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Abstract
This dissertation proposes three types of processes that are suitable for modeling

positive datasets with periodic behavior and mean-reverting level phenomenon.

A class of generalized exponential Ornstein–Uhlenbeck process (GEOU) is consid-

ered in Chapter 2. This chapter’s key characteristics include the following: first, the

classical exponential Ornstein–Uhlenbeck process is generalized to the case where the

drift coefficient is driven by a period function of time; second, as opposed to the results

in recent literature, the dimension of the drift parameter is considered unknown. This

chapter serves to weaken some assumptions, in recent literature, underlying the asymp-

totic optimality of some estimators of the drift parameter. Three types of estimators are

proposed: unrestricted maximum likelihood estimator (UMLE), restricted maximum

likelihood estimator (RMLE) and shrinkage estimators (SEs). Asymptotic distributional

risk (ADR) of the proposed estimators is also derived, as well as their relative efficiency.

Further, it is proven that the proposed methods improve the goodness-of-fit. Finally, this

chapter outlines an analysis of a financial market data set and presents the simulation

results, which corroborate the theoretical findings.

Chapter 3 proposes a generalized Cox–Ingersoll–Ross (GCIR) process that is suit-

able for modeling some periodic financial data. An inference problem, about the drift

parameters of the introduced GCIR process is also considered when the target param-

eters may satisfy some restrictions. Like in the case of GEOU process, three kinds of

estimators are derived: UMLE, RMLE, and SEs. Their joint asymptotic normality is

studied. Based on the established asymptotic result, a test is constructed for testing the

restriction. The asymptotic power of the proposed test is also derived from this, and

it is proven that the proposed test is consistent. This chapter also outlines the ADR

of the proposed estimators and their relative efficiency. Finally, simulation results are

v



presented that corroborate the study’s theoretical findings.

In Chapter 4, a generalized Chan, Karolyi, Longstaff and Sanders (GCKLS) process

is proposed for modeling some financial data that are cyclical in nature. The ergodicity

of the solution to the GCKLS model is proven by using the transition probability; the

normality and strong consistency of the UMLE are proven by using the ergodicity. Sim-

ilarly, UMLE, RMLE, and SEs are derived. A test is performed to assess the restriction.

The asymptotic power of the proposed test is consistent. Further, the relative efficiency

of the proposed estimators is compared, and simulation results are presented that agree

with our theoretical findings.
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Chapter 1

General Introduction

Ordinary differential equations are widely used in solving problems in the fields of

engineering, physics, biology, and economics. However, the real world is inevitably af-

fected by certain stochastic factors. Therefore, the analysis of practical problems needs

to be extended from a deterministic to a stochastic point of view. Thus, stochastic differ-

ential equations (SDE) have come to our attention and gradually gained the interest of

a large number of researchers. At the beginning of the 20th century, Einstein [1905] es-

tablished the mathematical theory of Brownian motion and molecular diffusion, which

has since been applied in various fields such as chemical kinetics, population genetics,

social sciences and engineering. However, the study of SDEs did not go smoothly. The

Itô equation (Itô [1951]) is an important method for studying the SDEs whose solutions

are Markov processes, and therefore it is of great significance for the study of stochas-

tic process theory and control theory. As stated in Ibe [2013], diffusion processes are

continuous-time, continuous-state processes whose sample paths are everywhere con-

tinuous but nowhere differentiable. Nowadays, diffusion processes are mainly used to

model physical, biological, engineering, economic, and social phenomena because dif-

fusion is one of the fundamental mechanisms for the transport of materials in physical,

1



1.0 CHAPTER 1. GENERAL INTRODUCTION 2

chemical, and biological systems.

In practical applications, the parameters of the diffusion processes are totally or

partially unknown due to the interference of random factors. Therefore, the estimation

of unknown parameters has become a critical problem to be solved in order to better

understand the relevant asset dynamics. In the past decades, scholars have studied the

parameter estimation problem based on economic models represented by continuous

time diffusion processes, and have achieved some remarkable results. To give some

references, see Koroliuk et al. [2020], Kubilius et al. [2017], Favetto [2014].

This dissertation is focusing on economic probability modeling. In an era character-

ized by economic uncertainty and fluctuation, the research conducted in this dissertation

holds a strong significance, as it directly addresses the pressing societal need for robust

tools to model and predict economic probabilities. The economic models studied in this

dissertation are widely used in quantitative finance for modeling asset prices, interest

rates, derivatives pricing, stock prices, and macroeconomic dynamics. To give some

examples, we quote Behme and Sideris [2022], Liu et al. [2006], Nowak and Romaniuk

[2014], Dassios et al. [2019], Ben Nowman and Sorwar [2003], Khor et al. [2012] and

references therein.

This dissertation considers observing a stochastic process {X(t), t ⩾ 0} which is a

solution of the SDE

dX(t) = S (θ, t, X(t))dt + σ (X(t))δ dBt, (1.0.1)

where {Bt, t ⩾ 0} is a Brownian motion and S (θ, t, X(t)) is a function of t, θ and X(t). σ is

the known parameter associated with volatility. The parameter δ determines the sensitiv-

ity of the variance to the level of the process X(t). If S (θ, t, X(t)) = α(µ−X(t)), δ = 0, the

process is the well known Uhlenbeck-Ornstein (O-U) process. If S (θ, t, X(t)) = α(µ −

ln X(t))X(t), α, µ are the parameters to be estimated and δ = 1, the process is the well-
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known exponential Uhlenbeck-Ornstein process; while if S (θ, t, X(t)) = β − αX(t) with

α, β to be estimated and δ = 1/2, the process becomes the classical Cox–Ingersoll–Ross

(CIR) model; Further, if S (θ, t, X(t)) = β − αX(t), and the constant δ > 0, the process is

considered as Chan, Karolyi, Longstaff and Sanders (CKLS) model.

Parameter estimation is a critical aspect of stochastic differential equations (SDEs)

that holds significant implications across various fields of science and engineering.

SDEs are invaluable tools for modeling systems influenced by random fluctuations,

from financial markets to ecological ecosystems. Accurate estimation of the parame-

ters governing these equations is fundamental for gaining insights, making predictions,

and informed decision-making.

In the realm of finance, parameter estimation in SDEs is pivotal for risk manage-

ment, portfolio optimization, and derivative pricing. Models like the Black-Scholes

equation, driven by SDEs, underpin options pricing and risk assessment in financial

markets. Accurate parameter estimation ensures that investors and financial institutions

can better understand and mitigate risks, ultimately contributing to financial stability

and sound decision-making.

To underscore the importance of parameter estimation in SDEs, it is essential to ref-

erence foundational texts like Oksendal [2013], Nielsen et al. [2000]. These references

provide comprehensive insights into the theory and applications of SDEs, emphasiz-

ing the critical role of parameter estimation in harnessing the predictive power of these

equations.

There are many publications regarding the parameters estimation of the exponential

O-U process, CIR process and CKLS process. To give some references, see Keller-

hals [2013], Vega [2018], Feng and Xie [2012], Alaya and Kebaier [2012], Alaya and

Kebaier [2013], Chen and Scott [1993], Wei [2020] and some references therein.

In the context of these models, inference problem about the drift parameters has
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been addressed to some extent. The common factor about these processes consists in

the fact that they are suitable for the datasets which exhibit a constant mean-reverting

level. However, the assumption of a constant mean level is not adequate due to seasonal-

ity patterns or a long-term trend of the process. Dehling et al. [2010] extended the O-U

process to the case where the reversion term is a deterministic periodic function of time

t. Dehling et al. [2014] considered the change-point detecting problem under the situa-

tion of periodic mean reversion process. By the explicit representation of the generalized

likelihood ratio test statistic, this paper determined the asymptotic distribution of the test

statistic under the null hypothesis. Nkurunziza and Zhang [2018] took the hypothesis

testing problem a step further. The drift parameter was supposed to satisfy some linear

restrictions. This introduces a more intricate dimension to the problem, where identify-

ing the presence of a change-point emerges as a special case. Nkurunziza and Fu [2019]

generalized the O-U process to the case with multiple change-points. Nkurunziza and

Shen [2019], Nkurunziza [2021] generalized the O-U process to the multivariate case.

By combining the results in Nkurunziza [2015], Nkurunziza and Ahmed [2010], other

authors such as Nkurunziza and Zhang [2018], Nkurunziza and Fu [2019], Nkurunziza

and Shen [2019], Nkurunziza [2021] considered shrinkage estimators. Thus, strongly

motivated by these cited papers, a more general cases is considered with a determin-

istic and periodic drift term in all the three different types of SDEs described above.

Particularly, the inference problem regarding the drift parameters catches the interest.

This thesis is organized as follows: In Chapter 2, the generalized exponential O-U

(GEOU) model is proposed. The estimation and hypothesis testing problem are consid-

ered under the case where the drift term is a periodic function and satisfies some linear

restrictions. The change-point problem is also studied. After deriving the explicit solu-

tion, a stationary and ergodic stochastic process is constructed. The distance between

the constructed process and the solution converges to 0 almost surely and in mean as
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time tends to infinity. The convergence of this distance implies the asymptotic normality

of the estimators and the consistency of the hypothesis test. In this chapter, unlike the

settings in Nkurunziza and Zhang [2018], Nkurunziza and Fu [2019], Nkurunziza and

Shen [2019], Nkurunziza [2021], the dimension p of the mean reversion is supposed to

be unknown. Through the utilization of hypothesis testing, both the dimension p and

the presence of a change-point t∗ are identified, which has led to an enhancement in the

accuracy of the predictions. The comparison of the predicting accuracy is also given in

this chapter. Based on the estimation of dimension p and change-point t∗, estimates of

the drift parameters are derived. The asymptotic normality of the proposed estimators

as well as the consistency of the hypothesis test are given.

In Chapter 3, we propose the generalized Cox–Ingersoll–Ross model (GCIR). The

main novelty of this chapter is that a stationary and ergodic process is constructed de-

spite the absence of an explicit solution of the GCIR model. To prove the constructed

auxiliary process is stationary and ergodic, we use the extension of Dubins-Schwarz

theorem. Like in Chapter 2, it is also proven that the distance between the auxiliary

process and the implicit solution of GCIR process converges to 0 almost surely and in

mean. The asymptotic normality of the estimators are also derived.

In Chapter 4, the generalized Chan, Karolyi, Longstaff and Sanders (GCKLS) pro-

cess is proposed. The proposed process is used for modeling some financial data that

are cyclical in nature. It should be noted that the GCKLS process is a generalization

of the GCIR process proposed in Chapter 3. Under the context of GCKLS process, the

sensitive parameter belongs to (1/2, 1) rather than a constant 1/2 as proposed in GCIR

process. In GCKLS model, the long-run drift term is a periodic deterministic function

rather than a constant. By using the transition probability, the ergodicity of the solution

to the generalized CKLS model is obtained. Based on the ergodicity, strong consistency

and asymptotic normality of the UMLE are proven. It is important to observe that, in the
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special case where the periodic base function is analytic on the top of satisfying other

conditions of Assumption 3.2, the ergodicity of the GCIR model discussed in Chap-

ter 3 can be derived using the transition probability approach used in this broader class

- GCKLS model, with the sensitive parameter of 1/2. However, the current investiga-

tions do not allow us to use the construction of auxiliary processes to solve the problem

in Chapter 4. On the other hand, without assuming that the base periodic function is

analytic with further restrictions as in Assumption 4.2, current investigations do not al-

low us to use the method in Chapter 4 in order to solve the inference problem in GCIR

described in Chapter 3.

For all the three types of SDEs, first, three types of estimators are derived: maxi-

mum likelihood estimator with no prior information (UMLE), the maximum likelihood

estimator under some given restriction (RMLE), and some shrinkage estimators (SEs).

As described in Nkurunziza [2015], shrinkage estimators (SEs) combine in an optimal

way the UMLE and the RMLE. As frequently noticed in constrained inference, if the

restriction is not correct, the UMLE performs better than the RMLE while if the restric-

tion holds, the RMLE dominates the UMLE. However, as in Nkurunziza [2015], more

often than not, it is not possible to be totally sure about the validity of the restriction.

Thus, it is important to derive a statistical method which is robust with respect to the re-

striction. The SEs have the advantage of preserving a very good performance regardless

of the validity of the restriction. Nevertheless, since the dimensions of the UMLE and

the RMLE in GEOU process are random, the derivation of shrinkage estimators as well

as their relative efficiency do not follow from the results in classical literature. Based

on their joint asymptotic normality, a test for assessing the restrictions is constructed.

Furthermore, the study establishes the consistency of the test. It includes a thorough

analysis comparing the effectiveness of various types of estimators. Ultimately, the

simulation results not only validate the theoretical discoveries but also underscore the
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appeal of the method under examination

Chapter 5 summarized this dissertation and gave potential area of future research.



Chapter 2

Inference in GEOU Process

2.1 Introduction

The basic commodities essentials of humanity, such as crude oil, natural gas, gold,

silver, corn, wheat, etc. play an important role in both keeping sustainability and im-

proving civilization. In worldwide financial markets, changes in commodities’ prices

can have a huge impact on human life. As mentioned in [Schwartz, 1997, Casassus

and Collin-Dufresne, 2005], one of the most recognized highlights of commodities’

price is that the price possesses a mean-reverting behavior. Many statistical models

have been established in light of this property of commodities’ prices. For instance,

the most basic and simplified stochastic process that describes the characteristic of the

process to drift toward a long-term value is known as the Ornstein–Uhlenbeck pro-

cess. Later, the Ornstein–Uhlenbeck process is denoted as O-U process for short. The

classical O-U process {X(t), t ⩾ 0} is the solution of the stochastic differential equa-

tion (SDE) dX(t) = (αX(t) + β)dt + σdBt, where α, β, σ are constants, {Bt, t ⩾ 0}

is a standard Brownian motion. This SDE is one of a few cases that admits an ex-

plicit solution. However, in practice, the assumption of a constant mean reversion is

8
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rarely met. To address this issue, Aalen and Gjessing [2004] extended the constant

mean reversion level to a time-varying mean reversion function. Further, Dehling et al.

[2010] proposed a generalized OU process with a periodic mean reversion, given by

dX(t) = (L(t)−αX(t))dt+σdBt, t ⩾ 0, where L(t) is a time-varying periodic mean rever-

sion level and α, σ are positive constants. Recently, Nkurunziza and Zhang [2018] stud-

ied the inference problem about the drift parameter in the generalized mean-reverting

process with a change-point under uncertain linear restriction. To give other related ref-

erences, see Chen et al. [2018] who developed some estimation methods for the change-

point.

However, one of the main limitations of the cited works consists in the fact that,

in the models considered, the process can take a negative value while in fact, the ob-

servations such as spot prices cannot have negative values. To address this limitation,

Dixit and Pindyck [1994] developed the so-called geometric O-U process, and Schwartz

[1997] proposed a stochastic process known as exponential O–U process or Schwartz

process. Namely, an exponential O–U process is a solution of the SDE

dX(t) = α(µ − ln X(t))X(t)dt + σX(t)dBt. (2.1.1)

In particular, this process can be used for modeling the spot price of the commodity.

In this case, the magnitude of the speed of adjustment α > 0 measures the degree of

mean reversion to the long-run mean log price. One reference is Masoliver and Perelló

[2006] who studied the exponential O–U stochastic volatility model and observed that

the model shows a multiscale behavior in the volatility autocorrelation. Another related

reference is Perelló et al. [2008] who analyzed the pricing issue for a European call

choice when the volatility of the underlying asset follows the exponential O–U process.

Just recently, Vega [2018] presented a methodological procedure to estimate the param-

eters of the exponential O–U process and gave a comparison between the MLE and least
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squares estimator.

As for the classical O-U process, the exponential O-U process is suitable for mod-

eling the datasets for which the mean reverting level is a constant. For instance, such

processes are not inadequate in modeling the data with seasonality patterns. In this

chapter, a more general process that is suitable for modeling nonnegative datasets with

time-varying periodic mean-reverting behavior and possible drastic changes is consid-

ered. Thereafter, such a process will be designated as a ”generalized exponential O-

U (GEOU) process”. Further, the inference problems about the drift parameter vector of

the GEOU was studied, in the context where the dimension of the parameter is unknown

and under uncertain prior information about the target parameter. More precisely, the

prior information in the form of linear restriction binding the components of the drift

parameter is considered. So far, very little attention has been paid to the estimation of

the drift parameter’s dimensions. Another novelty in this chapter consists of the fact

that a test is proposed to assess the restrictions, as well as the parameter dimension. It

is proven that the proposed methods improve the goodness-of-fit. To the best of the au-

thor’s knowledge, there does not exist a similar research work in the context of GEOU.

In summary, the main contributions of this chapter are as follows:

1. A process with mean-reverting level which is a periodic function of time t was

introduced and this generalizes the so-called exponential O-U process.

2. By considering the case where the dimension of the drift parameter is unknown,

the inference methods in Dehling et al. [2010], Dehling et al. [2014], Chen et al.

[2018] and Nkurunziza and Zhang [2018] among others were improved. Incorpo-

rating an unknown dimension renders the process more aligned with reality.

3. The estimation and a testing problem about the drift parameter were studied. In

particular, the UMLE, RMLE, and the SEs are proposed, as well as an asymptotic
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test for testing the restriction. The optimality of the proposed test is studied,

as well as the relative efficiencies of the proposed estimators. To this end, the

difficulties are overcome due to the fact that the dimensions of these estimators

are random.

4. It is proven that the proposed method improves the goodness-of-fit.

The rest of this chapter is structured as follows. Section 2.2 gives the statistical

model and some preliminary results. In Section 2.3, inference problems in the case

where the dimensions of the drift parameter are known are studied. Section 2.4 extends

the inference methods to the case where the dimensions of the drift parameter are un-

known. In Section 2.5, the relative efficiency of the proposed estimators are compared.

Section 2.6 is the empirical study and numerical results. In this section, the proposed

method is applied to the financial market historical dataset. Finally, Section 2.7 is the

conclusion and, for the convenience of the reader, some theoretical results and proofs

are given in Appendix A.

2.2 Statistical model and preliminary results

This section presents the statistical model and some preliminary results, as well as

some useful notations. About the notations, let (Ω,F ,P) be a probability space where

F is a σ−field on the sample space Ω, and P is a probability measure. Let {Ft, t ⩾ 0}

denote the natural filtration associated to a standard Brownian motion {Bt}t⩾0. Further,

let Lm denote the space of measurable m−integrable function, for some m ⩾ 1. Let
D

−−−−−−→
T−→+∞

,
Lm

−−−−−→
T→+∞

,
a.s.
−−−−−→
T→+∞

,
P

−−−−−→
T→+∞

be the convergence in distribution, in Lm−space, almost

surely, and in probability, respectively, as T tends to infinity. Also, let OP(a(T )) stand

for a random quantity such that OP(a(T ))a−1(T ) is bounded in probability and oP(a(T ))
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stand for a random quantity such that oP(a(T ))a−1(T ) converges in probability to 0 , as

T tends to infinity. Let R+ = [0,+∞). Further, a stochastic process {X(t), t ⩾ 0} is said

to be Lm bounded if there exists K > 0 such that E(|X(t)|m) < K, for all t ⩾ 0. Thereafter,

let In be the n−dimensional identity matrix and let IA denote the indicator function of

the event A, ⊤ denote the transpose of a matrix, N+ = {1, 2, 3, · · · } and || · || represent

Frobenius norm of a matrix.

2.2.1 Statistical model

Inspired by the cited works, the statistical model under consideration is a general-

ization of model (2.1.1). The generalized exponential O-U process {X(t), t ⩾ 0} is a

stochastic process which satisfies the following stochastic differential equation

dX(t) = S (θ, t, X(t))dt + σX(t)dBt, X(0) = X0 (2.2.1)

where S (θ, t, X(t)) = (L(t) − α ln X(t))X(t), with L(t) =
p∑

i=1
µiφi(t), where, for each i =

1, 2, . . . , p, the function φi(t) is a real-valued function of t. Thereafter, the process in

(2.2.1) will be referred to as the GEOU process. Let φ(t) =
(
φ1(t), φ2(t), φ3(t), ..., φp(t)

)
,

t ⩾ 0 and let θ = (µ1, µ2, . . . , µp, α)⊤ ∈ Θ ⊂ Rp+1. In this chapter, θ is the target

parameter and, as opposed to similar works in literature, p is an unknown nuisance

parameter. Note that, in the continuous time observations, the diffusion parameter σ2

can be consistently estimated by the discretized version of quadratic variation of the

process {ln X(t), t ⩾ 0}. Because of that and without loss of generality, σ2 is supposed

to be known. To give some closely related references in literature, see Dehling et al.

[2014], Nkurunziza and Zhang [2018], and references therein. Nevertheless, as opposed

to the quoted works, here the dimensions of the target parameter θ is unknown and the

case where θmay satisfy some uncertain prior information is considered. In practice, the

prior information may come from some the previous statistical investigations or from
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the fields’ experts. In particular, θ is suspected to satisfy the following restriction:

H0 : Mθ = r (2.2.2)

where, for a fixed p, M is a known q × (p + 1)-full rank matrix with q < p + 1, r is a

known q column vector. In terms of estimation method, a statistical procedure which

preserved a good performance regardless of the validity of the restriction in (2.2.2) is

considered. Nevertheless, in order to validate the restriction in (2.2.2), a test is derived

for the hypothesis testing problem

H0 : Mθ = r versus H1 : Mθ , r. (2.2.3)

It should be noted that for a suitable choice of M, the null hypothesis in (2.2.3) cor-

responds to some interesting statistical problems. For instance, let r = 0, and M =

(Ip,−Ip), the restriction in (2.2.2) corresponds to the case where there are no change

point. Thus, the testing problem in (2.2.3) includes as a special case testing the ab-

sence of change point. However, for the sake of clarity, the change-point case and the

no change-point case are presented separately. The optimality of the proposed method

relies on the following assumptions.

Assumption 2.1. The parameter α > 0.

Assumption 2.2. For any T > 0, the base function φ(t) is Riemann-integrable on [0,T]

and possess

I Periodicity: φ(t + υ) = φ(t), for some period υ and all t ∈ [0,T ].

II Orthogonality in L2([0, υ], 1
υ
dλ) :

∫ υ

0
φ(t)φ⊤(t)dt = υIp.

Remark 2.2.1. Since the base function φ(t) is Riemann-integrable on [0,T] and υ-

periodic, this implies that φ(t) is bounded on R+ = [0,+∞), ||φ(t)|| ⩽ Kφ for some

positive constant Kφ.
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Assumption 2.3. The distribution of the initial value, X0, of the SDE in (2.2.1) does

not depend on the drift parameter θ. Further, X0 is positive a.s. and independent of

{Bt : t ⩾ 0} and E(|X0|
m) < ∞, E(| ln X0|

m) < ∞, for some m ⩾ 2.

In this chapter, as in Dehling et al. [2014], Nkurunziza and Zhang [2018] and ref-

erences therein, without loss of generality, the period υ is assumed to be known and

equals to 1. In the case where p is known, the base function φ(t) is also supposed to be

known as in the quoted paper. Note that, for the case where p is unknown, the number

of elements in base function φ(t) need to be estimated. To simplify the presentation of

this chapter, the case where p is known is treated separately from the case where p is

unknown parameter.

2.2.2 Preliminary results

This subsection presents some preliminary results about the trajectory of the SDE in

(2.2.1). It is proven that the SDE (2.2.1) possesses a strong and unique solution which is

Lm-bounded. This result is essential in deriving the likelihood function, the unrestricted

maximum likelihood estimator (UMLE) and the restricted maximum likelihood estima-

tor (RMLE). The following proposition gives the representation of the solution to the

SDE (2.2.1).

Proposition 2.2.1. Suppose that Assumption 2.1-2.3 hold. Then, the solution of SDE

(2.2.1) is given

X(t) = exp
{
e−αt ln X0 + r(t) + τ(t)

}
,

where r(t) = e−αt
∫ t

0
eαs(L(s) − 1

2σ
2)ds and τ(t) = σe−αt

∫ t

0
eαsdBs.

Proof. Let V(t, X(t)) = eαt ln X(t). By Itô’s Lemma,

dV(t, X(t)) =
∂V
∂t

(t, X(t))dt +
∂V
∂X(t)

(t, X(t))dX(t) +
1
2
∂2V
∂X2(t)

(t, X(t))d⟨X(t), X(t)⟩,
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where ⟨·, ·⟩ represent the variation. Since dX(t) = (L(t) − α ln X(t)) X(t)dt + σX(t)dBt,

then

dV(t, X(t)) =αeαt ln X(t)dt + eαt 1
X(t)

((L(t) − α ln X(t))X(t)dt + σX(t)dBt)

−
1
2

eαt 1
X2(t)

σ2X2(t)dt

=eαt

(
L(t) −

1
2
σ2

)
dt + σeαtdBt,

which implies that d(eαt ln X(t)) = eαt
(
L(t) − 1

2σ
2
)

dt + σeαtdBt. Integrating both sides

from 0 to t gives

eαt ln X(t) = ln X0 +

∫ t

0
eαs

(
L(t) −

1
2
σ2

)
ds +

∫ t

0
σeαsdBs.

Then

ln X(t) = e−αt ln X0 + e−αt
∫ t

0
eαs

(
L(t) −

1
2
σ2

)
ds + σe−αt

∫ t

0
eαsdBs (2.2.4)

which implies that X(t) = exp
{
e−αt ln X0 + e−αt

∫ t

0
eαs

(
L(t) − 1

2σ
2
)

ds + σe−αt
∫ t

0
eαsdBs

}
.

This completes the proof. □

Proposition 2.2.1 shows that the solution of SDE (2.2.1) is positive with probability

1. This shows that the logarithm of X(t) is well defined. Below, it is proven that the

processes {ln X(t), t ⩾ 0} and {X(t), t ⩾ 0} are Lm bounded. Such a result plays important

role in deriving a sufficient condition for the likelihood function of the SDE (2.2.1).

Proposition 2.2.2. If Assumption 2.1-2.3 hold, then,

(1) sup
t⩾0
E[| ln X(t)|m] < ∞, (2) sup

t⩾0
E[X(t)] < ∞, (3) sup

t⩾0
E[Xm(t)] < ∞,

(4) sup
t⩾0

E
(
|S (θ, t, X(t))|m

/
|σX(t)|m

)
< ∞,

(5) P
(∫ T

0
|S (θ, t, X(t))|m

/
|σX(t)|m dt < ∞

)
= 1, for all 0 ⩽ T < ∞.

The proof is given in Appendix A.2. According to Theorem 7.6 [Liptser and Shiryaev,

2001, pp.261] , to get the likelihood function of a diffusion process,
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P

(∫ T

0
S 2(θ, t, X(t))

/
(σ2X2(t)) dt < ∞

)
= 1, for all 0 ⩽ T < ∞ should be guaranteed.

In Part (5) of the above proposition, the sufficient condition in a more general form is

presented.

2.3 Inference in the case where p is known

This section studies inference problems in the case where the dimension of the pa-

rameters p is known. In particular, UMLE and RMLE are derived. Further, the joint

asymptotic normality of these estimators is also derived, as well as an asymptotic test

for the testing problem in (2.2.3).

2.3.1 The case of absence of change-point

2.3.1.1 Parameter estimation

This subsection derives the maximum likelihood estimator of θ. To this end, let C[0,T ]

be the space of continuous real-valued functions on [0,T ], let B[0,T ] be the associated

Borel σ algebra and let PX denote the probability measure induced by the observable

realizations XT = {X(t), t ⩾ 0} on the measurable space (C[0,T ],B[0,T ]). Further, let PB be

the probability measure generated by the Brownian motion on (C[0,T ],B[0,T ]). Then, as

in Dehling et al. [2014], dPX/dPB is the Radon-Nikodym derivative of the observations

generated by the SDE (2.2.1). Further, the likelihood function of observations XT is

given by

L(θ, XT ) :=
dPX

dPB
(XT ) = exp

{∫ T

0

S (θ, t, X(t))
σ2X2(t)

dX(t) −
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

dt
}
.

(2.3.1)

Thus, the maximum likelihood estimator (UMLE) θ̂T can be derived by taking the max-

imum value of the functional θ 7−→ L(θ, XT ), i.e. θ̂T := arg max
θ
L(θ, XT ). To simplify
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some notations, let

Q[0,T ] =


∫ T

0
φ⊤(t)φ(t)dt −

∫ T

0
φ⊤(t) ln X(t)dt

−

∫ T

0
φ(t) ln X(t)dt

∫ T

0
(ln X(t))2dt

 , (2.3.2)

U[0,T ] =

∫ T

0

(φ(t),− ln X(t))⊤

X(t)
dX(t), W[0,T ] =

∫ T

0
(φ(t),− ln X(t))⊤dBt. (2.3.3)

Further, let θ̃T be the RMLE. In deriving the UMLE and RMLE, the matrix Q[0,T ] needs

to be invertible. The following proposition gives a sufficient condition under which the

matrix Q[0,T ] is positive definite.

Proposition 2.3.1. If Assumption 2.1-2.3 hold, then, if T ⩾ 1, Q[0,T ] is a positive definite

matrix.

The proof of this proposition is provided in Appendix A.3. Since the optimality

of the proposed method relies on the asymptotic properties, in the sequel, the condition

T ⩾ 1 is always supposed to be true. Proposition 2.3.1 implies the following proposition

which gives the UMLE and the RMLE. let G[0,T ] = Q−1
[0,T ]M

⊤(MQ−1
[0,T ]M

⊤)−1.

Proposition 2.3.2. Suppose that Assumptions 1-3 hold. Then,

θ̂T = σQ−1
[0,T ]U[0,T ], and θ̃T = θ̂T −G[0,T ](Mθ̂T − r).

Proof. From Proposition 2.2.1 Part (5) and Theorem 7.6 in Liptser and Shiryaev [2001],

the likelihood function of the SDE (2.1) is given by

L(θ, XT ) :=
dPX

dPB
(XT ) = exp

{∫ T

0

S (θ, t, X(t))
σ2X2(t)

dX(t) −
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

dt
}
,

(2.3.4)

with S (θ, t, X(t)) = (φ(t),− ln X(t))θX(t). Then, the proof follows from classical maxi-

mization techniques. This completes the proof. □

Further, Proposition 2.3.2, the definition of U[0,T ] in (2.3.3), and the fact that the

process {X(t), t ⩾ 0} satisfies SDE (2.2.1) imply U[0,T ] =
∫ T

0
(φ(t),− ln X(t))⊤

X(t) dX(t) = Q[0,T ]θ+
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σW[0,T ]. Then,

θ̂T = Q−1
[0,T ]U[0,T ] = Q−1

[0,T ]
(
Q[0,T ]θ + σW[0,T ]

)
= θ + σQ−1

[0,T ]W[0,T ]. (2.3.5)

This implies that
√

T (θ̂T − θ) = σT Q−1
[0,T ]

1
√

T
W[0,T ]. The asymptotic behavior of θ̂T re-

lies on the matrix T Q−1
[0,T ] and the column vector 1

√
T

W[0,T ] as T tends to infinity. Thus,

below, the asymptotic behavior of the matrices
1
T

Q[0,T ] and T Q−1
[0,T ] is presented. Let

B̃s = BsIR+(s)+ B̄−sIR−(s) be a bilateral Brownian motion, where {Bs}s⩾0 and {B̄−s}s⩾0 are

two independent Brownian motions. The auxiliary process {X̃(t), t ⩾ 0} is introduced in

(A.58) in the Appendix A.2: ln X̃(t) = r̃(t)+τ̃(t),where r̃(t) = e−αt
∫ t

−∞
eαs

(
L(s) − 1

2σ
2
)

ds,

τ̃(t) = σe−αt
∫ t

−∞
eαsdB̃s. More propositions and the relation between the auxiliary pro-

cess and the process {X(t), t ⩾ 0} are given in the Appendix A.2. To establish this result,

first, the invertibility of the following matrix is given. Let

Σ =


Ip −

∫ 1

0
φ⊤(t)r̃(t)dt

−

∫ 1

0
φ(t)r̃(t)dt

∫ 1

0
(r̃(t))2dt +

σ2

2α

 , (2.3.6)

the following result shows that Σ is a positive definite matrix.

Proposition 2.3.3. The matrix Σ is a (p + 1) × (p + 1)-positive definite matrix.

The proof follows from Proposition A.17 given in Appendix A.3. The following

proposition is established from Proposition 2.3.3. It is useful in deriving the strong

consistency of the UMLE as well as the joint asymptotic normality of the UMLE and

RMLE.

Proposition 2.3.4. If Assumption 2.1-2.3 hold, then

1
T

Q[0,T ]
a.s. and Lm/2

−−−−−−−−−→
T→∞

Σ and T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1.

The proof of this proposition is given in Appendix A.3. The following proposition

is derived by using the martingale central limit theorem for diffusion processes. It gives

the limiting distribution of 1
√

T
W[0,T ].
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Proposition 2.3.5. If Assumption 2.1-2.3 hold, then, 1
√

T
W[0,T ]

D
−−−−→
T→∞

W∗ ∼ Np+1 (0,Σ).

The proof of this proposition is outlined in Appendix A.3. The following proposition

proves that UMLE is strongly consistent and asymptotically normal, and it follows from

Proposition 2.3.4 and Proposition 2.3.5. For the sake of simplicity, let ρT =
√

T (θ̂T − θ).

Proposition 2.3.6. Suppose that Assumption 2.1-2.3 hold. Then, θ̂T is a strongly con-

sistent estimator of θ. Furthermore, θ̂T is asymptotically normal, i.e. ρT

D
−−−−→
T→∞

ρ ∼

Np+1(0, σ2Σ−1).

The proof of this proposition is given in Appendix A.3. The asymptotic normality

of the RMLE is derived from Proposition 2.3.6. More generally, the joint asymptotic

normality between the UMLE and the RMLE is also derived. To this end, the following

set of local alternative restrictions is considered:

Ha,T : Mθ − r =
r0
√

T
, T > 0 (2.3.7)

where r0 is a fixed q-column vector. To derive the RMLE, the Lagrange multiplier λ

into the log-likelihood function is introduced,

logL(θ, XT , λ) =
1
σ2 θ

⊤U[0,T ] −
1

2σ2 θ
⊤Q[0,T ]θ + λ

⊤(Mθ − r),

where λ is a q column vector. After some algebraic computation,

θ̃T = θ̂T +G[0,T ]r −G[0,T ]Mθ̂T = θ̂T −G[0,T ](Mθ̂T − r),

where G[0,T ] = Q−1
[0,T ]M

⊤(MQ−1
[0,T ]M

⊤)−1. Note that

√
T (θ̃T − θ) =

√
T

(
θ̂T −G[0,T ](Mθ̂T − r) − θ

)
=
√

T
(
I(p+1) −G[0,T ]M

)
θ̂T +

√
T

(
G[0,T ]r − θ

)
.

This gives

√
T (θ̃T − θ) =

(
I(p+1) −G[0,T ]M

) √
T (θ̂T − θ) −

√
TG[0,T ] (Mθ − r) . (2.3.8)
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A continuous function f (X) = XM⊤(MXM⊤)−1 is constructed, where X is a positive

definite matrix. Then,

f (T Q−1
[0,T ]) = T Q−1

[0,T ]M
⊤(MT Q−1

[0,T ]M
⊤)−1 = G[0,T ].

By Proposition 2.3.4 and continuous mapping theorem,

G[0,T ]
P
−−−−→
T→∞

G∗ = Σ−1M⊤(MΣ−1M⊤)−1, (2.3.9)

and I(p+1)−G[0,T ]M
P
−−−−→
T→∞

I(p+1)−G∗M. Consider the local alternatives restriction (2.3.7),

√
TG[0,T ](Mθ − r) =

√
TG[0,T ]

r0
√

T
= G[0,T ]r0

P
−−−−→
T→∞

G∗r0. (2.3.10)

To simplify some notations, let (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤ =

√
T

(
(θ̂T − θ)⊤, (θ̃T − θ)⊤, (θ̂T − θ̃T )⊤

)⊤
.

Proposition 2.3.7. If Assumption 2.1-2.3 and the local alternative restriction (2.3.7)

hold, then, (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤

D
−−−−→
T→∞

(ρ⊤, ϱ⊤, ς⊤)⊤where
ρ

ϱ

ς


∼ N3(p+1)




0

−G∗r0

G∗r0


, σ2


Σ−1 Σ−1 −G∗MΣ−1 G∗MΣ−1

Σ−1 −G∗MΣ−1 Σ−1 −G∗MΣ−1 0

G∗MΣ−1 0 G∗MΣ−1




.

The proof is provided in Appendix A.3. Proposition 2.3.7 constitutes the main result

of this subsection and it is used, in the next subsection, in deriving a test for the testing

problem in (2.2.3).

2.3.1.2 Testing the restriction

This subsection tackles the hypothesis testing problem in (2.2.3). Note that, in the

continuous time observations, the diffusion parameter can be consistently estimated by

the discretized version of quadratic variation of the process {ln X(t), t ⩾ 0}. This is

given by σ̂2 = 1
T

n∑
i=1

(ln X(ti) − ln X(ti−1))2, with 0 = t0 < t1 < · · · < tn < T . It is

well known that σ̂2 is the consistent estimator of the diffusion coefficient σ2 for T >

0 and max
1⩽i⩽n
{ti − ti−1} → 0. To introduce some notations, let χ2

q(λ) be the chi-square
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random variable with q degrees of freedom and non-centrality parameter λ ⩾ 0. In

particular, if λ = 0, χ2
q is used to stand for a (central) chi-square random variable, with

q degrees of freedom. Further, let χ2
α;q be the αth quantile of a χ2

q where 0 < α ⩽

1, let ∆ = 1
σ2 r⊤0 (MΣ−1M⊤)−1r0, with r0 given in (2.3.7), and let ςT =

√
T (θ̂T − θ̃T ),

Γ̂ = 1
σ̂2

M⊤
(
MT Q−1

[0,T ]M
⊤
)−1

M, Γ = 1
σ2 M⊤

(
MΣ−1M⊤

)−1
M, ψT = ς⊤T Γ̂ςT , ψ =

ς⊤Γς, ψ0 = ς
⊤
0 Γς0 where ς0 ∼ Np+1

(
0, σ2G∗MΣ−1

)
. The following proposition gives

the asymptotic distribution of the test statistics ψT .

Proposition 2.3.8. If Assumption 2.1-2.3 hold, then, if r0 , 0, then, ψT

D
−−−−→
T→∞

ψ ∼ χ2
q(∆);

if r0 = 0, then, ψT

D
−−−−→
T→∞

ψ0 ∼ χ
2
q.

The proof of this proposition is provided Appendix A.3. From Proposition 2.3.8, to

test the null hypothesis in (2.2.3) is suggested by using the rejection region ψT > χ2
α;q

for a given α. Thus, the suggested test is

κT = I{ψT>χ
2
α;q}

(2.3.11)

From Proposition 2.3.8, below, the asymptotic power of the proposed test is derived.

Proposition 2.3.9. Suppose that Assumption 2.1-2.3 hold, along with local alternative

restriction (2.3.7). Then, the asymptotic power function of the test κT in (2.3.11) is given

by Π(∆) = P
(
χ2

q(∆) ⩾ χ2
α;q

)
.

The proof of this Proposition follows directly from Proposition 2.3.8. It should be

noted that, under the null hypothesis, ∆ = 0, the above asymptotic local power is equal

to α. Further, if ∆ tends to infinity, the above asymptotic local power tends to 1. The

numerical results show that asymptotic local power is increasing to 1 as time T increases

to infinity. For more details about the inference under the setting of no change-point,

we refer to Lyu and Nkurunziza [2023c].
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2.3.2 The case of a possible change point

Over the years, the problem of a change-point detection in a stochastic process has

been an important issue in statistical inference. Initially investigated for i.i.d. data,

change-point analysis has been more recently extended to time series of dependent data.

This section investigates the problem of detecting changes in the drift parameter of

the GEOU process in (2.2.1). It is interesting to test whether there is a change in the

component of the drift in the time interval [0,T ], during which the process is observed.

Estimating the change-point is also an interesting problem. This chapter considers that

the change-point is t∗ = sT with s ∈ (0, 1), and thus, the GEOU process with change-

point is given by

dX(t) =
(
S (θ(1), t, X(t))I{t⩽t∗} + S (θ(2), t, X(t))I{t>t∗}

)
dt + σX(t)dBt, X(0) = X0 (2.3.12)

where for j = 1, 2,

S (θ( j), t, X(t)) = (L(t) − α j ln X(t))X(t) =

 p∑
i=1

µiφi(t) − α j ln X(t)

 X(t). (2.3.13)

Let θ(1) = (µ11, µ12, . . . , µ1p, α1)⊤, θ(2) = (µ21, µ22, . . . , µ2p, α2)⊤, θ = (θ(1)⊤, θ(2)⊤)⊤. As in

(2.2.2), the case where the parameter θ may satisfy the restriction is also considered:

H̃0 : M̃θ = r̃ (2.3.14)

where, for a fixed p, M̃ is a known q × 2(p + 1) full rank matrix with q < 2(p + 1), r̃ is

a known q column vector. This restriction leads to the hypothesis testing problem

H̃0 : M̃θ = r̃ verus H1 : M̃θ , r̃. (2.3.15)

Note that if M̃ = [Ip+1,−Ip+1] and r̃ = 0, the testing problem is for detecting the exis-

tence of the change-point, i.e. detecting the existence of the change-point is a particular

case of the hypothesis (2.3.15). Thus, inference methods to be established are similar

to that given in Section 2.3.1. As in Section 2.3.1, the following proposition gives the
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expression of the process {X(t), t ⩾ 0} as the solution to the SDE (2.3.12).

Proposition 2.3.10. Suppose that Assumption 2.1-2.3 hold. Then, the solution of SDE

(2.3.12) is given

X(t) = exp
{
ln X1(t)I{t⩽t∗} + ln X2(t)I{t>t∗}

}
, ln X1(t) = e−α1t ln X0 + r1(t) + τ1(t),

ln X2(t) = e−α2(t−t∗) ln Xt∗(0) + rt∗
2 (t − t∗) + τt∗

2 (t − t∗),
(2.3.16)

where for 0 ⩽ t ⩽ t∗, r1(t) = e−α1t

∫ t

0
eα1 s

(
L(s) −

1
2
σ2

)
ds, τ1(t) = σe−α1t

∫ t

0
eα1 sdBs

and for t∗ ⩽ t ⩽ T, rt∗
2 (t) = e−α2t

∫ t

0
eα2 s

(
Lt∗(s) −

1
2
σ2

)
ds, τt∗

2 (t) = σe−α2t
∫ t

0
eα2 sdBt∗

s ,

ln Xt∗(t) = ln X(t + t∗), Lt∗(t) = L(t + t∗), Bt∗
t = B(t + t∗) − B(t∗), t ⩾ 0 t∗ ⩾ 0.

Proof. The proof is similar to the proof of Proposition 2.2.1. □

The following result is useful in deriving the likelihood function of the GEOU pro-

cess in (2.3.12) in the context where the change-point is known. It is derived from Propo-

sition 2.3.10. Indeed, as intermediate step, the change-point t∗ = sT is supposed to be

known, i.e. s is known.

Proposition 2.3.11. If Assumption 2.1-2.3, then

(1) sup
t⩾0
E[| ln X(t)|m] < ∞ (2) sup

t⩾0
E[X(t)] < ∞, (3) sup

t⩾0
E[Xm(t)] < ∞,

(4) sup
t⩾0

E
((∣∣∣S (θ(1), t, X(t))

∣∣∣m + ∣∣∣S (θ(2), t, X(t))
∣∣∣m) /
|σX(t)|m

)
< ∞,

(5) P
(∫ T

0

(∣∣∣S (θ(1), t, X(t))
∣∣∣m + ∣∣∣S (θ(2), t, X(t))

∣∣∣m) /
|σX(t)|m dt < ∞

)
= 1, ∀ 0 ⩽ T <

∞.

The proof of this proposition is given in Appendix A.3. From Proposition 2.3.11,

one concludes that the Radon-Nikodym derivative of the SDE in (2.3.12) exists and it is
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given by

L(θ, s, XT ) :=
dPX

dPB
(XT ) = exp

{∫ T

0

S (θ, t, X(t))
σ2X2(t)

I{0⩽t⩽t∗}dX(t)

+
∫ T

0
S (θ,t,X(t))
σ2X2(t) I{t∗<t⩽T }dX(t)

−
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

I{0⩽t⩽t∗}dt −
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

I{t∗<t⩽T }dt
}
.

(2.3.17)

Then, the UMLE is derived by maximizing the functional θ 7−→ L(θ, XT ). Further,

RMLE is derived by using Lagrange multiplier method. Let θ̂T (s) be the UMLE and

θ̃T (s) be the RMLE. Note that the process {X(t), t ⩾ 0} is not stationary. Because of that,

to study the long term behavior of proposed estimators for the case of a known change-

point, an auxiliary process is constructed. The introduced process is close in certain

sense to the solution of the SDE (2.3.12). In particular, let B̃s is a bilateral Brownian

motion. i.e. B̃s = BsIR+(s) + B̄−sIR−(s), where {Bs}s⩾0 and {B̄−s}s⩾0 are two independent

Brownian motions.A new process {X̃t, t ⩾ 0} isintroduced, where

X̃(t) = exp
{
ln X̃1(t)I{t⩽t∗} + ln X̃2(t)I{t>t∗}

}
, ln X̃1(t) = e−α1t ln X0 + r̃1(t) + τ̃1(t),

ln X̃2(t) = e−α2(t−t∗) ln X̃t∗(0) + r̃t∗
2 (t − t∗) + τ̃t∗

2 (t − t∗),
(2.3.18)

where for 0 ⩽ t ⩽ t∗, r̃1(t) = e−α1t

∫ t

−∞

eα1 s

(
L(s) −

1
2
σ2

)
ds, τ̃1(t) = σe−α1t

∫ t

−∞

eα1 sdB̃s

and for t∗ ⩽ t ⩽ T , r̃t∗
2 (t) = e−α2t

∫ t

−∞

eα2 s

(
Lt∗(s) −

1
2
σ2

)
ds, τ̃t∗

2 (t) = σe−α2t
∫ t

−∞

eα2 sdB̃t∗
s ,

ln X̃t∗(t) = ln X̃(t + t∗), Lt∗(t) = L(t + t∗), B̃t∗
t = B̃(t + t∗) − B̃(t∗), t ⩾ 0 t∗ ⩾ 0. First,

the proof of that the sequence of random variables {ln X̃k(t + j − 1)}∞j=1 is stationary

and ergodic is given. Further, it is proven that the distance between ln X(t) and ln X̃(t)

converges, almost surely and in mean, to 0 as t tends to infinity.

Proposition 2.3.12. Suppose that Assumption 2.1-2.3 hold. Then, for t ∈ [0, 1], and

k = 1, 2, j = 1, 2, · · · , the sequence of random variables {ln X̃k(t+ j−1)}∞j=1 is stationary

and ergodic.

The proof is similar to the proof of Proposition A.15 in Appendix A.3.
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Proposition 2.3.13. If Assumption 2.1-2.3 hold, then,

(1) | ln X̃k(t) − ln Xk(t)|
a.s. and Lm

−−−−−−−−→
T→∞

0, for k = 1, 2,

(2)
(

1
T

∫ sT

0

(
φ⊤(t) ln X1(t) − φ⊤(t) ln X̃1(t)

)
dt,

1
T

∫ T

sT

(
φ⊤(t) ln X2(t) − φ⊤(t) ln X̃2(t)

)
dt

)
a.s. and Lm

−−−−−−−−→
T→∞

0,

(3)
(

1
T

∫ sT

0

(
(ln X1(t))2 − (ln X̃1(t))2

)
dt,

1
T

∫ T

sT

(
(ln X2(t))2 − (ln X̃2(t))2

)
dt

)
a.s. and Lm/2

−−−−−−−−−→
T→∞

0.

Proof. The proof of the first claim is similar to Proposition A.16 in Appendix A.2.

The second and third statements follow from the first claim along with the continuous

version of Cesàro mean theorem. □

Further, let θ̂T (s) be the UMLE and θ̃T (s) be the RMLE in the context of a known

change point. RMLE is derived by using Lagrange multiplier method. Proposition 2.3.13

along with the ergodicity of the auxiliary process are useful in deriving the asymptotic

distributions of θ̂T (s) and θ̃T (s).

2.3.2.1 Inference in the case where there is a known change-point

This subsection considers inference problem about θ in the context of known rate

of the change-point location s. To simplify some mathematical expressions, some new

notations are introduced. Let

Q(s,T ) =

Q[0,sT ] 0

0 Q[sT,T ]

 ,U(s,T ) =

U[0,sT ]

U[sT,T ]

 , W(s,T ) =

W[0,sT ]

W[sT,T ]

 . (2.3.19)

The following proposition gives the sufficient condition for the existence of UMLE and

RMLE.

Proposition 2.3.14. Suppose that Assumption 2.1-2.3 hold. Then, the matrix Q[0,sT ],

Q[sT,T ], and Q(s,T ) are positive definite, provided that min{sT, (1 − s)T } ⩾ 1.
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Proof. Similarly to the proof of Proposition 2.3.1, it is proven that the matrices Q[0,sT ],

Q[sT,T ] are positive definite, under the condition that sT ⩾ 1, (1 − s)T ⩾ 1, respectively.

This implies that the matrix Q(s,T ) is a positive definite provided that min{sT, (1 −

s)T } ⩾ 1. □

As mentioned in Section 2.3.1, the condition min{sT, (1 − s)T } ⩾ 1 will be consid-

ered as satisfied because the proposed method is asymptotic.

Let G̃[0,T ] = Q−1(s,T )M̃⊤(M̃Q−1(s,T )M̃⊤)−1.

Proposition 2.3.15. Suppose that Assumption 2.1-2.3 hold along with (2.3.15). Then,

θ̂T (s) = Q(s,T )−1U(s,T ) and θ̃T (s) = θ̂T (s) − G̃[0,T ](M̃θ̂T (s) − r̃).

The proof of this proposition is given in Appendix A.3.

2.3.2.2 Joint asymptotic normality of the estimators

This subsection derives the joint asymptotic normality of UMLE θ̂T (s) and RMLE

θ̃T (s). This result is used in deriving a test for the hypothesis testing problem (2.3.15).

As in Section 2.3.1, from Proposition 2.3.15,
√

T (θ̂T (s) − θ) = σT Q−1(s,T ) 1
√

T
W(s,T ).

Thus, as in Section 2.3.1, the asymptotic properties of these estimators relies on the

asymptotic behavior of 1
T Q(s,T ) and 1

√
T

W(s,T ) as well as on the non-singularity of the

matrices

Σ̃ =

sΣ1 0

0 (1 − s)Σ2

 , (2.3.20)

where for k = 1, 2,

Σk =


Ip −

∫ 1

0
b⊤(t)r̃k(t)dt

−

∫ 1

0
φ(t)r̃k(t)dt

∫ 1

0
(r̃k(t))2dt +

σ2

2αk

 . (2.3.21)

Proposition 2.3.16. The matrix Σ̃ is a positive definite matrix.
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Proof. Similar to the proof of Proposition 2.3.3. □

Proposition 2.3.17. If Assumption 2.1-2.3 hold, then 1
T Q[0,sT ]

a.s. and Lm/2

−−−−−−−−−→
T→∞

sΣ1,

1
T Q[sT,T ]

a.s. and Lm/2

−−−−−−−−−→
T→∞

(1 − s)Σ2, T Q−1
[0,sT ]

a.s.
−−−−→
T→∞

1
sΣ
−1
1 , T Q−1

[sT,T ]
a.s.
−−−−→
T→∞

1
1−sΣ

−1
2 ,

1
T (Q(s,T ))

a.s. and Lm/2

−−−−−−−−−→
T→∞

Σ̃, T (Q−1(s,T ))
a.s.
−−−−→
T→∞

Σ̃−1. Further, 1
√

T
W(s,T )

D
−−−−→
T→∞

W̃∗ ∼

N2(p+1)

(
0, Σ̃

)
.

Proof of Proposition 2.3.17. The first six statements are established in the similar way

as in Proposition 2.3.4. The proof of last statement follows from the first six state-

ments of the proposition along with the martingale central limit theorem for diffusion

processes. □

Let ρ̃T =
√

T (θ̂T (s) − θ). From Proposition 2.3.17, the following proposition is

derived, which shows that θ̂T (s) is consistent and asymptotically normal.

Proposition 2.3.18. Suppose that Assumption 2.1-2.3 hold. Then, θ̂T (s) is a strongly

consistent estimator of θ. Furthermore, θ̂T (s) is asymptotically normal, i.e. ρ̃T
D
−−−−→
T→∞

ρ̃ ∼ N2(p+1)(0, σ2Σ̃−1).

The proof of this proposition is given in Appendix A.1. From(2.3.8),

√
T (θ̃T (s) − θ) =

(
I(p+1) − G̃[0,T ]M̃

) √
T (θ̂T (s) − θ) −

√
TG̃[0,T ]

(
M̃θ − r̃

)
. (2.3.22)

Below, the following derived proposition gives the joint asymptotic normality of UMLE

and RMLE. Let (ρ̃⊤T , ϱ̃
⊤
T , ς̃

⊤
T )⊤ =

√
T

(
(θ̂T (s) − θ)⊤, (θ̃T (s) − θ)⊤, (θ̂T (s) − θ̃T (s))⊤

)⊤
, and

let G̃∗ = Σ̃−1M̃⊤(M̃Σ̃−1M̃⊤)−1. Suppose the following set of local alternative restrictions

hold,

Hã,T : M̃θ − r̃ =
r̃0
√

T
,T > 0 (2.3.23)

where r̃0 is a fixed q-column vector.
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Proposition 2.3.19. Suppose that Assumption 2.1-2.3 and the local alternative restric-

tion (2.3.23) hold. Then, (ρ̃⊤T , ϱ̃
⊤
T , ς̃

⊤
T )⊤

D
−−−−→
T→∞

(ρ̃⊤, ϱ̃⊤, ς̃⊤)⊤, where
ρ̃

ϱ̃

ς̃


∼ N6(p+1)




0

−G̃∗r̃0

G̃∗r̃0


, σ2


Σ̃−1 Σ̃−1 − G̃∗M̃Σ̃−1 G̃∗M̃Σ̃−1

Σ̃−1 − G̃∗M̃Σ̃−1 Σ̃−1 − G̃∗M̃Σ̃−1 0

G̃∗M̃Σ̃−1 0 G̃∗M̃Σ̃−1




.

Proof. The proof is similar to Proposition 2.3.7. □

2.3.2.3 Testing the restriction

This subsection handles with the problem of testing the hypothesis in (2.3.15) within

the setting of one known change-point. Let

∆ = 1
σ2 r̃⊤0

(
M̃Σ̃−1M̃⊤

)−1
r̃0, Γ = 1

σ2 M̃⊤
(
M̃Σ̃−1M̃⊤

)−1
M̃,

Γ̂ = 1
σ̂2

M̃⊤
(
M̃T Q−1(s,T )M̃⊤

)−1
M̃.

(2.3.24)

Further, let ψ̃T = ς̃
⊤
T Γ̂ς̃T , ψ̃ = ς̃⊤Γς̃ and ψ̃0 = ς̃

⊤
0 Γς̃0, where ς̃0 ∼ N2(p+1)(0, σ2G̃∗M̃Σ̃−1)

and G̃∗ = Σ̃−1M̃⊤
(
M̃Σ̃−1M̃⊤

)−1
. The following proposition is derived, which is impor-

tant in developing the suitable test for testing the hypothesis problem (2.3.15).

Proposition 2.3.20. Suppose that Assumption 2.1-2.3 hold. Then, if r̃0 , 0, ψ̃T
D
−−−−→
T→∞

ψ̃ ∼ χ2
q(∆̃), and if r̃0 = 0, ψ̃T

D
−−−−→
T→∞

ψ̃0 ∼ χ
2
q.

Proof. The proof is similar to Proposition 3.4.1 □

In this case, the null hypothesis in (2.3.15) is tested by using the rejection region

ψ̃T > χ
2
α;q for a given α. The suggested the test is

κ̃T = I{ψ̃T>χ
2
α;q}
. (2.3.25)

From Proposition 2.3.20, below, the asymptotic power function of the proposed test is

derived.
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Proposition 2.3.21. Suppose that Assumption 2.1-2.3 along with (2.3.23) hold. Then,

the asymptotic power function of the test κ̃T in (2.3.25) is given by ϖ̃(∆) = P
(
χ2

q(∆) ⩾ χ2
α;q

)
.

Proof. The proof follows directly from Proposition 2.3.20. □

Similar to Proposition 3.4.2, under the null hypothesis, ∆ = 0, the above asymptotic

local power is equal to α. Further, if ∆ tends to infinity, the above asymptotic local power

tends to 1 and our numerical results show that asymptotic local power is also increasing

to 1 as time T increases to infinity. For more details about the inference under the setting

of one potential change-point, we refer to Lyu and Nkurunziza [2023d].

2.4 Inference in the case where p is unknown

2.4.1 The case of absent change-point

In most related references, such as Dehling et al. [2014], Nkurunziza and Zhang

[2018], among others, the dimension of the base functions, p is supposed to be known.

But in practice, p is not known and thus, it is important to develop a statistical method

for estimating the appropriate number of the base functions, i.e. p. This subsection con-

siders a more general inference problem about the drift parameter θ when the nuisance

parameter p is unknown and needs to be estimated. Detecting the suitable value of p

corresponds to solving a model selection problem. In other words, selecting the best sta-

tistical model according to the log-likelihood-based information criterion from all can-

didate models. To decide the reasonable value of p, the following Schwartz Information

Criterion method is used. This method consists in minimising the log-likelihood-based

information criterion IC(p) = −2logL([0,T ], θ̂T ) + h(p)Φ(T ), where the log-likelihood

function logL([0,T ], θ̂T ) is defined in (2.3.1), h(p) = p + 1 is the number of drift pa-

rameters, p is the potential number of the base functions and Φ(T ) is a non-decreasing
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function of T .

As known, in statistical modeling, AIC and SIC (BIC) are two important informa-

tion criteria for model selection among a collection of viable candidate models based

on the likelihood function. SIC criterion is first derived by Schwarz [1978] and it has

a close relation to AIC. When fitting the models, if the number of parameters is added,

the value of the likelihood function will increase, but doing this may lead to overfitting.

A penalty term for the number of parameters in the model is introduced to avoid over-

fitting. In our case, h(p)Φ(T ) is the penalty term. Asymptotically, the criterion of SIC

is consistent in the case where the true model is considered among the candidate mod-

els. Further, if the true model is not among the candidate models, the criterion AIC is

more efficient [Vrieze, 2012]. Because in our case, under the conditions of hypothesis,

the true model is one of the candidates, SIC criterion is chosen. To this end, a dis-

cretized version of the GEOU process in (2.2.1) is considered. In applied mathematics,

discretization is the process of transferring continuous functions, models, variables and

equations into discrete counterparts. This process is usually carried out as a first step to-

ward making them suitable for numerical evaluation and implementation on computers.

Usually, in practice the data are observed in discrete time, which implies that the inte-

grals
∫ T

0
S (θ, t, X(t))dX(t) and

∫ T

0
S 2(θ, t, X(t))dt can be approximated using appropriate

finite sums that depend on some discrete sampling for which the step of discretisations

are small. Without loss of generality, Euler-Maruyama discretization, with the parti-

tion 0 = t0 < t1 < · · · < tN = T on a given period [0,T ] with ∆N = max
1⩽i⩽N

(ti+1 − ti)

is considered. The adopted discretization scheme corresponds to the scenario of high-

frequency data with a large-observation horizon i.e. the scenario where T tends to infin-

ity while the discretization step tends to zero is considered. For the sake of simplicity,

let N[a, b] = {i ∈ {0, 1, 2, · · · ,N − 1} : ti ∈ [a, b]}. In particular, to perform the work, the

following assumption is needed.
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Assumption 2.4. For the partition 0 = t0 < t1 < · · · < tN = T on a given period [0,T ],

there exists a constant a, a > 1, such that N = O(T a) and all the subintervals ti+1 − ti

are supposed to be equal, for i ∈ N[0,T ], i.e. ∆N = T/N.

(2.2.1) and together with Euler-Maruyama discretization imply that

X(t j+1) − X(t j) =

 p∑
i=1

µiφi(t j) − α ln X(t j)

 X(t j)
(
t j+1 − t j

)
+σX(t j)(Bt j+1 − Bt j), (2.4.1)

with 0 = t0 < t1 < t2 < · · · < tN = T . The relation (2.4.1) gives
(
X(t j+1) − X(t j)

)
/X(t j) =(

p∑
i=1
µiφi(t j) − α ln X(t j)

) (
t j+1 − t j

)
+ σ(Bt j+1 − Bt j), this can be rewritten as(

X(t j+1) − X(t j)
) /

X(t j) = (φ1(t j), φ2(t j), . . . , φp(t j),− ln X(t j))
(
t j+1 − t j

)
θ(p)+σ(Bt j+1−Bt j),

where θ(p) = θ with dimension p, 0 = t0 < t1 < t2 < · · · < tN = T . Let Yi =

(X(ti+1) − X(ti))/X(ti), for i ∈ N[0,T ], and let

Zi(p) = (φ1(ti), φ2(ti), . . . , φp(ti),− ln X(ti))(ti+1 − ti), i ∈ N[0,T ]. (2.4.2)

Then, from the discretized version of the process in (2.4.1),

Yi = Zi(p)θ(p) + ϵi, i ∈ N[0,T ], (2.4.3)

with

ϵi = σ(Bti+1 − Bti), i ∈ N[0,T ]. (2.4.4)

Here ϵi, i = 1, 2, . . . is the error term. Note that ϵ1, ϵ2, . . . are independent with ϵi ∼

N(0, σ2(ti+1 − ti)), i = 1, 2, . . . . In passing, let us first note a relationship between the

complete sample {X(t) : 0 ⩽ t ⩽ T } and
{
X∆N (ti) : i = 0, 1, 2, . . .

}
where ln(X∆N (ti))

satisfies the Euler-Maruyama discretized version of the SDE of ln(X(t)). To this end, let

it = max{i = 0, 1, 2, · · · : ti ⩽ t} i.e. it is the maximum of integer less than or equal to t,

and suppose that X∆N (0) = X0. From Theorem 9.6.2 in [Kloeden and Platen, 1999, Page
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324], there exists a constant C, such that

sup
0⩽t⩽T
E

[∣∣∣ln X(t) − ln X∆N (it)
∣∣∣] ⩽ C√

∆N .

Let Ψ(t) = (φ(t),− ln X(t)), for T > 0, the following proposition is useful in proving

that the estimators obtained from (2.4.3) is also consistent.

Proposition 2.4.1. Suppose that Assumption 2.1-2.3, and Assumption 2.4 hold. Then,

for T > 0,

(1) E
∣∣∣∣∣∣
∣∣∣∣∣∣N−1∑
k=0
Ψ⊤(tk)Ψ(tk)(tk+1 − tk) −

∫ T

0
Ψ(t)⊤Ψ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m/2

 ⩽ K(m,∆N)O(T m/2),

(2) E
[∣∣∣∣∣∣
∣∣∣∣∣∣N−1∑
k=0
Ψ(tk)(Btk+1 − Btk) −

∫ T

0
Ψ(t)dBt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]

⩽ Cm/2 max
{
(∆N)m/2−1 3m−1

(
(α∆N)m/2 + o((∆N)m/2)

)
, (C3(∆N))m (∆N)m/2−1

}
T

where

K(m,∆N) =max
{
(C1(∆N))m/2 ,√

2m−1

(
Km
φ 3m−1 ( f (m,∆N) + o ((∆N)m)) + sup

t⩾0
E[| ln X(t)|m] (C2(∆N))m

)
,

2m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

√
3m−1( f (m,∆N) + o ((∆N)m))

 ,
and

f (m,∆N) =
(
E [| ln X0|

m] (α)m +
(
KµKφ

)m
3m

)
(∆N)m

+σm2m−1Cm/2

(
(2α)m(∆N)m + (α)m/2(∆N)m/2

)
,

with Ci(∆N) is a non decreasing function with respect of ∆N , and inf
∆N>0

Ci(∆N) = 0 for

i = 1, 2, 3.

The proof of this proposition is given in Appendix A.3. In the following, let Q[0,T ](p)

be the matrix Q[0,T ] defined in (3.3.1) and W[0,T ](p) to denote the column vector W[0,T ]
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defined in (2.3.3) with dimension p + 1. Proposition 2.4.1 implies that∥∥∥∥∥∥∥ 1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)
ti+1 − ti

−
1
T

Q[0,T ](p)

∥∥∥∥∥∥∥ +
∥∥∥∥∥∥∥ 1
√

T

∑
i∈N[0,T ]

ϵiZi(p)
ti+1 − ti

−
σ
√

T
W[0,T ](p)

∥∥∥∥∥∥∥ Lm/2

−−−−→
T→∞
∆N→0

0.

(2.4.5)

These formula constitutes a bridge between the discrete and continuous parameter es-

timation, and it plays an important role in proving the main result of this chapter by

using the Schwartz Information Criterion. As in Le Breton [1976], one can approxi-

mate logL([0,T ], θ) by

logLN([0,T ], θ) =
1
σ2

N−1∑
k=0

S (θ, tk, X(tk))
X2(tk)

(X(tk+1) − X(tk))−
1

2σ2

N−1∑
k=0

S 2(θ, tk, X(tk))
X2(tk)

(tk+1−tk).

Proposition 2.4.1 is useful in proving that logLN([0,T ], θ) is a good approximation for

logL([0,T ], θ). This is established in the following corollary.

Corollary 2.4.1. Suppose Θ0 is a compact subset of the parameter space Θ. Then,

E
[
||logLN([0,T ], θ) − logL([0,T ], θ)||m/2

]
⩽ 2m/2−1M0K(m,∆N)O(T m/2) + 2m/2−1M0×√

Cm/2 max
{
(∆N)m/2−1 3m−1 (

(α∆N)m/2 + o((∆N)m/2)
)
, (C3(∆N))m (∆N)m/2−1

}
T

where K(m,∆N) and f (m,∆N) are defined as in Proposition 2.4.1 and M0 is a positive

constant.

The proof of this corollary is given in Appendix A.1. Based on Corollary 2.4.1, the

following Schwartz information based criterion function with penalty term is proposed:

IC(p) = −2logLN([0,T ], θ̂T (p)) + (p + 1)log(N). (2.4.6)

For short, let θ̂(p) be θ̂T with dimension p, by the Riemann sum approximation of

(2.3.1), IC(p) = −2
(
logLN([0,T ], θ̂T (p))

)
+ (p + 1)log(N). This gives

IC(p) = −2

 1
2σ2

∑
i∈N[0,T ]

1
ti+1 − ti

(
−(Yi − Zi(p)θ̂(p))2 + (Yi)2

) + (p + 1)log(N). Yi =
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Zi(p)θ(p) + ϵi implies that

IC(p) = −2

 1
2σ2

 ∑
i∈N[0,T ]

(Yi)2

ti+1 − ti
−

∑
i∈N[0,T ]

(
Zi(p)θ(p) + ϵi − Zi(p)θ̂(p)

)2

ti+1 − ti


+(p+1)log(N).

Suppose that p0 is the exact value of the number of the base functions in the SDE

(2.2.1). To compare the value of IC(p0) and IC(p) for p , p0, first, the following six

useful propositions are proven.

Proposition 2.4.2. If Assumption 2.1-2.4 hold, then
1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti) is a positive definite matrix for T ⩾ 1. Further,

1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti)
Lm/2

−−−−→
T→∞
∆N→0

Σ.

The proof of this proposition is given in Appendix A.1. Let γ1(T ) be the smallest

eigenvalue of matrix
1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1− ti) and let γ1 be the smallest eigenvalue

of the matrix Σ. The following corollary gives the convergence of the eigenvalue γ1(T ).

Corollary 2.4.2. If Assumption 2.1-2.4 hold, then, γ1(T )
P
−−−−→
T→∞
∆N→0

γ1.

Proof. The proof follows directly from Lemma A.5 in Appendix A.2. □

For the situation of unknown p, first, some notations related to p are given. Let p∗ be

a positive integer, which is less than p0 and let p∗ be a positive integer, which is greater

than p0. Let θ̂(p∗+) = (µ̂1, µ̂2, · · · , µ̂p∗ , 0p∗+1, · · · , 0p0 , α̂)⊤. The following Lemma is

derived, which is useful in proving that the log-likelihood-based information criterion

IC(p) reaches its minimum value at the exact dimension p0. Proposition 2.3.5 gives

the limiting distribution of the vector random process 1
√

T
W[0,T ](p). In the following

proposition, it is proven that, for some 0 < a∗ < a/2,
(

1
√

T
||W[0,T ](p)||

)
/
(
loga∗(T )

)
is

bounded in probability. This is another result which plays an important role in proving

that the log-likelihood-based information criterion IC(p) reaches its minimum value at

the exact dimension p0.



2.4 Inference in the case where p is unknown 35

Proposition 2.4.3. If Assumption 2.1-2.3, and Assumption 2.4 hold, then, for some 0 <

a∗ < a/2, for each p ⩾ 1,

1
√

T
||W[0,T ](p)|| = Op(loga∗(T )) and

1
T
||W[0,T ](p)||2 = Op(log2a∗T ). (2.4.7)

The proof of this proposition is provided in Appendix A.3. The following proposi-

tion shows that, for some 0 < a∗ < a/2,
(

1
√

T

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi(p)/(ti+1 − ti)

∣∣∣∣∣∣
∣∣∣∣∣∣
) / (

loga∗(T )
)

is

bounded in probability, which play the same role as Proposition 2.4.3.

Proposition 2.4.4. If Assumption 2.1-2.3, and Assumption 2.4 hold, then, for some 0 <

a∗ < a/2, for each p ⩾ 1

1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi(p)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op(loga∗(T)). (2.4.8)

The proof of this proposition is given in Appendix A.1. Based on the previous

propositions and lemmas, below, the main result of this subsection is derived. The fol-

lowing proposition shows that the Schwartz information criterion reaches its minimum

value at the exact parameter dimension p0 and it shows that the estimator obtained from

the criterion is consistent. Let p̂ = arg min
p∈N

IC(p).

Proposition 2.4.5. If Assumption 2.1-2.4 hold, then, lim
T→∞
∆N→0

P(IC(p0) < IC(p)) = 1, for 1 ⩽

p , p0 and p̂ − p0
P
−−−−→
T→∞
∆N→0

0.

The proof of this proposition is given in Appendix A.1. Next proposition shows

that the proposed method improves the goodness-of-fit. For the partition 0 = t0 <

t1 < t2 < · · · < tN−1 < tN = T , let φ p̂(ti) =
(
φ1(ti), φ2(ti), · · · , φp̂(ti)

)
and φp0(ti) =(

φ1(ti), φ2(ti), · · · , φp0(ti)
)
. For p̂ > p0, an auxiliary vector φp0+(ti) = (φ1(ti), φ2(ti), · · · ,

φp0(ti), 0, · · · , 0 p̂) is constructed. For p̂ < p0, the auxiliary vector φp̂+(ti) = (φ1(ti), φ2(ti),
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· · · , φp̂(ti), 0, · · · , 0p0) is introduced. The auxiliary vectors are constructed without

changing their norms and directions, they are just put into another vector space with

different dimensions. From Proposition A.1-Corollary A.2, the established result shows

that the proposed method improves the goodness-of-fit. To this end, let SSE(p) be the

sum of squared error of the SIC (2.4.6) with dimension parameter p.

Proposition 2.4.6. If Assumption 2.1-2.4 hold, then, ∀ p , p0,

lim
T→∞
∆N→0

P
(

1
N

(SSE(p) − SSE( p̂)) ⩾ 0
)
= 1.

The proof of this proposition is given in Appendix A.1. In other words, Propo-

sition 2.4.6 shows, as T is large and ∆N is arbitrary small, that SSE(p) achieves its

minimum value at p̂ which indicates that the goodness-of-fit is the highest when the

value of p is taken as p̂.

2.4.2 The case of a possible unknown change-point

This subsection considers the case where both the location of change point t∗ and

the number of base functions p are unknown. To determine the estimators of p and t∗,

the SIC information criterion which is used in Section 2.4.1 is slightly modified. As in

the case of no change-point, let

Yi = (X1(ti+1) − X1(ti))/X1(ti)Iti∈[0,sT ] + (X2(ti+1) − X2(ti))/X2(ti)Iti∈(st,T ]

for i ∈ N[0,T ], and let

Zi(p) =
(
Z⊤1i(p),Z⊤2i(p)

)⊤ with, Z′ki(p) = (φ1(ti), φ2(ti), . . . , φp(ti),− ln Xk(ti)(ti+1− ti),

(2.4.9)

for k = 1, 2, i ∈ N[0,T ]. From the discretized version of the process in (2.3.12),

Yi = Zi(p)θ(p) + ϵi, i ∈ N[0,T ], (2.4.10)
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with θ(p) = θ with dimension 2(p+1), and ϵi the error term given by (2.4.4). Obviously,

ϵ1, ϵ2, ϵ3, . . . are independent with ϵi ∼ N(0, σ2 (ti+1 − ti)), i ∈ N[0,T ]. More precisely,

in this case, the most appropriate model is the one that minimises the log-likelihood-

based information criterion given by

IC(c, p) = −2logLN(t̂∗, [0,T ], θ̂T (s)) + (c + 1)h(p)Φ(T ) (2.4.11)

where, p is the dimension of φ(t), h(p) is the function of the parameter p, Φ(T ) is a

non-decreasing function of T , c = 0 or 1 is the number of change-point in the process

(2.3.12), the function logLN(t̂∗, [0,T ], θ̂T ) is the Riemann sum approximation of the

log-likelihood function logL(t̂∗, [0,T ], θ̂T ) which is defined in (2.3.17), and t̂∗ is given

by

t̂∗ = arg max
t∗

(logLN(t∗, [0,T ], θ̂T (s))), (2.4.12)

for a fixed value of p. Let c0 = 0, or 1, represents the exact number of change-point and

p0 is the true value of the parameter p. The primary result of this subsection is that SIC

(2.4.11) reaches its minimum at the value p = p0, c = c0. Let c0 = 0, or 1, represent the

exact number of change-point and p0 is the true value of the parameter p. Note that, for

a known p0, the restriction (2.3.14) and p = p0 lead to the following hypothesis testing

problem:

H0 : M̃(c, p)θ = r̃ and p = p0 versus H1 : M̃(c, p)θ , r̃ or p , p0 (2.4.13)

M̃(c, p) is q × (c + 1)(p + 1) full rank matrix with q < (c + 1)(p + 1), r is a known

q-column vector. The matrix M̃(c, p) has known components but unknown number of

column. Let s0 be the exact location of the change-point, and ŝ is an estimator of s0.

Before estimating the dimension p, first, the following proposition is proven, which
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shows that ŝ is a consistent estimator of s0.Furthermore, let

Z1i(p) =



(φ1(ti), φ2(ti), . . . , φp(ti),− ln X1(ti)(ti+1 − ti), if i ∈ N[0, ŝT ] and ŝ < s,

(φ1(ti), φ2(ti), . . . , φp(ti),−
(
ln X1(ti)I{i∈N[0,sT ]}

+ ln X2(ti)I{i∈N[sT,ŝT ]}
)

(ti+1 − ti), if i ∈ N[0, ŝT ] and ŝ > s,

and

Z2i(p) =



(φ1(ti), φ2(ti), . . . , φp(ti),− ln X2(ti)(ti+1 − ti), if i ∈ N[ŝT,T ] and ŝ > s,

(φ1(ti), φ2(ti), . . . , φp(ti),−
(
ln X1(ti)I{i∈N[ŝT,sT ]}

+ ln X2(ti)I{i∈N[sT,T ]}
)

(ti+1 − ti), if i ∈ N[ŝT,T ]] and ŝ < s.

LetZi(p) = (Z⊤1i(p),Z⊤2i(p))⊤.

Proposition 2.4.7. Suppose that Assumption 2.1-2.3, and Assumption 2.4 hold and the

shift in the drift parameters is of fixed non zero magnitude independent of T . Then,

ŝ − s0 P
−−−−→
T→∞
∆N→0

0.

The proof is given in proposition A.1. In Appendix A.3, Lemma A.6-Lemma A.7

are established, which show that 1
√

T
W[0,ŝT ](p) − 1

√
T

W[0,sT ](p)
P
−−−−→
T→∞

0. Together with

Proposition A.18 in Appendix A.3 imply that θ̂T (ŝ)
a.s.
−−−−→
T→∞

θ. Further, this result with

Proposition 2.3.18 gives

θ̂T (ŝ) − θ̂T (s)
a.s.
−−−−→
T→∞

0. (2.4.14)

The following proposition is a remarkable result, which shows that the improved

Schwartz information criterion reaches its minimum value at the point (c0, p0). Let

(p̂, ĉ) = arg min
c∈{0,1},p∈N+

IC(c, p).

Proposition 2.4.8. If Assumption 2.1-2.3, and Assumption 2.4 hold, then,

lim
T→∞

P(IC(c0, p0) > IC(c, p)) = 0, for anyc , c0orp , p0. (2.4.15)
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Further,

p̂ − p0
P
−−−−→
T→∞
∆N→0

0, ĉ − c0 P
−−−−→
T→∞
∆N→0

0.

The proof of this result is given in Appendix A.1. To conclude this subsection, the

hypothesis testing problem in (2.4.13) is tackled. The following set of local alternatives

restrictions is under consideration:

Hã,T : M̃(c, p)θ − r̃ =
r̃0
√

T
,T > 0, (2.4.16)

where M̃(c, p) is a q × (c + 1)(p + 1) full rank matrix with known elements and q <

(c+1)(p+1), r is a known q column vector. From the testing problem (2.4.13) and from

the local alternative restrictions (2.4.16), to study the asymptotic normality of θ̃T (s),

define

Σ̃c(p) =


Σ(p), i f c = 0

Σ̃(p), i f c = 1,
Qc(s,T, p) =


Q[0,T ](p), i f c = 0

Q(s,T, p), i f c = 1,

where Σ(p) is, as defined in (2.3.6), a size (p+1)× (p+1)-matrix and Σ̃(p) is, as defined

in (2.3.20), 2(p + 1) × 2(p + 1)-matrix. Let

∆ =
1
σ2 r̃⊤0

(
M̃(c, p)Σ̃−1

c (p)M̃⊤(c, p)
)−1

r̃0, (2.4.17)

Γ(c, p) =
1
σ2 M̃⊤(c, p)

(
M̃(c, p)Σ̃−1

c (p)M̃⊤(c, p)
)−1

M̃(c, p),

Γ̂(c, p) =
1

σ̂2
M̃⊤(c, p)

(
M̃(c, p)T Q−1

c (s,T, p)M̃⊤(c, p)
)−1

M̃(c, p).
(2.4.18)

Let θ̃T (ŝ, ĉ, p̂), θ̂T (ŝ, ĉ, p̂) be the UMLE and RMLE of θ based on the estimation of s, c

and p. Let G̃[0,T ](ŝ, ĉ, p̂) = Q−1
ĉ (ŝ,T, p̂)M̃⊤(ĉ, p̂)

(
M̃(ĉ, p̂)Q−1

ĉ (ŝ,T, p̂)M̃⊤(ĉ, p̂)
)−1

. As in

Proposition 2.3.15,

θ̃T (ŝ, ĉ, p̂) = θ̂T (ŝ, ĉ, p̂) − G̃[0,T ](ŝ, ĉ, p̂)
(
M̃(ĉ, p̂)θ̂T (ŝ, ĉ, p̂) − r̃

)
. (2.4.19)

Let G̃∗(c0, p0) = Σ̃−1
c0 (p0)M̃⊤(c0, p0)

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

. Before construct-

ing the statistics of the testing problem (2.4.13), the following proposition is presented.
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To introduce some notations, let ς̃ ∼ N(c0+1)(p0+1)

(
G̃∗(c0, p0)r̃0, σ

2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

)
,

ς̃0 ∼ N(c0+1)(p0+1)

(
0, σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
, ψ(s, c0, p0) = ς̃⊤Γ(c0, p0)ς̃,

ψ0(s, c0, p0) = ς̃⊤0 Γ(c
0, p0)ς̃0, and let

ς̃T (ŝ, ĉ, p̂) =
√

T (θ̂(ŝ, ĉ, p̂) − θ̃(ŝ, ĉ, p̂)), ψ̃T (ŝ, ĉ, p̂) = ς̃⊤T (ŝ, ĉ, p̂)Γ̂(ĉ, p̂)ς̃T (ŝ, ĉ, p̂).

(2.4.20)

The following presented proposition is useful in solving the testing problem in (2.4.13).

Proposition 2.4.9. If Assumption 2.1-2.3, and Assumption 2.4 hold, then, if r̃0 , 0,

ψ̃T (ŝ, ĉ, p̂)
D
−−−−→
T→∞

ψ(s, c0, p0) ∼ χ2
q(∆). If r̃0 = 0, then, ψ̃T (ŝ, ĉ, p̂)

D
−−−−→
T→∞

ψ0(s, c0, p0) ∼ χ2
q.

The proof is given in Appendix A.1. In this case, the null hypothesis in (2.4.13) is

tested by using the rejection region ψ̃T (ĉ, p̂) > χ2
α;q for a given α, i.e. the suggested test

is

κ̃T (ŝ, ĉ, p̂) = I{ψ̃T (ĉ,p̂)>χ2
α;q}

(2.4.21)

From Proposition 2.3.8, below, the asymptotic power of the proposed test is established.

Proposition 2.4.10. If Assumption 2.1-2.3, and Assumption 2.4 hold, then, the asymp-

totic power function of the test in (2.4.21) is given by Π(∆) = P
(
χ2

q(∆) ⩾ χ2
α;q

)
.

Proof. The proof follows directly from Proposition A.11 and Proposition 2.4.9. □

2.5 Shrinkage estimators and comparison between esti-

mators

This section presents shrinkage estimators (SEs) which combine in an optimal way

the UMLE and the RMLE. As frequently noticed in constrained inference, if the restric-

tion is not correct, the UMLE performs better than the RMLE while if the restriction
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holds, the RMLE dominates the UMLE. However, more often than not, it is not possi-

ble to be totally sure about the validity of the restriction. Thus, it is important to derive

a statistical method which is robust with respect to the restriction. The SEs have the

advantage of preserving a very good performance regardless of the validity of the re-

striction. Nevertheless, since the dimensions of the UMLE and the RMLE are random,

the derivation of shrinkage estimators as well as their relative efficiency do not follow

from the results in classical literature. In particular, the following class of shrinkage

type estimators are under consideration

θ̂s
T (ŝ, ĉ, p̂) = θ̃T (ŝ, ĉ, p̂) + γ

(
T

∣∣∣∣∣∣θ̂T (ŝ, ĉ, p̂) − θ̃T (ŝ, ĉ, p̂)
∣∣∣∣∣∣2
Γ̂

) (
θ̂T (ŝ, ĉ, p̂) − θ̃T (ŝ, ĉ, p̂)

)
(2.5.1)

where ||x||2A = trace
(
x⊤Ax

)
given x is a column vector, γ is continuous real-valued func-

tion on (0,+∞) and Γ̂ is defined in (2.4.18). It is obvious that if γ(x) = 0, θ̂s
T (ŝ, ĉ, p̂) =

θ̂s+
T (ŝ, ĉ, p̂) = θ̃T (ŝ, ĉ, p̂), if γ(x) = 1, θ̂s

T (ŝ, ĉ, p̂) = θ̂s+
T (ŝ, ĉ, p̂) = θ̂T (ŝ, ĉ, p̂). As an ex-

ample, if γ(x) = 1 − q−2
x , with 3 ⩽ q = rank(M̃(ĉ, p̂)) < (ĉ + 1)(p̂ + 1). The shrinkage

estimators (SEs) is given as

θ̂sh
T (ŝ, ĉ, p̂) = θ̃T (ŝ, ĉ, p̂) +

(
1 − (q − 2)ψ̃−1

T

) (
θ̂T (ŝ, ĉ, p̂) − θ̃T (ŝ, ĉ, p̂)

)
, (2.5.2)

where ψ̃T is defined in (2.4.20). To avoid an over-shrinking problem, by taking γ(x) =

[1 − q−2
x ]+, x > 0, the positive-part shrinkage estimator (PSE) is given as

θ̂sh+
T (ŝ, ĉ, p̂) = θ̃T (ŝ, ĉ, p̂) +

[
1 − (q − 2)ψ̃−1

T

]+ (
θ̂T (ŝ, ĉ, p̂) − θ̃T (ŝ, ĉ, p̂)

)
. (2.5.3)

As commonly the case in large sample-point estimation, to study the relative efficiency

of the proposed estimators, the criterion known as Asymptotic Distributional Risk (ADR)

is used. For the convenience of the reader, first this concept is recalled. The Asymptotic

Distributional Risk (ADR) of an estimator θ̂0(ŝ, ĉ, p̂) is defined as

ADR
(
θ̂0(ŝ, ĉ, p̂), θ;Ω

)
= E[(ε⊤Ωε)] (2.5.4)
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where ε is a random vector such that
√

T (θ̂0(ŝ, ĉ, p̂)−θ)⊤
√

T (θ̂0(ŝ, ĉ, p̂)−θ)I{ĉ=c0,p̂=p0}

D
−−−−→
T→∞

ε⊤ε, and Ω is a (c0 + 1)(p0 + 1) × (c0 + 1)(p0 + 1)-positive symmetric semi-definite

weighting matrix. It should be noticed that the concept of the ADR used here is slightly

different to that used for example in Saleh [2006], Nkurunziza and Zhang [2018] and

Nkurunziza [2012] among others. Indeed, in the quoted papers, the dimensions of the

proposed estimators are nonrandom while in this chapter, the dimensions of the pro-

posed estimators are random. Under the criterion in (2.5.4), the following proposition

is derived, which shows that, near the restriction, the RMLE dominates the UMLE

while the UMLE is better than the RMLE as one moves far away from the restric-

tion. Let Λ = Σ̃−1
c0 (p0) − G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0). Let λmin, λmax be the smallest and

largest eigenvalues of the matrix
(
G̃∗⊤(c0, p0)ΓG̃∗(c0, p0)

)−1
G̃∗⊤(c0, p0)ΩG̃∗(c0, p0), re-

spectively.

Proposition 2.5.1. If Assumption 2.1-2.3, and Assumption 2.4 along with the set of local

alternatives in (2.4.16) hold,

1. i f ∆ ⩽ σ2trace(ΩG̃∗(c0, p0)M̃(c0, p0)Σ−1
c0 (p0))/λmax, then,

ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
⩽ ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
;

2. i f ∆ ⩾ σ2trace(ΩG̃∗(c0, p0)M̃(c0, p0)Σ−1
c0 (p0))/λmin, then,

ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
⩾ ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
.

The proof of this proposition is given in Appendix A.4. The following proposition

indicates that the SEs dominate the UMLE. Further, it shows that PSE dominates the

SEs.

Proposition 2.5.2. If Assumption 2.1-2.3, and Assumption 2.4 along with the local al-
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ternative restriction (2.4.16) hold, then,

ADR
(
θ̂sh+

T (ŝ, ĉ, p̂), θ,Ω
)
⩽ ADR

(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
⩽ ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
,

for all ∆ ⩾ 0, provided 2σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
⩾ (q + 2)λmax.

The proof of this proposition is given in Appendix A.4.

2.6 Simulation study and real dataset

In this section, Monte-Carlo simulation technique is used to evaluate the perfor-

mance of the proposed method. The proposed method is also applied to a real data set.

In particular, the gold spot historical price dataset is analized.

Several cases have been explored but, in order to save the space of this chapter,

here only the results obtained from the case where there is 1 change-point with p = 2 is

reported. The GEOU process is generatedby the same trigonometric orthogonal function

system.

1. If p = 1, the basis is {1}.

2. If p = 2, the basis is {1,
√

2 cos(ωt)}.

3. If p is odd and greater than 2, the basis is given as{
1,
√

2 cos(ωt),
√

2 sin(ωt), · · · ,
√

2 cos
(

p − 1
2

ωt
)
,
√

2 sin
(

p − 1
2

ωt
)}
.

4. If p is even and greater than 2, the basis is given as{
1,
√

2 cos(ωt),
√

2 sin(ωt), · · · ,
√

2 cos
(

p − 2
2

ωt
)
,
√

2 sin
(

p − 2
2

ωt
)
,
√

2 cos
( p

2
ωt

)}
.

where ω = 2π.
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2.6.1 Simulation with no change point case

Specifically, for the case where p = 4, set θ = (3, 1, 2, 1, 1)′ and to specify the re-

striction, let M = [03×1
... I3

... 03×1]. Under the restriction, by using the proposed

method, the point estimates of UMLE, the RMLE and the SEs are computed, as well as

the standard error of each estimate. The obtained numerical results are reported in Ta-

ble 2.1-Table 2.2 for the cases where T = 35 and T = 50. Overall, the simulation results

show that as the time horizon T increases, the estimators are closer to the exact value

of pre-assigned coefficients. Also, as the time horizon increases, the standard errors are

getting smaller as T increases. Figure 2.1 gives the histogram of the estimators when

Table 2.1: Mean and standard deviation of estimators of drift parameters (T=35)
Parameters µ1 µ2 µ3 µ4 α

UMLE
3.0112 0.9977 2.0009 0.9982 1.0038

(0.2534) (0.0303) (0.0239) (0.0172) (0.0858)

RMLE
2.9924 1.0000 2.0000 1.0000 0.9974

(0.1199) (0.3945e-16) (0.6365e-16) (0.0000) (0.0403)

SEs
2.9887 1.0008 1.9999 0.9994 0.9962

(0.2614) (0.0324) (0.0222) (0.0164) (0.0884)

PSEs
3.0004 0.9991 2.0005 0.9993 1.0001

(0.0163) (0.0152) (0.0124) (0.0087) (0.0561)

Table 2.2: Mean and standard deviation of estimators of drift parameters (T=50)
Parameters µ1 µ2 µ3 µ4 α

UMLE
2.9963 0.9999 1.9999 0.9998 0.9987

(0.2344) (0.0265) (0.0208) (0.0144) (0.0793)

RMLE
2.9935 1.0000 2.0000 1.0000 0.9978

(0.1080) (0.4715e-16) (0.6365e-16) (0.0000) (0.0366)

SEs
3.0062 0.9999 2.0031 1.0009 1.0021

(0.2369) (0.0285) (0.0217) (0.0148) (0.0800)

PSEs
2.9991 1.0003 2.0016 1.0007 0.9997

(0.1499) (0.0135) (0.0106) (0.0075) (0.0507)

T = 50. The portray given by Figure 2.1 is consistent with the result given by Proposi-

tion 3.3.11. Indeed, the histograms seem quite symmetric concerning the pre-assigned

values. Kolmogorov–Smirnov test is performed on the UMLE at T = 50, which cor-
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roborates the fact that UMLE is asymptotically normal. The data under the alternative

Figure 2.1: The histogram of estimators of GEOU model with no change point at T =
50

hypothesis is also generated. To this end, set r0 = 0.12kr, k = 1, 2, 3, 4, 5, 6. Compute

∆ as ∆ = 1
σ2 r⊤0 (MΣ−1M⊤)−1r0 and the Relative Mean Square Error (RMSE). For the

cases where T = 35 and T = 50, the variation of the RMSE versus the non-centrality

parameter is given by Figure 2.2 and Figure 2.3. These figures give a portray which

confirms the theoretical result given in Proposition 3.5.3. Indeed, for each time horizon

T , the plots of the RMSE versus the non-centrality parameter show that, near the null

hypothesis, the RMLE has the best performance among all the four types of proposed

estimators. However, as one moves far away from the null hypothesis, SEs dominate

the RMLE. Further, the numerical findings confirm that the SEs are better than UMLE.

The results for the case where p = 4, with the time horizon T = 35, T = 50, and T = 50

are reported. The obtained point estimates and their standard errors are reported in Ta-
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ble 2.1 and Table 2.2 and the variation of the RMSE versus the non-centrality parameter

is given by Figure 2.2 and Figure 2.3.

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

R
M

S
E

RMSE-UMLE

RMSE-RMLE

RMSE-SE

RMSE-PSE

Figure 2.2: The RMSE of the estimator versus ∆ (T = 35)

The proposed method is also applied to estimate the parameter dimension p. From

500 iterations, te the cumulative frequency (CF) and the relative frequency (RF) are

computed, which are defined as CF =
500∑
i=1
I{ p̂i=p}, RF = 1

500

500∑
i=1
I{ p̂i=p}×100%, respectively.

The obtained results, for the cases where T = 20, 35, 50 and T = 80, are shown in Ta-

ble 2.3. To highlight the performance of the proposed test, see the reports in Figure 2.8-

Table 2.3: Cumulative frequency (CF) and the relative frequency (RF) of p̂
Time T = 20 T = 35 T = 50 T = 80
CF 499 500 500 500
RF 99.80% 100% 100% 100%

Figure 2.10 the variation of the empirical power versus the noncentrality parameter ∆

under different significant level with T = 80. Let M = [02×1
... I2], when p = 2; Let

M = [02×1
... I2

... 02×1], when p = 3; Let M = [04×1
... I4

... 04×1], when p = 5 and Let

M = [05×1
... I5

... 05×1], when p = 6. ∆ was calculated with r0 = 0.04kr, k = 1, 2, 3, 4, 5, 6.
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Figure 2.3: The RMSE of the estimator versus ∆ (T = 50)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
E

RMSE-UMLE

RMSE-RMLE

RMSE-SE

RMSE-PSE

Figure 2.4: The RMSE of the estimator versus ∆ (T = 80)
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Figure 2.5: The empirical power of the test with different ∆ and p (T = 20, α = 0.1)
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Figure 2.6: The empirical power of the test with different ∆ and p (T = 20, α = 0.05)
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Figure 2.7: The empirical power of the test with different ∆ and p (T = 20, α = 0.025)

Figures 2.8- 2.10 indicate that the power of the test is the highest when p takes its exact

value, i.e. if p = 4.

2.6.2 Simulation with one unknown change point

In this subsection, the simulation results are presented. Several cases have been

explored but, in order to save the space of this chapter, here the results obtained from

the case where there is 1 change-point with p = 2 is reported. In particular, for p = 2,

the GEOU process is given by:

dX(t) =
2∑

i=1

(
µi1 + µi2

√
2 cos (2πt) − αi ln X(t)

)
X(t)I{t∗i−1⩽t⩽t∗i }dt + σX(t)dWt. (2.6.1)

where t∗0 = 0 and t∗2 = T and t∗1 is the given change-point. To carry out the simulations,

the pre-assigned value is t∗1 = 0.5T . The pre-assigned values for the drift parameter is

θ = (0.5, 0.5, 1, 2, 1, 2)⊤. Let M̃ =
[
−I3, I3

]
. Under the restriction M̃θ = 0, the UMLE,

the RMLE, the SEs, and their standard deviation within parentheses are reported in

Table 2.4-Table 2.7. The results in Table 2.4-Table 2.7 show that, the time horizon T
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Figure 2.8: The empirical power of the test (T = 80, α = 0.025)
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Figure 2.9: The empirical power of the test (T = 80, α = 0.05)
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Figure 2.10: The empirical power of the test (T = 80, α = 0.1)

increases, the estimators are closer to the exact value of pre-assigned coefficients. This

can also been seen from the fact that, the standard errors are getting smaller as T in-

creases. To show the advantage of the RMLE while the restriction, r = M̃θ, is correct,

in Table 2.8 the Relative Mean Squared Error (RMSE) under this null hypothesis is

reported. The numerical results given in Table 2.8 show that the RMLE has the best

performance among all the four types of proposed estimators. This confirms the theo-

retical conclusion given in Proposition 3.5.3. Further, Table 3.5 shows that the SEs are

better than UMLE, which is in agreement with the theoretical result given in Proposi-

tion 2.5.2. In Figure 2.11 the histogram of the estimates when T = 80 is reported. In

order to save the space of this chapter, the histograms corresponding to the cases where

T = 20, 35, 50 are not reported here but they have a similar visual portray.

Furthermore, by using the SIC (2.4.11), the dimension p and the number of change-

point c are estimated. To estimate these parameters, the value of T needs to be larger

than the ones used for the cases where these parameters are known. Let ∆N = 1/100 and

from 500 iterations, compute the cumulative frequency (CF) and the relative frequency
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Table 2.4: Mean and standard deviation of estimators of drift parameters (T=80)
Parameters µ11 µ12 α1 µ21 µ22 α2

UMLE
0.5436 0.5009 1.0907 2.0983 1.0026 2.0961

(0.1188) (0.0337) (0.2400) (0.3049) (0.0352) (0.3065)

RMLE
0.2339 0.7068 0.2751 0.2339 0.7068 0.2751

(0.0269) (0.0226) (0.0324) (0.0269) (0.0226) (0.0324)
SEs 0.5400 0.5033 1.0813 2.0767 0.9992 2.0750

(0.1176) (0.0337) (0.2376) (0.3021) (0.0353) (0.3036)
PSE 0.5400 0.5033 1.0813 2.0767 0.9992 2.0750

(0.1176) (0.0337) (0.2376) (0.3021) (0.0353) (0.3036)

Table 2.5: Mean and standard deviation of estimators of drift parameters (T=50)
Parameters µ11 µ12 α1 µ21 µ22 α2

UMLE
0.5508 0.5018 1.1231 2.1334 1.0060 2.1362

(0.1343) (0.0412) (0.2876) (0.3762) (0.0455) (0.3855)

RMLE
0.2474 0.7092 0.2864 0.2474 0.7092 0.2864

(0.0336) (0.0277) (0.0415) (0.0336) (0.0277) (0.0415)
SEs 0.5454 0.5055 1.1082 2.0998 1.0008 2.1033

(0.1324) (0.0412) (0.2834) (0.3712) (0.0457) (0.3803)
PSE 0.5454 0.5055 1.1082 2.0998 1.0008 2.1033

(0.1324) (0.0412) (0.2834) (0.3712) (0.0457) (0.3803)

Table 2.6: Mean and standard deviation of estimators of drift parameters (T=35)
Parameters µ11 µ12 α1 µ21 µ22 α2

UMLE
0.5732 0.5011 1.1693 2.1756 1.0056 2.1793

(0.1628) (0.0480) (0.3480) (0.4401) (0.0536) (0.4453)

RMLE
0.2673 0.7042 0.3030 0.2673 0.7042 0.3030

(0.0420) (0.0320) (0.0522) (0.0420) (0.0320) (0.0522)
SEs 0.5656 0.5062 1.1477 2.1279 0.9982 2.1324

(0.1595) (0.0479) (0.3406) (0.4327) (0.0538) (0.4377)
PSE 0.5656 0.5062 1.1477 2.1279 0.9982 2.1324

(0.1595) (0.0479) (0.3406) (0.4327) (0.0538) (0.4377)

Table 2.7: Mean and standard deviation of estimators of drift parameters (T=20)
Parameters µ11 µ12 α1 µ21 µ22 α2

UMLE
0.5886 0.5032 1.3213 2.2598 1.0088 2.2674

(0.2182) (0.0654) (0.4708) (0.5239) (0.0683) (0.5401)

RMLE
0.3134 0.7119 0.3425 0.3134 0.7119 0.3425

(0.0665) (0.0444) (0.0844) (0.0665) (0.0444) (0.0844)
SEs 0.6263 0.5112 1.2839 2.1840 0.9974 2.1924

(0.2122) (0.0651) (0.4570) (0.5107) (0.0685) (0.5259)
PSE 0.6263 0.5112 1.2839 2.1840 0.9974 2.1924

(0.2122) (0.0651) (0.4570) (0.5107) (0.0685) (0.5259)
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Table 2.8: RMSE under Mθ = (−1.5,−0.5,−1.0)⊤

T = 20 T = 35 T = 50 T = 80
RMSE-UMLE 1.0000 1.0000 1.0000 1.0000
RMSE-RMLE 11.4757 14.0767 13.5212 13.2343

RMSE-SEs 1.8814 1.9196 1.8649 1.8399
RMSE-PSE 2.0238 2.2341 2.1221 2.1852

Figure 2.11: The histogram of estimators of GEOU model with one change point at
T = 80
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(RF) which are defined as CF =
500∑
i=1
I{ĉi=c,p̂i=p}, RF = 1

500

500∑
i=1
I{ĉi=c, p̂i=p} × 100%. The

obtained results, for the cases where T = 20, 35, and T = 50, are shown in the 3-D

histograms (Figure 2.12-Figure 2.14) and Table 2.9. The results also show that RF is

increasing to 1 as T tends to infinity.

Table 2.9: Cumulative frequency (CF) and the relative frequency (RF) of (ĉ, p̂)
Time T = 20 T = 35 T = 50 T = 80
CF 432 487 493 494
RF 86.40% 97.4% 98.6% 98.8%

Figure 2.12: The histogram of the estimator of (ĉ, p̂) (T = 20)

The behaviour of the empirical power of the proposed test versus different dimension

p is analyzed. For p = 1, let M̃ =

[
−I2, I2

]
, and θ = (0.5, 1, 2, 2). For p = 2, let

M̃ =
[
−I3, I3

]
, and θ = (0.5, 0.5, 1, 2, 1, 2). For p = 3, let M̃ =

[
−I4, I4

]
, and θ =

(0.5, 0.5, 0, 1, 2, 1, 0, 2). Let M̃θ = r be the restrictions. To calculate ∆, let r0 = 0.75kr,

k = 1, 2, 3, 4, 5, 6 and to highlight the performance of the proposed test, in Figure 2.15-

Figure 2.17 the variation of the empirical power versus the noncentrality parameter ∆

under different significant level with T = 20 are reported. Figure 2.15- Figure 2.17
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Figure 2.13: The histogram of the estimator of (ĉ, p̂) (T = 35)

Figure 2.14: The histogram of the estimator of (ĉ, p̂) (T = 50)
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indicate that the power of the test is the highest when p takes its exact value, i.e. if

p = 2. Figure 2.15- Figure 2.17 also show that the empirical power tends to 1 as ∆
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Figure 2.15: The empirical power of the test with different ∆ and p (T = 20, α = 0.025)

increases to infinity. All figures show that, as T increases to infinity, the empirical power

also increases to 1 and they confirm that the proposed test is consistent. Further, from

Figure 2.15- Figure 2.17, the empirical power takes the maximum value at p = 2.

Furthermore, the performance of the UMLE, the RMLE and the SEs are evaluated.

By 500 replications, calculate the mean squared error of each estimator according to dif-

ferent non-centrality parameter with a nonnegative weighting matrix Ω = I6. To specify

the restriction (2.3.14), let M̃ =
[
I3, −I3

]
, and r = M̃θ, where the pre-assigned param-

eter θ = (0.5, 0.5, 1, 2, 1, 2)⊤. Evaluate the relative mean squared efficiency (RMSE) of

each estimator which is given by

RMSE(θ̂0) = ADR(θ̂T , θ,Ω)/ADR(θ̂0, θ,Ω) (2.6.2)

where θ̂0 represents an estimator such as θ̃T , θ̂sh
T , θ̂sh+

T and θ̂T . To generate the data under

the alternative hypothesis (2.3.23), let r0 = 0.75kr, k = 1, 2, 3, 4, 5, 6. Compute ∆ as
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Figure 2.16: The empirical power of the test with different ∆ and p (T = 20, α = 0.05)
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Figure 2.17: The empirical power of the test with different ∆ and p (T = 20, α = 0.1)
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∆ = 1
σ2 r⊤0 (M̃Σ−1M̃⊤)−1r0. From Figure 3.2 to Figure 3.3, near ∆ = 0, RMLE has the

best performance, which means that near the null hypothesis, RMLE is more efficient

than the UMLE, SEs and PSE. These figures also indicate that the efficiency of RMLE

decreases as one moves far away from the restriction. Its performance tends to be the

worst as ∆ tends to infinity. Furthermore, such figures also show that PSE is always

more efficient than SEs, which confirms Proposition 2.5.2. Meanwhile, RMSE of both

SEs and PSE are decreasing as ∆ is far away from the origin, but they are always greater

than 1. In Appendix A.1, the relative efficiency of the proposed estimators for the cases

where T = 50 and T = 80 is reported. The portray of these figures is similar to that of

Figure 2.18-Figure 2.21.
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Figure 2.18: The RMSE of the estimator versus ∆ (T = 20)

2.6.3 Real data set: financial market data

In this subsection, the proposed method is applied to the gold spot daily price

dataset for the period from Dec 29, 1978 to Jan 12, 2022. The data set is available

at https://goldprice.org and https://macrotrends.dpdcart.com. The proposed method is

https://goldprice.org/
https://macrotrends.dpdcart.com/
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Figure 2.19: The RMSE of the estimator versus ∆ (T = 35)
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Figure 2.20: The RMSE of the estimator versus ∆ (T = 50)
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Figure 2.21: The RMSE of the estimator versus ∆ (T = 80)

used to detect the existence of change-point t∗ and to estimate p. The horizon period

time is taken as T = 43 and the total number of records is N = 11175, which gives

∆ = T/N ≈ 0.0038. As shown in empirical studies of Schwartz [1997] and Chen

[2010], the mean-reversion features holds for prices of several commodities including

oil, gold, gas, corn etc... Thus, a GEOU-type model is chosen to fit such a dataset. The

prices are fitted with several different models, for example, with one change-point and

different value of p. To apply the proposed method, σ is estimated by the data’s realised

volatility

σ̂ = √ ∑
i∈N[0,T ]

(ln X(ti+1) − ln X(ti))2/T = 0.1919

. If p is odd, use the model

dX(t) =
2∑

j=1

 p∑
i=1(2)

(
µi j

√
2 cos

(
2π

i − 1
2

t
)
+ µ(i+1) j

√
2 sin

(
2π

i − 1
2

t
)
− α j ln X(t)

)×
X(t)I{t∗j−1⩽t⩽t∗j }dt + σX(t)dWt. (2.6.3)

If p is even, the model is stated as

dX(t) =
2∑

j=1


 p−1∑

i=1(2)

[
µi j

√
2 cos

(
2π

i − 1
2

t
)
+ µ(i+1) j

√
2 sin

(
2π

i − 1
2

t
)]
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+µp j

√
2 cos

(
2π

p
2

t
))
− α j ln X(t)

)
X(t)I{t∗j−1⩽t⩽t∗j }dt + σX(t)dWt. (2.6.4)

where
p∑

i=1(2)
,

p−1∑
i=1(2)

stand for taking summation with step 2 and c = 0, 1. In practice,

suppose that pmax = 5. The proposed method is applied to estimate c, p as well as

the UMLE, the RMLE and the SEs. To set up the restriction, the case where the mean

reversion level remains the same before and after the change point is considered. Note

that, detecting the existence of the change-point leads to the hypothesis testing problem:

H0 : Mθ = 0 versus H1 : Mθ , 0, where M is given in Table 2.11. The test statistics

and critical value at different significant level are reported in Table 2.10. This table

shows that that, at significance level 0.1, the test statistics fall into the rejection region

for all p. Thus, the null hypothesis is rejected at significance level α = 0.1 for all

p = 1, 2, 3, 4, 5. Bootstrap method on residuals is used to analyse the relative efficiency

Table 2.10: Test statistics value and critical value
(c,p) (1,1) (1,2) (1,3) (1,4) (1,5)

Critical value (α = 0.1) 4.6052 6.2514 7.7794 9.2364 10.6446
Critical value (α = 0.05) 5.9915 7.8147 9.4877 11.0705 12.5916
Critical value (α = 0.025) 7.3778 9.3484 11.1433 12.8325 14.4494

Statistics value 6.8596 8.1440 9.3628 12.3800 12.8755

Table 2.11: Power of test
(c,p) (1,1) (1,2) (1,3) (1,4) (1,5)

M [I2,−I2] [I3,−I3] [I4,−I4] [I5,−I5] [I6,−I6]

Mθ
[
0.3943
0.0061

] 0.5291
0.0214
0.0250



0.5065
0.0194
0.0538
0.0218



0.5171
0.0212
0.0501
0.0876
0.0216





0.7224
0.0190
0.0512
0.0831
0.0266
0.0520


power (α = 0.1 ) 0.6040 0.5690 0.5280 0.6370 0.6060

and the power function based on 1000 replicates. Namely, the Bootstrapped RMSE and

the empirical power of the test are calculated. Table 2.11 shows the results obtained for

the empirical power at the significant level α = 0.1. From this table, one can see that
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when c = 1, p = 4, the power of the test reaches its highest value. This indicates that

the GEOU process in (2.6.4) with c = 1, p = 4 is the most suitable one to fit the daily

gold spot historical prices. Thus, the data series can be fitted by the following model

dX(t) =
((
µ11 + µ12

√
2 cos (2πt) + µ13

√
2 sin (2πt) + µ14

√
2 cos (4πt)

)
−α1 ln X(t)) X(t)I{0⩽t⩽t∗}dt +

((
µ21 + µ22

√
2 cos (2πt) + µ23

√
2 sin (2πt)

+µ24
√

2 cos (4πt)
)
−α2 ln X(t)) X(t)I{t∗⩽t⩽T }dt + σX(t)dBt.

(2.6.5)

From Table 2.11, it can also be noticed that increasing the value of p does not always

result in increasing the empirical power. For example, the power at c = 1, p = 4 is

greater than the power at the point c = 1, p = 5. For the linear restriction, the matrix M

defined as in Table 2.11 is used. The result is reported in Table 2.12. For c = 1 and p =

Table 2.12: Parameter estimation for real data
µ11 µ12 µ13 µ14 α1 µ21 µ22 µ23 µ24 α2

UMLE 2.3101 0.0211 0.0097 0.0669 0.3258 1.6987 0.0020 -0.0417 -0.0182 0.2887
RMLE 0.3506 0.0048 -0.0277 0.0067 0.0600 0.3506 0.0048 -0.0277 0.0067 0.0600

SEs 1.7407 0.0165 -0.0010 0.0500 0.2485 1.3258 0.0028 -0.0377 -0.0122 0.2254
PSE 1.7525 0.0166 -0.0008 0.0502 0.2501 1.3328 0.0027 -0.0378 -0.0113 0.2266

4, the (bootstrapped) RMSE of 0.7201 is obtained, 1.2510 and 1.2924 for the RMLE,

the SEs and the PSE, respectively are also obtained. Thus, the bootstrapped RMSE

are in agreement with the theoretical results for which the SEs and PSE dominate the

UMLE and RMSE has the worst performance under the condition that null hypothesis

Mθ = 0 is strongly rejected. Further, to predict the daily gold spot Historical Price from

December 29, 1978 to January 12, 2022, the model (2.6.5) with p = 4 is used and the

UMLE given in Table 2.12. Figure 2.22 gives a graph representative of the real price

data and the predicted price based on the UMLE. From Figure 2.22, one can see that the

predicted data reflects the basic trend of the real price data. The predicted prices based

on the RMLE and the SEs give similar graphs. Because of that and to save the space of

this chapter, these graphs are not reported here.

Comparing with other cited works which analyze the daily gold spot historical
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Figure 2.22: Daily gold spot price from Dec 29, 1978 to Jan 12, 2022 and fitted price

prices, the novelty of this chapter consists in the fact that the dimensions of the drift

parameter of the GEOU is estimated, and a test is proposed to detect the number of

change-point. Furthermore, by bootstrap method, the relative efficiency of the UMLE,

the RMLE and the SEs are evaluated. Finally, the portray given by Figure 2.22 is in

agreement with the established theoretical result, given in Proposition 2.4.6, which in-

dicates that the proposed method improves the goodness-of-fit.

2.7 Conclusion

In this chapter, a GEOU process that works well for positive financial datasets that

have a periodic mean-reverting level was proposed. In passing, it should be stressed that

many financial datasets take only positive values. In comparison with other existing

works about the exponential O-U processes, the proposed GEOU is incorporate the

seasonality effect. On top of that flexibility, the dataset under consideration may be

subject to a drastic change. A statistical method was proposed, which can be used
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to validate or not the seasonality effect or the drastic change as well as other possible

relations binding the components of the drift parameter. To this end, the UMLE, RMLE,

and their joint asymptotic normality as well as the strong consistency of the UMLE are

. Based on these asymptotic results, a test was constructed for testing a restriction about

the drift parameter. Further, in contrast with the works in recent cited literature,the case

where the component of the drift parameter vector is unknown was considered. Based

on a Schwartz Information Criterion, a statistical method which is useful in estimating

the dimension of the drift parameter as well as the change-point and the drift parameter

was presented. A class of shrinkage type estimators was derived, which encloses as

special cases the UMLE and the RMLE. Thanks to the ADR, the relative performance of

the RMLE and that of the SEs as compared to the UMLE were established. In particular,

it is established that, the SEs dominate the UMLE and that, near the null hypothesis, the

RMLE is the most efficient. However, the RMLE is dominated by the UMLE as one

moves far away from the restriction. These theoretical findings are confirmed by the

simulation studies and in order to illustrate the application of the proposed method, the

daily gold spot historical prices was analyzed. Finally, the proposed method improves

the goodness-of-fit and this theoretical result is confirmed via the fitted values of the

daily gold spot historical prices which are very close to the observed datasets.



Chapter 3

Inference in GCIR Process

3.1 Introduction

Over several years, there has been a growing interest in using some mean-reverting

processes in order to model some financial data see Vasicek [1977], economical data

Langetieg [1980], physical phenomena Lansky and Sacerdote [2001], biological phe-

nomena Rohlfs et al. [2010] among others. To give some references, see Vasicek

[1977], Langetieg [1980], Lansky and Sacerdote [2001], Rohlfs et al. [2010] and refer-

ences therein. The mean-reverting process used in the above quoted papers is known as

Ornstein-Uhlenbeck process or Vasicek process. As an extension of the Vasicek model,

John C. Cox and Ross [1985a,b] introduced, in 1985, a stochastic process known as

Cox–Ingersoll–Ross (CIR) model. The proposed CIR model is given by the stochastic

differential equation (SDE)

dx(t) = α(β − x(t))dt + σ
√

x(t)dBt, x0 > 0, (3.1.1)

where {Bt, t ⩾ 0} is a Brownian motion (modelling the random market risk factor) and

β, α, σ, are parameters. The parameter α represents the speed of adjustment to the mean

β, and σ is the volatility. The standard deviation factor, σ
√

x(t), prevents the possibility

65
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of negative interest rates for all positive values of β and α. An interest rate of zero is also

precluded if the condition 2αβ ⩾ σ2 holds. The quantity 4αβ/σ2 plays a critical role

in the behavior of the process. It is known as the dimension of the process {x(t), t ⩾ 0}.

The CIR model (3.1.1) is a type of ”one-factor model” as it describes interest rate move-

ments driven by only one source of market risk. The model (3.1.1) can be used in the

valuation of interest rate derivatives. For About three decades, the parameter estimation

in CIR and the properties of the CIR processes have received considerable attention.

For instance, Chen and Scott [1993] extended the single-factor equilibrium model to a

multi-factor setting and estimated the parameters by the maximum likelihood method.

Another interesting reference is Maghsoodi [1996] who generalized the CIR model to

the case of time-varying parameters and proved the trajectory can be viewed as a log-

normal process through a stochastic time change. About two decades later, Maboulou

and Mashele [2015] estimated the parameters for multi-factor affine CIR-type hazard

rate model. Another citation is Feng and Xie [2012] who considered the Bayesian esti-

mation of interest rate model (3.1.1) based on Euler-Maruyama approximation. Further,

see Alaya and Kebaier [2012, 2013], combined the two who dealt with the problem of

global parameter estimation in the CIR model, and derived the distribution of the es-

timators. To give another interesting reference, see the citation Peng and Schellhorn

[2018] who proved that the distribution of generalized CIR process with time-varying

parameters can be represented as a convergent series of weighted independent central

and non-central chi-square random variables. Just recently, Tong and Zhang [2017],

Zhang et al. [2019, 2020], combined the two Tong et al. [2021], considered a type of

CIR interest rate model with random switching and stated the sufficient conditions for

the ergodicity of the solution.

With respect to other stochastic processes, the classical CIR model possesses the

main characteristic of the Ornstein–Uhlenbeck process, i.e. the tendency to return to-
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wards the long-term equilibrium. This property is known as mean-reversion. As pointed

out in Geman [2009], such property is found in several applications including commod-

ity and energy price processes. However, despite such a general trend, the assumption

of a constant mean-reversion level seems inadequate due to seasonality patterns or a

long-term trend of the process.

This chapter considers a more general process which incorporates a deterministic

and periodic drift term in the SDE. In particular, the inference problem about the drift

parameters, in the context where some prior information (from outside the sample) may

be available is considered. For example, the source of prior information may be the

expertise in a certain field, which establishes an association among the parameters to be

estimated. Another source of prior information may be the previous statistical investi-

gations which may have established that there exists a linear restriction binding the drift

parameter and some known column vectors. For more details on the source of uncer-

tainty about the prior information in linear models is referred to Nkurunziza [2015] and

references. In such a case, unrestricted maximum likelihood estimator (UMLE) may not

be optimal. Thus, it is interesting to derive a statistical method which combines the prior

information and the sample information. Further, to overcome some uncertainty about

the restriction, it is interesting to derive a test for testing the hypothesized restriction.

The rest of this chapter is structured as follows. Section 3.2 presents the statistical

model and some preliminary results as well as some useful properties of the trajectory of

the proposed GCIR process. In Section 3.2, an approximate auxiliary process which is

strictly stationary and ergodic is introduced. This helps derive the asymptotic properties

of the proposed estimators. Section 3.3 derives the UMLE and the restricted maximum

likelihood estimator (RMLE) of the drift parameter. In this section, the joint asymptotic

normality of the UMLE and RMLE, under the set of local alternative restrictions is

also established. In Section Section 3.4, a test for testing the hypothesized restriction is
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derived and SEs are proposed. Section 3.5 establishes the asymptotic distributional risk

(ADR) of the proposed estimators and by using the ADR. The asymptotic dominance

of these estimators is also studied in this section. Section 3.6 presents the empirical

study. Finally, to illustrate the application of the proposed method, a data analysis of

the historical corn price as well as that of U.S. 10-Year Treasury Bond Yield historical

data is performed. For more details, we refer to Lyu and Nkurunziza [2023a].

3.2 Statistical model and preliminary results

3.2.1 Statistical model

Strongly inspired from the work in Dehling et al. [2010] and Nkurunziza and Zhang

[2018], the statistical model under consideration is a generalization of CIR process

(3.1.1). Specifically, consider observing a stochastic process {X(t), t ⩾ 0} which is a

solution of the SDE

dX(t) = S (θ, t, X(t))dt + σ
√

X(t)dBt, X(0) = X0, (3.2.1)

where S (θ, t, X(t)) = L(t) − αX(t), with L(t) =
p∑

i=1
µiφi(t). In the sequel, the process

in (3.2.1) will be referred to as the GCIR process (or GCIR model). For the special

case where L(t) is a constant, note a slight difference between the original CIR process

(3.1.1) and model (3.2.1) in the position of α within the drift term. Nevertheless, the

GCIR model (3.2.1) is transformed to a process with drift term α(L̃(t) − X(t))dt where

L̃(t) = L(t)/α. The advantage of (3.2.1) compared with the process provided with the

drift α(L̃(t) − X(t))dt is the simplification of the study of the estimators. Thus, the

parametrization in (3.2.1) is considered here for the sake of simplicity. In this chapter,

θ is the parameter of interest. Note that, in the continuous time observations, the diffu-

sion parameter σ2 can be consistently estimated by the discretized version of quadratic
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variation of the process
{
2
√

X(t), t ⩾ 0
}
. Because of that, this chapter assumes that σ2

is known. The inference is performed under the situation where there may exist prior

information on the target parameter. In particular, estimation problem about θ is studied

under the context where the target parameter may satisfy the linear restriction (2.2.2).

As stated in Nkurunziza and Zhang [2018], the above restriction indicates that there

exists some linear relation binding some components of the drift parameter vector. A

statistical method is developed, which preserve a good performance whenever the re-

striction is valid or not. Further, note that the restriction (2.2.2) leads to the hypothesis

testing problem (2.2.3) Thus, a test is derived for testing the restriction in (2.2.3). The

optimality of the proposed method is based on the established asymptotic properties

of the UMLE and the RMLE. The derivation of the established main results relies on

Assumption 2.1, Assumption 2.2 and the following assumptions.

Assumption 3.1. The distribution of the initial value, X0, of the SDE in (3.2.1) does not

depend on the drift parameter θ. Further, X0 ⩾ x0 ⩾ 0 a.s. where x0 is the initial value of

the SDE (3.1.1). X0 is independent of {Bt : t ⩾ 0} and E(|X0|
m) < ∞, for some m ⩾ 2.

First, to prevent the process {X(t), t ⩾ 0} from turning negative, some restrictions on

the parameters and the mean-reverting term L(t) of this GCIR model are needed.

Assumption 3.2. The function L(t) ⩾ max{αβ, σ2} with 4αβ/σ2 ⩾ 2.

It should be noticed that, since the function φ(t) is Riemann-integrable on [0,T ]

and υ-periodic, Assumption 2.2 implies that φ(t) is bounded on R+ = [0,+∞). As in

Dehling et al. [2010], p is supposed to be known as well as the function φ(t). Without

loss of generality, suppose that the period υ is known and equals to 1. Proposition B.2

and [Karatzas and Shreve, 1998, Proposition 2.18] are used to compare the solution

of the classical CIR process and the one of the GCIR process (3.2.1). The role of

Assumption 3.2 is to guarantee that the conditions of Proposition B.2 hold.
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Remark 3.2.1. Let d(t) = 4L(t)/σ2. d(t) is known as the dimension of the GCIR model

(3.2.1), which plays an important role in the behavior of the process {X(t), t ⩾ 0}.

Under these assumptions, in the next subsection, the existence and uniqueness of the

strong solution of the GCIR process (3.2.1) is given. Note that the major difficulty of

the problem studied consists in the fact that the SDE in (3.2.1) does not have an explicit

solution expression. However, the implicit solution can be obtained, which allows us to

determine the Lm boundedness of this solution. An auxiliary process, which is stationary

and ergodic, is constructed. Furthermore, it is proven that the distance between the

strong solution and the auxiliary process converges, in L1 and almost surely, to 0.

3.2.2 Existence of strong and unique solution

This subsection aims at deriving the existence and uniqueness of a nonnegative

strong solution of the process (3.2.1). These properties can help us to study the up-

per and lower bounds of this solution. This is an important step in obtaining an explicit

expression of the likelihood function. The following proposition gives the existence and

uniqueness of the nonnegative strong solution.

Proposition 3.2.1. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold,

then, the GCIR model in (3.2.1) admits a strong and unique non-negative solution on

[0,T ], for 0 ⩽ T < ∞.

The proof of this proposition is given in Appendix B.1. From Theorem 7.6 of Liptser

and Shiryaev [2001], to get the likelihood function of a diffusion process, it is suf-

ficient to guarantee that P
(∫ T

0
S 2(θ, t, X(t))

/
(σ2X(t))dt < ∞

)
= 1, for all 0 ⩽ T <

∞, and for all θ ∈ Θ. The following corollary guarantees that the sufficient condition

for the likelihood function holds.
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Corollary 3.2.1. If Assumption 2.1-2.2, , and Assumption 3.1-3.2 hold, then

P
(∫ T

0

S 2(θ, t, X(t))
σ2X(t)

dt < ∞
)
= 1, ∀0 ⩽ T < ∞, ∀θ ∈ Θ.

The proof is given in the Appendix B.1. The following result gives an implicit form

of the solution of the SDE (3.2.1). The established result gives also the expectation and

variance of the solution of the model (3.2.1). The methodological approach taken in

Proposition 3.2.2 is a mixed methodology based on Itô’s formula.

Proposition 3.2.2. Under Assumption 2.1-2.2, , and Assumption 3.1-3.2,

(1) the solution of the SDE (3.2.1) can be rewritten as

X(t) = e−αtX0 + h(t) + Z(t), t ⩾ 0, (3.2.2)

where h(t) = e−αt
∫ t

0
eαsL(s)ds, Z(t) = σe−αt

∫ t

0
eαs√XsdBs.

(2) E[X(t)] = e−αtE[X0] +
p∑

i=1
µi

∫ t

0
e−α(t−s)φi(s)ds,

(3)Var(X(t)) = e−2αt

(
Var(X0) + σ2E[X0]

1
α

(eαt − 1) + σ2
∫ t

0
eαs

∫ s

0
eαuL(u)duds

)
.

Further, X(t) is L2−bounded, i.e. sup
t⩾0
E[X2(t)] < ∞.

The proof of this proposition is given in Appendix B.1. From Part (3) of Proposi-

tion 3.2.2, the following proposition proves that the solution {X(t), t ⩾ 0} is Lm bounded.

To this end, let
p∑

i=1
|µi| ⩽ Kµ and ||φ(t)|| ⩽ Kφ, for some positive constants Kµ,Kφ, then,

0 < L(t) ⩽ KφKµ. (3.2.3)

Further, let

K = E
[
X2

0

]
+

K2
φK2

µ

α2 + σ2E[X0]
1

4α
+ σ2KφKµ

(
1

2α2 −
1

4α2

)
+ KφKµ

1
2α
.

By Assumption 3.1, E
[
X2

0

]
< ∞, then,

sup
t⩾0
E[X(t)2] ⩽ K. (3.2.4)

Moreover, let Cm be some positive constant that only depends on m, and let

Km = E[Xm
0 ] +CmE[Xm−1

0 ] 1
αm +CmCm−1E[Xm−2

0 ] 1
α(m−1)

1
αm + · · ·



3.2 Statistical model and preliminary results 72

+max{1,E[X(t)]}CmCm−1 · · ·Cm−(k−1)E[Xm−(k−1)
0 ] 1

α(m−(k−1)) · · ·
1
αm . (3.2.5)

Proposition 3.2.3. If Assumption 2.1-2.2, , and Assumption 3.1-3.2 hold, then,

sup
t⩾0
E[X(t)m] ⩽ Km. (3.2.6)

The proof of this proposition is given in the Appendix B.1.

Remark 3.2.2. By Jensen’s inequality, it is obvious that

E
[
1
/
X(t)

]
⩾ 1

/
E [X(t)] = 1

/ (
e−αtE[X0] + h(t)

)
.

One of the main challenge to overcome consists in the fact that the process {X(t), t ⩾

0} is not stationary except in the special case where the dimension of the GCIR process

is a positive integer. Moreover, the solution {X(t), t ⩾ 0} has no explicit expression.

To overcome this difficulty, below, an auxiliary process which is strictly stationary and

ergodic is constructed. Furthermore, it is proven that the distance between the auxiliary

process and the solution of the SDE (3.2.1) converges to 0 both in L1 and almost surely.

The convergence allows us to derive the asymptotic distributions of the UMLE and

RMLE by using the ergodicity of the auxiliary process. The limiting distributions of

both UMLE and RMLE play important roles in testing the restrictions. Suppose that

there exists one process X(t)∗ = (X(1∗)(t), X(2∗)(t)), satisfying the following SDEs:

dX(1∗)(t) =
(
σ2

2
− αX(1∗)(t)

)
dt + σ

√
X(1∗)(t)dB(1∗)

t , X(1∗)(0) =
X0

2
, (3.2.7)

dX(2∗)(t) =
(
L(t) −

σ2

2
− αX(2∗)(t)

)
dt + σ

√
X(t)(2∗)dB(2∗)

t , X(2∗)(0) =
X0

2
, (3.2.8)

where B(∗)
t = (B(1∗)

t , B(2∗)
t ) are two dimensional standard Brownian motions defined on

the probability space (Ω,F ,P). Proposition 3.2.1 indicates that SDE (3.2.7) and (3.2.8)

admit strong solutions. The following proposition states the relation between the solu-

tions X(1∗)(t), X(2∗)(t) and X(t), where X(t) is the solution to SDE (3.2.1).
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Proposition 3.2.4. Let X(1∗)(t) be the strong solution to SDE (3.2.7) and let X(2∗)(t)

be the strong solution to SDE (3.2.8). Then, for t ⩾ 0, X(1∗)(t) + X(2∗)(t)is the strong

solution of SDE (3.2.1), i.e. X(1∗)(t) + X(2∗)(t) = X(t) almost surely.

The proof of this proposition is given in the Appendix B.2. The dimension of SDE

(3.2.8) may be less than 2, the following result shows that its solution is positive with

probability 1.

Proposition 3.2.5. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then, for all w ∈ Ω,
∫ T

0
IAt(w)dt = 0 a.s. for 0 ⩽ T < ∞, where At(w) = {ω :

X(2∗)(t,w) = 0, t ⩾ 0}.

The proof is similar to the proof of Lemma 2.2 in Tong and Zhang [2017] and given

in Appendix B.2. The following proposition is useful in constructing a stationary and

ergodic auxiliary process.

Proposition 3.2.6. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then, the solution of SDE (3.2.7) is given as X(1∗)(t) =
2∑

j=1
Y2

j (t),where for j = 1, 2, Y j(t) =

e−
α
2 tY j(0) + 1

2σe−
α
2 t

∫ t

0
e
α
2 sdB j(s). Further, let

Yt = e−
α
2 t

√
X(2∗)

0 + e−
α
2 t

∫ t

0
e
α
2 s

(
4L(s) − 3σ2

) / (
8
√

X(t)(2∗)
)

ds +
σ

2
e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s ,

the solution of SDE (3.2.8) can be rewritten as X(2∗)(t) = Y2
t .

The proof of this proposition is given in Appendix B.2.

3.3 The unrestricted and restricted estimators

In this section, the UMLE and RMLE are derived. Further, the joint asymptotic

normality of the UMLE and RMLE is established.
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3.3.1 The UMLE θ̂T and the RMLE θ̃T

Let P(θ)
XT denote the measure induced by the observable realizations XT = {X(t), t ⩾ 0}

on the measurable space (C[0,T ],B[0,T ]), where C[0,T ] is the space of continuous, real-

valued functions on [0,T ] and B[0,T ] is the associated Borel σ-algebra. Further, let PB

be the measure generated by the Brownian motion on (C[0,T ],B[0,T ]). Then, the Radon-

Nikodym derivative of observations XT is given by L(θ, XT ) = dP(θ)
XT

/
dPB(XT ). Thus,

the UMLE can be derived by minimizing the functional θ 7−→ L(θ, XT ), i.e. θ̂T =

arg max
θ
L(θ, XT ). To simplify some notations, let

Q[0,T ] =


∫ T

0

φ⊤(t)φ(t)
X(t)

dt −

∫ T

0
φ⊤(t)dt

−

∫ T

0
φ(t)dt

∫ T

0
X(t)dt


(p+1)×(p+1)

, (3.3.1)

R[0,T ] =

(∫ T

0

φ(t)
X(t)

dX(t),−
∫ T

0

X(t)
X(t)

dX(t)
)⊤
,

W[0,T ] =

(∫ T

0

φ(t)
√

X(t)
dBt,−

∫ T

0

X(t)
√

X(t)
dBt

)⊤
.

(3.3.2)

For the purpose of minimizing the functional L(θ, XT ), and deriving the UMLE and

RMLE, the matrix Q[0,T ] needs to be invertible. The following proposition proves that

the matrix Q[0,T ] is positive definite provided that T ⩾ 1.

Proposition 3.3.1. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then, Q[0,T ] is a

positive definite matrix whenever T ⩾ 1.

The proof of this proposition is given in Appendix B.3. Because the optimality

of the proposed method is asymptotic, in the sequel, without loss of generality, the

condition T ⩾ 1 is always supposed to hold. Let θ̃T be the RMLE and let G[0,T ] =

Q−1
[0,T ]M

⊤(MQ−1
[0,T ]M

⊤)−1.

Proposition 3.3.2. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then, θ̂T =

Q−1
[0,T ]R[0,T ], and θ̃T = θ̂T −G[0,T ](Mθ̂T − r).
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The proof of this proposition is given in Appendix B.3.

3.3.2 Auxiliary process

To establish the auxiliary process, for j = 1, 2, let {B j(s), s ⩾ 0} and {B̄ j(s), s ⩾ 0}

be two independent Brownian motions and B̃ j(s) be a bilateral Brownian motion with

B̃ j(s) = B j(s)I{s>0} + B̄ j(−s)I{s⩽0}. Let

Ỹ j(t) =
1
2
σe−

α
2 t

∫ t

−∞

e
α
2 sdB̃ j(s),

X̃(1∗)(t) =
2∑

j=1

Ỹ2
j (t),

V(s) =
4L(s) − 3σ2

8
I{s⩽0} +

4L(s) − 3σ2

8
√

X(2∗)(s)
I{s>0}.

Further, let {B(2∗)
s , s ⩾ 0} and {B̄(2∗)

s , s ⩾ 0} be two independent Brownian motions and

B̃(2∗)
s be a bilateral Brownian motion with B̃(2∗)

s = B(2∗)
s I{s>0} + B̄(2∗)

−s I{s⩽0}. Let

Ỹt = e−
α
2 t

∫ t

−∞

e
α
2 sV(s)ds +

σ

2
e−

α
2 t

∫ t

−∞

e
α
2 sdB̃(2∗)

s , (3.3.3)

and X̃(2∗)(t) = Ỹ2
t . Define X̃(t) = X̃(1∗)(t)+ X̃(2∗)(t). The following proposition shows that

the random sequence {X̃(t + k − 1), 0 < t ⩽ 1}∞k=1 is stationary and ergodic.

Proposition 3.3.3. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then,{
X̃(t + k − 1), 0 < t ⩽ 1

}∞
k=1

is stationary and ergodic.

The proof of this result is given in the Appendix B.2. By using this proposition, the

asymptotic normality of the estimators is given. As intermediate result, the following

proposition states the relation between the auxiliary process and the solution of the SDE

(3.2.1).

Proposition 3.3.4. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then, (1) X̃(t)−

X(t)
a.s.
−−−→
t→∞

0, , (2) X̃(t) − X(t)
L1

−−−→
t→∞

0.
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The proof of this proposition is given in Appendix B.3.

Proposition 3.3.5. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then,

sup
t⩾0
E

[∣∣∣X̃(t)
∣∣∣] < ∞.

The proof of this proposition is given in Appendix B.3. To use the stationarity and

ergodicity of the auxiliary process, the following proposition is needed to hold.

Proposition 3.3.6. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then,

0 < sup
t⩾0
E

[
1
/
X̃(t)

]
< ∞.

The proof of this proposition is given in Appendix B.3.

Proposition 3.3.7. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then, X̃−1(t) − X−1(t)
a.s.
−−−→
t→∞

0.

Proof. The proof follows from Proposition B.3. □

Proposition 3.3.6 guarantees that the first negative moment of the process{
X̃(t + k − 1), 0 < t ⩽ 1

}
k∈N+

exists. Further, since the function y = 1/x, x > 0 is a mea-

surable function, by Birkhoff Ergodic Theorem, lim
L→∞

1
L

L∑
k=1

1
/
X̃(t+k−1) = E

[
1
/
X̃(t)

]
a.s.

From Proposition 3.3.6, for s ⩾ 0, sup
s⩾0
E

[
1
/
X̃(s))

]
< ∞. Further, due to the convexity of

the function y =
1
x

on the interval (0,+∞), by Jensen’s inequality,

E
[
1
/
X̃(t)

]
⩾ 1

/
E

[
X̃(t)

]
.

The equality ”=” holds if and only if X̃(t) is a constant with probability 1. Since X̃(t) is

a continuous random variable for all t ⩾ 0, E
[
1
/
X̃(t)

]
> 1

/
E

[
X̃(t)

]
> 0. Finally,

0 < 1
/
E

[
X̃(t)

]
< E

[
1
/
X̃(t)

]
⩽ sup

t⩾0
E

[
1
/
X̃(t)

]
< ∞, for all t ⩾ 0. (3.3.4)
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The relation (3.3.4) plays a crucial role in proving the asymptotic normality of the esti-

mators.

3.3.3 Joint asymptotic normality of the UMLE and RMLE

In this subsection, the joint asymptotic normality of the UMLE and RMLE is de-

rived. The derived limiting distributions play an important role in constructing shrink-

age estimators and studying their asymptotic relative efficiency. The established limiting

distribution is also important in constructing a test for the hypothesis testing problem

(2.2.3). To this end, the asymptotic behavior of the positive definite matrix
1
T

Q[0,T ] and

the column vector 1
√

T
W[0,T ] is studied. To simplify some mathematical expressions, let

Σ =


∫ 1

0
φ⊤(t)φ(t)E

[
1

X̃(t)

]
dt −

∫ 1

0
φ⊤(t)dt

−

∫ 1

0
φ(t)dt

∫ 1

0
E

[
X̃(t)

]
dt


(p+1)×(p+1)

. (3.3.5)

The following proposition shows that the matrix Σ is invertible.

Proposition 3.3.8. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then, Σ is a positive definite matrix.

The proof of this proposition is given in Appendix B.3. This result is used in deriving

the asymptotic normality of the UMLE. As intermediate step, let us first note that

√
T

(
θ̂T − θ

)
= σT Q−1

[0,T ]
1
√

T
W[0,T ]. (3.3.6)

Thus, the asymptotic behavior of
√

T (θ̂T −θ) relies on the matrix T Q−1
[0,T ] and the column

vector 1
√

T
W[0,T ] as T tends to infinity. In the two following propositions, the convergence

of these quantities is studied.

Proposition 3.3.9. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then

1
T

Q[0,T ]
a.s.
−−−−→
T→∞

Σ and T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1.
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The proof of this proposition is given in Appendix B.3. The following proposition

investigates the L2-boundedness of 1
√

T
W[0,T ], which is useful in proving the convergence

of θ̂T .

Proposition 3.3.10. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then,

(1)
1
√

T
W[0,T ] is L2-bounded; (2)

1
T

W[0,T ]
a.s.
−−−−→
T→∞

0.

The proof of this proposition is given in Appendix B.3. The following proposition

is used to establish the limiting distribution of θ̂T . For 0 ⩽ s ⩽ 1, let

W (T )(s) =
(

1
√

T

∫ sT

0

φ1(t)
√

X(t)
dBt, . . . ,

1
√

T

∫ sT

0

φp(t)
√

X(t)
dBt,−

1
√

T

∫ sT

0

X(t)
√

X(t)
dBt

)⊤
and

W̃ (T )(s) =

 1
√

T

∫ sT

0

φ1(t)√
X̃(t)

dBt, . . . ,
1
√

T

∫ sT

0

φp(t)√
X̃(t)

dBt,−
1
√

T

∫ sT

0

X̃(t)√
X̃(t)

dBt

⊤ .
The stationary and ergodic property of the process {X̃(t + k − 1), 0 < t ⩽ 1}k∈N+ helps

derive the limiting distribution of W (T )(s). The following lemma shows that the differ-

ence between W (T )(s) and W̃ (T )(s) converges in probability to 0. The derived result gives

also the weak convergence of the functional random process W̃ (T )(s). To this end, let

Cp+1[0, 1] be the space of continuous p + 1 dimensional functions vector on the closed

interval [0, 1].

Lemma 3.3.1. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold. Then,

(1) W (T )(s) − W̃ (T )(s)
P
−−−−→
T→∞

0;

(2) the p + 1-dimensional functional process
{
W̃ (T )(s),T > 0

}
0⩽s⩽1

is tight on the space

Cp+1[0, 1] with the uniform topology;

(3) W̃ (T )(s)
D
−−−−→
T→∞

W̃∗(s), where W̃∗(s) is a p + 1-dimensional Gaussian process with

mean 0 and Cov
(
W̃∗(s), W̃∗(u)

)
= (s ∧ u)Σ, for 0 ⩽ s, u ⩽ 1.
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The proof of this proposition is given in Appendix B.3. It should be noticed that,

if s = 1, Part (3) of Lemma 3.3.1 constitutes a kind of central limit theorem. More

precisely,

1
√

T
W[0,T ] = W (T )(1)

D
−−−−→
T→∞

W̃∗(1) ∼ Np+1 (0,Σ) . (3.3.7)

Proposition 3.3.9- Proposition 3.3.10 and Lemma 3.3.1 imply the asymptotic normality

of the UMLE. Thereafter, let ρT =
√

T (θ̂T − θ).

Proposition 3.3.11. Suppose that Assumption 2.1-2.2, and Assumption 3.1-3.2 hold.

Then, θ̂T is strongly consistent, and θ̂T is asymptotically normal, i.e. ρT
D
−−−−→
T→∞

ρ ∼

Np+1(0, σ2Σ−1).

The proof of this proposition is given in Appendix B.3. Let {P(θ)
XT } denote the distri-

bution law of the solution of the GCIR model (3.2.1) under the parameter θ ∈ Θ. The

following theorem gives the property of locally asymptotically normal (LAN) of the

probability measures {P(θ)
XT }.

Theorem 3.3.1. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, then, for θ0 ∈ Θ,

and any h ∈ Rp+1, the likelihood ratio ZT (h) = L
(
θ0 +

1
√

T
h, θ; XT

)
admits the following

representation

ZT (h) = exp
{(

h,∆T (θ0, XT )
)
−

1
2

(Σh, h) + rT (θ0, h, XT )
}
,

where ∆T (θ0, XT )
D
−−−−→
T→∞

N(0,Σ) and rT (θ0, h, XT )
Pθ0
−−−−→
T→∞

0.

The proof of this proposition is given in Appendix B.3.

Remark 3.3.2. Theorem 3.3.1 shows that the family of measures {P(θ)
XT } is LAN at every

point θ ∈ Θ, with local scale 1
√

T
and matrix Σ.

In the following, the joint asymptotic normality of the UMLE, the RMLE and their

difference is derived. To this end, the set of local alternative restrictions (2.3.7) is under
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consideration. Below, the asymptotic normality of
√

T (θ̂T −θ),
√

T (θ̃T −θ) and
√

T (θ̂T −

θ̃T ) is derived. First, note that

√
T (θ̃T − θ) =

√
T

(
Ip+1 −G[0,T ]M

)
θ̂T +

√
T

(
G[0,T ]r − θ

)
,

and then

ϱT =
√

T (θ̃T − θ) =
(
Ip+1 −G[0,T ]M

) √
T (θ̂T − θ) −

√
TG[0,T ] (Mθ − r) . (3.3.8)

By Proposition 3.3.9 and continuous mapping theorem,

G[0,T ]
P
−−−−→
T→∞

G∗ = Σ−1M⊤(MΣ−1M⊤)−1 (3.3.9)

and Ip+1 − G[0,T ]M
P
−−−−→
T→∞

Ip+1 − G∗M. Under the set of local alternatives restriction

(2.3.7),

√
TG[0,T ](Mθ − r) =

√
TG[0,T ]

r0
√

T
= G[0,T ]r0

P
−−−−→
T→∞

G∗r0. (3.3.10)

Let (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤ =

√
T

(
(θ̂T − θ)⊤, (θ̃T − θ)⊤, (θ̂T − θ̃T )⊤

)⊤
, by connecting Proposition

3.3.11, the set of local alternatives restriction (2.3.7) and the convergence in (3.3.10),

the following joint asymptotic normality of the UMLE and RMLE is derived.

Proposition 3.3.12. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold along with the

set of local alternative restrictions in (2.3.7), then, (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤

D
−−−−→
T→∞

(ρ⊤, ϱ⊤, ς⊤)⊤,

where 
ρ

ϱ

ς


∼ N3(p+1)




0

−G∗r0

G∗r0


, σ2


Σ−1 Σ−1 −G∗MΣ−1 G∗MΣ−1

Σ−1 −G∗MΣ−1 Σ−1 −G∗MΣ−1 0

G∗MΣ−1 0 G∗MΣ−1




.

The proof of this proposition follows Proposition 2.3.7. From this result, in the next

section, an asymptotic test for the testing problem (2.2.3) is constructed. The above

result is also used, in the next section, for studying the optimality of the proposed esti-

mators.
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3.4 Testing the restriction and shrinkage estimators

3.4.1 Testing the restriction

In this subsection, the hypothesis testing problem in (2.2.3) is handled. Note that,

the diffusion parameter σ2 can be consistently estimated by the discretized version

of quadratic variation of the process
{
2
√

X(t)), t ⩾ 0
}
. Let σ̂2 be such an estimator

of the diffusion parameter σ2. Further, let χ2
q(∆) be the chi-square random variable

with q degrees of freedom and non-centrality parameter ∆. In particular, if ∆ = 0,

χ2
q(∆) is a (central) chi-square random variable, with q degrees of freedom. Let ∆ =

1
σ2 r⊤0 (MΣ−1M⊤)−1r0, with r0 given in (2.3.7),

Γ̂ =
1

σ̂2
M⊤

(
MT Q−1M⊤

)−1
M, Γ =

1
σ2 M⊤

(
MΣ−1M⊤

)−1
M, (3.4.1)

ψT = ς
⊤
T Γ̂ςT , ψ = ς⊤Γς, ψ0 = ς

⊤
0 Γς0 (3.4.2)

where ςT =
√

T (θ̂T − θ̃T ), and ς0 ∼ Np+1

(
0, σ2G∗MΣ−1

)
.

Proposition 3.4.1. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, together with

the set of local alternative restrictions in (2.3.7), then, if r0 , 0, ψT
D
−−−−→
T→∞

ψ ∼ χ2
q(∆).

Moreover, if r0 = 0, ψT
D
−−−−→
T→∞

ψ0 ∼ χ
2
q.

The proof of this proposition is given in Appendix B.4. Let χ2
α;q be the αth quantile

of a χ2
q where 0 < α ⩽ 1. Proposition 3.4.1 proposes to reject null hypothesis, in (2.2.3),

if ψT > χ2
α;q for a given α, i.e. the suggested test is (2.3.11) Proposition 3.4.1 implies

the asymptotic power of the proposed test.

Proposition 3.4.2. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, together with

the set of local alternative restrictions in (2.3.7), then, the asymptotic power function of

the test in (2.3.11) is given by Π(∆) = P
(
χ2

q(∆) ⩾ χ2
α;q

)
.
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The proof of this Proposition follows from Proposition 3.4.1. It should be noted that,

under the null hypothesis, the above asymptotic local power is equal to α. Further, if ∆

tends to infinity, the above asymptotic local power tends to 1, which implies that the test

is consistent.

To highlight the importance of the established result, let us recall that one of our

main goals consists in establishing a statistical method which uses efficiently the sample

information as well as the prior knowledge. However, the restriction may not be com-

pletely known. In (2.3.11), a consistent test which is useful for testing the hypothesized

restriction in (2.2.3) is proposed. Further, in the next subsection, SEs are introduced,

which preserve good performance regardless of the validity of the restriction in (2.2.3).

3.4.2 Shrinkage estimators

This subsection presents SEs that represent a compromise between the UMLE and

the RMLE. As opposite to the Shrinkage Estimators defined in Section 2.5, the shrink-

age estimators proposed in this subsection has known dimensions.

θ̂s
T = θ̃T + γ

(
T

∣∣∣∣∣∣θ̂T − θ̃T

∣∣∣∣∣∣2
Γ̂

) (
θ̂T − θ̃T

)
, (3.4.3)

where ||x||2A = x⊤Ax, x is a column vector, γ is a continuous real-valued function on

(0,+∞) and Γ̂ is defined in (3.4.1). It is obvious that if γ(x) = 0, θ̂s
T = θ̃T , if γ(x) = 1,

θ̂s
T = θ̂T . As an example, let γ(x) = 1 − (q − 2)/x, with 2 < q = rank(M) < p + 1, the

classical shrinkage estimators (SEs)

θ̂sh
T = θ̃T +

(
1 − (q − 2)ψ−1

T

) (
θ̂T − θ̃T

)
, (3.4.4)

where ψT is the test statistic defined in (3.4.2). Moreover, by taking γ(x) = [1 − (q −

2)/x]+, x > 0, the positive-part shrinkage estimator (PSE) given by

θ̂sh+
T = θ̃T +

[
1 − (q − 2)ψ−1

T

]+ (
θ̂T − θ̃T

)
. (3.4.5)



3.5 Asymptotic distributional risk analysis 83

The estimator θ̂sh+
T has the advantage of avoiding a possible over-shrinking problem.

3.5 Asymptotic distributional risk analysis

This section evaluates the performance of the proposed estimators. The Asymptotic

Distributional Risk (ADR) which is given in (2.5.4) is used. For a given estimator θ̂0 for

θ, the ADR of θ̂0 is defined as

ADR
(
θ̂0, θ;Ω

)
= E[(ξ⊤Ωξ)] (3.5.1)

where ξ is a random vector such that
√

T (θ̂0 − θ)
D
−−−−→
T→∞

ξ. In order to fix ideas, θ̂0

represents an estimator such as θ̂sh
T , θ̂

sh+
T , θ̂T and θ̃T . The following propositions give

the ADR of the proposed estimators as well as their asymptotic dominance.

Proposition 3.5.1. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, along with the

set of local alternatives in (2.3.7), then,

ADR
(
θ̂T , θ,Ω

)
= σ2trace(ΩΣ−1).

ADR
(
θ̃T , θ,Ω

)
= ADR

(
θ̂T , θ,Ω

)
− trace

(
Ωσ2

(
G∗MΣ−1

))
+ r⊤0 G∗⊤ΩG∗r0.

The proof follows directly from Proposition 3.3.12. Further, let Λ = Σ−1 −G∗MΣ−1.

By using Theorem 3.1 in Nkurunziza [2012], the following proposition gives the ADR

of the estimators in (3.4.3).

Proposition 3.5.2. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold along with the

set of local alternatives in (2.3.7), then,

ADR
(
θ̂s

T , θ,Ω
)
= σ2trace (ΩΛ) + r⊤0 G∗⊤ΩG∗r0 − 2E

[
γ
(
χ2

q+2 (∆)
)]

r⊤0 G∗⊤ΩG∗r0

+E
[
γ2

(
χ2

q+2 (∆)
)]

trace
(
Ωσ2G∗MΣ−1

)
+ E

[
γ2

(
χ2

q+4 (∆)
)]

r⊤0 G∗⊤ΩG∗r0.

The proof follows the proof of Proposition A.20. Let λmin, λmax be the smallest and

largest eigenvalues of the matrix
(
G∗⊤ΓG∗

)−1 G∗⊤ΩG∗, respectively. Below,the compar-

ison of the ADR between different estimators is presented.
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Proposition 3.5.3. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, along with the

set of local alternatives in (2.3.7), then

i f ∆ ⩽ σ2trace(ΩG∗MΣ−1)/λmax, then, ADR
(
θ̃T , θ,Ω

)
⩽ ADR

(
θ̂T , θ,Ω

)
;

i f ∆ ⩾ σ2trace(ΩG∗MΣ−1)/λmin, then, ADR
(
θ̃T , θ,Ω

)
⩾ ADR

(
θ̂T , θ,Ω

)
.

The proof follows the proof of Proposition 2.5.1. The following proposition con-

firms the efficiency of the SEs compared with the UMLE.

Proposition 3.5.4. If Assumption 2.1-2.2, and Assumption 3.1-3.2 hold, along with the

set of local alternatives in (2.3.7), then,

ADR
(
θ̂sh+

T , θ,Ω
)
⩽ ADR

(
θ̂sh

T , θ,Ω
)
⩽ ADR

(
θ̂T , θ,Ω

)
for all ∆ ⩾ 0, provided σ2trace(ΩG∗MΣ−1)

λmax
⩾ q+2

2 .

The proof follows Proposition 2.5.2.

3.6 Empirical study and numerical results

To highlight the performance of the proposed method, this section presents the sim-

ulation results which show that the proposed method performs very well in small and

medium time horizons. Mnte-Carlo simulation along with the Euler-Maruyama dis-

cretization approach is used to generate the observations which follow the GCIR pro-

cess in (3.2.1), In particular, the GCIR process with a trigonometric orthogonal function

system

{1,
√

2 cos(ωt),
√

2 sin(ωt),
√

2 cos(2ωt),
√

2 sin(2ωt)}, whereω = 2π is generated. Hence,

the simulated GCIR process is given by

dX(t) =
(
µ1 + µ2

√
2 cos (2πt) + µ3

√
2 sin (2πt) + µ4

√
2 cos (4πt) − αX(t)

)
dt+σ

√
X(t)dBt,

(3.6.1)
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where the pre-assigned parameter θ = (µ1, µ2, µ3, µ4, α)⊤ = (5, 1, 2, 1, 1)⊤. The stochas-

tic process with T = 20, T = 35, T = 50 and T = 80 is used to evaluate the effect of

time T . Let δ = 0.001 be the time increment. Five hundred iterations are performed

and, for each iteration, the parameters are estimated, the mean and standard error of the

estimators are recorded. First, to test whether the periodic function L(t) is a constant

leads to the following null hypothesis Mθ = 0, for given

M = [03×1
... I3

... 03×1]. (3.6.2)

3.6.1 Parameter estimation

Notice that, letting G(t, X(t)) = 2
√

X(t), by Itô’s lemma,

dG(t, X(t)) =
∂G
∂t

(t, X(t))dt +
∂G
∂X(t)

(t, X(t))dX(t) +
1
2
∂2G
∂X2(t)

(t, X(t))d⟨X⟩t,

where ⟨X⟩t denotes the quadratic variation of the process X(t). Since dX(t) = (L(t) −

αX(t))dt + σ
√

X(t)dBt, then

dG(t, X(t)) =
1
√

X(t)
dX(t) +

1
2

(
−

1
2

X(t)−3/2
)

d⟨X⟩t

=

(
L(t)
√

X(t)
− α

√
X(t) −

1
4
σ2 1
√

X(t)

)
dt + σdBt

which implies that d
(
2
√

X(t)
)
=

(
L(t)
√

X(t)
− α
√

X(t) − 1
4σ

2 1
√

X(t)

)
dt + σdBt. Then, σ2 is a

diffusion parameter which can be estimated by
1
T

n∑
i=1

(
2
√

X(ti) − 2
√

X(ti−1)
)2

. Estima-

tors and standard deviations are reported in Table 3.1-3.4.

For the given real-valued function φ(t) and the pre-assigned parameter θ, let r = Mθ

be the restrictions on the parameters. To show the advantage of the RMLE while the

restrictions on parameters are correct, in Table 3.5, the Relative Mean Squared Error

(RMSE) under this null hypothesis Mθ = r are reported. The results in Table 3.5

show that the RMLE has the best performance among all the four types of proposed

estimators. This confirms the established theoretical result given in Section 3.5. Fur-
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Table 3.1: Mean and standard deviation of estimators (T=80)
µ̂1 µ̂2 µ̂3 µ̂4 α̂

UMLE
5.0258 0.9969 2.0002 0.9979 1.0054

(0.5047) (0.0385) (0.0313) (0.0248) (0.1018)

RMLE
2.2738 0.0000 0.0000 0.0000 0.4520

(0.0889) (0.2259e-15) (0.3020e-15) (0.1199e-15) (0.0172)

SEs
5.0255 0.9968 1.9999 0.9978 1.0054

(0.5046) (0.0385) (0.0313) (0.0248) (0.1018)

PSE
5.0255 0.9968 1.9999 0.9978 1.0054

(0.5046) (0.0385) (0.0313) (0.0248) (0.1018)

Table 3.2: Mean and standard deviation of estimators (T=50)
µ̂1 µ̂2 µ̂3 µ̂4 α̂

UMLE
5.0354 0.9974 1.9989 0.9995 1.0072

(0.5223) (0.0453) (0.0338) (0.0308) (0.1059)

RMLE
2.8350 0.0000 -0.0000 0.0000 0.5633

(0.1379) (0.2171e-15) (0.3093e-15) (0.1164e-15) (0.0267)

SEs
5.0350 0.9972 1.9985 0.9993 1.0071

(0.5223) (0.0453) (0.0368) (0.0308) (0.1059)

PSE
5.0350 0.9972 1.9985 0.9993 1.0071

(0.5223) (0.0453) (0.0368) (0.0308) (0.1059)

Table 3.3: Mean and standard deviation of estimators (T=35)
µ̂1 µ̂2 µ̂3 µ̂4 α̂

UMLE
5.0588 0.9910 1.9992 0.9996 1.0128

(0.5822) (0.0635) (0.0539) (0.0492) (0.1194)

RMLE
4.2861 0.0000 -0.0000 0.0000 0.8547

(0.3062) (0.1474e-15) (0.2762e-15) (0.1198e-15) (0.0604)

SEs
5.0584 0.9906 1.9982 0.9991 1.0127

(0.5821) (0.0635) (0.0539) (0.0491) (0.1194)

PSE
5.0584 0.9906 1.9982 0.9991 1.0127

(0.5821) (0.0635) (0.0539) (0.0491) (0.1194)

Table 3.4: Mean and standard deviation of estimators (T=20)
µ̂1 µ̂2 µ̂3 µ̂4 α̂

UMLE
5.0665 0.9959 2.0034 1.0012 1.0140

(0.5962) (0.0500) (0.0442) (0.0383) (0.1209)

RMLE
3.3503 0.0000 -0.0000 0.0000 0.6664

(0.2012) (0.1707e-15) (0.28069e-15) (0.1315e-15) (0.0391)

SEs
5.0660 0.9956 2.0029 1.0009 1.0139

(0.5961) (0.0500) (0.0442) (0.0383) (0.1208)

PSE
5.0660 0.9956 2.0029 1.0009 1.0139

(0.5961) (0.0500) (0.0442) (0.0383) (0.1208)
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Table 3.5: RMSE under Mθ = (1, 2, 1)⊤

T = 20 T = 35 T = 50 T = 80
RMSE-UMLE 1.0000 1.0000 1.0000 1.0000
RMSE-RMLE 1.7624 1.6337 1.6894 1.9154

RMSE-SEs 1.2206 1.1420 1.1542 1.2482
RMSE-PSE 1.2233 1.2091 1.2099 1.2499

ther, the simulations are performed under the set of local alternative restriction. Let

r0 = 0.5kr, k = 1, 2, 3, 4, 5, 6. ∆ is computed by using ∆ = 1
σ2 r⊤0 (MΣ−1M⊤)−1r0. Let

Σp =
∫ 1

0
φ⊤(t)φ(t)E

[
1

X̃(t)

]
dt and Λ =

∫ 1

0
E

[
X̃(t)

]
dt. In this subsection, by Proposition

3.3.9, the Riemann summation of the integral 1
T

∫ T

0
φ⊤(t)φ(t)

X(t) dt, 1
T

∫ T

0
X(t)dt is used to ap-

proximate the matrix Σp and Λ, respectively. Let Σ̂p =
1
T

n∑
i=1

φ⊤(ti)φ(ti)
X(ti)

∆i, Λ̂ = 1
T

n∑
i=1

X(ti)∆i,

for 0 = t0 < t1 < · · · < tn−1 < tn = T and ∆i = ti − ti−1. The estimates are reported

in Table 3.1-3.4. From Table 3.1-3.4, it is clear that the estimates get closer to the pre-

assigned values and the standard errors get smaller, as T increases. Figure 3.1 gives the

histogram of the estimators when T = 80. The portray given by Figure 3.1 is consistent

with the result given by Proposition 3.3.11. Indeed, the histograms seem quite symmet-

ric with respect to the pre-assigned values, which corroborates the fact that the UMLE

is asymptotically normal.

Figure 3.1: The histogram of estimators of GCIR model with T = 80
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3.6.2 Relative efficiency and empirical power of the test

This subsection sets out with the aim of assessing the performance of the proposed

test and estimators versus time T and ∆. To evaluate the performance of the proposed

estimators, the relative mean squared efficiency (RMSE) of the proposed estimators is

compared. The RMSE of θ̂0 is defined as RMSE(θ̂0) = ADR(θ̂T , θ,Ω)/ADR(θ̂0, θ,Ω)

where θ̂0 represents an estimator such as θ̃T , θ̂sh
T , θ̂sh+

T and θ̂T . For the sake of simplicity,

the weighting matrix is taken as Ω = Ip+1. The RMSE of each estimators with different

time T and different non-centrality parameter ∆ is calculated by 500 replications. The

obtained RMSE are reported in Figure 3.2-Figure 3.5. These figures are quite revealing

in several ways. First, all the figures show that near ∆ = 0, RMSE of RMLE is higher

than that of the other 3 estimators. This confirms that near the null hypothesis, RMLE

is more efficient than the UMLE, SEs and PSE. Second, these figures also indicate that

the efficiency of RMLE decreases as ∆ is far away from 0. This is consistent with the

fact that the RMLE performs worse if the restriction is seriously violated. Furthermore,

the figures show that PSE is always more efficient than SEs for all ∆ ⩾ 0, which is

consistent with Proposition 3.5.4. Meanwhile, RMSE of SEs is decreasing as ∆ is far

away from 0. However, RMSE of SEs is always higher than RMSE of UMLE for all

∆ ⩾ 0.

Another striking observation to emerge from this subsection is the comparison of

the variation of the empirical power versus the noncentrality parameter ∆ and time T .

Figure 3.6 highlights the performance of the proposed test in small and medium time

horizon, at the significant level 0.1. Figure 3.6 indicates that the empirical power of the

test increases to 1 as ∆ increases to infinity and the powers are very close for different

time T . This figure confirms the fact that the proposed test is consistent.
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Figure 3.2: Plots of RMSE of UMLE, RMLE, SEs and PSE (T = 20)
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Figure 3.3: Plots of RMSE of UMLE, RMLE, SEs and PSE (T = 35)
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Figure 3.4: Plots of RMSE of UMLE, RMLE, SEs and PSE (T = 50)
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Figure 3.5: Plots of RMSE of UMLE, RMLE, SEs and PSE (T = 80)
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Figure 3.6: Plots of the empirical power of the test versus ∆ and T (α = 0.1)

3.6.3 Real data analysis

This subsection presents the analysis of real datasets. In particular, Tthe proposed

methods are applied to two different datasets. The first dataset under consideration is

the historical corn price and the second dataset is the 10-year U.S. treasury bond yield.

3.6.3.1 Historical corn price

This dataset can be found in https://www.macrotrends.net and it represents the corn

price recorded daily from 1959 to 2022. The price shown is in U.S. Dollars per bushel.

To give a visual description, Figure 3.7 presents the monthly average corn prices from

July 01, 1959 to June 27, 2022. As can be seen from the figure, the price of corn

gradually increases from January, and by May, the increase reaches its peak. In June the

price begins to decline slightly. By July, after the new corn harvest corn prices begin

https://www.macrotrends.net/2532/corn-prices-historical-chart-data
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to fall sharply. After September and October, corn prices begin to move higher again.

Figure 3.7 shows an obvious periodic pattern of the historical corn prices, which is also

in line with the reality of the situation. To apply the method, the observations have been

generated by the GCIR process given by

dX(t) = (L(t) − αX(t)) dt + σ
√

X(t)dBt. (3.6.3)

where L(t) = µ1 + µ2
√

2 cos (2πt) + µ3
√

2 sin (2πt) + µ4
√

2 cos (4πt) + µ5
√

2 sin (4πt).

To apply the proposed method, let T = 63, which represents the time span of the

data, and N = 15876 is the total trading days during 63 years. So the increment of

time is ∆N = T/N = 0.004. For the diffusion parameter σ2, its estimate is σ̂2 =

1
T

N∑
i=1

(
2
√

X(ti) − 2
√

X(ti−1)
)2
= (0.4061)2. The hypothesis testing problem (2.2.3) is
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Figure 3.7: Plots of average price of corn from 1959-2022

considered, with r = (0, 0, 0, 0)⊤ and M is given as

M = [04×1
... I4

... 04×1]. (3.6.4)
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By using the proposed method, the UMLE, RMLE, SEs, and PSE are reported in Ta-

ble 3.6. The null hypothesis is tested by (2.3.11). The computed test statistic is 27.2932

Table 3.6: UMLE, RMLE, SEs and PSE of historical corn price
Parameter µ1 µ2 µ3 µ4 µ5 α

UMLE 0.2021 -0.2364 -0.0622 -0.1008 -0.0464 0.0467
RMLE 0.1997 -0.0000 -0.0000 -0.0000 0.0000 0.0459

SEs 0.2019 -0.2205 -0.0579 -0.0940 -0.0433 0.0467
PSE 0.2019 -0.2205 -0.0579 -0.0940 -0.0433 0.0467

while the critical value is χ2
4;0.1 = 7.7794. Thus, the test statistic value falls into the

rejection region at significant level α = 10%. Further, the p-value is 0.00001734. This

shows that the null hypothesis should be strongly rejected, that is the ”mean reversion”

term is a constant. Figure 3.8 portrays the real historical corn price in daily basis from

July 01, 1959 to June 27, 2022 (red) with UMLE. Figure 3.8 also describes the fitted

data from model (3.6.3) (blue). What is striking about Figure 3.8is that the predicted

data reflects the basic trend of the real bond yield data. Bootstrap method on residuals

is used to conduct the risk analysis based on 1000 replications. The RMSE is used to

compare their relative performance. The values obtained for Bootstrapped RMSE are

0.2816, 1.0169 and 1.0169 for RMLE, SEs and PSE, respectively. The numerical re-

sults are in agreement with the theoretical results for which the SEs dominate the UMLE

while RMLE performs worse when H0 is strongly rejected. The figures of the fitted data

obtained by using the RMLE, SEs and PSE are similar to Figure 3.8.

3.6.3.2 10-year U.S. treasury bond yield

The 10-year U.S. treasury bond yield is the benchmark used to decide mortgage

rates across the U.S. and is the most liquid and widely traded bond in the world. The

observations correspond to the total trading days during 11 years (Jan 03 2011- Dec 30

2021). The dataset can be found in http://www.treasury.gov. To give a global visual

https://fred.stlouisfed.org/series/DGS10/
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Figure 3.8: Historical price of corn (red) versus fitted corn price (green)

description, Figure 3.9 shows the monthly average price of 10-year U.S. treasury bond

yield from 2011 to 2021. From Figure 3.9, it should be noticed that, since the price is

significantly affected by policy adjustments, inflation and other factors, periodic pattern

in this monthly average curve is not as clear as for the historical corn price. Thus, one

can suspect that the restriction in (2.2.3) holds. In other words, it is likely that the mean-

reverting level is a constant. This makes it reasonable to consider the hypothesis testing

problem (2.2.3), with r = (0, 0, 0, 0)⊤ and M given in (3.6.4).

The GCIR model in (3.6.3) is used to apply the proposed methods. The time horizon

is taken as T = 11, which represents the time span of the data, and N = 2766 is the total

trading days during 11 years. So the time increment is ∆N = T/N = 0.004. The diffu-

sion parameter σ2 is estimated by σ̂2 = 1
T

N∑
i=1

(
2
√

X(ti) − 2
√

X(ti−1)
)2
= (0.5713)2. By

using the proposed method, the UMLE, RMLE, SEs and PSE are reported in Table 3.7.

Further, the obtained test statistic is 7.3471 while the critical value is χ2
4;0.1 = 7.7794.

Thus, the test statistic does not fall into the rejection region at significant level α = 0.1

and the corresponding p-value is 0.11864362. In other words, at 10% significance level,
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Figure 3.9: Mean 10-year U.S. Treasury Bond Yield (Jan 03 2011- Dec 30 2021)

Table 3.7: UMLE, RMLE, SEs and PSE of 10-year U.S. treasury bond yield
Parameter µ1 µ2 µ3 µ4 µ5 α

UMLE 1.3208 0.1999 -0.1777 -0.1309 -0.1009 0.6513
RMLE 1.3524 0.0000 0.0000 0.0000 0.0000 0.6664

SEs 1.3331 0.1384 -0.1161 -0.0922 -0.0694 0.6571
PSE 1.3318 0.1409 -0.1208 -0.0928 -0.0712 0.6565
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the null hypothesis is failed to reject, that is the ”mean reversion” term is a constant.

Figure 3.10 portrays the real yield of 10-year U.S. Treasury bond on a daily basis from

January 3, 2011 to December 30, 2021 (Red). Meanwhile, it also describes the fitted

data from model (3.6.3) (Blue) with UMLE. What is striking about Figure 3.10 is that

the predicted data reflects the basic trend of the real bond yield data. As for the case of

historical corn price, the fitted data obtained by the RMLE and SEs give the similar fig-

ures. Thus, to save the space of this paper, these figures are omitted. Bootstrap method

on residuals is used o conduct the risk analysis based on 1000 replications. The RMSE

is calculated to compare the relative performance of the proposed estimators. The re-

sults are reported in Table 3.8 and these are in agreement with the theoretical results for

which the SEs dominate the UMLE while, under H0, RMLE performs better than the

UMLE. This is consistent with the fact that H0 is not rejected at 10% significance level.

Figure 3.10: 10-year U.S. Treasury Bond Yield (red) versus fitted Treasury Bond Yield
(green)
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Table 3.8: Bootstrapped RMSE
Estimators UMLE RMLE SEs PSE

RMSE 1.0000 1.0072 1.0316 1.0371

3.7 Conclusion

This chapter proposed a GCIR process which is suitable for financial datasets which

exhibit a periodic mean-reverting level. The proposed stochastic process takes only

positive value which is very convenient for many financial datasets. For the drift param-

eter, different types of estimators including SEs which combine the sample information

and the prior information were derived. An asymptotic test was proposed for assessing

the prior information given in the form of a linear restriction. The main difficulty of

the studied inference problem consists in the fact the GCIR process does not have an

explicit solution and such process is not stationary unless it is restricted to the special

case where its dimension is a positive integer. To overcome this difficulty, an ”approx-

imate” auxiliary process which is strictly stationary and ergodic was construced. The

difference between the auxiliary process and the solution converges, in L1 and almost

surely, to 0. Based on this result and the stationarity and ergodicity of the auxiliary

process, the joint asymptotic normality of the UMLE and RMLE, under the set of local

alternative hypotheses was established. UMLE is asymptotically efficient. The derived

joint asymptotic normality was used to construct a consistent test for testing the hypoth-

esized restriction. SEs encloses as special cases the UMLE and the RMLE. Further, the

joint asymptotic normality was used to derive the asymptotic distributional risk of the

proposed estimators which was used to evaluate the relative risk efficiency of the pro-

posed estimators. Specifically, SEs dominate the UMLE and while the RMLE has good

performance near the null hypothesis only. Furthermore, the simulations corroborate

the theoretical findings. More precisely, the simulation results show that SEs dominate

the UMLE. They also show that, near the null hypothesis, the RMLE is better than the
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UMLE and SEs. Nevertheless, the performance of RMLE decreases as one moves far

away from the restriction. Moreover, PSE is always better than SEs for all ∆ ⩾ 0.

Finally, the historical corn dataset as well as 10-year U.S. treasury bond yield dataset

was used to illustrate the application of the proposed methods. The top novelty of this

chapter consists in the fact that the inference were performed under the context that the

GCIR process does not have an explicit solution and it is not stationary.



Chapter 4

Inference in GCKLS Process

4.1 Introduction

Over about recent three decades, Cox-Ingersoll-Ross (CIR) process has received a

lot of attention. Among properties of the CIR, it is a Markovian process and it is views

as equilibrium single-term structure model. This process is also known as a square

root process that captures the key characteristics of real interest rates. So far, due to

its features and capacity along with its mean-reverting property, the CIR process is one

of the most commonly used interest rate models in the literature. In particular, Geman

[2009] points out that mean-reverting property is found in several applications includ-

ing commodity and energy price processes. However, despite such a general trend, the

assumption of a constant mean-reversion level seems inadequate due to seasonality pat-

terns or a long-term trend of the process. By extending the square root in CIR model

into a positive real number, Chan et al. [1992] introduced the so-called Chan, Karolyi,

Longstaff and Sanders (CKLS) process to generalize the CIR process. The introduced

parameter determines the sensitivity of the variance to the level of the process at some

given time point. By using the generalized method of moments (GMM), Chan et al.

99



4.1 Introduction 100

[1992] estimated and compared a variety of continuous-time models of the short-term

riskless rate. They also examined the performance of the CKLS model. Further, An-

dersen and Piterbarg [2007] derived the explicit stationary distribution density of the

solution and explored the boundary behaviour of a class of stochastic volatility models.

The quoted citation Leuwattanachotinan [2011] considered the parameter estimation

with CKLS model by applying the GMM and efficient method of moments (EMM) to

3-month UK Repo rates. Another interesting reference is Zı́ková and Stehlı́ková [2012]

where the authors studied the convergence model of interest rates, which explains how

interest rates have changed in connection with the adoption of the Euro currency. In

Ying and Hin [2014], all the parameters (drift parameter, diffusion parameter and sensi-

tivity parameter) in CKLS model were considered to be random. A prediction interval

for the future value of the interest rate at the next time point when the current value of

the interest rate is given. Hu et al. [2015] developed the CKLS model’s explicit solution

using the Girsanov Theorem and established a link between the CKLS model and CIR

process. Cai and Wang [2015] investigated the asymptotic behaviour of a CKLS model

randomly disturbed by a small parameter. Under the assumption that the small parame-

ter can be arbitrary small, the central limit theorem and the moderate deviation principle

are obtained for the solution of the randomly perturbed CKLS model. Recently, there are

some works which studied the parameter estimation of the CKLS model. For instance,

under the settings of CKLS model with the sensitivity parameter restricted in the inter-

val [0, 3/2], Sánchez and Gallego [2016] estimated the parameters in two phases when

the long-term trend is defined by a continuous deterministic function. Later, Monsalve

and Sanchez [2017] studied with the case when the long-term trend of the generalized

CKLS model is a deterministic periodic function. In this case, the sensitivity parameter

is 0, 1/2, or 1, and the periodic tendency is represented by the series of Fourier. Wei

[2020] considered the parameter estimation problem for discrete observed CKLS model
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driven by small Lévy noises. The explicit formula of the least squares estimators and the

estimation error were derived. Effectiveness of the estimators was also confirmed. Ku-

bilius and Medžiūnas [2020] considered the fractional CKLS model and proved that the

trajectories are not necessarily positive if the sensitivity parameter is greater than 1. For

solutions to the fractional CKLS model, the almost sure convergence rate of the back-

ward Euler approximation approach was established. Mishura et al. [2022] generalized

the estimator in Dehtiar et al. [2021] under the context of CIR process. The strong con-

sistency and asymptotic normality of the maximum likelihood estimator were proved

under the context that the sensitivity parameter is restricted to the interval (0, 1/2).

This chapter introduces a generalized process that extends the constant mean re-

verting to a deterministic and periodic function. The inference problem about the drift

parameters is an interesting problem, in the context where some prior information (from

outside the sample) may be available. Then, it is attractive to derive a statistical method

that combines the prior information and the sample information. Further, to overcome

some uncertainty about the restriction, it is interesting to derive a test for testing the

hypothesized restriction. The rest of this chapter is structured as follows. Section 4.2

presents the statistical model, some assumptions and preliminary results. Section 4.3

proves that the generalized CKLS model is ergodic, which is the basis of the follow-

ing estimation and testing work. The parameters of volatility and sensitivity are also

estimated. Section 4.4 derives the UMLE and the restricted maximum likelihood es-

timator (RMLE) of the drift parameter. In this section, the joint asymptotic normality

of the UMLE and RMLE, under the set of local alternative restrictions are also estab-

lished. Section 4.5 derives a test for assessing the hypothesized restriction and a class of

shrinkage estimators (SEs) is presented. Section 4.6 establishes the asymptotic distri-

butional risk (ADR) of the proposed estimators and by using the ADR, the asymptotic

dominance of these estimators is studied. Section 4.7 presents the empirical study. A
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data analysis of historical corn prices is performed to demonstrate the application of the

proposed method. For more details, we refer to Lyu and Nkurunziza [2023b].

4.2 Statistical model

The CKLS process Ut is the solution to the following Stochastic differential equa-

tion (SDE):

dUt = (β − αUt)dt + σUδ
t dBt, t ⩾ 0 (4.2.1)

where the parameter β > 0, and the parameter α is the speed of adjustment to the mean

reversion level β, σ is the parameter associated with volatility and δ determines the

sensitivity of the variance to the level of Ut. In this chapter, the constant parameter β is

extended to a real valued function L(t), where t represents the time point. To introduce

the proposed model, let θ = (µ1, µ2, . . . , µp, α)⊤ ∈ Θ, where Θ ⊂ Rp+1 is the parameter

space. The following generalized CKLS model is considered

dX(t) = S (θ, t, X(t))dt + σ (X(t))δ dBt, X(0) = X0, (4.2.2)

where S (θ, t, X(t)) = L(t) − αX(t), with L(t) =
p∑

i=1
µiφi(t). As summarized in Table 4.1,

the proposed process in (4.2.2) includes several familiar stochastic processes. Suppose

Table 4.1: Stochastic differential equations with different types of parameters
Model L(t) β α δ SDE
Merton β β 0 0 drt = βdt + σdBt

Vasicek β β α 0 drt = (β − αrt)dt + σdBt

CIR SR β β α 1/2 drt = (β − αrt)dt + σr1/2
t dBt

Dothan β 0 0 1 drt = σrtdBt

GBM β 0 α 1 drt = −αrtdt + σrtdBt

Brennan-Schwartz β β α 1 drt = (β − αrt)dt + σrtdBt

CIR VR β β α 3/2 drt = (β − αrt)dt + σr3/2
t dBt

CEV β 0 α δ drt = −αrtdt + σrδt dBt

CKLS β β α δ drt = (β − αrt)dt + σrδt dBt

the target parameter satisfies the linear restriction (2.2.2). As stated in Nkurunziza and
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Zhang [2018], the above restriction indicates that there exists some linear relation bind-

ing some components of the drift parameter vector. Particularly, when the restriction

hold, some improved estimator of θ with high estimation accuracy can be obtained. The

restriction (2.2.2) leads to the hypothesis testing problem (2.2.3).

Assumption 4.1. The distribution of the initial value, X0, of the SDE in (4.2.2) does not

depend on the drift parameter θ. X0 is independent of {Bt : t ⩾ 0} and E(|X0|
m) < ∞, for

some m ⩾ 2. Further, X0 ⩾ U0, where U0 is the initial value of SDE (4.2.1).

In this chapter, the dimension p is assumed to be known, as well as the function

φ(t). the period v is also supposed to be known and, without loss of generality, v = 1.

For many financial models, such as option pricing, stochastic volatility, and interest rate

models, the positivity is a desired attribute. The following proposition gives a sufficient

condition for the process {X(t), t ⩾ 0} to be non-negative.

Proposition 4.2.1. Suppose that Assumption 2.1-2.2,4.1 hold. Then,

1. 0 is always an attainable boundary for 0 < δ < 1/2.

2. 0 is an unattainable boundary for 1/2 < δ.

3. ∞ is an unattainable boundary for all values of 0 < δ.

4. 0 is an attainable boundary for δ = 1/2, if 2L(t) < σ2 and 0 is an unattainable

boundary for δ = 1/2, if 2L(t) ⩾ σ2.

The proof is given in Appendix C.2.

Assumption 4.2. The parameter 1/2 < δ < 1 is known, the base function φ(t) is ana-

lytic, and the function L(t) ⩾ β > 0, where β > 0 is the parameter in SDE (4.2.1), and σ

is known. Further, 2α − σ2 > 0.
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Remark 4.2.1. In continuous time observations, it is natural to consider that the param-

eters δ and σ are known. Indeed, these can be obtained explicitly from the observations

(see Proposition 4.4.1).

Proposition 4.2.2. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then, the gener-

alized CKLS model in (4.2.2) admits a strong and unique non-negative solution, X(t),

on [0,T ], for 0 ⩽ T < ∞. Further, {X(t), t ⩾ 0} is strictly positive almost surely.

The proof is given in Appendix C.2.

Proposition 4.2.3. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then the solution

of the SDE (4.2.2) has the form

X(t) = e−αtX0 + h(t) + Z(t), t ⩾ 0 (4.2.3)

where h(t) = e−αt
∫ t

0
eαsL(s)ds,Z(t) = σe−αt

∫ t

0
eαs(X(t))δdBs.

The proof is given in Appendix C.2.

Proposition 4.2.4. Suppose that Assumption 2.1-2.2,and Assumption 4.1-4.2 hold. Then,

sup
t⩾0
E

[
(X(t))1−2δ

]
< ∞, sup

t⩾0
E

[
(X(t))−2δ

]
< ∞, sup

t⩾0
E

[
(X(t))−1

]
< ∞. (4.2.4)

The proof is given in Appendix C.2.

Proposition 4.2.5. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then for the pro-

cess (4.2.2) with t ⩾ 0,

(1). E[X(t)] = e−αtE[X0] +
p∑

i=1
µi

∫ t

0
e−α(t−s)φi(s)ds, and (2). sup

t⩾0
E[X(t)2] < ∞.

The proof is given in Appendix C.2. Further, since 1/2 < δ < 1, 0 < 2 − 2δ < 1,

then, Proposition 4.2.5 implies that

sup
t>0
E

[
(X(t))2−2δ

]
< ∞. (4.2.5)
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Corollary 4.2.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then,

P
(∫ T

0

(
S (θ, t, X(t))/(σ(X(t))δ)

)2
dt < ∞

)
= 1, for all 0 ⩽ T < ∞, and for all θ ∈ Θ.

The proof is given in Appendix C.2.

4.3 Ergodicity with periodic input

According to [Revuz and Yor, 1999, Chapter III], suppose that there is a process

{X(t), t ⩾ 0} for which, for any s < t, there is a transition probability Ps,t such that

P[X(t) ∈ A|σ(X(u), u ⩽ s)] = Ps,t(X(s), A), a.s.

Then for the positive function f : Ω 7→ R+, E[ f (X(t))|σ(X(u), u ⩽ s)] = Ps,t f (X(s)).

Particularly, if the process starts at time 0 and given X0 = x, let P0,t(x, A) as Pt(x, A).

Transition probability Ps,t is written as P0,t. Details are given in Appendix C.

In our case, the input signal is periodic with period 1, and the process {X(t), t ⩾ 0}

takes values in the interval (0,+∞) on which the function x 7→ xδ is analytic. Let

R∗+ :=
∞⋃

m=1

Cm, with Cm := [
1
m
,m].

It is already seen that Assumption C.1 holds. From Assumption 2.2, the grid chain is

defined as X = (X(k))k∈N0 , which is an (0,+∞)-valued time-homogeneous discrete-time

Markov process with one-step transition probability P0,1. The path segment chain is also

defined: X = (X(k + s))k∈N0,0<s<1, which is a (0, 1) × (0,+∞) valued time-homogeneous

continuous-time Markov process.

Proposition 4.3.1. Suppose that Assumption 2.1-2.2,and Assumption 4.1-4.2 hold. Then,

Assumption C.1-C.3 are satisfied for the generalized CKLS model with x∗ = 1. Further,

1. The grid chain X = (X(k))k∈N0 is positive Harris recurrent.

2. The path segment chain X = (X(k + s))k∈N0,0<s<1 is positive Harris recurrent.
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The proof of this result is given in Appendix C.2. Then, there exists an unique (up

to a multiplicative constant) invariant measure µ for the time-homogeneous grid chain

X = (X(k))k∈N0 . The following theorem gives the strong law of large numbers for the

process {X(t), t ⩾ 0}. Further, let {s} be the fractional part of a real number s.

Theorem 4.3.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then, for functions

F : Ω 7→ R, which is L1(µ) bounded,
1
T

∫ T

0
F({s}, X(s))ds

a.s.
−−−−→
T→∞

(∫ 1

0

∫
R

F(s, y)µP0,sdy
)

ds

for any choice of an initial value x ∈ Ω.

Proof. The proof follows from Corollary 2.3 a) [Höpfner et al., 2016, page 531]. □

It is important to note that, the GCKLS model is an extension of the GCIR model

discussed in Chapter 3, although Proposition 4.3.1 and Theorem 4.3.1 are established

under the assumption that 1/2 < δ < 1. Actually, according to the example of CIR-

type models in Höpfner et al. [2016], the ergodicity of the GCIR model discussed in

Chapter 3 can be derived using the transition probability approach used in this broader

class - GCKLS model, provided that the periodic base function φ(t) is analytic on the top

of satisfying Assumption 3.2 in Chapter 3. Accordingly, the results of Proposition 4.3.1

and Theorem 4.3.1 hold for the special case where the sensitivity parameter δ = 1/2.

4.4 The unrestricted and restricted estimators

This section addresses the maximum likelihood estimator of the target parameters.

In particular, the UMLE and the RMLE are derived.

4.4.1 Estimation of the volatility parameters

This subsection gives the estimation of the volatility parameter σ and the sensitivity

parameter δ. Let ⟨X⟩t = lim
n→∞

2n∑
k=1

(
X( k

2n t) − X( k−1
2n t)

)2
.
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Proposition 4.4.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then,

δ = lim
h→0

(
log

(
⟨X⟩t+h−⟨X⟩t
⟨X⟩s+h−⟨X⟩s

) / (
2 log (X(t)/X(s))

))
,

σ2 = lim
h→0

[
(⟨X⟩t+h − ⟨X⟩t)

/ (
hX(t)2δ

)]
.

The proof is similar to the proof of Proposition 5.1-5.3 in Mishura et al. [2022]. For

the convenience of the reader, the outline of the proof is given in Appendix C.

4.4.2 The UMLE θ̂T and the RMLE θ̃T

Let P(θ)
XT denote the measure induced by the observable realizations XT = {X(t), t ⩾ 0}

on the measurable space (C[0,T ],B[0,T ]), where C[0,T ] is the space of continuous, real-

valued functions on [0,T ] and B[0,T ] is the associated Borel σ algebra. Further, let

PB be the measure generated by the Brownian motion on (C[0,T ],B[0,T ]). Then, the

likelihood function of XT is given by L(θ, XT ) = (dP(θ)
XT /dPB)(XT ), where dP(θ)

XT /dPB

is the Radon-Nikodym derivative. The UMLE is obtained by maximizing the functional

θ 7−→ L(θ, XT ), i.e. θ̂T = arg max
θ
L(θ, XT ). To derive the RMLE, Lagrange multiplier

method is used. Let θ̃T be the RMLE, let

Q[0,T ] =


∫ T

0

φ⊤(t)φ(t)
X2δ(t)

dt −

∫ T

0
φ⊤(t)X1−2δ(t)dt

−

∫ T

0
φ(t)X1−2δ(t)dt

∫ T

0
X2−2δ(t)dt


(p+1)×(p+1)

, (4.4.1)

R[0,T ] =

(∫ T

0

φ(t)
X2δ(t)

dX(t),−
∫ T

0

X(t)
X2δ(t)

dX(t)
)⊤
,

W[0,T ] =

(∫ T

0

φ(t)
Xδ(t)

dBt,−

∫ T

0

X(t)
Xδ(t)

dBt

)⊤
.

(4.4.2)

To obtain UMLE θ̂T , the matrix Q[0,T ] needs to be invertible. In the following propo-

sition, it is proven that, under some sufficient conditions, the matrix Q[0,T ] is positive

definite.

Proposition 4.4.2. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then, if T ⩾ 1,

Q[0,T ] is a positive definite matrix.
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The proof of this result is given in Appendix C.3. Because the optimality of the

proposed methods is based on asymptotic results, in the sequel, the condition T ⩾ 1 is

always supposed to be true. Let G[0,T ] = Q−1
[0,T ]M

⊤(MQ−1
[0,T ]M

⊤)−1.

Proposition 4.4.3. Suppose that Assumption 2.1-2.2,and Assumption 4.1-4.2 hold. Then,

θ̂T = Q−1
[0,T ]R[0,T ], and θ̃T = θ̂T −G[0,T ](Mθ̂T − r).

The proof of this proposition is given in Appendix C.3.

4.4.3 Joint asymptotic normality of the estimators

This subsection derives the joint asymptotic normality of θ̂T and θ̃T . The limiting

distributions play an important role in deriving shrinkage estimators and their asymp-

totic relative efficiency as well as in deriving an asymptotic test for the hypothesis testing

problem (2.2.3). To this end, let us recall that, from Proposition 4.4.3, θ̂T = Q−1
[0,T ]R[0,T ].

Further, the definition of R[0,T ] in (4.4.2) and the SDE (4.2.2) imply that

R[0,T ] = Q[0,T ]θ + σ

∫ T

0

(φ(t),−X(t))⊤

X2δ(t)
Xδ(t)dBt = Q[0,T ]θ + σW[0,T ].

Then, θ̂T = Q−1
[0,T ]

(
Q[0,T ]θ + σW[0,T ]

)
= θ + σQ−1

[0,T ]W[0,T ] which implies that

√
T

(
θ̂T − θ

)
= σT Q−1

[0,T ]
1
√

T
W[0,T ]. (4.4.3)

Thus, the asymptotic behavior of θ̂T relies on the matrix T Q−1
[0,T ] and the column vector

1
√

T
W[0,T ] as T tends to infinity. To simplify some mathematical expressions, let

Σ =


∫ 1

0
φ⊤(t)φ(t)

∫ ∞

0
y−2δµP0,tdydt −

∫ 1

0
φ⊤(t)

∫ ∞

0
y1−2δµP0,tdydt

−

∫ 1

0
φ(t)

∫ ∞

0
y1−2δµP0,tdydt

∫ 1

0

∫ ∞

0
y2−2δµP0,tdydt


(p+1)×(p+1)

.

(4.4.4)
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Tthe following proposition shows that the matrix Σ is invertible. The established result

also gives the asymptotic behavior of the matrices
1
T

Q[0,T ], as well as T Q−1
[0,T ].

Proposition 4.4.4. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, then, (1). the

matrix Σ is a positive definite matrix; (2). 1
T Q[0,T ]

a.s.
−−−−→
T→∞

Σ and T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1.

Proof. The proof of Part (1) is similar to that given for Proposition 4.4.2. The first

statement of Part (2) follows directly from Theorem 4.3.1. □

The following proposition investigates the L2-boundedness of 1
√

T
W[0,T ], which is

useful in proving the convergence of θ̂T . Further, the established result gives the con-

vergence and asymptotic normality of θ̂T , which is one of the important results of this

chapter. Thereafter, let ρT =
√

T (θ̂T − θ).

Proposition 4.4.5. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold. Then,

(1) sup
T⩾0

E
(
∥W[0,T ]∥

2

T

)
< ∞; (2)

W[0,T ]

T
a.s.
−−−−→
T→∞

0; (3) 1
√

T
W[0,T ]

D
−−−−→
T→∞

W∗ ∼ Np+1 (0,Σ); (4)

θ̂T
a.s.
−−−−→
T→∞

θ; and ρT
D
−−−−→
T→∞

ρ ∼ Np+1(0, σ2Σ−1).

The proof of this proposition is given in Appendix C.3. Let {P(θ)
XT } denote the distri-

bution law of the solution of (4.2.2) under the parameter θ ∈ Θ. The following theorem

shows that the locally asymptotic normal (LAN) property of the probability measures

{P(θ)
XT }.

Theorem 4.4.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold. Then, for θ0 ∈ Θ,

and any h ∈ Rp+1, the likelihood ratio ZT (h) = L
(
θ0 +

1
√

T
h, θ; XT

)
admits the following

representation

ZT (h) = exp
{(

h,∆T (θ0, XT )
)
−

1
2

(Σh, h) + rT (θ0, h, XT )
}

where ∆T (θ0, XT )
D
−−−−→
T→∞

N(0,Σ) and rT (θ0, h, XT )
Pθ0
−−−−→
T→∞

0.

The proof of this theorem is given in Appendix C.3.
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Remark 4.4.2. Theorem 4.4.1 shows that the family of measures {P(θ)
XT } is LAN at every

point θ ∈ Θ, with local scale 1
√

T
and matrix Σ.

In the following, the joint asymptotic normality of the UMLE, the RMLE and their

difference are presented. Suppose that the set of local alternatives restrictions (2.3.7)

holds. Below, the asymptotic normality of
√

T (θ̂T − θ),
√

T (θ̃T − θ) and
√

T (θ̂T − θ̃T ) is

derived. From Proposition 4.4.3,

√
T (θ̃T − θ) =

(
Ip+1 −G[0,T ]M

) √
T (θ̂T − θ) −

√
TG[0,T ] (Mθ − r) . (4.4.5)

Let ϱT =
√

T (θ̃T − θ). By Proposition 4.4.4 and continuous mapping theorem,

T Q−1
[0,T ]M

⊤(MT Q−1
[0,T ]M

⊤)−1 = G[0,T ]
P
−−−−→
T→∞

G∗ = Σ−1M⊤(MΣ−1M⊤)−1 (4.4.6)

and Ip+1 − G[0,T ]M
P
−−−−→
T→∞

Ip+1 − G∗M. Under the set of local alternatives restriction

(2.3.7),

√
TG[0,T ](Mθ − r) =

√
TG[0,T ]

r0
√

T
= G[0,T ]r0

P
−−−−→
T→∞

G∗r0. (4.4.7)

Let (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤ =

√
T

(
(θ̂T − θ)⊤, (θ̃T − θ)⊤, (θ̂T − θ̃T )⊤

)⊤
. By combining Proposition

4.4.5 and relations (2.3.7), (4.4.7), the following joint asymptotic normality of the

UMLE and RMLE is established.

Proposition 4.4.6. Suppose that Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, to-

gether with the set of local alternative restrictions in (2.3.7). Then, (ρ⊤T , ϱ
⊤
T , ς

⊤
T )⊤

D
−−−−→
T→∞

(ρ⊤, ϱ⊤, ς⊤)⊤, where
ρ

ϱ

ς


∼ N3(p+1)




0

−G∗r0

G∗r0


, σ2


Σ−1 Σ−1 −G∗MΣ−1 G∗MΣ−1

Σ−1 −G∗MΣ−1 Σ−1 −G∗MΣ−1 0

G∗MΣ−1 0 G∗MΣ−1




.

The details of the proof is given in Appendix C.3.
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4.5 Testing the restriction and shrinkage estimators

4.5.1 Testing the restriction

This subsection moves on to tackle the hypothesis testing problem in (2.2.3). Note

that, from Proposition 4.4.1, in the continuous time observations, the sensitivity param-

eter δ, the diffusion parameter σ2 can be consistently estimated . Let σ̂2 be the estimator

of the diffusion parameter σ2. Further, let χ2
q(∆) be the chi-square random variable with

q degrees of freedom and non-centrality parameter ∆. In particular, if ∆ = 0, χ2
q(∆)

is a (central) chi-square random variable, with q degrees of freedom. To perform the

hypothesis test, define ∆ = 1
σ2 r⊤0 (MΣ−1M⊤)−1r0, with r0 given in (2.3.7). Let

Γ̂ =
1

σ̂2
M⊤

(
MT Q−1M⊤

)−1
M, Γ =

1
σ2 M⊤

(
MΣ−1M⊤

)−1
M.ψT = ς

⊤
T Γ̂ςT , ψ = ς⊤Γς,

(4.5.1)

where ψ0 = ς
⊤
0 Γς0, ςT =

√
T (θ̂T − θ̃T ), and ς0 ∼ Np+1

(
0, σ2G∗MΣ−1

)
.

Proposition 4.5.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2, together with the set

of local alternative restrictions in (2.3.7). Then, if r0 , 0, ψT
D
−−−−→
T→∞

ψ ∼ χ2
q(∆). More-

over, if r0 = 0, ψT
D
−−−−→
T→∞

ψ0 ∼ χ
2
q.

The proof of this proposition is given in Appendix C.3. Let χ2
α;q be the αth quantile

of a χ2
q where 0 < α ⩽ 1. In this case, the null hypothesis in (2.2.3) is tested by using

the rejection region ψT > χ2
α;q for a given α, i.e. the suggested test is given as (2.3.11).

From Proposition 4.5.1, below, the asymptotic power of the proposed test is derived.

Proposition 4.5.2. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, together with

the set of local alternative restrictions in (2.3.7). Then, the asymptotic power function

of the test in (2.3.11) is given by Π(∆) = P
(
χ2

q(∆) ⩾ χ2
α;q

)
.

The proof of this proposition follows directly from Proposition 4.5.1. It should be

noted that, under the null hypothesis, the above asymptotic local power is equal to α.
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Further, if ∆ tends to infinity, the above asymptotic local power tends to 1, which implies

that the test is consistent. In summary, the analysis procedures and results obtained from

UMLE and RMLE are presented. A consistent test is proposed in this section to assess

the restriction on drift parameters. Sometimes, the restriction is not completely known.

In next subsection, SEs is introduced, which combines both UMLE and RMLE.

4.5.2 Shrinkage estimators

As proposed in Section 2.5, Shrinkage estimators are a compromise between UMLE

and RMLE. For the convenience of the reader, the estimators is stated below.

θ̂s
T = θ̃T + γ

(
T

∣∣∣∣∣∣θ̂T − θ̃T

∣∣∣∣∣∣2
Γ̂

) (
θ̂T − θ̃T

)
, (4.5.2)

where Γ̂ is defined in (4.5.1). Let γ(x) = 1 − (q − 2)/x, with 2 < q = rank(M) < p + 1,

the shrinkage estimators (SEs) is given as

θ̂sh
T = θ̃T +

(
1 − (q − 2)ψ−1

T

) (
θ̂T − θ̃T

)
, (4.5.3)

where ψT is defined in (4.5.1). Moreover, by taking γ(x) = [1 − (q − 2)/x]+, x > 0, the

positive-part shrinkage estimator (PSE) given by

θ̂sh+
T = θ̃T +

[
1 − (q − 2)ψ−1

T

]+ (
θ̂T − θ̃T

)
. (4.5.4)

4.6 Asymptotic distributional risk analysis

This section also evaluates the performance of the UMLE, the RMLE and the SEs by

using the Asymptotic Distributional Risk (ADR), based on the quadratic loss function.

The following propositions give the ADR of the proposed estimators as well as their

asymptotic dominance.

Proposition 4.6.1. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, along with the
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set of local alternatives in (2.3.7). Then,

ADR
(
θ̂T , θ,Ω

)
= σ2trace(ΩΣ−1);

ADR
(
θ̃T , θ,Ω

)
= ADR

(
θ̂T , θ,Ω

)
− trace

(
Ωσ2

(
G∗MΣ−1

))
+ r⊤0 G∗⊤ΩG∗r0.

The proof of this result is given in Appendix C.3. Further, letΛ = Σ−1−G∗MΣ−1. By

using Theorem 3.1 in Nkurunziza [2012], the following result is derived, which gives

the ADR of SEs.

Proposition 4.6.2. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, along with the

set of local alternatives in (2.3.7). Then,

ADR
(
θ̂s

T , θ,Ω
)
= σ2trace (ΩΛ) + r⊤0 G∗⊤ΩG∗r0 − 2E

[
γ
(
χ2

q+2 (∆)
)]

r⊤0 G∗⊤ΩG∗r0

+E
[
γ2

(
χ2

q+2 (∆)
)]

trace
(
Ωσ2G∗MΣ−1

)
+ E

[
γ2

(
χ2

q+4 (∆)
)]

r⊤0 G∗⊤ΩG∗r0.

The proof of this result is given in Appendix C.3. By choosing suitable functions of

γ(x), x ⩾ 0, the following result is derived, which gives the ADR of SEs.

Proposition 4.6.3. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, along with the

set of local alternatives in (2.3.7). Then,

ADR
(
θ̂sh

T , θ,Ω
)
= ADR

(
θ̂T , θ,Ω

)
+ (q + 2)(q − 2)r⊤0 G∗⊤ΩG∗r0E

[
χ−4

q+4 (∆)
]

−(q − 2)σ2trace
(
ΩG∗MΣ−1

) (
2E

[
χ−2

q+2 (∆)
]
− (q − 2)E

[
χ−4

q+2 (∆)
])

;
(4.6.1)

ADR
(
θ̂sh+

T , θ,Ω
)
= ADR

(
θ̂sh

T , θ,Ω
)
+ 2r⊤0 G∗⊤ΩG∗r0E

[
(1 − (q − 2)χ−2

q+2 (∆))I{χ2
q+2(∆)<q−2}

]
−σ2trace

(
ΩG∗MΣ−1

)
E

[
(1 − (q − 2)χ−2

q+2 (∆))2I{χ2
q+2(∆)<q−2}

]
−r⊤0 G∗⊤ΩG∗r0E

[
(1 − (q − 2)χ−2

q+4 (∆))I{χ2
q+4(∆)<q−2}

]
.

The proof of this proposition is given in Appendix C.3. Let λmin, λmax be the smallest

and largest eigenvalues of the matrix
(
G∗⊤ΓG∗

)−1 G∗⊤ΩG∗, respectively. Below, the

comparison of the ADR between different estimators is presented.
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Proposition 4.6.4. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, along with the

set of local alternatives in (2.3.7). If

∆ ⩽ σ2trace(ΩG∗MΣ−1)/λmax, then, ADR
(
θ̃T , θ,Ω

)
⩽ ADR

(
θ̂T , θ,Ω

)
and if

∆ ⩾ σ2trace(ΩG∗MΣ−1)/λmin, then, ADR
(
θ̃T , θ,Ω

)
⩾ ADR

(
θ̂T , θ,Ω

)
.

The proof of this proposition folows Proposition 2.5.1. The following proposition

shows that the PSE has the lowest ADR and it shows that the SEs dominates the UMLE.

Proposition 4.6.5. If Assumption 2.1-2.2,and Assumption 4.1-4.2 hold, along with the

set of local alternatives in (2.3.7), then,

ADR
(
θ̂sh+

T , θ,Ω
)
⩽ ADR

(
θ̂sh

T , θ,Ω
)
⩽ ADR

(
θ̂T , θ,Ω

)
for all ∆ ⩾ 0, under the condition 2σ2trace(ΩG∗MΣ−1) ⩾ (q + 2)λmax.

The proof of this proposition follows Proposition 2.5.2.

4.7 Numerical evaluation and analysis of real dataset

4.7.1 Simulation results

This subsection contains the simulation results that demonstrate how effectively the

suggested approach works across small and medium time periods. To generate the ob-

servations which follow the generalized CKLS process in (4.2.2), Monte-Carlo simu-

lation along with the Euler-Maruyama discretization approach is used. In particular,

letting ω = 2π, the generalized CKLS process is generated with a trigonometric orthog-

onal function system {1,
√

2 cos(ωt),
√

2 sin(ωt),
√

2 cos(2ωt)}. Hence, the simulated

process is given

dX(t) =
(
µ1 + µ2

√
2 cos (2πt) + µ3

√
2 sin (2πt) + µ4

√
2 cos (4πt) − αX(t)

)
dt+σX(t)δdBt,

(4.7.1)
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where the pre-assigned parameter θ = (µ1, µ2, µ3, µ4, α)⊤ = (4, 1, 0.5, 1, 1)⊤. the stochas-

tic process is generated with T = 20, T = 35, T = 50 and T = 80 to evaluate the effect

of time T , given δ = 0.8, σ = 0.3. Let ∆ = 0.001 be the time increment. Five hundred

iterations are performed and, for each iteration, the parameter, θ, is estimated, the mean

and standard error of the estimators are recorded. First, whether the periodic function

L(t) is a constant is tested, which leads to the following null hypothesis Mθ = 0, for

given M a 3 × 5-matrix with

M =
[
03×1

... I3
... 03×1

]
. (4.7.2)

4.7.1.1 Point estimation

This subsection estimates the drift parameters under the condition that δ = 0.8 and

σ = 0.3. The results are shown in Table 4.2. Further, this subsection also investigates

the behavior of the estimators of δ and σ. From Proposition 4.4.1, in order to obtain

better numerical results, take several distinct points t1, · · · , tm, and use the following

quantity instead of (C.31),

δ̂ =

m∑
i=1

∣∣∣∣∣∣log
(
⟨X⟩ti+h − ⟨X⟩ti
⟨X⟩si+h − ⟨X⟩si

)∣∣∣∣∣∣ /
2 m∑

i=1

∣∣∣log (X(ti)/X(si))
∣∣∣ . (4.7.3)

In the following, notice that, letting G(t, X(t)) = 1
1−δX(t)1−δ, by Itô’s lemma,

dG(t, X(t)) =
∂G
∂t

(t, X(t))dt +
∂G
∂X(t)

(t, X(t))dX(t) +
1
2
∂2G
∂X2(t)

(t, X(t))d⟨X⟩t,

where ⟨X⟩t denotes the quadratic variation of the process X(t). This gives

dG(t, X(t)) = X−δ(t)dX(t) −
1
2
δX−δ−1(t)d⟨X⟩t

=

(
X−δ(t)(L(t) − αX(t)) −

1
2
δσ2Xδ−1(t)

)
dt + σdBt

which implies that d
(

1
1−δX1−δ(t)

)
=

(
X−δ(t)(L(t) − αX(t)) − 1

2δσ
2Xδ−1(t)

)
dt+σdBt. Then,

the diffusion parameter, σ2, can be estimated by σ̂2 = 1
T

n∑
i=1

(
X1−δ̂(ti)−X1−δ̂(ti−1)

1−δ̂

)2
. In the sim-

ulation study, the number of distinct points m = 11 is chosen. The partition step was
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set to be 0.001 to calculate the quadratic variation in the process. Let the small incre-

ment h = 2−6. Then, the volatility parameters δ and σ were estimated by using the

pairs si =
i

2m , ti =
i+m
2m , i = 1, 2, · · · ,m. The estimates δ̂ and σ̂ are reported in Table 4.6.

The unrestricted estimate of θ is also computed. Table 4.2 shows that the unrestricted

estimates of the components of θ get closer to the pre-assigned values and the standard

errors get smaller, as T increases. Further, Figure 4.1 gives the histogram of the unre-

stricted estimators of the components of θ, when T = 80. The visual portray given by

Figure 4.1 is consistent with the result of Proposition 4.4.5. Indeed, the histograms seem

quite symmetric with respect to the pre-assigned values, with mound-shaped curves.

Figure 4.1: The distribution of estimators with T = 80

From Figure 4.2, one can see that as T increases, the estimates (using UMLE) of

the function L(t) get closer to its true curve. The relative performance of the proposed

estimators is also evaluated via the simulation. To this end, the Relative Mean Squared
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Table 4.2: Mean and standard deviation of estimators of drift parameters (UMLE)
Parameters µ1 µ2 µ3 µ4 α

T=20
4.4897 0.9881 0.5132 1.0048 1.1285

(1.1045) (0.1957) (0.1931) (0.1945) (0.2954)

T=35
4.2977 0.9988 0.5098 0.9948 1.0781

(0.8118) (0.1482) (0.1514) (0.1523) (0.2167)

T=50
4.2215 0.9969 1.5056 0.9946 1.0557

(0.7143) (0.1248) (0.1213) (0.1216) (0.1885)

T=80
4.1122 0.9938 0.5109 0.9961 1.312

(0.5474) (0.0934) (0.0973) (0.0983) (0.1432)

Table 4.3: Mean and standard deviation of estimators of drift parameters (RMLE)
Parameters µ1 µ2 µ3 µ4 α

T=20
4.4390 1.0000 0.5000 1.0000 1.1154

(1.0565) (0.2534e-16) (0.7827e-16) (0.2166e-16) (0.2719)

T=35
4.2656 1.0000 0.5000 1.0000 1.0698

(0.7836) (0.1217e-16) (0.2510e-16) (0.1315e-16) (0.2089)

T=50
4.1990 1.0000 1.5000 1.0000 1.0499

(0.6939) (0.0000) (0.1648e-16) (0.8608e-17) (0.1830)

T=80
4.0860 1.0000 0.5000 1.0000 1.0246

(0.5301) (0.4970e-17) (0.1192e-17) (0.0000) (0.1390)

Table 4.4: Mean and standard deviation of estimators of drift parameters (SEs)
Parameters µ1 µ2 µ3 µ4 α

T=20
4.4749 0.9946 0.5134 1.0047 1.1247

(1.0843) (0.1562) (0.1516) (0.1555) (0.2903)

T=35
4.2854 1.0016 0.5058 0.9998 1.0750

(0.8009) (0.1173) (0.1178) (0.1239) (0.2139)

T=50
4.2156 0.9858 1.5038 1.0008 1.0541

(0.7083) (0.0953) (0.0959) (0.0964) (0.1868)

T=80
4.1068 0.9944 0.5096 0.9941 1.0299

(0.5389) (0.0735) (0.0760) (0.0766) (0.1412)

Table 4.5: Mean and standard deviation of estimators of drift parameters (PSE)
Parameters µ1 µ2 µ3 µ4 α

T=20
4.4739 0.9940 0.5105 1.0039 1.1244

(1.0865) (0.1458) (0.1401) (0.1420) (0.2908)

T=35
4.2893 1.0006 0.5088 0.9967 1.0760

(0.8003) (0.1094) (0.1109) (0.1128) (0.2136)

T=50
4.2137 0.9977 1.5026 0.99712 1.0537

(0.7071) (0.0898) (0.0871) (0.08793) (0.1865)

T=80
4.1073 0.9939 0.5093 0.9957 1.0300

(0.5405) (0.0676) (0.0699) (0.0708) (0.1415)
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Table 4.6: Mean and standard deviation of estimators of parameters δ and σ
Parameters T = 20 T = 35 T = 50 T = 80

δ
0.7632 0.7608 0.8087 0.8117

(0.6035) (0.5375) (0.5789) (0.6059)

σ
0.3157 0.3169 0.2971 0.2958

(0.0016) (0.0013) (9.8165e-04) (7.8919e-04)
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Figure 4.2: The estimation of function L(t) (only show the figures within the interval
[0, 2])
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Error (RMSE) is calculated as

RMSE(θ̂0) = ADR(θ̂T , θ,Ω)/ADR(θ̂0, θ,Ω) (4.7.4)

where θ̂0 represents an estimator such as θ̃T , θ̂sh
T , θ̂sh+

T and θ̂T . Thus, to show the ad-

vantage of the RMLE while the restriction holds, the RMSE under the null hypothesis

is reported in Table 4.7. The results in Table 4.7 show that the RMLE has the best

performance among all the four types of proposed estimators. This confirms the es-

tablished theoretical result given in Proposition 4.6.4. The performance of the UMLE

Table 4.7: RMSE under Mθ = (1, 1.5, 1)⊤

T = 20 T = 35 T = 50 T = 80
RMSE-UMLE 1.0000 1.0000 1.0000 1.0000
RMSE-RMLE 1.4300 1.3736 1.3650 1.4218

RMSE-SEs 1.0949 1.1211 1.0924 1.1302
RMSE-PSE 1.1342 1.1390 1.1222 1.1386

and RMLE is assessed, as well as that of SEs and PSEs versus the time horizon, T

and the non-centrality parameter ∆. To this end, to generate the process in (4.7.1) un-

der the set of local alternative restrictions, let r0 = 0.5kr, k = 0, 1, 2, 3, 4, 5 and let

∆ = 1
σ2 r⊤0 (MΣ−1M⊤)−1r0,

Σp =

∫ 1

0
φ⊤(t)φ(t)

∫ ∞

0
y−2δµP0,tdydt,Λ =

∫ 1

0
φ⊤(t)

∫ ∞

0
y1−2δµP0,tdydt,

and λ =
∫ 1

0

∫ ∞
0

y−2δµP0,tdydt. From Proposition 4.4.4, use the Riemann sum correspond-

ing to the integral 1
T

∫ T

0
φ⊤(t)φ(t)

X(t)2δ dt, 1
T

∫ T

0
φ⊤(t)X(t)1−2δdt, 1

T

∫ T

0
X(t)2−2δdt to approximate

the matrixΣp,Λ and λ, respectively. Let Σ̂p =
1
T

n∑
i=1

φ⊤(ti)φ(ti)
X2δ(ti)

∆i, Λ̂ =
1
T

n∑
i=1
φ⊤(ti)X1−2δ(ti)∆i,

λ̂ = 1
T

n∑
i=1

X2−2δ(ti)∆i, for 0 = t0 < t1 < · · · < tn−1 < tn = T and ∆i = ti − ti−1. Let Ω = Ip+1

be weighting matrix. From 500 replications, the RMSE of the different estimators are

obtained. The results are reported in Figures 4.3-4.6. These figures are quite revealing

in several ways. First, all the figures show that near ∆ = 0, the RMSE of RMLE is the

highest, which means that near the null hypothesis, RMLE is more efficient than the
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UMLE, SEs, and PSEs. Second, these figures also indicate that the efficiency of RMLE

decreases as ∆ moves far away from 0. This reflects the fact that the RMLE performs

worse if the restriction is seriously violated. Furthermore, such figures show that PSE is

always more efficient than SEs for all ∆ ⩾ 0, which is consistent with Proposition 4.6.5.

Meanwhile, the RMSE of both SEs and PSE are decreasing as ∆ is far away from the

origin. However, the RMSE of both SEs and PSE are always higher than the RMSE of

UMLE for all ∆ ⩾ 0.
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Figure 4.3: The RMSE of the estimator versus ∆ (T = 20)

4.7.1.2 Empirical power of the test

The performance of the proposed test is also evaluation via simulations. Thus, the

variation of the empirical power versus the noncentrality parameter ∆ and time T is

compared, at the significant level 0.1, 0.05, 0.025 separately. Figure 4.7-Figure 4.9 show

that the empirical power increases to 1 as ∆ increases to infinity. These figures also show
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Figure 4.4: The RMSE of the estimator versus ∆ (T = 35)
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Figure 4.5: The RMSE of the estimator versus ∆ (T = 50)
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Figure 4.6: The RMSE of the estimator versus ∆ (T = 80)

that the proposed test is consistent.

4.7.2 Real data analysis

This subsection applies the proposed method to the US Soybean Historical Price

recorded daily from 1990 to 2022, which is available at: US-soybeans-historical-data.

There are certain seasonal changes in the supply and demand of commodities, i.e., the

trend of increase or decrease in the supply or demand of commodities is relatively fixed

with the change of seasons, the prices of these commodities are also characterized by

seasonal fluctuations, which called the seasonal fluctuation law. In the case of agricul-

tural products, they are usually sown in a specific season of the year, and after grow-

ing and maturing, they are harvested in another season. This cycle of growth makes

agricultural products have a more obvious seasonal fluctuation law than base metals or

chemicals. Figure 4.10 indicates that the price has an obvious periodic property dur-

https://www.investing.com/commodities/us-soybeans-historical-data
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Figure 4.7: Plots of the empirical power of the test versus ∆ and T (α = 0.1)
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Figure 4.8: Plots of the empirical power of the test versus ∆ and T (α = 0.05)
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Figure 4.9: Plots of the empirical power of the test versus ∆ and T (α = 0.025)

ing the year as in the description above. To apply the method, the observations under

consideration have been generated by the generalized CKLS process given by

dX(t) = (L(t) − αX(t)) dt + σXδ(t)dBt. (4.7.5)

where L(t) = µ1+µ2
√

2 cos (2πt)+µ3
√

2 sin (2πt)+µ4
√

2 cos (4πt)+µ5
√

2 sin (4πt). To

apply the proposed method, let T = 33, which represents the time span of the data, and

N = 8464 is the total trading days during 23 years. So the increment of time is ∆N =

T/N = 0.004. (4.7.3) implies δ̂ = 0.6910 and σ̂2 = 1
T

N∑
i=1

(
1

1−δ̂
X1−δ(ti) − 1

1−δ̂
X1−δ(ti−1)

)2
=

(0.0647)2. Consider the hypothesis testing problem (2.2.3), with r = (0, 0, 0, 0)⊤ and M

is 4 × 6−matrix given as

M =
[
04×1

... I4
... 04×1

]
. (4.7.6)

The UMLE, RMLE, SEs and PSE are reported in Table 4.8.

The null hypothesis is testd by using the test in (2.3.11). The computed test statistic
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Figure 4.10: The periodic property of US soybean historical log price

Table 4.8: UMLE, RMLE, SEs and PSE of soybean historical data
Parameter µ1 µ2 µ3 µ4 µ5 α

UMLE 1.2773 0.0992 0.0203 0.0395 0.0556 0.1865
RMLE 1.2913 0.0000 0.0000 0.0000 -0.0000 0.1886

SEs 1.2778 0.0959 0.0196 0.0381 0.0537 0.1866
PSE 1.2778 0.0959 0.0196 0.0381 0.0537 0.1866
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Figure 4.11: Comparison of the real data and fitted value
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is 8.5404 while the critical value is χ2
4;0.1 = 7.7794. Thus, the test statistic value falls

into the rejection region at a significant level α = 10%. Further, the p-value is 0.0737,

which is less than α = 0.1. This shows that the null hypothesis that the ”mean reversion”

term is a constant is rejected, at 10% significance level.
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4.8 Conclusion

This chapter generalized the CKLS model by extending the constant mean reverting

term to a periodic function. The proposed process is more suitable for modeling some

financial data, such as the commodity prices, with periodic behaviour. It was proven that

the stochastic process takes only positive values under the condition that the sensitive

parameter δ ∈ (1/2, 1). By using the theory of transition semigroup, it was established

that the grid chain corresponding to the generalized CKLS is positive Harris recurrent.

Thanks to the established ergodicity, Some inference problems were solved concerning

the drift parameters in the context where uncertain prior information is available in the

form of a linear restriction on the drift parameter. Three estimators: UMLE, RMLE,

and SEs were derived. The joint asymptotic normality of the UMLE and RMLE, under

the set of local alternative hypotheses was also established. The derived joint asymp-

totic normality was used in constructing a consistent test for testing the hypothesized

restriction as well as in studying the relative risk efficiency of the proposed estimators.

As proved in Section 4.6, SEs dominated the UMLE and while the RMLE had the best

performance near the null hypothesis only. Nevertheless, the performance of RMLE de-

creases as one moves far away from the restriction. Moreover, PSE is always better than

SEs for all ∆ ⩾ 0. Further, the simulation confirmed the conclusions of the theoretical

results. Finally, to illustrate the application of the proposed methods, the historical US

soybean dataset, which has obvious seasonality trend, was analyzed.



Chapter 5

Summary and Future Research

5.1 Summary

This dissertation introduces three types of stochastic processes that are suitable for

positive datasets and that exhibit cyclic mean-reverting level behaviour. In particular, the

proposed processes are useful in several financial datasets. The three types of proposed

stochastic processes are generalized exponential O-U process, generalized CIR process,

and generalized CKLS process.

Firstly, in the context of the generalized exponential O-U process, the parameter

estimation and testing of the restrictions are performed under three different cases: no

change-point, one known change-point, and one unknown change-point. This process

is one of a few cases that admits an explicit solution. In comparison with other existing

works about the exponential O-U processes, the proposed GEOU incorporates the sea-

sonality effect and only takes positive values. In addition to that flexibility, the dataset

under consideration may be subject to a drastic change. A statistical method is pro-

posed that can be used to validate the seasonality effect or the drastic change as well as

other possible relations binding the components of the drift parameter. To this end, the

128
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UMLE and RMLE are derived. In order to derive their joint asymptotic normality as

well as the strong consistency of the UMLE, a stationary and ergodic auxiliary process

is constructed. The distance between the constructed process and the solution to GEOU

model converges to 0 both in mean and almost surely as time tends to infinity. Further,

in contrast with the works in recent cited literature, the component of the drift parame-

ter vector is supposed to be unknown. Based on a Schwartz Information Criterion and

Euler Approximations, a statistical method is derived to estimate the dimension of the

drift parameter and the change-point. An improved test is proposed for testing the di-

mension and the existence of change-point. The consistency of the test is confirmed in

the simulation part.

Secondly, under the context of the proposed generalized CIR process, an inference

problem about the drift parameter is studied. For example, there may be an instance

where uncertain prior information is available. In particular, SEs combine the sample

information and the prior information. An asymptotic test is constructed to assess the

prior information given in the form of a linear restriction. The main difficulty of the

studied inference problem is twofold: (1) the GCIR process does not have an explicit

solution and (2) such processes are not stationary unless they are restricted to the special

case where its dimension is a positive integer. An “approximate” auxiliary process that

is strictly stationary and ergodic is introduced to overcome this difficulty. Similar to

the case of GEOU model, the distance between the auxiliary process and the solution

of GCIR process also converges to 0 both in mean and almost surely. By using the

stationarity and ergodicity of the auxiliary process, the joint asymptotic normality of

the UMLE and RMLE is studied under the set of local alternative hypotheses. UMLE

is proven to be asymptotically efficient. The derived joint asymptotic normality is used

to construct a consistent test for testing the hypothesized restriction.

Thirdly, GCKLS process is generalized by extending the constant mean reverting
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term in CKLS model to a periodic function. This is more reasonable to model the

commodity prices with obvious seasonality. The stochastic process took only positive

values under the condition that the sensitive parameter belongs to the interval (1/2, 1). In

the case of GCKLS model, the sensitivity and volatility parameters are supposed to be

known. To be more precise, there may be situations where uncertain prior information is

available. By using the theory of transition semigroup, it is possible to determine that the

grid chain is positive Harris recurrent and that the path segment chain is positive Harris

recurrent, from which the strong law of large numbers for the time-inhomogeneous

process can be proven. This important finding is used for two purposes: (1) to derive

the joint normality of the UMLE and RMLE and (2) to prove the strongly consistency of

UMLE. In addition, in all the three different types of stochastic differential equations,

the relative performance of the UMLE, RMLE, and the SEs are compared by using

ADR. In particular, it is established that the proposed SEs dominate the UMLE and

that, near the null hypothesis, the RMLE is the most efficient. However, the RMLE is

dominated by the UMLE as one moves far away from the restriction. These theoretical

findings are confirmed by the simulation studies. Different real data sets are analyzed to

illustrate the application of the proposed method.

5.2 Future Research

This dissertation has explored the generalization of some diffusion processes, but

there are still many avenues of research that could be pursued in the future. This chapter

details several potential areas of inquiry that could build upon the research presented in

this dissertation. One area of future research could be to investigate the change point re-

lated problems, under the context of known and/or unknown numbers of change points.

Chapter 2 outlined the parameter estimation and testing problem of GEOU process un-
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der the situation of one unknown change point. In the future, it will be important to

consider cases where the number of change points is unknown. Under such a situation,

the research could focus on the estimation of the number and location of the change

points. This could be explored by combining loglikelihood method and least squared

method and could yield valuable insights into improving the prediction accuracy and

goodness-of-fit. The findings from GEOU process likewise suggest that the estimation

of parameter dimensions is an important problem that deserves further investigations.

This could also be explored in the context of GCIR and GCKLS processes, and more

accurate results could be expected. Further, it would be worthwhile to conduct research

on detecting the existence of change points in GCIR and GCKLS processes. Another

valuable area to explore is the implications of ergodicity for the GCKLS process with

extended range of sensitivity parameter. This could involve the knowledge of transition

probability and transition semi-group of diffusion processes. This could contribute to

the proof of ergodicity of the solution to GCKLS model.

Furthermore, given the significant impact of simulation across various fields and

its pivotal role in decision-making, experimentation, and problem-solving, a heightened

emphasis will be placed on the utilization of simulation techniques in the chapter of sim-

ulation under different types of SDEs. Out-of-sample validation would be a good choice

for testing how good the model is for predicting results on unseen new data. The dataset

will be partitioned into two distinct segments: one designated as the training set for

model development and the other as the testing set for evaluating model performance.

The process will involve conducting k-fold cross-validation on the training data, a cru-

cial step aimed at assessing the performance of each candidate model. This approach is

instrumental in ensuring that the models generalize effectively when faced with unseen

data. Evaluation methods such as SSE (Sum of Squared Error) will be employed to

effectively compare the performance of candidate models using the validation data. It is
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important to note that model selection is an iterative procedure, necessitating a cautious

approach to mitigate overfitting and underfitting while identifying the most appropriate

model for the specific problem. Prediction with more steps ahead will be performed.

More improvement could be expected under such a model selection procedure.



Appendices

A Proofs related to GEOU process

A.1 Proofs of parameter estimation and related problems

Proof of Proposition 2.3.18. The consistency of θ̂T (s) follows directly Proposition 2.3.6.

Further, ρT = σT Q−1(s,T )
1
√

T
W(s,T ) and then, by combining Proposition 2.3.17 and

Slutsky’s Theorem, ρT

D
−−−−→
T→∞

σΣ̃−1W̃∗ = ρ̃ ∼ N2(p+1)

(
0, σ2Σ̃−1

)
. This completes the

proof. □

Proof of Corollary 2.4.1. From (2.3.2) and (2.3.3), U[0,T ](p) = Q[0,T ](p)θ + σW[0,T ](p).

By combining the triangle inequality and Cauchy-Schwartz inequalities,

||logLN([0,T ], θ) − logL([0,T ], θ)||m/2

⩽ 2m/2−1
(
||θ||

σ

)m/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

Ψ(tk)(Btk+1 − Btk) −
∫ T

0
Ψ(t)dBt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

+2m/2−1
(
||θ||2

2σ2

)m/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

Ψ⊤(tk)Ψ(tk)∆N −

∫ T

0
Ψ⊤(t)Ψ(t)dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

,

for any θ ∈ Θ0. Then, since Θ0 is a compact subset, Proposition 2.4.1 implies

||logLN([0,T ], θ) − logL([0,T ], θ)||m/2 ⩽ 2m/2−1M0K(m,∆N)O(T m/2) + 2m/2−1M0×√
Cm max

{
(∆N)m/2−1 3m−1 (

(α∆N)m/2 + o((∆N)m/2)
)
, (C3(∆N))m (∆N)m/2−1

}
T
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for some M0 > 0. This completes the proof. □

Proof of Proposition 2.4.2. By (2.4.2),

1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti)

=
1
T


∑

i∈N[0,T ]
φ⊤(ti)φ(ti)(ti+1 − ti) −

∑
i∈N[0,T ]

φ⊤(ti) ln X(ti)(ti+1 − ti)

−
∑

i∈N[0,T ]
ln X(ti)φ(ti)(ti+1 − ti)

∑
i∈N[0,T ]

(ln X(ti))2(ti+1 − ti)

 .
Let a = [a⊤1 , a2] with a1 a p−column vector, and a2 a scalar. Then,

a

 ∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti)

 a⊤ =
∑

i∈N[0,T ]

(a⊤1 φ(ti) − a2 ln X(ti))2(ti+1 − ti) ⩾ 0,

and the equality holds if and only if (a⊤1 φ(ti) − a2 ln X(ti))2 = 0, almost everywhere for

i ∈ N[0,T ], which is a⊤1 φ(ti) − a2 ln X(ti) = 0, almost everywhere for i ∈ N[0,T ]. This

implies

P
(
ω : a⊤1 φ(ti) − a2(ln X(ti, ω)) = 0,∀ i ∈ N[0,T ]

)
= 1. (A.1)

Let us prove that if a⊤1 φ(ti) − a2 ln X(ti) = 0,∀ i ∈ N[0,T ] with probability 1, then,

a = 0(p+1)×1. Suppose that a2 , 0, which means a , 0(p+1)×1. From Proposition 2.2.1,

ln X(t)|X0 ∼ N(µ(t, X0), σ2
0(t))

where µ(t, X0) = E[ln X(t)|X0], σ2
0(t) = Var(ln X(t)|X0),∀ t ∈ [0,T ]. Then,

[a⊤1 φ(ti) − a2 ln X(ti, ω)]|X0 ∼ N(a⊤1 φ(ti) − a2µ(ti, X0), a2
2σ

2
0(ti)),∀ i ∈ N[0,T ].

Further, since α > 0, from Proposition 2.2.1 and the independence between X0 and

Brownian motion {Bt, t ⩾ 0} of Assumption 2.2,

σ2
0(ti) =Var (ln X(ti)|X0) = Var

([
e−αti(ln X0)

+e−αti
p∑

k=1

µk

∫ ti

0
eαsφk(s)ds +σe−αti

∫ ti

0
eαsdBs

]∣∣∣∣∣∣∣ X0


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= Var
(
σe−αti

∫ ti

0
eαsdBs|X0

)
= Var

(
σe−αti

∫ ti

0
eαsdBs

)
= σ2e−2αtiVar

(∫ ti

0
eαsdBs

)
= σ2e−2αti

E (∫ ti

0
eαsdBs

)2 − E2
[∫ ti

0
eαsdBs

] .
By Itô’s isometry and the property of martingale,

σ2
0(ti) = σ2e−2αti

{
E

[∫ ti

0
e2αsds

]
− 0

}
= σ2e−2αti

(
1

2α
(e2αti − 1)

)
=
σ2

2α
(1 − e−2αti).

This implies that σ2
0(ti) > 0 for all i ∈ N[0,T ]. Thus, if a2 , 0, a2

2σ
2
0(ti) > 0 for all

i ∈ N[0,T ]. Then, P
({
ω : a⊤1 φ(ti) − a2(ln X(ti, ω)) = 0,∀ i ∈ N[0,T ]

})
= 0. This is a

contradiction with (A.1). So, the assumption a2 , 0 is not correct, which implies that

a2 = 0. From a⊤1 φ(ti) − a2 ln X(ti, ω) = 0 in (A.1), a⊤1 φ(ti) = 0,∀ i ∈ N[0,T ]. If T ⩾ 1,

[0, 1] ⊂ [0,T ], by Assumption 2.2, {φ1(t), φ2(t), . . . , φp(t)} is linearly independent on

[0, 1], this implies that a⊤1 φ(ti) = 0 if and only if a⊤1 = 01×(p+1), ∀ i ∈ N[0,T ]. Hence,

if T ⩾ 1, the matrix
∑

i∈N[0,T ]
Z⊤i (p)Zi(p)/(ti+1 − ti) is a positive definite matrix. Then,

1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti) is positive definite. Second, by combining the triangle

inequality,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)
ti+1 − ti

− Σ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

⩽ 2m/2−1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)
ti+1 − ti

−
1
T

Q[0,T ]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

+

∣∣∣∣∣∣∣∣∣∣ 1
T

Q[0,T ] − Σ

∣∣∣∣∣∣∣∣∣∣m/2) ,
By Proposition 2.3.4, and (2.4.5),

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti) − Σ

∣∣∣∣∣∣
∣∣∣∣∣∣ Lm/2

−−−−→
T→∞
∆N→0

0, which

completes the proof. □

Lemma A.1. If at least one of the parameters, say, µ j, (µ j , 0), p∗ < j ⩽ p0, cannot

be estimated, then for large T ,
1
T

∑
i∈N[0,T ]

(
Zi(p)(θ(p) − θ̂(p∗+))

)2
/(ti+1 − ti) ⩾ γ1|µ j|

2 >

0,with positive probability.

Proof. If there is at least one parameter was not estimated, say µ j, (µ j , 0), p∗ < j ⩽ p,
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since
(
Zi(p)(θ(p) − θ̂(p∗+))

)2
⩾ 0 for each i, then,

1
T

∑
i∈N[0,T ]

(
Zi(p)(θ(p) − θ̂(p∗+))

)2

ti+1 − ti
= (θ(p)−θ̂(p∗+))⊤

 1
T

∑
i∈N[0,T ]

Z⊤i (p)Zi(p)
ti+1 − ti

 (θ(p)−θ̂(p∗+))

⩾ γ1(T )||θ(p) − θ̂(p∗+)||2 = γ1(T )

 p∗∑
j=1

(µ̂ j − µ j)2 +

p∑
j=p∗+1

(µ j − 0)2 + (α̂ − α)2

 .
This gives, 1

T

∑
i∈N[0,T ]

(Zi(p)(θ(p)−θ̂(p∗+)))2

ti+1−ti
⩾ γ1(T )|µ j|

2. By Corollary 2.4.2, γ1(T )
P
−−−−→
T→∞
∆N→0

γ1, with γ1 strictly positive. Then, γ1(T )|µ j|
2 P
−−−−→
T→∞
∆N→0

γ1|µ j|
2 > 0. This completes the

proof. □

Proof of Proposition 2.4.4. By the triangle inequality,

1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi(p)
ti+1 − ti

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ⩽

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

T

∑
i∈N[0,T ]

εiZi(p)
ti+1 − ti

−
1
√

T
σW[0,T ](p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + 1
√

T

∣∣∣∣∣∣σW[0,T ](p)
∣∣∣∣∣∣ .

From (2.4.5),

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

T

∑
i∈N[0,T ]

εiZi(p)
ti+1 − ti

−
1
√

T
σW[0,T ](p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Lm

−−−−−→
T→∞
∆N→∞

0, and then, from Proposi-

tion 2.4.3, assertion (2.4.8) holds. This completes the proof. □

Proof of Proposition 2.4.5. The proof will be completed by comparing the value of

IC(p0) and IC(p) for large T and small ∆N . Following (2.4.6), for p = p0,

IC(p0) = −2

 1
σ2

∑
i∈N[0,T ]

Zi(p0)θ̂(p0)
ti+1 − ti

Yi −
1

2σ2

∑
i∈N[0,T ]

(Zi(p0)θ̂(p0))2

ti+1 − ti

 + (p0 + 1)log(N)

where Zi(p0) = (φ1(ti), φ2(ti), . . . , φp0(ti),− ln X(ti))(ti+1−ti), θ̂(p0) = (µ̂1, µ̂2, . . . , µ̂p0 , α̂)⊤.

IC(p0) = −2

 1
2σ2

∑
i∈N[0,T ]

1
ti+1 − ti

(
−(Yi − Zi(p0)θ̂(p0))2 + (Yi)2

) + (p0 + 1)log(N).

Since Yi = Zi(p0)θ(p0) + ϵi,

IC(p0) = − 2

 1
2σ2

 ∑
i∈N[0,T ]

(Yi)2

ti+1 − ti
−

∑
i∈N[0,T ]

(
Zi(p0)θ(p0) + ϵi − Zi(p0)θ̂(p0)

)2

ti+1 − ti




+ (p0 + 1)log(N).
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Similarly, for p , p0,

IC(p) = − 2

 1
2σ2

 ∑
i∈N[0,T ]

(Yi)2

ti+1 − ti
−

∑
i∈N[0,T ]

(
Zi(p0)θ(p0) + ϵi − Zi(p)θ̂(p)

)2

ti+1 − ti




+ (p + 1)log(N).

For the case of p = p∗ > p0,

IC(p∗) − IC(p0) = − 2

 1
2σ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Zi(p0)θ(p0) + ϵi − Zi(p∗)θ̂(p∗)

)2

−
(
Zi(p0)θ(p0) + ϵi − Zi(p0)θ̂(p0)

)2
]}
+ (p∗ − p0)log(N).

Note that, θ(p0) and θ(p∗) have different dimensions. Let θ(p0+) = (µ1, µ2, . . . , µp0 , 0p0+1,

. . . , 0p∗ , α)⊤ be a constructed auxiliary vector, with p∗ as its dimension, Zi(p0)θ(p0) −

Zi(p∗)θ̂(p∗) = Zi(p∗)(θ̂ (p0+) − θ(p∗)) . Then,

IC(p∗) − IC(p0) = − 2

 1
2σ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Zi(p∗)(θ̂(p∗) − θ(p0+))

)2
+ ϵ2

i

− 2ϵiZi(p∗)
(
θ̂(p∗) − θ(p0+)

)
−

(
Zi(p0)(θ̂(p0) − θ(p0))

)2
− ϵ2

i

+2ϵiZi(p0)
(
θ̂(p0) − θ(p0)

)]}
+ (p∗ − p0)log(N)

= −
1
σ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Zi(p∗)(θ̂(p∗) − θ(p0+))

)2
−

(
Zi(p0)(θ̂(p0) − θ(p0))

)2

+2ϵi

(
Zi(p0)θ̂(p0) − Zi(p∗)θ̂(p∗)

)]
+ (p∗ − p0)log(N).

By the previous estimation results, θ̂(p∗) = θ(p0+) + σQ−1
[0,T ](p∗)W[0,T ](p∗). Proposi-

tion 2.3.1 shows that Q[0,T ](p) is invertible provided that T ⩾ 1, which implies that

Q[0,T ](p∗) is also invertible provided that T ⩾ 1. So by substituting θ̂(p∗) = θ(p0+) +

σQ−1
[0,T ](p∗)W[0,T ](p∗) into IC(p∗) − IC(p0),

IC(p∗) − IC(p0) = −
1
σ2

σ2W⊤
[0,T ](p∗)Q−1

[0,T ](p∗)
∑

i∈N[0,T ]

Z⊤i (p∗)Zi(p∗)
ti+1 − ti

Q−1
[0,T ](p∗)W[0,T ](p∗)

− σ2W⊤
[0,T ](p0)Q−1

[0,T ](p0)
∑

i∈N[0,T ]

Z⊤i (p0)Zi(p0)
ti+1 − ti

Q−1
[0,T ](p0)W[0,T ](p0)
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+2σ
∑

i∈N[0,T ]

ϵi

(
Zi(p0)
ti+1 − ti

Q−1
[0,T ](p0)W[0,T ](p0)

−
Zi(p∗)
ti+1 − ti

Q−1
[0,T ](p∗)W[0,T ](p∗)

)]
+ (p∗ − p0)log(N).

Further, from Proposition 2.3.4 and Proposition 2.4.2,

1
T

∣∣∣∣∣∣Q[0,T ](p0)
∣∣∣∣∣∣ = Op(1), T ||Q−1

[0,T ](p)|| = Op(1),
1
T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

Z⊤i (p)Zi(p)
∆N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op(1).

(A.2)

Hence, by Cauchy-Schwarz inequality,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣W⊤

[0,T ](p∗)Q−1
[0,T ](p∗)

∑
i∈N[0,T ]

Z⊤i (p∗)Zi(p∗)
ti+1 − ti

Q−1
[0,T ](p∗)W[0,T ](p∗)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

⩽

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
√

T
W[0,T ](p∗)

∣∣∣∣∣∣
∣∣∣∣∣∣2 ∣∣∣∣∣∣T Q−1

[0,T ](p∗)
∣∣∣∣∣∣2 ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,T ]

Z⊤i (p∗)Zi(p∗)
ti+1 − ti

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op(log2a∗(T )).

for some 0 < a∗ < a/2. Similarly,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣W⊤

[0,T ](p0)Q−1
[0,T ](p0)

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
ti+1 − ti

Q−1
[0,T ](p0)W[0,T ](p0)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op(log2a∗(T)).

Further, from (2.4.7) for p = p∗, and Proposition 2.4.4 along with the triangle inequality,

1
√

T

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi(p∗)
ti+1−ti

∣∣∣∣∣∣
∣∣∣∣∣∣ = Op(loga∗(T)). So,

σ

∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

[
ϵiZi(p0)
ti+1 − ti

Q−1
[0,T ](p0)W[0,T ](p0) −

ϵiZi(p∗)
ti+1 − ti

Q−1
[0,T ](p∗)W[0,T ](p∗)

]∣∣∣∣∣∣∣
⩽ σ

∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

ϵiZi(p0)
ti+1 − ti

Q−1
[0,T ](p0)W[0,T ](p0)

∣∣∣∣∣∣∣ + σ
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

ϵiZi(p∗)
ti+1 − ti

Q−1
[0,T ](p∗)W[0,T ](p∗)

∣∣∣∣∣∣∣
⩽

1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

ϵiZi(p0)
∆N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ T ||Q−1

[0,T ](p0)||
σ
√

T
||W[0,T ](p0)||

+
1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

ϵiZi(p∗)
∆N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ T ||Q−1

[0,T ](p∗)||
σ
√

T
||W[0,T ](p∗)|| = Op(log2a∗T ).

Therefore, for large T , IC(p∗)−IC(p0) is dominated by (p∗−p0)log(N), which is positive.

This implies that lim
T→∞
∆N→0

P(IC(p∗) − IC(p0) > 0) = 1 for all p = p∗ > p0.
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For the case p = p∗ < p0,

1
T

(IC(p∗) − IC(p0)) =
1

Tσ2

∑
i∈N[0,T ]

(
Yi − Zi(p∗)θ̂(p∗)

)2
− (Yi)2

ti+1 − ti
+

(p∗ + 1)log(N)
T

−
1

Tσ2

∑
i∈N[0,T ]

[(
Yi − Zi(p0)θ̂(p0)

)2
− (Yi)2

]
ti+1 − ti

+
(p0 + 1)log(N)

T

=
1

Tσ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Yi − Zi(p∗)θ̂(p∗)

)2
−

(
Yi − Zi(p0)θ̂(p0)

)2
]
+

(p∗ − p0)log(N)
T

=
1

Tσ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Zi(p0)θ(p0) − Zi(p∗)θ̂(p∗) + ϵi

)2

−
(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0) + ϵi

)2
]
+

(p∗ − p0)log(N)
T

.

Further, 1
T (IC(p∗) − IC(p0)) can be rewritten as

1
Tσ2

∑
i∈N[0,T ]

1
ti+1 − ti

[(
Zi(p0)(θ(p0) − θ̂(p∗+))

)2
−

(
Zi(p0)(θ(p0) − θ̂(p0))

)2

+2ϵi

(
Zi(p0)(θ(p0) − θ̂(p∗+)) − Zi(p0)(θ(p0) − θ̂(p0))

)]
+

(p∗ − p0)log(N)
T

.

Then, to simplify the notations, let

1
T

(IC(p∗) − IC(p0)) = (a1(T ) − a2(T ) + a3(T )) + (p∗ − p0)log(N)/T,

where

a1(T ) =
1

Tσ2

∑
i∈N[0,T ]

(
Zi(p0)(θ(p0) − θ̂(p∗+))

)2
/(ti+1 − ti),

a2(T ) =
1

Tσ2

∑
i∈N[0,T ]

(
Zi(p0)(θ(p0) − θ̂(p0))

)2
/(ti+1 − ti),

a3(T ) =
1

Tσ2

∑
i∈N[0,T ]

2ϵi

(
Zi(p0)(θ(p0) − θ̂(p∗+)) − Zi(p0)(θ(p0) − θ̂(p0))

)
/(ti+1 − ti),

and θ̂(p∗+) is defined in Lemma A.1. Since p = p∗ < p0, there is at least one parameter

which can not be estimated. Without loss of generality, µk, (µk , 0), p∗ < k ⩽ p0 is
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supposed to be the parameter that cannot be consistently estimated. From Lemma A.1,

a1(T ) ⩾ γ1|µk|
2/σ2 > 0. (A.3)

Further,

a2(T ) =
1
σ2 (θ(p0) − θ̂(p0))⊤

 1
T

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)/(ti+1 − ti)

 (θ(p0) − θ̂(p0)).

From Proposition 2.3.6, and Proposition 2.4.2,

a2(T )
P
−−−−→
T→∞
∆N→0

1
σ2 01×(p0+1)Σ(p0+1)×(p0+1)0(p0+1)×1 = 0. (A.4)

Let a⃗ = (01, . . . , 0p∗ , µp∗+1, . . . , µp0 , 0)⊤. By using Proposition 2.4.4 and the fact that,

1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

2ϵiZi(p0)
ti+1 − ti

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op(loga∗T ),

which implies that

1
T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,T ]

2ϵiZi(p0)
ti+1 − ti

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ P
−−−−→
T→∞

0.

Meanwhile, as θ̂(p0) − θ(p0)
a.s.
−−−−→
T→∞

0(p0+1)×1,

θ(p0) − θ̂(p∗+) − (θ(p0) − θ̂(p0))
a.s.
−−−−→
T→∞

a⃗,

with a⃗ = (01, . . . , 0p∗ , µp∗+1, . . . , µp0 , 0)⊤, non-random,

a3(T ) =
1
σ2

 1
T

∑
i∈N[0,T ]

2ϵiZi(p0)/(ti+1 − ti)

 (θ(p0) − θ̂(p∗+) − (θ(p0) − θ̂(p0)))

P
−−−−→
T→∞
∆N→0

1
σ2 0a⃗ = 0.

(A.5)

For the last term, by Assumption 2.4,

(p∗ − p0)log(N)/T
P
−−−−→
T→∞
∆N→0

0. (A.6)

Therefore, by (A.3)-(A.6), lim
T→∞
∆N→0

P (IC(p∗) − IC(p0) > 0) = 1 for p = p∗ < p0. So, it
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concludes that for p , p0, lim
T→∞
∆N→0

P(IC(p) − IC(p0) > 0) = 1.

Further, by Proposition 2.4.5,

lim
T→∞
∆N→0

P(IC(p0) ≤ IC( p̂)) = 1

and by definition of p̂

lim
T→∞
∆N→0

P(IC(p0) ≥ IC( p̂)) = 1

This implies, for any ϵ > 0,

lim
T→∞
∆N→0

P(|IC(p0) − IC( p̂)| > ϵ) = 0

i.e. IC(p̂) − IC(p0)
P
−−−−→
T→∞
∆N→0

0. Set p̂ = p̂(T ) and suppose p̂(T ) − p0 ↛ 0 in probability, as

T → ∞. i.e. ∃ ϵ0 > 0,∀ T > 0,∃ T0 > T , such that |p̂(T0) − p0| > ϵ0, which implies that

p̂(T0) > p0 + ϵ0 or p̂(T0) < p0 − ϵ0 hold. For p̂(T0) > p0 + ϵ0, there exists some η0 > 0, such

that p̂(T0) = p0 + ϵ0 + η0 > p0 + ϵ0, so IC(p̂(T0)) = IC(p0 + ϵ0 + η0). This is a contradiction

with

lim
T→∞
∆N→0

P (IC(p0) < IC(p0 + ϵ0 + η0)) = 1

in Proposition 2.4.5. For p̂(T0) < p0 − ϵ0, there exists some η0 > 0, such that p̂(T0) =

p0 − ϵ0 − η0 < p0 − ϵ0, so IC( p̂(T0)) = IC(p0 − ϵ0 − η0). This is a contradiction with

lim
T→∞
∆N→0

P (IC(p0) < IC(p0 − ϵ0 − η0)) = 1

in Proposition 2.4.5. So, p̂ − p0
P
−−−−→
T→∞
∆N→0

0. □

The following propositions and corollaries are important in proving that the pro-

posed method improves the goodness-of-fit.

Proposition A.1. If Assumption 2.1-2.3 and Assumption 2.4 hold, then,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
φp̂(ti) − φp0(ti)

)
(ti+1 − ti)I{p̂=p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0,
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∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

T∑
i=1

(
φp̂(ti) − φp0+(ti)

)
(ti+1 − ti)I{ p̂>p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

,
P
−−−−→
T→∞
∆N→0

0,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
φp̂+(ti) − φp0(ti)

)
(ti+1 − ti)I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0.

Proof. The proof of the first claim is obvious. For the second claim, let δ > 0.

1
T

N∑
i=1

φ p̂(ti)(ti+1 − ti) =

 1
T

N∑
i=1

φ1(ti)(ti+1 − ti),
1
T

N∑
i=1

φ2(ti)(ti+1 − ti), · · · ,
1
T

N∑
i=1

φp̂(ti)

 .
In the case p̂ < p0, for ∀ δ > 0, Then,

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 1
T

N∑
i=1

φp̂+(ti)(ti+1 − ti) −
1
T

N∑
i=1

φp0(ti)(ti+1 − ti)

 I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

> δ


= P


 ∑

p̂+1⩽k⩽p0

 1
T

N∑
i=1

φk(ti)(ti+1 − ti)

2 I{ p̂<p0} > δ


⩽ P

K2
φ

 ∑
p̂+1⩽k⩽p0

1

 I{ p̂<p0} > δ

 ⩽ P
(
K2
φ| p̂ − p0| > δ

)
= P

(
| p̂ − p0| >

δ

K2
φ

)
−−−−→
T→∞
∆N→0

0.

Further,

P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 1
T

N∑
i=1

φp̂+(ti)(ti+1 − ti) −
1
T

N∑
i=1

φp0(ti)(ti+1 − ti)

 I{ p̂>p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

> δ


= P


 ∑

p0+1⩽k⩽ p̂

 1
T

N∑
i=1

φk(ti)(ti+1 − ti)

2 I{ p̂>p0} > δ


⩽ P

K2
φ

 ∑
p0+1⩽k⩽ p̂

1

 I{ p̂>p0} > δ

 ⩽ P
(
K2
φ| p̂ − p0| > δ

)
= P

(
| p̂ − p0| >

δ

K2
φ

)
−−−−→
T→∞
∆N→0

0.

This completes the proof. □

Corollary A.1. If Assumption 2.1-2.3 and Assumption 2.4 hold, then,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(Zi( p̂) − Zi(p0)) I{ p̂=p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0,
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∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(Zi( p̂) − Zi(p0+)) I{ p̂>p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(Zi( p̂+) − Zi(p0)) I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0.

where Zi( p̂+) = (φp̂+(ti),− ln X(ti))(ti+1 − ti) and Zi(p0+) = (φp0+(ti),− ln X(ti))(ti+1 − ti).

Proof. The proof of the first claim is obvious. Further, by the definition of Zi( p̂+) and

Proposition A.1, for ∀ δ > 0, P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(Zi( p̂+) − Zi(p0)) I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

> δ


P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(Zi(p̂+) − Zi(p0)) I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

> δ


= P


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
φp̂+(ti) − φp0(ti)

)
(ti+1 − ti)I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

> δ

 −−−−→T→∞
∆N→0

0.

(A.7)

Similarly, one proves that

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 1
T

N∑
i=1

Zi( p̂+) −
1
T

N∑
i=1

Zi(p0)

 I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0. □

Corollary A.2. If Assumption 2.1-2.3 and Assumption 2.4 hold, then,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
Z⊤i (p̂)Zi(p̂)

ti+1 − ti
−

Z⊤i (p0)Zi(p0)
ti+1 − ti

)
I{ p̂=p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
Z⊤i (p̂)Zi( p̂)

ti+1 − ti
−

Z⊤i (p0+)Zi(p0+)
ti+1 − ti

)
I{ p̂>p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

,
P
−−−−→
T→∞
∆N→0

0,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
Z⊤i ( p̂+)Zi(p̂+)

ti+1 − ti
−

Z⊤i (p0)Zi(p0)
ti+1 − ti

)
I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

P
−−−−→
T→∞
∆N→0

0.

Proof. For the first claim is obvious. Further, by the definition of Zi(p̂+),∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

N∑
i=1

(
Z⊤i ( p̂+)Zi( p̂+)

ti+1 − ti
−

Z⊤i (p0)Zi(p0)
ti+1 − ti

)
I{ p̂<p0}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

p0∑
j=1

p0∑
k= p̂+1

 1
T

N∑
i=1

φ j(ti)φk(ti)(ti+1 − ti)

2

+

p̂∑
j=1

p0∑
k=p̂+1

 1
T

N∑
i=1

φ j(ti)φk(ti)(ti+1 − ti)

2

+ 2
p0∑

k= p̂+1

 1
T

N∑
i=1

φk(ti)(ln X(ti))(ti+1 − ti)

2
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⩽ K4
φp0(p0 − p̂) + K4

φ p̂(p0 − p̂) + 2K2
φ(p0 − p̂)

 1
T

N∑
i=1

(ln X(ti))(ti+1 − ti)

2
P
−−−−→
T→∞
∆N→0

0,

where the following convergence are used:

p0 − p̂
P
−−−−→
T→∞
∆N→0

0 and

 1
T

N∑
i=1

(ln X(ti))(ti+1 − ti)

2
P
−−−−→
T→∞
∆N→0

(∫ 1

0
r̃(t)dt

)2

.

Similarly, one can prove the third claim, this completes the proof. □

Proof of Proposition 2.4.6. By (2.4.6) and T = N∆N ,

IC(p)
T
=
−2
T

 1
2σ2

∑
i∈N[0,T ]

−(Yi − Zi(p)θ̂(p))2 + (Yi)2

ti+1 − ti

 + (p + 1)log(N)
T

=
1

Tσ2

∑
i∈N[0,T ]

(
Yi − Zi(p)θ̂(p)

)2

∆N
−

1
Tσ2

∑
i∈N[0,T ]

Y2
i

∆N
+

(p + 1)log(N)
T

and

1
N

SSE(p) =
1
N

N∑
i=1

(
Ŷi(p)

ti+1 − ti
−

Yi

ti+1 − ti

)2

=
1
T

N∑
i=1

(
Zi(p)θ̂(p) − Yi

)2

∆N
,

which implies that

IC(p)
T
=

1
σ2

1
N

SSE(p) −
1

Tσ2

∑
i∈N[0,T ]

Y2
i

∆N
+

(p + 1)log(N)
T

. (A.8)

By p̂ = arg min
p∈N

IC(p) and by Proposition 2.4.5, together with (A.8) ,

1
σ2

1
N

SSE(p) +
(p + 1)log(N)

T
−

(
1
σ2

1
N

SSE(p̂) +
( p̂ + 1)log(N)

T

)

=
1
σ2

(
1
N

SSE(p) − SSE( p̂)
)
+

(p − p̂)log(N)
T

⩾ 0,

with positive probability. From p̂ − p
P
−−−−→
T→∞
∆N→0

0, and log(N)
T −−−−→

T→∞
∆N→0

0,

lim
T→∞
∆N→0

P
(

1
N

(SSE(p0) − SSE(p̂)) ⩾ 0
)
= 1.

Next, it needs to show that, for p , p0, 1
N (SSE(p) − SSE(p0)) ⩾ 0, with positive proba-
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bility. First, if p = p∗ < p0,

1
N

(SSE(p) − SSE(p0)) =
1
N

N∑
i=1

(
Ŷi(p∗)
∆N

−
Yi(p0)
∆N

)2

−
1
N

N∑
i=1

(
Ŷi(p0)
∆N

−
Yi(p0)
∆N

)2

.

Let θ̂(p∗+) be as defined in Lemma A.1. Since 1
N =

∆N
T ,

1
N

(SSE(p) − SSE(p0)) =
1
T

N∑
i=1


(
Zi(p∗)θ̂(p∗) − Yi(p0)

)2

∆N
−

(
Zi(p0)θ̂(p0) − Yi(p0)

)2

∆N

 .
Similar to the proof of p = p∗ < p0 in Proposition 2.4.5,

1
N

(SSE(p∗) − SSE(p0)) =
1
T

N∑
i=1

1
∆N

[(
Zi(p0)(θ(p0) − θ̂(p∗+))

)2
−

(
Zi(p0)(θ(p0) − θ̂(p0))

)2

+2ϵi

(
Zi(p0)(θ(p0) − θ̂(p∗+)) − Zi(p0)(θ(p0) − θ̂(p0))

)]
,

and then, to rewrite the notation,

1
N

(SSE(p∗) − SSE(p0)) = a1(T ) − a2(T ) + a3(T ),

where θ̂(p∗+) is defined in Lemma A.1 and

a1(T ) = 1
T

N∑
i=1

(
Zi(p0)(θ(p0) − θ̂(p∗+))

)2
/∆N ,

a2(T ) = 1
T

N∑
i=1

(
Zi(p0)(θ(p0) − θ̂(p0))

)2
/∆N ,

a3(T ) = 1
T

N∑
i=1

2ϵi

(
Zi(p0)(θ(p0) − θ̂(p∗+)) − Zi(p0)(θ(p0) − θ̂(p0))

)
/∆N .

Since p = p∗ < p0, there is at least one parameter which can not be estimated. With-

out loss of generality, µk, (µk , 0), p∗ < k ⩽ p0 is supposed the parameter, from

Lemma A.1,

a1(T ) ⩾
γ1|µk|

2

σ2 > 0. (A.9)

Further, by combining Proposition 2.3.6 and Proposition 2.4.2,

a2(T ) = 1
σ2 (θ(p0) − θ̂(p0))⊤

[
1
T

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
∆N

]
(θ(p0) − θ̂(p0))

P
−−−−→
T→∞
∆N→0

1
σ2 0′Σ0 = 0.

(A.10)

Further, let a⃗ = (01, . . . , 0p∗ , µp∗+1, . . . , θp0 , 0)⊤. Using the fact that θ(p0) − θ̂(p∗+) −
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(θ(p0) − θ̂(p0))
a.s.
−−−−→
T→∞

a⃗(p0+1)×1, and Proposition 2.4.4,

a3(T ) =
1
σ2

 1
T

∑
i∈N[0,T ]

2ϵiZi(p0)
∆N

 (θ(p0) − θ̂(p∗+) − (θ(p0) − θ̂(p0)))
P
−−−−→
T→∞
∆N→0

1
σ2 0′a⃗ = 0.

(A.11)

Therefore, by (A.9)-(A.11), lim
T→∞
∆N→0

P
(

1
N

(SSE(p) − SSE(p0)) ⩾ 0
)
= 1. Second, for the

case of p = p∗ > p0.

1
N

(SSE(p∗)−SSE(p0)) =
1
T

N∑
i=1

(
Zi(p∗)θ̂(p∗) − Yi(p0)

)2

∆N
−

1
T

N∑
i=1

(
Zi(p0)θ̂(p0) − Yi(p0)

)2

∆N
.

Since Yi(p0) = Zi(p0)θ(p0) + εi,

1
N

(SSE(p∗) − SSE(p0)) =
1
T

N∑
i=1

(
Zi(p∗)

(
θ̂(p∗) − θ(p0)

)
+ εi

)2
/∆N

−
1
T

N∑
i=1

(
Zi(p0)

(
θ̂(p0) − θ(p0)

)
+ εi

)2
/∆N

=
(
θ̂(p∗) − θ(p0+)

)⊤ 1
T

N∑
i=1

(Z⊤i (p∗)Zi(p∗)/∆N)
(
θ̂(p∗) − θ(p0+)

)
−

2
T

N∑
i=1

εiZi(p∗)
∆N

(
θ̂(p∗) − θ(p0+)

)
−

(
θ̂(p0) − θ(p0)

)⊤ 1
T

N∑
i=1

(Z⊤i (p0)Zi(p0)/∆N)
(
θ̂(p0) − θ(p0)

)
+

2
T

N∑
i=1

(εiZi(p0)/∆N)
(
θ̂(p0) − θ(p0)

)
.

Similar to the proof of p = p∗ > p0 in Proposition 2.4.5, one can prove that

2
T

N∑
i=1

(εiZi(p∗)/∆N)
(
θ̂(p∗) − θ(p0+)

) P
−−−−→
T→∞
∆N→0

0,

2
T

N∑
i=1

(εiZi(p0)/∆N)
(
θ̂(p0) − θ(p0)

) P
−−−−→
T→∞

0,

(
θ̂(p0) − θ(p0)

)⊤ 1
T

N∑
i=1

(Z⊤i (p0)Zi(p0)/∆N)
(
θ̂(p0) − θ(p0)

) P
−−−−→
T→∞
∆N→0

0.
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Then, (
θ̂(p∗) − θ(p0+)

)⊤ 1
T

N∑
i=1

Z⊤i (p∗)Zi(p∗)
∆N

(
θ̂(p∗) − θ(p0)

)
⩾ γmin

(
θ̂(p∗) − θ(p0+)

)⊤ (
θ̂(p∗) − θ(p0+)

)
⩾ 0,

where γmin is the smallest eigenvalue of the matrix
1
T

N∑
i=1

Z⊤i (p∗)Zi(p∗)/∆N . Note that,

for the case of p∗ > p0,(
θ̂(p∗) − θ(p0+)

)⊤ 1
T

N∑
i=1

(Z⊤i (p∗)Zi(p∗)/∆N)
(
θ̂(p∗) − θ(p0)

) P
−−−−→
T→∞
∆N→0

0.

This implies that

lim
T→∞
∆N→0

P
(

1
N

(SSE(p) − SSE(p0)) ⩾ 0
)
= 1.

This completes the proof. □

Proposition A.2. Suppose that Assumption 2.1-2.3 and Assumption 2.4 hold,

1
T

∑
i∈N[0,sT ]

(Z⊤i (p0)Zi(p0))/(ti+1 − ti),
Lm/2

−−−−→
T→∞
∆N→0

sΣ1, (A.12)

1
T

∑
i∈N[sT,T ]

Z⊤i (p0)Zi(p0)/(ti+1 − ti)
Lm/2

−−−−→
T→∞
∆N→0

(sΣ1, (1 − s)Σ2) . (A.13)

Proof. By triangle inequality,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,sT ]

Z⊤i (p)Zi(p)
ti+1 − ti

− sΣ1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

⩽ 2m/2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,sT ]

Z⊤i (p)Zi(p)
ti+1 − ti

−
1
T

Q[0,sT ]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

+

∣∣∣∣∣∣∣∣∣∣ 1
T

Q[0,sT ] − sΣ1

∣∣∣∣∣∣∣∣∣∣m/2) .
By Proposition 2.3.17 along with the relation (2.4.5), by replacing the interval [0,T ] by

[0, sT ], ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,sT ]

Z⊤i (p)Zi(p)
ti+1 − ti

− sΣ1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Lm/2

−−−−→
T→∞
∆N→0

0,

which implies that (A.12) hold. Similarly, (A.13) can be proven. This completes the
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proof. □

Let γ1(s,T ) be the smallest eigenvalue of matrix
1
T

∑
i∈N[0,sT ]

Z⊤i (p)Zi(p)/(ti+1 − ti) and

γ2(s,T ) be the smallest eigenvalue of matrix 1
T

∑
i∈N[sT,T ]

Z⊤i (p)Zi(p)/(ti+1 − ti) and let γk

be the smallest eigenvalue of Σk, for k = 1, 2.

Lemma A.2. If Assumption 2.1-2.3 and Assumption 2.4 hold, then γ1(s,T )
P
−−−−→
T→∞
∆N→0

sγ1 and γ2(s,T )
P
−−−−→
T→∞
∆N→0

(1 − s)γ2.

Proof. By combining Proposition A.3, Proposition A.2 and Corollary 2.4.2 along with

the fact that Σ1 is a positive definite matrix, γ1(s,T )
P
−−−−→
T→∞
∆N→0

γ1(s) = sγ1 with γ1 strictly

positive. Similarly, γ2(s,T )
P
−−−−→
T→∞
∆N→0

(1 − s)γ2. □

Let θ̂(k)(p∗+) = (µ̂1
(k), µ̂(k)

2 , · · · , µ̂
(k)
p∗ , 0p∗+1, · · · , 0p, α̂

(k))⊤, k = 1, 2. The following

lemma is useful in proving that the information criterion IC(c, p) reaches its minimum

value at the exact dimension (c0, p0).

Lemma A.3. Suppose that Assumption 2.1-2.3 and Assumption 2.4 hold and suppose

that at least one of the parameters, say µ(k)
j , (µ(k)

j , 0), p∗ < j ⩽ p, k = 1, 2, cannot be

consistently estimated, then for large T ,

1
T

∑
i∈N[0,sT ]

1
ti+1 − ti

(
Zi(p)(θ(1)(p) − θ̂(1)(p∗+))

)2
/(ti+1 − ti) ⩾ sγ1

∣∣∣∣µ(1)
j

∣∣∣∣2 > 0,

1
T

∑
i∈N[sT,T ]

(
Zi(p)(θ(2)(p) − θ̂(2)(p∗+))

)2
/(ti+1 − ti) ⩾ (1 − s)γ2

∣∣∣∣µ(2)
j

∣∣∣∣2 > 0,

with positive probability.

Proof. For the process on the observed interval [0, sT ], if there is at least one parameter

was not consistently estimated, say µ(1)
j , (µ(1)

j , 0), p∗ < j ⩽ p.

1
T

∑
i∈N[0,sT ]

(
Zi(p)(θ(1)(p) − θ̂(1)(p∗+))

)2
/(ti+1 − ti)



A Proofs related to GEOU process 149

= (θ(1)(p) − θ̂(1)(p∗+))⊤
 1
T

∑
i∈N[0,sT ]

Z⊤i (p)Zi(p)/(ti+1 − ti)

 (θ(1)(p) − θ̂(1)(p∗+))

⩾ γ1(s,T )||θ(1)(p) − θ̂(1)(p∗+)||2

= γ1(s,T )

 p∗∑
j=1

(µ̂(1)
j − µ

(1)
j )2 +

p0∑
j=p∗+1

(µ(1)
j − 0)2 + (α̂(1) − α(1))2

 .
Then, 1

T

∑
i∈N[0,sT ]

(
Zi(p)(θ(1)(p) − θ̂(1)(p∗+))

)2
⩾ γ1(s,T )

∣∣∣∣µ(1)
j

∣∣∣∣2 , p∗ ⩽ j ⩽ p0. By the proof

of Lemma A.2, γ1(s,T )
∣∣∣∣µ(1)

j

∣∣∣∣2 P
−−−−→
T→∞
∆N→0

sγ1

∣∣∣∣µ(1)
j

∣∣∣∣2 > 0. By using the same techniques, the

second inequality is proven. This completes the proof. □

Before presenting this important result, The following propositions and lemmas

are derived, which play a crucial role in establishing this result. Proposition A.3-

Proposition A.5 and Lemma A.2, Lemma A.3 are based on the exact rate of the change-

point s0, while Proposition A.6-Proposition A.9 are based on ŝ which is an estimator of

s.

Proposition A.3. If Assumption 2.1-2.3 and Assumption 2.4 hold, then,
1
T

∑
i∈N[a,b]

(Z⊤i (p)Zi(p)/(ti+1 − ti) is a positive definite matrix for b − a ⩾ 1.

The proof follows from the proof of Proposition 2.4.2. Next, to emphasize the pa-

rameter dimension p in our notations, let W(s,T, p) be the vector W(s,T ) with dimen-

sion p and Q(s,T, p) be the matrix Q(s,T, p) with size 2(p+1)×2(p+1). Let W[0,sT ](p)

be the vector W[0,sT ](s) with dimension p and Q[0,sT ](p) be the matrix Q[0,sT ] with size

(p + 1) × (p + 1). The following proposition shows that, for some 0 < a∗ < a/2,(
1
√

T
||W(s,T, p)||

)
/
(
loga∗(T )

)
is bounded in probability.

Proposition A.4. If Assumption 2.1-2.3 and Assumption 2.4 hold, then, for some 0 <

a∗ < a/2,

1
√

T
||W(s,T, p)|| = Op(loga∗(T )).
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Proof. The proof follows from the Proposition 2.4.3. □

Proposition A.5. Suppose that Assumption 2.1-2.3 and Assumption 2.4 hold, then, for

some 0 < a∗ < a/2, ∀p ⩾ 1,

1
√

T


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,sT ]

εiZi(p)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[sT,T ]

εiZi(p)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 = Op(loga∗(T)). (A.14)

Proof. By combining the triangle inequality,

1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,sT ]

εiZi(p)
ti+1 − ti

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ⩽ 1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,sT ]

εiZi(p)
ti+1 − ti

− σWT (s, p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + 1
√

T
||σWT (s, p)|| .

From the relation Equation (2.4.5) along with
1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,sT ]

εiZi(p)
ti+1 − ti

− σWT (s, p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Lm/2

−−−−→
T→∞
∆N→0

0, which implies that
1
√

T

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,sT ]

εiZi(p)
ti+1 − ti

− σWT (s, p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ P
−−−−→
T→∞
∆N→0

0. Further, from Propo-

sition A.4,
σ
√

T
||WT (s, p)|| = Op(loga∗T ) is proven. This implies that the assertion in

(A.14). Further, by using the same techniques, the second statement in (A.14) is proven.

This completes the proof. □

Proof of Proposition 2.4.7. Let SSE1 = SSE(ŝ, p̂, θ̂)/N, and SSE2 = SSE(s0, p0, θ̂0)/N,

where θ̂ is the estimator based on the estimation of the change point and θ̂0 is the

estimator based on the true change point, denoted by s0. Since SSE1 ⩽ SSE2 with

probability 1, it remains to show that if the change point is not consistently estimated,

SSE1 > SSE2 with positive probability yielding a contradiction. Indeed, if the change

point is not consistently estimated, |ŝT − s0T | > ηT , for some constant 0 < η < 1.

Without loss of generality, 0 < s0T < ŝT < T is supposed to be satisfied. Let Ŷi(p, s) be

the predicted value of Yi based on the parameter p and s and θ̂(p, s) be the estimator of
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θ based on the parameter p and s. Then,

SSE1 − SSE2 =

 1
N

∑
i∈N[0,T ]

(
Ŷi( p̂, ŝ)
∆N

−
Yi

∆N

)2

−
1
N

∑
i∈N[0,T ]

(
Ŷi(p0, s0)
∆N

−
Yi

∆N

)2
 I{ p̂>p0}

(A.15)

+

 1
N

∑
i∈N[0,T ]

(
Ŷi(p̂, ŝ)
∆N

−
Yi

∆N

)2

−
1
N

∑
i∈N[0,T ]

(
Ŷi(p0, s0)
∆N

−
Yi

∆N

)2
 I{ p̂=p0} (A.16)

+

 1
N

∑
i∈N[0,T ]

(
Ŷi( p̂, ŝ)
∆N

−
Yi

∆N

)2

−
1
N

∑
i∈N[0,T ]

(
Ŷi(p0, s0)
∆N

−
Yi

∆N

)2
 I{ p̂<p0}. (A.17)

Note that T = N∆N ,Yi = Zi(p0)θ(p0) + εi,

(A.15) =
∆N

T

∑
i∈N[0,T ]

(Zi( p̂, ŝ)
∆N

(θ̂(p̂, ŝ) − θ(p0+))
)2

−

(
Zi(p0, s0)
∆N

(θ̂(p0, s0) − θ(p0))
)2 I{ p̂>p0}

−
2∆N

T

∑
i∈N[0,T ]

[(
εi

Zi( p̂, ŝ)
∆N

(θ̂( p̂, ŝ) − θ(p0+))
)
+

(
εi

Zi(p0, s0)
∆N

(θ̂(p0, s0) − θ(p0))
)]
I{ p̂>p0}

= (θ̂( p̂, ŝ) − θ(p0+))⊤
1
T

∑
i∈N[0,T ]

Z⊤i ( p̂)Zi( p̂)
∆N

(θ̂( p̂, ŝ) − θ(p0+))I{ p̂>p0}

− (θ̂(p0, s0) − θ(p0))⊤
1
T

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
∆N

(θ̂(p0, s0) − θ(p0))I{ p̂>p0}

−
2
T

∑
i∈N[0,T ]

(
εiZi( p̂)(θ̂( p̂, ŝ) − θ(p0+))

)
I{p̂>p0}+

2
T

∑
i∈N[0,T ]

(
εiZi(p0)(θ̂(p0, s0) − θ(p0))

)
I{p̂>p0}.

Since s is not consistently estimated, and from
(
Zi( p̂)(θ̂(p̂, ŝ) − θ(p0+)

)2
I{ p̂>p0} ⩾ 0,

1
T

(
θ̂( p̂, ŝ) − θ(p0+)

)⊤ ∑
i∈N[0,T ]

Z⊤i (p̂)Zi( p̂)
∆N

(
θ̂( p̂, ŝ) − θ(p0+)

)
I{p̂>p0}

⩽ η

(µ1(p0+) − µ̂1( p̂, ŝ))⊤
1
ηT

∑
i∈N[s0T−ηT,s0T ]

Z⊤1i( p̂)Z1i( p̂)
∆N

(µ1(p0+) − µ̂1( p̂, ŝ))

 I{ p̂>p0}

+η

(µ2(p0+) − µ̂1( p̂))⊤
1
ηT

∑
i∈N[s0T,s0T+ηT ]

Z⊤2i(p̂)Z2i( p̂)
∆N

(µ2(p0+) − µ̂1(p̂, ŝ))

 I{ p̂>p0}.

(A.18)

Let γ11(T ), γ12(T ) be the smallest eigenvalues of the matrices
∑

i∈N[s0T−ηT,s0T ]

Z⊤1i( p̂)Z1i(p̂)
∆NηT
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and
∑

i∈N[s0T,s0T+ηT ]

Z⊤2i( p̂)Z2i( p̂)
∆NηT

, respectively, while p̂ > p0. Then,

(A.18) ⩾ ηmin(γ11(T ), γ12(T ))
(
||µ1(p0+) − µ̂1( p̂, ŝ)||2 + ||µ2(p0+) − µ̂1( p̂, ŝ)||2

)
I{ p̂>p0}.

Using the convexity of a quadratic function,

||µ1(p0+) − µ̂1( p̂, ŝ)||2 + ||µ2(p0+) − µ̂1( p̂, ŝ)||2 ⩾ ||µ1(p0) − µ2(p0)||2
/
2. Hence,

∆N

T

∑
i∈N[0,T ]

(
Zi(p̂)
∆N

(θ̂(p̂, ŝ) − θ(p0+))
)2

⩾ η
min(γ11(T ), γ12(T ))

2
||θ1(p0) − θ2(p0)||2 I{ p̂>p0}.

By Proposition A.10, γ11(T ) and γ12(T ) are both bounded away from 0 and

ηmin{γ11(T ), γ12(T )} is also bounded away from 0. Therefore, the right-hand side of the

inequality ηmin {γ11(T ), γ12(T )} /2 ||µ1(p0) − µ2(p0)||2 is strictly positive. Further, since

θ̂(p0, s0) − θ(p0)
a.s.
−−−−→
T→∞

0,

−
(
θ̂(p0, s0) − θ(p0)

)⊤ ∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
∆N

(
θ̂(p0, s0) − θ(p0)

) P
−−−−→
T→∞
∆N→0

0.

Proposition A.4 and Proposition A.9 imply that 2
T

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi( p̂)

∣∣∣∣∣∣
∣∣∣∣∣∣ I{ p̂>p0} = op(1) and

2
T

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
i∈N[0,T ]

εiZi(p0)

∣∣∣∣∣∣
∣∣∣∣∣∣ I{ p̂>p0} = op(1). So,

−
2
T

∑
i∈N[0,T ]

(
εiZi( p̂)

(
θ̂( p̂, ŝ) − θ(p0+)

))
I{ p̂>p0}

+
2
T

∑
i∈N[0,T ]

(
εiZi(p0)

(
θ̂(p0, s0) − θ(p0)

))
I{p̂>p0}

P
−−−−→
T→∞
∆N→0

0.

This is for large T ,

(A.15) ⩾ C1 ||µ1(p0) − µ2(p0)||2 I{ p̂>p0} (A.19)

with positive probability, where C1 = lim
T→∞

min(sγ11(T ), (1 − s)γ12(T ))/2 > 0. Further,

(A.16) =
(
θ̂(p̂, ŝ) − θ(p0+)

)⊤ 1
T

∑
i∈N[0,T ]

Z⊤i ( p̂)Zi( p̂)
∆N

(
θ̂(p̂, ŝ) − θ(p0+)

)
I{ p̂=p0}
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−
(
θ̂(p0, s0) − θ(p0)

)⊤ 1
T

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
∆N

(
θ̂(p0, s0) − θ(p0)

)
I{ p̂=p0}

−
2
T

∑
i∈N[0,T ]

(
εiZi( p̂)

(
θ̂( p̂, ŝ) − θ(p0+)

))
I{ p̂=p0}

+
2
T

∑
i∈N[0,T ]

(
εiZi(p0)

(
θ̂(p0, s0) − θ(p0)

))
I{ p̂=p0}.

Since s is not consistently estimated, and from
(
Zi( p̂)(θ̂ ( p̂, ŝ) − θ(p0))

)2
I{ p̂=p0} ⩾ 0,(

θ̂( p̂, ŝ) − θ(p0)
)⊤ 1

T

∑
i∈N[0,T ]

Z⊤i ( p̂)Zi( p̂)
∆N

(
θ̂(p̂, ŝ) − θ(p0+)

)
I{ p̂=p0}

⩾ η

(µ1(p0) − µ̂1( p̂, ŝ))⊤
1
ηT

∑
i∈N[s0T−ηT,s0T ]

Z⊤1i( p̂)Z1i( p̂)
∆N

(µ1(p0) − µ̂1(p̂, ŝ))

 I{ p̂=p0}

+ η

(µ2(p0) − µ̂1(p̂, ŝ))⊤
1
ηT

∑
i∈N[s0T,s0T+ηT ]

Z⊤2i( p̂)Z2i(p̂)
∆N

(µ2(p0) − µ̂1( p̂, ŝ))

 I{p̂=p0}.

(A.20)

Let γ21(T ), γ22(T ) be the smallest eigenvalues of the matrices
∑

i∈N[s0T−ηT,s0T ]

Z⊤1i(p0)Z1i(p0)
∆NηT

and
∑

i∈N[s0T,s0T+ηT ]

Z⊤2i(p0)Z2i(p0)
∆NηT , respectively. Then,

(A.20) ⩾ ηγ21(T ) ||µ1(p0) − µ̂1(p̂, ŝ)||2 + ηγ22(T ) ||µ2(p0) − µ̂1(p̂, ŝ)||2 I{p̂=p0}

⩾ ηmin(γ21(T ), γ22(T ))
(
||µ1(p0) − µ̂1( p̂, ŝ)||2 + ||µ2(p0) − µ̂1(p̂, ŝ)||2

)
I{ p̂=p0}.

Using the convexity of a quadratic function,

||µ1(p0) − µ̂1( p̂, ŝ)||2 + ||µ2(p0) − µ̂1( p̂, ŝ)||2 ⩾ ||µ1(p0) − µ2(p0)||2
/
2.

Hence,

∆N

T

∑
i∈N[0,T ]

(
Zi( p̂)
∆N

(θ̂( p̂, ŝ) − θ(p0))
)2

I{ p̂=p0}

⩾
ηmin(γ21(T ), γ22(T ))

2
||µ1(p0) − µ2(p0)||2 I{p̂=p0}.

By Proposition A.10, γ21(T ) and γ22(T ) are both bounded away from 0. This implies

that ηmin(γ21(T ), γ22(T )) is also bounded away from 0. Therefore, the right-hand side
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of the inequality ηmin (γ21(T ), γ22(T )) /2 ||µ1(p0) − µ2(p0)||2 is positive. Similarly,

(θ̂( p̂, s0) − θ(p0)⊤
1
T

∑
i∈N[0,T ]

Z⊤i ( p̂)Zi( p̂)
∆N

(θ̂( p̂, s0) − θ(p0)I{ p̂=p0}

P
−−−−→
T→∞
∆N→0

0,

−
2
T

∑
i∈N[0,T ]

[(
εiZi( p̂)(θ̂( p̂, ŝ) − θ(p0))

)
I{ p̂=p0} +

(
εiZi( p̂)(θ̂( p̂, s0) − θ(p0))

)
I{ p̂=p0}

] P
−−−−→
T→∞
∆N→0

0,

which implies that for large T ,

(A.16) ⩾ C2 ||µ1(p0) − µ2(p0)||2 I{ p̂=p0}. (A.21)

with a positive probability, where C2 = lim
T→∞
∆N→0

ηmin(γ12(T ), γ22(T ))/2 > 0. Similarly to

the proof of (A.19) and (A.21), for large T ,

(A.17) ⩾ C3 ||µ1(p0) − µ2(p0)||2 I{ p̂<p0} (A.22)

with positive probability, where C3 = lim
T→∞
∆N→0

ηmin(γ31(T ), γ32(T ))/2 > 0, and γ31(T ), γ32(T )

are the smallest eigenvalues of the matrices
∑

i∈N[s0T−ηT,s0T ]

Z⊤1i( p̂)Z1i( p̂)/(ηT∆N) and∑
i∈N[s0T,s0T+ηT ]

Z⊤2i(p̂)Z2i( p̂)/(ηT∆N), respectively. Finally, for large T , from (A.19), (A.21)

and (A.22), SSE1 − SSE2 ⩾ C1 ||µ1(p0) − µ2(p0)||2 I{ p̂>p0} +C2 ||µ1(p0) − µ2(p0)||2 I{ p̂=p0}

+C3 ||µ1(p0) − µ2(p0)||2 I{ p̂<p0} ⩾ min{C1,C2,C3} ||µ1(p0) − µ2(p0)||2 > 0,

with a positive probability. This completes the proof. □

Proposition A.6. Suppose that Assumptions 2.1-2.4 hold. Then,

1
T

∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)/(ti+1− ti)−
1
T

∑
i∈N[0,sT ]

Z⊤1i(p0)Z1i(p0)/ti+1− ti)
Lm/2

−−−−→
T→∞
∆N→0

0, (A.23)

1
T

∑
i∈N[ŝT,T ]

Z⊤2i(p0)Z2i(p0)/(ti+1−ti)−
1
T

∑
i∈N[sT,T ]

Z⊤2i(p0)Z2i(p0)/(ti+1−ti)
Lm/2

−−−−→
T→∞
∆N→0

0. (A.24)

Proof. By the definition of Zi(p0),

1
T

∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)
ti+1 − ti
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=
1
T


∑

i∈N[0,ŝT ]
φ⊤(ti)φ(ti)(ti+1 − ti) −

∑
i∈N[0,ŝT ]

φ⊤(ti)(ln X(ti))(ti+1 − ti)

−
∑

i∈N[0,ŝT ]
(ln X(ti))φ(ti)(ti+1 − ti)

∑
i∈N[0,ŝT ]

(ln X(ti))2(ti+1 − ti)

 ,
Note that

ln X(ti) =


ln X1(ti), if i ∈ N[0, ŝT ] and ŝ < s

ln X1(ti)I{i∈N[0,sT ]} + ln X2(ti)I{i∈N[sT,ŝT ]}, if i ∈ N[0, ŝT ] and ŝ > s
.

First, since ŝ is a consistent estimator of s, ∀ ε > 0, ∀ 0 < δ < s/2,

P (|ŝ − s| > δ) < ε, (A.25)

for sufficiently large T . Then,

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

φ⊤(ti)φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

= E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,ŝT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{ŝ−s>0}I{|ŝ−s|⩽δ}

 (A.26)

+E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[ŝT,sT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{ŝ−s⩽0}I{|ŝ−s|⩽δ}

 (A.27)

+E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,ŝT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{ŝ−s>0}I{|ŝ−s|⩾δ}

 (A.28)

+E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[ŝT,sT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{ŝ−s⩽0}I{|ŝ−s|⩾δ}

 . (A.29)

(A.26) ⩽ E


 1

T

∑
i∈N[sT,ŝT ]

∣∣∣∣∣∣φ⊤(ti)φ(ti)
∣∣∣∣∣∣ (ti+1 − ti)


m/2

I{ŝ−s>0}I{|ŝ−s|⩽δ}


⩽ (pKφ)m/2E

[
(ŝ − s)m/2 I{ŝ−s>0}I{|ŝ−s|⩽δ}

]
⩽ (pKφ)m/2 (δ)m/2 .
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Similarly, (A.27) ⩽ (pKφ)m/2 (δ)m/2 . Further, by Cauchy-Schwartz inequality,

(A.28) ⩽

E

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,ŝT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
mE [

I{ŝ−s>0}I{|ŝ−s|⩾δ}
]

1/2

⩽ (pKφ)m/2 {
E

[
(ŝ − s)m]

P (|ŝ − s| ⩾ δ)
}1/2 < (pKφ)m/22m/2√ε,

where we used the fact that |ŝ − s| ⩽ 2 a.s. Following the same techniques,

(A.29) < (pKφ)m/22m/2√ε. This implies that

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

φ⊤(ti)φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

φ⊤(ti)φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

< 2(pKφ)m/2 (δ)m/2 + 2(pKφ)m/22m/2√ε = 2(pKφ)m/2
(
(δ)m/2 +

√
ε
)
.

(A.30)

Second, from (A.25),

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti))φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

= E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti))φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{|ŝ−s|>δ}


(A.31)

+E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti))φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{|ŝ−s|⩽δ}

 .
(A.32)

Next,

(A.31) ⩽ E


 1
T

∑
i∈N[sT,T ]

||(ln X2(ti)φ(ti)|| (ti+1 − ti)


m/2

I{ŝ>s+δ}


+E


 1
T

∑
i∈N[0,sT ]

||(ln X1(ti)φ(ti)|| (ti+1 − ti)


m/2

I{ŝ<s−δ}

 .
Further, by Cauchy-Schwartz inequality,

E


 1

T

∑
i∈N[sT,T ]

||(ln X2(ti)φ(ti)|| (ti+1 − ti)


m/2

I{ŝ>s+δ}


⩽

1
T m/2

E

 ∑

i∈N[sT,T ]

||(ln X2(ti)φ(ti)|| (ti+1 − ti)


m P (ŝ > s + δ)


1/2
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⩽
1

T m/2 (p0Kφ)m/2

((1 − s)T )m−1

 ∑
i∈N[sT,T ]

E
[
|ln X2(ti)|m

]
(ti+1 − ti)

 P (ŝ > s + δ)


1/2

⩽

(
p0Kφ

T

)m/2

((1 − s)T )m/2
√

sup
t⩾0
E

[
|ln X(t)|m

]
{P (ŝ > s + δ)}1/2

= (p0Kφ(1 − s))m/2
√

sup
t⩾0
E

[
|ln X(t)|m

]√
ε.

Similarly,

E


 1
T

∑
i∈N[0,sT ]

||(ln X1(ti))φ(ti)|| (ti+1 − ti)


m/2

I{ŝ<s−δ}

 < (p0Kφs)m/2
√

sup
t⩾0
E

[
|ln X(t)|m

]√
ε.

This implies that (A.31) < 2(p0Kφ(1 − s))m/2
√

sup
t⩾0
E

[
|ln X(t)|m

]√
ε. For (A.32),

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X(ti))φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{|ŝ−s|⩽δ}


⩽ E


 1
T

∑
i∈N[(s−δ)T,sT ]

||(ln X1(ti)φ(ti)|| (ti+1 − ti)


m/2

I{s−δ<ŝ<s}


+E


 1
T

∑
i∈N[sT,(s+δ)T ]

||(ln X2(i)φ(ti)|| (ti+1 − ti)


m/2

I{s<ŝ<s+δ}


⩽ 2E


 1
T

∑
i∈N[(s−δ)T,(s+δ)T ]

||(ln X(ti))φ(ti)|| (ti+1 − ti)


m/2

I{s−δ<ŝ<s+δ}

 .
By Cauchy Schwartz inequality and the fact that P(s − δ < ŝ < s + δ) ⩽ 1,

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X(ti))φ(ti)(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

I{|ŝ−s|⩽δ}


⩽ 2

E

 1
T

∑
i∈N[(s−δ)T,(s+δ)T ]

||(ln X(ti))φ(ti)|| (ti+1 − ti)


m


1/2

.

Furthermore, by Jensen’s inequality and Proposition 2.3.11,

E


 1
T

∑
i∈N[(s−δ)T,(s+δ)T ]

(|ln X(ti)|) ||φ(ti)|| (ti+1 − ti)


m
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= (2δ)mE


 1
2δT

∑
i∈N[(s−δ)T,(s+δ)T ]

(|ln X(ti)|) ||φ(ti)|| (ti+1 − ti)


m

⩽ (2δ)m 1
2δT

∑
i∈N[(s−δ)T,(s+δ)T ]

E
[
((|ln X(ti)|) ||φ(ti)||)m]

(ti+1 − ti)

⩽ (2δ)mKm
φ

1
2δT

∑
i∈N[(s−δ)T,(s+δ)T ]

E
[
(|ln X(ti)|)m]

(ti+1 − ti)

⩽ (2δ)mKm
φ sup

t⩾0
E[| ln X(t)|m]

1
2δT

∑
i∈N[(s−δ)T,(s+δ)T ]

(ti+1 − ti) = (2δ)mKm
φ sup

t⩾0
E[| ln X(t)|m].

Since δ and ε can be arbitrary small,

1
T

∑
i∈N[0,ŝT ]

(ln X(ti))φ(ti)(ti+1 − ti)−
1
T

∑
i∈N[0,sT ]

(ln X1(ti))φ(ti)(ti+1 − ti)
Lm/2

−−−−→
T→∞
∆N→0

01×P0 . (A.33)

Finally, for the last term,

E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))2(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

= E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti))2(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{|ŝ−s|⩾δ}

 (A.34)

+E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,ŝT ]

(ln X(ti)))2(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln X1(ti)2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{|ŝ−s|<δ}

 . (A.35)

Further,

(A.34) ⩽E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,T ]

(ln X2(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{ŝ>s+δ}


+ E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[0,sT ]

(ln X1(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{ŝ<s−δ}

 .
Then, from Jensen’s inequality,

(A.34) ⩽
1
T
E

 ∑
i∈N[sT,T ]

|ln X2(ti)|m(ti+1 − ti)I{ŝ>s+δ}

 + 1
T
E

 ∑
i∈N[0,sT ]

|ln X2(ti)|m(ti+1 − ti)I{ŝ<s−δ}

 .
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Then, from (2.3.16),

(A.34) ⩽ 3m−1E

[ ∑
i∈N[sT,T ]

(
|e−α2(ti−t∗) ln Xt∗

0 |
m + |rt∗

2 (ti − t∗)|m

+|τt∗
2 (ti − t∗)|m

)
(ti+1 − ti)I{ŝ>s+δ}

]
+ 3m−1E

[ ∑
i∈N[0,sT ]

(
|e−α2(ti−t∗) ln Xt∗

0 |
m

+|rt∗
2 (ti − t∗)|m + |τt∗

2 (ti − t∗)|m
)

(ti+1 − ti)I{ŝ<s−δ}

]
.

(A.36)

First, by Assumption 2.3,

E

 ∑
i∈N[sT,T ]

(
|e−α2(ti−t∗) ln Xt∗

0 |
m + |rt∗

2 (ti − t∗)|m + |τt∗
2 (ti − t∗)|m

)
(ti+1 − ti)I{ŝ>s+δ}


= E

[
| ln Xt∗

0 |
m
]  ∑

i∈N[sT,T ]

(
|e−mα2(ti−t∗)|

)
(ti+1 − ti)

 P{ŝ > s + δ}

+

 ∑
i∈N[sT,T ]

(
|rt∗

2 (ti − t∗)|m
)

(ti+1 − ti)

 P{ŝ > s + δ}+E

 ∑
i∈N[sT,T ]

(
|τt∗

2 (ti − t∗)|m
)

(ti+1 − ti)I{ŝ>s+δ}

 .
Since E

[
| ln Xt∗

0 |
m
]
< ∞,

E
[
| ln Xt∗

0 |
m
]  ∑

i∈N[sT,T ]

(
|e−mα2(ti−t∗)|

)
(ti+1 − ti)

 P{ŝ > s + δ} < E
[
| ln Xt∗

0 |
m
]

(1−s)TP{ŝ > s + δ}.

(A.37)

Further,( ∑
i∈N[sT,T ]

(
|rt∗

2 (ti − t∗)|m
)

(ti+1 − ti)
)

P{ŝ > s + δ} ⩽
KµKφ +

1
2σ

2

α2

m

(1 − s)TP{ŝ > s + δ}.

(A.38)

From Cauchy-Schwartz inequality and Jensen’s inequality,

E

[ ∑
i∈N[sT,T ]

(
|τt∗

2 (ti − t∗)|m
)

(ti+1 − ti)I{ŝ>s+δ}

]
⩽

E
( ∑

i∈N[sT,T ]
|τt∗

2 (ti − t∗)|m(ti+1 − ti)
)2 P{ŝ > s + δ}


1/2

⩽ (1 − s)Tσm

(
1

2α2

)m/2
√

CmP{ŝ > s + δ}.

(A.39)
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(A.37), (A.38), (A.39), and (A.25) imply that

E

[ ∑
i∈N[sT,T ]

(
|e−α2(ti−t∗) ln Xt∗

0 |
m + |rt∗

2 (ti − t∗)|m + |τt∗
2 (ti − t∗)|m

)
(ti+1 − ti)I{ŝ>s+δ}

]
⩽

E [
| ln Xt∗

0 |
m
]
+

KµKφ +
1
2σ

2

α2

m ε + σm

(
1

2α2

)m/2
√

Cmε.

(A.40)

Similar to the proof of (A.37), (A.38), and (A.39),

E

[ ∑
i∈N[0,sT ]

(
|e−α2(ti−t∗) ln Xt∗

0 |
m + |rt∗

2 (ti − t∗)|m + |τt∗
2 (ti − t∗)|m

)
(ti+1 − ti)I{ŝ<s−δ}

]
⩽

E [
| ln Xt∗

0 |
m
]
+

KµKφ +
1
2σ

2

α2

m ε + σm

(
1

2α2

)m/2
√

Cmε.

(A.41)

(A.36), (A.40) and (A.41) imply that

(A.34) ⩽ 2

E [
| ln Xt∗

0 |
m
]
+

KµKφ +
1
2σ

2

α2

m ε + σm

(
1

2α2

)m/2 √
Cmε

 . (A.42)

Following the same technique,

(A.35) ⩽ E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[(s−δ)T,sT ]

(ln X1(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{s−δ<ŝ<s}


+ E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,(s+δ)T ]

(ln X2(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

I{s<ŝ<s+δ}


⩽ E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[(s−δ)T,sT ]

(ln X1(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2

+ E


∣∣∣∣∣∣∣ 1
T

∑
i∈N[sT,(s+δ)T ]

(ln X2(ti))2(ti+1 − ti)

∣∣∣∣∣∣∣
m/2 .

From Jensen’s inequality, this gives

(A.35) ⩽(δ)m/2 1
δT

∑
i∈N[(s−δ)T,sT ]

E [| ln X1(ti)|m] (ti+1 − ti) + (δ)m/2 1
δT∑

i∈N[sT,(s+δ)T ]

E [| ln X2(ti)|m] (ti+1 − ti).

Proposition 2.3.11 gives that

(A.35) ⩽ sup
t⩾0
E[| ln X(t)|m] (δ)m . (A.43)

Since δ and ε can be arbitrary small, together with (A.42) and (A.43),
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1
T

∑
i∈N[0,ŝT ]

(ln Xi)2(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

(ln Xi)2(ti+1 − ti)
Lm/2

−−−−→
T→∞
∆N→0

0. (A.44)

(A.30), (A.33) and (A.44) imply that

1
T

∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)/(ti+1 − ti) −
1
T

∑
i∈N[0,sT ]

Z⊤1i(p0)Z1i(p0)/(ti+1 − ti)
Lm/2

−−−−→
T→∞
∆N→0

0.

By using similar techniques, one proves the second statement. This completes the proof.

□

Proposition A.7. Suppose that Assumptions 2.1-2.4 hold. Then,

1
T

∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)
ti+1 − ti

Lm/2

−−−−→
T→∞
∆N→0

sΣ1, and
1
T

∑
i∈N[ŝT,T ]

Z⊤2i(p0)Z2i(p0)
ti+1 − ti

Lm/2

−−−−→
T→∞
∆N→0

(1−s)Σ2.

(A.45)

Proof. To prove the first statement, it suffices to combines Proposition A.6, Proposi-

tion 2.3.17 along with some algebraic computations. The proof of the second statement

in (A.45) is similar. This completes the proof. □

Proposition A.8. If Assumptions 2.1-2.4 hold, then,

1
√

T

∑
i∈N[0,ŝT ]

ϵiZ1i(p0)/(ti+1− ti)−
1
√

T

∑
i∈N[0,sT ]

ϵiZ1i(p0)/(ti+1− ti)
Lm/2

−−−−→
T→∞
∆N→0

0⃗1×(p0+1); (A.46)

1
√

T

∑
i∈N[ŝT,T ]

ϵiZ2i(p0)/(ti+1−ti)−
1
√

T

∑
i∈N[sT,T ]

ϵiZ2i(p0)/(ti+1−ti)
Lm/2

−−−−→
T→∞
∆N→0

0⃗1×(p0+1). (A.47)
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Proof. To prove (A.46), the following inequality is used.∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

T

∑
i∈N[0,ŝT ]

ϵiZ1i(p0)/(ti+1 − ti) −
1
√

T

∑
i∈N[0,sT ]

ϵiZ1i(p0)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

⩽ 3m/2−1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

T

∑
i∈N[0,ŝT ]

ϵiZ1i(p0)/(ti+1 − ti) −
σ
√

T

∫ ŝT

0
(φ(t),− ln X(t)) dBt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2

+

∣∣∣∣∣∣
∣∣∣∣∣∣ σ√T

∫ ŝT

0
(φ(t),− ln X(t)) dBt −

σ
√

T

∫ sT

0
(φ(t),− ln X(t)) dBt

∣∣∣∣∣∣
∣∣∣∣∣∣m/2

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ σ√T

∫ sT

0
(φ(t),− ln X(t)) dBt −

1
√

T

∑
i∈N[0,sT ]

ϵiZ1i(p0)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m/2 .

One can prove that,∑
i∈N[0,ŝT ]

ϵiZ1i(p0)/((ti+1 − ti)
√

T ) − σ
∫ ŝT

0
(φ(t),− ln X(t)) dBt/

√
T

Lm

−−−−→
T→∞
∆N→0

01×(p+1),

∑
i∈N[0,sT ]

ϵiZ1i(p0)/((ti+1 − ti)
√

T ) − σ
∫ sT

0
(φ(t),− ln X(t)) dBt/

√
T

Lm

−−−−→
T→∞
∆N→0

0.

By Lemma A.6-Lemma A.7,

σ

∫ ŝT

0
(φ(t),− ln X(t)) dBt/

√
T − σ

∫ sT

0
(φ(t),− ln X(t)) dBt/

√
T

Lm/2

−−−−→
T→∞

0.

This completes the proof of (A.46), and (A.47) is proven by similar techniques. □

Proposition A.9. If Assumption 2.1-2.3 and Assumption 2.4 hold, then, for some 0 <

a∗ < a/2,
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[0,ŝT ]

εiZ1i(p)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
i∈N[ŝT,T ]

εiZ2i(p)/(ti+1 − ti)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 = Op(

√
T loga∗(T)).

(A.48)

Proof. The proof follows from the triangle inequality and Proposition A.5. □

Proposition A.6-Proposition A.9 imply that θ̂T (ŝ) obtained from discretized version

is consistent.

Proof of Proposition 2.4.8. From the log-likelihood function defined in (2.3.17) and
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SIC information criterion in (2.4.11), along with the fact that, by (2.4.3),

Yi = Zki(p0)µk(p0) + ϵi, k = 1, 2.

Then,

IC(1, p) = − 2

 1
2σ2

 ∑
i∈N[0,T ]

Y2
i /(ti+1 − ti) −

∑
i∈N[0,ŝT ]

(Z1i(p0)µ1(p0) + εi −Z1i(p)µ̂1(p))2

(ti+1 − ti)

−
∑

i∈N[ŝT ,T ]

(Z2i(p0)µ2(p0) + εi −Z2i(p)µ̂2(p))2

(ti+1 − ti


 + 2(p + 1)log(N),

and

IC(0, p) = −2

 1
2σ2

 ∑
i∈N[0,T ]

Y2
i

ti+1 − ti
−

∑
i∈N[0,T ]

(Z1i(p0)µ1(p0) + εi − Z1i(p)µ̂1(p))2

ti+1 − ti




+ (p + 1)log(N).

First, the value of IC(0, p0), IC(c, p), for c = 1, or p , p0 is compared under the

condition c0 = 0.

(1) c = 1, p = p0: In this case, µ1(p0) = µ2(p0) = µ(p0) and one verifies that

IC(0, p0) − IC(1, p0) =
1
σ2

∑
i∈N[0,T ]

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)2

ti+1 − ti

−
1
σ2

∑
i∈N[0,ŝT ]

(Z1i(p0)µ1(p0) −Z1i(p0)µ̂1(p0))2

ti+1 − ti

−
1
σ2

∑
i∈N[ŝT ,T ]

(Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0))2

ti+1 − ti
− (p0 + 1)log(N)

+
1
σ2

∑
i∈N[0,T ]

2εi

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)
ti+1 − ti

−
1
σ2

∑
i∈N[0,ŝT ]

2εi (Z1i(p0)µ1(p0) −Z1i(p0)µ̂1(p0))
ti+1 − ti

−
1
σ2

∑
i∈N[ŝT ,T ]

2εi (Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0))
ti+1 − ti

.

From Proposition 2.3.18, θ̂(p0) = θ(p0) + σQ−1(s,T, p0)W(s,T, p0),
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1
σ2

∑
i∈N[0,T ]

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)2
/(ti+1 − ti)

=
1
T

(T Q−1(s,T, p0))
1
√

T
W(s,T, p0))⊤

1
T

∑
i∈N[0,T ]

Z⊤i (p0)Zi(p0)
ti+1 − ti

×

(T Q−1(s,T, p0))
1
√

T
W(s,T, p0)).

By combining Proposition 2.3.17, Proposition A.4, Proposition A.6, Proposi-

tion A.7 and Proposition A.18,∑
i∈N[0,T ]

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)2
/(ti+1 − ti) = Op(log2a∗(T )), (A.49)

∑
i∈N[0,ŝT ]

(Z1i(p0)µ2(p0) −Z1i(p0)µ̂2(p0))2 /(ti+1 − ti) = Op(log2a∗(T )),

∑
i∈N[ŝT,T ]

(Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0))2 /(ti+1 − ti) = Op(log2a∗(T )).

Further, from Proposition A.4 and Proposition A.9,∑
i∈N[0,T ]

2εi

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)
/(ti+1 − ti) = Op(log2a∗(T )), (A.50)

∑
i∈N[0,ŝT ]

2εi (Z1i(p0)µ2(p0) −Z1i(p0)µ̂2(p0)) /(ti+1 − ti) = Op(log2a∗(T )),

∑
i∈N[ŝT ,T ]

2εi (Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0)) /(ti+1 − ti) = Op(log2a∗(T )).

Then, together with Assumption 2.4, (p0 + 1)log(N) = O(loga(T )),

IC(0, p0) − IC(1, p0) < 0, whenever T tends to infinity and ∆N tends to 0 i.e.

lim
T→∞
∆N→0

P (IC(0, p0) − IC(1, p0) > 0) = 0.

(2)-(5) Similarly, it is proven that lim
T→∞
∆N→0

P (IC(0, p0) − IC(1, p0) > 0) = 1 for the cases

where (2) c = 1, p = p∗ > p0; (3) c = 1, p = p∗ < p0; (4) c = 0, p = p∗ > p0 and

(5) c = 0, p = p∗ < p0.

This completes the proof of first part.
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Second, suppose that c0 = 1, the value of IC(1, p0), IC(c, p), for c = 0, or p , p0 is

compared.

(1). c = 0, p = p0:

IC(0, p0) − IC(1, p0)
T

=
1

Tσ2

∑
i∈N[0,T ]

(
Zi(p0)µ1(p0) − Zi(p0)θ̂(p0)

)2

ti+1 − ti

−
1

Tσ2

∑
i∈N[0,ŝT ]

Z1i(p0) (µ1(p0) − µ̂1(p0))2

ti+1 − ti

−
1

Tσ2

∑
i∈N[ŝT,T ]

Z2i(p0) (µ2(p0) − µ̂2(p0))2

ti+1 − ti
−

(p0 + 1)log(N)
T

.

+
1

Tσ2

∑
i∈N[0,T ]

2εiZi(p0)
(
θ(p0) − θ̂(p0)

)
ti+1 − ti

−
1

Tσ2

∑
i∈N[0,ŝT ]

2εi (Z1i(p0)µ1(p0) −Z1i(p0)µ̂1(p0))
ti+1 − ti

−
1

Tσ2

∑
i∈N[ŝT,T ]

2εi (Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0))
ti+1 − ti

.

From some algebraic computations, one can proves that∑
i∈N[0,T ]

(
Zi(p0)θ(p0) − Zi(p0)θ̂(p0)

)2
/((ti+1 − ti)Tσ2) ⩾ C0||µ1 − µ2|| > 0

for some positive constant C0. Further, since µ̂1(p0) − µ1(p0) = σQT (ŝ)WT (ŝ)∑
i∈N[0,ŝT ]

(Z1i(p0)µ1(p0) −Z1i(p0)µ̂1(p0))2 /((ti+1 − ti)Tσ2)

=
1
T

(T Q−1
T (ŝ, p0)

1
√

T
WT (ŝ, p0))⊤

1
T

∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)
ti+1 − ti

×

(T Q−1
T (ŝ, p0)

1
√

T
WT (ŝ, p0)).

By Proposition A.6, Proposition A.7 and Proposition A.18,∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
i∈N[0,ŝT ]

Z⊤1i(p0)Z1i(p0)/((ti+1 − ti)T )

∣∣∣∣∣∣
∣∣∣∣∣∣ = OP(1), ∥T Q−1

T (ŝ, p0)∥ = OP(1), and then,



A Proofs related to GEOU process 166

together with Proposition A.4,

∥WT (s, p)∥/T = op(1), ∥WT (1, p) −WT (s, p)∥/T = op(1),

∑
i∈N[0,ŝT ]

(Z1i(p0)µ1(p0) −Z1i(p0)µ̂1(p0))2 /(ti+1 − ti) = Op(loga∗(T )),

∑
i∈N[ŝT,T ]

(Z2i(p0)µ2(p0) −Z2i(p0)µ̂2(p0))2 /(ti+1 − ti) = Op(loga∗(T )).

Hence, by using Proposition A.9,∑
i∈N[0,T ]

2εiZi(p0)
(
θ(p0) − θ̂(p0)

)
/((ti+1 − ti)T )

P
−−−−→
T→∞
∆N→0

0,

(
1
T

∑
i∈N[0,ŝT ]

2εiZ1i(p0)(µ1(p0)−µ̂1(p0))
ti+1−ti

, 1
T

∑
i∈N[ŝT,T ]

2εiZ2i(p0)(µ2(p0)−µ̂2(p0))
ti+1−ti

)
P
−−−−→
T→∞
∆N→0

0.

Therefore, by Assumption 2.4, IC(0, p0) − IC(1, p0)/T > 0, whenever T is large

and ∆N is arbitrary small, i.e. lim
T→∞
∆N→0

P (IC(0, p0) − IC(1, p0) > 0) = 1.

(2)-(5). Similarly, it is proven that lim
T→∞
∆N→0

P (IC(0, p0) − IC(1, p0) > 0) = 1 for the cases

where (2) c = 0, p = p∗ > p0; (3) c = 0, p = p∗ < p0; (4) c = 1, p = p∗ > p0 and

(5) c = 1, p = p∗ < p0

Further, for the second claim, by (2.4.15) and definition of p̂ and ĉ,

lim
T→∞
∆N→0

P(IC(c0, p0) ≤ IC(ĉ, p̂)) = 1, and lim
T→∞
∆N→0

P(IC(ĉ, p̂) ≤ IC(c0, p0)) = 1.

This implies

IC(ĉ, p̂) − IC(c0, p0)
P
−−−−→
T→∞
∆N→0

0.

Set p̂ = p̂(T ) and suppose p̂ − p0 ↛ 0 in probability, as T → ∞. i.e. ∃ ϵ0 > 0,∀ T >

0,∃ T0 > T , such that |p̂(T0) − p0| > ϵ0, which implies that p̂(T0) > p0 + ϵ0 or p̂(T0) <

p0 − ϵ0 hold. For p̂(T0) > p0 + ϵ0, there exists some η0 > 0, such that p̂(T0) = p0 +

ϵ0 + η0 > p0 + ϵ0, so IC(ĉ, p̂T0) = IC(ĉ, p0 + ϵ0 + η0). This is a contradiction with



A Proofs related to GEOU process 167

the known condition: IC(ĉ, p̂T0) − IC(c0, p0)
P
−−−−→
T→∞
∆N→0

0, since from Proposition 2.4.8,

IC(c0, p0) < IC(ĉ, p0 + ϵ0 + η0). For p̂(T0) < p0 − ϵ0, there exists some η0 > 0, such that

p̂(T0) = p0 − ϵ0 − η0 < p0 − ϵ0, so IC(ĉ, p̂(T0)) = IC(ĉ, p0 − ϵ0 − η0). This is a contradiction

with the known condition: IC(ĉ, p̂(T0))−IC(c0, p0)
P
−−−−→
T→∞
∆N→0

0, since from Proposition 2.4.8,

IC(c0, p0) < IC(ĉ, p0− ϵ0−η0). So, p̂− p0
P
−−−−→
T→∞
∆N→0

0. Similarly, using the same technique,

ĉ − c0 P
−−−−→
T→∞
∆N→0

0. This completes the proof. □

The following proposition plays important role in proving that ŝ is a consistent esti-

mator of the parameter s.

Proposition A.10. Let t∗ = sT . There exists an L0 > 0, such that for all L > L0,

the minimum eigenvalues of the matrices
∑

i∈N[t∗,t∗+L]

Z⊤2i(p0)Z2i(p0)
((ti+1−ti)L) and of

∑
i∈N[t∗−L,t∗]

Z⊤1i(p0)Z1i(p0)
((ti+1−ti)L)

and their respective continuous time versions 1
L Q[t∗,t∗+L](p0) and 1

L Q[t∗−L,t∗](p0) are all

bounded away from 0.

The proof follows from Lemma A.4 and Lemma A.5 in Appendix A.2. Note that,

Proposition A.10 serves to weaken the assumption in Chen et al. [2020], Chen et al.

[2018]. More precisely, the established result shows that the assumptions in the quoted

paper are stronger than needed.

Proposition A.11. ψ(s, c0, p0) ∼ χ2
q(∆̃) and ψ0(s, c0, p0) ∼ χ2

q.

Proof. The proof follows from Theorem 5.1.3 in Mathai and Provost [1992]. Since that

ς̃ ∼ N(c0+1)(p0+1)

(
G̃∗(c0, p0)r̃0, σ

2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

)
,

ς̃0 ∼ N(c0+1)(p0+1)

(
0, σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
,

ψ(s, c0, p0) = ς̃⊤Γς̃ and ψ0(s, c0, p0) = ς̃⊤0 Γς̃0. To prove that ψ(s, c0, p0) = ς̃⊤Γ(c0, p0)ς̃ ∼

χ2
q(∆̃) and ψ0(s, c0, p0) = ς̃⊤0 Γ(c

0, p0)ς̃0 ∼ χ2
q, it suffices to apply Theorem 5.1.3 in
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Mathai and Provost [1992]. As a consequence, the following four equalities need to be

proven.

(1) trace(Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)) = q,

(G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)(G̃∗(c0, p0)r̃0) = ∆,

(2) σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)Γ(c0, p0)×

σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0) = σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)Γ(c0, p0)σ2×

G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0),

(3) (G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ(c0, p0)(G̃∗(c0, p0)r̃0)

= (G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)(G̃∗(c0, p0)r̃0),

(4) (G̃∗(c0, p0)r̃0)⊤(Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))2

= (G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0).

(1) First, since G̃∗(c0, p0) = Σ̃−1
c0 (p0)M̃⊤(c0, p0)

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

, and

Γ(c0, p0) =
1
σ2 M̃⊤(c0, p0)

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0),

trace
(
Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
= trace

(
1
σ2 M̃⊤(c0, p0)

(
M̃(c0, p0)×

Σ̃−1
c0 (p0)M̃⊤(c0, p0)

)−1
M̃(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)

= trace
((

M̃(c0, p0)Σ̃−1
c0 (p0)M̃⊤(c0, p0)

)−1
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)
= q,

where the property trace(A⊤B) = trace(BA⊤) is used. Then,

(G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)(G̃∗(c0, p0)r̃0) =
(
Σ̃−1

c0 (p0)M̃⊤(c0, p0)
(
M̃(c0, p0)Σ̃−1

c0 (p0)×

M̃⊤(c0, p0)
)−1

r0

)⊤ 1
σ2 M̃⊤(c0, p0)

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1
×

M̃(c0, p0)
(
Σ̃−1

c0 (p0)M⊤
(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

r0

)
=

1
σ2 r⊤0

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0)Σ̃−1
c0 (p0)M̃⊤(c0, p0)×

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0)Σ̃−1
c0 (p0)M̃⊤(c0, p0)
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(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

r0

=
1
σ2 r⊤0

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

r0 = ∆.

(2) For assertion (2),

σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)Γσ2G̃∗(c0, p0)×

M̃(c0, p0)Σ̃−1
c0 (p0)

= σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

(
1
σ2 M⊤

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0)
)

×

(
σ2Σ̃−1

c0 (p0)M⊤
(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

MΣ̃−1
c0 (p0)

)
×

(
1
σ2 M⊤

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0)
)
σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)

= σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

(
1
σ2 M⊤

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M
)
×

σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

= σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0).

(3) From part (ii), Γσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ = Γ. Then,

(G̃∗(c0, p0)r̃0)⊤Γσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ(G̃∗(c0, p0)r̃0)

= (G̃∗(c0, p0)r̃0)⊤Γ(G̃∗(c0, p0)r̃0).

(4) Since Γσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)Γ = Γ,

(G̃∗(c0, p0)r̃0)⊤(Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))2

= (G̃∗(c0, p0)r̃0)⊤(Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))(Γ(c0, p0)×

σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))

= (G̃∗(c0, p0)r̃0)⊤Γ(c0, p0)σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0).

It is a special case when r0 = 0. This completes the proof. □

Proof of Proposition 2.4.9. Let x be a continuous point of the cdf of ψ(s, p0),

lim
T→∞

Fψ̃T (x) = lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x

)
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= lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ = c0, p̂ = p0

)
+ lim

T→∞
P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ = c0, p̂ , p0

)
+ lim

T→∞
P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ , c0, p̂ = p0

)
+ lim

T→∞
P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ , c0, p̂ , p0

)
.

Since

lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ = c0, p̂ , p0

)
⩽ lim

T→∞
P ( p̂ , p0) = 0,

lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ , c0, p̂ = p0

)
⩽ lim

T→∞
P
(
ĉ , c0

)
= 0,

lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ , c0, p̂ , p0

)
⩽ lim

T→∞
P
(
ĉ , c0

)
= 0,

then, together with (2.4.14),

lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x

)
= lim

T→∞
P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x, ĉ = c0, p̂ = p0

)
.

Then,

lim
T→∞

P
(
ψ̃T (ŝ, ĉ, p̂) ⩽ x

)
= lim

T→∞
P
(
ψT (ŝ, c0, p0) ⩽ x

)
= P

(
ψ(s, c0, p0) ⩽ x

)
.

Which implies that lim
T→∞

Fψ̃T (x) = Fψ(x). This is ψ̃T (ŝ, ĉ, p̂)
D
−−−−→
T→∞

ψ(s, c0, p0). Since

ψ(s, c0, p0) = ξ⊤Γξ and ξ ∼ N
(
G∗(c0, p0)r0, σ

2G∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0)

)
, by Proposi-

tion A.11, if r0 , 0, ψ̃T (ŝ, ĉ, p̂)
D
−−−−→
T→∞

ψ(s, c0, p0) ∼ χ2
q(∆̃). If r0 = 0, then, ψ̃T (ŝ, ĉ, p̂)

D
−−−−→
T→∞

ψ(s, c0, p0) ∼ χ2
q. This completes the proof. □

A.2 On the solution of GEOU process and other important results

Proposition A.12. Suppose that σ(t) is a nonrandom square integrable function on

[0,T ]. Then the Itô’s integral

I(t) =
∫ t

0
σ(u)dBu (A.51)

is a mean zero Gaussian process with Var(I(t)) =
∫ t

0
σ2(u)du.

Proof. It is easy to check that I(t) is a martingale, thus, E[I(t)] = E[I(0)] = 0, and

then, Var(I(t)) =
∫ t

0
σ2(u)du. To show the normal distribution of I(t), for any fixed
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λ ∈ R, define

dUt =

∫ t

0
λσ(u)dBu −

1
2

∫ t

0
(λσ(u))2du

It is well known that U(t) is a generalized geometric Brownian motion and (eUt , t ≥ 0)

is a martingale. Thus has constant mean value

E[eUt] = E[eU0] = e0 = 1

which is the same as

E

[
exp

{∫ t

0
λσ(u)dBu −

1
2

∫ t

0
(λσ(u))2du

}]
= 1.

The second integral is not a random variable, and

E
[
eλI(t)

]
= exp

{
1
2
λ2

∫ t

0
(σ(u))2du

}
.

is a function of λ, the left hand side is the moment generating function of I(t), while the

right hand side is the mgf of a normal distribution. Further, it is proven that for all 0 <

t1 < t2 < · · · < tn < T , the finite multivariate random variable (I(t1),I(t2), · · · ,I(tn))

follows a multivariate normal distribution. To make use of the independet increament

of Brownian motion, let

I(t1)

I(t2 − t1)

I(t3 − t2)
...

I(tn − tn−1)


=



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1





I(t1)

I(t2)

I(t3)
...

I(tn)


=M



I(t1)

I(t2)

I(t3)
...

I(tn)


,

and each element of (I(t1),I(t2 − t1), · · · ,I(tn − tn−1)) is normal distributed and they

are mutually independent, which implies that (I(t1),I(t2 − t1), · · · ,I(tn − tn−1)) follows

a multivariate normal with mean zero. In addition, the matrix M is invertable, then,

(I(t1),I(t2), · · · ,I(tn))⊤ = M−1 (I(t1),I(t2 − t1), · · · ,I(tn − tn−1))⊤, which implies that

the finite multivariate random variable (I(t1),I(t2), · · · ,I(tn)) follows multivariate nor-
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mal. This finishes the proof that I(t) is a mean zero Gaussian process. □

Proof of Proposition 2.2.2. (1). By (2.2.4),

E [| ln X(t)|m] = E
[∣∣∣∣∣∣e−αt ln X0 + e−αt

∫ t

0
eαs(L(s) −

1
2
σ2)ds + σe−αt

∫ t

0
eαsdBs

∣∣∣∣∣∣m
]

⩽ 3m−1
(
e−mαtE [| ln X0|

m] +

∣∣∣∣∣∣e−αt
∫ t

0
eαs(L(s) −

1
2
σ2)ds

∣∣∣∣∣∣m + σme−mαtE

[∣∣∣∣∣∣
∫ t

0
eαsdBs

∣∣∣∣∣∣m
])
.

From Assumption 2.3, 
−KµKφ ⩽ L(t) ⩽ KµKφ

p∑
i=1
|µi| ⩽ Kµ

(A.52)

for some positive constant Kφ > 0, Kµ > 0,∣∣∣∣∣∣e−αt

∫ t

0
eαs

(
L(s) −

1
2
σ2

)
ds

∣∣∣∣∣∣m ⩽ e−mαt

(∫ t

0
eαs

∣∣∣∣∣L(s) −
1
2
σ2

∣∣∣∣∣ ds
)m

⩽

∣∣∣∣∣KµKφ +
1
2
σ2

∣∣∣∣∣m e−mαt

(∫ t

0
eαsds

)m

=

KµKφ +
1
2σ

2

α

m

(1 − e−αt)m.

(A.53)

Further, by Burkholder-Davis-Gundy inequality, there exists a positive constant Cm/2,

such that

σme−mαtE

[∣∣∣∣∣∣
∫ t

0
eαsdBs

∣∣∣∣∣∣m
]
⩽ σme−mαtE

[(
sup
0⩽s⩽t

∣∣∣∣∣∫ s

0
eαsdBs

∣∣∣∣∣)m]
⩽ Cm/2σ

me−mαtE

(∫ t

0
e2αsds

)m/2 = Cm/2σ
me−mαt

(
1

2α
(e2αt − 1)

)m/2

= Cm/2σ
m

(
1

2α
(1 − e−2αt)

)m/2

,

(A.54)

which implies that

sup
t≥0
E [| ln X(t)|m] ⩽ 3m−1

E [| ln X0|
m] +

KµKφ +
1
2σ

2

α

m

+Cm/2σ
m

(
1

2α

)m/2 < ∞.
(A.55)

(2). From Proposition 2.2.1,

E[X(t)] = E
[
exp

{
e−αt ln X0 + e−αt

∫ t

0
eαs(L(s) −

1
2
σ2)ds + σe−αt

∫ t

0
eαsdBs

}]
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By Assumption 2.2 and Proposition A.12,

E[X(t)] = E
[
exp

{
e−αt ln X0

}]
exp

{
e−αt

∫ t

0
eαs(L(s) −

1
2
σ2)ds

}
E

[
exp

{
σe−αt

∫ t

0
eαsdBs

}]

= E
[
exp

{
e−αt ln X0

}]
exp

{
e−αt

∫ t

0
eαs(L(s) −

1
2
σ2)ds

}
exp

{
σ2

2
1

2α
(1 − e−2αt)

}

⩽ E
[
Xe−αt

0

]
exp

{
e−αt

∫ t

0
eαs(L(s) −

1
2
σ2)ds

}
exp

{
σ2

2
1

2α
(1 − e−2αt)

}
Since 0 < e−αt < 1, by Jensen’s inequality E

[
Xe−αt

0

]
⩽ {E [X0]}e

−αt
, and this implies that

{E [X0]}e
−αt
⩽ E [X0] , if E [X0] > 1

{E [X0]}e
−αt
⩽ 1, if E [X0] ⩽ 1

then, {E [X0]}e
−αt
⩽ max {E [X0] , 1}

E[X(t)] ⩽ max {E [X0] , 1} exp
{

e−αt
∫ t

0
eαs

(
L(s) −

1
2
σ2

)
ds

}
exp

{
σ2

2
1

2α
(1 − e−2αt)

}
.

From (A.53) with m = 1, e−αt
∫ t

0
eαs

∣∣∣L(s) − 1
2σ

2
∣∣∣ ds ⩽ KµKφ+

1
2σ

2

α
(1 − e−αt). Since y = ex is

an increasing function of x for x ≥ 0,

0 < sup
t≥0
E[X(t)] ⩽ max {E [X0] , 1} sup

t≥0
exp

KµKφ +
1
2σ

2

α
(1 − e−αt) +

σ2

2
1

2α
(1 − e−2αt)


⩽ max {E [X0] , 1} exp

KµKφ +
1
2σ

2

α
sup
t≥0

(1 − e−αt) +
σ2

2
1

2α
sup
t≥0

(1 − e−2αt)


= max {E [X0] , 1} exp

KµKφ +
1
2σ

2

α
+
σ2

2
1
α

 < ∞
(3). From Proposition 2.2.1,

X(t)m = exp
{

me−αt ln X0 + me−αt
∫ t

0
eαs

(
L(s) −

1
2
σ2

)
ds + mσe−αt

∫ t

0
eαsdBs

}
,

then, E[X(t)m] = E
[
exp

{
me−αt ln X0 + me−αt

∫ t

0
eαs

(
L(s) − 1

2σ
2
)

ds + mσe−αt
∫ t

0
eαsdBs

}]
.

By the independence between X0 and {Bt, t ≥ 0} in Assumption 2.2,

E[X(t)m] = E
[
exp

{
me−αt ln X0

}]
exp

{
me−αt

∫ t

0
eαs

(
L(s) −

1
2
σ2

)
ds

}
×
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E

[
exp

{
mσe−αt

∫ t

0
eαsdBs

}]
.

By Jensen’s inequality, and the fact 0 < e−αt < 1,

E
[
exp

{
me−αt ln X0

}]
= E

[
Xme−αt

0

]
⩽

{
E

[
Xm

0
]}e−αt

⩽ max{E
[
Xm

0
]
, 1}.

By Proposition A.12,

E
[
exp

{
mσe−αt

∫ t

0
eαsdBs

}]
= exp

{
m2σ2e−2αt

2

∫ t

0
e2αsds

}
= exp

{
m2σ2

2
1

2α (1 − e−2αt)
}
,

which implies that

E[Xm(t)] ⩽ max{E
[
Xm

0
]
, 1} exp

{
me−αt

∫ t

0
eαs

(
L(s) −

1
2
σ2

)
ds

}
×

exp
{

m2σ2

2
1

2α
(1 − e−2αt)

}
< max{E

[
Xm

0
]
, 1} exp

{
me−αt

∫ t

0
eαs|L(s)|ds

}
exp

{
m2σ2

2
1

2α
(1 − e−2αt)

}
.

Then, by the increasing property of the exponential function

0 < sup
t≥0
E[Xm(t)] ⩽max

{
E

[
Xm

0
]
, 1

}
exp

{
m sup

t≥0
e−αt

∫ t

0
eαs|L(s)|ds

}
×

exp
{

m2σ2

2
1

2α
sup
t≥0

(1 − e−2αt)
}

=max
{
E

[
Xm

0
]
, 1

}
exp

{
m

KµKφ

α

}
exp

{
m2σ2

2
1

2α

}
.

So, the conclusion that

sup
t≥0
E[Xm(t)] ⩽ max

{
E

[
Xm

0
]
, 1

}
exp

{
m

KµKφ

α
+

m2σ2

2
1

2α

}
< ∞. (A.56)

(4). Since (
S (θ, t, X(t))
σX(t)

)2

= ((φ(t),− ln X(t))θ)⊤ (φ(t),− ln X(t))θ,

∣∣∣∣∣S (θ, t, X(t))
σX(t)

∣∣∣∣∣m = (
|(φ(t),− ln X(t))θ)|2

)m/2

⩽
(
||(φ(t),− ln X(t))||2||θ||2

)m/2
=

(
||φ(t)||2 + | ln X(t)|2

)m/2
||θ||m.
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Since m ≥ 2,
(
||φ(t)||2 + | ln X(t)|2

)m/2
⩽ 2m/2−1 (||φ(t)||m + | ln X(t)|m), and

E

[∣∣∣∣∣S (θ, t, X(t))
σX(t)

∣∣∣∣∣m]
⩽ ||θ||m2m/2−1 (||φ(t)||m + E [| ln X(t)|m]) .

From Proposition 2.2.2, sup
t≥0
E[| ln X(t)|m] < ∞. This implies that

E

[∣∣∣∣∣S (θ, t, X(t))
σX(t)

∣∣∣∣∣m]
< ||θ||m2m/2−1

(
||φ(t)||m + sup

t≥0
E[| ln X(t)|m]

)
< ∞.

Then, sup
t⩾0
E

[∫ T

0

∣∣∣∣∣S (θ, t, X(t))
σX(t)

∣∣∣∣∣m dt
]
< ∞.

(5). P
(∫ T

0

∣∣∣∣∣S (θ, t, X(t))
σX(t)

∣∣∣∣∣m dt < ∞
)
= 1 follows from Part (4) directly. This completes

the proof. □

A.2.1 Other important results

Theorem A.1. Theorem 3.5.8 [Stout, 1974] Let {Xi, i ⩾ 1} be stationary and ergodic

and let ϕ be a measurable function ϕ : R∞ 7→ R1. Let Yi = ϕ(Xi, Xi+1, · · · ) and define

{Yi, i ⩾ 1}. Then, {Yi, i ⩾ 1} is stationary and ergodic.

Proposition A.13. Let f be bounded and Riemann-integrable on compact set [a, b].

Define a function C : [0,∞) → [0,∞) such that (i) C is non decreasing and (ii)

inf
δ>0

C(δ) = C(0) = 0. Then, for all x in the dense subinterval of [a, b] with continu-

ity of f , there exists δ > 0, such that | f (x ± δ) − f (x)| < C(δ).

Proof. Suppose there exists some x0 in the dense subinterval of [a, b], ∃ ϵ0 > 0, for all

δ > 0,

| f (x0 ± δ) − f (x0)| ⩾ ϵ0 > C(δ). (A.57)

For the constructed nested interval In = [an, bn], which contain x0 as its unique limit

point, w f
In
< 1

2n−1 . This is a contradiction with (A.57) for the case of x0 ± δ ∈ In. This

completes the proof. □
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Lemma A.4. Let {an}
∞
n=0 be a sequence of random variables and almost surely strictly

positive, such that an
a.s.
−−−→
n→∞

a, where a is a strictly positive non-random real number.

Then, an is bounded away from 0 with probability 1.

Proof. From an
a.s.
−−−→
n→∞

a,, P


ω :

∞⋃
n=1

∞⋂
k=n

{
sup

2k⩽u⩽2k+1
|au(ω) − a| < a/2

}
 = 1. Thus,

lim
n→∞

P


ω :

∞⋂
k=n

{
sup

2k⩽u⩽2k+1
au(ω) > a/2

}
 = 1. This completes the proof. □

Lemma A.5. Let {At, t ∈ [0,T ]} be a collection of p × p symmetric positive definite

matrix, with random entries, and suppose that AT
a.s.
−−−−→
T→∞

A, where A is a non-random

symmetric positive definite matrix. Then the eigenvalues of the matrix AT are bounded

away from 0 and further, the smallest eigenvalue of An converges to the smallest eigen-

value of A with probability 1.

Proof. Since AT
a.s.
−−−−→
T→∞

A,which implies that ||AT ||
a.s.
−−−−→
T→∞

||A||. Let λmax(AT ) be the largest

eigenvalue of the matrix AT and λmax(A) be the largest eigenvalue of the matrix A. that

λmax(AT )
a.s.
−−−−→
T→∞

λmax(A) and since AT , A are positive definite matrices, which implies that

A−1
T

a.s.
−−−−→
T→∞

A−1. Then, λmax(A−1
T )

a.s.
−−−−→
T→∞

λmax(A−1). This is 1

λmax(A−1
T )

a.s.
−−−−→
T→∞

1

λmax(A−1)
,

which is λmin(AT )
a.s.
−−−−→
T→∞

λmin(A). In addition, A is a symmetric positive definite matrix,

which implies that λmin(A) is strictly positive. By Lemma A.4, λmin(AT )
a.s.
−−−→
n→∞

λmin(A)

implies that λmin(AT ) is almost surely bounded away from 0. Further, since λmin(AT )

is the smallest eigenvalue, that all eigenvalues of AT are bounded away from 0 with

probability 1. This completes the proof. □

A.2.2 Properties of auxiliary process

The main challenge of the GEOU process consists in the fact that the process {X(t), t ⩾

0} is not stationary. In this subsection, to overcome this difficulty, an auxiliary pro-

cess is introduced. The auxiliary process is strictly stationary and ergodic. Let B̃s =
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BsIR+(s) + B̄−sIR−(s) be a bilateral Brownian motion, where {Bs}s⩾0 and {B̄−s}s⩾0 are

two independent Brownian motions. It is convenient to introduce an auxiliary process

{X̃(t), t ⩾ 0}, which is given as

ln X̃(t) = r̃(t) + τ̃(t) (A.58)

where r̃(t) = e−αt
∫ t

−∞
eαs

(
L(s) − 1

2σ
2
)

ds, τ̃(t) = σe−αt
∫ t

−∞
eαsdB̃s.

Proposition A.14. If Assumption 2.1-2.3 hold, then, for k ∈ N+,

(1) E[ln X̃(t + k − 1)] = r̃(t), for t ∈ [0, 1];

(2) Cov(ln X̃(t), ln X̃(t + k)) = e−αk σ2

2α , for t ∈ [0, 1].

Proof. (1) For k = 1, 2, · · · , E[ln X̃(t+k)] = E[r̃(t+k)]+E[τ̃(t+k)] = r̃(t+k)+E[τ̃(t+k)]

and r̃(t + k) = e−α(t+k)
p∑

i=1
θi

∫ t+k

−∞
eαsφi(s)ds − 1

2σ
2e−α(t+k)

∫ t+k

−∞
eαsds. Let u = s − k,

by using Assumption 3, r̃(t + k − 1) = r̃(t). Further,

E

[∫ 0

−∞

eαsdB̄−s

]
= E

[∫ ∞

0
e−αudB̄u

]
= E

[
lim

U→∞

∫ U

0
e−αudB̄u

]
= E

[
lim

U→∞
GU

]
where GU =

∫ U

0
e−αsdB̄s. By Itô’s isometry,

E[G2
U] = E

(∫ U

0
e−αsdB̄s

)2 = E [∫ U

0
e−2αsds

]
⩽

1
2α

(1 − e−2αU)

which is bounded in U on [0,∞). Thus, by L2 Bounded Martingale Convergence

Theorem,

GU
L2

−−−−→
U→∞

G∞ =
∫ ∞

0
e−αsdB̄s (A.59)

which implies that GU
L1

−−−−→
U→∞

G∞. Then, lim
U→∞
E [GU] = E

[
lim

U→∞
GU

]
= 0, and

then, E [τ̃(t + k)] = 0, for all t ∈ [0, 1], k = 1, 2, · · · . Therefore, E[ln X̃(t + k)] =

r̃(t + k) + E[τ̃(t + k)] = r̃(t).

(2) Further, for the covariance,

Cov(ln X̃(t), ln X̃(t + k)) = Cov(τ̃(t), τ̃(t + k)) = E[τ̃(t)τ̃(t + k)]
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= σ2e−2αte−αkE

(∫ 0

−∞

eαsdB̄−s

)2

+

(∫ t

0
eαsdBs

)2

+ 2
(∫ 0

−∞

eαsdB̄−s

) (∫ t

0
eαsdBs

) .
Since

(∫ 0

−∞
eαsdB̄−s

)
and

(∫ t

0
eαsdBs

)
are independent,

E

[(∫ 0

−∞

eαsdB̄−s

) (∫ t

0
eαsdBs

)]
= E

[(∫ 0

−∞

eαsdB̄−s

)]
E

[(∫ t

0
eαsdBs

)]
= 0.

Then,

Cov(ln X̃(t), ln X̃(t + k)) = σ2e−2αte−αkE

(∫ 0

−∞

eαsdB̄−s

)2
+σ2e−2αte−αkE

(∫ t

0
eαsdBs

)2 ,
and then, from (A.59), Cov(ln X̃(t), ln X̃(t + k)) = e−αk σ2

2α .

This completes the proof. □

Proposition A.14 implies that the process {ln X̃(t + k − 1), k ∈ N+} is a wide sense

stationary process for each t ∈ [0, 1]. The following proposition proves that the sequence

of random variables
{
ln X̃(t + k − 1), t ∈ [0, 1]

}∞
k=1

is stationary in strict sense and ergodic.

Proposition A.15. For k ∈ N+, the sequence of random variables {ln X̃(t + k − 1), t ∈

[0, 1]} is stationary and ergodic.

Proof. Let τ̃(t) = σe−αt
(∫ 0

−∞
eαsdB̄−s +

∫ t

0
eαsdBs

)
. First, to derive the distribution of∫ 0

−∞
eαsdB̄−s, let u = −s,

∫ 0

−∞
eαsdB̄−s = −

∫ ∞
0

e−αudB̄u, and YT =
∫ T

0
e−αudB̄u. From

Proposition A.12, the Moment Generating Function of YT is

MYT (u) = exp
{

1
2

1
2α

(1 − e−2αT )u2
}
, u ∈ R,

which implies that

lim
T→+∞

MYT (u) = lim
T→∞

exp
{

1
2

1
2α

(1 − e−2αT )u2
}
= exp

{
1
2

1
2α

u2
}
, u ∈ R.

Then, ∫ 0

−∞

eαsdB̄−s ∼ N

(
0,

1
2α

)
. (A.60)
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Further, by Proposition A.12, that
∫ t

0
eαsdBs ∼ N

(
0, 1

2α (e2αt − 1)
)
. By the independent

between
∫ 0

−∞
eαsdB̄−s and

∫ t

0
eαsdBs,

τ̃(t) = σe−αt

(∫ 0

−∞

eαsdB̄−s +

∫ t

0
eαsdBs

)
∼ N

(
0,
σ2

2α

)
,

which implies that for k = 1, 2, · · · , ln X̃(t + k − 1) ∼ N
(
h̃(t), σ

2

2α

)
, i.e. the pro-

cess
{
ln X̃(t + k − 1), 0 ≤ t ≤ 1

}∞
k=0

is stationary in strict sense. From the second part

of Proposition A.14, for t ∈ [0, 1], k ∈ {1, 2, 3, · · · }, the covariance of ln X̃(t), ln X̃(t + k)

is

Rk = Cov(ln X̃(t), ln X̃(t + k)) = e−αkσ
2

2α
,

which implies that Rk → 0 as k → ∞. From Example 3.5.2 in Stout [1974], it concludes

that the process
{
ln X̃(t + k − 1), 0 ≤ t ≤ 1

}∞
k=0

is stationary and ergodic. □

To study the long term behavior of the solution of the GEOU by using the stationary

and ergodic property of the auxiliary process {ln X̃(t + k), 0 ⩽ t ⩽ 1}∞k=0, below, the

result gives the relationship between ln X(t) and ln X̃(t) when t is large. The following

proposition shows that ln X̃(t)− ln X(t) converges in Lm and almost surely to 0 as t tends

to infinity.

Proposition A.16. If Assumption 2.1-2.3 hold, then, (1) | ln X̃(t) − ln X(t)|
a.s. and Lm

−−−−−−−−→
T→∞

0;

(2) (ln X(t))2 − (ln X̃(t))2 a.s. and Lm/2

−−−−−−−−−→
t→∞

0.

Proof. (1). First, it is obvious that

| ln X̃(t) − ln X(t)| ⩽ |e−αt ln X0| + e−αt

∣∣∣∣∣∣
∫ 0

−∞

eαs

(
L(s) −

1
2
σ2

)
ds

∣∣∣∣∣∣ + σe−αt

∣∣∣∣∣∣
∫ 0

−∞

eαsdB̃s

∣∣∣∣∣∣ .
(a) By Assumption 2.2, X0 > 0 a.s. and E(|X0|

m) < ∞,, |e−αt ln X0| = e−αt| ln X0|
a.s.
−−−→
t→∞

0.

(b)
∣∣∣∣∫ 0

−∞
eαs

(
L(s) − 1

2σ
2
)

ds
∣∣∣∣ ⩽ |KµKφ|

2

α
implies that e−αt

∣∣∣∣∫ 0

−∞
eαs

(
L(s) − 1

2σ
2
)

ds
∣∣∣∣ −−−→

t→∞

0.
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(c)
∫ 0

−∞
eαsdB̃−s is a random variable which is independent with t, and

E
[∣∣∣∣∫ 0

−∞
eαsdB̃−s

∣∣∣∣2] < ∞, then σe−αt
∣∣∣∣∫ 0

−∞
eαsdB̃s

∣∣∣∣ a.s.
−−−→
t→∞

0.

This completes the proof of convergence almost surely. Second, the convergence in Lm

is proven.

E
[
| ln X̃(t) − ln X(t)|m

]
⩽3m−1

(
e−mαtE [| ln X0|

m] + e−mαt

∣∣∣∣∣∣
∫ 0

−∞

eαs

(
L(s) −

1
2
σ2

)
ds

∣∣∣∣∣∣m
+σ2e−mαtE

[∣∣∣∣∣∣
∫ 0

−∞

eαsdB̃s

∣∣∣∣∣∣m
])

(A) From Assumption 2.2, 3m−1e−mαtE [| ln X0|
m] −−−→

t→∞
0.

(B) Since L(t) is bounded,3m−1e−mαt
∣∣∣∣∫ 0

−∞
eαs

(
L(s) − 1

2σ
2
)

ds
∣∣∣∣m −−−→

t→∞
0.

(C) By Lm-bounded martingale convergence theorem, |GU |
Lm

−−−−→
U→∞

|G∞| =
∣∣∣∫ ∞

0
e−αsdB̄s

∣∣∣ ,
and then,

3m−1σ2e−mαtE

[∣∣∣∣∣∣
∫ 0

−∞

eαsdB̃s

∣∣∣∣∣∣m
]
⩽ 3m−1σ2e−mαtCm/2

(
1

2α

)m/2

−−−→
t→∞

0.

This completes the proof of convergence in Lm.

(2) For the second assertion,∣∣∣(ln X(t))2 − (ln X̃(t))2
∣∣∣m/2 ⩽ 2m/2−1

(
|ln X(t)|m/2

∣∣∣ln X(t) − ln X̃(t)
∣∣∣m/2

+
∣∣∣ln X̃(t)

∣∣∣m/2 ∣∣∣ln X(t) − ln X̃(t)
∣∣∣m/2) , (A.61)

and by Cauchy-Schwartz inequality,

E
[
|ln X(t)|m/2

∣∣∣ln X(t) − ln X̃(t)
∣∣∣m/2] ⩽ √

E
[
|ln X(t)|m

]
E

[∣∣∣ln X(t) − ln X̃(t)
∣∣∣m]
.

By (A.55), sup
t⩾0
E

[
|ln X(t)|m

]
< ∞, and by Proposition A.16, E

[
| ln X̃(t) − ln X(t)|m

]
−−−→
t→∞

0, then

E
[
|ln X(t)|m/2

∣∣∣ln X(t) − ln X̃(t)
∣∣∣m/2] ⩽ √

sup
t⩾0
E

[
|ln X(t)|m

]√
E

[∣∣∣ln X(t) − ln X̃(t)
∣∣∣m]
−−−→
t→∞

0.

(A.62)
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Further, by (A.58),
(
ln X̃(t)

)m
= (r̃(t) + τ̃(t))m ⩽ 2m−1 (r̃m(t) + τ̃m(t)) , and

E[|τ̃(t)|m] ⩽ Cm/2

(
1

2α

)m/2 (
e−αmt +

(
1 − e−2αt

)m/2
)
⩽ 2Cm/2

(
1

2α

)m/2
. Then,

sup
t⩾0
E[| ln X̃(t)|m] ⩽ 2m−1

(KφKµ

α

)m

+ 2Cm/2

(
1

2α

)m/2 < ∞. (A.63)

Apply Proposition A.16 again, and (A.63),

E
[∣∣∣ln X̃(t)

∣∣∣m/2 ∣∣∣ln X(t) − ln X̃(t)
∣∣∣m/2] ⩽ √

sup
t⩾0
E

[∣∣∣ln X̃(t)
∣∣∣m]√

E
[∣∣∣ln X(t) − ln X̃(t)

∣∣∣m]
−−−→
t→∞

0.

(A.64)

(A.61), (A.62) and (A.64) complete the proof of assertion (2) with convergence in Lm.

Second, by triangle inequality,∣∣∣(ln X(t))2 − ln(X̃(t))2
∣∣∣ ⩽ |ln X(t)|

∣∣∣ln X(t) − ln X̃(t)
∣∣∣ + ∣∣∣ln X̃(t)

∣∣∣ ∣∣∣ln X(t) − ln X̃(t)
∣∣∣ . (A.65)

Since
∣∣∣ln X̃(t)

∣∣∣ ∣∣∣ln X(t) − ln X̃(t)
∣∣∣ ⩽ |r̃(t)|

∣∣∣ln X(t) − ln X̃(t)
∣∣∣ + |τ̃(t)|

∣∣∣ln X(t) − ln X̃(t)
∣∣∣, and

r̃(t) is bounded,

|r̃(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ a.s.
−−−→
t→∞

0. (A.66)

Further, since
∫ t

0
eαsdB̃s is a martingale, from Doob’s maximal inequality for sub-

martingales. For any ε > 0,

P
(

sup
k⩽t⩽k+1

e−2αt
∣∣∣∣∫ t

0
eαsdB̃s

∣∣∣∣ > ε) ⩽ P
(

sup
k⩽t⩽k+1

∣∣∣∣∫ t

0
eαsdB̃s

∣∣∣∣ > εe2αk

)
⩽
E

[
sup

k⩽t⩽k+1

∣∣∣∣∫ t
0 eαsdB̃s

∣∣∣∣2]
ε2e4αk .

By Burkholder-Davis-Gundy inequality,

P
(

sup
k⩽t⩽k+1

e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdB̃s

∣∣∣∣∣∣ > ε
)
⩽

1
ε2e4αk 4E

[∣∣∣∣∣∣
∫ k+1

0
e2αsds

∣∣∣∣∣∣
]
.

Further, E

∣∣∣∣∣∣
∫ k+1

0
eαsdB̃s

∣∣∣∣∣∣2
 = 1

2α (e2α(k+1) − 1) ⩽ 1
2αe2α(k+1), which implies that

P
(

sup
k⩽t⩽k+1

e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdB̃s

∣∣∣∣∣∣ > ε
)
⩽

1
ε2e4αk

1
2α

4e2α(k+1) =
2e2α

αε2 e−2αk



A Proofs related to GEOU process 182

and
∞∑

k=1

P
(

sup
k⩽t⩽k+1

e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdB̃s

∣∣∣∣∣∣ > ε
)
⩽

2e2α

αε2

∞∑
k=1

e−2αk =
2e2α

αε2

e−2α

1 − e−2α < ∞.

Then, by Borel–Cantelli Lemma,

e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdB̃s

∣∣∣∣∣∣ a.s.
−−−→
t→∞

0. (A.67)

Together with e−2αt

∣∣∣∣∣∣
∫ 0

−∞

eαsdB̃s

∣∣∣∣∣∣ a.s.
−−−→
t→∞

0, e−2αt

∣∣∣∣∣∣
∫ t

−∞

eαsdB̃s

∣∣∣∣∣∣ a.s.
−−−→
t→∞

0. This implies that

|τ̃(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ a.s.
−−−→
t→∞

0. (A.68)

Further, by Proposition 2.2.1,

|ln X(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ ⩽ e−αt |ln X0|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣
+ |r(t)|

∣∣∣ln X(t) − ln X̃(t)
∣∣∣ + |τ(t)|

∣∣∣ln X(t) − ln X̃(t)
∣∣∣ .

Since r(t) is bounded,

|r(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ a.s.
−−−→
t→∞

0 (A.69)

and from Proposition A.16,

e−αt |ln X0|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ a.s.
−−−→
t→∞

0. (A.70)

Further,
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ = e−αt
∣∣∣∣ln X0 +

∫ 0

−∞
eαs(L(s) − 1

2σ
2)ds +

∫ 0

−∞
eαsdB̄−s

∣∣∣∣, implies

|τ(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ = e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdB̃s

∣∣∣∣∣∣
∣∣∣∣∣∣ln X0 +

∫ 0

−∞

eαs(L(s) −
1
2
σ2)ds +

∫ 0

−∞

eαsdB̄−s

∣∣∣∣∣∣ .
From (A.67), e−2αt

∣∣∣∣∣∣
∫ t

0
eαsdBs

∣∣∣∣∣∣ a.s.
−−−→
t→∞

0 and then

|τ(t)|
∣∣∣ln X(t) − ln X̃(t)

∣∣∣ a.s.
−−−→
t→∞

0. (A.71)

(A.65), (A.66), (A.68), (A.69), (A.70) and (A.71) imply that (ln X(t))2 − (ln X̃(t))2 a.s.
−−−→
t→∞

0. This completes the proof. □
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A.3 On parameter estimation and asymptotic results

A.3.1 Derivation of MLE

Proof of Proposition 2.3.1. Let a = [a⊤1 , a2] with a1 a p−column vector, and a2 a scalar.

Then, aQ[0,T ]a⊤ = (a⊤1 , a2)Q[0,T ](a⊤1 , a2)⊤ =
∫ T

0

(
a⊤1 φ

⊤(t) − a2 ln X(t)
)2

dt ⩾ 0, and the

equality holds if and only if
(
a⊤1 φ

⊤(t) − a2 ln X(t)
)2
= 0, almost everywhere for t ∈

[0,T ], which is a⊤1 φ
⊤(t) − a2 ln X(t) = 0, almost everywhere for t ∈ [0,T ], i.e.

P
(
ω : a⊤1 φ

⊤(t) − a2 ln X(t, ω) = 0,∀ t ∈ [0,T ]
)
= 1, (A.72)

It is obvious that if a2 = 0, by Assumption 2.3, a1 = 0⃗p×1. First, a2 = 0 is need to be

proven. Note that, ln X(t)|X0 follows normal distribution, which implies that(
a⊤1 φ

⊤(t) − a2 ln X(t)
)
|X0 also follows normal distribution, and

Var
((

a⊤1 φ
⊤(t) − a2 ln X(t)

)
|X0

)
= a2

2
σ2

2α
(1 − e−2αt) > 0,

for all t ∈ [0,T ]. This shows that
(
a⊤1 φ

⊤(t) − a2 ln X(t)
)
|X0 is not a constant with proba-

bility 1, which means that for a2 , 0,

P
(
ω : a⊤1 φ

⊤(t) − a2ln X(t,ω) = 0,∀ t ∈ [0,T ]
)
= 0.

This is a contradiction with (A.72), hence, a2 = 0, which implies that a⊤1 φ
⊤(t) = 0. By

Assumption 2.3, provided T ⩾ 1, the base function φ(t) is linearly independent, which

means a⊤1 φ
⊤(t) = 0 can imply that a1 = 0⃗p×1 and a = 0⃗1×(p+1). This completes the

proof. □

A.3.2 Joint asymptotic normality and related results

In this subsection, the joint asymptotic normality of the estimators is derived. The

limiting distributions play an important role in deriving shrinkage estimators and their

asymptotic relative efficiency. Further, the limiting distributions are also important in
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solving the hypothesis testing problem (2.2.3). To this end, the asymptotic behavior

of the positive definite matrix
1
T

Q[0,T ] and the column vector 1
√

T
W[0,T ] is studied. The

preliminary propositions play crucial roles in deriving the limiting distributions of both

UMLE and RMLE. The following proposition proves the result in a more general case.

Proposition A.17. Let φ⊤(t) be a p-column vector of real-valued functions, which are

linearly independent and Riemann square integrable. Let r̃(t) be square integrable real-

valued function, Λ =
∫ 1

0
φ⊤(t)r̃(t)dt, β , 0 and letΠ =


∫ 1

0
φ⊤(t)φ(t)dt −Λ

−Λ⊤
∫ 1

0
r̃2(t)dt + β2

.
Then, Π is a positive definite matrix.

Proof. Let a = (a⊤1 , a2)⊤, where a1 is a p0−column vector and a2 is a scalar. Then,

a⊤Π a = a⊤1
∫ 1

0
φ(t)φ⊤(t)dta1 − 2a⊤1

∫ 1

0
r̃ j(t)φ(t)dta2 + a2

(∫ 1

0
r̃2

j (t)dt
)

a2 + a2
2β

2. Then,

a⊤Π a =
∫ 1

0

(
a⊤1 φ

⊤(t) − a2̃r j(t)
)2

dt + a2
2β

2 ⩾ 0. Further, a⊤Π a = 0 if and only if∫ 1

0

(
a⊤1 φ

⊤(t) − a2̃r j(t)
)2

dt = 0, a2
2β

2 = 0. Since β2 > 0, this implies that a2 = 0 and∫ 1

0

(
a⊤1 φ

⊤(t) − a2̃r j(t)
)2

dt = 0. Combining a2 = 0 and
∫ 1

0

(
a⊤1 φ

⊤(t) − a2̃r j(t)
)2

dt = 0,

together with the fact that φ⊤(t) is a p-column vector of linearly independent functions,

a1 = 0⃗p×1, which is a⊤Π a = 0 if and only if a = 0⃗(p+1)×1. This completes the proof. □

Proof of Proposition 2.3.4. This proposition will be proven in the following four steps:

(1) Step 1, by Assumption 2.3,

1
T

∫ T

0
φ⊤(t)φ(t)dt =

1
T

∫ ⌊T ⌋

0
φ⊤(t)φ(t)dt +

1
T

∫ T

⌊T ⌋
φ⊤(t)φ(t)dt

=
1
T

⌊T ⌋∑
j=1

∫ j

j−1
φ⊤(t)φ(t)dt +

1
T

∫ T

⌊T ⌋
φ⊤(t)φ(t)dt

By Assumption 2.3,

1
T

⌊T ⌋∑
j=1

∫ j

j−1
φ⊤(t)φ(t)dt =

1
T

⌊T ⌋∑
j=1

∫ 1

0
φ⊤(u)φ(u)du =

⌊T ⌋
T

Ip −−−−→
T→∞

Ip.
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Further, by Jensen inequality, property of periodic function, let u = t − ⌊T ⌋,∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

⌊T ⌋
φ⊤(t)φ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣ = 1

T

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ T−⌊T ⌋

0
φ⊤(u + ⌊T ⌋)φ(u + ⌊T ⌋)dt

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
1
T

∫ 1

0

∣∣∣∣∣∣φ⊤(u)φ(u)
∣∣∣∣∣∣ dt −−−−→

T→∞
0,

which implies that 1
T

∫ T

⌊T ⌋
φ⊤(t)φ(t)dt −−−−→

T→∞
0. Thus,

1
T

∫ T

0
φ⊤(t)φ(t)dt −−−−→

T→∞
Ip.

(2) Step 2, indeed, by Proposition A.16, | ln X̃(t) − ln X(t)|
a.s. and Lm

−−−−−−−−→
T→∞

0, together with

||φ(t)|| ≤ Kφ,

φ⊤(t) ln X(t) − φ⊤(t) ln X̃(t)
a.s. and Lm

−−−−−−−−→
T→∞

0.

By the continuous version of Cesàro mean theorem,

1
T

∫ T

0
φ⊤(t) ln X(t)dt −

1
T

∫ T

0
φ⊤(t) ln X̃(t)dt

a.s. and Lm

−−−−−−−−→
T→∞

0.

Then,the following needs to be proven

1
T

∫ T

0
φ⊤(t) ln X̃(t)dt

a.s. and Lm

−−−−−−−−→
T→∞

∫ 1

0
φ⊤(t)r̃(t)dt.

(i) In fact,

1
T

∫ T

0
φ⊤(t) ln X̃(t)dt =

1
T

∫ ⌊T ⌋

0
φ⊤(t) ln X̃(t)dt +

1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt

=
1
T

⌊T ⌋∑
j=1

∫ j

j−1
φ⊤(t) ln X̃(t)dt +

1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt.

Let Y j =
∫ j

j−1
φ⊤(t) ln X̃(t)dt. By Proposition A.15, {ln X̃(u + k − 1), 0 ≤ u ≤

1}k∈N+ is stationary and ergodic. Then, that {Y j} j∈N+ is stationary and ergodic.

This leads to

1
T

⌊T ⌋∑
j=1

∫ j

j−1
φ⊤(t) ln X̃(t)dt

a.s. and Lm/2

−−−−−−−−−→
T→∞

∫ 1

0
φ⊤(u)E

[
ln X̃u

]
du =

∫ 1

0
φ(t)r̃(t)dt.

(A.73)
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(ii) In addition, for i = 1, 2, · · · , p, let S ⌊T ⌋i =
∫ T

⌊T ⌋
φi(t) ln X̃(t)dt,

E[S 2
⌊T ⌋i] = E

(∫ T

⌊T ⌋
φi(t) ln X̃(t)dt

)2 ≤ K2
φE

(∫ T

⌊T ⌋
ln X̃(t)dt

)2
= K2

φE

[(∫ T

⌊T ⌋
ln X̃(t)

∫ T

⌊T ⌋
ln X̃ududt

)]
= K2

φE

[(∫ T

⌊T ⌋

∫ T

⌊T ⌋
ln X̃(t) ln X̃ududt

)]
.

Then,

E[S 2
⌊T ⌋i] = K2

φ

(∫ T

⌊T ⌋

∫ T

⌊T ⌋
E

[
ln X̃(t) ln X̃u

]
dudt

)
.

By (A.63), for m = 2, E
[
ln X̃(t) ln X̃u

]
≤ sup

t≥0
E

[∣∣∣ln X̃(t)
∣∣∣2] < ∞, then,

E[S 2
⌊T ⌋i] ≤ K2

φ sup
t≥0
E

[
|X(t)|2

] (∫ T

⌊T ⌋

∫ T

⌊T ⌋
dudt

)
= K2

φ

(
sup
t≥0
E

[
|X(t)|2

])
(T−⌊T ⌋)2.

Since T − ⌊T ⌋ ≤ 1,

∞∑
⌊T ⌋=1

P
(
|S ⌊T ⌋i|
⌊T ⌋

> ε

)
≤

∞∑
⌊T ⌋=1

E[|S ⌊T ⌋i|2]
⌊T ⌋2ε2 ≤

∞∑
⌊T ⌋=1

K2
φ

(
sup
t≥0
E

[
|X(t)|2

])
⌊T ⌋2ε2

= K2
φ

(
sup
t≥0
E

[
|X(t)|2

]) ∞∑
⌊T ⌋=1

1
⌊T ⌋2ε2 < ∞,

by Borel-Cantelli Lemma,
|S ⌊T ⌋i|
⌊T ⌋

a.s.
−−−−→
T→∞

0, for i = 1, 2, · · · , p, which implies

that

1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt

a.s.
−−−−→
T→∞

0. (A.74)

Further,

E

[∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
= E

[∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]

≤ E

[(
1
T

∫ T

⌊T ⌋

∣∣∣∣∣∣φ⊤(t)
∣∣∣∣∣∣ | ln X̃(t)|dt

)m]
≤

(
1
T

)m (
pKφ

)m/2
E

[(∫ T

⌊T ⌋
| ln X̃(t)|dt

)m]
≤

(
1
T

)m (
pKφ

)m/2
(T − ⌊T ⌋)m−1

(∫ T

⌊T ⌋
E

[
| ln X̃(t)|m

]
dt

)
≤

(
1
T

)m (
pKφ

)m/2
(∫ T

⌊T ⌋
E

[
| ln X̃(t)|m

]
dt

)
.
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By (A.63), sup
t≥0
E

[∣∣∣ln X̃(t)
∣∣∣m]

< ∞, then,

E

[∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

⌊T ⌋
φ⊤(t) ln X̃(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
≤

(
1
T

)m (
pKφ

)m/2
(
sup
t≥0
E

[∣∣∣ln X̃(t)
∣∣∣m])
−−−−→
T→∞

0.

(A.75)

(A.73), (A.74) and (A.75) imply that

1
T

∫ T

0
φ(t) ln X(t)dt

a.s. and Lm

−−−−−−−−→
T→∞

∫ 1

0
φ(t)r̃(t)dt.

(3) Step 3, from Proposition A.16, (ln X(t))2−(ln X̃(t))2 a.s. and Lm/2

−−−−−−−−−→
T→∞

0. By the continuous

version of Cesàro mean theorem,

1
T

∫ T

0
(ln X(t))2dt −

1
T

∫ T

0
(ln X̃(t))2dt

a.s. and Lm/2

−−−−−−−−−→
T→∞

0.

The following convergence needs to be proven

1
T

∫ T

0
(ln X̃(t))2dt

a.s. and Lm/2

−−−−−−−−−→
T→∞

∫ 1

0
(r̃(t))2dt +

σ2

2α
.

By the fact that

1
T

∫ ⌊T ⌋

0
(ln X̃(t))2dt ≤

1
T

∫ T

0
(ln X̃(t))2dt ≤

1
T

∫ ⌊T ⌋+1

0
(ln X̃(t))2dt. (A.76)

Then,

LHS of (A.76) =
1
T

∫ ⌊T ⌋

0
(ln X̃(t))2dt =

1
T

⌊T ⌋∑
j=1

∫ j

j−1
(ln X̃(t))2dt

By Proposition A.15,
{
ln X̃(u + (k − 1))

}
k∈N+

is stationary and ergodic. Further,(
ln X̃(u + (k − 1))

)2
is a measurable function of the stationary and ergodic process{

ln X̃(u + (k − 1))
}

i∈N+
, by Theorem 3.5.8 in Stout [1974],

{
(ln X̃(u + (k − 1)))2

}
k∈N+

is stationary and ergodic. So the point wise ergodic theorem for stationary se-

quences (Theorem 3.5.7 in Stout [1974] can be applied to the sequence{∫ j

j−1
(ln X̃(t))2dt

}
j∈N+

. Thus,

LHS of (A.76)
a.s. and Lm/2

−−−−−−−−−→
n→∞

∫ 1

0
(r̃2(u) +

σ2

2α
)du =

∫ 1

0
(r̃(t))2dt +

σ2

2α
.
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Similarly,

RHS of (A.76) =
1
T

∫ ⌊T ⌋+1

0
(ln X̃(t))2dt

a.s. and Lm/2

−−−−−−−−−→
n→∞

∫ 1

0
(r̃2(u) +

σ2

2α
)du

=

∫ 1

0
(r̃(t))2dt +

σ2

2α
.

This implies that

1
T

∫ T

0
(ln X̃(t))2dt

a.s. and Lm/2

−−−−−−−−−→
T→∞

∫ 1

0
(r̃(t))2dt +

σ2

2α
.

(4) From Proposition 2.3.1 and the fact that Σ is invertible, then, continuous mapping

theorem can be applied to get T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1.

Step (1),(2), (3), and (4) complete the proof. □

Proof of Proposition 2.3.5. This proposition is a special case of Proposition 1.21 in Ku-

toyants Kutoyants [2004], for which d1 = p + 1 and d2 = 1. As defined in (2.3.3)

W[0,T ] =

[∫ T

0
φ1(t)dBt,

∫ T

0
φ2(t)dBt, · · · ,

∫ T

0
φp(t)dBt,−

∫ T

0
ln X(t)dBt

]⊤
which is a p + 1 column vector. Let h(i)

T (t, ω) =
1
√

T
φi(t) for i = 1, 2, · · · , p and

h(p+1)
T (t, ω) =

1
√

T
ln X(, ω). This implies that

(
h(i)

T (t, ω)
)2
=

1
T
φ2

i (t) and
(
h(p+1)

T (t, ω)
)2
=

1
T

(ln X(t, ω))2, for all i = 1, 2, · · · , p. By (A.55),

sup
t≥0
E [| ln X(t)|m] ≤ 3m−1

E [| ln X0|
m] +

KµKφ +
1
2σ

2

α

m

+Cm/2σ
m

(
1

2α

)m/2 < ∞,
and |φi|(t) ≤ Kφ < ∞, which implies that P

(∫ T

0

(
h(i)

T (t, ω)
)2

dt < ∞
)
= 1 for all i =

1, 2, · · · , p + 1. Further,∫ T

0

1
√

T
φ⊤(t)

1
√

T
φ(t)dt =

1
T

∫ T

0
φ⊤(t)φ(t)dt,

∫ T

0

1
√

T
φ(t)

1
√

T
ln X(t)dt =

1
T

∫ T

0
φ(t) ln X(t)dt,
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and ∫ T

0

1
√

T
ln X(t)

1
√

T
ln X(t)dt =

1
T

∫ T

0
(ln X(t))2 dt.

Then, by (2.3.2),

1
T

Q[0,T ] =


1
T

∫ T

0
φ⊤(t)φ(t)dt −

1
T

∫ T

0
φ⊤(t) ln X(t)dt

−
1
T

∫ T

0
φ(t) ln X(t)dt

1
T

∫ T

0
(ln X(t))2 dt


and by Proposition 2.3.4,

1
T

Q[0,T ]
a.s.
−−−−→
T→∞

Σ. Finally, Proposition 1.21 in Kutoyants

[2004] implies that

1
√

T
W[0,T ]

D
−−−−→
T→∞

W∗ ∼ Np+1 (0,Σ) .

This completes the proof. □

Proof of Proposition 2.3.6. From (2.3.5), θ̂T = θ+σQ−1
[0,T ]W[0,T ]. Proposition 2.3.4 shows

that T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1, and further, the proof of L2 boundedness of
1
T

W[0,T ] is given.

W[0,T ] is defined as

W[0,T ] =

[∫ T

0
φ1(t)dBt,

∫ T

0
φ2(t)dBt, · · · ,

∫ T

0
φp(t)dBt,−

∫ T

0
ln X(t)dBt

]⊤
.

For i = 1, · · · , p,
∫ T

0
φ1(t)dBt is a martingale, and

sup
T≥0
E

∣∣∣∣∣∣ 1
√

T

∫ T

0
φi(t)dBt

∣∣∣∣∣∣2
 = sup

T≥0
E

[
1
T

∫ T

0
φ2

i (t)dt
]
≤ K2

φ,

and from (A.55), with m = 2,

sup
T≥0
E

∣∣∣∣∣∣ 1
√

T

∫ T

0
ln X(t)(t)dBt

∣∣∣∣∣∣2
 = sup

T≥0
E

[
1
T

∫ T

0
(ln X(t))2dt

]
≤ sup

t≥0
E

[
(ln X(t))2

]
< ∞,

which completes the L2 boundedness. Further, W[0,T ] is a martingale, by using Doob’s

maximal inequality for submartingales, for any ε > 0,

P
(

sup
2k≤T≤2k+1

1
T
|W[0,T ]| > ε

)
≤ P

(
sup

2k≤T≤2k+1
|W[0,T ]| > ε2k

)
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≤

E

[
sup

2k≤T≤2k+1
|W[0,T ]|

2

]
ε222k ≤

E
[
|W[0,2k+1]|

2
]

ε222k ≤

max
{

sup
t≥0
E

[
(ln X(t))2

]
,K2

φ

}
2k+1

ε222k = O
(

1
2k

)
.

1
T
|W[0,T ]|

a.s.
−−−−→
T→∞

0 can be obtained by applying the Borel–Cantelli Lemma. Then,θ̂T
a.s.
−−−−→
T→∞

θ. Further, from (2.2.1), dX(t) = S (θ, t, X(t))dt + σX(t)dBt, then, Proposition 2.3.2 im-

plies that θ̂T = θ + σQ−1
[0,T ]W[0,T ]. By the definition of ρT ,

√
T (θ̂T − θ) = σ

√
T Q−1

[0,T ]W[0,T ] = σT Q−1
[0,T ]

1
√

T
W[0,T ]

By Proposition 2.3.4, σT Q−1
[0,T ]

a.s.
−−−−→
T→∞

σΣ−1. Proposition 2.3.5 stats

1
√

T
W[0,T ]

D
−−−−→
T→∞

W∗ ∼ Np+1 (0,Σ) . (A.77)

Then, by Slutsky’s Theorem,

√
T (θ̂T − θ) = σT Q−1

[0,T ]
1
√

T
W[0,T ]

D
−−−−→
T→∞

σΣ−1W∗ = ρ.

Note that Σ−1 is non-random and symmetric, by the proposition of multivariate normal

distribution, ρ ∼ Np+1

(
0, σ2Σ−1

)
. Then,

√
T (θ̂T − θ)

D
−−−−→
T→∞

ρ ∼ Np+1

(
0, σ2Σ−1

)
.

This completes the proof. □

Proof of Proposition 2.3.7. From (2.3.8),

√
T (θ̂T − θ̃T ) =

√
T (θ̂T − θ) −

√
T (θ̃T − θ) = G[0,T ]M

√
T (θ̂T − θ) +

√
TG[0,T ] (Mθ − r) .

Hence, 
√

T (θ̂T − θ)
√

T (θ̃T − θ)
√

T (θ̂T − θ̃T )


=


Ip+1

Ip+1 −G[0,T ]M

G[0,T ]M


√

T (θ̂T − θ) +


0

−
√

TG[0,T ] (Mθ − r)
√

TG[0,T ] (Mθ − r)


.

By the fact

G[0,T ]
P
−−−−→
T→∞

G∗ = Σ−1M⊤(MΣ−1M⊤)−1, (A.78)
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
Ip+1

Ip+1 −G[0,T ]M

G[0,T ]M


P
−−−−→
T→∞


Ip+1

Ip+1 −G∗M

G∗M


.

Consider the local alternatives restriction (2.3.7),

√
TG[0,T ](Mθ − r) =

√
TG[0,T ]

r0
√

T
= G[0,T ]r0

P
−−−−→
T→∞

G∗r0.

Then, 
0

−
√

TG[0,T ] (Mθ − r)
√

TG[0,T ] (Mθ − r)


P
−−−−→
T→∞


0

−G∗r0

G∗r0


.

By Proposition 2.3.6, and Slutsky’s Theorem, that
√

T (θ̂T − θ)
√

T (θ̃T − θ)
√

T (θ̂T − θ̃T )


D
−−−−→
T→∞


Ip+1

Ip+1 −G∗M

G∗M


ρ +


0

−G∗r0

G∗r0


=


ρ

ϱ

ς


.

Note that the mean of (ρ⊤, ϱ⊤, ς⊤)⊤ is
Ip+1

Ip+1 −G∗M

G∗M


0 +


0

−G∗r0

G∗r0


=


0

−G∗r0

G∗r0


The variance of (ρ⊤, ϱ⊤, ς⊤)⊤ is

Ip+1

Ip+1 −G∗M

G∗M


σ2Σ−1


Ip+1

Ip+1 −G∗M

G∗M



⊤

= σ2


Σ−1

Σ−1 −G∗MΣ−1

G∗MΣ−1




Ip+1

Ip+1 −G∗M

G∗M



⊤
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= σ2


Σ−1 Σ−1 − Σ−1(G∗M)⊤ Σ−1(G∗M)⊤

Σ−1 −G∗MΣ−1 (Σ−1 −G∗MΣ−1)(Ip+1 − (G∗M)⊤) (Σ−1 −G∗MΣ−1)(G∗M)⊤

G∗MΣ−1 G∗MΣ−1(Ip+1 − (G∗M)⊤) G∗MΣ−1(G∗M)⊤


.

From (A.78),

Σ−1(G∗M)⊤ = Σ−1M⊤(MΣ−1M⊤)−1MΣ−1 = G∗MΣ−1,

and

G∗MΣ−1(G∗M)⊤ =
(
Σ−1M⊤(MΣ−1M⊤)−1

)
MΣ−1

(
M⊤(MΣ−1M⊤)−1MΣ−1

)
= Σ−1M⊤(MΣ−1M⊤)−1(MΣ−1M⊤)(MΣ−1M⊤)−1MΣ−1 = G∗MΣ−1.

As what has been shown, the conclusion
ρT

ϱT

ςT


D
−−−−→
T→∞


ρ

ϱ

ς


∼ N3(p+1)




0

−G∗r0

G∗r0


, σ2


Σ−1 Σ−1 −G∗MΣ−1 G∗MΣ−1

Σ−1 −G∗MΣ−1 Σ−1 −G∗MΣ−1 0

G∗MΣ−1 0 G∗MΣ−1




.

This finishes the proof of the joint asymptotic normality of the UMLE and RMLE. This

completes the proof. □

Proof of Proposition 2.3.8. From Proposition 2.3.7,

ςT
D
−−−−→
T→∞

ς ∼ Np+1(G∗r0, σ
2G∗MΣ−1).

Further, by Proposition 2.3.4,

Γ̂ =
1

σ̂2
M⊤

(
MT Q−1

[0,T ]M
⊤
)−1

M
P
−−−−→
T→∞

Γ =
1
σ2 M⊤

(
MΣ−1M⊤

)−1
M.

Therefore, by Slutsky’s Theorem, ψT = ς
⊤
T Γ̂ςT

D
−−−−→
T→∞

ψ = ς⊤Γς. To complete the proof

of this proposition, it suffices to apply Theorem 5.1.3 in Mathai and Provost [1992]

along with some algebraic computations. □
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Proof of Proposition 2.3.11. By (2.3.16),

E [| ln X1(t)|m] = E
[∣∣∣∣e−α1t ln X0 + e−α1t

∫ t

0
eα1 s(L(s) − 1

2σ
2)ds + σe−α1t

∫ t

0
eα1 sdBs

∣∣∣∣m]
⩽ 3m−1

(
e−mα1tE [| ln X0|

m] +
∣∣∣∣e−α1t

∫ t

0
eα1 s(L(s) − 1

2σ
2)ds

∣∣∣∣m)
+σm3m−1e−mα1tE

[∣∣∣∣∫ t

0
eα1 sdBs

∣∣∣∣m]
,

and ∣∣∣∣∣∣e−α1t
∫ t

0
eα1 s(L(s) −

1
2
σ2)ds

∣∣∣∣∣∣m ⩽
KµKφ +

1
2σ

2

α1

m

(1 − e−α1t)m.

Further, by Burkholder-Davis-Gundy inequality, there exists a positive constant Cm/2,

such that

σme−mα1tE

[∣∣∣∣∣∣
∫ t

0
eα1 sdBs

∣∣∣∣∣∣m
]
⩽ σme−mα1tE

[(
sup
0⩽s⩽t

∣∣∣∣∣∫ s

0
eα1 sdBs

∣∣∣∣∣)m]

⩽ Cm/2σ
me−mα1tE

(∫ t

0
e2α1 sds

)m/2 = Cm/2σ
me−mα1t

(
1

2α1
(e2α1t − 1)

)m/2

,

= Cm/2σ
m

(
1

2α1
(1 − e−2α1t)

)m/2

,

and then, since E [| ln X0|
m] < ∞,

sup
t⩾0
E [| ln X1(t)|m] ⩽ 3m−1

E [| ln X0|
m] +

KµKφ +
1
2σ

2

α1

m

+Cm/2σ
m

(
1

2α1

)m/2 < ∞.
(A.79)

Furthermore, by (2.3.16),

E [| ln X2(t)|m] ⩽ 3m−1
(
|e−α2(t−t∗) ln Xt∗

0 )m + (rt∗
2 (t − t∗))m + (τt∗

2 (t − t∗)|m
)
. (A.80)

First, notice that ln Xt∗(t) = ln X(t + t∗), which implies that ln Xt∗(0) = ln X(t∗). From

(A.79), |e−α2(t−t∗) ln Xt∗(0)|m ⩽ | ln Xt∗(0)|m < ∞, for all t ⩾ t∗. Second,∣∣∣rt∗
2 (t − t∗)

∣∣∣m ⩽ e−mα2(t−t∗)

(∫ (t−t∗)

0
eα2 s

∣∣∣∣∣L(s + t∗) −
1
2
σ2

∣∣∣∣∣ ds
)m

⩽

KµKφ +
1
2σ

2

α2

m

(1 − e−α2(t−t∗))m,

(A.81)

which is bounded in t on [t∗,+∞). Further, by Burkholder-Davis-Gundy inequality,



A Proofs related to GEOU process 194

there exists a positive constant Cm/2, such that∣∣∣τt∗
2 (t − t∗)

∣∣∣m = σme−mα2 (t−t∗)E

∣∣∣∣∣∣
∫ (t−t∗)

0
eα1 sdBt∗

s

∣∣∣∣∣∣
m

⩽ Cm/2σ
me−mα2 (t−t∗)E

(∫ (t−t∗)

0
e2α2 sds

)m/2 , (A.82)

and then, by (A.80), this implies that

sup
t⩾0
E [| ln X2(t)|m] ⩽ 3m−1

E [
| ln Xt∗(0)|m

]
+

KµKφ +
1
2σ

2

α2

m

+Cm/2σ
m

(
1

2α2

)m/2 < ∞.
(A.83)

The rest of the proof follows from (A.79) and (A.83). □

Proof of Proposition 2.3.15. From Proposition A.18 and Theorem 7.6 in Liptser and

Shiryaev [2001], the likelihood function of the diffusion process (2.3.12) is given by

L(θ, s, XT ) :=
dPX

dPB
(XT ) = exp

{∫ T

0

S (θ, t, X(t))
σ2X2(t)

I{0⩽t⩽t∗}dX(t)

+

∫ T

0

S (θ, t, X(t))
σ2X2(t)

I{t∗<t⩽T }dX(t)

−
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

I{0⩽t⩽t∗}dt −
1
2

∫ T

0

S 2(θ, t, X(t))
σ2X2(t)

I{t∗<t⩽T }dt
}
.

(A.84)

= exp
{∫ sT

0

(φ(t),− ln X(t))θ(1)X(t)
σ2X2(t)

dX(t) +
∫ T

sT

(φ(t),− ln X(t))θ(2)X(t)
σ2X2(t)

dX(t)

−
1
2

∫ sT

0

θ(1)⊤(φ(t),− ln X(t))⊤(φ(t),− ln X(t))θ(1)X(t)X(t)
σ2X2(t)

dt

−
1
2

∫ T

sT

θ(2)⊤(φ(t),− ln X(t))⊤(φ(t),− ln X(t))θ(2)X(t)X(t)
σ2X2(t)

dt
}
.

This gives

logL(θ, s, XT ) =
1
σ2

∫ sT

0

(φ(t),− ln X(t))
X(t)

dX(t)θ(1) +
1
σ2

∫ T

sT

(φ(t),− ln X(t))
X(t)

dX(t)θ(2)

−
1

2σ2 θ
(1)⊤

∫ sT

0
(φ(t),− ln X(t))⊤(φ(t),− ln X(t))dtθ(1)

−
1

2σ2 θ
(2)⊤

∫ T

sT
(φ(t),− ln X(t))⊤(φ(t),− ln X(t))dtθ(2) =

1
σ2 U⊤(s,T )θ −

1
2σ2θ

⊤Q(s,T )θ.
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First, take the first derivative of logL(θ, s, XT ) with respect to θ.

∂

∂θ
logL(θ, s, XT ) =

1
σ2 U⊤(s,T ) −

1
σ2θ

⊤Q(s,T ).

Set
∂

∂θ
logL(θ, s, XT ) = 0, θ̂T (s) = Q−1(s,T )U(s,T ). From Proposition 2.3.14, Q(s,T )

is positive definite, which implies that Q(s,T ) is invertable. Next, taking the second

derivative of logL(θ, s, XT ) with respect to θ⊤ gives,

∂2

∂θ∂θ⊤
logL(θ, s, XT ) = −

1
σ2 Q(s,T ).

By Proposition 2.3.14, − 1
σ2 Q(s,T ) is a negative definite matrix, since σ2 > 0. This

implies that Q−1(s,T )U(s,T ) is the maximum value, and θ̂T (s) = Q−1(s,T )U(s,T ).

Further, the maximum value of the log likelihood function logL(θ, s, XT ) under the

restriction (2.3.14) can be found. Here Lagrange multiplier method is used. After intro-

ducing the Lagrange multiplier into the log likelihood function,

logL(θ, s, XT , λ) =
1
σ2 U⊤(s,T )θ −

1
2σ2θ

⊤Q(s,T )θ + λ⊤(Mθ − r)

where λ is a q column vector. To find the maximum value point of logL(θ, s, XT , λ),

taking the first derivative with respect to θ and λ respectively are needed,

∂

∂θ
logL(θ, s, XT , λ) =

1
σ2 U⊤(s,T ) −

1
σ2θ

⊤Q(s,T ) + M̃⊤λ

and

∂

∂λ
logL(θ, s, XT , λ) = M̃θ − r̃.

By setting the first partial derivatives equal to 0,

1
σ2 U⊤(s,T ) −

1
σ2θ

⊤Q(s,T ) + M̃⊤λ = 0 (A.85)

and

M̃θ − r̃ = 0. (A.86)
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1
σ2 U⊤(s,T ) + M̃⊤λ = 1

σ2θ
⊤Q(s,T ), and this implies that

θ̃T (s) = Q−1(s,T )U(s,T ) + σ2Q−1(s,T )M̃⊤λ. (A.87)

Substituting (A.85) into (A.86), M̃Q−1(s,T )U(s,T ) + M̃σ2Q−1(s,T )M̃⊤λ = r̃. Then,

M̃σ2Q−1(s,T )M̃⊤λ = r̃ − M̃Q−1(s,T )U(s,T ),

λ̂ =
1
σ2 (M̃Q−1(s,T )M̃⊤)−1r̃ −

1
σ2 (M̃Q−1(s,T )M̃⊤)−1M̃Q−1(s,T )U(s,T ).

Substituting λ̂ into (A.87),

θ̃T (s) = Q−1(s,T )U(s,T ) + σ2Q−1(s,T )M̃⊤
(

1
σ2

(
M̃Q−1(s,T )M̃⊤

)−1
r̃

−
1
σ2

(
M̃Q−1(s,T )M̃⊤

)−1
M̃Q−1(s,T )U(s,T )

)
.

Then,

θ̃T (s) = Q−1(s,T )U(s,T ) + Q−1(s,T )M̃⊤(M̃Q−1(s,T )M̃⊤)−1r̃

−Q−1(s,T )M̃⊤(M̃Q−1(s,T )M̃⊤)−1M̃Q−1(s,T )U(s,T ).

This gives θ̃T (s) = θ̂T (s) + G̃[0,T ]r̃ − G̃[0,T ]M̃θ̂T (s), where θ̂T (s) = Q−1(s,T )U(s,T ) and

G̃[0,T ] = Q−1(s,T )M̃⊤(M̃Q−1(s,T )M̃⊤)−1. Finally,

θ̃T (s) = θ̂T (s) + G̃[0,T ]r̃ − G̃[0,T ]M̃θ̂T (s) = θ̂T (s) − G̃[0,T ](M̃θ̂T (s) − r̃).

This completes the proof. □

Lemma A.6. Let ŝ be FT−measurable and a consistent estimator of s, with 0 ⩽ ŝ ⩽ 1

a.s. and let {φ(t), t ⩾ 0} be the deterministic and bounded function. Then,

1
√

T

∫ ŝT

0
φ(t)dBt −

1
√

T

∫ sT

0
φ(t)dBt

Lm

−−−−→
T→∞

0.
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Proof. First, the following convergence needs to be derived

lim
T→∞

T−m/2E

[∣∣∣∣∣∣
∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣∣∣m
]
= 0. (A.88)

Let ||φ(t)|| ⩽ Kφ and ϵ > 0,

lim
T→∞

P
(
|ŝ − s| ⩾ ϵ/(4K2

φ)
)
= 0. (A.89)

Let G(T ) = T−m/2E
[∣∣∣∣∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣m]
, further, let

G11(T ) = T−m/2E
[∣∣∣∣∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣m I{ŝ>s}I{|ŝ−s|⩽ ϵ

4K2
φ
}

]
G12(T ) = T−m/2E

[∣∣∣∣∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣m I{ŝ>s}I{|ŝ−s|⩾ ϵ

4K2
φ
}

]
G21(T ) = T−m/2E

[∣∣∣∣∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣m I{ŝ<s}I{|ŝ−s|⩽ ϵ

4K2
φ
}

]
G22(T ) = T−m/2E

[∣∣∣∣∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣m I{ŝ<s}I{|ŝ−s|⩾ ϵ

4K2
φ
}

]
.

(A.90)

Note that (A.88) is equivalent to lim
T→∞

(G11(T ) +G12(T ) +G21(T ) +G22(T )) = 0. For the

convergence of G11(T ), G11(T ) = T−m/2E

[∣∣∣∣∫ ŝT

sT
φ(t)dBt

∣∣∣∣m I{0<(ŝ−s)T⩽ ϵT
4K2
φ
}

]
. Let u = t − sT

with u ∈ [0, (ŝ − s)T ], and dt = du,

G11(T ) = T−m/2E

[∣∣∣∣∣∣
∫ (ŝ−s)T

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣m I{0<(ŝ−s)T⩽ ϵT
4K2
φ
}

]

⩽ T−m/2E

 sup
0⩽t⩽ ϵT

4K2
φ

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣m
 .

Further, by Burkholder-Davis-Gundy inequality, there exists some positive constant

Cm/2, such that

E

 sup
0⩽t⩽ ϵT

4K2
φ

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣m
 ⩽ Cm/2E


∣∣∣∣∣∣∣
∫ ϵT

4K2
φ

0
φ2(u + sT )du

∣∣∣∣∣∣∣
m/2 ⩽ Cm/2

(
ϵT
4

)m/2

,

which implies that G11(T ) ⩽ T−m/2Cm/2

(
ϵT
4

)m/2
= Cm/2

(
1
4

)m/2
ϵm/2. Further, as 0 < s < 1

and 0 < ŝ < 1 a.s.,

G12(T ) = T−m/2E

[∣∣∣∣∣∣
∫ ŝT

0
φ(t)dBt −

∫ sT

0
φ(t)dBt

∣∣∣∣∣∣m I{1>ŝ−s>0}I{|ŝ−s|⩾ ϵ

4K2
φ
}

]
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⩽ T−m/2E

[∣∣∣∣∣∣
∫ ŝT

sT
φ(t)dBt

∣∣∣∣∣∣m I{T>(ŝ−s)T>0}I{ŝ−s⩾ ϵ

4K2
φ
}

]
.

Let u = t − sT , then, u ∈ [0, (ŝ − s)T ] and dt = du,

G12(T ) ⩽ T−m/2E

[
sup

0⩽t⩽T

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣m I{T>(ŝ−s)T>0}I{ŝ−s⩾ ϵ

4K2
φ
}

]

⩽ T−m/2E

[
sup

0⩽t⩽T

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣m I{T>(ŝ−s)T⩾ ϵT
4K2
φ
}

]
.

Furthermore, by Cauchy-Schwartz inequality,

G12(T ) ⩽ T−m/2

E
 sup

0⩽t⩽T

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣2m


1/2

{E[I{(ŝ−s)T⩾ ϵT
4K2
φ
}]}

1/2

⩽ T−m/2

E
 sup

0⩽t⩽T

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣2m


1/2 {
P
(
ŝ − s ⩾

ϵ

4Kφ

)}1/2

.

Then, by Burkholder-Davis-Gundy’s inequality, there exists a Cm, such that

E

 sup
0⩽t⩽T

∣∣∣∣∣∣
∫ t

0
φ(u + sT )dBu+sT

∣∣∣∣∣∣2m ⩽ CmE

[∫ T

0
|φ(u)|2du

]m

⩽ Cm(K2
φT )m. (A.91)

Then,

G12(T ) ⩽ T−m/2
{
Cm(K2

φT )m
}1/2

{
P
(
ŝ − s ⩾ ϵ

4K2
φ

)}1/2
⩽
√

Cm(Kφ)m
{
P
(
ŝ − s ⩾ ϵ

4K2
φ

)}1/2
.

Together with the fact of (A.89), that lim
T→∞

G12(T ) = 0. lim
T→∞

G21(T ) = lim
T→∞

G22(T ) = 0

can be proven by using the similar techniques as for G11(T ) and G12(T ). This implies

that (A.88) holds and completes the proof. □

Lemma A.7. Suppose that Assumption 2.1-2.3, and Assumption 2.4 hold and let ŝ be a

consistent estimator of s, with 0 < ŝ < 1 a.s. Then,

1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

Lm/2

−−−−→
T→∞

0.

Proof. Since ŝ is FT−measurable and a consistent estimator of s, let ϵ > 0, for every
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0 < δ < min{s, 1 − s}, P(|ŝ − s| ⩾ δ) < ϵ, for sufficiently large T . Then,

E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2


= E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{|ŝ−s|⩾δ}

 (A.92)

+E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{|ŝ−s|<δ}

 . (A.93)

(A.92) = E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{ŝ⩽s−δ}


+E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{ŝ⩾s+δ}


⩽ T−m/4E

 sup
0⩽u⩽sT

∣∣∣∣∣∣
∫ sT

u
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{ŝ⩽s−δ}


+T−m/4E

∣∣∣∣∣∣ sup
sT⩽u⩽T

∫ u

sT
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{ŝ⩾s+δ}

 .
By Cauchy-Schwartz inequality,

(A.92) ⩽ T−m/4
{
E

[
sup

0⩽u⩽sT

∣∣∣∣∣∣
∫ sT

u
(ln X(t))dBt

∣∣∣∣∣∣m
]

P{ŝ ⩽ s − δ}
}1/2

+T−m/4
{
E

[
sup

sT⩽u⩽T

∣∣∣∣∣∫ u

sT
(ln X(t))dBt

∣∣∣∣∣m]
P{ŝ ⩾ s + δ}

}1/2

.

By Burkholder-Davis-Gundy’s inequality, there exists some constants Cm/2 such that

(A.92) ⩽ T−m/4

Cm/2E

(∫ T

sT
(ln X(t))2dt

)m/2 P{ŝ ⩾ s + δ}


1/2

+T−m/4

Cm/2E

(∫ sT

0
(ln X(t))2dt

)m/2 P{ŝ ⩽ s − δ}


1/2

By Jensen inequality,(∫ T

sT
(ln X(t))2dt

)m/2

⩽ ((1 − s)T )m/2−1
∫ T

sT
| ln X(t)|mdt,
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and then by Proposition 2.3.11,

E

[(∫ T

sT
(ln X(t))2dt

)m/2
]
⩽ ((1 − s)T )m/2−1

∫ T

sT
E [| ln X(t)|m] dt

⩽ ((1 − s)T )m/2 sup
t⩾0
E [| ln X(t)|m] .

Similarly,

E

(∫ sT

0
(ln X(t))2dt

)m/2 < (sT )m/2 sup
t⩾0
E [| ln X(t)|m] .

This implies that

(A.92) ⩽
1

T m/4

√
Cm/2 sup

t⩾0
E [| ln X(t)|m]

( √
((1 − s)T )m/2 +

√
(sT )m/2

) √
P{|ŝ − s| > δ}

=
√

Cm/2 sup
t⩾0
E [| ln X(t)|m]

( √
(1 − s)m/2 +

√
(s)m/2

) √
P{|ŝ − s| > δ}.

Then,

(A.92) < 2
√

Cm/2 sup
t⩾0
E [| ln X(t)|m]

√
ε. (A.94)

Further,

(A.93) = E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{s−δ<ŝ<s+δ}


= E

∣∣∣∣∣∣ 1
√

T

∫ sT

ŝT
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{s−δ<ŝ⩽s}

 + E ∣∣∣∣∣∣ 1
√

T

∫ ŝT

sT
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{s<ŝ⩽s+δ}


⩽ T−m/4E

 sup
(s−δ)T<u<sT

∣∣∣∣∣∣
∫ sT

u
(ln X(t))dBt

∣∣∣∣∣∣m/2 I{s−δ<ŝ⩽s}


+T−m/4E

[
sup

sT<u<(s+δ)T

∣∣∣∣∣∫ u

sT
(ln X(t))dBt

∣∣∣∣∣m/2 I{s<ŝ⩽s+δ}

]
By Cauchy-Schwartz inequality,

(A.93) ⩽ T−m/4
{
E

[
sup

(s−δ)T<t⩽sT

∣∣∣∣∣∣
∫ sT

t
(ln X(t))dBt

∣∣∣∣∣∣m
]

P{s − δ < ŝ < s}
}1/2

+ T−m/4
{
E

[
sup

sT<t⩽(s+δ)T

∣∣∣∣∣∣
∫ t

sT
(ln X(t))dBt

∣∣∣∣∣∣m
]

P{s < ŝ ⩽ s + δ}
}1/2

⩽ T−m/4
{
E

[
sup

(s−δ)T<t⩽sT

∣∣∣∣∣∣
∫ sT

t
(ln X(t))dBt

∣∣∣∣∣∣m
]}1/2
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+ T−m/4
{
E

[
sup

sT<t⩽(s+δ)T

∣∣∣∣∣∣
∫ t

sT
X(t)dBt

∣∣∣∣∣∣m
]}1/2

.

By Burkholder-Davis-Gundy’s inequality, there exists some constants Cm/2 such that

E

[
sup

(s−δ)T<t⩽sT

∣∣∣∣∣∣
∫ sT

t
(ln X(t))dBt

∣∣∣∣∣∣m
]
⩽ Cm/2E

(∫ sT

(s−δ)T
(ln X(t))2dt

)m/2 .
Further, from Jensen’s inequality,(∫ sT

(s−δ)T
(ln X(t))2dt

)m/2

⩽ (δT )m/2−1
∫ sT

(s−δ)T
|ln X(t)|m dt.

Then,

E

[
sup

(s−δ)T<t⩽sT

∣∣∣∣∣∣
∫ sT

t
(ln X(t))dBt

∣∣∣∣∣∣m
]
⩽ Cm/2(δT )m/2 sup

t⩾0
E [| ln X(t)|m] .

Similarly,

E

[
sup

sT<t⩽(s+δ)

∣∣∣∣∣∣
∫ sT

t
(ln X(t))dBt

∣∣∣∣∣∣m
]
⩽ Cm/2(δT )m/2 sup

t⩾0
E [| ln X(t)|m] .

Finally,

(A.93) ⩽ T−m/42
√

Cm/2(δT )m/2 sup
t⩾0
E [| ln X(t)|m] = 2

√
Cm/2 sup

t⩾0
E [| ln X(t)|m](δ)m/4.

(A.95)

Since δ and ε can be arbitrary small, then, (A.94) and (A.95) imply that

E

∣∣∣∣∣∣ 1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

∣∣∣∣∣∣m/2
 −−−−→T→∞

0

which is

1
√

T

∫ ŝT

0
(ln X(t))dBt −

1
√

T

∫ sT

0
(ln X(t))dBt

Lm/2

−−−−→
T→∞

0.

This completes the proof. □

The following two propositions show that 1
T Q(ŝ,T ) − 1

T Q(s,T )
Lm/2

−−−−→
T→∞

0.

Proposition A.18. Suppose that Assumption 2.1-2.3, and Assumption 2.4 hold and ŝ is

a consistent estimator of s, with 0 < ŝ < 1 a.s. Then,

(1).
1
T

∫ ŝT

0
φ⊤(t)φ(t)dt −

1
T

∫ sT

0
φ⊤(t)φ(t)dt

Lm

−−−−→
T→∞

0⃗,
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(2)
1
T

∫ ŝT

0
(φ(t),− ln X(t))⊤(ln X(t))dt −

1
T

∫ sT

0
(φ(t),− ln X(t))⊤(ln X(t))dt

Lm/2

−−−−→
T→∞

0⃗.

Proof. (1) The convergence will be proven in the following norms

lim
T→∞

T−mE

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
= 0. (A.96)

For some Kφ > 0, set||φ⊤(t)φ(t)|| ⩽ K2
φ for all t. Let ϵ > 0 and let 0 < δ <

min{s, 1 − s}. For large enough T ,

P
(
|ŝ − s| ⩾

δ

K2
φ

)
< ε. (A.97)

Let G(T ) = T−mE
[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m]
, further, let

G11(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{ŝ>s}I{|ŝ−s|⩽ δ

K2
φ
}

]
G12(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{ŝ>s}I{|ŝ−s|⩾ δ

K2
φ
}

]
G21(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{ŝ<s}I{|ŝ−s|⩽ δ

K2
φ
}

]
G22(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{ŝ<s}I{|ŝ−s|⩾ δ

K2
φ
}

]
.

(A.98)

Note that (A.96) is equivalent to lim
T→∞

(G11(T ) + G12(T ) + G21(T ) + G22(T )) = 0.

For the convergence of G11(T ),

G11(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{ŝ>s}I{|ŝ−s|⩽ δ

K2
φ
}

]
= T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

sT
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{0<(ŝ−s)T⩽ δT
K2
φ
}

]
.

By Cauchy Schwartz’s inequality,

G11(T ) = T−mE

[∣∣∣∣∣∣∣∣∫ ŝT

sT
φ⊤(t)φ(t)dt

∣∣∣∣∣∣∣∣m I{0<(ŝ−s)T⩽ δT
K2
φ
}

]
⩽ T−mE

[∣∣∣∣∫ ŝT

sT

∣∣∣∣∣∣φ⊤(t)φ(t)
∣∣∣∣∣∣ dt

∣∣∣∣m I{0<(ŝ−s)T⩽ δT
K2
φ
}

]
⩽ T−mE

[
(K2

φ(ŝ − s)T )mI{0<(ŝ−s)T⩽ δT
K2
φ
}

]
⩽ δm

which implies that limT→∞G11(T ) = 0. Further, as 0 < s < 1 and 0 < ŝ < 1 a.s.,

G12(T ) = T−mE

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ ŝT

0
φ⊤(t)φ(t)dt −

∫ sT

0
φ⊤(t)φ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m I{1>ŝ−s>0}I{|ŝ−s|⩾ δ

4pKφ
}

]
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⩽ T−mE

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ ŝT

sT
φ⊤(t)φ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m I{T>(ŝ−s)T>0}I{ŝ−s⩾ δ

K2
φ
}

]

⩽ T−mE

[
(K2

φ|ŝ − s|T )mI{T>(ŝ−s)T⩾ δT
K2
φ
}

]
= K2m

φ E

[
|ŝ − s|mI{T>(ŝ−s)T⩾ δT

K2
φ
}

]
−−−−→
T→∞

0.

Furthermore, since |ŝ − s| ⩽ 2 almost surely,

G12(T ) ⩽ K2m
φ 2mE

[
I{T>(ŝ−s)T⩾ δT

K2
φ
}

]
= K2m

φ 2mP
{

ŝ − s ⩾
δ

K2
φ

}
−−−−→
T→∞

0.

The using of similar techniques as for G11(T ) and G12(T ) implies that lim
T→∞

G21(T ) =

lim
T→∞

G22(T ) = 0. This proves that (A.96) hold.

(2) Similarly to the proof of (1), one can prove that

1
T

∫ ŝT

0
(φ(t),− ln X(t))⊤(ln X(t))dt−

1
T

∫ sT

0
(φ(t),− ln X(t))⊤(ln X(t))dt

Lm/2

−−−−→
T→∞

0⃗(p0+1)×1

under the fact that sup
t⩾0
E [| ln X(t)|m] < ∞, for m ⩾ 2. This completes the proof.

□

Proof of Proposition 2.4.1. By Assumption 2.3 the basis function φ(t) is Riemann in-

tegrable in the interval [0,T ], which implies that φ(t), t ∈ [0,T ] is continuous almost

everywhere. Since the function φ⊤(t)φ(t) is an almost everywhere continuous function,

by Proposition A.13 and Assumption 2.4,

E

[∥∥∥∥∥∥N−1∑
k=0

φ(tk)φ⊤(tk)(tk+1 − tk) −
∫ T

0
φ(t)φ⊤(t)dt

∥∥∥∥∥∥m]
⩽ Nm−1

N−1∑
k=0

(∫ tk+1

tk

∣∣∣∣∣∣∣∣(φi(tk)φ j(tk) − φi(t)φ j(t)
)∣∣∣∣∣∣∣∣ dt

)m

⩽ (C1(∆N))m(N∆N)m,

(A.99)

where C1(∆N) is defined in Proposition A.13. Further,

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

φ(tk) ln X(tk)∆N −

∫ T

0
φ(t) ln X(t)dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m

⩽ Nm−12m−1
N−1∑
k=0

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
φ(tk)(ln X(tk) − ln X(t))dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]

+Nm−12m−1
N−1∑
k=0

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
ln X(t)(φ(tk) − φ(t))dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
.
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Further, the upper bound of E
[∣∣∣∣∣∣∣∣∫ tk+1

tk
φ(tk)(ln X(tk) − ln X(t))dt

∣∣∣∣∣∣∣∣m]
and

E
[∣∣∣∣∣∣∣∣∫ tk+1

tk
ln X(t)(φ(tk) − φ(t))dt

∣∣∣∣∣∣∣∣m]
need to be found. Since m ⩾ 2, by Jensen Inequality,

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
φ(tk)(ln X(tk) − ln X(t))dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
⩽ (tk+1−tk)m−1Km

φ

∫ tk+1

tk
E

[
|ln X(tk) − ln X(t)|m

]
dt.

By Proposition 2.2.1,

| ln X(tk) − ln X(t)|m ⩽ 3m−1 (
|e−αtk − e−αt|m| ln X0|

m + |r(tk) − r(t)|m + |τ(tk) − τ(t)|m
)
.

Since the function ex is differentiable at x ∈ R, by the Taylor series expansion,

|e−αt − e−αtk | ⩽ e−αtkα|t − tk| +
e−αξ1

2!
(α)2(t − tk)2,

for some ξ1 between t and tk. This implies that

E
[(
|e−αtk − e−αt|| ln X0|

)m]
⩽

(
e−αtkα|t − tk| +

e−αξ1

2!
(α)2(t − tk)2

)m

E [| ln X0|
m]

⩽

(
α∆N +

α2

2!
∆2

N

)m

E [| ln X0|
m] = E [| ln X0|

m] 2m−1

(
(α∆N)m +

(
α2

2!
∆2

N

)m)
.

(A.100)

Further, for tk ⩽ t ⩽ tk+1,

|r(tk) − r(t)| =

∣∣∣∣∣∣∣
p∑

j=1

µ j

∫ tk

0
e−α(tk−s)φ j(s)ds −

p∑
j=1

µ j

∫ t

0
e−α(t−s)φ j(s)ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
p∑

j=1

µ j

∫ tk

0
(e−α(tk−s) − e−α(t−s))φ j(s)ds −

p∑
j=1

µ j

∫ t

tk
e−α(t−s)φ j(s)ds

∣∣∣∣∣∣∣
⩽

∣∣∣∣∣∣∣
p∑

j=1

µ j

∫ tk

0
(e−α(tk−s) − e−α(t−s))φ j(s)ds

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

p∑
j=1

µ j

∫ t

tk
e−α(t−s)φ j(s)ds

∣∣∣∣∣∣∣ .
Then,

|r(tk)−r(t)| ⩽
p∑

j=1

|µ j|

∫ tk

0
(e−α(tk−s)−e−α(t−s))

∣∣∣φ j(s)
∣∣∣ ds+

p∑
j=1

|µ j|

∫ t

tk
e−α(t−s)

∣∣∣φ j(s)
∣∣∣ ds, t ⩾ tk.

From the fact
p∑

j=1
|µ j| ⩽ Kµ < ∞ and |φ j(t)| ⩽ Kφ < ∞ for k = 1, 2, · · · , p, t ⩾ 0,

|r(tk) − r(t)| ⩽ KµKφ

[∣∣∣∣∣∣
∫ tk

0
(e−α(tk−s) − e−α(t−s))ds

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ t

tk
e−α(t−s)ds

∣∣∣∣∣∣
]

= KµKφ

[
1
α

∣∣∣1 − e−αtk − e−α(t−tk) + e−αt
∣∣∣ + 1

α

∣∣∣1 − e−α(t−tk)
∣∣∣] , t ⩾ tk
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=
KµKφ

α

[∣∣∣1 − e−α(t−tk) + e−αt − e−αtk
∣∣∣ + ∣∣∣1 − e−α(t−tk)

∣∣∣] , t ⩾ tk.

This gives

|r(tk) − r(t)| ⩽
KµKφ

α

[∣∣∣e−αt − e−αtk
∣∣∣ + 2

∣∣∣1 − e−α(t−tk)
∣∣∣] , t ⩾ tk.

By Taylor series expansion, for t ⩾ tk,

e−αt − e−αtk = e−αtk(−α)(t − tk) +
e−αξ3

2!
(α)2(t − tk)2,

e−α(t−tk) − 1 = e−αtk(−α)(t − tk) +
e−αξ2

2!
(α)2(t − tk)2,

for some ξ2, ξ3 in the interval [tk, t]. By using e−αξ2 ⩽ e−αtk and e−αξ3 ⩽ e−αtk , then

|r(tk) − r(t)|m ⩽
(

KµKφ

α

)m (
3αe−αtk |t − tk| +

3
2e−αtkα2(t − tk)2

)m

⩽

(
KµKφ

α

)m (
3α∆N +

3
2α

2∆2
N

)m
=

(
KµKφ

α

)m

2m−1
(
(3α∆N)m +

(
3
2α

2∆2
N

)m)
,

(A.101)

since t − tk < tk+1 − tk and e−2αtk < 1. Then, for the last term, by Cauchy-Schwartz

inequality, E[|τ(tk) − τ(t)|] ⩽ {E[|τ(tk) − τ(t)|2]}1/2 and since t > tk,

E[|τ(tk) − τ(t)|m] = E
[∣∣∣∣∣∣σe−αtk

∫ tk

0
eαsdBs − σe−αt

∫ t

0
eαsdBs

∣∣∣∣∣∣m
]

= σmE

[∣∣∣∣∣∣(e−αtk − e−αt)
∫ tk

0
eαsdBs − e−αt

∫ t

tk
eαsdBs

∣∣∣∣∣∣m
]

⩽ σm2m−1
((

e−αtk − e−αt)m
E

[∣∣∣∣∣∣
∫ tk

0
eαsdBs

∣∣∣∣∣∣m
]
+ e−αmtE

[∣∣∣∣∣∣
∫ t

tk
eαsdBs

∣∣∣∣∣∣m
])
,

for t ⩾ tk. Further, by Burkholder-Davis-Gundy’s inequality, there exists some positive

constant Cm, such that

E

[∣∣∣∣∣∣
∫ tk

0
eαsdBs

∣∣∣∣∣∣m
]
⩽ CmE

(∫ tk

0
e2αsds

)m/2 = Cm

(
1

2α
(e2αtk − 1)

)m/2

,

and

E

[∣∣∣∣∣∣
∫ t

tk
eαsdBs

∣∣∣∣∣∣m
]
⩽ CmE

(∫ t

tk
e2αsds

)m/2 = Cm

(
1

2α
(e2αt − e2αtk)

)m/2

.

Then, (e−αtk − e−αt)mE
[∣∣∣∣∫ tk

0
eαsdBs

∣∣∣∣m]
⩽ Cm

(
1

2α (e−αtk − e−αt)2(e2αtk − 1)
)m/2

. By Taylor
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series expansion again,

(e−αtk − e−αt)2 =

(
e−αtk(−α)(t − tk) +

e−αξ3

2!
(α)2(t − tk)2

)2

⩽ 2
(
e−2αtkα2(t − tk)2 + e−2αξ3(α)4(t − tk)4

)
⩽ 2

(
e−2αtkα2(t − tk)2 + e−2αtk(α)4(t − tk)4

)
,

which implies that

(e−αtk − e−αt)2 1
2α

(e2αtk − 1) ⩽
1

2α
2
(
e−2αtkα2(t − tk)2 + e−2αtk(α)4(t − tk)4

)
+

1
2α

(e2αtk)2
(
e−2αtkα2(t − tk)2 + e−2αtk(α)4(t − tk)4

)
=

1
α

(
e−2αtkα2(t − tk)2 + e−2αtk(α)4(t − tk)4 + α2(t − tk)2 + (α)4(t − tk)4

)
=

1
α

(
(e−2αtk + 1)α2(t − tk)2 + (e−2αtk + 1)(α)4(t − tk)4

)
.

⩽
1
α

(
2α2(t − tk)2 + 2(α)4(t − tk)4

)
.

Thus,

(e−αtk − e−αt)mE

[(∫ tk

0
eαsdBs

)m]
⩽ Cm

(
1
α

(
2α2(t − tk)2 + 2(α)4(t − tk)4

))m/2

⩽ Cm

(
1
α

(
2α2(∆N)2 + 2(α)4(∆N)4

))m/2

.

(A.102)

Further,

e−αmtE

[∣∣∣∣∣∣
∫ t

tk
eαsdBs

∣∣∣∣∣∣m
]
⩽ Cme−αmtE

(∫ t

tk
e2αsds

)m/2
= Cm

(
1

2α
e−2αt(e2αt − e2αtk)

)m/2

= Cm

(
1

2α
(1 − e−2α(t−tk))

)m/2

,

and

1
2α

(
1 − e−2α(t−tk)

)
⩽

1
2α

(
e−2αtk(2α)(t − tk) +

e−2αtk

2!
(2α)2(t − tk)2

)

⩽
1
α

(
e−2αtk(α)(t − tk) +

e−2αtk

2!
2(α)2(t − tk)2

)
⩽ α∆N + (α)2(∆N)2, t ⩾ tk.
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Then,

Cm

(
1

2α
(1 − e−2α(t−tk))

)m/2

⩽ Cm

(
α∆N + (α)2(∆N)2

)m/2
. (A.103)

(A.102) and (A.103) imply that

E[|τ(tk) − τ(t)|m] ⩽ σm2m−1Cm

(1
α

(
2α2(∆N)2 + 2(α)4(∆N)4

))m/2

+
(
α∆N + (α)2(∆N)2

)m/2
 .

(A.104)

Since t − tk < tk+1 − tk and e−2αtk < 1, by (A.100), (A.101) and (A.104),

E [| ln X(tk) − ln X(t)|m] ⩽ 3m−1

(
E [| ln X0|

m] 2m−1

(
(α∆N)m +

(
α2

2!
∆2

N

)m)
+

(
KµKφ

α

)m

2m−1
(
(3α∆N)m +

(
3
2α

2∆2
N

)m)
+σm2m−1Cm

(1
α

(
2α2(∆N)2 + 2(α)4(∆N)4

))m/2

+
(
α∆N + (α)2(∆N)2

)m/2
))
.

(A.105)

Then,

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
φ(tk)(ln X(tk) − ln X(t))dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
⩽ (tk+1−tk)m−1Km

φ

∫ tk+1

tk
E

[
|ln X(tk) − ln X(t)|m

]
dt

⩽ (tk+1−tk)m−1Km
φ 3m−1

{(
E [| ln X0|

m] (α)m +
(
KµKφ

)m
3m

)
(∆N)m + σm2m−1Cm ((2α)m(∆N)m

+(α)m/2(∆N)m/2
)
+ o ((∆N)m)

}
(tk+1 − tk)

⩽ (∆N)m Km
φ 3m−1

{(
E [| ln X0|

m] (α)m +
(
KµKφ

)m
3m

)
(∆N)m + σm2m−1Cm ((2α)m(∆N)m

+(α)m/2(∆N)m/2
)
+ o ((∆N)m)

}
= (∆N)m Km

φ 3m−1 ( f (m,∆N) + o ((∆N)m)) ,

where

f (m,∆N) =
(
E [| ln X0|

m] (α)m +
(
KµKφ

)m
3m

)
(∆N)m

+σm2m−1Cm

(
(2α)m(∆N)m + (α)m/2(∆N)m/2

)
.

By Jensen inequality, Proposition 2.2.2 and Proposition A.13,

E
[∣∣∣∣∣∣∣∣∫ tk+1

tk
ln X(t)(φi(tk) − φi(t))dt

∣∣∣∣∣∣∣∣m]
⩽ (tk+1 − tk)m−1 sup

t⩾0
E[| ln X(t)|m]×∫ tk+1

tk
||φ(tk) − φ(t)||m dt
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⩽ sup
t⩾0
E[| ln X(t)|m] (C2(∆N))m (∆N)m.

So,

E

[∣∣∣∣∣∣
∣∣∣∣∣∣N−1∑
k=0

φi(tk) ln X(tk)∆N −
∫ T

0
φi(t) ln X(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m
]

⩽ (N∆N)m2m−1

(
Km
φ 3m−1 ( f (m,∆N) + o ((∆N)m)) + sup

t⩾0
E[| ln X(t)|m] (C2(∆N))m

)
.

(A.106)

For the term ln X(t), by Jensen’s inequality and triangle inequality,

E


∣∣∣∣∣∣∣
N−1∑
k=0

(ln X(tk))2∆N −

∫ T

0
(ln X(t))2dt

∣∣∣∣∣∣∣
m/2

⩽ Nm/2−1
N−1∑
k=0

E

(∫ tk+1

tk

∣∣∣∣(ln X(tk))2 − (ln X(t))2
)∣∣∣∣ dt

)m/2
⩽ Nm/2−12m/2−1

N−1∑
k=0

E

(∫ tk+1

tk
|ln X(tk)| |ln X(tk) − ln X(t)| dt

)m/2
+Nm−12m−1

N−1∑
k=0

E

(∫ tk+1

tk
|ln X(t)| |ln X(tk) − ln X(t)| dt

)m/2
⩽ Nm/2−12m/2−1

N−1∑
k=0

(tk+1 − tk)m−1
∫ tk+1

tk
E

[
(|ln X(tk)| |ln X(tk) − ln X(t)|)m/2

]
dt

+Nm/2−12m/2−1
N−1∑
k=0

(tk+1 − tk)m−1
∫ tk+1

tk
E

[
(|ln X(t)| |ln X(tk) − ln X(t)|)m/2

]
dt.

Then, by Cauchy-Schwartz inequality,

E
[
(|ln X(tk)| |ln X(tk) − ln X(t)|)m/2

]
⩽

{
E

[
|ln X(tk)|m

]
E

[
|ln X(tk) − ln X(t)|m

]}1/2 ,

E
[
(|ln X(t)| |ln X(tk) − ln X(t)|)m/2

]
⩽

{
E

[
|ln X(t)|m

]
E

[
|ln X(tk) − ln X(t)|m

]}1/2 .
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By (A.105) and (A.55),

E

∣∣∣∣∣∣N−1∑
k=0

(ln X(tk))2∆N −

∫ T

0
(ln X(t))2 dt

∣∣∣∣∣∣m/2


⩽ Nm/2−12m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

N−1∑
k=0

(tk+1 − tk)m/2−1
∫ k+1

tk

√
3m−1( f (m,∆N) + o ((∆N)m))dt

⩽ Nm/2−12m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

√
3m−1( f (m,∆N) + o ((∆N)m))N(∆N)m/2

⩽ (N∆N)m/22m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

√
3m−1( f (m,∆N) + o ((∆N)m)).

(A.107)

(A.99), (A.106) and (A.107) imply that∣∣∣∣∣∣
∣∣∣∣∣∣N−1∑
k=0
Ψ(tk)Ψ⊤(tk)(tk+1 − tk) −

∫ T

0
Ψ(t)Ψ⊤(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣m/2
1

⩽ max
{
(C1(∆N))m/2(N∆N)m/2,

(N∆N)m/2

√
2m−1

(
Km
φ 3m−1 ( f (m,∆N) + o ((∆N)m)) + sup

t⩾0
E[| ln X(t)|m] (C2(∆N))m

)
,

(N∆N)m/22m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

√
3m−1( f (m,∆N) + o ((∆N)m))

}
.

(A.108)

(A.108) still holds if 1-norm is replaced by ∞-norm. Further, since for a matrix A,

||A||2 ⩽ ||A||1||A||∞, by Assumption 2.4,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

Ψ(tk)Ψ⊤(tk)∆N −

∫ T

0
Ψ(t)Ψ⊤(t)dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

⩽ K(m,∆N)O(T m/2),

where

K(m,∆N) =max
{
(C1(∆N))m/2,√

2m−1

(
Km
φ 3m−1 ( f (m,∆N) + o ((∆N)m)) + sup

t⩾0
E[| ln X(t)|m] (C2(∆N))m

)
,

2m/2−1
√

sup
t⩾0
E[| ln X(t)|m]

√
3m−1( f (m,∆N) + o ((∆N)m))

 .
Further, ||A||F ⩽

√
p + 1||A||2, where p+ 1 is the rank of matrix A. This proves assertion

(i).
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For the assertion (ii), by Minkowsky’s inequality,

E


∣∣∣∣∣∣∣
N−1∑
k=0

ln X(tk)(Btk+1 − Btk) −
∫ T

0
ln X(t)dBt

∣∣∣∣∣∣∣
m = E


∣∣∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk
(ln X(tk) − ln X(s))dBs

∣∣∣∣∣∣∣
m

⩽
N−1∑
k=0

E

[∣∣∣∣∣∣
∫ tk+1

tk
(ln X(tk) − ln X(s))dBs

∣∣∣∣∣∣m
]
,

and by Burkholder-Davis-Gundy and Jensen inequalities, for some positive constant Cm,
N−1∑
k=0

E

[∣∣∣∣∣∣
∫ tk+1

tk
(ln X(tk) − ln X(s))dBs

∣∣∣∣∣∣m
]
⩽ Cm

N−1∑
k=0

E

(∫ tk+1

tk
(ln X(tk) − ln X(s))2ds

)m/2
⩽ Cm

N−1∑
k=0

(tk+1 − tk)m/2−1
∫ tk+1

tk
E [| ln X(tk) − ln X(s)|m] ds.

Then, together with (A.105),

E [| ln X(tk) − ln X(t)|m] ⩽ 3m−1

(
E [| ln X0|

m] 2m−1

(
(α∆N)m +

(
α2

2!
∆2

N

)m)
+

(
KµKφ

α

)m

2m−1
(
(3α∆N)m +

(
3
2α

2∆2
N

)m)
+ σm2m−1Cm

(1
α

(
2α2(∆N)2 + 2(α)4(∆N)4

))m/2

+
(
α∆N + (α)2(∆N)2

)m/2
))
.

Then,
N−1∑
k=0
E

[∣∣∣∣∣∣
∫ tk+1

tk
(ln X(tk) − ln X(s))dBs

∣∣∣∣∣∣m
]
⩽ Cm (∆N)m/2−1 3m−1

(
E [| ln X0|

m] 2m−1 ((α∆N)m

+

(
α2

2!
∆2

N

)m)
+

(
KµKφ

α

)m

2m−1
(
(3α∆N)m +

(
3
2α

2∆2
N

)m)
+ σm2m−1Cm

((
1
α

(
2α2(∆N)2

+2(α)4(∆N)4
))m/2

+
(
α∆N + (α)2(∆N)2

)m/2
))

T

= Cm (∆N)m/2−1 3m−1
(
(α∆N)m/2 + o((∆N)m/2)

)
T.

(A.109)

Further,

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

φ(tk)(Btk+1 − Btk) −
∫ T

0
φ(t)dBt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m = E


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk
(φ(tk) − φ(s))dBs

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
m

⩽
N−1∑
k=0

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
(φ(tk) − φ(s))dBs

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
,
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and by Burkholder-Davis-Gundy inequality, for some positive constant Cm,
N−1∑
k=0

E

[∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
(φ(tk) − φ(s))dBs

∣∣∣∣∣∣
∣∣∣∣∣∣m
]
⩽

N−1∑
k=0

E

[
sup

tk⩽u⩽tk+1

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ u

tk
(φ j(tk) − φ j(s))dBs

∣∣∣∣∣∣
∣∣∣∣∣∣m
]

⩽ Cm

N−1∑
k=0

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
(φ(tk) − b(s))⊤(φ(tk) − φ(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣m/2 .

By Assumption 2.3, the base function φ(t) is Riemann integrable on the interval [0,T ],

it is continuous almost everywhere. By Proposition A.13, there exists a nonnegative and

non decreasing function C3(s − tk), with inf
{s−tk>0}

C3(s − tk) = 0, such that ||φ(tk) − φ(s)|| ⩽

C3(s − tk).

Cm

N−1∑
k=0

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ tk+1

tk
(φ(tk) − φ(s))⊤(φ(tk) − φ(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣m/2 ⩽ Cm (C3(∆N))m (∆N)m/2 T.

(A.110)

(A.109) and (A.110) complete the proof of assertion (ii). □

Proof of Proposition 2.4.3. Since SDE (2.2.1) admits a strong and unique solution that

uniformly bounded in Lm. i.e. ∃ K > 0, such that sup
t⩾0
E[(ln X(t))2] ⩽ K,∫ T

0
E[(ln X(t))2]dt ⩽ KT. (A.111)

Then, by combining Markov’s inequality,

P
(

1
√

T

∣∣∣∣∣∣
∫ T

0
ln X(t)dBt

∣∣∣∣∣∣ > K∗
)
⩽
E

(∣∣∣∣∫ T

0
ln X(t)dBt

∣∣∣∣2)
T (K∗)2 ,

by Itô’s isometry,

E
(∣∣∣∣∫ T

0
ln X(t)dBt

∣∣∣∣2)
T (K∗)2 =

∫ T

0
E[(ln X(t))2]dt

T (K∗)2 ,

and by inequality of (A.111),∫ T

0
E[(ln X(t))2]dt

T (K∗)2 ⩽
KT

T (K∗)2 =
K

(K∗)2 .
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P
(

1
√

T

∣∣∣∣∣∣
∫ T

0
ln X(t)dBt

∣∣∣∣∣∣ > K∗
)
⩽
E

(∣∣∣∣∫ T

0
ln X(t)dBt

∣∣∣∣2)
T (K∗)2 =

K
(K∗)2 .

Further, by combining Markov’s inequality, Itô’s isometry and Assumption 2.3

P
(

1
√

T

∥∥∥∥∥∥
∫ T

0
φ(t)dBt

∥∥∥∥∥∥ > K∗
)
⩽
E

(∥∥∥∥∫ T

0
φ(t)dBt

∥∥∥∥2)
T (K∗)2 =

∫ T

0
∥φ(t)∥2dt

T (K∗)2 ⩽
KφT

T (K∗)2 =
Kφ

(K∗)2 .

Set K∗ = loga∗T . For some 0 < a∗ < a/2, that

P
(

1
√

T

∥∥∥∥∥∥
∫ T

0
φ(t)dBt

∥∥∥∥∥∥ > K∗
)
−−−−→
T→∞

0,

and

P
(

1
√

T

∣∣∣∣∣∣
∫ T

0
X(t)dBt

∣∣∣∣∣∣ > K∗
)
−−−−→
T→∞

0,

which means

1
√

T
||W(0,T )(p)|| = Op(loga∗T ) and

1
T
||W(0,T )(p)||2 = Op(log2a∗T ). (A.112)

This completes the proof. □

A.4 Asymptotic distribution risk and relative efficiency

Let Λ = Σ̃−1
c0 (p0) − G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0), the following propositions, which

establish the comparison of ADR between different estimators.

Proposition A.19. If Assumption 2.1-2.3, Assumption 2.4 along with the set of local

alternatives in (2.4.16) hold, then, ADR
(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
= σ2trace(ΩΣ̃−1

c0 (p0)); and

ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
= ADR

(
θ̂T (ŝ, p̂), θ,Ω

)
−trace

(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
+ r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0.

The proof of this proposition follows from Proposition 2.3.20 along with some al-

gebraic computations.
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Proposition A.20. If Assumption 2.1-2.3, Assumption 2.4 along with the set of local

alternatives in (2.4.16) hold, then,

ADR
(
θ̂s(ŝ, ĉ, p̂), θ,Ω

)
= σ2trace(ΩΛ) + r⊤0 G∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0

−2E
[
γ
(
χ2

q+2 (∆)
)]

r⊤0 G∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 + E
[
γ2

(
χ2

q+4 (∆)
)]

r̃⊤0 G̃∗⊤(c0, p0)×

ΩG̃∗(c0, p0)r̃0 + E
[
γ2

(
χ2

q+2 (∆)
)]

trace
(
Ωσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
.

Proof. By (3.4.3),

Proposition 2.3.20, Proposition A.9

ADR
(
θ̂s(ŝ, ĉ, p̂), θ,Ω

)
= E

[
trace

(
ϱ̃⊤Ωϱ̃

)]
+ 2E

[
γ
(
||ς̃||2Γ

)
trace

(
ϱ̃⊤Ως̃

)]
+ E

[
γ2

(
||ς̃||2Γ

)
trace

(
ς̃⊤Ως̃

)]
.

By Theorem 3.1 in Nkurunziza [2012],

ADR
(
θ̂s(ŝ, ĉ, p̂), θ̃,Ω

)
= trace

(
Ω(σ2Σ̃−1

c0 (p0) − σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))

)
+ trace

(
(G̃∗(c0, p0)r̃0)⊤Ω(G̃∗(c0, p0)r̃0)

)
−2E

[
γ

(
χ2

q+2

(
trace

(
(G̃∗(c0, p0)r̃0)⊤

1
σ2 M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1×

M̃(c0, p0)(G̃∗(c0, p0)r̃0)
)))]

trace
(
(G̃∗(c0, p0)r̃0)⊤Ω(G̃∗(c0, p0)r̃0)

)
+E

[
γ2

(
χ2

q+2

(
trace

(
(G̃∗(c0, p0)r̃0)⊤

1
σ2 M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1×

M̃(c0, p0)(G̃∗(c0, p0)r̃0)
)))]

trace
(
Ωσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)

+E

[
γ2

(
χ2

q+4

(
trace

(
(G̃∗(c0, p0)r̃0)⊤

1
σ2 M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1×

M̃(c0, p0)(G̃∗(c0, p0)r̃0)
)))]

trace
(
(G̃∗(c0, p0)r̃0)⊤Ω(G̃∗(c0, p0)r̃0)

)
.

It is obvious that trace
(
Ω(σ2Σ̃−1

c0 (p0) − σ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0))

)
= σ2trace(ΩΛ).

Since G̃∗(c0, p0) = Σ̃−1
c0 (p0)M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1, and r̃0 is a q col-
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umn vector, trace
(
(G̃∗(c0, p0)r̃0)⊤Ω(G̃∗(c0, p0)r̃0)

)
= r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0. Fur-

ther,

trace
(
(G̃∗(c0, p0)r̃0)⊤

1
σ2 M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1M̃(c0, p0)(G̃∗(c0, p0)r̃0)
)

=
1
σ2

(
r⊤0 (Σ̃−1

c0 (p0)M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1
c0 (p0)M̃⊤(c0, p0))−1)⊤M̃⊤(M̃Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1

× M̃(c0, p0) Σ̃−1
c0 (p0)M̃⊤(c0, p0)(M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1r̃0)
)

=
1
σ2

(
r̃⊤0 (M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0))−1r̃0

)
= ∆.

Then,

ADR
(
θ̂s(ŝ, ĉ, p̂), θ,Ω

)
= σ2trace(ΩΛ) + r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0

−2E
[
γ
(
χ2

q+2 (∆)
)]

r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0

+E
[
γ2

(
χ2

q+2 (∆)
)]

trace
(
Ωσ2G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)

+E
[
γ2

(
χ2

q+4 (∆)
)]

r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0.

This completes the proof. □

If let the functions γ(x) =
(
1 − q−2

x

)
, x > 0, and γ(x) =

[
1 − (q − 2)/x

]
I{x⩾q−2}, x > 0,

the following propositions give the ADR of SEs.

Proposition A.21. If Assumption 2.1-2.3, Assumption 2.4 along with the local alterna-

tive restriction (2.4.16) hold, then,

ADR
(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
= ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
+(q + 2)(q − 2)r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E

[
χ−4

q+4 (∆)
]

−(q − 2)σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
) (

2E
[
χ−2

q+2 (∆)
]
− (q − 2)E

[
χ−4

q+2 (∆)
])
.

Proof. Let γ(x) = 1 − q−2
x , x > 0. The proof follows from Proposition A.20. □

Proposition A.22. If Assumption 2.1-2.3, Assumption 2.4 along with the local alterna-

tive restriction (2.4.16) hold, then,

ADR
(
θ̂sh+

T (ŝ, ĉ, p̂), θ,Ω
)
= ADR

(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
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+2r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E
[(

1 − (q − 2)χ−2
q+2(∆)

)
I{χ2

q+2(∆)<q−2}

]
−σ2trace

(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[(
1 − (q − 2)χ−2

q+2(∆)
)2
I{χ2

q+2(∆)<q−2}

]
−r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E

[(
1 − (q − 2)χ−2

q+4(∆)
)2
I{χ2

q+4(∆)<q−2}

]
.

Proof. Let γ(x) = (1 − q−2
x )+, x > 0. The proof follows from Proposition A.20 along

with some algebraic computations. □

Proof of Proposition 2.5.1. Let f0 = ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
− ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
.

By Proposition A.19,

f0 = −trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
+ r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0.

Note that the matrix G̃∗⊤(c0, p0)ΩG̃∗(c0, p0) is a (c0+1)(p0+1)×(c0+1)(p0+1) symmetric

matrix, and

G̃∗⊤(c0, p0)ΓG̃∗(c0, p0) =
(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

M̃(c0, p0)Σ̃−1
c0 (p0)

1
σ2 M̃⊤(c0, p0)

(
M̃(c0, p0)Σ̃−1M̃⊤(c0, p0)

)−1
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)×

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

c0
(p0)

=
1
σ2

(
M̃(c0, p0)Σ̃−1

c0 (p0)M̃⊤(c0, p0)
)−1

,

which is positive definite for σ > 0. By using Theorem 2.4.7 in Mathai and Provost

[1992], and the fact that r̃⊤0 G̃∗⊤(c0, p0)ΓG̃∗(c0, p0)r̃0 = ∆,

λmin∆ ⩽ r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 ⩽ λmax∆, (A.113)

which implies that

λmin∆ − trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
⩽ f0

⩽ λmax∆ − trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
.

Then, if 0 ⩽ λmin∆ − trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))

, i.e.
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∆ ⩾ trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
/λmin, f0 ⩾ 0 this means

ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
⩾ ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
.

On the other hand, if λmax∆ − trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
⩽ 0, i.e.

∆ ⩽ trace
(
Ωσ2

(
G̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
))
/λmax, one has f0 ⩽ 0 which is equivalent

to ADR
(
θ̃T (ŝ, ĉ, p̂), θ,Ω

)
⩽ ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
. This completes the proof. □

Proof of Proposition 2.5.2. Let f1 = ADR
(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
− ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
.

By the identity [Saleh, 2006, page 32], ∆E
[
χ−4

q+4

(
∆̃
)]
= E

[
χ−2

q+2 (∆)
]
− (q−2)E

[
χ−4

q+2 (∆)
]
.

Then, together with Proposition A.21

f1 =
(
(q + 2)(q − 2)r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0

−2(q − 2)σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
∆
)
×

E
[
χ−4

q+4 (∆)
]
− (q − 2)2σ2trace

(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[
χ−4

q+2 (∆)
]
.

Note that ∆ = 0 if and only if r̃0 = 0. First, if ∆ = 0,

f1 = −(q − 2)2σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[
χ−4

q+2 (∆)
]
.

From the positive definite property of the matrix ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1
c0 (p0),

trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
⩾ 0, (A.114)

which implies that for ∆ = 0, f1 ⩽ 0 which is equivalent to

ADR
(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
− ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
⩽ 0.

Further, for ∆ > 0, ADR
(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
− ADR

(
θ̂T (ŝ, ĉ, p̂), θ,Ω

)
⩽ 0, if (q + 2)(q −

2)r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 − 2(q − 2)σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
∆ < 0,

which is

(q+2)(q−2)r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 ⩽ 2(q−2)σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
∆.
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Since q > 2, this is equivalent to

(q + 2)r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 ⩽ 2σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
∆̃.

From (A.113), f1 ⩽ 0 whenever (q+2)λmax∆ ⩽ 2σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
∆,

which is 2σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
/λmax ⩾ (q + 2). Further, let f2 =

ADR
(
θ̂sh+

T (ŝ, ĉ, p̂), θ,Ω
)
− ADR

(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
. From Proposition A.22,

f2 = 2r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E
[(

1 − (q − 2)χ−2
q+2(∆)

)
I{χ2

q+2(∆)<q−2}

]
−σ2trace

(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[(
1 − (q − 2)χ−2

q+2(∆)
)2
I{χ2

q+2(∆)<q−2}

]
−r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E

[(
1 − (q − 2)χ−2

q+4(∆)
)2
I{χ2

q+4(∆)<q−2}

]
,

which implies that

f2 = 2r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E
[(

1 − (q − 2)χ−2
q+2(∆)

)
I{χ2

q+2(∆)<q−2}

]
−σ2trace

(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[(
1 − (q − 2)χ−2

q+2(∆)
)2
I{χ2

q+2(∆)<q−2}

]
−r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E

[(
1 − (q − 2)χ−2

q+4(∆)
)2
I{χ2

q+4(∆)<q−2}

]
.

Note that
(
1 − (q − 2)χ−2

q+2(∆)
)
I{χ2

q+2(∆)<q−2} < 0, thus,

E
[(

1 − (q − 2)χ−2
q+2(∆)

)
I{χ2

q+2(∆)<q−2}

]
< 0.

As a result of this fact,

2r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E
[(

1 − (q − 2)χ−2
q+2(∆)

)
I{χ2

q+2(∆)<q−2}

]
< 0.

Moreover, from(
1 − (q − 2)χ−2

q+2(∆)
)2
I{χ2

q+2(∆)<q−2} ⩾ 0 and
(
1 − (q − 2)χ−2

q+4(∆)
)2
I{χ2

q+4(∆)<q−2} ⩾ 0,

together with (A.114) and the fact r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0 ⩾ 0,

−σ2trace
(
ΩG̃∗(c0, p0)M̃(c0, p0)Σ̃−1

c0 (p0)
)
E

[(
1 − (q − 2)χ−2

q+2(∆)
)2
I{χ2

q+2(∆)<q−2}

]
⩽ 0

and −r̃⊤0 G̃∗⊤(c0, p0)ΩG̃∗(c0, p0)r̃0E
[
(1 − (q − 2)χ−2

q+4 (∆))I{χ2
q+4(∆)<q−2}

]
⩽ 0. This gives
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that ADR
(
θ̂sh+

T (ŝ, ĉ, p̂), θ,Ω
)
− ADR

(
θ̂sh

T (ŝ, ĉ, p̂), θ,Ω
)
⩽ 0, for all ∆ ⩾ 0. This com-

pletes the proof. □

B Proofs related to GCIR process

B.1 On existence of the solution of the GCIR process

Proposition B.1. Proposition 2.13 (Yamada & Watanabe (1971)) Karatzas and Shreve

[1998]. Let us suppose that the coefficients of the one-dimensional equation (d=r=1),

dX(t) = φ(t, X(t))dt + σ(t, X(t))dWt (B.1)

satisfy the condition: |φ(t, x)−φ(t, y)| ⩽ K|x−y|, |σ(t, x)−σ(t, y)| ⩽ h(|x−y|), for every

0 ⩽ t < ∞ and x ∈ R, y ∈ R, where K is a positive constant and h : [0,∞)→ [0,∞) is a

strictly increasing function with h(0) = 0 and
∫

(0,ϵ)
h−2(u)du = ∞; for any ϵ > 0. Then

strong and uniqueness hold for the solution of the stochastic differential equation (B.1).

Proposition B.2. Proposition 2.18 (Karatzas and Shreve [1998], pp.293) Suppose that

on a certain probability space (Ω,F ,P) equipped with a filtration {Ft}which satisfies the

usual conditions, a standard, one-dimensional Brownian motion {Bt,Ft, 0 ⩽ t < ∞} and

two adapted processes X( j)(t), j = 1, 2, such that dX( j)(t) = X( j)
0 +

∫ t

0
b j(s, X( j)(s))ds +∫ t

0
σ(s, X( j)(s))dBs; 0 ⩽ t < ∞ holds a.s. for j = 1, 2. Suppose that the following

statements hold.

1. The coefficients σ(t, x), b j(t, x) are continuous, real-valued functions on [0,+∞)×

R,

2. The dispersion matrix σ(t, x) satisfies |σ(t, x) − σ(t, y)| ⩽ h(|x − y|) where

h : [0,+∞) → [0,+∞) is strictly increasing with h(0) = 0 and
∫ ε

0
h−2(u)du =

∞; ∀ ε > 0,
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3. X(1)(0) ⩽ X(2)(0) a.s.

4. b1(t, x) ⩽ b2(t, x), ∀ 0 ⩽ t < ∞, x ∈ R,

5. Both b1(t, x) and b2(t, x) satisfy the Lipschitz condition in x.

Then, P
(
X(1)(t) ⩽ X(2)(t), ∀ 0 ⩽ t < ∞

)
= 1.

Proof of Proposition 3.2.1. By the Proposition 2.13 (Yamada-Watanabe Theorem 1971)

Karatzas and Shreve [1998], all requirements are checked: (∀ x, y ⩾ 0).

(1) First, by (3.2.1),

|S (t, x) − S (t, y)| = |(L(t) − αx) − (L(t) − αy)| = α|x − y|, which implies that the

drift term S (t, x) satisfies Lipschitz condition.

(2) Second, the function σ
√

x vanishes at 0 and satisfies the Hölder condition, which is∣∣∣σ√x − σ
√

y
∣∣∣ ⩽ σ√

|x − y|. Indeed, choose H(u) = σu1/2 and note that

√
|x − y| − |

√
x −
√

y| =


√
|(
√

x −
√

y)| 2
√

y
√

(
√

x+
√

y)+
√
|
√

x−
√

y|
⩾ 0, if x ⩾ y ⩾ 0;√

|(
√

x −
√

y)| 2
√

x
√

(
√

x+
√

y)+
√
|
√

x−
√

y|
⩾ 0, if 0 ⩽ x ⩽ y.

Then,

|
√

x −
√

y|2 ⩽ |x − y|. (B.2)

This implies that |σ(t, x) − σ(t, y)| = σ|
√

x −
√

y| ⩽ σ
√
|x − y| = h(|x − y|). It

is clear that
√
|x − y| − |

√
x −
√

y| = 0, if x = 0 or y = 0 or x = y, otherwise,√
|x − y| − |

√
x −
√

y| > 0.

By the Proposition 2.13 (Yamada-Watanabe Theorem 1971) Karatzas and Shreve [1998],

the SDE (3.2.1) admits a strong and unique solution in [0,∞). Further, by Proposi-

tion B.2 and Assumption 3.1, that 0 ⩽ X(t) ⩽ X(t) a.s. This completes the proof. □
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Proof of Corollary 3.2.1. By (3.2.1), S (θ, t, X(t)) = L(t) − αX(t), and L(t) =
p∑

i=1
µiφi(t).

Then, together with Assumption 2.1-2.2, Assumption 3.1-3.2,(
S (θ, t, X(t))
σ
√

X(t)

)2

< L2(t)
/
(σ2X(t)) + X(t)

/
σ2,

where, from Assumption 3.2 and (B.32), sup
t⩾0
E

[
1
/
X(t)

]
< ∞. Further, (3.2.4) im-

plies that sup
t⩾0
E[X(t)] < ∞, which gives E

[∫ T

0

(
S 2(θ, t, X(t))

/
(σ2X(t))

)
dt

]
< ∞. Then

P

(∫ T

0

(
S (θ, t, X(t))

/
(σ

√
X(t))

)2
dt < ∞

)
= 1, for all 0 ⩽ T < ∞. This completes the

proof. □

Proof of Proposition 3.2.2. (1).Let G(t, X(t)) = eαtX(t), by Itô’s Lemma,

dG(t, X(t)) =
∂G
∂t

(t, X(t))dt +
∂G
∂X(t)

(t, X(t))dX(t) +
1
2
∂2G
∂X2(t)

(t, X(t))d⟨X(t), X(t)⟩,

where ⟨·, ·⟩ denote the variation. Since dX(t) = (L(t) − αX(t))dt + σ
√

X(t)dBt, then

dG(t, X(t)) = αeαtX(t)dt + eαtdX(t) = αeαtX(t)dt + eαt
(
(L(t) − αX(t))dt + σ

√
X(t)dBt

)
,

which implies that d(eαtX(t)) = eαtL(t)dt +σeαt √X(t)dBt. Integrating both sides from 0

to t implies that

eαtX(t) = X0 +

∫ t

0
eαsL(s)ds +

∫ t

0
σeαs

√
X(s)dBs.

Then

X(t) = e−αtX0 + e−αt
∫ t

0
eαsL(s)ds + σe−αt

∫ t

0
eαs

√
X(s)dBs.

This completes the proof of Part (1).

(2). Since Itô integrals are local martingales (see Theorem 13.2 in Klebaner [2005]),∫ t

0

√
X(s)dBs is a local martingale. For n ∈ N+, define a stopping time Tn(ω) by Tn(ω) :=

inf{t ⩾ 0, X(t, ω) ⩾ n}. let Tn = Tn(ω). Since {X(t), t ⩾ 0} has almost surely continuous

sample paths, it holds that X(t∧ Tn) ⩽ n. So that
∫ t∧Tn

0

√
X(s)dBs is a martingale in t for
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any fixed n, then from (3.2.1),

X(t ∧ Tn) = X0 +

∫ t∧Tn

0
(L(s) − αX(s)) ds + σ

∫ t∧Tn

0

√
X(s)dBs. (B.3)

Taking expectation both sides,

E[X(t ∧ Tn)] = E[X0] + E
[∫ t∧Tn

0
(L(s) − αX(s)ds

]
. (B.4)

Since X(t) is non-negative,
∫ t∧Tn(ω)

0
X(s, ω)ds is increasing and lim

n→∞

∫ t∧Tn(ω)

0
X(s, ω)ds =∫ t

0
X(s, ω)ds for all ω ∈ Ω,

∫ t∧Tn

0
X(s)ds

a.s.
−−−→
n→∞

∫ t

0
X(s)ds. Therefore, by monotone

convergence theorem,
∫ t∧Tn

0
X(s)ds

L1

−−−→
n→∞

∫ t

0
X(s)ds, which implies that

lim
n→∞
E

[∫ t∧Tn

0
X(s)ds

]
= E

[∫ t

0
X(s)ds

]
. (B.5)

Similarly,
∫ t∧Tn

0
L(s)ds

a.s.
−−−→
n→∞

∫ t

0
L(s)ds, so, lim

n→∞
E [X(t ∧ Tn)] = E[X0] + E[

∫ t

0
(L(s) −

αX(s))ds]. Since X(t ∧ Tn)
a.s.
−−−→
n→∞

X(t), by using Fatou’s Lemma,

E[X(t)] = E[lim inf
n→∞

X(t ∧ Tn)] ⩽ lim inf
n→∞

E[X(t ∧ Tn)] = lim
n→∞
E[X(t ∧ Tn)]

= E[X0] +
∫ t

0
L(s)ds − αE

[∫ t

0
X(s)ds

]
.

Since α > 0, E
[∫ t

0
X(s)ds

]
> 0, E[X(t)] < E[X0] +

∫ t

0
L(s)ds. By using (3.2.3),

E[X(t)] < E[X0] + KµKφt. (B.6)

It follows that the quadratic variation is〈∫ ·

0
e−α(t−s)σ

√
X(s)dBs

〉
t
=

∫ t

0
e−2α(t−s)σ2X(s)ds,

and by (B.6),

E

[∫ t

0
e−2α(t−s)σ2X(s)ds

]
=

∫ t

0
e−2α(t−s)σ2E [X(s)] ds

<

∫ t

0
e−2α(t−s)σ2

(
E[X0] + KµKφs

)
ds.
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Further,∫ t

0
e−2α(t−s)σ2 (E[X0]) ds = σ2E[X0]

∫ t

0
e−2α(t−s)ds = σ2E[X0]

1
2α

(1 − e−2αt),

and∫ t

0
e−2α(t−s)σ2

(
KµKφs

)
ds = σ2KµKφ

∫ t

0
e−2α(t−s)sds = σ2KµKφ

1
2α

(
t −

1
2α

(
1 − e−2αt

))
.

This implies that

E

[∫ t

0
e−2α(t−s)σ2X(s)ds

]
< σ2E[X0]

1
2α

(
1 − e−2αt

)
+ σ2KµKφ

1
2α

(
t −

1
2α

(
1 − e−2αt

))
,

which gives

E

[〈∫ ·

0
e−α(t−s)σ

√
X(s)dBs

〉
t

]
< +∞ (B.7)

Thus, the term
∫ t

0
e−α(t−s)σ

√
X(s)dBs is a martingale. Then, from (3.2.2),

E[X(t)] = e−αtE[X0] + e−αt
∫ t

0
eαsL(s)ds = e−αtE[X0] +

p∑
i=1

µi

∫ t

0
e−α(t−s)φi(s)ds. (B.8)

This completes the proof of the second assertion.

(3) From Assumption 3.1 and (3.2.2),

E[X2(t)] = e−2αtE
[
X2

0

]
+ e−2αt

(∫ t

0
eαsL(s)ds

)2

+ σ2e−2αtE

(∫ t

0
eαs

√
X(s)dBs

)2
+2e−2αtE [X0]

∫ t

0
eαsL(s)ds + 2σe−2αt

∫ t

0
eαsL(s)ds E

[∫ t

0
eαs

√
X(s)dBs

]

+2e−αtE[X0] σe−αtE

[∫ t

0
eαs

√
X(s)dBs

]
.

By Itô isometry and (B.8),

E

(∫ t

0
eαs

√
X(s)dBs

)2 = E[X0]
1
α

(eαt − 1) +
∫ t

0
eαs

∫ s

0
eαuL(u)duds.

From (B.7),
∫ t

0
eαs√X(s)dBs is a martingale, then, E

[∫ t

0
eαs√X(s)dBs

]
= 0. Hence,

E[X2(t)] = e−2αtE
[
X2

0

]
+ e−2αt

(∫ t

0
eαsL(s)ds

)2

+ σ2e−2αt

(
E[X0]

1
α

(eαt − 1)
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+

∫ t

0
eαs

∫ s

0
eαuL(u)duds

)
+ 2e−2αtE [X0]

∫ t

0
eαsL(s)ds,

which implies that

Var(X(t)) = e−2αt

(
Var(X0) + σ2E[X0]

1
α

(eαt − 1) + σ2
∫ t

0
eαs

∫ s

0
eαuL(u)duds

)
.

Further, by combining (3.2.3) and the fact that sup
t⩾0

(e−αt − e−2αt) = 1
4 ,

sup
t⩾0
E[X2(t)] ⩽ E

[
X2

0

]
+

K2
φK2

µ

α2 + σ2E[X0]
1

4α
+ σ2KφKµ

(
1

2α2 −
1

4α2

)
+ KφKµ

1
2α
,

which implies that sup
t⩾0
E[X2(t)] < ∞. This completes the proof. □

Proof of Proposition 3.2.3. The case where m = 2 is proven in Proposition 3.2.2. Thus,

in this proposition, only m > 2 is considered. Let Y(t, X(t)) = eαmtXm(t), by Itô’s

formula,

dY(t, X(t)) =αmeαmtXm(t)dt + meαmtXm−1(t)dX(t) +
1
2

m(m − 1)eαmt(X(t))m−2d⟨X(t), X(t)⟩

=αmeαmtXm(t)dt + meαmtXm−1(t) (L(t) − αX(t)) dt + meαmtXm−1(t)σ
√

X(t)dBt

+
1
2

m(m − 1)eαmt(X(t))m−2d⟨X(t), X(t)⟩

=meαmtXm−1(t)
(
L(t) + σ2 1

2
(m − 1)

)
dt + σmeαmt(X(t))m−1/2dBt.

Then,

eαmtXm(t) = Xm
0 +

∫ t

0
meαmsXm−1(t)

(
L(s) + σ2 1

2
(m − 1)

)
ds+

∫ t

0
σmeαms(X(t))m−1/2dBs,

which implies that

Xm(t) = e−αmtXm
0 + m

∫ t

0
e−αm(t−s)Xm−1(t)

(
L(s) + σ2 1

2
(m − 1)

)
ds

+σm
∫ t

0
e−αm(t−s)(X(t))m−1/2dBs,
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Let τn = inf{t > 0 : X(t) ⩾ n}, then,

Xm(t ∧ τn) = e−αmt∧τn Xm
0 + m

∫ t∧τn

0
e−αm(t∧τn−s)Xm−1(t)

(
L(s) + σ2 1

2
(m − 1)

)
ds

+σm
∫ t∧τn

0
e−αm(t∧τn−s)(X(t))m−1/2dBs.

(B.9)

Since Mt =
∫ t

0
eαms(X(t))m−1/2dBs is an Itô integral, Mt is a local martingale. The stop-

ping time τn is a localizing sequence, so that Mt∧τn :=
∫ t∧τn

0
eαms(X(t))m−1/2dBs is a mar-

tingale and E[Mt∧τn] = E[M0] = 0. Since X(t) is non-negative,
∫ t∧Tn(ω)

0
Xm−1(t)(ω)ds is

increasing and lim
n→∞

∫ t∧Tn(ω)

0
Xm−1(t)(ω)ds =

∫ t

0
Xm−1(t)(ω)ds for all ω ∈ Ω. This implies

that
∫ t∧Tn

0
Xm−1(t)(ω)ds

a.s.
−−−→
n→∞

∫ t

0
Xm−1(t)(ω)ds. Therefore, by monotone convergence

theorem,
∫ t∧Tn

0
Xm−1(t)(ω)ds

L1

−−−→
n→∞

∫ t

0
Xm−1(t)(ω)ds, which gives

lim
n→∞
E

[∫ t∧Tn

0
Xm−1(t)ds

]
= E

[∫ t

0
Xm−1(t)ds

]
.

Further, since Xm(t ∧ Tn)
a.s.
−−−→
n→∞

Xm(t), taking expectation on both sides of (B.9) and by

Fatou’s Lemma,

E[Xm(t)] = E[ lim
n→∞

Xm(t ∧ τn)] = E[lim inf
n→∞

Xm(t ∧ τn)]

⩽ lim inf
n→∞
E[Xm(t ∧ τn)] = lim

n→∞
E[Xm(t ∧ τn)].

Then,

E[Xm(t)] ⩽ e−αmtE[Xm
0 ] + m

(
KµKt∗ +

1
2
σ2(m − 1)

)
e−αmt

∫ t

0
eαmsE[Xm−1(t)]ds,

which gives

E[Xm(t)] ⩽ E[Xm
0 ] +Cme−αmt

∫ t

0
eαmsE[Xm−1(t)]ds, (B.10)

where Cm = m
(
KµKφ +

1
2σ

2(m − 1)
)
. Then, by recursion of (B.10)

E[Xm(t)] ⩽ E[Xm
0 ] +Cme−αmt

∫ t

0
eαms1

(
E[Xm−1

0 ]+

Cm−1e−α(m−1)s1

∫ s1

0
eα(m−1)s2E[Xm−2(s2)]ds2

)
ds1.
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Then,

E[Xm(t)] ⩽ E[Xm
0 ]+CmE[Xm−1

0 ]
1
αm
+CmCm−1e−αmt

∫ t

0
eαs1

(∫ s1

0
eα(m−1)s2E[Xm−2(s2)]ds2

)
ds1.

This gives

E[Xm(t)] ⩽E[Xm
0 ] +CmE[Xm−1

0 ]
1
αm
+CmCm−1E[Xm−2

0 ]
1

α(m − 1)
1
αm
+ · · ·

+CmCm−1 · · ·Cm−(k−1)E
[
Xm−(k−1)

0

]
e−αmt×∫ t

0
eαs1

∫ s1

0
eαs2 · · ·

∫ sk−1

0
eα(m−(k−1))skE[Xm−k(sk)]dsk · · · ds2ds1,

for 0 < m − k ⩽ 1. By Jensen’s inequality,

E[(X(t))m−k] ⩽ {E[X(t)]}m−k ⩽


1, i f E[X(t)] ⩽ 1

E[X(t)], else.

This implies that

E[Xm(t)] ⩽ E[Xm
0 ] +CmE[Xm−1

0 ]
1
αm
+CmCm−1E[Xm−2

0 ]
1

α(m − 1)
1
αm
+ · · ·

+max{1,E[X(t)]}CmCm−1 · · ·Cm−(k−1)E
[
Xm−(k−1)

0

] 1
α(m − (k − 1))

· · ·
1
αm

.

Then, (3.2.6) holds where Km is given by (3.2.5). This completes the proof. □

B.2 Auxiliary processes and approximate stationary processes

Theorem B.1 (Dubins-Schwarz theorem). Revuz and Yor [1999] Let M be a continuous

local martingale with respect to a filtration (Ft)t⩾0, such that M0 = 0 and ⟨M⟩∞ = ∞

almost surely. For all t ⩾ 0, let Tt = inf{s ⩾ 0 : ⟨M⟩s > t} = ⟨M⟩−1
t be the generalized

inverse of the non-decreasing process ⟨M⟩ issued from 0. Then

1. B = (M⟨M⟩−1
t

) is a Brownian motion with respect to the filtration (FTt)t⩾0,

2. (B⟨M⟩t)t⩾0 = (Mt)t⩾0.

The following theorem is an extension of Dubins and Schwarz’s (1965) theorem. It
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allows time change in terms of strictly increasing homeomorphisms ϕ(t) rather than just

t. The proof has been given in Maghsoodi [1993].

Theorem B.2 (Extension of Dubins and Schwarz’s (1965) theorem). Let M be a con-

tinuous local martingale with respect to a filtration (Ft)t⩾0, such that M0 = 0 and

⟨M⟩∞ = ∞ almost surely. For all t ⩾ 0, let ϕ(t) =
∫ t

0
g2(s)ds be a homeomorphism on

0 ⩽ t < ∞ such that lim
t→∞

ϕ(t) = ∞, define the stopping time τ(t) = inf{s ⩾ 0 : ⟨M⟩s >

ϕ(t)}. Then, the time changed process N(t) := M(τ(t)), 0 ⩽ t < ∞ is a (Ω,Gt,P) square-

integrable martingale with Gt = Fτ(t) and can be represented as N(t) =
∫ t

0
g(s)dBs

almost surely, where Bt is a Gt measurable Brownian motion.

Theorem B.3 (Lévy’s Charaterization of Brownian motion, Theorem 4.6.4 in Shreve

[2004]). Let M(t), t ⩾ 0 be a martingale relative to a filtration Ft, t ⩾ 0. Assume

that M(0) = 0, M(t) has continuous paths and ⟨M⟩t = t for all t ⩾ 0. Then, M(t) is a

standard Brownian motion.

B.2.1 The case where the dimension is positive integer

Under this condition, the processes {X(t), t ⩾ 0} is a sum of independent squared O-

U process. Let W1,W2, · · · ,Wd be independent Brownian motions. For j = 1, 2, · · · , d,

let Y j(t) be the O–U process

dY j(t) = −
α

2
Y j(t)dt +

1
2
σdW j(t).

By Itô’s formula,

Y j(t) = e−
α
2 tY j(0) +

1
2
σe−

α
2 t

∫ t

0
e
α
2 sdW j(s).

Set X(t) =
d∑

j=1
Y2

j (t), with X0 =
d∑

j=1
Y2

j (0). Below, it is proven that X(t) is the solution to

the GCIR model (3.2.1). Indeed, by Itô’s formula,

dX(t) =
d∑

j=1

(
2Y j(t)dY j(t) + d⟨Y j(t)⟩

)
=

d∑
j=1

(
2Y j(t)(−

α

2
Y j(t)dt +

1
2
σdW j(t)) +

σ2

4
dt

)
.
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Then,

dX(t) =
d∑

j=1

((
−αY j(t) +

σ2

4

)
dt + σY j(t)dW j(t)

)
= (L(t) − αX(t)) dt +

d∑
j=1

σY j(t)dW j(t).

Since that W j, j = 1, 2, · · · , d are independent Brownian motions, ⟨Wi,W j⟩t = t I{i= j}.

Hence, the quadratic variation of B is given by

⟨B⟩t =
〈 d∑

j=1

∫ ·

0

Y j(s)
√

X(s)
dW j(s),

d∑
j=1

∫ ·

0

Y j(s)
√

X(s)
dW j(s)

〉
t

= t.

It follows from the Lévy characterization for Brownian motion [Shreve, 2004, Theo-

rem B.3] that B is a standard Brownian motion. Then,

dX(t) = (L(t) − αX(t)) dt + σ
√

X(t)dBt,

which shows that X(t) =
d∑

j=1
Y2

j (t) is a GCIR process.

From the definition of the process Ỹ j(t) in Section 3.3.2, for s ∈ (−∞, 0), B̃ j(s) =

B̄ j(−s),

Ỹ j(t) =
1
2
σe−

α
2 t

(∫ 0

−∞

e
α
2 sdB̄ j(−s) +

∫ t

0
e
α
2 sdB j(s)

)
.

First, to establish the distribution of
∫ 0

−∞
e
α
2 sdB̄ j(−s), let u = −s,

∫ 0

−∞
e
α
2 sdB̄ j(−s) =

−
∫ ∞

0
e−

α
2 udB̄ j(u). let IU =

∫ U

0
e−

α
2 udB̄ j(u). Since the integrator e−

α
2 u is not random, the

Itô integral IU follows a normal distribution with mean 0 and variance
∫ U

0
e−αudu. One

can verify that ∫ 0

−∞

eαsdB̄−s ∼ N

(
0,

1
α

)
, (B.11)

and then, by the independence between
∫ 0

−∞
e
α
2 sdB̄ j(−s) and

∫ t

0
e
α
2 sdB j(s),

Ỹ j(t) =
1
2
σe−

α
2 t

(∫ 0

−∞

e
α
2 sdB̄ j(−s) +

∫ t

0
e
α
2 sdB j(s)

)
∼ N

(
0,
σ2

4
1
α

)
.

Let X̃(t) =
d∑

j=1
Ỹ2

j (t) and note that Ỹ1(t), Ỹ2(t), . . . , Ỹd(t) are independent. This implies

that X̃(t) = σ2

4α

d∑
j=1

4α
σ2 Ỹ2

j (t) ∼
σ2

4αχ
2
d and the process {X̃(t), t ⩾ 0} is strictly stationary and

ergodic. Further, The following proposition shows that the distance between X(t) and
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X̃(t) converges to 0 in Lm and almost surely. Further, the distance between 1
X(t) and 1

X̃(t)

converges to 0 almost surely too.

Proposition B.3. If Assumption 2.1-2.2, 3.1-3.2 hold, then, (1). X̃(t)− X(t)
a.s.
−−−→
t→∞

0; (2).

X̃(t) − X(t)
Lm

−−−→
t→∞

0; (3).
1

X̃(t)
−

1
X(t)

a.s.
−−−→
t→∞

0.

Proof. (1). From the definition of Y j(t) and Ỹ j(t),

|Y j(t) − Ỹ j(t)|2 ⩽ 2
(
Y2

j (0) + 1
4σ

2
(∫ 0

−∞
e
α
2 sdB̃ j(s)

)2
)

e−αt = A je−αt with

⩽ 2

e−αtY2
j (0) +

1
4
σ2e−αt

(∫ 0

−∞

e
α
2 sdB̃ j(s)

)2 = 2

Y2
j (0) +

1
4
σ2

(∫ 0

−∞

e
α
2 sdB̃ j(s)

)2 e−αt.

Let A j = 2
(
Y2

j (0) + 1
4σ

2
(∫ 0

−∞
e
α
2 sdB̃ j(s)

)2
)
. Then,

E[A j] = 2

E[Y2
j (0)] +

1
4
σ2E

(∫ 0

−∞

e
α
2 sdB̃ j(s)

)2 .
Since for s ∈ (−∞, 0), B̃s = B̄−s,

E

(∫ 0

−∞

e
α
2 sdB̃ j(s)

)2 = E (∫ 0

−∞

e
α
2 sdB̄ j(s)

)2 = E (∫ ∞

0
e−

α
2 udB̄ j(u)

)2 . (B.12)

Since IU =
∫ U

0
e−

α
2 udB̄ j(u). By Itô’s isometry,

E[I2
U] = E

(∫ U

0
e−

α
2 udB̄ j(u)

)2 = E [∫ U

0
e−αudu

]
=

1
α

(1 − e−αU), (B.13)

which is bounded in U on [0,+∞). Thus, by L2-bounded martingale convergence theo-

rem,

IU
a.s.
−−−−→
U→∞

I∞ =

∫ ∞

0
e−

α
2 udB̄ j(u), (B.14)

with E[I2
∞] < ∞. This can imply that E[A j] ⩽ 2

(
E[X0] + 1

4σ
2E[I2

∞]
)
< ∞. Then,

|Y j(t) − Ỹ j(t)| ⩽
√

A je−
α
2 t and Y j(t) − Ỹ j(t)

a.s.
−−−→
t→∞

0.

Then,

|Y2
j (t) − Ỹ2

j (t)| ⩽
√

A je−
α
2 t

(
|Y j(t) + Ỹ j(t)|

)
. (B.15)



B Proofs related to GCIR process 229

sup
2n⩽t⩽2n+1

|Y2
j (t) − Ỹ2

j (t)| ⩽
√

A je−
α
2 2n

(
sup

2n⩽t⩽2n+1
|Y j(t)| + sup

2n⩽t⩽2n+1
|Ỹ j(t)|

)
.

Then, since the processes {X(t), t ⩾ 0} and {X̃(t), t ⩾ 0} have continuous trajectories,

sup
2n⩽t⩽2n+1

|Y2
j (t) − Ỹ2

j (t)| ⩽
√

A je−
α
2 2n (
|Y j(tn1)| + |Ỹ j(tn2)|

)
, 2n ⩽ tn1, tn2 ⩽ 2n+1. (B.16)

Further,

sup
t⩾0
E[|Y j(t)|2] ⩽ 2 sup

t⩾0

e−αtE[|Y j(0)|2] +
1
2
σe−αtE

∣∣∣∣∣∣
∫ t

0
e
α
2 sdB j(s)

∣∣∣∣∣∣2
 .

By Itô’s isometry,

E

∣∣∣∣∣∣
∫ t

0
e
α
2 sdB j(s)

∣∣∣∣∣∣2
 = E [∫ t

0
eαsds

]
=

1
α

(eαt − 1), (B.17)

which implies that sup
t⩾0
E[|Y j(t)|2] < ∞. Further,

E
[
|Ỹ j(t)|2

]
⩽ 2E

∣∣∣∣∣∣12σe−
α
2 t

∫ 0

−∞

e
α
2 sdB̃ j(s)

∣∣∣∣∣∣2
 + 2E

∣∣∣∣∣∣12σe−
α
2 t

∫ t

0
e
α
2 sdB̃ j(s)

∣∣∣∣∣∣2
 .

(B.12), (B.14) and (B.17) give sup
t⩾0
E[|Ỹ j(t)|2] < ∞. Then,

E
[(
|Y j(tn1)| + |Ỹ j(tn2)|

)2
]
⩽ 2 sup

t⩾0
E[|Y j(t)|2] + 2 sup

t⩾0
E[|Ỹ j(t)|2] ⩽ K1∗ < ∞,

for some K1∗ > 0. Finally, from (B.16) and Cauchy-Schwartz inequality,

E

[
sup

2n⩽t⩽2n+1
|Y2

j (t) − Ỹ2
j (t)|

]
⩽

√
2
(
E[X0] +

1
4
σ2E[I2

∞]
)

K1∗e−
α
2 2n
,

which implies that

∞∑
n=1

E

[
sup

2n⩽t⩽2n+1
|Y2

j (t) − Ỹ2
j (t)|

]
⩽

√
2
(
E[X0] +

1
4
σ2E[I2

∞]
)

K1∗

∞∑
n=1

e−
α
2 2n

< ∞.

From Markov inequality and Borel-Cantelli’s lemma, Y2
j (t) − Ỹ2

j (t)
a.s.
−−−→
t→∞

0. Hence,

X̃(t) − X(t) =
d∑

j=1

Ỹ2
j (t) −

d∑
j=1

Y2
j (t)

a.s.
−−−→
t→∞

0.
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(2). From (B.15),
∣∣∣Y2

j (t) − Ỹ2
j (t)

∣∣∣ ⩽ √
A je−

α
2 t

(∣∣∣Y j(t) + Ỹ j(t)
∣∣∣) . So,

E
[∣∣∣X̃(t) − X(t)

∣∣∣m]
⩽ E


 d∑

j=1

∣∣∣Y2
j (t) − Ỹ2

j (t)
∣∣∣

m ⩽ e−m α
2 tE


 d∑

j=1

√
A j

∣∣∣Y j(t) + Ỹ j(t)
∣∣∣

m .
Then,

E
[∣∣∣X̃(t) − X(t)

∣∣∣m]
⩽ e−m α

2 tdm−1

 d∑
j=1

E
[( √

A j

∣∣∣Y j(t) + Ỹ j(t)
∣∣∣)m] .

By Cauchy-Schwartz inequality,

E
[( √

A j

∣∣∣Y j(t) + Ỹ j(t)
∣∣∣)m]
⩽

√
E

[
Am

j

]
E

[∣∣∣Y j(t) + Ỹ j(t)
∣∣∣2m

]
.

Further,

E[Am
j ] = 2m

(
E[Y2

j (0)] + 1
4σ

2E

[(∫ 0

−∞
e
α
2 sdB̃ j(s)

)2
])m

⩽ 2m2m−1
(
E[Xm

0 ] +
(

1
4σ

2
)m
E

[
I2m
∞

])
.

Similar to (B.13), E
[
I2m

U

]
⩽

(
1
α
(1 − e−αU)

)m
, which implies that E

[
I2m
∞

]
<

(
1
α

)m
. Then,

there exists some positive constant K2∗, such that E[Am
j ] ⩽ K2∗.∣∣∣Y j(t) + Ỹ j(t)

∣∣∣2m
=

∣∣∣∣∣∣e− α2 tY j(0) + σe−
α
2 t

∫ t

0
e
α
2 sdB j(s) +

1
2
σe−

α
2 t

∫ 0

−∞

e
α
2 sdB̃ j(s)

∣∣∣∣∣∣2m

gives

E
[∣∣∣Y j(t) + Ỹ j(t)

∣∣∣2m
]
⩽ 32m−1e−

α
2 2mtE

[
Y2m

j (0) +
∣∣∣∣σ ∫ t

0
e
α
2 sdB j(s)

∣∣∣∣2m

+
∣∣∣∣1
2σ

∫ 0

−∞
e
α
2 sdB̃ j(s)

∣∣∣∣2m]
,

with (i) E
[
Y2m

j (0)
]
⩽ E

[
Xm

0

]
< ∞; (ii) E

∣∣∣∣∣∣σ
∫ t

0
e
α
2 sdB j(s)

∣∣∣∣∣∣2m ⩽ σ2mCm

(
1
α
(eαt − 1)

)m
for

some Cm > 0; and (iii) E
[∣∣∣∣1

2σ
∫ 0

−∞
e
α
2 sdB̃ j(s)

∣∣∣∣2m]
= E[I2m

∞ ] ⩽
(

1
α

)m
. Hence, there exists

some positive constant K3∗ , such that E
[∣∣∣Y j(t) + Ỹ j(t)

∣∣∣2m
]
⩽ K3∗ . Then,

E
[
|X̃(t) − X(t)|m

]
⩽ e−

α
2 mtdm/2

√
K2∗K3∗ −−−→

t→∞
0.

This finishes the proof of X̃(t) − X(t)
Lm

−−−→
t→∞

0.

(3). It is obvious that both X̃(t) and X(t) are positive almost surely, for all t ≥ 0.
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Then, for all t ≥ 0,

lim
n→∞

P
(
X̃(t) ≤

1
n

)
= 0, (B.18)

lim
n→∞

P
(
X(t) ≤

1
n

)
= 0. (B.19)

Further,

lim
N→∞

P
(
X̃(t)X(t) ≤

1
N

)
= 0. (B.20)

For ∀ δ > 0, let A∞ =
{

lim sup
t→∞

1
X̃(t)X(t)

∣∣∣X̃(t) − X(t)
∣∣∣ > δ}, and AN =

{
1

X̃(t)X(t)
> N

}
.

P(A∞) = P(A∞AN) + P(A∞Ac
N), where Ac

N is the complement of AN . Then,

P(A∞) ≤ P(AN) + P(A∞Ac
N) ≤ P(AN) + P

(
lim sup

t→∞

∣∣∣X̃(t) − X(t)
∣∣∣ > 1

N
δ

)
.

Further, (B.20) implies that lim
N→∞

P(AN) = 0. From X̃(t) − X(t)
a.s.
−−−→
t→∞

0,

lim
N→∞

P
(
lim sup

t→∞

∣∣∣X̃(t) − X(t)
∣∣∣ > 1

N δ

)
= 0. Then, for ∀ δ > 0, P

(
lim sup

t→∞

∣∣∣∣ 1
X̃(t) −

1
X(t)

∣∣∣∣ > δ) =
P(A∞) = 0. This finishes the proof. □

B.2.2 General case

Lemma B.1. Given a one-dimensional Brownian motion B defined on the probability

space (Ω,F ,P) with (Ft)t⩾0 as usual, there exists a two-dimensional Brownian motion

W̃ = (w̃1, w̃2) on the same probability space, such that

Bt =

2∑
j=1

∫ t

0

X(i∗)(u)
||X∗(u)||

dw̃ j(u) almost surely.

Furthermore, it is possible to choose W̃ = B(∗) almost surely.

Alternative Proof of Lemma B.1. Since for i, j = 1, 2, ⟨w̃i, w̃ j⟩t = t I{i= j}, Hence,〈 2∑
j=1

∫ ·

0

X( j∗)(s)√
X(1∗)(s) + X(2∗)(s)

dw̃ j(s),
2∑

j=1

∫ ·

0

X( j∗)(s)√
X(1∗)(s) + X(2∗)(s)

dw̃ j(s)
〉

t

= t.

It follows from the Lévy characterization for Brownian motion [Shreve, 2004, Theo-

rem B.3] that
2∑

j=1

∫ t

0
X( j∗)(s)√

X(1∗)(s)+X(2∗)(s)
dw̃ j(s) is a standard Brownian motion. This implies
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that

Bt =

2∑
j=1

∫ t

0

X( j∗)(s)√
X(1∗)(s) + X(2∗)(s)

dw̃ j(s), almost surely. (B.21)

Furthermore, it is possible to choose W̃ = B(∗) almost surely. This completes the proof.

□

Proof of Proposition 3.2.4. From Lemma B.1, for the given Brownian motion Bt, the

Brownian motion Bt =
2∑

j=1

∫ t

0
X( j∗)(s)√

X(1∗)(s)+X(2∗)(s)
dB( j∗)

s and the process X(1∗)(t) + X(2∗)(t) are

constructed from it. Application of Itô’s lemma to X(1∗)(t) + X(2∗)(t) gives

d(X(1∗)(t) + X(2∗)(t)) =
(
L(t) − α

(
X(1∗)(t) + X(2∗)(t)

))
dt

+σ
( √

X(1∗)(t)dB(1∗)(t) +
√

X(2∗)(t)dB(2∗)(t)
)
.

From (B.21),

d(X(1∗)(t)) + X(2∗)(t)) =
(
L(t) − α(X(1∗)(t) + X(2∗)(t)

)
dt + σ

√
X(1∗)(t) + X(2∗)(t)dBt,

which shows that X(1∗)(t) + X(2∗)(t) is a GCIR process. Then, X(1∗)(t) + X(2∗)(t) is the

strong solution of SDE (3.2.1). Because SDE (3.2.1) admits an unique strong solution,

that is X(1∗)(t) + X(2∗)(t) = X(t) almost surely. □

Proof of Proposition 3.2.5. The proof is similar to the proof of Lemma 2.2 in Tong and

Zhang [2017]. Since the process in (3.2.8) is driven by Brownian motion, then, for fixed

t ∈ [0,T ], X(2∗)(t)(ω) is a process with continuous sample paths, which implies that

P
(
ω : X(2∗)(t,w) = 0, t ≥ 0

)
= 0.

By Fubini theorem,

E

[∫ T

0
IAt(w)dt

]
=

∫ T

0
E

[
IAt(w)

]
dt =

∫ T

0
P
(
ω : X(2∗)(t,w) = 0, t ≥ 0

)
dt = 0.

Further, from
∫ T

0
IAt(w)dt ≥ 0,

∫ T

0
IAt(w)dt = 0 a.s. □

Proof of Proposition 3.2.6. The solution to SDE (3.2.7) is clear from Section B.2.1. The
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dimension of (3.2.7) is 2. for j = 1, 2,

Y j(t) = e−
α
2 tY j(0) +

1
2
σe−

α
2 t

∫ t

0
e
α
2 sdB j(s).

Define X(1∗)(t) =
2∑

j=1
Y2

j (t), and notice that B(1∗)
t =

2∑
j=1

∫ t

0

Y j(s)√
X(1∗)(t)

dB j(s). By us-

ing Itô’s formula, one can prove that X(1∗)(t) is the solution to the SDE (3.2.7), with

X(1∗)
0 =

2∑
j=1

Y2
j (0). For the solution to SDE (3.2.8), let U(t, X(2∗)(t) = e

α
2 t

√
X(2∗)(t), by

Itô’s formula,

dU(t, X(2∗)(t) =
α

2
e
α
2 t

√
X(2∗)(t)dt+e

α
2 t 1

2
√

X(2∗)(t)
dX(2∗)(t)−

1
8

e
α
2 t 1√(

X(2∗)(t)
)3/2

d
〈
X(2∗)(t)

〉

=
α

2
e
α
2 t

√
X(2∗)(t)dt + e

α
2 t 1

2
√

X(2∗)(t)

((
L(t) −

σ2

2
− αX(2∗)(t)

)
dt + σ

√
X(2∗)(t)dB(2∗)

t

)

−
1
8

e
α
2 t 1√(

X(2∗)(t)
)3/2

σ2X(2∗)(t)dt.

Then,

dU(t, X(2∗)(t) = e
α
2 t 1

2
√

X(2∗)(t)

(
L(t) −

σ2

2

)
dt

+e
α
2 t 1

2
√

X(2∗)(t)
σ

√
X(2∗)(t)dB(2∗)

t −
σ2

8
e
α
2 t 1√

X(2∗)(t)
dt.

This gives

d
(
e
α
2 t

√
X(2∗)(t)

)
= e

α
2 t 1

2
√

X(2∗)(t)

(
L(t) −

3σ2

4

)
dt +

σ

2
e
α
2 tdB(2∗)

t .

Integrating both sides from 0 to t and multiplying by e−
α
2 t,

Yt =
√

X(2∗)(t) = e−
α
2 t

√
X(2∗)

0 + e−
α
2 t

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(s)
ds +

σ

2
e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s .

Then, the solution has the following expression

X(2∗)(t) = Y2
t =

e− α2 t
√

X(2∗)
0 + e−

α
2 t

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(s)
ds +

σ

2
e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s

2

.

□
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Proof of Proposition 3.3.3. It is clear that Ỹ1(t) and Ỹ2(t) are independent with Ỹ j(t) ∼

N
(
0, σ

2

4α

)
, j = 1, 2. This implies that X̃(1∗)(t) = σ2

4α

2∑
j=1

4α
σ2 Ỹ2

j (t) ∼
σ2

4αχ
2
2 and then {X̃(1∗)(t), t ⩾

0} is strictly stationary and ergodic. Below, by using the extension of Dubins-Schwarz

Theorem, one proves that {Ỹt+k−1, t ∈ (0, 1]}k∈N+ is strictly stationary and ergodic, which

implies that {X̃(2∗)(t + k − 1), t ∈ (0, 1]}k∈N+is strictly stationary and ergodic. To this end,

note that, from (3.3.3),

e−
α
2 t

∫ t

−∞

e
α
2 sV(s)ds = e−

α
2 t

∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds +

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(s)
ds


and note that

∫ t

0
e
α
2 s(4L(s) − 3σ2)

/ (
8
√

X(2∗)(s)
)

ds is the quadratic variation of the pro-

cess∫ t

0
e
α
4 s

√(
4L(s) − 3σ2) / (8 √

X(2∗)(s)
)
dBs, where Bs is the Brownian motion, i.e.

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(s)
ds =

〈∫ ·

0
e
α
4 s

√
4L(s) − 3σ2

8
√

X(2∗)(s)
dBs

〉
t

, a.s.

Let M(t) =
∫ t

0
e
α
4 s

√
4L(s) − 3σ2

8
√

X(2∗)(s)
dBs. Since Itô integrals are local martingales [Kle-

baner, 2005, Theorem 13.2], M(t) is a local martingale. with ⟨M⟩t =
∫ t

0
e
α
2 s 4L(s)−3σ2

8
√

X(2∗)(s)
ds,

and

E [⟨M⟩t] = E

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(s)
ds

 ⩽ ∫ t

0
e
α
2 s 4L(s) − 3σ2

8
E

 1√
X(2∗)(s)

 ds.

From (B.32), E
[

1√
X(2∗)(s)

]
⩽

√
sup
t⩾0
E

[
1

X(2∗)(s)

]
< ∞, which implies that E [|M(t)|] < ∞.

Thus, M(t) is a continuous martingale and M0 = 0, ⟨M⟩∞ = ∞ almost surely. For all

t > 0, let ϕ(t) =
∫ t

0
e
α
2 s 4L(s)−3σ2

8 ds. It is a homeomorphism on 0 ⩽ t < ∞ and lim
t→∞

ϕ(t) = ∞

and, ϕ−1(t) is continuous. Consider the stopping time τ(t) = inf{s > 0 : ⟨M⟩s > ϕ(t)}.

Then, by extension of Dubins-Schwarz Theorem, the time changed process N(t) :=

M(τ(t)), 0 ⩽ t < ∞ is a (Ω,Gt,P) square-integrable martingale with Gt = Fτ(t) and can

be represented as N(t) =
∫ t

0
e
α
4 s

√
(4L(s) − 3σ2)/8 dBs a.s, where Bt is a Gt measurable
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Brownian motion. ⟨M⟩τ(t) = ϕ(t) = ⟨N⟩t. N(t) = M(τ(t)) implies that N(⟨M⟩t) =

M (τ(⟨M⟩t)). Let f (t) = ⟨M⟩t be the quadratic variation of M(t), f is an invertible and

increasing function. Further, τ(t) = f −1(ϕ(t)) with probability 1. This implies that

τ−1(t) = ϕ−1( f (t)) with probability 1. Then,

τ
(
τ−1(t)

)
= f −1

(
ϕ(τ−1(t))

)
= f −1

(
ϕ(ϕ−1( f (t)))

)
= f −1( f (t)) = t.

Then

M (t) = N(τ−1(t)), a.s.

Then, for t ∈ (0, 1], k ∈ N+,

M(t + k − 1) =
∫ t+k−1

0
e
α
4 s

√
4L(s) − 3σ2

8
√

X(2∗)(s)
dBs =

∫ τ−1(t+k−1)

0
e
α
4 s

√
4L(s) − 3σ2

8
dBs,

and then

M(t + k − 1) =
∫ τ−1(k−1)

0
e
α
4 s

√
4L(s) − 3σ2

8
dBs +

∫ τ−1(t+k−1)

τ−1(k−1)
e
α
4 s

√
4L(s) − 3σ2

8
dBs.

Further, ∫ t+k−1

−∞

e
α
2 sV(s)ds =

∫ 0

−∞

e
α
2 sV(s)ds +

∫ t+k−1

0
e
α
2 sV(s)ds,

and
∫ t+k−1

0
e
α
2 sV(s)ds =

〈∫ ·

0
e
α
4 s

√
V(s)dBs

〉
t+k−1

. Let u = −s,∫ 0

−∞

e
α
2 sV(s)ds =

∫ ∞

0
e−

α
2 uV(−u)du.

Let Y(U) =
∫ U

0
e−

α
4 u

√
4L(s) − 3σ2

8
dBu. Then, Y(U) is a continuous local martin-

gale with E[|Y(0)|2] < ∞. By Doob-Meyer decomposition, Y2(U) − ⟨Y⟩U is an uni-

formly integrable martingale, and E
[
Y2(∞) − ⟨Y⟩∞

]
= 0, which implies that E [⟨Y⟩∞] =

E
[
Y2(∞)

]
. Since ⟨Y⟩∞ is not random, E [⟨Y⟩∞] = ⟨Y⟩∞. This gives ⟨Y⟩∞ = E

[
Y2(∞)

]
=∫ ∞

0
e−

α
2 u 4L(−s) − 3σ2

8
du. Let s = −u,

∫ ∞

0
e−

α
4 u

√
4L(−s) − 3σ2

8
dBu =

∫ 0

−∞

e
α
4 s

√
4L(s) − 3σ2

8
dB̄−s.
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Then,

e−
α
2 (t+k−1)

∫ t+k−1

−∞

e
α
2 sV(s)ds = e−

α
2 (t+k−1)

〈∫ ·

−∞

e
α
4 s

√
V(s)dB̃s

〉
t+k−1

.

Further,∫ t+k−1

−∞

e
α
4 s

√
V(s)dB̃s =

∫ 0

−∞

e
α
4 s

√
4L(s) − 3σ2

8
dB̃s +

∫ t+k−1

0
e
α
4 s

√
4L(s) − 3σ2

8
√

X(2∗)(t)
dBs

=

∫ 0

−∞

e
α
4 s

√
4L(s) − 3σ2

8
dB̃s +

∫ τ−1(t+k−1)

0
e
α
4 s

√
4L(s) − 3σ2

8
dBs.

This gives

Ỹt+k−1 = e−
α
2 (t+k−1)

∫ τ−1(t+k−1)

−∞

e
α
2 s 4L(s) − 3σ2

8
ds +

σ

2
e−

α
2 t+k−1

∫ t+k−1

−∞

e
α
2 sdB̃s

= e−
α
2 t

∫ τ−1(t)

−∞

e
α
2 s 4L(s) − 3σ2

8
ds +

σ

2
e−

α
2 (t+k−1)

∫ t+k−1

−∞

e
α
2 sdB̃s.

Further,

e−
α
2 (t+k−1)

∫ τ−1(t+k−1)

−∞

e
α
2 s 4L(s) − 3σ2

8
ds = e−

α
2 t

∫ τ−1(t)

−∞

e
α
2 s 4L(s) − 3σ2

8
ds

implies that the random sequence
{
e−

α
2 (t+k−1)

∫ τ−1(t+k−1)

−∞
e
α
2 s 4L(s)−3σ2

8 ds, t ∈ (0, 1]
}

k∈N+
is

stationary in strict sense. For fixed t, e−
α
2 t

∫ τ−1(t)

−∞
e
α
2 s 4L(s)−3σ2

8 ds is a random variable,

which is independent of k. In addition,
{
σ
2 e−

α
2 (t+k−1)

∫ t+k−1

−∞
e
α
2 sdB̃s, t ∈ [0, 1]

}
k∈N+

is strictly

stationary and ergodic. Hence Ỹt+k−1 is strictly stationary and ergodic. This implies that{
X̃(2∗)(t + k − 1), t ∈ (0, 1]

}
k∈N+

is strictly stationary and ergodic and since{
X̃(1∗)(t + k − 1), t ∈ (0, 1]

}
k∈N+

is also strictly stationary and ergodic, it concludes that{
X̃(t + k − 1) = X̃(1∗)(t + k − 1) + X̃(2∗)(t + k − 1), 0 < t ⩽ 1

}
k∈N+

is strictly stationary and

ergodic. □
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B.3 Point estimators and their asymptotic properties

B.3.1 On derivation of UMLE

Proof of Proposition 3.3.1. Let a = [a⊤1 , a2] with a1 a p−column vector, and a2 a scalar.

Then,

aQ[0,T ]a⊤ =
(
a⊤1

∫ T

0

φ⊤(t)φ(t)
X(t)

dt − a2

∫ T

0
φ(t)dt,−a⊤1

∫ T

0
φ⊤(t)dt + a2

∫ T

0
X(t)dt

)
×

(a⊤1 , a2)⊤.

Then, aQ[0,T ]a⊤ =
∫ T

0

(
a⊤1

φ⊤(t)
√

X(t)
− a2

√
X(t)

)2

dt ⩾ 0. The equality hold if and only if(
a⊤1

φ⊤(t)
√

X(t)
− a2

√
X(t)

)2

= 0, almost everywhere (a.e) for t ∈ [0,T ], which is a⊤1
φ⊤(t)
√

X(t)
−

a2

√
X(t) = 0, a.e for t ∈ [0,T ] and then, P

(
ω : a⊤1

φ⊤(t)
√

X(t,ω)
− a2
√

X(t, ω) = 0,∀ t ∈ [0,T ]
)
=

1, which is equivalent to the following

P
(
ω : a⊤1 φ

⊤(t) − a2X(t, ω) = 0,∀ t ∈ [0,T ]
)
= 1, (B.22)

and since the process {X(t), t ⩾ 0} has absolutely continuous distribution, for a2 , 0,

P
(
ω : a⊤1 φ

⊤(t) − a2X(t, ω) = 0,∀ t ∈ [0,T ]
)
= 0.

This is a contradiction with (B.22), hence, a2 = 0. Therefore, putting a2 = 0 into

a⊤1
φ⊤(t)
√

X(t)
−a2

√
X(t) = 0, provided that T ⩾ 1, that a⊤1

φ⊤(t)
√

X(t)
= 0, which is equivalent to

a⊤1 φ
⊤(t) = 0. By Assumption 2.2, the base function φ(t) is linearly independent, which

means a⊤1 φ
⊤(t) = 0 implies that a1 = 0⃗(p0+1)×1. This completes the proof. □

Proof of the Proposition 3.3.2. The likelihood function of the SDE (3.2.1) is given by

L(θ, XT ) =
dP(θ)

XT

dPB
= exp

(
1
σ2

∫ T

0

S (t, θ, X(t))
X(t)

dX(t) −
1

2σ2

∫ T

0

S 2(t, θ, X(t))
X(t)

dt
)
.

Together with some algebraic computations, the log-likelihood function is

logL(θ, XT ) =
1
σ2 θ

⊤R[0,T ] −
1

2σ2 θ
⊤Q[0,T ]θ.

Then, by combining Proposition 3.3.1 and some algebraic computations, the UMLE is
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derived as θ̂T = Q−1
[0,T ]R[0,T ].

For the deriving of RMLE, it is necessary to find the maximum value of the log like-

lihood function Further, by Lagrange multiplier method, one maximizes logL(θ, XT )

under the restriction (2.2.2), which yield the RMLE as stated. This completes the

proof. □

B.3.2 Proofs related to asymptotic distribution of estimators

Proof of Proposition 3.3.4. From Proposition B.3,

X̃(1∗)(t) − X(1∗)(t)
a.s. and Lm

−−−−−−−−→
t→∞

0. (B.23)

Next step is to derive the convergence of X(2∗)(t) − X̃(2∗)(t) = Y2
t − Ỹ2

t .

|Yt − Ỹt|
2 =

(
e−

α
2 t

√
X(2∗)

0 + e−
α
2 t

∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds +

1
2
σe−

α
2 t

∫ 0

−∞

e
α
2 sdB̃(2∗)

s

)2

⩽ e−αt

(√
X0 +

∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds +

1
2
σ

∫ 0

−∞

e
α
2 sdB̃(2∗)

s

)2

⩽ 3e−αt

X0 +

(∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds

)2

+
1
4
σ2

(∫ 0

−∞

e
α
2 sdB̃(2∗)

s

)2 .
Then |Yt − Ỹt| ⩽

√
Ae−

α
2 t with A = 3

(
X0 +

(∫ 0

−∞
e
α
2 s 4L(s)−3σ2

8 ds
)2
+ 1

4σ
2
(∫ 0

−∞
e
α
2 sdB̃(2∗)

s

)2
)
.

E[A] = 3

E[X0] +
(∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds

)2

+
1
4
σ2E

(∫ 0

−∞

e
α
2 sdB̃(2∗)

s

)2 .
∀s < 0, B̃(2∗)

s = B̄(2∗)
−s ,

E

(∫ 0

−∞

e
α
2 sdB̄(2∗)

s

)2 = E (∫ ∞

0
e−

α
2 udB̄(2∗)

u

)2 . (B.24)

Let IU =
∫ U

0
e−

α
2 udB̄(2∗)

u . By Itô’s isometry,

E[I2
U] = E

(∫ U

0
e−

α
2 udB̄(2∗)

u

)2 = E [∫ U

0
e−αudu

]
=

1
α

(1 − e−αU), (B.25)
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which is bounded in U on [0,+∞). Thus, by L2-bounded martingale convergence theo-

rem,

IU
a.s.
−−−−→
U→∞

I∞ =

∫ ∞

0
e−

α
2 udB̄(2∗)

u , (B.26)

with E[I2
∞] < ∞. In addition, by Assumption 2.2,(∫ 0

−∞

e
α
2 s 4L(s) − 3σ2

8
ds

)2

⩽

(
4KµKφ − 3σ2

4α

)2

.

This implies that E[A] ⩽ 3
(
E[X0] +

(
4KµKφ−3σ2

8
2
α

)2
+ 1

4σ
2E[I2

∞]
)
< ∞. Then,

|Yt − Ỹt| ⩽
√
Ae−

α
2 t and Yt − Ỹt

a.s.
−−−→
t→∞

0.

Further,

|Y2
t − Ỹ2

t | ⩽
√
Ae−

α
2 t

(
|Yt + Ỹt|

)
⩽
√
Ae−

α
2 t

(√
Ae−

α
2 t + 2|Yt|

)
= Ae−αt + 2

√
Ae−

α
2 t|Yt|,

(B.27)

by using the fact that |Yt + Ỹt| = |Yt + Ỹt − Yt + Yt| ⩽
√
Ae−

α
2 t + 2|Yt|.

sup
2n⩽t⩽2n+1

|Y2
t − Ỹ2

t | ⩽ Ae−α2n
+
√
Ae−

α
2 2n

(
2 sup

2n⩽t⩽2n+1
|Yt|

)
.

In addition, Yt = e−
α
2 t

√
X(2∗)

0 + e−
α
2 t

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(t)
ds +

σ

2
e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s implies

that

|Yt| ⩽

∣∣∣∣∣e− α2 t
√

X(2∗)
0

∣∣∣∣∣ +
∣∣∣∣∣∣∣e− α2 t

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(t)
ds

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣σ2 e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s

∣∣∣∣∣∣
⩽

∣∣∣∣e− α2 t
√

X0

∣∣∣∣ +
∣∣∣∣∣∣∣e− α2 t

∫ t

0
e
α
2 s 4L(s) − 3σ2

8
√

X(2∗)(t)
ds

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣σ2 e−

α
2 t

∫ t

0
e
α
2 sdB(2∗)

s

∣∣∣∣∣∣ .
Let Yt =

∣∣∣∣∣e− α2 t
∫ t

0
e
α
2 s 4L(s)−3σ2

8
√

X(2∗)(t)
ds

∣∣∣∣∣ + ∣∣∣∣σ2 e−
α
2 t

∫ t

0
e
α
2 sdB(2∗)

s

∣∣∣∣. Since the processes {X(t), t ⩾ 0}

and {X̃(t), t ⩾ 0} have continuous trajectories,

sup
2n⩽t⩽2n+1

|Yt| ⩽ |Ytn1 |, 2n ⩽ tn1 ⩽ 2n+1. (B.28)
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Further,

sup
t⩾0
E[|Yt|] ⩽ sup

t⩾0

(
e−

α
2 tE

[∫ t

0
e
α
2 s(4L(s) − 3σ2)

/
(8

√
X(2∗)(t))ds

]
+σ2 e−

α
2 tE

[∣∣∣∣∣∣
∫ t

0
e
α
2 sdB(2∗)

s

∣∣∣∣∣∣
])
,

and

e−
α
2 tE

∫ t

0

e
α
2 s(4L(s) − 3σ2)

8
√

X(2∗)(t)
ds

 = e−
α
2 t

∫ t

0

e
α
2 s(4L(s) − 3σ2)

8
E

[
1
/√

X(2∗)(t)
]

ds.

From Assumption 3.2, the dimension of model (3.2.8) is greater than 2. (B.32) implies

that

E
[
1
/√

X(2∗)(t)
]
⩽

√
E

[
1
/
X(2∗)(t)

]
⩽

√
sup
s⩾0
E

[
1
/
X(2∗)(s)

]
< ∞.

By Itô’s isometry,

E

∣∣∣∣∣∣
∫ t

0
e
α
2 sdB(2∗)

s

∣∣∣∣∣∣2
 = E [∫ t

0
eαsds

]
=

1
α

(eαt − 1). (B.29)

Hence, by combining (B.12), (B.14) and (B.29), sup
t⩾0
E[|Yt|] ⩽ K1∗ < ∞. Then,

E

[
sup

2n⩽t⩽2n+1
|Yt|

]
⩽ E

[
|Ytn1 |

]
⩽ sup

t⩾0
E[|Yt|] ⩽ K1∗ < ∞,

and further,

Ae−αt + 2
√
Ae−

α
2 t|Yt| ⩽ Ae−αt + 2

√
Ae−

α
2 t

(∣∣∣∣e− α2 t
√

X0

∣∣∣∣ + |Yt|

)
.

Because A and Yt are independent, from (B.27) and Cauchy-Schwartz inequality,

E

[
sup

2n⩽t⩽2n+1
|Y2(t) − Ỹ2(t)|

]
⩽ 3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

 e−α2n

+2

√
3

E[X2
0] +

(
4KµKφ − 3σ2

8
2
α

)2

E[X0] +
1
4
σ2E[I2

∞]E[X0]

e−α2n

+

√
3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

e− α2 2n
(2K1∗) ,
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by using E
[√
A
]
⩽
√
E [A] and E

[√
AX0

]
⩽
√
E [AX0]. This implies that

∞∑
n=1

E

[
sup

2n⩽t⩽2n+1
|Y2

j (t) − Ỹ2
j (t)|

]
⩽ 3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

 ∞∑
n=1

e−α2n

+2

√
3

E[X2
0] +

(
4KµKφ − 3σ2

8
2
α

)2

E[X0] +
1
4
σ2E[I2

∞]E[X0]

 ∞∑
n=1

e−α2n

+

√
3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

 ∞∑
n=1

e−
α
2 2n

< ∞.

From Borel-Cantelli’s lemma, Y2
t − Ỹ2

t
a.s.
−−−→
t→∞

0. Hence,

X(2∗)(t) − X̃(2∗)(t) = Y2
t − Ỹ2

t
a.s.
−−−→
t→∞

0. (B.30)

(2) From (B.27),

|X̃(2∗)(t) − X(2∗)(t)| = |Y2
t − Ỹ2

t | ⩽ Ae−αt + 2
√
Ae−

α
2 t|Yt|.

From E[A] ⩽ 3
(
E[X0] +

(
4KµKφ−3σ2

8
2
α

)2
+ 1

4σ
2E[I2

∞]
)
< ∞ and sup

t⩾0
E[|Yr

t |] ⩽ K1∗ < ∞,

E
[
|X̃(2∗)(t) − X(2∗)(t)|

]
⩽ 3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

 e−αt

+2

√
3

E[X2
0] +

(
4KµKφ − 3σ2

8
2
α

)2

E[X0] +
1
4
σ2E[I2

∞]E[X0]

e−αt

+2

√
3

E[X0] +
(
4KµKφ − 3σ2

8
2
α

)2

+
1
4
σ2E[I2

∞]

e− α2 tK1∗ −−−→
t→∞

0.

Then,

X̃(2∗)(t) − X(2∗)(t)
L1

−−−→
t→∞

0. (B.31)

Then, (B.23), (B.30) and (B.31) imply that

X̃(t) − X(t) =
(
X̃(1∗)(t) − X(1∗)(t)

)
+

(
X̃(2∗)(t) − X(2∗)(t)

) a.s. and L1

−−−−−−−→
t→∞

0.

This completes the proof. □
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Proof of Proposition 3.3.5. Since∣∣∣X̃(t)
∣∣∣ = ∣∣∣X̃(t) − X(t) + X(t)

∣∣∣ ≤ (∣∣∣X̃(t) − X(t)
∣∣∣ + |X(t)|

)
.

From Proposition 3.3.4,

sup
t≥0
E

[∣∣∣X̃(t) − X(t)
∣∣∣] ≤ sup

t≥0

(
E

[∣∣∣X̃(1∗)(t) − X(1∗)(t)
∣∣∣] + E [∣∣∣X̃(2∗)(t) − X(2∗)(t)

∣∣∣]) < ∞.
By Proposition 3.2.3, sup

t≥0
E[Xm(t)] ≤ Km. Then,

sup
t≥0
E

[∣∣∣X̃(t)
∣∣∣] ≤ (

sup
t≥0
E

[∣∣∣X̃(t) − X(t)
∣∣∣] + sup

t≥0
E [|X(t)|]

)
< ∞.

This completes the proof. □

Proof of Proposition 3.3.6. X̃0 = X̃(1∗)
0 +X̃(2∗)

0 ∼ σ2

4αχ
2(3,∆∗). This implies that E

[
1/X̃0

]
<

4α/σ2 < ∞. Further, for 0 < t ⩽ 1, by Fatou’s Lemma, that

E
[
1/X̃(t)

]
= E

[
lim
k→∞

1/X(t + k − 1)
]
⩽ lim inf

k
E [1/X(t + k − 1)] ⩽ sup

t⩾0
E [1/X(t)] .

By Proposition 3 in Alaya and Kebaier [2013], sup
t⩾0
E [(X(t))η] < ∞ for η ∈

[
−

2αβ
σ2 ,+∞

)
.

By Proposition B.2 and Assumption 3.2, that X(t) ⩽ X(t) a.s. which implies that

sup
t⩾0
E [(X(t))η] ⩽ sup

t⩾0
E [(X(t))η] < ∞, for η ∈

[
−

2αβ
σ2 , 0

)
, (B.32)

which implies that sup
t⩾0
E [1/X(t)] < ∞. Then, sup

t⩾0
E

[
1/X̃(t)

]
< ∞. □

Proof of Proposition 3.3.8. Let a = [a⊤1 , a2] with a1 a p−column vector, and a2 a scalar.

The matrix Σ is a positive definite matrix, as long as aΣa⊤ > 0 for any vector a. Then,

from the definition of a and Σ,

aΣa⊤ = a1

∫ 1

0
φ⊤(t)φ(t)E

[
1

X̃(t)

]
dta1 − 2a2

∫ 1

0
φ(t)dta1 + a2

∫ 1

0
E

[
X̃(t)

]
dta2.

Then,

aΣa⊤ =
∫ 1

0

a1φ
⊤(t)

√
1

E
[
X̃(t)

] − a2

√
E

[
X̃(t)

]
2

dt
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+a1

∫ 1

0
φ⊤(t)φ(t)

E [
1

X̃(t)

]
−

1

E
[
X̃(t)

] dta1.

Since from (3.3.4), E
[

1
X̃(t)

]
− 1
E[X̃(t)] is strictly positive, a⊤Σa = 0 if and only if

∫ 1

0

a1φ
⊤(t)

√
1

E
[
X̃(t)

] − a2

√
E

[
X̃(t)

]
2

dt = 0,∫ 1

0
(a1φ

⊤(t))2

E [
1

X̃(t)

]
−

1

E
[
X̃(t)

] dt = 0.

∫ 1

0
(a1φ

⊤(t))2

E [
1

X̃(t)

]
−

1

E
[
X̃(t)

] dt = 0 if and only if a1φ
⊤(t) = 0. By Assumption

2.2, a1 = 0. Further,∫ 1

0

a1φ
⊤(t)

√
1

E
[
X̃(t)

] − a2

√
E

[
X̃(t)

]
2

dt = 0 and a1 = 0

imply that a2 = 0. This is aΣa⊤ = 0 if and only if a = [a⊤1 , a2] is a zero vector. This

completes the proof. □

Proof of the Proposition 3.3.9. (1) By the fact ||φ(t)|| ⩽ Kφ,∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

0

φ⊤(t)φ(t)
X̃(t)

dt −
1
T

∫ T

0

φ⊤(t)φ(t)
X(t)

dt

∣∣∣∣∣∣
∣∣∣∣∣∣ ⩽ 1

T

∫ T

0

∣∣∣∣∣∣
∣∣∣∣∣∣φ⊤(t)φ(t)

X̃(t)
−
φ⊤(t)φ(t)

X(t)

∣∣∣∣∣∣
∣∣∣∣∣∣ dt

⩽
1
T

∫ T

0

∣∣∣∣∣∣φ⊤(t)φ(t)
∣∣∣∣∣∣ ∣∣∣∣∣∣ 1

X̃(t)
−

1
X(t)

∣∣∣∣∣∣ dt ⩽ K2
φ

1
T

∫ T

0

∣∣∣∣∣∣ 1
X̃(t)
−

1
X(t)

∣∣∣∣∣∣ dt.

Further, by Proposition 3.3.7,
1

X̃(t)
−

1
X(t)

a.s.
−−−→
t→∞

0, and by the continuous version of

Kronecker’s Lemma,
1
T

∫ T

0

∣∣∣∣∣∣ 1
X̃(t)
−

1
X(t)

∣∣∣∣∣∣ dt
a.s.
−−−→
t→∞

0, which implies that

1
T

∫ T

0

φ⊤(t)φ(t)
X̃(t)

dt −
1
T

∫ T

0

φ⊤(t)φ(t)
X(t)

dt
a.s.
−−−→
t→∞

0. (B.33)

Next step is to prove the convergence of
1
T

∫ T

0

φ⊤(t)φ(t)
X̃(t)

dt. First, since the period is

supposed to be 1,

1
T

∫ T

0

φ⊤(t)φ(t)
X̃(t)

dt =
1
T

⌊T ⌋∑
i=1

∫ i

i−1

φ⊤(t)φ(t)
X̃(t)

dt +
1
T

∫ T

⌊T ⌋

φ⊤(t)φ(t)
X̃(t)

dt.
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According to Proposition 3.3.3, the sequence of random variables {X̃(u + k − 1)}k∈N+

is stationary and ergodic. Since the function y = 1/x, x > 0 is a measurable function,

Birkhoff Ergodic Theorem is applied to the process
{∫ i

i−1
φ⊤(t)φ(t)

X̃(t) dt
}

i∈N+
.

1
T

⌊T ⌋∑
i=1

∫ i

i−1

φ⊤(t)φ(t)
X̃(t)

dt
a.s.
−−−−→
T→∞

∫ 1

0
φ⊤(u)φ(u)E

[
1

X̃(t)

]
du. (B.34)

Further, using Birkhoff Ergodic Theorem again,

1
T

∫ ⌊T ⌋+1

0

1
X̃(t)

dt =
1
T

⌊T ⌋+1∑
i=1

∫ i

i−1

1
X̃(t)

dt
a.s.
−−−−→
T→∞

∫ 1

0
E

[
1

X̃(t)

]
du.

Similarly, 1
T

∫ ⌊T ⌋
0

1
X̃(t)dt

a.s.
−−−−→
T→∞

∫ 1

0
E

[
1

X̃(t)

]
du, which implies that

1
T

∫ ⌊T ⌋+1

⌊T ⌋

1
X̃(t)

dt =
1
T

∫ ⌊T ⌋+1

0

1
X̃(t)

dt −
1
T

∫ ⌊T ⌋

0

1
X̃(t)

dt
a.s.
−−−−→
T→∞

0. (B.35)

From Assumption 2.2,

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ ⌊T ⌋+1

⌊T ⌋

φ⊤(t)φ(t)
X̃(t)

dt

∣∣∣∣∣∣
∣∣∣∣∣∣ ⩽ K2

φ
1
T

∣∣∣∣∣∣
∫ ⌊T ⌋+1

⌊T ⌋

1
X̃(t)

dt

∣∣∣∣∣∣, and (B.35) im-

plies

1
T

∫ ⌊T ⌋+1

⌊T ⌋

φ⊤(t)φ(t)
X̃(t)

dt
a.s.
−−−−→
T→∞

0. (B.36)

(B.33), (B.34) and (B.36) finish the proof of Step (1):

1
T

∫ T

0

φ⊤(t)φ(t)
X̃(t)

dt
a.s.
−−−−→
T→∞

∫ 1

0
φ⊤(u)φ(u)E

[
1

X̃(t)

]
du. (B.37)

Further,

1
T

∫ T

0
φ(t)dt =

1
T

⌊T ⌋∑
i=1

∫ i

i−1
φ(t)dt +

1
T

∫ T

⌊T ⌋
φ(t)dt.

By the periodic property of the function φ(t), let u = t − (i − 1) with u ∈ [0, 1), in

accordance with Assumption 2.2, φ (u + (i − 1)) = φ(u),

1
T

⌊T ⌋∑
i=1

∫ i

i−1
φ(t)dt =

1
T

⌊T ⌋∑
i=1

∫ 1

0
φ(u)du −−−−→

T→∞

∫ 1

0
φ(u)du. (B.38)

Further, by letting u = t − ⌊T ⌋ with u ∈ [0, 1], by to Assumption 2.2, φ(u + ⌊T ⌋) = φ(u),∣∣∣∣∣∣
∣∣∣∣∣∣ 1
T

∫ T

⌊T ⌋
φ(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣ ⩽ 1

T

∫ ⌊T ⌋+1

⌊T ⌋
||φ(t)|| dt ⩽

1
T

Kφ −−−−→
T→∞

0. (B.39)
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(B.38) and (B.39) imply that

1
T

∫ T

0
φ(t)dt −−−−→

T→∞

∫ 1

0
φ(u)du. (B.40)

From Proposition 3.3.4, X̃(t) − X(t)
a.s. and Lm

−−−−−−−−→
t→∞

0, and by the continuous version of Kro-

necker’s Lemma,

1
T

∫ T

0
(X̃(t) − X(t))dt

a.s. and Lm

−−−−−−−−→
T→∞

0.

Then,

1
T

∫ T

0
X̃(t)dt =

1
T

∫ ⌊T ⌋

0
X̃(t)dt +

1
T

∫ T

⌊T ⌋
X̃(t)dt =

1
T

⌊T ⌋∑
i=1

∫ i

i−1
X̃(t)dt +

1
T

∫ T

⌊T ⌋
X̃(t)dt

From the fact 0 ⩽
1
T

∫ T

⌊T ⌋
X̃(t)dt ⩽

1
T

∫ ⌊T ⌋+1

⌊T ⌋
X̃(t)dt,

1
T

∫ ⌊T ⌋

0
X̃(t)dt ⩽

1
T

∫ T

0
X̃(t)dt ⩽

1
T

∫ ⌊T ⌋+1

0
X̃(t)dt.

Since the process {X̃(t+k−1), t ∈ [0, 1]}k∈N+ is stationary and ergodic, by using Birkhoff

Ergodic Theorem,

1
T

⌊T ⌋∑
i=1

∫ i

i−1
X̃(t)dt

a.s.
−−−−→
T→∞

∫ 1

0
E

[
X̃(t)

]
dt. (B.41)

Similarly,

1
T

⌊T ⌋+1∑
i=1

∫ i

i−1
X̃(t)dt

a.s.
−−−−→
T→∞

∫ 1

0
E

[
X̃(t)

]
dt. (B.42)

(B.41) and (B.42) imply that

1
T

∫ T

0
X̃(t)dt

a.s.
−−−−→
T→∞

∫ 1

0
E

[
X̃(t)

]
dt (B.43)

From (B.37), (B.40), and (B.43), one concludes that 1
T Q[0,T ]

a.s.
−−−−→
T→∞

Σ.

(2) From Proposition 3.3.8, Σ is invertible. Then, T Q−1
[0,T ]

a.s.
−−−−→
T→∞

Σ−1, this completes the

proof. □
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Proof of Proposition 3.3.10. (1) For i = 1, 2, · · · , by Itô isometry,

E

( 1
√

T

∫ T

0

φi(t)
√

X(t)
dBt

)2 = E [
1
T

∫ T

0

φ2
i (t)

X(t)
dt

]
=

1
T

∫ T

0
φ2

i (t)E
[

1
X(t)

]
dt.

By Assumption 2.2 and (B.32), φ2
i (t) ⩽ K2

φ, and

sup
t⩾0
E

[
(X(t))−1

]
⩽ sup

t⩾0
E

[
r−1

t

]
< ∞,

which implies that

E

( 1
√

T

∫ T

0

φi(t)
√

X(t)
dBt

)2 ⩽ sup
t⩾0
E

[
(X(t))−1

]
K2
φ

1
T

∫ T

0
dt = sup

t⩾0
E

[
(X(t))−1

]
K2
φ.

For the last entry of 1
√

T
W[0,T ], to prove the boundedness of E

( 1
√

T

∫ T

0

√
X(t)dBt

)2.
Indeed,

E

( 1
√

T

∫ T

0

√
X(t)dBt

)2 = E [
1
T

∫ T

0
X(t)dt

]
.

By Proposition 3.2.2, sup
t⩾0
E[|X(t)|] < ∞, then, E

[
1
T

∫ T

0
X(t)dt

]
⩽ sup

t⩾0
E[|X(t)|] < ∞. This

proves Part (1).

(2) For any ε > 0,

P
(

sup
2k⩽T⩽2k+1

∥∥∥∥∥ 1
T

W[0,T ]

∥∥∥∥∥ > ε) ⩽ P
(

sup
2k⩽T⩽2k+1

∣∣∣W[0,T ](i)
∣∣∣ > ε2k

)

⩽

E

[
sup

2k⩽T⩽2k+1

∥∥∥W[0,T ]

∥∥∥2
]

ε222k ⩽ max
(
sup
t⩾0
E

[
(X(t))−1

]
K2
φ, sup

t⩾0
E[|X(t)|]

)
2k+1

ε222k ,

and then
∞∑

k=1

P
(

sup
2k⩽T⩽2k+1

∥∥∥W[0,T ]

∥∥∥ > ε) ⩽ max
(
sup
t⩾0
E

[
(X(t))−1

]
K2
φ, sup

t⩾0
E[|X(t)|]

)
4
ε2 < ∞.

Therefore, by Borel–Cantelli’s lemma,
1
T

W[0,T ]
a.s.
−−−−→
T→∞

0. □

Proof of Lemma 3.3.1. (1). The proof is proven by combining Proposition 3.3.4, Propo-

sition 3.3.7 along with Markov’s inequality and Itô’s isometry.

(2). Weak convergence on the space Cp+1[0, 1] with the uniform topology is concerned;
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Cp+1[0, 1] is metrized by taking the distance between two functions x = x(t) and y = y(t)

to be

ρ(x, y) = sup
0⩽t⩽1
||x(t) − y(t)|| .

At each t ∈ [0, 1], f : [0, 1] 7→ Rp+1. || f || = sup
0⩽s⩽1
|| f (s)||. The modulus of continuity of

an arbitrary function f on [0, 1] is defined as

w f (δ) = sup
|s−u|⩽δ

|| f (s) − f (u)|| , 0 < δ ⩽ 1. (B.44)

A necessary and sufficient condition for f to be uniformly continuous over [0, 1] is

lim
δ→0

w f (δ) = 0. In our case, for 0 < δ ⩽ 1,

lim
δ→0

wW̃(T )(δ) = lim
δ→0

sup
|s−u|⩽δ

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣ .

For any ε > 0, without loss of generality, suppose u < s. By Markov inequality,

P

 sup
1

2k+1 <s−u⩽ 1
2k

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2 > ε

= P

 sup
1

2k+1 <s−u⩽ 1
2k

 p∑
i=1

(∫ sT

uT

(
φi(t)/

√
X̃(t)

)
dBt

)2

+

(∫ sT

uT

√
X̃(t)dBt

)2 > εT

 .
By Markov’s inequality,

P

 sup
1

2k+1 <s−u⩽ 1
2k

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2 > ε

⩽

E

 p∑
i=1

sup
1

2k+1 <s−u⩽ 1
2k

(∫ sT

uT

(
φi(t)/

√
X̃(t)

)
dBt

)2
 + E

 sup
1

2k+1 <s−u⩽ 1
2k

(∫ sT

uT

√
X̃(t)dBt

)2


εT

=

p∑
i=1
E

 sup
1

2k+1 <s−u⩽ 1
2k

(∫ sT

uT

(
φi(t)/

√
X̃(t)

)
dBt

)2
 + E

 sup
1

2k+1 <s−u⩽ 1
2k

(∫ sT

uT

√
X̃(t)dBt

)2


εT
.
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From Burkholder-Davis-Gundy inequality,

P

 sup
1

2k+1 <s−u⩽ 1
2k

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2 > ε ⩽ 4

(
pK2

φ sup
t⩾0
E

[
1/X̃(t)

]
+ sup

t⩾0
E

[
X̃(t)

]) 1
2kε

.

Then,
∞∑

k=1

P

 sup
1

2k+1 <s−u⩽ 1
2k

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2 > ε

⩽

(
pK2

φ sup
t⩾0
E

[
1/X̃(t)

]
+ sup

t⩾0
E

[
X̃(t)

]) 4
ε

∞∑
k=1

1
2k < ∞.

By Borel–Cantelli Lemma, lim
δ→0

sup
|s−u|⩽δ

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2 = 0, which implies that

lim
δ→0

wW̃(T )(δ) = 0. Then, W̃ (T )(s) is uniformly continuous with respect to s, i.e. W̃ (T )(s) ∈

Cp+1[0, 1]. Let PT be the probability measure of the functional diffusion process W̃ (T )(s)

defined on the space Cp+1[0, 1]. From Theorem 7.3 in Billingsley [2013], (PT )T>0 is

tight if and only if for each positive η > 0, there exist an a and an T0 such that

PT

({
W̃ (T ) ∈ Cp+1[0, 1] :

∣∣∣∣∣∣W̃ (T )(0)
∣∣∣∣∣∣ ⩾ a

})
⩽ η, T ⩾ T0 (B.45)

and for ∀ ε > 0,

lim
δ→0

lim sup
T→∞

PT

({
W̃ (T ) ∈ Cp+1[0, 1] : wW̃(δ) ⩾ ε

})
= 0. (B.46)

The relation in (B.45) is established by combining Itô’s isometry and Markov’s inequal-

ity along with some algebraic computations. Further, by Markov inequality, for ∀ ε > 0,

PT

({
W̃ (T ) ∈ Cp+1[0, 1] : wW̃(δ) ⩾ ε

})
⩽ E

[
sup
|s−u|⩽δ

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2] /ε2.

Without loss of generality, suppose that s > u. Then,

E

[
sup
|s−u|⩽δ

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2] ⩽ 1

T

p∑
i=1

E

 sup
s−u⩽δ

(∫ sT

uT
(φi(t)/

√
X̃(t))dBt

)2
+

1
T
E

 sup
s−u⩽δ

(∫ sT

uT

√
X̃(t)dBt

)2 .
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By Burkholder-Davis-Gundy inequality,

E

 sup
s−u⩽δ

(∫ sT

uT
(φi(t)/

√
X̃(t))dBt

)2 ⩽ 4K2
φ

∫ (u+δ)T

uT
E

[
1/X̃(t)

]
dt ⩽ 4K2

φ sup
t⩾0
E

[
1/X̃(t)

]
δT.

Similarly, E
[

sup
s−u⩽δ

(∫ sT

uT

√
X̃(t)dBt

)2
]
⩽ 4 sup

t⩾0
E

[
X̃(t)

]
δT . Therefore,

E

[
sup
|s−u|⩽δ

∣∣∣∣∣∣W̃ (T )(s) − W̃ (T )(u)
∣∣∣∣∣∣2] ⩽ 4

(
sup
t⩾0
E

[
1/X̃(t)

]
+ sup

t⩾0
E

[
X̃(t)

])
δ.

The fact sup
t⩾0
E

[
1/X̃(t)

]
< ∞ and sup

t⩾0
E

[
X̃(t)

]
< ∞, for ∀ ε > 0, implies

lim
δ→0

lim sup
T→∞

PT

({
W̃ (T ) ∈ Cp+1[0, 1] : wW̃(δ) ⩾ ε

})
= 0.

This completes the proof of Part (2).

(3) W̃ (T )(s) = 1
√

T

⌊sT ⌋∑
i=1

∫ i

i−1

(
(φ(t),−X̃(t))/

√
X̃(t)

)
dBt +

1
√

T

∫ sT

⌊sT ⌋

(
(φ(t),−X̃(t))/

√
X̃(t)

)
dBt,

where 1
√

T

∫ sT

⌊sT ⌋

(
(φ(t),−X̃(t))/

√
X̃(t)

)
dBt

P
−−−−→
T→∞

0. It is obvious that the random se-

quence {ϑi =

∫ i

i−1

(φ(t),−X̃(t))√
X̃(t)

dBt, i ⩾ 1} is a strictly stationary and ergodic sequence.

Further, E[ϑi|Fi−1] = 0 and Var(ϑi) = Σ, and ||Σ|| < ∞. Then, by combining central

limit theorem for martingale difference sequences and Slutsky’s theorem, W̃ (T )(s)
D
−−−−→
T→∞

W̃∗(s) ∼ Np+1(0, sΣ), Further, for 0 < u < s < 1, one has

W̃ (T )(s) − W̃ (T )(u) =
1
√

T

⌊sT ⌋∑
i=⌊uT ⌋+1

∫ i

i−1

(φ(t),−X̃(t))√
X̃(t)

dBt −
1
√

T

∫ uT

⌊uT ⌋

(φ(t),−X̃(t))√
X̃(t)

dBt

+
1
√

T

∫ sT

⌊sT ⌋

(φ(t),−X̃(t))√
X̃(t)

dBt.

One proves that

1
√

T

∫ uT

⌊uT ⌋

(φ(t),−X̃(t))√
X̃(t)

dBt
P
−−−−→
T→∞

0 and
1
√

T

∫ sT

⌊sT ⌋

(φ(t),−X̃(t))√
X̃(t)

dBt
P
−−−−→
T→∞

0,

W̃ (T )(s) − W̃ (T )(u)
D
−−−−→
T→∞

W̃∗(s − u) ∼ Np+1(0, (s − u)Σ),

Cov
(
W̃ (T )(u),

(
W̃ (T )(s) − W̃ (T )(u)

))
= 0.

This results and Part (1) of the lemma imply that {W̃ (T )(s), 0 ⩽ s ⩽ 1} converges
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weakly to a mean zero Gaussian process {W̃∗(s), 0 ⩽ s ⩽ 1} with Cov
(
W̃∗(s), W̃∗(u)

)
=

min(u, s)Σ for all 0 ⩽ u , s ⩽ 1. This completes the proof. □

Proof of Proposition 3.3.11. First, Proposition 3.3.9 and Proposition 3.3.10 imply the

following convergence: θ̂T
a.s.
−−−−→
T→∞

θ. Further, ρT = σ
√

T Q−1
[0,T ]W[0,T ] = σT Q−1

[0,T ]
1
√

T
W[0,T ].

By Proposition 3.3.9, σT Q−1
[0,T ]

a.s.
−−−−→
T→∞

σΣ−1, and by Lemma 3.3.1,

1
√

T
W[0,T ]

D
−−−−→
T→∞

W̃∗
1 ∼ Np+1 (0,Σ) . (B.47)

Then, by Slutsky’s Theorem, ρT = σT Q−1
[0,T ]

1
√

T
W[0,T ]

D
−−−−→
T→∞

σΣ−1W∗
1 = ρ. Note that

Σ−1 is non-random and symmetric, then, ρ ∼ Np+1

(
0, σ2Σ−1

)
. Hence,

√
T (θ̂T − θ)

D
−−−−→
T→∞

ρ ∼ Np+1

(
0, σ2Σ−1

)
. This completes the proof. □

Proof of Theorem 3.3.1. For every θ ∈ Θ, and arbitrary bounded sequences h ∈ Rp+1,

log(ZT (h)) =
1
σ2

∫ T

0

S (t, θ + h/
√

T , X(t)) − S (t, θ, X(t))
X(t)

dX(t)

−
1

2σ2

∫ T

0

(
S (t, θ + h/

√
T , X(t)) − S (t, θ, X(t))

)2

X(t)
dt,

then, by using the fact that Bt =
∫ t

0
1

σ
√

X(s)
dX(s) is a Ft measurable Brownian motion,

log(ZT (h)) =
1
σ

∫ T

0

S (t, θ + h/
√

T , X(t)) − S (t, θ, X(t))
√

X(t)
dBt

−
1

2σ2

∫ T

0

(
S (t, θ + h/

√
T , X(t)) − S (t, θ, X(t))

)2

X(t)
dt.

Then,

log(ZT (h)) =
1
σ

∫ T

0

(θ + h/
√

T )⊤(φ(t),−X(t))⊤ − θ⊤(φ(t),−X(t))⊤
√

X(t)
dBt

−
1

2σ2

∫ T

0

(
(θ + h/

√
T )⊤(φ(t),−X(t))⊤ − θ⊤(φ(t),−X(t))⊤

)2

X(t)
dt.
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This gives

log(ZT (h)) =
1
σ

h⊤
1
√

T

∫ T

0

(φ(t),−X(t))⊤
√

X(t)
dBt

−
1

2σ2 h⊤
(

1
T

∫ T

0

(φ(t),−X(t))⊤(φ(t),−X(t))
X(t)

dt
)

h.

Let ∆T (θ0, XT ) = 1
√

T
W[0,T ] and rT (θ0, h, XT ) = 1

2σ2 h⊤
(

1
T Q[0,T ] − Σ

)
h. Then, together

with (3.3.1) and (3.3.2), log(ZT (h)) = 1
σ

h⊤∆T (θ0, XT ) − 1
2σ2 h⊤Σh − rT (θ0, h, XT ), where

∆T (θ0, XT ) = 1
√

T
W[0,T ]

D
−−−−→
T→∞

W̃∗(1) ∼ Np+1 (0,Σ), and by Proposition 3.3.9 1
T Q[0,T ]

a.s.
−−−−→
T→∞

Σ, which implies that rT (θ0, h, XT )
Pθ0
−−−−→
T→∞

0. This completes the proof. □

B.4 Proofs on asymptotic test and distributional risk analysis

B.4.1 On convergence of the test statistic

Proof of Proposition 3.4.1. From Proposition 3.3.12 and Proposition 3.3.9 along with

Slutsky’s theorem, ςT
D
−−−−→
T→∞

ς ∼ Np+1(G∗r0, σ
2G∗MΣ−1). Furthermore, by Proposi-

tion 3.3.9,

ψT = ς
⊤
T Γ̂ςT

D
−−−−→
T→∞

ψ = ς⊤Γς, where ςT
D
−−−−→
T→∞

ς ∼ Np+1(G∗r0, σ
2G∗MΣ−1). Further, the

proof follows from Theorem 5.1.3 in Mathai and Provost [1992], which is similar to the

proof of Proposition 2.4.9. This completes the proof. □

C Proofs related to GCKLS process

C.1 Boundary classification for regular diffusion processes

From Karlin and Taylor [1981], let X(t) be a regular diffusion process on an interval

I = (0,+∞) where 0 is the left boundary and ∞ is the right boundary. From [Karlin

and Taylor, 1981, Chapter 15, Section 1, Page 159], let ∆hX(t) be the increment in the
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process accrued over a time interval of length h. Thus, ∆hX(t) = Xt+h − X(t). let

lim
h→0+

1
h
E [∆hX(t)|X(t) = x] = µ(x, t) = L(t) − αx,

and

lim
h→0+

1
h
E

[
{∆hX(t)}2|X(t) = x

]
= σ2(x, t) = σ2(x)2δ.

For x in (0,∞), we postulate the continuous infinitesimal drift and variance coefficients

L(t) − αx and σ2(x)2δ > 0, respectively. In the following, we concentrate on the left

boundary 0, the right being entirely similar. Let Tz is the hitting time to z and Ta,b =

Ta ∧ Tb = min{Ta,Tb}. The approach is to let a decrease to 0 in the quantities

u(x) = ua,b(x) = Pr(Tb < Ta|X(0) = x) (C.1)

and

v(x) = va,b(x) = E[Ta,b|X(0) = x], 0 < a < x < b < ∞. (C.2)

The scale function Q(x, t) is defined with explicit expression

Q(x, t) =
∫ x

x0

q(u, t)du, q(u, t) = exp
{
−

∫ u

u0

2(L(t) − αη)/(σ2η2δ)dη
}

(C.3)

where x0 and u0 are arbitrary fixed points in the open interval (0,∞). It simplifies the

exposition if we introduce the scale measure, the function Q([J], t) of closed intervals

J = [c, d] ⊂ (0,∞) defined by

Q([J], t) = Q([c, d], t) = Q(d, t) − Q(c, t).

let both the scale function and scale measure by the same symbol Q; no confusion

results.

We freely use the scale measure ∂
∂xQ(x, t)dx = Q([dx], t) of an infinitesimal interval

[x, x + dx] with Q([dx], t) = Q(x + dx, t) − Q(x, t) = ∂
∂xQ(x, t)dx = q(x, t)dx. For

example, we evaluate
∫ d

c
f (x) ∂

∂xQ(x, t)dx using the usual integral
∫ d

c
f (x)q(x, t)dx, for,

say, piecewise continuous function f (x). It is easy to check that 0 < Q([c, d], t) < ∞ for
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0 < c < d < ∞, and that

Q([c, d], t) = Q([c, x], t) + Q([x, d], t), for 0 < c < x < d < ∞. (C.4)

Similarly, we introduce the speed measure M induced by the speed density m(x, t) =

1/(σ2x2δq(x, t)), where

M([J], t) =M([c, d], t) =
∫ d

c
m(x, t)dx, J = [c, d] ⊂ (0,∞).

Again,M([J], t) is positive and finite for J = [a, b] ⊂ (0,∞). In terms of the scale and

speed measures, (C.1) and (C.2) are written

u(x, t) = ua,b(x, t) = Q([a, x], t)/Q([a, b], t), 0 < a < x < b < ∞. (C.5)

and

v(x, t) = va,b(x, t) = 2
{
u(x, t)

∫ b

x
Q([η, b], t) ∂

∂η
M(η, t)dη

+[1 − u(x, t)]
∫ x

a
Q([a, η], t) ∂

∂η
M(η, t)dη

}
.

(C.6)

It follows from the nonnegativity of the measure Q and (C.4) that Q([a, b], t) is mono-

tonic in a for fixed b and that therefore we may define Q((0, b], t) ⩽ ∞ by

Q((0, b],T ) = lim
a↓0

Q([a, b], t) ⩽ ∞, 0 < b < ∞. (C.7)

If [a, b] ⊂ (0,∞), then, 0 ⩽ Q([a, b], t) < ∞. As an easy consequence of this and (C.4),

Q((0, b], t) = ∞ for some b ∈ (0,∞) if and only if

Q((0, b], t) = ∞ for all b ∈ (0,∞) (C.8)

Because the limiting behavior occurs as a → 0+, we don’t consider the limit of right

endpoint. Then, if Q((0, b], t) = ∞, Q((0, b], t) = ∞ for all b ∈ (0,∞).

Definition C.1 (Definition 6.1 [Karlin and Taylor, 1981] Page 228). The boundary 0 is

attracting if Q((0, x], t) < ∞ and this criterion applies independently of x in (0,∞).
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We define

Σ(0, t) = lim
a↓0

∫ x

a
Q([a, ξ], t)

∂

∂ξ
M(ξ, t)dξ =

∫ x

0
Q([a, ξ], t)

∂

∂ξ
M(ξ, t)dξ

=

∫ x

0

{∫ ξ

0
q(η, t)dη

}
m(ξ, t)dξ =

∫ x

0

{∫ ξ

0
m(ξ, t)dξ

}
q(η, t)dη (C.9)

Note that introduced the notation Σ(0, t) = Σ(0) to represent the above double integral.

It depends on t but in later considerations only whether its value is finite or infinite is rel-

evant and we can therefore suppress the dependence on t without ambiguity. Expressed

in terms of Σ(0) the following dichotomy.

Definition C.2 (Definition 6.2 [Karlin and Taylor, 1981] Page 230). The boundary 0 is

said to be

1. attainable if Σ(0) < ∞,

2. unattainable if Σ(0) = ∞.

C.2 On the solution of SDE and derivation of ergodicity

Proposition C.1. Proposition 2.13 (Yamada & Watanabe 1971) [Karatzas and Shreve,

1998, Page 291]. Let us suppose that the coefficients of the one-dimensional equation

(d=r=1),

dX(t) = φ(t, X(t))dt + σ(t, X(t))dWt (C.10)

satisfy the condition |φ(t, x) − φ(t, y)| ⩽ K|x − y|, and |σ(t, x) − σ(t, y)| ⩽ h(|x − y|),

for every 0 ⩽ t < ∞ and x ∈ R, y ∈ R, where K is a positive constant and h : [0,∞) →

[0,∞) is a strictly increasing function with h(0) = 0 and
∫

(0,ϵ)
h−2(u)du = ∞; for any ϵ >

0. Then strong and uniqueness hold for the solution of the SDE (C.10).

The following content is from Revuz and Yor [1999] [Chapter III Page 79].
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We consider a Markov process {X(t), t ⩾ 0}with state space (E,E ). For A ∈ E , s < t,

the conditional probability P[X(t) ∈ A|σ(X(u), u ⩽ s)] should be a function of X(s), that

is of the form g(X(s)), where g is an E−measurable and taking its values on the interval

[0, 1]. It would better be written gs,t to indicate the dependence on s and t. On the other

hand, this conditional expectation depends on A and clearly, is a function of A. We thus

come to the idea that the above conditional expectation may be written gs,t(X(s), A),

where for each A, x 7→ gs,t(x, A) is measurable and for each x, A 7→ gs,t(x, A) is a

probability measure.

Definition C.3 (Kernel). Suppose that (E,E ) and (E1,E1) are measurable spaces, a Ker-

nel from (E,E ) to (E1,E1) is a function P : E × E1 such that

1. x 7→ P(x, A) is a measurable function from E into [0,+∞) for each A ∈ E1.

2. A 7→ P(x, A) is a positive measure on E1 for each a ∈ E.

If (E,E ) = (E1,E1), then P is said to be a kernel on (E,E ).

A kernel P is called a transition probability if P(x, E) = 1 for every x ∈ E. For a

positive function f : E 7→ R+, we define a function P f on E by

P f (x) =
∫

E
P(x, dy) f (y).

Suppose that a process {X(t), t ⩾ 0} for which, for any s < t, there is a transition

probability Ps,t such that

P[X(t) ∈ A|σ(X(u), u ⩽ s)] = Ps,t(X(s), A), a.s.

Then for the function f defined above, E[ f (X(t))|σ(X(u), u ⩽ s)] = Ps,t f (X(s)). Particu-

larly, if the process starts at time 0 and given X0 = x, let P0,t(x, A) as Pt(x, A). Transition

probability Ps,t is written as P0,t.
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In order to prove the ergodicity of the stochastic process {X(t), t ⩾ 0}, in this paper

we use the method from Höpfner et al. [2016]. For convenience, some of the precon-

ditions needed for this proof are given below. In Proposition 4.3.1 of this paper, which

proves the ergodicity, we verify that these preconditions hold one by one.

Assumption C.1. Höpfner et al. [2016]

a) For some strictly increasing sequence (Gm)m of bounded convex open sets in R∗,

and compacts Cm := cl(Gm), R∗ =
∞⋃

m=1
Cm and E = B(R∗).

b) ∂(R∗)
⋂
R∗ is an entrance boundary for the process X(t).

b’) From positions x ∈ Cm\Gm+1 almost surely, the process X(t) immediately enters

Gm+1.

c) Defining stopping times Tm := inf{t > 0 : X(t) < Cm} for the process, Tm ↑ ∞ as

m→ ∞ almost surely, for every choice of a starting point x ∈ R∗.

d) The components of coefficients for equation (4.2.2)

(t, x) 7→ S (t, x, θ), x 7→ σ(x)

are C∞-functions on R+ × U for some open set U ⊂ R which contains R∗.

The above assumption combines properties of the process (such as non-explosion or

behavior at the boundary) with topological properties of E. In our case, E = R∗+.

Assumption C.2. Höpfner et al. [2016]

a) We take the drift 1-periodic in the time variable:

S (t, x) = S (i1(t), x), iT (t) := t modulo 1.
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b) a Lyapunov function V : R∗ 7→ [1,+∞), in the following sense: V is E -measurable;

there is a compact K contained in R∗ (i.e. K ⊂ R∗, and K , R∗) and some ε > 0

such that

P0,T V is bounded on K, P0,T V ⩽ V − ε on R∗\K.

By Assumption C.2 a), the semigroup of the process (4.2.2) is 1-periodic in time

which means that

Ps,t(x, dy) = Ps+k,t+k(x, dy), k ∈ N0.

This implies that the 1-skeleton chain (Xk)k∈N0 is a time-homogeneous Markov chain.

By Assumption C.2 b), it evolves as a nonnegative supermartingale as long as it stays

outside K. As a consequence, the skeleton chain has to visit the compact K infinitely

often, almost surely, for arbitrary choice of a starting point in R∗+.

The following definitions are also needed in the proof of Proposition 4.3.1 and The-

orem 2.2 in Höpfner et al. [2016](page 531).

Definition C.4. [Höpfner et al., 2016, page 14] In the sequel given an SDE dX(t) =

S (t, X(t))dt + Σ(X(t))dBt driven by a Brownian motion B in the Ito sense, we will need

to pass to its Statonovitch form dX(t) = S̃ (t, X(t))dt + σ(X(t))dBt with Stratonovich

drift

S̃ (t, x) = S (t, x) −
1
2
σ(x)

d
dx
σ(x).

Definition C.5 (Definition 1 Höpfner et al. [2016]). A point x∗ in R∗ is called attainable

in a sense of deterministic control if it belongs to int(R∗) and if the following holds:

for arbitrary x ∈ R∗, we can find some ḣ in L2
loc (the class of 1-dimensional measurable

functions with components ḣ satisfying
∫ t

0
[ḣ(s)]2ds < ∞ for all t < ∞) depending on x

and x∗ which drives the deterministic control system with Stratonovich drift S̃ (·, ·)

dϕ(t) = S̃ (t, ϕ(t))dt + σ(ϕ(t))ḣ(t)dt,
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from starting point φ(0) = x towards the limit x∗ = lim
t→∞

ϕ(t) under the constraint ϕ(t) ∈

int(E) for all t > 0. In this case we set ϕ := ϕ(h,x,x∗).

Remark C.6. The Stratonovich drift S̃ (·, ·) is defined in Definition C.4.

Definition C.7 (Definition 3.3 in Höpfner et al. [2016]). (Page 538) We say that a point

x∗ ∈ U ⊃ R∗ is of full weak Höermander dimension if there is some N ∈ N+, such that(
dim ∆L∗N

)
(s, x∗) = 1 independently o f s ∈ R+

Assumption C.3. Höpfner et al. [2016] There is a point x∗ ∈ int(R∗) with the following

two properties: x∗ is of full weak Höermander dimension (Definition C.7), and x∗ is

attainable in a sense of deterministic control.

Definition C.8. [Lie bracket of vector fields] In the mathematical field of differential

topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the

commutator of vector fields, is an operator that assigns to any two vector fields X and Y

on a smooth manifold M a third vector field denoted [X,Y]. If M is (an open subset of)

Rn, then the vector fields X and Y can be written as smooth maps of the form X : M 7→

Rn and Y : M 7→ Rn, and the Lie bracket [x, y] : M 7→ Rn is given by:

[X,Y] := JY X − JXY

where JY and JX are n × n Jacobian matrices.

Definition C.9 ( Definition 3.2 in Höpfner et al. [2016]). Define a set L of vector fields

by initial condition V1,V2, · · · ,Vm ∈ L, and arbitrary number of iteration steps

L ∈ L =⇒ [L,V1], [L,V2], · · · , [L,Vm] ∈ L (C.11)

For N ∈ N, define the subset LN by the same initial condition and at most N iterations

(C.11). Write L∗N for the closure of LN under Lie brackets (Definition C.8); finally,

write ∆L∗N = LA(LN) for the linear hull of L∗N , i.e. the Lie algebra spanned by LN .
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Proof of Proposition 4.2.1. (1). Like in the reference of [Karlin and Taylor, 1981, Chap-

ter 15, Section 6, Page 226], define the scale function Q(x, t) with explicit expression

Q(x, t) =
∫ x

x0

q(u)du, q(u, t) = exp
{
−

∫ u

u0

2(L(t) − αη)/(σ2η2δ)dη
}

(C.12)

where x0 and u0 are arbitrary fixed points inside (0,∞). From Assumption 2.2, the

function L(t) is bounded in t. Then, take the scale function as an univariate function of

x. Further, introduce the scale measure dQ(x, t) = Q([dx], t) of an infinitesimal interval

[x, x + dx] with

Q([dx], t) = Q(x + dx, t) − Q(x, t) = dQ(x, t)dx = q(x, t)dx.

Similarly, we introduce the speed measure M induced by the speed density m(x, t) =

1/(σ2x2δq(x, t)), where

M([c, d], t) =
∫ d

c
m(x, t)dx, [c, d] ⊂ (0,∞).

To give new notations, let

p(l, t, x) =
∫ x

l

{∫ x

η

m(ξ, t)dξ
}

q(η, t)dη,

where x is the initial state of the process defined in (4.2.2). In our case, take u0 = x0,

q(x, t) = exp
{
−

2L(t)
σ2(1 − 2δ)

(x1−2δ − x1−2δ
0 ) +

α

σ2(1 − δ)
(x2−2δ − x2−2δ

0 )
}
, (C.13)

and

m(x, t) =
1

σ2x2δ exp
{

2L(t)
σ2(1 − 2δ)

(x1−2δ − x1−2δ
0 ) −

α

σ2(1 − δ)
(x2−2δ − x2−2δ

0 )
}
.

Since 0 < δ < 1/2, 1 − 2δ > 0 and 2 − 2δ > 1. From Assumption 2.2,

Cδ,x = sup
0⩽u⩽x

t⩾0

exp
{

2L(t)
σ2(1−2δ) (u

1−2δ − x1−2δ
0 ) − α

σ2(1−δ) (u
2−2δ − x2−2δ

0 )
}
< ∞. Then,

p(l, t, x) =
∫ x

l

{∫ x

η
m(ξ, t)dξ

}
q(η, t)dη ⩽

∫ x

l

{∫ x

η
1

σ2ξ2δCδ,xdξ
}

q(η, t)dη, and then

p(l, t, x) ⩽
1
σ2 Cδ,x

1
1 − 2δ

x1−2δ
∫ x

l
q(η, t)dη −

1
σ2 Cδ,x

1
1 − 2δ

l1−2δ
∫ x

l
q(η, t)dη.
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This gives p(l, t, x) ⩽ 1
σ2 Cδ,x

1
1−2δ

(
x1−2δ − l1−2δ

) ∫ x

l
q(η, t)dη. Further,

C∗δ,x = sup
0⩽u⩽x

t⩾0

exp
{
−

2L(t)
σ2(1 − 2δ)

(u1−2δ − x1−2δ
0 ) +

α

σ2(1 − δ)
(u2−2δ − x2−2δ

0 )
}
< ∞,

which implies that
∫ x

l
q(η, t)dη ⩽ C∗δ,x(x − l). Then, since η < x,

p(l, t, x) ⩽
1
σ2 Cδ,x

1
1 − 2δ

(
x1−2δ − l1−2δ

)
C∗δ,x(x − l).

To introduce a new notation, let p(l, t, x) = p(l). Only consider the boundary when

l → 0 is considered. This implies that p(0) < ∞ for all t ⩾ 0 and some x in (0,∞).

From Definition 6.2 in Karlin and Taylor [1981], 0 is always an attainable boundary for

0 < δ < 1/2.

(2). For δ ∈ (1/2, 1),

0 < 1 − δ < 1/2, − 1 < 1 − 2δ < 0. (C.14)

Then, (C.13) implies that

Q([l, x], t) =
∫ x

l
q(η, t)dη =

∫ x

l
exp

{
−

2L(t)
σ2(1 − 2δ)

(η1−2δ − x1−2δ
0 )

+
α

σ2(1 − δ)
(η2−2δ − x2−2δ

0 )
}

dη

⩾ exp
{
−

2L(t)
σ2(1 − 2δ)

(−x1−2δ
0 ) +

α

σ2(1 − δ)
(l2−2δ − x2−2δ

0 )
}∫ x

l
exp

{
−

2L(t)
σ2(1 − 2δ)

η1−2δ
}

dη.

let K∗t = −
2L(t)

σ2(1−2δ) > 0, which is independent with x and l. Then, for η in the interval

[l, x],

exp
{
−

2L(t)
σ2(1 − 2δ)

η1−2δ
}
= exp

{
K∗t η

1−2δ
}
=

∞∑
i=0

(
K∗t η

1−2δ
)i

i!
=

∞∑
i=0

(
K∗t

)i

i!
η(1−2δ)i.

Since each term
(
K∗t η

1−2δ
)i

is continuous for η ∈ [l, x]∫ x

l
exp

{
−

2L(t)
σ2(1 − 2δ)

η1−2δ
}

dη =
∞∑

i=0

(
K∗t

)i

i!

∫ x

l
η(1−2δ)idη
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=

∞∑
i=0

(
K∗t

)i

i!
1

(1 − 2δ)i + 1
x(1−2δ)i+1 −

∞∑
i=0

(
K∗t

)i

i!
1

(1 − 2δ)i + 1
l(1−2δ)i+1.

Since −(i + 1) < (1 − 2δ)i + 1 < 1,∫ x

l
exp

{
−

2L(t)
σ2(1 − 2δ)

η1−2δ
}

dη > x
∞∑

i=0

(
K∗t x1−2δ

)i

i!
+ l

∞∑
i=0

(
K∗t l1−2δ

)i

(i + 1)!
.

Then ∫ x

l
exp

{
−

2L(t)
σ2(1 − 2δ)

η1−2δ
}

dη > x exp
{
K∗t x1−2δ

}
+

l2δ

K∗t

(
exp

{
K∗t l1−2δ

}
− 1

)
.

lim
l→0+

l2δ
K∗t

exp
{
K∗t l1−2δ

}
= ∞ implies that Q((0, x], t) = lim

l→0+
Q([l, x], t) = ∞. From Lemma

6.3 [Karlin and Taylor, 1981, Page 231], Q((0, x], t) = ∞ implies p(0) = ∞. From Defi-

nition C.2 in [Karlin and Taylor, 1981, Page 230], 0 is always an unattainable boundary

for 1/2 < δ < 1.

(3). This proof is similar to step (1) or (2).

(4). If δ = 1/2, the model in consideration is the case of generalized CIR model. By

similar calculation, it finishes the proof. □

Proof of Proposition 4.2.2. To apply Proposition 2.13 (Yamada-Watanabe Theorem 1971)

Karatzas and Shreve [1998], the necessary step is to verify that all the requirements are

met (∀ x, y ⩾ 0).

(1) First, by (4.2.2),

|S (t, x) − S (t, y)| = |(L(t) − αx) − (L(t) − αy)| = α|x − y|, which implies that the

drift term S (t, x) satisfies Lipschitz condition.

(2) Second, the function σxδ vanishes at 0 and satisfies the Hölder condition, which is∣∣∣σxδ − σyδ
∣∣∣ ⩽ σ|x − y|δ.

Indeed, by choosing h(u) = σuδ, |σ(t, x) − σ(t, y)| = σ|xδ − yδ|. Further, |x + y|δ ⩽

|x|δ + |y|δ. Without loss of generality, suppose 0 < y < x. Replacing x by x − y,



C Proofs related to GCKLS process 262

|x|δ − |y|δ ⩽ |x − y|δ, which implies that
∣∣∣|x|δ − |y|δ∣∣∣ ⩽ |x − y|δ = 1

σ
h(|x − y|).

By Proposition 2.13 of (Yamada-Watanabe Theorem) Karatzas and Shreve [1998],

the SDE (4.2.2) admits a non-negative strong and unique solution in (0,∞). This com-

pletes the proof of the first statement. Further, by Proposition 4.2.1, and Assumption 4.2,

0 is an unattainable boundary for (4.2.1). Let R+ := [0,+∞) and R∗+ := (0,+∞), one has

• The coefficients σ(x), β − αx, L(t) − αx are continuous, real-valued functions on

R+ × R
∗
+.

• In the proof of the first statement, it is established that σ(x) = xδ satisfies

|σ(x) − σ(y)| ⩽ h(|x − y|) = σ|x − y|δ, where h : [0,+∞) → [0,+∞) is a strictly

increasing function with h(0) = 0 and
∫ ε

0
h−2(u)du = ∞; ∀ ε > 0.

• Assumption 4.1 implies that r0 ⩽ X0 a.s.

• Assumption 4.2 implies β − αx ⩽ L(t) − αx, ∀ 0 ⩽ t < ∞, x ∈ R.

• Both β − αx and L(t) − αx satisfy the Lipschitz condition in x.

Then, from Proposition B.2, that 0 < rt ⩽ X(t) a.s. This completes the proof. □

Proof of Proposition 4.2.3. Let G(t, X(t)) = eαtX(t), by Itô’s Lemma,

X(t) = e−αtX0 + e−αt
∫ t

0
eαsL(s)ds + σe−αt

∫ t

0
eαsXδ(t)dBs. (C.15)

This completes the proof. □

Proof of Proposition 4.2.4. For the given SDE (4.2.1), from Proposition 2.1 in Ander-

sen and Piterbarg [2007], 0 is an unattainable boundary for δ > 1/2 and ∞ is an

unattainable boundary for all values of δ > 0. By Assumption 4.2, Proposition B.2,

and Proposition 2.1 in Mishura et al. [2022], comparison of the solutions concludes
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that sup
t⩾0
E

[
(X(t))1−2δ

]
⩽ sup

t⩾0
E

[
(rt)1−2δ

]
< ∞, sup

t⩾0
E

[
(X(t))−2δ

]
⩽ sup

t⩾0
E

[
(rt)−2δ

]
< ∞ ,

sup
t⩾0
E

[
(X(t))−1

]
⩽ sup

t⩾0
E

[
(rt)−1

]
< ∞. □

Proof of Proposition 4.2.5. (1) Since Itô integrals are local martingales (see Theorem

13.2 in Klebaner [2005]),
∫ t

0
Xδ(t)dBs is a local martingale. For n ∈ N, define a stop-

ping time Tn(ω) by Tn(ω) := inf{t ⩾ 0, X(t, ω) ⩾ n}. Since {X(t), t ⩾ 0} has almost

surely continuous sample paths, X(t ∧ Tn) ⩽ n. So that
∫ t∧Tn

0
Xδ(t)dBs is a martingale

in t for any fixed n, then from (4.2.2), denote

X(t ∧ Tn) = X0 +

∫ t∧Tn

0
(L(s) − αX(s)) ds + σ

∫ t∧Tn

0
Xδ(t)dBs. (C.16)

Taking expectation both sides,

E[X(t ∧ Tn)] = E[X0] + E
[∫ t∧Tn

0
(L(s) − αX(s))ds

]
. (C.17)

Since X(t) is non-negative,
∫ t∧Tn(ω)

0
X(s, ω)ds is increasing and lim

n→∞

∫ t∧Tn(ω)

0
X(s, ω)ds =∫ t

0
X(s, ω)ds for all ω ∈ Ω,

∫ t∧Tn

0
X(s)ds

a.s.
−−−→
n→∞

∫ t

0
X(s)ds. Therefore, by monotone

convergence theorem,
∫ t∧Tn

0
X(s)ds

L1

−−−→
n→∞

∫ t

0
X(s)ds, which implies that

lim
n→∞
E

[∫ t∧Tn

0
X(s)ds

]
= E

[∫ t

0
X(s)ds

]
. (C.18)

Similarly,
∫ t∧Tn

0
L(s)ds

a.s.
−−−→
n→∞

∫ t

0
L(s)ds, so, lim

n→∞
E [X(t ∧ Tn)] = E[X0] + E[

∫ t

0
(L(s) −

αX(s))ds]. Since X(t ∧ Tn)
a.s.
−−−→
n→∞

X(t), by using Fatou’s Lemma, one has

E[X(t)] = E[lim inf
n→∞

X(t∧Tn)] ⩽ lim inf
n→∞

E[X(t∧Tn)] = E[X0]+
∫ t

0
L(s)ds−αE

[∫ t

0
X(s)ds

]
.

Since α > 0, E
[∫ t

0
X(s)ds

]
> 0, E[X(t)] < E[X0] +

∫ t

0
L(s)ds. Let

p∑
i=1
|µi| ⩽ Kµ and

||φ(t)|| ⩽ Kφ, for some positive constants Kµ,Kφ, then,

0 < L(t) ⩽ KφKµ. (C.19)

E[X(t)] < E[X0] + KµKφt. (C.20)
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Further, let G(x) = x2, by Itô’s lemma,

X2(t) = X2
0 +

∫ t

0

(
2X(s)(L(s) − αX(s)) + σ2X2δ(t)

)
ds + σ

∫ t

0
Xδ(s)dBs. (C.21)

For n ∈ N, define a stopping time Tn(ω) by Tn(ω) := inf{t ⩾ 0, X(t)2(ω) ⩾ n}. let Tn =

Tn(ω). Since {X(t)2, t ⩾ 0} has almost surely continuous sample paths, it holds that X(t∧

Tn)2 ⩽ n. From the inequality Xδ(t) ⩽ max{1, X2(t)}, one obtains that
∫ t∧Tn

0
Xδ(t)dBs is

a martingale in t for any fixed n, then (C.21) implies that

X2(t ∧ Tn) = X2
0 +

∫ t∧Tn

0

(
2X(s)(L(s) − αX(s)) + σ2X2δ(t)

)
ds + σ

∫ t∧Tn

0
Xδ(s)dBs.

(C.22)

Taking expectation both sides,

E
[
X2(t ∧ Tn)

]
= E

[
X2

0

]
+ E

[∫ t∧Tn

0

(
2X(s)(L(s) − αX(s)) + σ2X2δ(t)

)
ds

]
. (C.23)

Since X(t), L(t) are non-negative,
∫ t∧Tn(ω)

0
X(s, ω)L(s)ds is increasing and

lim
n→∞

∫ t∧Tn(ω)

0
X(s, ω)L(s)ds =

∫ t

0
X(s, ω)L(s)ds for all ω ∈ Ω,

∫ t∧Tn

0
X(s)L(s)ds

a.s.
−−−→
n→∞∫ t

0
X(s)L(s)ds. Therefore, by monotone convergence theorem,

∫ t∧Tn

0
X(s)L(s)ds

L1

−−−→
n→∞∫ t

0
X(s)L(s)ds, which implies that

lim
n→∞
E

[∫ t∧Tn

0
X(s)L(s)ds

]
= E

[∫ t

0
X(s)L(s)ds

]
. (C.24)

Similarly, from X(t)2 > 0, X2δ(t) > 0,

lim
n→∞
E

[∫ t∧Tn

0
X2(s)ds

]
= E

[∫ t

0
X2(s)ds

]
, lim

n→∞
E

[∫ t∧Tn

0
X2δ(t)ds

]
= E

[∫ t

0
X2δ(t)ds

]
.

(C.25)

Then, lim
n→∞
E

[
X(t ∧ Tn)2

]
= E

[
X2

0

]
+ E

[∫ t

0

(
2X(s)(L(s) − αX(s)) + σ2X2δ(t)

)
ds

]
. Since

X(t ∧ Tn)2 a.s.
−−−→
n→∞

X(t)2, by using Fatou’s Lemma,

E[X(t)2] = E[lim inf
n→∞

X(t ∧ Tn)2] ⩽ lim inf
n→∞

E[X(t ∧ Tn)2]

= E
[
X2

0

]
+ E

[∫ t

0

(
2X(s)(L(s) − αX(s)) + σ2X2δ(t)

)
ds

]
.
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Then, E[X(t)2] < E
[
X2

0

]
+ 2

∫ t

0
E [X(s)] L(s)ds+σ2

∫ t

0
E

[
X2δ(t)

]
ds. From the inequality

X2δ(t) ⩽ max{1, X2(t)}, and E
[
X2δ(t)

]
⩽ E

[
max{1, X2(t)}

]
⩽ E

[
X2(t) + 1

]
,

E[X(t)2] < E
[
X2

0

]
+ 2

∫ t

0
E [X(s)] L(s)ds + σ2t + σ2

∫ t

0
E

[
X2(t)

]
ds. From (C.19) and

(C.20),

E[X(t)2] < E
[
X2

0

]
+ 2KφKµ

(
E[X0]t +

1
2

KφKµt2
)
+ σ2t + σ2

∫ t

0
E

[
X2(t)

]
ds.

By Grönwall inequality,

E
[
X(t)2] < E [

X2
0

]
+ 2KφKµ

(
E[X0]t + 1

2 KφKµt2
)
+ σ2t

+σ2
∫ t

0

(
E

[
X2

0

]
+ 2KφKµ

(
E[X0]s +

1
2

KφKµs2
)
+ σ2s

)
et−sds.

(C.26)

Then, the quadratic variation
〈∫ ·

0
e−α(t−s)σXδ(t)dBs

〉
t
=

∫ t

0
e−2α(t−s)σ2X2δ(t)ds, and by

(C.26),

E
[∫ t

0
e−2α(t−s)σ2X2δ(t)ds

]
<

∫ t

0
e−2α(t−s)σ2E

[
X2

0

]
+ 2KφKµ

(
E[X0]s +

1
2

KφKµs2
)
+ σ2s

+ σ2
∫ s

0

(
E

[
X2

0

]
+ 2KφKµ

(
E[X0]u +

1
2

KφKµs2
)
+ σ2u

)
es−udu

)
ds < ∞,

which is

E

[〈∫ ·

0
e−α(t−s)σXδ(t)dBs

〉
t

]
< +∞. (C.27)

Thus, the term
∫ t

0
e−α(t−s)σXδ(t)dBs is a integrable martingale. Then, from (C.15),

E[X(t)] = e−αtE[X0]+e−αt
∫ t

0
eαsL(s)ds = e−αtE[X0]+

p∑
i=1

µi

∫ t

0
e−α(t−s)φi(s)ds. (C.28)

This completes the proof of the first assertion.

(2) From Assumption 4.1 and (C.15),

E[X2(t)] = e−2αtE
[
X2

0

]
+ e−2αt

(∫ t

0
eαsL(s)ds

)2

+ σ2e−2αtE

(∫ t

0
eαsXδ(t)dBs

)2
+2e−2αtE [X0]

∫ t

0
eαsL(s)ds + 2σe−2αt

∫ t

0
eαsL(s)ds E

[∫ t

0
eαsXδ(t)dBs

]

+2e−αtE[X0] σe−αtE

[∫ t

0
eαsXδ(t)dBs

]
.
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By Itô isometry and (C.28), E
[(∫ t

0
eαsXδ(t)dBs

)2
]
=

∫ t

0
e2αsE

[
X2δ(t)

]
ds. From (C.27),∫ t

0
eαsXδ(t)dBs is a martingale, then, E

[∫ t

0
eαsXδ(t)dBs

]
= 0. Finally,

E[X2(t)] = e−2αtE
[
X2

0

]
+ e−2αt

(∫ t

0
eαsL(s)ds

)2

+ σ2e−2αt

(∫ t

0
e2αsE

[
X2δ(t)

]
ds

)

+2e−2αtE [X0]
∫ t

0
eαsL(s)ds.

From (C.19) and together with Theorem 1.2.3 [Qin, 2016, page 11],

E[X2(t)] ⩽ e−2αtE
[
X2

0

]
+ σ2

(KµKφ

σ

)2

+ 2E [X0] KµKφ

1
σα

 (2α − σ2
)−1 (

1 − e−(2α−σ2)t
)
.

Then, if 2α > σ2, sup
t⩾0
E[X2(t)] ⩽ E

[
X2

0

]
+σ2

((KµKφ

σ

)2
+ 2E [X0] KµKφ

1
σα

) (
2α − σ2

)−1
<

∞. This completes the proof. □

Proof of Corollary 4.2.1. By (4.2.2), S (θ, t, X(t)) = L(t) − αX(t), and L(t) =
p∑

i=1
µiφi(t),

which implies that (
S (θ, t, X(t))
σXδ(t)

)2

=
L2(t) − 2αL(t)X(t) + X2(t)

σ2X2δ(t)

=
L2(t)
σ2 (X(t))−2δ −

2αL(t)
σ2 (X(t))1−2δ +

1
σ2 (X(t))2−2δ.

From (4.2.4) and (4.2.5), sup
t⩾0
E

(S (θ, t, X(t))
σXδ(t)

)2 < ∞, and then,

E

∫ T

0

(
S (θ, t, X(t))
σXδ(t)

)2

dt
 < ∞. Hence P

∫ T

0

(
S (θ, t, X(t))
σXδ(t)

)2

dt < ∞
 = 1, for all 0 ⩽

T < ∞. This completes the proof. □

Proof of Proposition 4.3.1. From Assumption 2.2, all coefficients of CKLS are analytic

on [0,∞)×R∗+. By the definition of the drift term S (t, x), Assumption C.2 a) is satisfied.

Next step is to define a function V : (0,+∞) 7→ [1,+∞) as V(x) = 1 + x + | log x| which

is a Lyapunov function for the skeleton chain X = (Xk)k∈N0 . Let x ∈ Cm, P0,1V(x) =

1+E[X1|X0 = x]+E[| log X1||X0 = x]. From (C.15) and Assumption 4.1, E[X1|X0 = x] =
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e−αx + e−α
∫ 1

0
eαsL(s)ds. Further, let Z(t, X(t)) = eαt log X(t). By using Itô’s lemma,

log X(t) = e−αt log X0 + e−αt
∫ t

0

(
αeαs log X(s) + eαs L(s)

X(s)
− αeαs −

σ2

2
eαs(X(t))2δ−2

)
ds

+σe−αt
∫ t

0
eαsXδ−1(t)dBs.

Then,∣∣∣log X(t)
∣∣∣ = ∣∣∣∣∣∣e−αt log X0 + e−αt

∫ t

0

(
αeαs log X(s) + eαs L(s)

X(s)
− αeαs −

σ2

2
eαs(X(t))2δ−2

)
ds

+σe−αt
∫ t

0
eαsXδ−1(t)dBs

∣∣∣∣∣∣ ,
and since X(t) > 0 for t ⩾ 0,∣∣∣log X(t)

∣∣∣ ⩽ e−αt
∣∣∣log X0

∣∣∣+e−αt
∫ t

0

(
αeαs

∣∣∣log X(s)
∣∣∣ + eαs L(s)

X(s)

)
ds+σe−αt

∣∣∣∣∣∣
∫ t

0
eαsXδ−1(t)dBs

∣∣∣∣∣∣ .
Further, for given X0 = x,

| log X(t)| ⩽ e−αt| log x|+e−αt
∫ t

0

(
αeαs| log X(s)| + eαs L(s)

X(s)

)
ds+σe−αt

∣∣∣∣∣∣
∫ t

0
eαsXδ−1(t)dBs

∣∣∣∣∣∣ .
Since the function | log x| < max

{
x, 1

x

}
, from Proposition 4.2.4,

E[| log X(t)|] ⩽ sup
t⩾0

{
E[X(t)] + E

[
1

X(t)

]}
< ∞.

Further, for the Itô integral term, from (4.2.5), σe−αt
∣∣∣∣∫ t

0
eαsXδ−1(t)dBs

∣∣∣∣ is L2-bounded.

Finally, there exists a constant c1 > 0, such that P0,1V(x) ⩽ 1 + e−αx + e−α| log x| + c1. It

is obvious that for x ∈ Cm, P0,1V(x) is bounded. For x ∈ R∗+\Cm,

P0,1V(x) ⩽ V(x) − (1 − e−α)x − (1 − e−α)| log x| + c1 < V(x) − ε,

for some m > 0, ε > 0. This proves the Assumption C.2 b).

Now, the attention is turning to the key Assumption C.3. to specify a point x∗ in

int(R∗+) of full weak Höermander dimension and attainable in a sense of deterministic

control. Our candidate is x∗ = 1. It is clear that x∗ ∈ R∗+. From Definition C.5, the

control systems t 7→ ϕ(t) is related to Stratonovich drift. For the generalized CKLS



C Proofs related to GCKLS process 268

model, from Definition C.4, the Stratonovich drift is as follows:

S̃ (t, x) = S (t, x) −
1
2
σxδ

∂

∂x
(σxδ) = S (t, x) −

1
2
σ2δx2δ−1.

Thus, for the given initial value x ∈ R∗, it is needed to construct a function ḣ ∈ L2
loc,

which determines the paths of ϕ(s), satisfying the corresponding deterministic integral

equation

d
ds
ϕ(s) = S̃ (t, x) + σ(ϕ(s))δḣ(s) (C.29)

from the starting point x = ϕ(0) to x∗ = lim
t→∞

ϕ(t). For the purpose of pushing the

solution to (C.29) towards to the expected limit 1, a C∞-function Φ(x,1) is chosen with

the following property

Φ(x,1)(t) > 0 f or all t ⩾ 0 and all x > 0

Φ(x,1)(0) = x

Φ(x,1)(t) = 1, f or all t ⩾ |x − 1| + 1∣∣∣ d
dtΦ

(x,1)
∣∣∣ ⩽ 1 f or all t ⩾ 0 and all x > 0.

Now, let ϕ(t) := Φ(t) for all t ⩾ 0. Then, (C.29) determines the control function h, with

ḣ(s) =
d
dsϕ(s) − S̃ (t, x)

σ(ϕ(s))δ
=

d
dsΦ(s) − S̃ (t, x)

σ(Φ(s))δ
, t ⩾ 0.

By the construction of the function Φ(t), ḣ(s) ∈ L2
loc, and the C∞-function Φ(x,1) has the

limit 1. This implies that the point x∗ = 1 ∈ R∗+ is attainable.

The following is to prove that x∗ is of full weak Höermander dimension. From the

previous discussion, S̃ (t, x) = S (t, x)− 1
2σ

2δx2δ−1 = L(t)−αx− 1
2σ

2δx2δ−1. Consider the

vector fields Ū 7→ R1+1,

V0 =

 1

L(t) − αx − 1
2σ

2δx2δ−1

 , V1 =

 0

σxδ

 , [V0, V1] = JV1V0 − JV0V1,

where [V0, V1] is the Lie bracket of V0 and V1, and JV0 , JV1 are Jacobian matrices (Defi-
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nition 2.32 in Holbach [2018]). In this generalized CKLS model,

JV1 =

0 0

0 σδxδ−1

 , JV0 =

0 0

0 −α − 1
2σ

2δ(2δ − 1)x2δ−2

 .
Then,

[V0, V1] =

 0

σδxδ−1
(
L(t) − αx − 1

2σ
2δx2δ−1

)
 −

 0

σxδ
(
−α − 1

2σ
2δ(2δ − 1)x2δ−2

)


=

 0

σδxδ−1
(
L(t) − αx − 1

2σ
2δx2δ−1

)
+ σxδ

(
α + 1

2σ
2δ(2δ − 1)x2δ−2

)
 .

When x∗ = 1 ∈ int(R∗+), this leads to

V0(t, x∗) =

 1

L(t) − α − 1
2σ

2δ

 , V1(t, x∗) =

0

σ

 ,

[V0, V1](t, x∗) =

 0

σδ
(
L(t) − α − 1

2σ
2δ

)
+ σ

(
α + 1

2σ
2δ(2δ − 1)

)


= σ

 0

δL(t) + α(1 − δ) + 1
2σ

2δ(δ − 1)

 = σ
 0

δL(t) + (1 − δ)(α − 1
2σ

2δ).


From Assumption 4.2, 1

2 < δ < 1 and 2α − σ2 > 0, then δL(t) + (1 − δ)(α − 1
2σ

2δ) > 0,

which implies that V1 and [V0,V1] are not linearly independent at the point (t, x∗) for all

t ∈ [0, 1]. In this case, dim (∆L∗N ) = 1 on [0, 1] × {x∗} for all N ⩾ 1. This proves that

Assumption C.3 holds. From Theorem 2.2 in Höpfner et al. [2016], it concludes that

1. The grid chain X = (Xk)k∈N0 is positive Harris recurrent.

2. The path segment X = (Xk+s)k∈N0,0<s<1 chain is positive Harris recurrent.

□
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C.3 On the proposed estimators and their relative efficiency

Proof of Proposition 4.4.1. From (4.2.2), ⟨X⟩t = σ2
∫ t

0
X2δ(t)ds. Then,

(⟨X⟩t+h − ⟨X⟩t)
/
h = σ2

(∫ t+h

t
X2δ(t)ds

) /
h

a.s.
−−−→
h→0

σ2X2δ(t). (C.30)

Similarly, for some 0 < s < T and s , t, ⟨X⟩t+h−⟨X⟩t
⟨X⟩s+h−⟨X⟩s

a.s.
−−−→
h→0

(
X(t)
X(s)

)2δ
, which implies that

log
(
(⟨X⟩t+h − ⟨X⟩t)

/
⟨(X⟩s+h − ⟨X⟩s)

) a.s.
−−−→
h→0

2δ log (X(t)/X(s)). Therefore

δ = lim
h→0

log
(
⟨X⟩t+h − ⟨X⟩t
⟨X⟩s+h − ⟨X⟩s

) (
2 log (X(t)/X(s))

)−1 . (C.31)

Further, from (C.30), (⟨X⟩t+h − ⟨X⟩t)
/
(hX2δ(t)) = σ2

(∫ t+h

t
X2δ(t)ds

) /
(hX2δ(t))

a.s.
−−−→
h→0

σ2.

This completes the proof. □

Proof of Proposition 4.4.2. Let a = [a⊤1 , a2] with a1 a p−column vector, and a2 a scalar.

aQ[0,T ]a⊤ = (a⊤1 , a2)Q[0,T ](a⊤1 , a2)⊤. Then

aQ[0,T ]a⊤ = a⊤1
∫ T

0
φ⊤(t)φ(t)(X(t))−2δdta1 − 2a2

∫ T

0
φ(t)(X(t))1−2δdta1

+a2

∫ T

0
(X(t))2−2δdta2,

and then, aQ[0,T ]a⊤ =
∫ T

0

(
a⊤1 φ

⊤(t)(X(t))−δ − a2(X(t))1−δ
)2

dt. Thus, a⊤Q[0,T ]a = 0 if and

only if

P
(
ω : a⊤1 φ

⊤(t)(X(t))−δ(ω) − a2(X(t))1−δ(ω) = 0, 0 ⩽ t ⩽ T
)
= 1, which is equivalent to

P
(
ω : a⊤1 φ

⊤(t) − a2X(t, ω) = 0, 0 ⩽ t ⩽ T
)
= 1. (C.32)

From Proposition 4.2.5,

Var(X(t)) = e−2αt
(
E

[
X2

0

]
− E2 [X0]

)
+ σ2e−2αt

(∫ t

0
e2αsE

[
X2δ(t)

]
ds

)
> 0,

which implies that X(t) is not a constant. Thus, if a2 , 0, a2
2Var(X(t)) > 0 for all t ⩾ 0.

So, from Proposition 4.2.2, P
(
ω : a⊤1 φ

⊤(t) − a2X(t, ω) = 0, 0 ⩽ t ⩽ T
)
= 0. This is a

contradiction with (C.32). So, the assumption a2 , 0 is not correct, which implies that

a2 = 0. From a⊤1 φ
⊤(t) − a2X(t, ω) = 0 in (C.32), a⊤1 φ

⊤(t) = 0,∀ t ⩾ 0. If T ⩾ 1,
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[0, 1] ⊂ [0,T ], by Assumption 4.2, {φ1(t), φ2(t), . . . , φp(t)} is linearly independent on

[0, 1], this implies that a⊤1 φ
⊤(t) = 0 if and only if a⊤1 = 0⃗1×(p+1). Hence, if T ⩾ 1, the

matrix Q[0,T ] is a positive definite matrix. This completes the proof. □

Proof of the Proposition 4.4.3. The likelihood function of the SDE in (4.2.2) is given

by

L(θ, XT ) = dP(θ)
XT /dPB

= exp
(

1
σ2

∫ T

0
S (t, θ, X(t))(X(t))−2δdX(t) − 1

2σ2

∫ T

0
S 2(t, θ, X(t))(X(t))−2δdt

)
.

Then, the log-likelihood function is given

logL(θ, XT ) = 1
σ2

∫ T

0
S (t, θ, X(t))(X(t))−2δdX(t) − 1

2σ2

∫ T

0
S 2(t, θ, X(t))(X(t))−2δdt.

This gives logL(θ, XT ) = 1
σ2 θ
⊤R[0,T ] −

1
2σ2 θ

⊤Q[0,T ]θ. Therefore, the proof follows from

classical optimization techniques. This completes the proof. □

Proof of Proposition 4.4.5. By Itô isometry,

E

∥∥∥∥∥∥ 1
√

T

∫ T

0

φ(t)
Xδ(t)

dBt

∥∥∥∥∥∥2 = 1
T

∫ T

0
∥φ(t)∥2E

[
1

X2δ(t)

]
dt.

By Assumption 2.2 and the relation (4.2.4), ∥φ(t)∥2 ⩽ K2
φ, and

sup
t⩾0
E

[
(X(t))−2δ

]
⩽ sup

t⩾0
E

[
r−2δ

t

]
< ∞,

which implies that

E

∥∥∥∥∥∥ 1
√

T

∫ T

0

φ(t)
X2δ(t)

dBt

∥∥∥∥∥∥2 ⩽ sup
t⩾0
E

[
(X(t))−2δ

]
K2
φ

1
T

∫ T

0
dt = sup

t⩾0
E

[
(X(t))−2δ

]
K2
φ.

Further, E
[(

1
√

T

∫ T

0
(X(t))1−2δdBt

)2
]
= E

[
1
T

∫ T

0
(X(t))2(1−2δ)dt

]
. Note that, since 1/2 <

δ < 1, −2 < 2(1 − 2δ) < 0. Then, by Assumption 4.2, Proposition B.2, and Proposition

2.1 in Mishura et al. [2022], sup
t⩾0
E

[
(X(t))2(1−2δ)

]
⩽ sup

t⩾0
E

[
r2(1−2δ)

t

]
< ∞. This completes

the proof of part (1) and part (2). In addition, from Proposition 4.4.4,
1
T

Q[0,T ]
a.s.
−−−−→
T→∞

Σ,

a positive definite matrix. Then, Part (1) follows from the martingale strong law of

large numbers for diffusion processes along with Slutsky’s theorem. Part (2) follows
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from Proposition 4.4.4 and the martingale central limit for diffusion processes along

with Slutsky’s theorem. Part (3) follows from Propositions 4.4.4 and Part (1). Finally,

ρT = σTQ−1
[0,T ]

1
√

T
W[0,T ]. Then, by combining Proposition 4.4.4 and the martingale

central limit theorem for diffusion processes along with Slutsky’s theorem, ρT
D
−−−−→
T→∞

ρ ∼ Np+1

(
0, σ2Σ−1

)
. This completes the proof. □

Proof of Theorem 4.4.1. For every θ ∈ Θ, and arbitrary bounded sequences h ∈ Rp+1,

the log-likelihood ratio of the SDE (4.2.2) is log(ZT (h)) = dP(θ)
XT ,h/dPB,0. This yields the

representation

log(ZT (h)) =
∫ T

0

S (t, θ + h/
√

T , X(t)) − S (t, θ, X(t))
σXδ(t)

dBt

−

∫ T

0

(
S (t, θ + h/

√
T , X(t)) − S (t, θ, X(t))

)2

2σ2X2δ(t)
dt,

by using the fact that Bt =
∫ t

0
1

σXδ(t)dX(s) is a Ft measurable Brownian motion. Then,

log(ZT (h)) =
1
σ

h⊤
1
√

T

∫ T

0

(φ(t),−X(t))⊤

Xδ(t)
dBt

−
1

2σ2 h⊤
(

1
T

∫ T

0

(φ(t),−X(t))⊤(φ(t),−X(t))
X2δ(t)

dt
)

h.

Letting ∆T (θ0, XT ) = 1
√

T
W[0,T ] and rT (θ0, h, XT ) = 1

2σ2 h⊤
(

1
T Q[0,T ] − Σ

)
h, (4.4.1) and

(4.4.2) give

log(ZT (h)) =
1
σ

h⊤∆T (θ0, XT ) −
1

2σ2 h⊤Σh − rT (θ0, h, XT ).

The proof follows from Proposition 4.4.4 and Proposition 4.4.5. This completes the

proof. □

Proof of Proposition 4.4.6. From (4.4.5), ςT = G[0,T ]MρT +
√

TG[0,T ] (Mθ − r). Then,

(ρT , ϱT , ςT )′ =
(
Ip+1, Ip+1 − M′G′[0,T ],M

′G′[0,T ]

)′
ρT +

(
0′,−r′0G

′
[0,T ], r

′
0G
′
[0,T ]

)′
. By (4.4.6)

and (4.4.7),
(
Ip+1, Ip+1 − M′G′[0,T ],M

′G′[0,T ]

)′ P
−−−−→
T→∞

(
Ip+1, Ip+1 − M′G∗

′

,M′G∗
′
)′

, and(
0,−r′0G

′
[0,T ], r

′
0G
′
[0,T ]

)′ P
−−−−→
T→∞

(
0,−r′0G

∗′r′0G
∗′
)′

. Then, by Proposition 4.4.5 and Slutsky’s
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Theorem,(
ρ′T , ϱ

′
T , ς

′
T

)′ D
−−−−→
T→∞

(
Ip+1, Ip+1 − M′G∗

′

,M′G∗
′
)′
ρ +

(
0′,−r′0G

∗′ , r′0G
∗′
)′
= (ρ′, ϱ′, ς′)′.

Then, the proof follows from some properties of multivariate normal distribution and

algebraic computations. □

Proof of Proposition 4.5.1. From Proposition 4.4.6,

ςT
D
−−−−→
T→∞

ς ∼ Np+1(G∗r0, σ
2G∗MΣ−1).

Further, by Proposition 4.4.4,

Γ̂ =
1

σ̂2
M⊤

(
MT Q−1M⊤

)−1
M

P
−−−−→
T→∞

Γ =
1
σ2 M⊤

(
MΣ−1M⊤

)−1
M.

Therefore, by Slutsky’s Theorem, ψT = ς⊤T Γ̂ςT
D
−−−−→
T→∞

ψ = ς⊤Γς. Further, the proof

follows from Theorem 5.1.3 in Mathai and Provost [1992], which is similar to the proof

of Proposition 2.4.9. This completes the proof. □

Proof of Proposition 4.6.1. From Proposition 4.4.6,

ADR
(
θ̂T , θ,Ω

)
= E

[
trace(ρ⊤Ωρ)

]
= trace

(
ΩE

[
ρρ⊤

])
= σ2trace(ΩΣ−1),

ADR
(
θ̃T , θ,Ω

)
= E

[
trace(ϱ⊤Ωϱ)

]
= trace (ΩVar(ϱ)) + E

[
ϱ⊤

]
ΩE

[
ϱ
]
.

Therefore, by combining Proposition 4.4.6 and Proposition 4.6.1, the stated result. □

Proof of Proposition 4.6.2. By combining (4.5.2), Proposition 4.4.6, along with the fact

that γ is continuous real-valued function on (0,+∞),

ADR
(
θ̂s, θ,Ω

)
= E

[
trace

(
ϱ⊤Ωϱ

)]
+ 2E

[
γ
(
||ς||2Γ

)
trace

(
ϱ⊤Ως

)]
+ E

[
γ2

(
||ς||2Γ

)
trace

(
ς⊤Ως

)]
.

Then, the proof follows from Theorem 3.1 in Nkurunziza [2012] along with some alge-

braic computations. This completes the proof. □

Proof of Proposition 4.6.3. Let γ(x) = 1 − q−2
x , x > 0. The proof follows by combining
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Proposition 4.6.2 and the identity E
[
χ−2

q+2 (∆)
]
− E

[
χ−2

q+4 (∆)
]
= 2E

[
χ−4

q+4 (∆)
]
, along with

some algebraic computations. □
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