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ABSTRACT

Physical Unclonable Function (PUF) is lightweight hardware that provides afford-

able hardware-based security for electronic devices and systems which can eliminate

the use of the conventional cryptographic system which uses large area and storage.

The current imminent concern is the vulnerability of PUFs to popular machine learn-

ing attacks such as Covariance Matrix Adaptability and Evaluation Strategy (CMA-

ES) attacks and Linear Regression (LR) attacks. To address this issue, many PUF

models have been proposed to minimize the vulnerability of PUFs to machine learning

attacks. Multi PUFs (MPUFs) are one of the popular models used in this domain

and have proven to be successful in providing better security. These models demand

large resources and possess comparatively inferior PUF metric values. In this thesis,

we propose two new MPUF designs, which also incorporate the XOR technique, to

provide improved PUF metric values and also decreased resource usage.The proposed

MPUF designs were implemented in a Xilinx Artix 7 FPGA. Experimental evaluation

results demonstrate that, compared to existing MPUFs, the proposed MPUF designs

provide better uniqueness, reliability, and reduced resource consumption.
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CHAPTER 1

Introduction

Physical Unclonable Functions, or PUFs, are physical entities embedded in integrated

circuits and used for providing hardware-based security for real-world digital de-

signs[7]. A wide range of applications are enabled by PUFs such as random number

generation, device authentication, memory protection, secret key generation, etc[7].

1.1 Motivation

In the current rapidly advancing technological era, the IoT (Internet of Things) has

made significant growth. A wide range of devices are interconnected through the

internet in our current IoT world, because of which several challenges and security

concerns have emerged. The IoT encompasses a vast array of devices, ranging from

sensors and actuators to smart appliances and industrial machines. Many of these

devices have limited computational resources, making it challenging to implement

complex security measures[13]. They often have limited processing power, memory,

and energy resources. This can hinder the implementation of strong software-based

security measures, making hardware-based security a more suitable option.

The sheer number of IoT devices increases the attack surface for cybercriminals.

Vulnerabilities in one device could potentially compromise an entire network or sys-

tem, making it crucial to have reliable security measures in place. IoT devices can

be connected to networks with varying levels of security. Weaknesses in network se-

curity could expose devices to unauthorized access and data breaches, emphasizing

the importance of securing devices themselves. IoT devices collect and transmit sen-
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1. INTRODUCTION

sitive data, often related to user behavior, location, health, or personal preferences.

Ensuring the privacy and integrity of this data is essential to maintain user trust. All

of these devices are frequently managed remotely, which introduces potential vulner-

abilities if attackers can exploit remote management interfaces or gain unauthorized

access[7].

Insecure firmware can open up devices to various attacks, including those that

take advantage of unintended vulnerabilities. Hardware-based security can help en-

sure the integrity of firmware updates and prevent unauthorized modifications. Also,

many IoT devices are deployed in environments where physical access can’t be fully

controlled. This exposes devices to potential tampering, which hardware-based se-

curity measures can help mitigate[13]. Additionally, IoT devices are susceptible to

counterfeiting and cloning, where attackers produce unauthorized copies of devices

to gain access to networks or data. Hardware-based security measures like unique

identifiers can help verify the authenticity of devices.

Given these challenges, hardware-based security becomes crucial in the IoT era

for several reasons:

• Device Authentication: Hardware-based security can provide unique identifiers

and cryptographic keys for device authentication, ensuring that only legitimate

devices can access a network[7].

• Data Protection: Hardware-based security measures can encrypt and protect

sensitive data stored on or transmitted by IoT devices, safeguarding user privacy

and preventing data breaches[21].

• Tamper Resistance: Hardware-based security can protect devices against phys-

ical tampering and attacks aimed at extracting sensitive information[22].

• Long-Term Security: Hardware-based security solutions can provide long-lasting

2



1. INTRODUCTION

protection, even in situations where software vulnerabilities are discovered over

time[21].

In summary, the IoT era introduces a wide range of security challenges due to

the diversity of devices, resource constraints, network vulnerabilities, and data pri-

vacy concerns. Hardware-based security offers a way to address these challenges and

build a more secure foundation for the interconnected devices that make up the IoT

ecosystem.

1.2 Introduction to Hardware Security

Hardware security involves implementing security measures at the physical level of

electronic devices to protect against various threats, including unauthorized access,

tampering, counterfeiting, and data breaches. It focuses on utilizing the unique prop-

erties of hardware components to provide stronger security than can be achieved

through software alone. Hardware security solutions are important in contexts where

software-based approaches might be susceptible to attacks or vulnerabilities. PUFs

are a subset of hardware security mechanisms that exploit inherent variations in the

physical properties of electronic components, such as transistors, to create unique and

unpredictable responses[8].

The motivation for hardware security arises from the limitations and vulnera-

bilities of software-based security solutions. Software can be vulnerable to attacks,

malware, and vulnerabilities that can compromise the integrity, confidentiality, and

availability of systems and data. Hardware security provides a complementary layer

of protection by leveraging the following key principles.

3



1. INTRODUCTION

1.3 General Functionality of PUF

PUFs take advantage of innate manufacturing variations, which in turn produces

process variations in IC’s, such that each PUF fabricated from the same design entities

gives a different response or otherwise called fingerprints[7]

A chip (FPGA or ASIC) in its core, is made of innumerable transistors (which

are combined to form logic gates, switches, CLBs etc.). The existence of very minute

differences in doping concentration or other manufacturing variations between these

transistors is the driving principle of a PUF architecture

Consider a 32-bit PUF circuit. This circuitry takes a 32-bit challenge and outputs

a 32-bit response. The PUF circuitry contains 32 identical lines, each resulting in

a 1-bit response with the 32-bit input[7]. A PUF line takes a 32-bit challenge as

an input, has a fixed number of components, and adheres to specific placement and

routing constraints, giving a 1-bit output as a response. A PUF line is replicated 32

times to produce a 32-bit response, which changes according to the input challenge

due to innate manufacturing variations

1.4 Classification

PUF circuitry is easy to implement, but difficult to replicate. It is a function that ac-

cepts a challenge ‘C’ and provides a response ‘R’, thus giving us numerous Challenge-

Response Pairs (CRPs). This function/circuitry is embedded in each device during

the fabrication process and a subset of CRPs are recorded after the fabrication. These

CRPs can be used in various applications according to the PUF adaptability and com-

patibility.

PUFs are characterized into two categories based on the number of CRPs available:

Strong PUFs and Weak PUFs

4



1. INTRODUCTION

1.4.1 Strong PUF

Strong PUFs are those with a large set of CRPs. They possess a large number of

challenges and complete determination of all these CRPs within a limited time frame

is nearly impossible[18]. Typically, many physical components are involved in the

generation of a response, and it possesses a large possibility of challenges that can be

applied to the PUF. For a decade, many strong PUF models have been proposed and

are in use for crucial cryptographic applications that demand highly secured PUF

mechanism

1.4.2 Weak PUF

Weak PUFs are those with few challenges and in some cases, just one challenge. Weak

PUFs also exhibit unclonable physical behavior to some extent, but not as much as

strong PUFs[18]. They are typically used for key storage applications. Access to the

challenge-response interface or the challenge-response mechanism is usually restricted.

The predictability of a weak PUF response is much higher than a strong PUF. In

the case of a strong PUF, even if an adversary is aware of a large subset of CRPs,

extrapolation of remaining unknown CRPs is very difficult

1.5 PUF Evaluation Metrics

Among many, uniqueness and reliability are the two most widely used metrics to

evaluate a PUF. We could also include other important metrics such as resource

usage and power consumption in this work.

5



1. INTRODUCTION

1.5.1 Uniqueness

Uniqueness refers to the difference between the responses of a PUF implemented on

different chips, considering the same challenge is provided[6]. The Uniqueness (or)

Intra hamming distance is given by:

U = 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

(HD(Pi(C), Pj(C)))
n

∗ 100%

where ’k’ refers to the total number of chips and HD stands for hamming distance

An ideal PUF is considered to produce a uniqueness value of approximately 50%

which indicates the maximum difference in the responses of two PUFs.

1.5.2 Reliability

Reliability is the most important factor in PUF performance. For a PUF implemented

on a chip, reliability refers to the ability to produce the same response ‘R’ for a

particular Challenge ‘C’, under different conditions such as time, aging, temperature

variations, etc.,

U = (1 − 1
n

n∑
t=1

(HD(P (Ci, t0), P (Ci, t))
m

) ∗ 100%

where n is the number of tests and m is the length of the response. The P (Ci, t)

denotes the tth sample of P (Ci) among n repeated responses[6]

An ideal PUF is considered to produce a reliability value of 100 percent, which in

turn states that PUF will produce the same exact response after a certain time or at

a different temperature etc.,

6



1. INTRODUCTION

1.6 Applications of PUF

PUFs are widely used in high-security requirement scenarios, more specifically cryp-

tography, Internet of Things (IoT) devices, and privacy protection.

1.6.1 Authentication

This is one of the primary uses for the PUF, which is commonly employed with

reduced hardware overhead via a challenge-response protocol. A secure database is

maintained that stores a whole set of CRPs from each PUF pair to be used. During

the time of validation, a random set of CRPs are extracted from the database and

applied to the PUF circuit. The acquired response is saved in the database and

compared to the existing response from the database for the IC or FPGA. If the data

matches, the PUF device (IC or FPGA) will be authenticated [7].

The main aspect of the PUF is that we may utilize different CRPs, and they are

all random due to the manufacturing process of the IC or the FPGA, since all the

circuits are not doped in the same concentration to function similarly and create the

output with the same time delay. We implement authentication for the device using

this PUF feature. We need a strong PUF for authentication because we will have a

lot of CRPs for authentication.

1.6.2 Random Number Generation

Random number generators are used in various fields such as statistical sampling,

gambling, computer simulation, cryptography, entirely randomized design, and other

fields where an unpredictable output is desired. In general, hardware generators are

chosen over pseudo-random techniques in situations where unpredictability is a key

characteristic, such as security applications[7]

7



1. INTRODUCTION

Strong PUFs have a large set of CRPs, which makes them highly desirable ran-

dom number generators(RNG).In the last decade, many PUFs have been proposed

with increased complexity in the algorithm/functionality, which in turn decreases its

vulnerability. These PUFs make a perfect match for highly secure RNGs.

1.7 Multi PUF technique

Multi PUF models [MPUF] is a type of PUF architecture in which both strong PUF

and weak PUF are used. Whether it is strong or weak PUF[22], both of them has its

own set of advantages and disadvantages. Through this technique, the drawbacks of

each other are mitigated.

One of the imminent concerns in the current PUF scenarios is vulnerability to

Machine Learning [ML] attacks. Due to the rapid advancement in the field of Ar-

tificial Intelligence [AI] and ML, many advanced sophisticated algorithms have been

introduced to model a PUF[5]. Modeling refers to the prediction of a large set of un-

known CRPs on the basis of a small subset of known CRPs. Popular attacks among

them are CMAES (Covariance Matrix Adaptation and Evolution Strategy) and LR

(Linear Regression) attacks. These attacks have successfully modeled many strong

PUFs with a nearly 100 percent prediction rate.

The MPUF techniques are proven to be successful in increasing security towards

these ML attacks[5]. In some models, a huge decrease of more than 50 percent pre-

diction rate has been displayed. But these techniques either come with a compromise

in uniqueness values or with a requirement of substantial resource overhead

8



1. INTRODUCTION

1.8 Thesis Objectives

In this thesis, we proposed, designed, and evaluated new resource-efficient MPUF

techniques compared to the existing traditional MPUF model. The proposed PUFs

were tested on Xilinx Artix-7 FPGA. The experimental study was conducted and

evaluation metrics such as uniqueness, reliability, and resource utilization were com-

puted for the existing PUF models such as FFAPUF, FFAPUF-based Multi PUF, and

XOR-based Multi PUF. Subsequently, the proposed Multi PUF techniques are im-

plemented and the corresponding evaluation metrics are computed. Finally, both the

experimental results for existing models and the proposed PUF model were compared.

A resource-efficient PUF model was achieved which uses the MPUF technique.

1.9 Thesis Outline

The remainder of this thesis is organized as follows: we present a review of related

work in Chapter 2. Chapter 3 describes the traditional MPUF model and suggests

ways to improve resource usage. Chapter 4 presents the design concepts and experi-

mental evaluation strategy of the proposed MPUF techniques. Chapter 5 presents the

implementation and experimental results, evaluation, and comparison with related re-

search, of the proposed PUF models on FPGA. Chapter 6 concludes the thesis with

a summary and recommendations for future work.

9



CHAPTER 2

Related Work

Numerous PUF models have been proposed since the late 1990s. Meanwhile, most of

them are based on these 3 basic principal PUFs: Arbiter PUF(APUF), Ring Oscillator

PUF(ROPUF), and SRAM PUF.

Many strong PUFs with high reliability and desired uniqueness have been proposed

considering the Arbiter PUF (APUF) and Ring Oscillator PUF (ROPUF) as their

base. Some examples based on arbiter PUF are flip-flop-based APUF[17], XOR-ed

APUF[3], Feedback Oriented XOR-ed FFAPUF[4], etc. Some examples based on ring

oscillator PUF are bistable RO-PUF[19], hybrid PUF[9], and programmable ROPUF

based on a switch Matrix.

The advancement in the field of Artificial Intelligence (AI) led to a few machine

learning algorithm attacks, which successfully modeled these above-mentioned PUFs.

Popular machine learning attacks in this domain are LR attacks (linear regression) and

CMA-ES attacks (Covariance matrix adaptation evolution strategy)[3][5]. Since then,

the primary goal in the domain of PUF design has shifted to resilience toward ML

attacks instead of uniqueness and reliability. MPUF model is one of the obfuscation

techniques that has shown good results in terms of resistance towards attacks but as

a trade-off with comparatively a bit less uniqueness and reliability

2.1 Arbiter PUF

The Arbiter PUF Design is shown in Fig. 2.1.1 [1]. It comprises two multi-stage

multiplexer chains running in parallel to each other. These chains are interconnected
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2. RELATED WORK

in a cross or straight manner to the adjacent multiplexers, and the input signal is

shared between the first two multiplexers. Depending on the challenge bits, this

shared signal is further propagated along cross or straight paths.

Fig. 2.1.1: Arbiter PUF [1]

At the final stage, a d-flip flop is utilized as an arbiter to compare the arrival

times [1] of the two signals. Due to inherent manufacturing variations, the signals

arriving at the end of the two parallel paths will experience different delays. The

arbiter, in this case, compares these delays between the two signals and generates the

corresponding response bit. This mechanism exploits the timing differences induced

by manufacturing variations to produce unique and unclonable response bits in the

arbiter PUF.

However, this architecture suffers from low uniqueness, meaning that it may not

provide the desired level of distinctiveness in response patterns. Consequently, there

was a pressing need to explore other PUF designs that can achieve higher uniqueness.

Artix-7 FPGA has been used in this work to validate the design. It has produced a

uniqueness of 33.9 percent and a reliability of 96.09 percent.

2.1.1 Novel Lightweight Flip Flop based Arbiter PUF Design

The Flip-Flop-based Arbiter PUF design (FFAPUF) presents a compact architecture

with a focus on strong uniqueness and high reliability [2]. Similar to the arbiter PUF,

the FFAPUF also consists of two parallel lines through which electrical signals race

simultaneously. Each line contains a fixed number of slices, serving as delay entities.

11
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Each slice comprises 4 flip-flops and 3 multiplexers. Within each slice, 3 challenge

bits are employed, with one assigned to each multiplexer. As a result, the number of

challenge bits used must be a multiple of 3. The slice of an FFAPUF is shown in Fig.

2.1.2.

Fig. 2.1.2: Slice of FFAPUF[2]

In contrast to the Arbiter PUF, the FFAPUF utilizes an SR-latch instead of an

arbiter to determine the fastest path between the two lines. An SR-Latch made with

NAND gates is shown in Fig 2.1.3. This design achieved a uniqueness of 40% and a

reliability of 96.10%. Additionally, the FFAPUF was subjected to Modelling Attacks,

and the obtained prediction rates are also documented in this study. Two popular

Modelling attacks, namely the LR attack and CMA-ES attack, were considered.

Fig. 2.1.3: SR latch

This FF-APUF requires 44x64 slices to generate a 64-bit response on an Artix-7
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FPGA. This design showcases its potential for providing a balance between compact-

ness, uniqueness, and reliability, making it a promising choice for hardware-based

authentication and cryptographic applications. However, further optimizations are

needed to enhance its performance against potential attacks and improve its resource

efficiency on different FPGA platforms. The design of FFAPUF is given below in Fig.

2.1.4.

Fig. 2.1.4: FAPUF Design

2.1.2 XOR based Arbiter PUF

The XOR-Arbiter PUF[3] is shown in Fig. 2.1.5. The principle behind this circuit

is based on performing an XOR operation between the response outputs of parallel

Arbiter PUFs, which leads to a comparatively higher level of security. However, a

drawback of this model is the generation of various unstable responses for a particular

set of challenges, resulting in lower reliability and uniqueness. The value ’n’ represents

the number of PUF lines being XORed, and the security of the PUF increases with

a higher value of ’n’. The research suggests that in order to achieve a secure design

against machine learning attacks, a minimum of 10 PUF lines should be XORed,

assuming a very large training set size. However, the disadvantage of this PUF lies in

its consumption of a large number of resources, as it requires 10 PUF lines to generate

just a 1-bit response. To strike a balance between security and resource usage, further
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optimizations are necessary to enhance the efficiency of the design.

Fig. 2.1.5: XOR PUF Circuit

2.1.3 Feedback Oriented XORed Flip Flop based Arbiter

PUF

R. Sushma [4] introduces a novel Feedback-oriented XORed FFAPUF (FOXFFAPUF)

as its main contribution. This PUF design combines the fundamental concepts of

FFAPUF and XORed APUF. Initially, the architecture resembles FFAPUF, with the

subsequent step involving the XOR combination of responses. The multiplexers in

each slice are linked to an added delay component, for which a feedback-embedded

d-flipflop is employed. This extension results in the creation of a new slice termed

Type-1 slice, shown in Fig 2.1.6.

Given that FFAPUF utilization limits to a challenge bit count of a multiple of 3,

the FOXFFAPUF introduces a new slice known as the Type-2 slice to accommodate

this scenario. In the Type-2 slice shown in Fig 2.1.7, 3 flip-flops are employed along

with one challenge bit, in contrast to the 7 flip-flop configurations seen in the previous

slice.

The novel PUF method suggested in this study exhibited superior levels of unique-

ness compared to FFAPUF. However, a notable drawback is its substantial resource
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Fig. 2.1.6: Slice 1 of FOXFFAPUF[4]

Fig. 2.1.7: Slice 2 of FOXFFAPUF[4]
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consumption on an FPGA platform. Specifically, when generating an 8-bit challenge

response on a Virtex-6 FPGA, this method utilized 960 slices. In contrast, the FFA-

PUF achieved the same outcome using 192 slice registers, highlighting a significant

difference in resource utilization between the two approaches.
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CHAPTER 3

Experimental Study of the

Existing MPUF Design

In this chapter, the design concepts and the implementation results of the existing

MPUF-based FFAPUF[5] are presented. Experimental results of the design, as well

as its evaluation metrics, are provided.

3.1 Design Concepts

The MPUF design strategy aims to create a highly resilient PUF architecture, par-

ticularly in the face of machine learning attacks [5]. The MPUF approach involves

using a weak PUF to obfuscate the challenge bits, and then these modified challenge

bits are fed into a strong PUF. The basic MPUF principle is depicted in Fig. 3.1.1.

The weak PUF can be any weak PUF, such as a basic conventional arbiter PUF or

otherwise called PICO PUF shown in Fig. 3.1.2.

Fig. 3.1.1: Basic MPUF Design

In terms of resilience against Machine Learning (ML) Attacks, the MPUF demon-

strates significant improvement, with a drastic decrease of 50%[5] in the prediction
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Fig. 3.1.2: PICO PUF

rate compared to other PUF designs. This means that attackers’ ability to predict

responses accurately is significantly hindered when using the MPUF. Specifically,

CMA-ES attacks, which are known to be highly effective, achieve a 100%[5] predic-

tion rate for conventional Arbiter PUFs. However, when applied to an MPUF-based

Arbiter PUF, the prediction rate drops to less than 80%[15], even with large training

sets. This substantial reduction in prediction rate indicates the superior robustness

of the MPUF design against advanced attacks. Fig. 3.1.3 [5] and Fig 3.1.4[5] depict

the prediction rates of APUF versus MPUF.

Fig. 3.1.3: Predcition rates for conventional APUF and MPUF designs by LR attack[5]

Overall, the MPUF strategy combined with the XOR technique stands as a promis-

ing solution for enhancing PUF security by combining the strengths of weak and

strong PUFs, thereby thwarting the effectiveness of ML Attacks and making it a
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3. EXPERIMENTAL STUDY OF THE EXISTING MPUF DESIGN

Fig. 3.1.4: Predcition rates for XORed APUF and XORed MPUF designs by CMA-ES
attack[5]

viable option for applications that demand high-security measures.

3.2 Experimental Evaluation

To analyze the working principle of this Multi-PUF design, we started creating Verilog

HDL (Hardware Description Language) for each component of the desired PUF model.

By using the Xilinx Vivado Design Suite, we synthesized the Verilog model of the PUF

for implementation and evaluation in Xilinx Artix-7 FPGA.

Fig. 3.2.1: RTL Schematics of a 1-bit response MPUF

In the above Fig. 3.2.1, the C[31:0] are the original challenge bits and the

Cbm[31:0] are the new obfuscated challenge bits that act as the input to the strong

PUF and we receive a 1-bit output. Such PUF lines are repeated 32 times to receive

a 32-bit output.

We also performed the implementation of the XOR-based MPUF technique[5].
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Here, we utilized 3 PUF levels for the XOR operation. For these experiments, both

Look-Up Tables (LUTs) and Slice Registers of the FPGA are considered resources.

We also implemented PUF components such as MUX, D-flipflop, NAND gates and

XOR gates for the experimental evaluation.

Fig. 3.2.2: RTL Schematics of a 1-bit response XORed MPUF

3.2.1 IP Integration

In order to manage the control signals for the PUF, we devised a MicroBlaze-based

processing unit. This unit was responsible for both controlling the input challenge

given to the PUF and collecting the resulting output response.

Incorporating Xilinx IPs facilitated this process, utilizing tools like Vivado’s IP

integrator. We employed various Xilinx IPs including AXI interconnection bridges,

AXI GPIO, Memory units, and the Xilinx UART IP.

The integration of these IPs was crucial for the evaluation of the PUF. The manual

handling of real-time 32-bit input and output acquisition from the Bi-stable Ring PUF

is practically challenging. Therefore, opting for the creation of a processing unit was

more practical. This unit was capable of supplying the 32 challenge bits required and

capturing the entire 32-bit output response, as illustrated in Figure 3.2.3.

As presented in Fig. 3.2.4, we integrated the above-mentioned IPs to control the

PUF using the AXI GPIO, which can be controlled by the vitis IDE. This function
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Fig. 3.2.3: Interface diagram of the top module of the system

Fig. 3.2.4: Block diagram of the Xilinx IP Integrator
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helps us to collect the CRPs in text files through the UART serial port. We used a

serial terminal software to monitor the CRPs and to collect them in text files.

Fig. 3.2.5: Floor plan for the PUF on FPGA

3.2.2 Manual Place and Route

To analyze the resource consumption accurately, it was essential to isolate the PUF

circuit from the processing unit we developed. Typically, when using the vivado

tool, the entire circuit model is synthesized as a unified schematic. This can make it

challenging to precisely assess the specific resources utilized by the PUF.To overcome

this issue, we employed P-block allocation[24]. This technique enabled us to allocate a

dedicated area within the FPGA specifically for the PUF circuit. As a result, we could

obtain precise resource utilization data solely for the PUF, without the interference
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or complexity of the larger circuit’s synthesis[23][24]

In this particular experiment, we focused on examining the intra-chip Hamming

distance between the responses generated by the PUF in two distinct locations, which

can be done by the P-block allocation method. This analysis enabled us to establish

the uniqueness metric of the PUF. To facilitate this process, we utilized TCL com-

mands to generate constraint files. These files were instrumental in arranging the

specific components of the PUF, including MUX, DEMUX, and NOR gates, within

the desired Look-Up Tables (LUTs).

Figure 3.2.5 provides a visual representation of the floor plan of the PUF circuit

on an FPGA. This was achieved through the creation of dedicated P-blocks, allowing

us to designate specific areas for the PUF circuit within the overall layout.

3.3 Experimental Results

The corresponding Resource usage for the MPUF and XOR-based MPUF are recorded

and tabulated. The number and percentage of Slices, LUTs, and register flip-flops

used in the FPGA by the PUF design, without including the peripherals such as

Microblaze, AXI GPIOs, and UART module are considered. Here we are considering

3 PUFs for the XOR operation.

Table 3.3.1: Resource usage of FFAPUF based Multi PUF

Type of Resource MPUF XORed MPUF

LUTs 5184 15584

Register flipflops 4864 14592
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3.4 Limitations of MPUF model

In this section, we elaborate on the limitation of the traditional MPUF model in the

FPGAs.

The primary motivation of the Physically Unclonable function is to deliver secu-

rity with less resource usage as lightweight circuits [2]. According to this paper, it

is concluded that the incorporation of the XOR technique with the MPUF produces

magnificent results with respect to resilience toward ML attacks. As previously in-

dicated, the XOR-based PUF operation necessitates the integration of two or more

PUFs, significantly increasing the consumption of hardware resources. This, in turn,

results in escalated implementation costs and time, rendering the approach less effi-

cient. The experimental outcomes states that this specific XOR operation might not

be well-suited for numerous resource-constrained applications. Therefore, there’s a

need for adjustments or modifications to mitigate the substantial resource overhead

and enhance resource efficiency.
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CHAPTER 4

Proposed MPUF - Design and

Evaluation

In this chapter, we provide the implementation and evaluation results for the proposed

design in terms of uniqueness, reliability, and resource utilization. First, the design

and implementation of the proposed design were explained, followed by a comparison

of the results of the proposed design and the related PUF models.

4.1 Design Procedure of the Proposed MPUF tech-

niques

In this section, we propose the novel MPUF techniques MPUF-t1 and MPUF-t2.

These techniques incorporate the principles of FOXFFAPUF, FFAPUF, and tradi-

tional Multi-PUF. The resulting proposed MPUF technique proves to be resource-

efficient while maintaining the existing uniqueness and reliability values.

Fig. 4.1.1: Block Diagram of the PUF with Proposed MPUF technique

As previously stated, an MPUF is a combination of weak PUF and strong PUF[5].

Here, we introduce two new MPUF techniques, denoted as "MPUF-t1" and "MPUF-

t2" to obfuscate the challenge bits. Both techniques employ PICO PUFs as weak PUFs
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for the challenge obfuscation process. Subsequently, the new challenge bits generated

by the weak PUFs are fed into the flip-flop-based arbiter PUF (FFAPUF)[2], which

functions as the strong PUF in this scenario. For an N-bit challenge, it is observed

that MPUF-t2 requires a smaller area than MPUF-t1.

4.1.1 Challenge Obfuscation

As discussed in Chapter 3, improvement in resource efficiency is required in the tradi-

tional MPUF model in order to make it suitable for resource-constrained applications.

In our proposed MPUF technique, we employ a different strategy in the challenge ob-

fuscation process. We propose two obfuscation techniques resulting in MPUF-t1 and

MPUF-t2 respectively. Particularly, the MPUF-t2 results in providing a high resource

efficiency. These two techniques are discussed thoroughly in the subsequent sections.

4.1.1.1 MPUF-t1

In MPUF-t1, the design consists of 3 XOR gates, 2 2:1 multiplexers, and 2 PICO

PUFs. The output of one PICO PUF serves as the select line for the two multiplexers.

The inputs of the two multiplexers are the outputs of the respective PICO PUFs and

are also interchanged. Fig. 4.1.2 illustrates the basic building unit of t1. Such units

are repeated for all the existing challenge bits.

The following steps are then considered in t1 to obtain new challenge bits for the

strong PUF:

• The output from MUX1 is XORed with the challenge bits Cn-2 and Cn-1 sep-

arately.

• The output from MUX2 is XORed with the challenge bit Cn.

• The results obtained from the XOR operations in steps 1 and 2 are considered
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Fig. 4.1.2: Basic Unit of MPUF-t1

as new challenge bits for the strong PUF, denoted as C’n-2, C’n-1, and C’n,

respectively.

4.1.1.2 MPUF Technique-2

This strategy is basically an extension of MPUF-t1. The new challenge bits obtained

after obfuscation in t1 are then XORed again to obtain 1 new bit shown as CBm,

and also the value of m is m = ⌊n/3⌋. Fig. 4.1.3 illustrates the obfuscation technique

MPUF-t2.

Fig. 4.1.3: MPUF-t2
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4.1.2 Strong PUF models

For our research, we are considering the FFAPUF as our strong PUF. The new

obfuscated challenge bits obtained through the proposed MPUF techniques act as

input to the FFAPUF[2]. The architecture of the FFAPUF is shown in Fig 2.1.2 of

Chapter 2. The components required for designing an FFAPUF are D-flipflops, 2:1

Multiplexers, and NAND SR Latch.

4.1.3 XOR-ed PUF model

Additional to the MPUF procedure, we also employed the XOR technique in our

proposed MPUF models[8]. We have considered 3 PUF levels for the XOR operation.

Both MPUF-t1 and MPUF-t2 will undergo the 3-input XOR operation respectively.

Fig. 4.1.4: Block Diagram of the XORed PUF with Proposed MPUF Design
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4.2 Implementation of the Proposed Multi PUF

Designs

In this work, nine different PUF models have been implemented and analyzed on the

Arty A7 FPGA using Vivado. These models are as follows:

• FFAPUF: The strong PUF, FFAPUF, serves as the reference design in the

study. It is implemented and analyzed for 32-bit challenges.

• XORed FFAPUF: The FFAPUF is modified with 3 XOR lines, and correspond-

ing Challenge-Response Pairs (CRPs) are recorded and analyzed.

• FOXFFAPUF: The modified strong PUF, FFAPUF, serves as the reference

design in the study. It is implemented and analyzed for 32-bit challenges.

• Traditional MultiPUF: The traditional Multi PUF design, is implemented and

is considered as a comparative reference for our proposed PUF.

• Traditional XORed MultiPUF: The traditional Multi PUF design combined

with the XOR technique is implemented and is considered as a comparative

reference for our proposed PUF.

• Proposed MPUF-t1: The first proposed Multi PUF technique MPUF-t1, is

implemented and incorporated with the strong PUF, FFAPUF.

• Proposed MPUF-t2: The second proposed Multi PUF technique MPUF-t2, is

implemented and incorporated with the strong PUF, FFAPUF.

• XOR-based MPUF-t1: This design combines the architectures of XORed FFA-

PUF and MPUF-t1.

• XOR-based MPUF-t2: This design combines the architectures of XORed FFA-

PUF and MPUF-t2.
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For the implementation, the larger 100t variant of the Arty A7 FPGA is used, as

it is capable of accurately identifying smaller delay variations between the two par-

allel paths for the considered number of challenges. The XOR strategy is applied

to enhance the overall security and unpredictability of the Multi PUF techniques,

providing valuable insights into their effectiveness for hardware-based authentication

and cryptographic applications.

The implementation of the PUF is done using the Xilinx Vivado tool. Firstly,

respective verilog codes for the PUF components such as D-flipflop, 2:1 Multiplexer,

3-input XOR gate, and NAND SR Latch are written. This serves as the base for

designing proposed MPUF techniques and FFAPUF.

Using the principles of FFAPUF[2] and FOXFFAPUF[4], we design two types

of FFAPUF slices called type-1 slice and type-2 slice. We are considering 32-bit

challenges for the evaluation procedure. The type-1 slice requires 3 bits of challenges

and the type-2 requires 2 bits of challenges. Using these two types of slices we

can accommodate 32 bits of challenges. These are illustrated in Fig 4.2.1 and 4.2.2

respectively.

4.2.1 IP Integration

A large number of challenge set is considered for the evaluation of PUF devices,

which in turn leads to a large response set. Also, the system clock, and reset serve as

input to the system. So in order to manage all these control signals for the PUF, we

devised a MicroBlaze-based processing unit. This unit will be responsible for both

controlling the input challenge given to the PUF along with collecting the resulting

output response, and it also provides timely reset signals for the flipflops.

Incorporating Xilinx IPs facilitated this process, utilizing tools like Vivado’s IP

integrator. We employed various Xilinx IPs including AXI interconnection bridges,
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Fig. 4.2.1: RTL of FFAPUF Type-1 slice

Fig. 4.2.2: RTL of FFAPUF Type-2 slice
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AXI GPIO, Memory units, and the Xilinx UART IP.

The integration of these IPs was crucial for the evaluation of the PUF. The manual

handling of real-time 32-bit input and output acquisition from the MPUF is practi-

cally challenging. Therefore, opting for the creation of a processing unit was more

practical. This unit was capable of supplying the 32 challenge bits required and cap-

turing the entire 32-bit output response. A similar unit is used in the implementation

of the traditional MPUF and illustrated in Figure 3.2.3 of Chapter 3.

4.2.2 Manual Place and Route

We used the P-block allocation method to isolate the PUF circuit from peripherals

such as Microblaze, AXI GPIOs, etc[23][24]. The PUF circuit is placed in two different

locations, and this is used to find the inter-chip hamming distance values, which in

turn represents the important PUF metric known as Uniqueness.

This also helps in evaluating the resource usage such as LUTs and Register FFs,

utilized by the PUF design on an FPGA.

4.2.3 Vitis and Serial terminal software

Once the design is implemented in Vivado, the corresponding bit stream is generated.

This bitstream file is then used in Vitis to program a PUF on an FPGA. Here,

corresponding Challenges along with control signals are also defined. The responses

are obtained through USB UART protocol and can be recorded using serial terminal

emulators. These recorded CRPs are saved into files and are then used to evaluate

the PUF metrics.

As our PUF models utilize 32-bit challenges, the total number of challenges that

can be used is 232. But the number of challenges used for this experiment is 16384

which is 214.
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Fig. 4.2.3: Floor plan of MPUF-t2 in two different locations

4.3 Experimental Results and Analysis

In this section, we present the overall comparison of the existing MPUF models along

with our proposed MPUF techniques.

All nine PUF designs are implemented and respective CRP sets have been recorded

and stored for Experimental analysis. The first table depicts the PUF metrics of

different PUF models along with our proposed PUF MPUF-t1 and MPUF-t2.

Tables 4.3.2 and 4.3.3 compares the resource consumption of different PUF models.

The resource types considered are LUTs and Register flipflops

Table 4.3.1 includes the uniqueness and reliability values of the respective PUFs.

In terms of these parameters, we can conclude that our proposed MPUFs have main-
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Table 4.3.1: Uniqueness and Reliability

PUF Model Uniqueness Reliability

FFAPUF 47.3% 99.56%

XORed FFAPUF 46.37% 99.0317%

Traditional MPUF 47.71% 98.54%

MPUF_t1 45.6% 99.06%

MPUF_t2 46.2% 98.14%

XORed Traditional MPUF 43.4% 98.02%

XORed MPUF_t1 44.57% 98.78%

XORed MPUF_t2 44.94% 98.92%

Table 4.3.2: Resource Consumption

PUF Model LUTs Register FFs

FFAPUF 2112 2816

XORed FFAPUF 6368 8448

FOXFFAPUF 6368 14208
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Table 4.3.3: Resource Consumption of MPUF models

PUF Model LUTs Register FFs

Traditional MPUF (reference) 5184 (100%) 4864 (100%)

MPUF_t1 4992 (96.3%) 4096(84.3%)

MPUF_t2 3072 (59.3%) 2304(47.4%)

Traditional XORed MPUF (reference) 15584 (100%) 14592 (100%)

Trad MPUF-based FOXFFAPUF 15616 (100.2%) 20352 (139.47%)

XORed MPUF_t1 15008(96.30%) 12288 (84.21%)

XORed MPUF_t2 9248 (59.4%) 6912 (47.4%)

tained good uniqueness and reliability values, which sequentially reflect the quality

of a PUF.

The Resources consumed by the proposed models are compared and tabulated

below in Tables 4.3.2 and 4.3.3. The resources occupied on Arty a7 FPGA are shown.

It provides a comprehensive overview of resource consumption across various PUF

models. For the purpose of resource consumption analysis, the specific resource types

taken into consideration are Look-Up Tables (LUTs) and Register Flip-Flops. The

traditional MultiPUF technique is utilized as the benchmark for comparison in this

context.

In comparison to the reference MPUF model, the MPUF-t1 model showcases a

similar but noteworthy resource optimization. Specifically, it demonstrates a reduc-

tion of 3.7 percent in LUT consumption and a substantial decrease of 15.7 percent in

register flip-flop usage. On the other hand, the MPUF-t2 model exhibits even more

pronounced improvements in resource efficiency. It registers a significant decline of 40

percent in LUT consumption and an impressive 53 percent reduction in the utilization
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of register flip-flops.

Fig. 4.3.1: LUT usage by various XORed MPUF models

Fig. 4.3.2: Register flipflops usage by various XORed MPUF models

Fig 4.3.2 and Fig 4.3.1 portray the same for XORed PUF models by using bar

graphs. These resource consumption figures reflect the enhanced efficiency achieved

through the introduced MPUF techniques, particularly MPUF-t1 and MPUF-t2.
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CHAPTER 5

Conclusion and Future Work

In this Chapter, we summarize the main contributions of this thesis and propose

future work in related areas.

5.1 Summary of Contributions

In this thesis, we have implemented the following PUF models: FFAPUF, Traditional

MPUF, and proposed MPUF models MPUF-t1 and MPUF-t2. We also incorporated

XOR technique into all these models. The Arty A7 FPGA board was employed for

the implementation and evaluation of all models including proposed Multi PUF tech-

niques. Both techniques demonstrated commendable PUF quality, maintaining high

levels of uniqueness and reliability similar to the traditional MPUF model. Notably,

the resource consumption analysis highlighted the enhanced efficiency, particularly

evident in the case of MPUF-t2.

The conducted analysis revealed a significant 9 percent average reduction in re-

source consumption for MPUF-t1, while MPUF-t2 exhibited an even more remark-

able average decrease of 46.5 percent in resource consumption when compared to

the conventional MPUF model. These efficiency gains can potentially contribute to

more optimized and streamlined hardware designs, addressing critical considerations

in modern hardware development.

The proposed Multi-PUF (MPUF) models hold significant potential for Multi-

PUF applications, particularly those grappling with resource constraints. The out-

comes showcased in this study are derived from the thorough implementation of these

schemes on the Arty A7 FPGA board, considering multiple instances for robust eval-

uation. Furthermore, as previously addressed, the introduced MPUF technique holds

broader applicability. Its characteristics can be explored more comprehensively by
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synergizing it with other robust PUF models.

5.2 Future Work

For future endeavors, it is plausible to extend the research by subjecting the proposed

MPUF techniques to potential attacks. This exploration would provide insights into

the resilience of these techniques against machine learning (ML) attacks, enhancing

the overall understanding of their security characteristics. Moreover, considering the

vulnerability aspect, future work might involve experimenting with altering delay

elements within the PUF models to adapt to varying levels of vulnerability, further

enhancing the robustness and adaptability of the proposed techniques.

By combining the strengths of the proposed MPUF technique with other estab-

lished strong PUF models, there exists the prospect of creating even more sophisti-

cated and secure architectures. Such collaborations could lead to the development

of innovative and hybridized PUF approaches that cater to various security and effi-

ciency demands across diverse hardware applications.
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APPENDICES

APPENDIX A

Verilog Codes

A.1 D-flipflop

‘timescale 1ns / 1ps

module d_flipflop(

input clk,

input clr,

output reg Q);

always @(posedge clk or posedge clr)

begin

if (clr==1’b1)

Q<=1’b0;

else

Q<=1’b1;

end

endmodule

A.2 Multiplexer

‘timescale 1ns / 1ps

module mux21(

input a,

input b,

input sel,
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output out

);

assign out = (sel)? a:b;

endmodule

A.3 SR-Latch

‘timescale 1ns / 1ps

module SR(

input a,

input b,

output r

);

wire temp1,temp2;

nand N1(temp1,a,temp2);

nand N2(temp2,b,temp1);

assign r=temp1;

endmodule

A.4 Pico-Puf

‘timescale 1ns / 1ps

module picopuf(

input clk,

input clear,

output o);

wire temp1,temp2;

wire w1;

(* dont_touch= "yes" *)d_flipflop d1(clk,clear,temp1);

(* dont_touch= "yes" *)d_flipflop d2(clk,clear,temp2);
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SR SR1(temp1,temp2,o);

endmodule

A.5 FFAPUF slice1

‘timescale 1ns / 1ps

module ffapuf_slice_1(

input clk,

input clr,

input [2:0]C,

output r

);

wire Y1,Y2,Y3,Y4;

wire Z1,Z2;

(* dont_touch= "yes" *)d_flipflop dff7(Z3,clr,r);

(* dont_touch= "yes" *)d_flipflop dff1(clk,clr,Y1);

(* dont_touch= "yes" *)d_flipflop dff2(clk,clr,Y2);

(* dont_touch= "yes" *)d_flipflop dff3(clk,clr,Y3);

(* dont_touch= "yes" *)d_flipflop dff4(clk,clr,Y4);

(* dont_touch= "yes" *)mux21 mux1(Y1,Y2,C[0],Z1);

(* dont_touch= "yes" *)mux21 mux2(Y3,Y4,C[1],Z2);

(* dont_touch= "yes" *)mux21 mux3(Z1,Z2,C[2],r);

endmodule

A.6 FFAPUF slice2

‘timescale 1ns / 1ps

module ffapuf_slice_2(

input clk,

input clr,
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input [1:0]C,

output r

);

wire Y1,Y2,Y3,Y4;

wire Z1;

(* dont_touch= "yes" *)d_flipflop dff1(clk,clr,Y1);

(* dont_touch= "yes" *)d_flipflop dff2(clk,clr,Y2);

(* dont_touch= "yes" *)mux21 mux1(Y1,Y2,C[0],Z1);

(* dont_touch= "yes" *)d_flipflop dff3(Z1,clr,Y3);

(* dont_touch= "yes" *)d_flipflop dff4(Z1,clr,Y4);

(* dont_touch= "yes" *)mux21 mux2(Y3,Y4,C[1],r);

endmodule

A.7 FFAPUF line

‘timescale 1ns / 1ps

module ffapuf_line(

input clk,

input clr,

input [31:0]C,

output r

);

wire clock[9:0];

(* dont_touch= "yes" *)ffapuf_slice_1 ffs1_init(clk,clr,C[2:0],clock[0]);

generate

genvar i;

for (i=2;i<11;i=i+1)

begin

(* dont_touch= "yes" *)ffapuf_slice_1 ffs1(clock[i-2],clr,C[3*i-1:3*i-3],

clock[i-1]);
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end

endgenerate

ffapuf_slice_2 ffs2(clock[9],clr,C[31:30],r);

endmodule

A.8 FFAPUF level

‘timescale 1ns / 1ps

module ffapuf_level(

input clk,

input clr,

input [31:0]C,

output r

);

wire X1,X2;

(* dont_touch= "yes" *)ffapuf_line ffl_1(clk,clr,C[31:0],X1);

(* dont_touch= "yes" *)ffapuf_line ffl_2(clk,clr,C[31:0],X2);

SR SR1(X1,X2,r);

endmodule

A.9 FFAPUF

‘timescale 1ns / 1ps

module ffapuf(

input clk,

input clr,

input [31:0]C,

output [31:0]O

);

generate

47



A. VERILOG CODES

genvar i;

for (i=1;i<33;i=i+1)

begin

(* dont_touch = "yes" *)ffapuf_level ff_inst(clk,clr,C,O[i-1]);

end

endgenerate

endmodule

A.10 Basic unit of MPUF-t1

‘timescale 1ns / 1ps

module challenge_bits_t1(

input clk,

input clear,

input [2:0]C,

output [2:0]C_bar

);

wire w1,w2; wire z1,z2;

(* dont_touch= "yes" *)pico_puf p1(clk,clear,w1);

(* dont_touch= "yes" *)pico_puf p2(clk,clear,w2);

(* dont_touch= "yes" *)mux21 m1(w1,w2,w1,z1);

(* dont_touch= "yes" *)mux21 m2(w2,w1,w1,z2);

(* dont_touch= "yes" *)assign C_bar[0]=z1Ĉ[0];

(* dont_touch= "yes" *)assign C_bar[1]=z1Ĉ[1];

(* dont_touch= "yes" *)assign C_bar[2]=z2Ĉ[2];

endmodule
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A.11 MPUF-t1

‘timescale 1ns / 1ps

module technique_t1(

input clk,

input clear,

input [29:0]C,

output [29:0]Cbar

);

wire a,b;

(* dont_touch= "yes" *)challenge_bits_t1 cb_t1(clk,clear,C[2:0],Cbar[2:0]);

generate

genvar i;

for (i=2;i<11;i=i+1)

begin

(* dont_touch= "yes" *)challenge_bits_t1 cb_t1_inst(clk,clear,C[3*i-1:3*i-3],

Cbar[3*i-1:3*i-3]);

end

endgenerate

endmodule

module mpuf_t1(

input clk,

input clear,

input clr,

input [31:0]C,

output [31:0]O

);

generate
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genvar i;

for (i=1;i<33;i=i+1)

begin

wire [31:0]C_bar;

assign C_bar[30]=C[30];

assign C_bar[31]=C[31];

(* dont_touch = "yes" *)technique_t1 t1_inst(clk,clear,C[29:0],C_bar[29:0]);

(* dont_touch = "yes" *)ffapuf_level ff_inst(clk,clr,C_bar[31:0],O[i-1]);

end

endgenerate

endmodule

A.12 Basic unit of MPUF-t2

‘timescale 1ns / 1ps

module challenge_bits_t2(

input clk,

input clear,

input [2:0]C,

output Cbm

);

wire w1,w2;

wire z1,z2;

(* dont_touch= "yes" *)pico_puf p1(clk,clear,w1);

(* dont_touch= "yes" *)pico_puf p2(clk,clear,w2);

(* dont_touch= "yes" *)mux21 m1(w1,w2,w1,z1);

(* dont_touch= "yes" *)mux21 m2(w2,w1,w1,z2);

assign Cbm=z1ẑ2Ĉ[0]Ĉ[1]Ĉ[2];

endmodule
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A.13 MPUF-t2

‘timescale 1ns / 1ps

module technique_t2(

input clk,

input clear,

input [29:0]C,

output [9:0]Cbm

);

wire a,b;

(* dont_touch= "yes" *)challenge_bits_t2 cb_t2(clk,clear,C[2:0],Cbm[0]);

generate

genvar i;

for (i=2;i<11;i=i+1)

begin

(* dont_touch= "yes" *)challenge_bits_t2 cb_t2_inst(clk,clear,C[3*i-1:3*i-3],

Cbm[i-1]);

end

endgenerate

endmodule

module mpuf_t2(

input clk,

input clear,

input clr,

input [31:0]C,

output [31:0]O

);

generate
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genvar i;

for (i=1;i<33;i=i+1)

begin

wire [11:0]C_bar;

assign C_bar[10]=C[30];

assign C_bar[11]=C[31];

(* dont_touch = "yes" *)technique_t2 t2_inst(clk,clear,C[29:0],C_bar[9:0]);

(* dont_touch = "yes" *)ffapuf_level ff_inst(clk,clr,C_bar[11:0],O[i-1]);

end

endgenerate

endmodule
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