork and project outcomes.

Integrating metapaths in the team formation allows us to consider experts’ individ-

ual skills, geographic locations, collaborative history, and project-specific connections.

By incorporating these higher-order relationships, we can better understand the po-

tential interactions and synergies within teams. We strategically employ a random

sampling technique to generate walks originating from each source node. This ap-

proach not only provides us with diverse pathways that offer a holistic understanding

of the network’s topology but also ensures that we capture the latent relationships and

interactions inherent within the network. By initiating these walks from each source

node, we guarantee comprehensive coverage of the entire graph structure, maximiz-

ing the likelihood of uncovering crucial patterns and connections. Furthermore, this

random sampling method offers an unbiased exploration, mitigating potential risks

of overfitting and enabling more generalized representations that can be pivotal for

downstream applications.

25



4. METHODOLOGY

4.0.4 Spatial Team Formation

Definition 5 (Spatial Team Formation) Given subsets of skills s and geoloca-

tions l and all previous teams T as the training set, Spatial Team Formation esti-

mates fθ(s, l) using a multi-layer neural network that learns, from T , to map the

dense vector representations of subset of skills s, vs, and of subset of geolocation l, vl,

obtained from the graph neural network gφ, to the occurrence vector representation of

subset of experts e∗, ve∗ ∈ R|E|, by maximizing the posterior (MAP) probability of θ

in fθ over T , that is, argmax
θ

p(θ|T ).

We then use the learned vector representations (embeddings) for skills and location

and feed this representation into a Bayesian neural network. Instead of learning

a single parameter for each edge between nodes, Bayesian neural networks learn a

distribution of parameters during the training process. This distribution includes a

mean and a standard deviation for each edge. During inference, for each instance

in the train/validation/test set, a set of parameters is sampled based on the learned

distribution. Bayesian neural networks learn parameter distributions and multiple

sample sets of parameters during inference and derive probabilities for each expert

based on these samples. We utilize a variational neural network with a single dense

variational hidden layer of size d, but it can be extended to multiple hidden layers

without losing generality. This neural network employs a mapping function f(s;θ) to

predict a team of experts e ⊆ E for a given skill subset s ⊆ S or a subset combining

skill s ⊆ S and location l ⊆ L. The input layer vs(s) and the output layer ve(e) are

integrated into the network architecture.

h = π1(θ1vs(s) + b1)

ve(e) = π2(θ2h+ b2)

θ = θ1 ∪ θ2 ∪ b1 ∪ b2

where, π. is a nonlinear activation function, θ ∼ N (µ, σ2) whose means and
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variances are estimated by minimizing variational free energy, vs(s) is the vector

representation of the input skill subset s, or a combination of vector representation of

skill s and vector representation of location l, and ve(e) is the vector representation

of output expert subset e given a team (s, e) ∈ T .
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CHAPTER 5

Experiments and Results

In this chapter, we lay out the details of our experiments and expound on how we

examined our proposed methods for the team formation problem. More concretely,

we want to address the following research questions:

RQ1: Does considering the geographic location of experts on top of skills help

with better team formation?

RQ2: Does heterogeneous graph modeling of teams with meta path-based vector

representation for skills and locations improve performance compared to homogeneous

graph modeling with random walk-based?

RQ3: Does increasing the location’s granularity help increase the model perfor-

mance?

RQ4: How does negative sampling affect the inclusion of location in the model’s

performance.

RQ5: Does the inlcusion of teams as nodes help improve the performance of the

model or does it not add any value to the knolwedge learned by graphs.

5.0.1 Setup

Dataset We have used the US patents and trademarks dataset (uspt) for experi-

mentation. This dataset contains the granted patents, classifications of patents and

inventors associated with each patent, and their living location. We refer a team

for each patent, including inventors as expert members, a collection of skills per

team spread across each team expert as the required subset of skills, and locations

as the experts’ living locations. The locations of the inventors are divided into city,
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5. EXPERIMENTS AND RESULTS

Fig. 5.0.1: Data skewness in location
w.r.t # of experts

Fig. 5.0.2: Solved data skewness with
the addition of synthetic data.

Fig. 5.0.3: Data skewness in a location
with increased granularity to City

Fig. 5.0.4: Fixed data skewness with
synthetic addition of data.

province, and country. From Figure 3, the distribution of locations within the dataset

is skewed, with most inventors from US and Japan. To address this, we randomly

sample country locations and city locations and assign it to random individuals to

make the locations evenly distributed amongst inventors, as shown in graphs Figure

5.0.1, 5.0.2, 5.0.3, and 5.0.4. The skewness of locations in this dataset stems from the

fact that in an ideal scenario, any individual could only belong to one location at a

given time but possess multiple skills as part of his/her daily job.

Like Rad et al. [35] and following Dashti et al.[13] we filter out members who

participated in less than 75 teams and teams with less than 3 members for dblp,
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Fig. 5.0.5: Distribution of teams over candidates and skills in U.S. patents (uspt).

Fig. 5.0.6: Distribution of teams over candidates and skills in computer science pub-
lications (dblp).

uspt. In these datasets, we can observe long tails in the distributions of teams over

experts. As shown in the left side of Figures 5.0.5 and 5.0.6 after filtering, many

experts (researchers in dblp, inventors in uspt) have participated in very few teams

(papers in dblp, inventions in uspt).

We utilize a neighbor sampler [17] that enables us for mini-batch training of GNNs

on large-scale graphs where full-batch training is not feasible. Given a graph l layer

and a specific mini-batch of nodes node idx for which we want to compute embed-

dings, this module iteratively samples neighbors and constructs bipartite graphs that

simulate the actual computation flow of a GNN. With this, we control how many
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neighbors we want to sample for each node for each layer. We define our batch sizes

as size (x, 256) where x denotes the number of nodes given as an input to a graph

layer and the output is of dimensions (x, 128). We experiment with different hy-

perparameters for generating node embeddings and develop the optimal choice for

learning rate as 0.01 and a dropout of 0.4. The trained embeddings are then re-

constructed into a previously defined matrix structure of teams X dimensions, where

each row represents a team having skills, location, and expert matrices belonging to

the same team. We follow the closed-world assumption where no currently known

successful team for the required skills is assumed to be unsuccessful. We utilize three

negative samplings inspired by the optimization function of Mikolov et al.[31] such

as Uniform Negative Sampling, Unigram negative sampling, and smoothed unigram

negative sampling. Bayesian neural networks employ a different approach to learning

parameters than feedforward neural networks. The average probabilities are then

utilized for evaluation purposes. For our neural model, we use a learning rate of

0.1, a batch size of 4096, and train the model for 20 epochs for each of the five

folds. We conduct our experimentation in the following combinations: negative sam-

pling: {uniform, unigram b}, model architecture: {feedforward neural network(fnn),

bayesian neural network(bnn)}, graph neural network: {metpaths, random-walk}

and display our results from table 5.0.4, 5.0.5, 5.0.6, 5.0.7, 5.0.8, 5.0.9, 5.0.11, 5.0.12,

5.0.13 and 5.0.14.

5.0.2 Evaluation Metrics

To illustrate the effectiveness of graph neural models in predictions, we set aside 15%

of teams from our datasets as a test set, conducting 5-fold cross-validation on the

remaining teams for both training and validation. This leads to a distinct model for

every fold. For any given team (s, e, l) in the test set, we evaluate the ranked list

of experts e′, as projected by the model from each fold, against the known subset of

experts e. We then present the mean performance of models across all folds using

metrics like normalized discounted cumulative gain (ndcg), mean average precision

(map) at top-{2,5,10}, precision (pr), recall (rec), and area under the receiver op-
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Table 5.0.1: Stats of uspt
dataset

Utility Patents Stat Value

#Patents (teams) 152,317

#Unique Inventors (members) 12,914

#Unique Subgroups (skills) 67,315

Avg #Inventors per Patent 3.78

Avg #Subgroup per Patent 9.97

Avg #Patent per Inventor 6.95

Avg #Subgroup per Inventor 102.52

#Patent w/ Single Inventor 0

#Patent w/ Single Subgroup 8110

#Unique Inventor’s Locations 261*

Avg Inventors’ Locations per Patent 2.50

Table 5.0.2: Stats of dblp dataset

Dblp v12 Value

#Publications (teams) 99,375

#Unique Authors (experts) 14,214

#Unique Field of Study (FOS) (skills) 29,661

Avg #Author per Publication 3.29

Avg #FOS per Publication 9.71

Avg #Publication per Author 23.02

Avg #FOS per Author 96.72

#Publication w/ Single Author 0

#Publication w/ Single FOS 56

#Unique Inventor’s Venues 6393

*The Number of Unique Inventor Locations is 261, substantially more significant than
the total number of countries worldwide. One Possible explanation of this could be
because of the abbreviations used by USPT that might refer to different codes for the
same countries or break down countries into different zones.
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Table 5.0.3: # Graph Nodes in dataset: uspt and dblp

# of graph nodes USPT- with country USPT- with city DBLP with venues

Experts 13,631 12,914 29,661

Skills 69,679 67,315 14,214

Location 70 9,422 6393

erating characteristic (rocauc) utilizing tools like pytrec eval1 and scikit-learn2. To

discern the efficiency benefits of negative sampling during the neural models’ training

phase, while still retaining inference accuracy, we subjected the baseline models to

an escalating epoch count from {1,...,20}, assessing them on the test set after each

epoch.

Regarding the influence of the streaming training approach and the integration

of temporal data into input embeddings for future team predictions, we reserved the

latest year of each dataset for testing. Ensuring the robustness of our method, we

applied 5-fold cross-validation annually on teams for training and validation. For a

specific team (s, e, l)T+1 in the test, the model’s expert predictions e′ for each fold

were juxtaposed with the actual expert subset e, with the cumulative performance of

models across folds being evaluated using the previously mentioned metrics.

5.0.3 Results

We demonstrate our results on uspt-country, uspt-country+city and dblp dataset. We

evaluate our proposed pipeline with baselines from [35] and [13] with models being

used are a combination of bayesian or feedforward neural network with uniform and

unigram b negative sampling. We have used two variants of graph neural models such

as metapaths and random walks that includes the use of graph networks.

In response to RQ1, whether considering the geographic location of experts on

top of skills helps with better team formation, it is observed that the inclusion of

location does leave a positive effect on the metrics but we also observe cases where

1https://github.com/cvangysel/pytrec eval
2https://scikit-learn.org
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Table 5.0.4: Results of Training of bnn model with metapaths and random walks
using gnn on USPT skewed dataset with locations as countries with uniform negative
sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta - uni[35] 0.0050 0.0045 0.0038 0.0023 0.0048 0.0083 0.0051 0.0053 0.0067 0.0018 0.0028 0.0035 0.5657

bnn gnn meta - uni b[35] 0.0092 0.0079 0.0065 0.0043 0.0090 0.0145 0.0092 0.0095 0.0117 0.0032 0.0048 0.0058 0.7462

bnn 0.0105 0.0089 0.0073 0.0048 0.0100 0.0160 0.0106 0.0108 0.0132 0.0038 0.0055 0.0067 0.7427

bnn gnn loc meta 0.0055 0.0043 0.0038 0.0024 0.0047 0.0081 0.0057 0.0054 0.0068 0.0020 0.0028 0.0035 0.5715

bnn gnn meta 0.0082 0.0074 0.0060 0.0040 0.0086 0.0135 0.0082 0.0089 0.0110 0.0031 0.0045 0.0055 0.7350

bnn gnn loc 0.0071 0.0068 0.0059 0.0030 0.0075 0.0127 0.0072 0.0079 0.0100 0.0025 0.0039 0.0050 0.6287

bnn gnn 0.0107 0.0096 0.0076 0.0053 0.0111 0.0170 0.0109 0.0116 0.0141 0.0041 0.0059 0.0071 0.7595

Table 5.0.5: Results of Training of BNN model with metapaths and random walks
using GNN on the synthetically fixed USPT dataset with locations as countries on
synthetically fixed dataset to remove skewness with unigram b negative sampling

P@2 P@5 P@10 Recall@2 Recall@5 Recall@10 NDCG@2 NDCG@5 NDCG@10 MAP@2 MAP@5 MAP@10 AUCROC

bnn 0.0105 0.0089 0.0073 0.0048 0.0100 0.0160 0.0106 0.0108 0.0132 0.0038 0.0055 0.0067 0.7427

bnn gnn loc meta 0.0105 0.0090 0.0072 0.0050 0.0104 0.0166 0.0105 0.0109 0.0134 0.0038 0.0055 0.0066 0.7694

bnn gnn meta 0.0047 0.0042 0.0036 0.0023 0.0050 0.0085 0.0047 0.0050 0.0066 0.0017 0.0025 0.0031 0.6840

bnn gnn loc 0.0129 0.0106 0.0081 0.0062 0.0119 0.0177 0.0132 0.0132 0.0155 0.0050 0.0070 0.0082 0.7924

bnn gnn 0.0132 0.0106 0.0083 0.0066 0.0121 0.0183 0.0140 0.0137 0.0163 0.0056 0.0074 0.0086 0.7948

just by having a homogeneous graph with only skills as nodes is a better performer

than a heterogeneous graph of skills and location as nodes. We observe that the graph

embeddings, regardless of the case of having location as nodes in the graph, perform

better than the vectors learned through sparse matrices. The results of the column

bnn in table 3. consisting of only skills denotes the use of sparse vector representations

and is shown to perform the worst of all the implemented baselines and our state-

of-the-art methods. The graph embedding does improve the recommendation by an

average of 5% when compared with just the sparse representations. The difference

Table 5.0.6: Results of Training of fnn model with metapaths and random walks using
gnn on the USPT dataset with locations as countrieson skewed and synthetically fixed
dataset with uniform negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

fnn gnn loc meta 0.0013 0.0014 0.0015 0.0006 0.0017 0.0034 0.0012 0.0016 0.0024 0.0005 0.0008 0.0011 0.5826

fnn gnn meta 0.0013 0.0014 0.0014 0.0007 0.0017 0.0034 0.0013 0.0016 0.0024 0.0005 0.0008 0.0011 0.6744

fnn gnn loc 0.0015 0.0015 0.0014 0.0007 0.0018 0.0032 0.0015 0.0017 0.0024 0.0006 0.0009 0.0012 0.5365
Skewed - Uniform

fnn gnn 0.0019 0.0018 0.0017 0.0009 0.0021 0.0040 0.0019 0.0022 0.0030 0.0007 0.0011 0.0015 0.5536

fnn gnn loc meta 0.0018 0.0018 0.0018 0.0009 0.0022 0.0043 0.0019 0.0022 0.0031 0.0007 0.0011 0.0014 0.6852

fnn gnn meta 0.0010 0.0011 0.0011 0.0005 0.0015 0.0029 0.0010 0.0013 0.0020 0.0004 0.0007 0.0009 0.6467

fnn gnn loc 0.0114 0.0109 0.0084 0.0052 0.0125 0.0190 0.0117 0.0131 0.0156 0.0044 0.0067 0.0079 0.7967
Synthetically Fixed - Uniform

fnn gnn 0.0111 0.0098 0.0078 0.0055 0.0114 0.0173 0.0113 0.0120 0.0145 0.0043 0.0061 0.0073 0.7799
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Table 5.0.7: Results of Training of bnn model with metapaths and random walks using
gnn on the USPT dataset with locations as countrieson skewed and synthetically fixed
dataset with unigram b negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta 0.0102 0.0086 0.0070 0.0048 0.0098 0.0158 0.0102 0.0104 0.0128 0.0036 0.0052 0.0063 0.7682

bnn gnn meta 0.0066 0.0057 0.0047 0.0032 0.0066 0.0107 0.0066 0.0069 0.0086 0.0024 0.0035 0.0043 0.7148

bnn gnn loc 0.0118 0.0105 0.0083 0.0057 0.0119 0.0188 0.0120 0.0126 0.0154 0.0044 0.0065 0.0076 0.7956
Skewed - Unigram b

bnn gnn 0.0123 0.0106 0.0084 0.0060 0.0122 0.0189 0.0123 0.0129 0.0156 0.0045 0.0066 0.0078 0.7962

bnn gnn loc meta 0.0102 0.0086 0.0070 0.0048 0.0098 0.0158 0.0102 0.0104 0.0128 0.0036 0.0052 0.0063 0.7682

bnn gnn meta 0.0098 0.0084 0.0068 0.0046 0.0097 0.0153 0.0099 0.0102 0.0126 0.0036 0.0052 0.0062 0.7543

bnn gnn loc 0.0120 0.0105 0.0083 0.0057 0.0119 0.0187 0.0121 0.0126 0.0154 0.0044 0.0064 0.0076 0.7957
Synthetically Fixed - Unigram b

bnn gnn 0.0123 0.0107 0.0084 0.0059 0.0124 0.0189 0.0125 0.0131 0.0157 0.0046 0.0067 0.0079 0.7975

Table 5.0.8: Results of Training of fnn model with metapaths and random walks using
gnn on the USPT dataset with locations as countries on skewed and synthetically fixed
dataset with unigram b negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

fnn gnn loc meta 0.0015 0.0016 0.0015 0.0007 0.0018 0.0035 0.0015 0.0018 0.0025 0.0006 0.0009 0.0012 0.5776

fnn gnn meta 0.0014 0.0015 0.0015 0.0007 0.0018 0.0037 0.0014 0.0018 0.0026 0.0006 0.0009 0.0012 0.6742

fnn gnn loc 0.0018 0.0016 0.0014 0.0008 0.0019 0.0034 0.0018 0.0019 0.0026 0.0007 0.0010 0.0013 0.5347
Skewed - Unigram b

fnn gnn 0.0016 0.0016 0.0015 0.0008 0.0020 0.0036 0.0016 0.0019 0.0027 0.0006 0.0010 0.0013 0.5581

fnn gnn loc meta 0.0018 0.0018 0.0018 0.0009 0.0023 0.0044 0.0018 0.0021 0.0032 0.0007 0.0011 0.0014 0.6867

fnn gnn meta 0.0016 0.0017 0.0017 0.0008 0.0021 0.0041 0.0016 0.0020 0.0029 0.0006 0.0010 0.0013 0.6791

fnn gnn loc 0.0121 0.0109 0.0083 0.0059 0.0126 0.0190 0.0123 0.0132 0.0158 0.0046 0.0068 0.0079 0.7972
Synthetically Fixed - Unigram b

fnn gnn 0.0121 0.0107 0.0083 0.0059 0.0124 0.0183 0.0122 0.0129 0.0153 0.0045 0.0066 0.0078 0.7927

Table 5.0.9: Results of Training of bnn model with metapaths and random walks
using gnn on the USPT dataset with locations as countries+cities on the skewed and
synthetically fixed dataset with uniform negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta 0.0018 0.0017 0.0017 0.0009 0.0020 0.0039 0.0018 0.0020 0.0029 0.0007 0.0010 0.0014 0.5778

bnn gnn meta 0.0095 0.0083 0.0068 0.0045 0.0091 0.0147 0.0098 0.0101 0.0124 0.0036 0.0052 0.0063 0.7458

bnn gnn loc 0.0070 0.0066 0.0058 0.0030 0.0070 0.0123 0.0072 0.0077 0.0098 0.0025 0.0038 0.0049 0.6453
Skewed - Uniform

bnn gnn 0.0131 0.0112 0.0089 0.0063 0.0124 0.0190 0.0135 0.0138 0.0165 0.0051 0.0073 0.0087 0.7981

bnn gnn loc meta 0.0020 0.0019 0.0018 0.0010 0.0023 0.0043 0.0020 0.0023 0.0032 0.0008 0.0012 0.0016 0.5733

bnn gnn meta 0.0061 0.0051 0.0043 0.0032 0.0062 0.0100 0.0063 0.0065 0.0082 0.0026 0.0034 0.0041 0.6929

bnn gnn loc 0.0108 0.0092 0.0075 0.0051 0.0102 0.0161 0.0111 0.0114 0.0138 0.0042 0.0060 0.0072 0.7547
Synthetically Fixed - Uniform

bnn gnn 0.0107 0.0087 0.0071 0.0052 0.0097 0.0155 0.0108 0.0108 0.0133 0.0042 0.0057 0.0069 0.7329

Table 5.0.10: Results of Training of fnn model with metapaths and random walks
using gnn on the USPT dataset with locations as countries+cities on the skewed and
synthetically fixed dataset with uniform negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

fnn gnn loc meta 0.0008 0.0010 0.0010 0.0004 0.0012 0.0023 0.0008 0.0011 0.0016 0.0003 0.0006 0.0008 0.5593

fnn gnn meta 0.0019 0.0020 0.0020 0.0009 0.0024 0.0047 0.0018 0.0023 0.0034 0.0007 0.0011 0.0015 0.6783

fnn gnn loc 0.0024 0.0022 0.0020 0.0011 0.0025 0.0045 0.0024 0.0026 0.0034 0.0009 0.0014 0.0018 0.5386
Skewed - Uniform

fnn gnn 0.0043 0.0038 0.0033 0.0018 0.0040 0.0069 0.0044 0.0044 0.0056 0.0014 0.0023 0.0029 0.5915

fnn gnn loc meta 0.0008 0.0010 0.0010 0.0004 0.0012 0.0025 0.0008 0.0011 0.0017 0.0003 0.0006 0.0008 0.5562

fnn gnn meta 0.0047 0.0040 0.0035 0.0021 0.0044 0.0076 0.0048 0.0048 0.0062 0.0017 0.0026 0.0033 0.6132

fnn gnn loc 0.0087 0.0069 0.0058 0.0041 0.0078 0.0127 0.0089 0.0087 0.0107 0.0033 0.0047 0.0057 0.6829
Synthetically Fixed - Uniform

fnn gnn 0.0018 0.0018 0.0018 0.0009 0.0022 0.0043 0.0018 0.0021 0.0031 0.0007 0.0011 0.0014 0.6765
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Table 5.0.11: Results of Training of bnn model with metapaths and random walks
using gnn on the USPT dataset with locations as countries+cities on the skewed and
synthetically fixed dataset with unigram b negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta 0.0018 0.0017 0.0016 0.0009 0.0021 0.0037 0.0018 0.0020 0.0028 0.0007 0.0011 0.0014 0.5697

bnn gnn meta 0.0058 0.0049 0.0042 0.0031 0.0060 0.0098 0.0059 0.0062 0.0080 0.0024 0.0033 0.0039 0.6910

bnn gnn loc 0.0083 0.0070 0.0059 0.0036 0.0074 0.0125 0.0083 0.0083 0.0103 0.0029 0.0043 0.0054 0.6483
Skewed - Unigram b

bnn gnn 0.0124 0.0108 0.0087 0.0061 0.0121 0.0187 0.0129 0.0135 0.0162 0.0051 0.0071 0.0085 0.7975

bnn gnn loc meta 0.0018 0.0016 0.0015 0.0009 0.0020 0.0037 0.0018 0.0020 0.0028 0.0007 0.0011 0.0014 0.5723

bnn gnn meta 0.0098 0.0083 0.0068 0.0045 0.0091 0.0146 0.0100 0.0102 0.0124 0.0037 0.0053 0.0065 0.7478

bnn gnn loc 0.0124 0.0107 0.0085 0.0059 0.0116 0.0182 0.0127 0.0131 0.0157 0.0049 0.0069 0.0083 0.7944
Synthetically Fixed - Unigram b

bnn gnn 0.0124 0.0104 0.0083 0.0058 0.0115 0.0177 0.0127 0.0128 0.0154 0.0048 0.0067 0.0081 0.7825

Table 5.0.12: Results of Training of fnn model with metapaths and random walks
using gnn on the USPT dataset with locations as countries+cities on the skewed and
synthetically fixed dataset with unigram b negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

fnn gnn loc meta 0.0010 0.0011 0.0011 0.0005 0.0013 0.0026 0.0010 0.0012 0.0018 0.0004 0.0007 0.0009 0.5614

fnn gnn meta 0.0012 0.0013 0.0013 0.0006 0.0016 0.0032 0.0012 0.0015 0.0023 0.0005 0.0008 0.0010 0.6590

fnn gnn loc 0.0025 0.0022 0.0019 0.0012 0.0026 0.0044 0.0026 0.0027 0.0035 0.0010 0.0015 0.0019 0.5392
Skewed - Unigram b

fnn gnn 0.0037 0.0034 0.0031 0.0016 0.0035 0.0064 0.0037 0.0039 0.0051 0.0013 0.0020 0.0027 0.5935

fnn gnn loc meta 0.0010 0.0011 0.0011 0.0005 0.0014 0.0027 0.0010 0.0013 0.0019 0.0004 0.0007 0.0009 0.5577

fnn gnn meta 0.0050 0.0043 0.0038 0.0024 0.0049 0.0084 0.0051 0.0052 0.0067 0.0019 0.0028 0.0036 0.6198

fnn gnn loc 0.0021 0.0021 0.0021 0.0011 0.0026 0.0050 0.0021 0.0025 0.0036 0.0008 0.0013 0.0017 0.6818
Synthetically Fixed - Unigram b

fnn gnn 0.0079 0.0064 0.0053 0.0038 0.0073 0.0120 0.0083 0.0081 0.0101 0.0032 0.0044 0.0053 0.6794

Table 5.0.13: Results of Training of bnn and fnn model with metapaths and random
walks using gnn on the DBLP dataset with locations as venues with uniform negative
sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta 0.0028 0.0024 0.0021 0.0016 0.0035 0.0061 0.0028 0.0031 0.0044 0.0012 0.0018 0.0022 0.6867

bnn gnn meta 0.0039 0.0036 0.0032 0.0022 0.0052 0.0093 0.0039 0.0047 0.0066 0.0017 0.0025 0.0031 0.7233

bnn gnn loc 0.0054 0.0046 0.0041 0.0031 0.0067 0.0120 0.0054 0.0061 0.0086 0.0023 0.0033 0.0041 0.7606

bnn gnn 0.0048 0.0050 0.0043 0.0028 0.0072 0.0125 0.0047 0.0062 0.0087 0.0021 0.0034 0.0041 0.7605

fnn gnn loc meta 0.0007 0.0008 0.0008 0.0004 0.0012 0.0022 0.0007 0.0009 0.0015 0.0003 0.0005 0.0007 0.6506

fnn gnn meta 0.0009 0.0009 0.0009 0.0005 0.0013 0.0027 0.0009 0.0012 0.0018 0.0004 0.0006 0.0008 0.6587

fnn gnn loc 0.0013 0.0013 0.0012 0.0008 0.0019 0.0037 0.0013 0.0016 0.0025 0.0006 0.0009 0.0012 0.5953

fnn gnn 0.0023 0.0020 0.0018 0.0013 0.0029 0.0053 0.0024 0.0027 0.0038 0.0011 0.0015 0.0019 0.6237
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Table 5.0.14: Results of Training of bnn and fnn model with metapaths and ran-
dom walks using gnn on the DBLP dataset with locations as venues with unigram b
negative sampling

P@2 P@5 P@10 recall@2 recall@5 recall@10 ndcg@2 ndcg@5 ndcg@10 map@2 map@5 map@10 aucroc

bnn gnn loc meta 0.0027 0.0025 0.0022 0.0015 0.0036 0.0064 0.0027 0.0032 0.0045 0.0012 0.0018 0.0022 0.6819

bnn gnn meta 0.0047 0.0040 0.0033 0.0027 0.0057 0.0096 0.0048 0.0053 0.0070 0.0021 0.0030 0.0035 0.7218

bnn gnn loc 0.0053 0.0046 0.0040 0.0031 0.0066 0.0117 0.0054 0.0061 0.0084 0.0023 0.0034 0.0041 0.7603

bnn gnn 0.0047 0.0045 0.0040 0.0026 0.0064 0.0116 0.0046 0.0057 0.0081 0.0020 0.0031 0.0038 0.7576

fnn gnn loc meta 0.0011 0.0012 0.0011 0.0006 0.0017 0.0032 0.0011 0.0014 0.0021 0.0005 0.0008 0.0010 0.5919

fnn gnn meta 0.0018 0.0019 0.0018 0.0011 0.0028 0.0052 0.0019 0.0024 0.0036 0.0008 0.0014 0.0017 0.6230

fnn gnn loc 0.0010 0.0010 0.0010 0.0006 0.0015 0.0029 0.0010 0.0013 0.0020 0.0005 0.0007 0.0009 0.6583

fnn gnn 0.0007 0.0007 0.0007 0.0004 0.0010 0.0021 0.0007 0.0009 0.0014 0.0003 0.0005 0.0006 0.6515

of the results for the column of skewed data for uspt-country and uspt-country+city

stems from the skewness of the data in terms of location which is present in the

dataset. The skewness of the locations where most of the teams are sampled from

one country, prohibits the expert recommendation to use the benefit of knowledge

learned from location representations. We also observe that inclusion of geographic

proximity in some cases does improve upon the results of not considering when the

same result is compared against an equal distribution of locations(Table 4.), the

results of the graph models give an improvement of about 7% percentage and a 2%

increase in the information retrieval metrics. The same is also proved in the case of

dblp where the percentage increase in metrics is evident. This gives concrete support

to the statement that the inclusion of geographic location in the context of team

formation in accordance with the skills leads to a better recommendation of experts.

We also explain the variability of the results as seen amongst the reported metrics as

a possible reason to what percentage a team is affected by the inclusion of location.

This develops into another conclusion, that the effects of location also depend upon

the nature of data or the field where the team formation is applied to.

In response to RQ2, whether a heterogeneous graph modeling of teams with

meta path-based vector representation for skills and locations improves performance

compared to heterogeneous and homogeneous graph modeling with random walk-

based, our results indicate that the inclusion of metapaths doesn’t necessarily improve

the performance of our model in information retrieval and classification metrics. From
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5. EXPERIMENTS AND RESULTS

table 3 and table 4 show an improvement of around 10-15% in the skewed dataset and

only a minor improvement of 2 - 5% for the fixed dataset. The results are synonymous

across the three different dataset testbeds we experimented our methodology on.

Nearly 10% of increase was shown in reported metrics when random walk based

embedding learning was used instead of metpath based walk. This concludes that

random walks can also generate coverage of graphs that is at par with the metapaths’

approach and sometimes even better. These findings further cement the conclusion

made by [23] where the authors states that the application of metapath2vec [14]

in a heterogeneous graph setting doesn’t necessarily improves the performance of

graph based recommender systems. We further reflect on the results of [35] where the

authors use a heterogeneous graph setting with nodes of types experts, skills, location

and teams fails to outperform our implementation of using just the experts, skills

and location as nodes, meaning that the addition of teams’ nodes doesn’t accentuate

the vector representation of graph embeddings and removing them could improve

performance of the expert recommendation engine.

In response to RQ3, Decreasing the granularity to cities does have a positive

effect on the reported metrics. This stems from the fact that in a given team there

would be more variety of cities for experts than countries. For example, a team having

3 experts from one country will just have a single entry for location, but when we go

a little more deeper to include cities, all the 3 experts can belong from different cities

within the same country. This promotes inclusion of more location specific data for

experimentation and a spread out distribution of location among experts.

In response to RQ4 and RQ5, The effect of negative sampling on the exper-

imental results is quite evident from the results tables. The parameter setting with

unigram b as negative sampling outperformed when compared to unfiorm negative

sampling when compared across our entire test bed. We also notice that the inclu-

sion of team nodes does not add any substantial knowledge gain to the graph neural

networks. This is seen as the performance in the result table 5.0.4 where the first two

column represents the graph setting that included teams as nodes.

38



CHAPTER 6

Conclusion and Future Work

Keeping the outcomes of this scientific work in consideration, we draw a conclusion.

A team’s needs are described by many factors in play such as skills and location.

Realistically speaking, the location and skills does prove highly significant for teams.

A typical organization generally oversees these complexities while forming a team.

Necessarily, the inclusion of location does improve the overall performance of team.

In this thesis, we proposed a training strategy for the problem of team forma-

tion that involves inclusion of location with skills while trying to predict experts for

a team. We examine the effect of implementing a heterogeneous graph with nodes

of experts, skills and locations and compare its performance against a homogeneous

graph with only skills as a node. We performed extensive experimentation on two

datasets uspt and imdb to examine how our approach results in two different data

domains. Our experiments show that (i) locations give an overall improvement over

the data set involving just the expert and location. (ii) We also show that graphs

can capture more complex connections between experts and skills, experts and loca-

tion than a simple neural network.(iii) We experiment with metapaths and random

walk training strategies in our setup. Our results show that in this team formation

problem, the results of the two training strategies fare evenly against each other,

with the random walk training strategy gaining an edge in classification and informa-

tion retrieval metrics. We aim to extend this research beyond by developing a novel

end-to-end graph neural network + deep learning architecture and experiment with

different granularity of locations’ effects on the outcome.
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