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Abstract

Electromagnetically induced transparency (EIT) is a technique whereby a medium otherwise

opaque to radiation of a particular frequency can be made transparent at that frequency by

applying radiation of an appropriate second frequency. EIT demonstrates numerous current

applications, with a notable focus on its utilization within the field of quantum information.

Given the absence of an established theory of EIT in atomic ensembles, my primary focus

is to develop theoretical models that describe both the quantum mechanical origin of EIT

as well as the effect of interatomic interactions.

In this thesis, I present two theoretical models of EIT in an ensemble of three-level atoms

in a lambda configuration. The ensemble is modelled by a 5-level quantum system with

the mean-field interactions between atoms modelled by decoherence terms. The dynamics

of the ensemble are calculated by solving the Lindblad Master Equation for the density

matrix. From the density matrix, the polarizability, and the frequency-dependence of the

electric susceptibility and the group refractive index are calculated. A strong dependence

on the density of the ensemble is observed.

Additionally, I explore the propagation of a Gaussian probe pulse within an atomic

medium composed of three-level Λ systems (3LΛS). By solving the coupled Maxwell and

Liouville-von Neumann equations under the assumption of slow variations in the electric

field across both space and time, I showed that intriguing results emerge, particularly con-

cerning the influence of density on pulse dynamics.

Furthermore, comparing the two models over a range of ensemble number densities, it

was seen that despite achieving a favorable transparency window by increasing the number

density in the first model, the second model shows that EIT is not observed at high densities.
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Chapter 1

Introduction

Electromagnetically induced transparency (EIT) is a quantum optics phenomenon in atomic

systems with multilevel electronic structures that dramatically modifies the absorption and

refractive index of a medium. EIT results from the coherent, quantum interference between

two different excitation pathways to an excited state, rendering an initially opaque medium

transparent to the probe field. The transparency occurs over a narrow spectral region within

the broad absorption spectrum. The significant degree of transparency is accompanied by

a strong decrease in group velocity so that the light inside the medium can be slowed down

and even stopped [1].

Historically, the theoretical foundations of EIT were set forth by Kocharovskaya and

Khanin [2] in 1988 and independently by Harris [3] in 1989. The first experimental obser-

vation of EIT was achieved in a strontium vapour by Harris et al. [4] in 1991. To date,

the EIT effect is most commonly realized in three types of 3-level atomic configurations:

known as Λ (Lambda) [1], Ξ (Ladder) [5, 6] and V (Vee) [7] systems. The Λ type is the

simplest scheme and has been extensively studied in the literature. In this case, two lower

energy levels are coupled to a single upper energy level by a coupling and a probe laser, and

coherence is created between the two lower levels [1]. More intriguing is the behavior of the

atomic systems interacting with multiple laser beams, for which more than one EIT win-

dow appears in the absorption spectrum [8, 9]. Multiple transparency windows have been

reported in different multi-levels atomic systems, such as N -type [10, 11], Y -type [12, 13],

K-type [14], W -type [15] and inverted Y -type [16, 17].

1



Chapter 1. Introduction 2

EIT experiments in atomic ensembles have been conducted at various temperatures.

For example, the use of room temperature experimentation in an ensemble of atoms occurs

in one study [5] that investigates EIT in a three-level system (Ladder type) in a Doppler-

broadened medium, focusing closely on counterpropagating fields with similar frequencies

to minimize the Doppler width. This study [5] extends the theory to include the lambda

configuration and explores various regimes and optimization strategies for absorption re-

duction. When comparing this theory with the conducted experiment and the use of the Rb

D2 line at room temperature [5], they are presented with good agreement and with noted

limitations due to the linewidth of the diode lasers used. In another notable experiment at

room temperature [18], EIT can be observed in a pure Rb vapour cell and Rb vapour filled

with nitrogen (Rb–N2) in a five-level lambda configuration. In this context, the presence of

buffer gas in combination with the Rb vapour enhances the EIT contrast. Recent research

has shifted its focus to explore EIT specifically in ensembles of cold atoms [19], presenting

a notable departure from previous studies that predominantly utilized ensembles of warm

atoms [20] or even including those conducted at room temperature [5]. Ahufinger et al. [19]

examined the EIT absorption spectrum of the cold atoms between above and below the

transition temperature for Bose–Einstein condensation.

The discovery of EIT in atomic ensembles has led to the development of significant sci-

entific applications [1] including control of optical group delay in a medium [21], production

of dark state polaritons [22, 23] and quantum memory [24].

• By using EIT, optical group delay can be controlled through the manipulation of

the dispersion properties of an atomic medium. One study [21] examined the EIT

region and found that the refractive index becomes extremely dispersive and changes

depending on the frequency. This dispersion caused different frequency components

of the probe field to experience different phase velocities and group velocities. The

dispersion properties and affected optical group delay can be precisely controlled by

manipulating the intensity and frequency of the control field [21].

• Dark state polaritons in EIT [22, 23] can be used in quantum optics and quantum

information processing. Based on EIT, dark state polaritons can be formed by the

coupling of the probe field with the collective atomic excitations in the system. This
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happens while the control field is detuned from resonance.

• The concept of light storage and quantum memory within the transparency window in

EIT was first presented in 2000 by Fleischhauer and Lukin [22]. In recent years, it has

been proven that EIT with a strong control field enables the mapping of information

from an input pulse into a collective atomic state. This information can be stored and

eventually retrieved; effectively achieving light storage or quantum memory [24].

Research has revealed that EIT can be achieved in various systems: such as atomic

vapors [5], semiconductor quantum wells [25], and semiconductor quantum dots [26]. The

theory of EIT is established in the case of individual quantum emitters, such as atoms

or molecules in dilute vapors [27, 28]. However, when dealing with two or more strongly

interacting emitters or ensembles with high densities, the physics becomes significantly

more complex. In these scenarios, the optical properties of an ensemble cannot be simply

considered as the sum of their individual responses [29]. Collective effects arise due to

the interactions among the quantum emitters within the system. Consequently, the total

electric field experienced by an individual quantum emitter is the sum of both the applied

field and the radiated field from all its neighbors [29].

Zhu (2016) [30] examined the impact of laser intensity, atomic density, and polarization

on the optical response properties of a cold ensemble. In their study, they found that the

atoms’ motion can cause significant dephasing and diminish collective effects. Kuraptsev et

al. (2014) [31], analyzed the spontaneous decay of a single atom inside cold atomic clouds

for varying interatomic separation. They found that an atom inside the ensemble decays

faster than a free atom. Sukharev (2011) [32] scrutinized the linear optical response of

two-dimensional atomic clusters driven with low-intensity field for three-level atoms with

two degenerate excited states. They found that atomic clusters have two well-distinguished

resonances so that one resonant mode is located just below the atomic transition frequency

of an individual atom, while the other is positioned significantly higher [32]. Diloreto

(2018) [29] also investigated the dynamics of a dense three-dimensional ensemble of two-

level quantum systems driven by a strong, linearly-polarized, plane wave electromagnetic

field [29]. They showed that though the incident field is polarized in only a single direction,

spontaneous emission from each atom may excite transitions in adjacent atoms in other
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directions. Consequently, to fully capture interatomic interactions, the consideration of all

three components of the dipole moment operator is required, where the three-excited basis

is used for the quantum state of each emitter.

In this thesis, I set out to explore the EIT phenomena in an ensemble of atomic sys-

tems which are in a three-level Λ configuration with a multi-directional excited state. In

particular, this model is constructed based on the nearest neighbor interatomic interaction

of three-level Λ atoms in an ensemble. Each member of an ensemble acts as an individual

quantum emitter that can spontaneously radiate field in all directions, even perpendicular

to the direction of the incident beam. The radiation fields in all directions can excite atoms

with different orientations of the dipole moment. I study the influence of these effects on

the EIT behavior in an atomic ensemble which has not been considered in previous works.

I analyze the optical properties of the ensemble and compare them to those of a single atom

to gain a better understanding of how the ensemble’s collective behavior affects EIT. In a

second model, I investigated a Gaussian probe pulse propagating in a three-level Λ medium

with a multi-directional excited state coupled to a monochromatic control field. This study

has the promise of applications to improve optical quantum memory.

Thesis Overview

In this thesis, I study EIT in an ensemble of three-level Λ systems (3LΛS). First, in

Chapter 2, I review the theory of EIT in a single three-level Λ system, I show how we can

calculate the electric susceptibility of the probe field through the density matrix. Then, I

obtain the transparency window, and the group velocity for the probe field in the medium.

In Chapter 3, I show how to model an ensemble of atomic systems by using an effective

single-particle model in which decoherence terms, such as effective spontaneous decay and

dephasing rates are considered. With this methodology, I delve into the investigation of the

EIT effect in the next chapter.

Finally, in Chapter 4, I extend the methodology of EIT modeling to an ensemble of 3LΛS.

I present two models. In the first model, I model the ensemble as a single particle density

matrix with specific decoherence terms. With this model, I can predict the dependence of

the transparency window and the group velocity of a probe field on the number density of

an ensemble. I then extend a model of a probe field propagating through an ensemble in a
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slowly varying (field) approximation. The dependence on density has interesting results.



Chapter 2

EIT Overview

In this chapter, I offer an overview of the theory of Electromagnetically Induced Trans-

parency (EIT) in a single three-level quantum system in the Λ configuration. I start by

obtaining both the steady-state and time dependent solutions of the Lindblad–von-Neumann

equation for the density matrix. Then, I find a typical linear susceptibility spectrum for

EIT in a Λ system. Lastly, I calculate transparency window and the group velocity of a

probe field in an EIT medium.

2.1 Lambda EIT Scheme

The simplest configuration in which EIT can occur has three quantum Levels in a Λ con-

figuration as in Fig.2.1. Here, two ground states |0⟩ and |1⟩ that are close in energy are

connected to a single excited state |2⟩ via a weak probe field and a strong control (signal)

field, respectively. The transition |0⟩ ↔ |1⟩ is a dipole forbidden transition. We use a

semi-classical approach to describe the interaction of an atom with laser fields, where the

atom and laser field are treated as a quantum mechanical object and a classical electric

field, respectively.

The total Hamiltonian for the 3LΛS

H = H0 +H1, (2.1)

6



Chapter 2. EIT Overview 7

where H0 is the Hamiltonian in the absence of the external laser field, consisting of the

eigenstates |0⟩, |1⟩ and |2⟩ with corresponding eigenvalue energies ℏω0, ℏω1 and ℏω2. H0 is

given in matrix form as

H0 =


ℏω0 0 0

0 ℏω1 0

0 0 ℏω2

 . (2.2)

H1 is the atom-field interaction Hamiltonian given by

H1 = −µ⃗ · E⃗, (2.3)

in which µ⃗ is the dipole moment operator and E⃗ is applied electric field that is defined in

the dipole approximation as

E⃗ = E⃗pEp cos(ωpt) + E⃗cEc cos(ωct). (2.4)

Here, the weak probe field with an amplitude Ep, unit polarization vector E⃗p and frequency

Figure 2.1: Schematic diagram of a three-level Λ-type atomic system.

ωp couples the |0⟩ → |2⟩ transition, while the strong coupling field with an amplitude Ec,

unit polarization vector E⃗c and frequency ωc drives the transition |1⟩ → |2⟩. Hence, the
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matrix representation of the perturbation Hamiltonian is obtained as

H1 = −


0 0 µ02Ep cos(ωpt)

0 0 µ12Ec cos(ωct)

µ02Ep cos(ωpt) µ12Ec cos(ωct) 0

 , (2.5)

where µnm = µmn = ⟨m|µ |n⟩, (m,n = 0, 1, 2). The dipole moment matrix elements are

assumed to be real. For convenience, H1 is expressed in terms of exponents

H1 = −


0 0 µ02Ep(e

−iωpt + eiωpt)/2

0 0 µ12Ec(e
−iωct + eiωct)/2

µ02Ep(e
−iωpt + eiωpt)/2 µ12Ec(e

−iωct + eiωct)/2 0

 .

(2.6)

2.1.1 Lindblad-von Neumann Equation

To find the dynamics of the system, one can employ the well-known density-matrix for-

malism. The time evolution of the density matrix ρ is described using the Lindblad-von

Neumann equation [33]

ρ̇ = − i

ℏ
[H,ρ]− L (ρ) , (2.7)

where the dot stands for the time derivative and L (ρ) represents the Lindblad superoperator

which has the form

L (ρ) =

∑
d=0,1

γd
2

(
σ†dσdρ+ ρσ†dσd − 2σdρσ

†
d

)
. (2.8)

Here, σd are the Lindblad operators and γd is the atom spontaneous emission rate from |2⟩

to |0⟩ and |1⟩. For a three-level Λ system, the spontaneous emission transition from |1⟩ to

|0⟩ is dipole forbidden. The Lindblad operators σd are defined as follows

σ0 = |0⟩ ⟨2| , σ1 = |1⟩ ⟨2| . (2.9)
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Briefly, by going into the interaction picture with unitary operator

U =


e−i(ωp+ω2)t 0 0

0 e−i(ωc+ω2)t 0

0 0 e−iω2t

 , (2.10)

and adopting the rotating wave approximation, where the counter-rotating terms are dropped,

and by defining Rabi frequencies

Ωp =
Epµ02

ℏ
, Ωc =

Ecµ12
ℏ

, (2.11)

the total Hamiltonian for the Λ system becomes

HRWA = −ℏ
2


−2∆p 0 Ωp

0 −2∆c Ωc

Ωp Ωc 0

 , (2.12)

in which ∆p = ωp − ω2 + ω0 and ∆c = ωc − ω2 + ω1 are the laser detunings. The details of

the derivations are given in Appendix A.

So, the Lindblad-von Neumann equation becomes

ρ̇ = − i

ℏ
[HRWA, ρ]− L (ρ) . (2.13)

Note that the Lindblad-von Neumann equation 2.13 is written in the interaction picture as

detailed in Appendix B, but the primes are dropped for convenience.

Writing the Lindblad-von Neumann equation Eq. 2.13 in component form, we have the

diagonal elements

ρ̇00 = γ0ρ22 +
1

2
iΩp (ρ20 − ρ02) ,

ρ̇11 = γ1ρ22 +
1

2
iΩc (ρ21 − ρ12) ,

ρ̇22 = − (γ0 + γ1) ρ22 +
1

2
iΩp (ρ02 − ρ20) +

1

2
iΩc (ρ12 − ρ21) , (2.14)



Chapter 2. EIT Overview 10

and the off-diagonal matrix elements

ρ̇01 = i (∆c −∆p) ρ01 +
1

2
iΩpρ21 −

1

2
iΩcρ02,

ρ̇02 = −1

2
(2i∆p + γ0 + γ1) ρ02 +

1

2
iΩp (ρ22 − ρ00)−

1

2
iΩcρ01,

ρ̇12 = −1

2
(2i∆c + γ0 + γ1) ρ12 −

1

2
iΩpρ10 +

1

2
iΩc (ρ22 − ρ11) . (2.15)

The above equations are constrained by population conservation law ρ00 + ρ11 + ρ22 = 1

and the complex conjugate ρ̇ij = ρ̇∗ji. As it is apparent, the above equations are coupled to

each other, and it is difficult to solve them analytically in general. In the following, we first

obtain the analytic steady-state solution under the conditions that the system is initially

in the ground state |0⟩ and the probe field is very small in comparison to the coupling

field, Ωp ≪ Ωc. Additionally, we numerically solve the complete Lindblad-von Neumann

equations Eqs. 2.14 and 2.15 without any simplifications. As we shall see next, one needs

the density matrix element ρ02 in order to study EIT.

Steady-state Solution

In order to obtain the analytical solution for Eqs. 2.14 and 2.15, we assume that the

system is initially in the ground state, i.e.,

ρ00 = 1, ρ11 = 0, ρ22 = 0. (2.16)

By assuming a weak probe optical field, we perform a perturbation expansion of the set

of Lindblad-von Neumann equations, Eqs. 2.14 and 2.15, up to first order in Ωp. In the

steady-state regime, the time derivative of each density matrix element vanishes and thus

ρ02 can be readily calculated as [1]

ρ02 =
2Ωp (∆c −∆p)

2i (∆c −∆p) (γ0 + γ1 + 2i∆p)− Ω2
c

. (2.17)

In the next subsection, we will use the above relation to determine the linear susceptibility

for a probe laser field.

Numerical Solution

Now, we solve numerically the Lindblad-von Neumann equation given by Eqs. 2.14
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and 2.15 by using the NDSolve function of Wolfram Mathematica. One special aspect of

NDSolve is its ability to analyze symbolic representations of both differential equations and

solution domains. It then automatically picks the most appropriate numerical techniques

based on the problem’s inherent characteristics. Generally, a typical precision value in

Mathematica’s NDSolve is around 16.

To this end, we consider a 3LΛS an alkali atom 87Rb, where we set |0⟩ = |5S1/2, F = 1⟩,

|1⟩ = |5S1/2, F = 2⟩ and |2⟩ = |5P3/2, F = 2⟩ [34]. The parameters we used in the numerical

analysis are the following: Ωp = 0.1MHz, Ωc = 1MHz and γ0 = γ1 = 3.03MHz. These pa-

rameters represent typical experimental values, with the Rabi frequencies being lower than

the decoherence rates. By solving the time dependent Lindblad-von Neumann equation,

we plot the real and imaginary parts of the density matrix element ρ20 as a function of

time for ∆p = 0.1MHz and ∆c = 0 in Fig. 2.2. It is noteworthy that at t = 0, all the

atoms are initially in the ground state. As one can see from this figure, the time for the

system to reach the steady state is about t = 80µs. Later using this data, one is able to

numerically calculate the susceptibility. The excited-state population ρ22 as a function of

time is obtained numerically and shown in Fig. 2.3.

Figure 2.2: The real and imaginary parts of the density matrix element ρ20 for Ωp =
0.1MHz, Ωc = 1MHz, γ0 = γ1 = 3.03MHz, ∆p = 0.1MHz and ∆c = 0 in terms of time.

2.1.2 Linear Susceptibility

To examine the optical response of a system, we need to know the absorption coefficient

and refractive index profiles. These optical properties are related to the imaginary and real
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Figure 2.3: The real part of the density matrix element ρ22 for Ωp = 0.1MHz, Ωc = 1MHz,
γ0 = γ1 = 3.03MHz, ∆p = 0.1MHz and ∆c = 0 in terms of time.

parts of the electric susceptibility (χ) of the atomic medium by

α = (ω/c) Im (χ) , n = 1 + Re (χ) /2, (2.18)

where c is the speed of light as well as α and n are the absorption coefficient and refractive

index, respectively. In order to study EIT, one has to determine the electric susceptibility

for the probe laser beam.

The induced linear polarization at the probe frequency ωp is given by

P =
1

2
ϵ0Ep

[
χp (ωp) e

−iωpt + χp (ωp)
∗ eiωpt

]
, (2.19)

where ϵ0 is the permittivity of vacuum and χp is the susceptibility of the atomic system

due to the probe beam. On the other hand, by performing a quantum average of the dipole

moment of the probe transition over an ensemble of N non-interacting atoms at the probe

frequency ωp, we have another expression for the polarization

P = NTr (ρµ) = N
∑
i,j

ρijµji

= Nµ02
(
ρ20e

−iωpt + ρ02e
iωpt

)
, (2.20)

where ρ is the density matrix in the original untransformed frame. By comparing equations
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2.19 and 2.20, the linear probe susceptibility in the limit Ep → 0 is expressed as

χp =
2Nµ02
ϵ0Ep

ρ20. (2.21)

According to the steady-state solution Eq. 2.17, the expression for the electric susceptibility

is given by [1]

χp = −2Nµ02
ϵ0Ep

2Ωp (∆c −∆p)

2i (∆c −∆p) (γ0 + γ1 − 2i∆p) + Ω2
c

, (2.22)

or equivalently

χp = − 2Nℏ
ϵ0E2

p

2Ω2
p (∆c −∆p)

2i (∆c −∆p) (γ0 + γ1 − 2i∆p) + Ω2
c

, (2.23)

in which we have used the Rabi frequencies formula, Ωp = Epµ02/ℏ. When the control laser

field is absent, Ωc = 0, the above susceptibility reduces to

χp =
2iNℏΩ2

p

ϵ0E2
p (γ0 + γ1 − 2i∆p)

. (2.24)

Figure 2.4: The real and imaginary parts of the susceptibility for Ωp = 0.1MHz, γ0 =
γ1 = 3.03MHz, N = 1020m−3, ∆c = 0 and Ωc = 0 in terms of the probe laser detuning
[34]. With the provided strength of the probe electric field, susceptibility values can be

obtained.

The behavior of real and imaginary parts of susceptibility as a function of the probe

laser detuning for the sample of alkali atom 87Rb with the parameters Ωp = 0.1MHz,

γ0 = γ1 = 3.03MHz, ∆c = 0 and N = 1020m−3 are depicted in Figs 2.4 and 2.5 for Ωc = 0

and Ωc = 1MHz. When the control laser is off (Ωc = 0), the probe field is absorbed very
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Figure 2.5: The real and imaginary parts of the susceptibility for Ωp = 0.1MHz, γ0 =
γ1 = 3.03MHz, N = 1020m−3, ∆c = 0 and Ωc = 1MHz in terms of the probe laser detuning.
With the provided strength of the probe electric field, susceptibility values can be obtained.

strongly. When Ωc ̸= 0, we can see that a transparency window is opened in the presence

of the control beam at the probe frequency.

2.2 Slow Light

“Slow-light” [35] is an effect that accompanies EIT. When an optical beam propagates

through a medium, its speed is changed by the interactions with the medium. Due to the

dispersion effect, one can define the group velocity of the light as

vg =
dω

dk
=

c

ng
, (2.25)

where c is the speed of light in vacuum, k is the wave number and ng is the group refractive

index at the optical frequency given by

ng = n(ω) + ω
dn(ω)

dω
. (2.26)

Here, n(ω) is the refractive index which is a function of the real part of optical susceptibility

(χ), n = 1 + Re (χ) /2.

Obviously, the above relation Eq. (2.26) represents the dependency of vg on dn(ω)/dω of

the medium. Intuitively, dn(ω)/dω can have positive or negative values and the group index
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could be larger or smaller than one. In particular, slow light occurs when ng ≫ 1 and fast

light occurs when ng < 1. Also, if dn(ω)/dω is sufficiently large and negative, ng becomes

negative. This negative group velocity is a special form of fast light, which is sometimes

known as backwards light [36, 37]. The electromagnetically induced transparency (EIT)

medium, which is optically controllable, is a standard way to create slow light [38–40].

According to the formula for electric susceptibility Eq. (2.23), the group index for the

probe light in a three-level Λ EIT medium is given by the formula [35]

ng = 1−
4Γ2(4∆p4 [2∆p+ ω2] + ∆p2ω2Ω2

c)−
(
Ω2
c − 4∆p2

)2 (
4∆p2ω2 + [2∆p+ ω2] Ω

2
c

)
2−1N−1ℏ−1ϵ0E2

pΩ
−2
p (4Γ2∆p2 + [Ω2

c − 4∆p2]2)2
,

(2.27)

where we have assumed that ∆c = 0 and Γ ≡ γ0 + γ1. At ∆p = 0, all dependence on Γ is

lost. The group index of probe light for the atomic medium of 87Rb with the parameters

Ωp = 0.1MHz, γ0 = γ1 = 3.03MHz and N = 1020m−3 is shown in Fig. 2.6. We see that

the largest reduction of group velocity is achieved at the resonance frequency, i.e. ∆p = 0,

where ng is maximized.

Figure 2.6: The group index ng of probe light for Ωp = 0.1MHz, γ0 = γ1 = 3.03MHz,
N = 1020m−3 and Ωc = 1MHz in terms of the probe laser detuning.

Summary

In summary, this chapter has focused on the phenomenon of Electromagnetically Induced

Transparency (EIT) within a single three-level Λ system driven by two incident fields. By

performing electric susceptibility calculations, we can obtain the transparency window and
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refractive index (group refractive index) in relation to EIT phenomena, thereby gaining

valuable insights into the properties of light-matter interactions.



Chapter 3

Modelling a Dense Ensemble of

3-Level Λ systems

In this chapter, I give a brief review of a simple theoretical model in which the average

behaviour of a quantum ensemble of 2-level atoms is effectively approximated by density

matrix of a single particle with particular decoherence properties [29, 41]. Then, I apply this

model to an ensemble of three-level Λ systems (3LΛS). I start with an explanation of the

generalized directional state basis to describe the behaviour of the atomic ensemble. After

that, I present a model containing the decoherence terms involving effective spontaneous

decay and dephasing rates, needed to model an ensemble of atomic systems with a single

particle density matrix.

3.1 Maxwell–von Neumann Equations

In order to give a complete description of the atomic ensemble interacting with two driv-

ing light fields, one must necessarily solve self-consistently the coupled Maxwell’s and the

Lindblad-von-Neumann equations in three dimensions, where the radiation fields are gov-

erned by classical Maxwell’s equations while the members of the ensemble are described

quantum mechanically.

The temporal and spatial evolution of an electromagnetic wave through the optical

17
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medium is determined by Maxwell’s equations. Thus, according to Faraday’s law and

Ampere’s law, we have

∇⃗ × E⃗(r⃗, t) = −µ0
˙⃗
H(r⃗, t),

∇⃗ × H⃗(r⃗, t) = ϵ0
˙⃗
E(r⃗, t) + J⃗(r⃗, t), (3.1)

where the dot stands for the time derivative, J⃗(r⃗, t) is the free electric current density,

E⃗(r⃗, t) and H⃗(r⃗, t) are the electric and magnetic fields, respectively, and µ0 is the magnetic

permeability of the free space.

In terms of the density matrix, the computation of the quantum dynamical system is

made by using the Liouville-von Neumann equation

ρ̇ = − i

ℏ
[H,ρ]− L (ρ) , (3.2)

where the dot stands for the time derivative, ρ is the density matrix operator that char-

acterizes the statistical state of the system in the transformed frame, and H is the tolal

Hamiltonian. In addition, L (ρ) in the above evolution equation is the Lindblad superoper-

ator defined by

L (ρ) =

∑
i

∑
j

γij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)
. (3.3)

where σij are the Lindblad operators, the superscript † indicates Hermitian conjugation and

γij is the atom spontaneous emission rate from |i⟩ to |j⟩. For an emission transition from

|i⟩ to |j⟩, the Lindblad operator is to be of the form

σij = |j⟩ ⟨i| . (3.4)

In the presence of the electric fields applied, the macroscopic polarization describing

the optical response of an atomic medium can contribute to the current density generation,

J⃗(r⃗, t). The components of the current density can be obtained from the macroscopic

polarization by

J⃗(r⃗, t) =
∂

∂t
P⃗ (r⃗, t), (3.5)
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where P⃗ (r⃗, t) is the macroscopic polarization given by

P⃗ (r⃗, t) = N < µ⃗ >

= N Tr(ρµ̃). (3.6)

In this equation, ρ is the density matrix, N is the atomic density and µ⃗ is transition dipole

moment which defined by the expression

µi = − ∂H

∂Ei
, i = x, y, z. (3.7)

The above set of equations (3.1) and (3.2) with Hamiltonian can be solved numerically

using finite difference time domain (FDTD) or pseudo-spectral time domain (PSTD) com-

putation [29, 42, 43]. In these algorithms, the uniaxial perfectly-matched layer (PML) is

implemented as the absorbing boundary condition (ABC) to truncate the computational

domain [44]. Generally, in order to solve simultaneously the Maxwell and Lindblad-von

Neumann equations, there are complex and voluminous calculations that take a consid-

erable amount of time. Hence, a simple effective single particle model is constructed to

examine the quantum dynamics of an atomic ensemble driven by electromagnetic fields.

3.2 Modeling an Ensemble of Atomic Systems with Direc-

tional Basis States

3.2.1 Two-Level Systems

Consider a simple system that is represented by a dense ensemble of two-level atoms consist-

ing of ground |g⟩ and excited |e⟩ states with energy separation ℏωeg (see Fig. 3.1) [29, 41].

This system is driven by an external linearly polarized electromagnetic plane-wave field

with amplitude E0 and frequency ω. The vector of incident light polarization is along the

electric dipole direction of the individual particle. A noticeable effect of the ensemble of

atoms is arising from the spontaneous emission of each atom, where these emissions can

radiate electromagnetic fields with different polarization directions. Indeed, when a linear
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polarized optical field is applied to the two-level medium, it is absorbed by an individual

atom. The atom is therefore in its excited state, and hence one can expect that the light

is emitted by the spontaneous decay process. The resulting light may be reabsorbed by

a nearby ground-state atom. The spontaneous emission light may have multiple polariza-

tion directions, i.e., parallel and perpendicular to the initial incident polarization direction.

These new polarization directions could interact with various orientations of the electric

dipole moments of atoms in the ensemble [29].

Figure 3.1: Schematic energy diagrams of a atomic system. a) The electric dipole moment
of the two-level atom is oriented along the incident field polarization direction. b) The
effective energy level structure of the two-level system that can be excited by the different
field polarization components. Ω’s and ∆’s are the dipole–field interaction frequency and
detuning, respectively. γ’s denote the spontaneous emission rates from the respective levels

to the ground state [29].

In order to describe the quantum dynamics of an atomic ensemble driven by an external

electromagnetic field, one has to take into account the excitation of atoms in directions

other than the incident field polarization direction. This can be done by considering three

excited directional states |ex⟩, |ey⟩ and |ez⟩ for atoms in the ensemble. A directional state

basis was first proposed in [45] and later applied in Refs. [29, 41]. In this way, the atoms

are represented by a four-level scheme with one ground state and three degenerate excited

states. This is expressed diagrammatically in Fig. 3.1. It is clear that the excited states

|ex⟩, |ey⟩ and |ez⟩ can couple to the ground state |g⟩ by absorbing x, y or z-polarized light

respectively.
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3.2.2 Three-Level Λ Systems (3LΛS)

To describe the time evolution of a quantum system that contains an ensemble of three-level

atoms in the Λ configuration, we consider the five-level atom with three degenerate excited

levels as the state of constituent elements of the ensemble. The energy structure of a five-

level atom in a directional state basis is presented in Fig. 3.2. The two additional excited

states are added to take into account the interatomic interactions between the atoms that

produce excitations in other directions. Here, we assume the polarizations of two incident

laser beams (probe and control) to be along the y-axis. Due to the spontaneous emission

of an excited atom, the radiating atomic transition may be in the direction parallel to

or perpendicular to the incident light polarization and which can be absorbed by another

atom and thereby raise it into an excited state |2y⟩, |2x⟩ or |2z⟩. The spontaneous emission

and reabsorption events occur in different directions all over the ensemble. In Fig. 3.2, the

decay rates of spontaneous emission from level |2i⟩ to |0⟩ and |1⟩ are γi0 and γi1, respectively,

where i = x, y or z.

Figure 3.2: The effective energy level structure of the three-level Λ system that can be
excited by the different field polarization components. ωp and ωc are the angular frequencies
of the probe and control laser beams, respectively. ∆p and ∆c denote the detuning of the

probe and the coupling fields with respect to their atomic transition energies.
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3.3 Effective Single Particle Models of an Atomic Ensemble

3.3.1 Ensemble of Two-Level Atoms

The numerical solution to the Maxwell-Lindblad-von Neumann equations is associated with

high computational complexity and long-time computation. Theoretically, the overall evo-

lution of a driven atomic ensemble was shown to be quantitatively similar to that of a driven

single-particle model in which the interatomic effects are described by decoherence terms.

The decoherence rates can be calculated from the Forster resonance energy transfers process

in biophysical modeling [46]. In the following, a review of the effective single-particle model

of a two-level ensemble [29] is presented.

The nature of the atomic level structure of the single-atom model should be similar to

the energy levels of constituent element of the ensemble. Thus, the single-atom model is

comprised of a ground state |g⟩ and three degenerate excited states |ex⟩, |ey⟩ and |ez⟩, where

it can couple to the different polarization of electromagnetic field. The explicit Hamiltonian

describing the effective single-atom driven by the electromagnetic wave, after the rotating

wave approximation, takes the form

Hens = −ℏ
2


−2∆ Ωx Ωy Ωz

Ω⋆
x 0 0 0

Ω⋆
y 0 0 0

Ω⋆
z 0 0 0

 , (3.8)

where ∆ shows the detuning between the optical frequency and the atomic transition, and

the Rabi frequency of the electric field in three Cartesian directions is Ωi, i = x, y and z.

Following a manner that is similar to the case of the ensemble, consider that the external

incident electric field is polarized along the y axis, Ey, hence the perpendicular field com-

ponents, i.e. Ex and Ez, representing the scattered fields are much weak than the external

incident field. These perpendicular fields arise due to spontaneous emission from the excited

state of the atomic ensemble. Based on the field of dipole, one can roughly calculate the
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perpendicular scattered field components as [29, 41]

Ex,z ∼ Ey
µ

er
sin(θ), (3.9)

in which e is the elementary charge of an electron and µ is the atomic transition dipole

moment. Moreover, we assume the presence of a cubic lattice and r = 3

√
3
√
8/(4Nπ) is the

distance between nearest neighbors with being the number density N and θ is the angle

between them and is equal θ = π/4.

In the free-space situation, when an individual atom is excited in the states |ex⟩, |ey⟩ and

|ez⟩, it can spontaneously radiate to the lower levels with rates γx, γy and γz. In contrast,

in the ensemble, this radiation can be absorbed by another atom, giving rise to nontrivial

atom-atom interactions. Thus, the radiation can be absorbed and re-emitted many times in

an atomic ensemble. This process occurs for transition |g⟩ ↔ |ex, ey, ez⟩. Here, we assume

that the effects of an ensemble are generally given in two ways: modifying the spontaneous

decay rate and considering dephasing rate. For the single-particle model, one can calculate

the effective spontaneous decay rate through the power radiated. And the dephasing rates

can be predicted by models of the Forster-Resonance Energy Transfer process [46]. FRET

occurs when a small light-emitting molecule (the“donor”) transfers its energy to a nearby

molecule (the “acceptor”), typically occurring when the molecules are in close proximity to

each other. In fact, the atom-atom interactions in the atomic ensemble are modeled by the

dephasing terms based on the emission of a photon and the reabsorption of that photon

by a neighbouring atom. Hence, we define δij to be the dephasing rate for which photon

is emitted from the state |i⟩ of one atom and absorbed by another atom in the vicinity,

which is then excited to the state |j⟩. Typically, δxx, δyy and δzz are referred to as parallel

dephasing rates, whereas δxy, δxz and δyz are referred to as perpendicular dephasing rates.

The spontaneous decay and dephasing rates for the single-particle model are schematically

displayed in Fig. 3.3. In the following, we give a derivation of the spontaneous emission

and dephasing rates for the single-particle model.

Spontaneous Emission Rate

In order to obtain approximately the spontaneous emission rates for an effective single

particle model, we use the radiated power of an atom determined by the Larmor formula.
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Figure 3.3: A sketch of the transition structure in the effective single-particle model of the
driven ensemble of atoms. The blue and red dashed curves correspond to the spontaneous

emission and dephasing due to interatomic energy transfer [29].

By comparing the ratio of the power emitted by an atom in an ensemble and free space,

one can estimate the spontaneous emission rate from the excited state to the lower state in

an ensemble. This ratio is given as

γ′ij
γij

=
P ′

P
=

Re(̃j∗ij · Ẽmean)

Re(̃j∗ij · Ẽinc)
, (3.10)

where γ′ij (P ′) and γij (P ) are the atom spontaneous emission rates (power emitted) from

|i⟩ to |j⟩ in the ensemble and free space, respectively, j⃗ij is the free current of the tran-

sition |i⟩ ↔ |j⟩ that relates to the atomic electric dipole moment µ⃗ij as j⃗ij = −iωµ⃗ij .

Consequently, the above equation can be written in terms of the dipole moment as follows

γ′ij
γij

=
Im(µ̃∗ij · Ẽmean)

Im(µ̃∗ij · Ẽinc)
. (3.11)

Since the mean field is the sum of the incident field and the scattered field, E⃗mean =

E⃗inc + E⃗ext, we have
γ′ij
γij

= 1 +
Im(µ̃∗ij · Ẽext)

Im(µ̃∗ij · Ẽinc)
. (3.12)

In the case of single particle model, there is no scattered field amplitude, E⃗ext = 0, and

thus the spontaneous emission rates γ′ij are equal to γij . The spontaneous emission rates
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do not change for the single particle model.

Dephasing Rate

The dephasing rate, δij , is interpreted as the rate of energy transfer between atomic

transitions and is determined based on the Forster-Resonance Energy Transfer mechanism

[29, 46]. The magnitude of the dephasing rate can be calculated from the ratio of the power

transferred from the state |i⟩ into the state |j⟩, Pi→j , to the power emitted by an atom in

free space, expressed as
δi→j

γik
=
Pi→j

Pik
, (3.13)

where δi→j is the dephasing rate from i (donor) to j (acceptor) and γik is the spontaneous

emission rates from the state |i⟩ to the lower state |k⟩ with the power emitted Pik in free

space. The power transferred Pi→j from donor to acceptor is

Pi→j = −1

2
Re(̃j∗j (r̃j) · Ẽi(r̃j)), (3.14)

with the current density of the acceptor j⃗j and the electric field E⃗i(r⃗j) of the donor at the

acceptor position.

Regarding to the electric field of a point dipole

E⃗i(r⃗) =
1

4πϵ0

(
3 (µ⃗i · r̂) r̂ − µ⃗i

r3

)
, (3.15)

with the dipole moment of transition µ⃗i and distance apart of atoms 1/r3 = 1/8× 4πN/3,

we have

E⃗i(r⃗) =
N

24ϵ0
|µi| (3 (µ̂i · r̂) r̂ − µ̂i) . (3.16)

Using the above electric field and the current density j⃗i = −iωµ⃗i, the power transferred

Pi→j becomes

Pi→j =
1

2
ωµ⃗j ·

(
N

24ϵ0
|µi| (3 (µ̂i · r̂j) r̂j − µ̂i)

)
. (3.17)

Assuming that the amplitudes of the dipole moments for each transition are equal, |µi,j | =



Chapter 3. Modeling Dense Ensemble with Single Particle 26

|µ|, Pi→j takes the form

Pi→j =
Nω

48ϵ0
|µ|2 (3 (µ̂i · r̂j) (µ̂j · r̂j)− (µ̂j · µ̂i))

=
Nω

48ϵ0
|µ|2 (3 (µ̂i · r̂j)− (µ̂j · µ̂i)) . (3.18)

In this way, we have estimated dephasing and emission based on dipolar fields from other

atoms self consistently. With the power transferred Pi→j at hand, one can obtain the

dephasing rate as

δi→j

γik
=
Pi→j

Pik
=
Nω|µ|2 (3 (µ̂i · r̂j)− (µ̂j · µ̂i)) /(48ϵ0)

µ0ω4|µ|2/(12πc)
, (3.19)

where we have used Pik = µ0ω
4|µ|2/(12πc) for the power emitted in free space. After

simplifying, this reduces to

δi→j

γik
=
Nπc3

4ω3
ik

(3 (µ̂i · r̂j)− µ̂j · µ̂i) . (3.20)

In order to take into account the fraction of atoms undergoing the transition in the ensemble,

we add a factor of
√
ρiiρkk

√
ρjjρkk to this equation. We find

δi→j

γik
=
Nπc3

4ω3
ik

(3 (µ̂i · r̂j)− µ̂j · µ̂i)
√
ρiiρkk

√
ρjjρkk. (3.21)

As one can see from above equation, for the parallel dephasing rates, we have

δi→i

γik
=
Nπc3

2ω3
ik

(
√
ρiiρkk

√
ρiiρkk) , (3.22)

where δi→i is the rate of energy transfer from state i in one atom to i in another atom. And

finally, for the perpendicular dephasing rates, we have

δi→j

γik
=

3Nπc3

16
√
2ω3

ik

(√
ρiiρkk

√
ρjjρkk

)
, (3.23)

where we have multiplied the equation (3.21) by a factor 1/
√
8 due to the nearest diagonal

neighbour, instead of the nearest neighbour distribution. Note that the dephasing rates

are functions of time through their dependence on the density matrix element. I will then

apply this methodology to design a single particle model of an ensemble of 3L Λ systems.
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Figure 3.4: Excited state populations of single particle model as a function of time for
two values of number density of atoms in the ensemble. The amplitude of the driving

electric field E is 1.5× 109V/m. Here we have set ∆ = 0 [29].

Given the spontaneous decay and dephasing rates, one can construct the Lindblad su-

peroperator. One can then solve the Lindblad-von Neumann equation by setting the initial

conditions ρgg = 1, ρxx = 0, ρyy = 0 and ρzz = 0. The temporal evolution of excited-state

populations are presented in Fig. 3.4. Here, the spontaneous emission rates are estimated

using Fermi’s golden rule equation [46]. Looking at figure 3.4, one can clearly see the

influence of the number density of atoms on the dynamics of excited state populations.

3.3.2 Ensemble of 3-Level Λ Systems

Here, we generalize the previous procedure to the case of a five-level atomic system driven by

two laser fields, where the electromagnetically induced transparency process can be created.

In this modeling technique, the atomic-level structure for the single-particle density

matrix is the same as that taken for an atom in the ensemble. So, it has two closely ground

states |0⟩ and |1⟩ and three degenerate excited directional states |2x⟩, |2y⟩ and |2z⟩ (Fig.

3.5).

The total Hamiltonian of this five-level atom interacting with the electromagnetic field

can be written as

H = H0 +H1, (3.24)
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Figure 3.5: A sketch of the transition structure in the effective single-particle model of
the driven ensemble of atoms. The blue (orange) and red dashed curves correspond to the

spontaneous emission and dephasing due to interatomic energy transfer.

where H0 is the bare Hamiltonian of the atom which is represented in matrix form as

H0 =



ℏω0 0 0 0 0

0 ℏω1 0 0 0

0 0 ℏω2 0 0

0 0 0 ℏω2 0

0 0 0 0 ℏω2


, (3.25)

in which ℏω0, ℏω1 and ℏω2 are the eigenvalues of H0. In Eq. (3.24), H1 is the interaction

Hamiltonian given by

H1 = −µ⃗ · E⃗, (3.26)

E⃗ is the total electric field which is a sum of the incident and local electric fields

E⃗ = E⃗inc + E⃗local. (3.27)

In the above, the local electric field is caused by the spontaneous decay of excited atoms in

the ensemble. Since these are two applied fields (the probe and control), we can write the

total electric field E⃗ experienced within the ensemble as

E⃗ = (x̂Epx + ŷEpy + ẑEpz) cos (ωpt)

+ (x̂Ecx + ŷEcy + ẑEcz) cos (ωct) , (3.28)
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where we consider the dipole approximation. A weak probe field with angular frequency

ωp, amplitude Epy and unit polarization vector ŷ couples the dipole allowed transition

|0⟩ ↔ |2y⟩; a strong coupling field with angular frequency ωc, amplitude Ecy and unit

polarization vector ŷ couples the dipole allowed transition |1⟩ ↔ |2y⟩. Note that, two

electric fields with amplitudes Epx and Epz (Ecx and Ecz) and unit polarization vectors

x̂ and ẑ (x̂ and ẑ) generated by spontaneous emission drive, respectively, the transitions

|0⟩ ↔ |2x⟩ and |0⟩ ↔ |2z⟩ (|1⟩ ↔ |2x⟩ and |1⟩ ↔ |2z⟩). These electric fields arise from the

spontaneous emission transitions perpendicular to the polarization vectors of incident field

components, i.e. probe and control fields.

In the above equation (3.26), µ⃗ is the atomic electric dipole moment operator given by

µ⃗ = x̂



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


µ02x + ŷ



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0


µ02y + ẑ



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


µ02z

+x̂



0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


µ12x + ŷ



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0


µ12y + ẑ



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0


µ12z, (3.29)

According to the above description, the matrix form of the interacting Hamiltonian is

given by

H1 = −ℏ



0 0 Ωpx cos (ωpt) Ωpy cos (ωpt) Ωpz cos (ωpt)

0 0 Ωcx cos (ωct) Ωcy cos (ωct) Ωcz cos (ωct)

Ωpx cos (ωpt) Ωcx cos (ωct) 0 0 0

Ωpy cos (ωpt) Ωcy cos (ωct) 0 0 0

Ωpz cos (ωpt) Ωcz cos (ωct) 0 0 0


,

(3.30)
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where the real Rabi frequencies are defined as

Ωpx =
µ02xEpx

ℏ
, Ωpy =

µ02yEpy

ℏ
, Ωpz =

µ02zEpz

ℏ
,

Ωcx =
µ12xEcx

ℏ
, Ωcy =

µ12yEcy

ℏ
, Ωcz =

µ12zEcz

ℏ
. (3.31)

In the following, the cosine functions in H1 Eq. (3.30) are conveniently represented in terms

of the exponential form using Euler’s formula.

Now, by specifying the spontaneous emission and dephasing rates, one can find the

dynamics of the effective single-particle in the presence of two external driving fields by

means of the time evolution of the density matrix given by the Liouville-von Neumann

equation

ρ̇ = − i

ℏ
[H, ρ]− L (ρ) , (3.32)

with the total Hamiltonian H, and the Lindblad superoperator L (ρ) expressed in terms of

the spontaneous emission and dephasing rates

L (ρ) =

∑
i=2x,2y,2z

∑
j=0,1

γij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)

+

∑
i=2x,2y,2z

∑
j=2x,2y,2z

δij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)
. (3.33)

For an emission transition from |i⟩ to |j⟩, the Lindblad operator is to be of the form

σij = |j⟩ ⟨i| . (3.34)

In particular, for instance, the Lindblad operator for the spontaneous decay from |2x⟩ to

|0⟩ has the following matrix representation

σ2x0 =



0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (3.35)
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Now, by introducing the unitary matrix transformation of

U =



e−i(ωp+ω2)t 0 0 0 0

0 e−i(ωc+ω2)t 0 0 0

0 0 e−iω2t 0 0

0 0 0 e−iω2t 0

0 0 0 0 e−iω2t


, (3.36)

we obtain the transformed interaction Hamiltonian H1 as follows

UH1U
† = −ℏ



0 0
Ωpx

2 A Ωpy

2 A Ωpz

2 A

0 0 Ωcx
2 B Ωcy

2 B Ωcz
2 B

Ωpx

2 A∗ Ωcx
2 B∗ 0 0 0

Ωpy

2 A∗ Ωcy

2 B∗ 0 0 0

Ωpz

2 A∗ Ωcz
2 B∗ 0 0 0


, (3.37)

where the superscript asterisk denotes taking the complex conjugate and the parameters

are

A = 1 + e2iωpt, B = 1 + e2iωct. (3.38)

By adopting the rotating wave approximation and neglecting the fast-oscillating terms in

Eq. (3.37), we arrive at

UH1U
† = −ℏ

2



0 0 Ωpx Ωpy Ωpz

0 0 Ωcx Ωcy Ωcz

Ωpx Ωcx 0 0 0

Ωpy Ωcy 0 0 0

Ωpz Ωcz 0 0 0


. (3.39)
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Finally, the total Hamiltonian in the transformed frame is

HRWA = −ℏ
2



−2∆p 0 Ωpx Ωpy Ωpz

0 −2∆c Ωcx Ωcy Ωcz

Ωpx Ωcx 0 0 0

Ωpy Ωcy 0 0 0

Ωpz Ωcz 0 0 0


, (3.40)

where ∆p = ωp−ω2+ω0 and ∆c = ωc−ω2+ω1 are the detunings of the control and probe

field frequencies from atomic resonance frequencies. More details are provided in Appendix

A. The above Hamiltonian is used to describe the interaction of an atomic ensemble with

the incident fields.

So, the Lindblad-von Neumann equation becomes

ρ̇ = − i

ℏ
[HRWA, ρ]− L (ρ) , (3.41)

with the Hamiltonian HRWA (A.7) and the Lindblad superoperator L (ρ) expressed in terms

of the spontaneous emission and dephasing rates

L (ρ) =

∑
i=2x,2y,2z

∑
j=0,1

γij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)

+

∑
i=2x,2y,2z

∑
j=2x,2y,2z

δij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)
. (3.42)

The above Liouville–von-Neumann equations (3.41) comprise 15 independent first-order

coupled differential equations for the elements of the density matrix.

Summary

In summary, in this chapter, a simple theoretical model that effectively approximates

the average behavior of a quantum ensemble of three-level atoms is described using the

density matrix of a single particle with specific decoherence properties. To do so, I modelled

3LΛS with a multi-directional excited state. Subsequently, I applied a model that includes

decoherence terms related to effective spontaneous decay and dephasing rates. These terms
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are essential for accurately modeling an ensemble of atomic systems with a single particle

density matrix. By using this methodology, I investigate the EIT effect in the next chapter.



Chapter 4

Modelling EIT in an Atomic

Ensemble

In this chapter, I numerically model EIT in an ensemble of 3LΛS and examine the effect of

the number density of atoms on the bandwidth of the EIT window and the group velocity.

First, I model the ensemble using a single particle density matrix (3.3.2) and calculate

transparency window and group velocity for a probe field (2.2). Then, I investigate the

propagation of a probe Gaussian pulse in an atomic medium of 3LΛS by solving the coupled

Maxwell and Liouville-von Neumann equations in the limit that the variation in the electric

field is very slow over space and time. I examine the dependence of EIT on the number

density of the ensemble.

4.1 EIT in an Atomic Ensemble: Single Particle Model

By using the single particle model of the ensemble of 3LΛS as described previously in

chapter 3, and also using the system parameters from the inputs for a 87Rb experiment

[34], I solved numerically Liouville-von Neumann equations simultaneously by assuming

the initial condition

ρ00 = 1, ρ11 = 0, ρ2x2x = 0, ρ2y2y = 0, ρ2z2z = 0. (4.1)

34
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I obtained the solutions to equation 3.41 by using the NDSolve function of Wolfram Math-

ematica.

Linear Susceptibility of the Ensemble

I calculated the probe susceptibility from the numerical steady-state solution of the

Liouville-von Neumann equation. The electric susceptibility in the linear response of the

probe field is calculated from the density matrix. The induced linear polarization of the

atomic medium driven by a weak probe field at the probe frequency ωp is

Py =
1

2
ϵ0Epy

[
χpy (ωp) e

−iωpt + χpy (ωp)
∗ eiωpt

]
. (4.2)

Comparing this formula with the equation (2.19) in chapter 2, one difference is that instead

of using Ep, we use Epy in an ensemble. In addition, the polarization in the y direction is

also achieved by calculating a quantum average of the y component of dipole moment at

the probe frequency ωp. This yields

Py = NTr (ρµ̂02y)

= Nµ02y
(
ρ2y0e

−iωpt + ρ02ye
iωpt

)
. (4.3)

By matching the coefficient of e−iωpt in equations (4.2) and (4.3), the linear probe suscep-

tibility is derived as

χpy =
2Nµ202y
ϵ0ℏΩpy

ρ2y0, (4.4)

where the Rabi frequency, Ωpy = Epyµ02y/ℏ.

I consider a system of alkali 87Rb atoms, where I set the three levels |0⟩ = |5S1/2, F = 1⟩,

|1⟩ = |5S1/2, F = 2⟩ and |2⟩ = |5P3/2, F = 2⟩ [34]. The parameters I used are Ωpy = 0.1MHz,

Ωcy = 1MHz, N = 1024m−3, γ2x0 = γ2y0 = γ2z0 = γ0 = 3.03MHz and γ2x1 = γ2y1 = γ2z1 =

γ1 = 3.03MHz. Here, I assume γ2x0 = γ2y0 = γ2z0 = γ0 and γ2x1 = γ2y1 = γ2z1 = γ1 for

calculations.

In order to compare the behavior of electric susceptibility of the 3LΛS and an ensemble

of 3LΛS, the imaginary and real components of χpy with ∆p are depicted in Figs. 4.1

and 4.2. From Fig. 4.1, it is seen that the transparency window for an ensemble is slightly
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Figure 4.1: The imaginary part of the susceptibility χpy for the single 3LΛS and an
ensemble of 3LΛS with parameters Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz,
N = 1024m−3 and ∆c = 0 in terms of the probe laser detuning. The dip in Imχpy

shows
the narrowing of the EIT window.
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Figure 4.2: The real part of the susceptibility χpy for the single 3LΛS and an ensemble
of 3LΛS with parameters Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, N = 1024m−3

and ∆c = 0 in terms of the probe laser detuning.

narrowed compared with the case of a single atom, and the Gaussian profile becomes flatter.

According to Fig. 4.2, one can see that the peaks become weaker and narrower for an

ensemble around the resonance transition and also positive slope of the susceptibility is

the same for both of them. The achievable frequency range (bandwidth) for slow light has

reduced, leading to a decrease in the full-width at half-maximum (FWHM).

The refractive index for the probe field in the medium n(ωpy) is obtained from the real

part of susceptibility (χpy) via the following equation

n(ωpy) = 1 + Re (χpy) /2. (4.5)

Figure 4.3 illustrates the calculated group refractive index of the probe light for both the
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Figure 4.3: The group refractive index of probe light for the 3LΛS and an ensemble of
3LΛS as a function of ∆p with Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, ∆c = 0.

3LΛS and an ensemble of 3LΛS as a function of ∆p. Notably, in this figure, the maximum

value of the refractive group index is observed for both cases at ∆p = 0, corresponding to

the lowest value of the group velocity.

All three graphs (Figs. 4.1, 4.2, and 4.3), share a common observation that the trans-

parency window and the slow light window are narrower. Consequently, achieving slow

light requires longer and longer pulses in an ensemble. It’s important to note that the

parameters have been fixed for these graphs, specifically Ωp = 0.1MHz, Ωc = 1MHz,

γ0 = γ1 = 3.03MHz, ∆c = 0, and N = 1024m−3.

4.1.1 Effect of Number Density
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Figure 4.4: The imaginary part of the susceptibility as a function of probe laser detuning
for Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, ∆c = 0 and various values of the

number density N .



Chapter 4. Modelling EIT in an Atomic Ensemble 38

In the single particle model of the ensemble, the dephasing rates are number density

dependant. Hence, to examine the effect of number density on the electric susceptibility,

we plot the imaginary part of electric susceptibility as a function of ∆p for different values

of the number density in Fig 4.4. In this case, at number densities of N = 1021m−3 and

N = 1022m−3, both the 3LΛS and an ensemble of 3LΛS exhibit agreement with each other.

However, as the number density increases further, a notable decrease in the EIT window

is observed. This finding indicates a strong dependence on the density of the ensemble,

revealing how collective effects play a crucial role in shaping the EIT behavior in the system.

To further clarify the effect of number density on the transparency window width, the

full-width at half-maximum (FWHM) of the transparency window is depicted in Fig. 4.5.
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Figure 4.5: FWHM of the imaginary part of the susceptibility as a function of number
density N for the same parameters as in Fig. 4.4.
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Figure 4.6: Populations ρ2x2x and ρ2y2y in the x and y directional excited states as a
function of number density N for the same parameters as in Fig. 4.4. The y direction is

the polarization of the incident field.

We can see that at lower N values, the behavior of the ensemble closely resembles that

of a single atom, but as N increases, the change becomes non-linear. It is clearly seen

that with increasing number density N , the behaviour of an ensemble appears from around

N = 1023m−3. For the sake of clarity, the excited state populations in the x and y directions
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are sketched in Fig. 4.6. As the number density approaches N = 1023m−3, the population

is leaking in other directions compared to initial states, and that correlates to the drop in

FWHM in Fig. 4.5. It is important to highlight that as the number density increases to very

large densities, the limitations of this model become apparent, as we have not accounted

for various other possible interactions and couplings.

The calculated group refractive index of probe light for an ensemble as a function of

∆p for different values of the number density N is shown in Fig. 4.7 with the parameters

Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz. As the number density increases, there

is a noticeable and rapid change in the refractive index around the transparency window.
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Figure 4.7: The group refractive index of probe light as a function of probe laser detuning
for Ωpy = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, ∆c = 0 and various values of the

number density N .

4.1.2 Effect of Control Field Strength and Spontaneous Emission

We investigate the influence of the amplitude of the control Rabi frequency on the trans-

parency window of the imaginary part of the susceptibility. The behavior of the imaginary

part of susceptibility in terms of the probe laser detuning for Ωpy = 0.1MHz, γ0 = γ1 =

3.03MHz, ∆c = 0, N = 1024m−3 is sketched in Fig. 4.8 for different values of Ωcy. From

Fig. 4.8, one can see that the EIT transparency window is wider when Ωcy increases.

Figure 4.9 shows the behavior of the imaginary part of the susceptibility versus the

probe laser detuning for various spontaneous decay rates γ0 = γ1 = γ. As one can see

from Fig. 4.9, the EIT transparency window is slightly narrowed as the spontaneous decay
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rate γ increases. Our findings are in agreement with the observation made in [29], where an

increase in the number density directly correlates with an elevation in spontaneous emission.
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Figure 4.8: The imaginary parts of the susceptibility as a function of probe laser detuning
for Ωpy = 0.1MHz, γ0 = γ1 = 3.03MHz, ∆c = 0, N = 1024m−3 and various values of the
control field Rabi frequency Ωcy. The curves from top to down correspond to Ωcy = 0.5, 1,
1.5, 2 and 2.5 MHz. This strength is well below the limit when the approximations become

invalid.
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Figure 4.9: The imaginary parts of the susceptibility as a function of probe laser detuning
for Ωpy = 0.1MHz, Ωcy = 1MHz, ∆c = 0, N = 1024 and various values of the spontaneous
emission γ0 = γ1 = γ. The curves from top to down correspond to γ = 0.5, 1.5, 2.5 and

3.5 MHz.
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4.2 Modelling EIT in an Atomic Ensemble with a Pulsed

Probe

Up to now, we have considered an ensemble of three-level Λ atomic systems coupled by

two monochromatic incident laser beams, where the interatomic interactions are taken into

account in the decoherence terms. Now, we study the propagation of a Gaussian probe

pulse through an atomic medium inspired by the treatment in Ref. [47]. In this work, they

considered an ensemble of non-interacting three levels atoms in the ladder configuration.

Because the excited state has only one direction, they assumed that the electric field is

polarized in only one direction.

In my work, I make calculations for the ensemble of 3LΛS with a multi-directional excited

state where it’s assumed that the scattering from the neighboring atoms is influencing.

When the probe pulse enters the atomic medium, its propagation is governed by Maxwell’s

equations in the presence of the macroscopic polarization current. In the following, we find

the Maxwell electric field equation in the so-called Slowly Varying Approximation [48].

By taking curl from

∇⃗ × E⃗(r⃗, t) = −µ0
˙⃗
H(r⃗, t), (4.6)

and using

∇⃗ × H⃗(r⃗, t) = ϵ0
˙⃗
E(r⃗, t) + J⃗(r⃗, t), (4.7)

as well as the Gauss equation ∇⃗.E⃗(r⃗, t) = 0, one can obtain

1

c2
∂2

∂t2
E⃗(r⃗, t)− ∇⃗2E⃗(r⃗, t) = − 1

c2ϵ0

∂

∂t
J⃗(r⃗, t), (4.8)

where the relation c = 1/
√
µϵ has been used. In the literature, µ = µ0 and ϵ has taken to

be ϵ0. Due to the fact that the current density is expressed in terms of the macroscopic

polarization of a medium,

J⃗(r⃗, t) =
∂

∂t
P⃗ (r⃗, t), (4.9)

we have
1

c2
∂2

∂t2
E⃗(r⃗, t)− ∇⃗2E⃗(r⃗, t) = − 1

c2ϵ0

∂2

∂t2
P⃗ (r⃗, t). (4.10)
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In our model, the electric field is polarized along the y-axis and is propagating in the z

direction. Therefore,

E(t, z) = E0(t, z) cos (ωt− kz)

= E0(t, z)/2
(
e−iωt+ikz + eiωt−ikz

)
, (4.11)

with the wave vector k = ω/c and an amplitude E0(t, z) which depends on time as well as

space z. By substituting the above electric field into the left-hand side of Eq. (4.10), we

arrive at the expression

1

c2
∂2

∂t2
E0(t, z) cos(ωt− kz)− ∂2

∂z2
E0(t, z) cos(ωt− kz)− 2ω

c2
∂

∂t
E0(t, z) sin(ωt− kz)

−2k
∂

∂z
E0(t, z) sin(ωt− kz) = − 1

c2ϵ0

∂2

∂t2
P (t, z). (4.12)

Then, by applying the slowly-varying approximation:

∂2/∂t2E0(t, z) << 2ω∂/∂tE0(t, z), ∂2/∂z2E0(t, z) << 2k∂/∂zE0(t, z),

the equation (4.12) becomes

(
1

c

∂

∂t
E0(t, z) +

∂

∂z
E0(t, z)) sin(ωt− kz) =

1

2cϵ0ω

∂2

∂t2
P (t, z). (4.13)

For the probe electric field in the long-wavelength limit, this yields

(
1

c

∂

∂t
Epy(t, z) +

∂

∂z
Epy(t, z)) sin(ωpt) =

1

2cϵ0ωp

∂2

∂t2
Py(t, z). (4.14)

The component of macroscopic polarisation along the y-axis is obtained as the expecta-

tion value of an electric dipole moment operator

Py = NTr (ρµ̂y) ,

= Nµ02y
1

2
eiωptρ02y +Nµ02y

1

2
e−iωptρ2y0, (4.15)

where ρ02y and ρ2y0 are the density matrix elements. By inserting this into the right-hand
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side of Eq. (4.14), we obtain

(
1

c

∂

∂t
Epy(t, z) +

∂

∂z
Epy(t, z)) sin(ωpt) = −Nµ02yωp

4cϵ0

(
eiωptρ02y + e−iωptρ2y0

)
+
iNµ02y
2cϵ0

(
eiωpt ∂

∂t
ρ02y − e−iωpt ∂

∂t
ρ2y0

)
+
Nµ02y
4cϵ0ωp

(eiωpt ∂
2

∂t2
ρ02y + e−iωpt ∂

2

∂t2
ρ2y0). (4.16)

When the density matrix reaches steady state, this equation reduces to

(
1

c

∂

∂t
Epy(t, z) +

∂

∂z
Epy(t, z)) sin(ωpt) = −Nµ02yωp

4cϵ0

(
eiωptρ02y + e−iωptρ2y0

)
. (4.17)

By matching the coefficient of sin (ωpt) on both sides, we find

(
1

c

∂

∂t
Epy(t, z) +

∂

∂z
Epy(t, z)) =

Nµ02yωp

2cϵ0
Im (ρ02y) , (4.18)

or equivalently

(
1

c

∂

∂t
Ωpy(t, z) +

∂

∂z
Ωpy(t, z)) =

Nµ202yωp

2cϵ0ℏ
Im (ρ02y) , (4.19)

where the Rabi frequency, Ωpy = Epiµ02y/ℏ. Numerical solution of the above equation using

these two variables (t and z) has been extensively studied in various research works, such

as the Ref. [49].

In Ref. [47], the author solved these equations by making important simplifications.

They changed the coordinates as [47]

τ = t− z/c, ξ = z, (4.20)

which leads to change the derivatives as

∂

∂t
=

∂

∂τ
,

∂

∂z
= −1

c

∂

∂τ
+

∂

∂ξ
, (4.21)

one gets
∂

∂ξ
Ωpy(τ, ξ) = ηIm (ρ02y) , (4.22)
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where we have defined η = Nµ202yωp/(2cϵ0ℏ). In Ref. [47], they assumed that the pulse’s

polarization occurs in just one direction; therefore, the equation is one-dimensional. This

approach allowed their calculations to remain unaffected by the length of the medium.

In this work, we move away from the approximation of Eq. (4.11) and assume that

the electric field can be polarized in all three directions. Then, using the slowly varying

approximation and the same change in coordinates as in Ref. [47], the set of equations that

must be simultaneously solved is

∂

∂ξ
Ωpy(τ, ξ) = ηIm (ρ02y) ,

∂

∂ξ
Ωpx(τ, ξ) = ηIm (ρ02x) ,

∂

∂ξ
Ωpz(τ, ξ) = ηIm (ρ02z) , (4.23)

where µ02x = µ02y = µ02z has been used for the dipole moment element. To explore the

dynamics of the probe pulse in an atomic medium, we need to solve the above Maxwell’s

equations (4.23) coupled to the Liouville-von Neumann equations (3.41), which take the

following forms in the new coordinates Eq. (4.20)

∂

∂τ
ρ(τ, ξ) = − i

ℏ
[Hens, ρ(τ, ξ)]− L (ρ(τ, ξ)) , (4.24)

with the Lindblad superoperatorL (ρ(τ, ξ)) given by

L (ρ(τ, ξ)) =

∑
i=2x,2y,2z

∑
j=0,1

γij
2

(
σ†ijσijρ+ ρσ†ijσij − 2σijρσ

†
ij

)
. (4.25)

Note that a multi-directional basis is used here which is different from Ref. [47] that

considers non-interacting atoms in the ensemble. We consider the initial condition for the

Liouville-von Neumann in the form

ρ00(τ → −∞, ξ) = 1, ρ11(τ → −∞, ξ) = 0,

ρ2x2x(τ → −∞, ξ) = 0, ρ2y2y(τ → −∞, ξ) = 0, ρ2z2z(τ → −∞, ξ) = 0. (4.26)
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For the incident probe, we assume a Gaussian pulse shape with a maximum amplitude Ωpy0

Ωpy(τ, ξ = 0) = Ωpy0e
−t2/(2∆τ2), (4.27)

where ∆τ is the pulse duration. For each number density N , the pulse duration ∆τ is

calculated from the FWHM values plotted in Fig. 4.5 using

∆τ = 2
√
2 ln 2/FWHM. (4.28)

The results of calculations for the propagation of probe pulse for the ensemble model

under various conditions are represented in Figs. (4.10) and (4.11) where I choose a length

of the medium of L = 500 and 58.5nm which extends from ξ = 0 to ξ = L. In Fig. (4.10), I

consider an initial incident pulse with a maximum amplitude of Ωpy0 = 0.1MHz and a width

of ∆τ = 14.52µs, while other parameters are fixed to Ωcy = 1MHz, γ0 = γ1 = 3.03MHz,

N = 1016m−3, ∆p = 0, ∆c = 0 and L = 500nm. In this case, we can obviously see that the

output pulse shape is identical to the shape of the initial pulse in all directions.

When the number density of atoms increases to N = 1020m−3 for the length of the

medium L = 58.5nm in Fig. (4.11), the output pulse is reduced in amplitude, where the

input pulse duration remains almost constant. In addition, the maximum of the output

pulse is shifted compared to the input one. While it is 1/e of the maximum value in

the initial incident pulse. Also, one can see that the output probe laser pulse is severely

distorted.

To further clarify the distortion of the output probe pulse within the medium, I inves-

tigate the length scale over which the maximum of the output pulse becomes 1/e of the

maximum of the input pulse,

Max[Ω(τ, ξ = Lα)] = Ωpy0/e, (4.29)

where I call Lα an absorption length. To do so, in Fig. (4.12), I show the behavior of

the absorption length Lα as a function of the number density N . Here, the values of the

parameters are Ωpy0 = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, ∆p = 0, ∆c = 0. As

can be seen from Fig. (4.12), the absorption length decreases linearly in logarithmic scale



Chapter 4. Modelling EIT in an Atomic Ensemble 46

Input Pulse

Output Pulse

-40 -20 0 20 40
0.00

0.02

0.04

0.06

0.08

0.10

( s)

p
y
(M
H
z
)

L=500(nm), N=1016(m-3)

(a) Input and output pulses for Ωpy

Input Pulse

Output Pulse

-60 -40 -20 0 20 40 60

0

1

2

3

4

( s)

p
x
(H
z
)

L=500(nm), N=1016(m-3)

(b) Input and output pulses for Ωpx

Input Pulse

Output Pulse

-60 -40 -20 0 20 40 60

0

1

2

3

4

( s)

p
z
(H
z
)

L=500(nm), N=1016(m-3)

(c) Input and output pulses for Ωpz

Figure 4.10: The probe laser field for the input and output pulses in all directions. The
parameters used are Ωpy0 = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, N = 1016m−3,
∆p = 0, ∆c = 0, ∆τ = 14.52µs and L = 500nm. The input and output pulses match with
each other. Note that the scale of the y-axis in figures (b) and (c) is Hz. The scattering in

the x and z directions is very small.

with number density from 1013 to 1022 m−3. Compared to the FWHM graph 4.5, where

we observed a linear decrease at larger N values, in this case, the decrease is exponential.

This means that as N increases, the EIT conditions are sustained for much larger N values.

Nevertheless, for these increased N values, the length over which the pulse propagates

experiences a significant reduction.

Summary

In this chapter, I present two models. The first model is a single-particle model, which

indicates that the expected EIT (Electromagnetically Induced Transparency) behavior per-

sists up to a considerable N = 1023m−3. In contrast, the second model, referred to as the

pulse model, reveals that EIT behavior is observed at significantly lower number densities.
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(c) Input and output pulses for Ωpz

Figure 4.11: The probe laser field for the input and output pulses in all directions. The
parameters used are Ωpy0 = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, N = 1020m−3,
∆p = 0, ∆c = 0, ∆τ = 14.53µs and L = 58.5nm. The horizontal thin gray dashed line

denotes 1/e of a maximum of the initial input pulse.

This distinction arises due to inter-particle scattering effects. In summary, the first model

exhibits an EIT window at a number density of N = 1023m−3, while the second model shows

that meaningful absorption can only be achieved at much lower densities. Consequently,

despite the favorable transparency window obtained by increasing the number density in

the first model, the pulse does not manifest any significant effect; rather, it continues to be

absorbed by the system in this particular scenario.
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Figure 4.12: The behaviors of absorption length Lα versus number density N . The
parameters used are Ωpy0 = 0.1MHz, Ωcy = 1MHz, γ0 = γ1 = 3.03MHz, ∆p = 0, ∆c = 0.

We use the logarithmic scale for the vertical axis.



Chapter 5

Conclusion

Throughout this thesis, my primary focus was on exploring the phenomena of Electromag-

netically Induced Transparency (EIT) in an ensemble of three-level Λ systems (3LΛS) with

a multi-directional excited state. The model I developed is based on the nearest neighbour

interatomic interaction of three-level Λ atoms within the ensemble. Notably, each member

of the ensemble behaves as an individual quantum emitter capable of spontaneous radiation

in all directions, even perpendicular to the incident beam. This aspect becomes significant

as radiation fields in all directions can excite atoms with different orientations of the dipole

moment, a crucial factor that has not been thoroughly studied in previous works.

The central goal of my research was to study the influence of these effects on the EIT

behavior in atomic ensembles, a topic largely unexplored in the existing literature. To

achieve this, I conducted a detailed analysis of the optical properties of the ensemble and

compared them to those of a single atom. This comparative approach provided valuable

insights into how the collective behavior of the ensemble affects the EIT phenomenon.

Additionally, the study investigated a Gaussian probe pulse propagating in a three-level Λ

medium with a multi-directional excited state, coupled to a monochromatic control field,

exploring its potential applications in improving optical quantum memory.

I began by providing a review of the EIT phenomenon within a single three-level Λ sys-

tem. By calculating the electric susceptibility of the probe field through the density matrix,

I determined the transparency window and refractive index. Furthermore, I explored the

49
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group velocity of the probe field within the medium. Next, I presented a methodology to

model an ensemble of atomic systems using an effective single-particle model, considering

decoherence terms such as effective spontaneous decay and dephasing rates. This laid the

groundwork for investigating the EIT effect in the subsequent step. Finally, the modeling

methodology was extended to the ensemble of 3LΛS, leading to the presentation of two dis-

tinct models. The first model involved representing the ensemble as a single-particle density

matrix with specific decoherence terms. This model enabled predictions of the transparency

window and group velocity of a probe field, demonstrating the dependence on the ensem-

ble’s number density. Additionally, a model was extended for a probe field propagating

through the ensemble in a slowly varying (field) approximation, yielding intriguing results

concerning density dependence. The first model, a single-particle model, suggests that EIT

behavior is expected to persist for a considerable number density of N = 1023m−3. In

contrast, the second model, referred to as the pulse model, indicates that EIT behavior is

observable and useful only at significantly lower number densities.

In conclusion, our analysis demonstrates that in an ensemble of three-level Λ systems

(3LΛS) with a multi-directional excited state and driven by two monochromatic fields,

an EIT window is observed at a number density of N = 1023m−3. However, when a

pulse is introduced in an ensemble of three-level Λ systems (3LΛS) with a multi-directional

excited state, meaningful absorption is achievable only at much lower number densities.

Despite achieving a favorable transparency window by increasing the number density in

the first model, the second model shows that EIT is not observed at high densities. These

findings underscore the crucial role of density in shaping the EIT behavior and absorption

characteristics of the system, providing valuable insights into the intricate dynamics of EIT

phenomena in dense atomic ensembles.

5.1 Future Directions

In the pursuit of future directions, several key avenues can be explored to enhance our

understanding of the Electromagnetically Induced Transparency (EIT) phenomena in the

atomic ensemble with a multi-directional excited state. Firstly, utilizing the density matrix

derived from the single particle model as a source offers a promising approach to investigate
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its implications on the electric field at long distances.

Secondly, numerically solving the Maxwell-Lindblad equations for the entire atomic

ensemble presents another fruitful direction. This computational approach will provide a

deeper understanding of the dynamic interactions between the atoms and their surrounding

environment, enabling a comprehensive exploration of the ensemble’s behavior under diverse

conditions. Additionally, conducting a comparative analysis between the numerical results

obtained from the Maxwell-Lindblad equations for the ensemble and those obtained from

the single particle model will be essential to validate the ensemble model’s accuracy and

efficacy. This comparative study will help discern any collective effects and deviations

arising due to inter-particle interactions.

5.2 Limitations

This work has certain limitations that should be considered. The atomic ensemble model

explored here may not be suitable for solids for two reasons. Firstly, the density of typical

solids is high, at which the EIT behavior breaks down. Secondly, we have ignored the

interatomic interactions present in solids. Note that experiments claiming to have observed

EIT in solids [25] are typically conducted in solids doped with color centers. As a result,

the number density of the color centers is significantly lower than that of the solid itself.

However, these experiments may offer a means of testing my hypothesis that the number

density of the color centers can be altered by adjusting the doping concentration.

Another limitation lies in the assumption of a constant control field, typically represented

as a pulse. In reality, control fields can vary over time; however, the difference in numerical

predictions is not significant.

Lastly, the assumption of a perfect initial population distribution (ρ00 = 1) is not ac-

curate due to the presence of two ground states with frequencies very close to each other

(approximately 6000 MHz). This discrepancy could potentially impact the model’s accu-

racy. To enhance the model’s reliability, one can begin by considering varying initial state

populations.

Using my methods, we can significantly advance our comprehension of EIT phenomena
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and collective behaviors in quantum systems, opening up exciting possibilities for practical

applications in diverse fields, including optical quantum memory.



Appendix A

The Interaction Picture with the

Rotating Wave Approximation

(RWA)

Quantum systems’ dynamics are defined by their time-dependent density matrix when an

external field is present. These dynamics are predominantly dictated by oscillations corre-

lated with incident fields’ frequency. To analyze slow dynamics, such as quantum interfer-

ence or Rabi oscillations, it is necessary to examine the systems from a rotating perspective

that is parallel to the incident field’s frequency. When applying this approach within the

context of N -level quantum system, it is ideal to ascertain an N×N rotation matrix that is

unitary (U) as this approach can rotate the system effectively so as to achieve the necessary

frame [41]. Then, executing the transformation of the unitary can determine the interaction

Hamiltonian

H′ = UHU † − iℏUU̇ †. (A.1)

When identifying systems’ ideal equations, the primary issue is securing an accurate

determination of the U matrix. The U choice is clearly established and recognized for

atoms that have two or three levels [50]; however, multi-level systems with energy levels

that are non-degenerate are far more difficult to ascertain. In three-level systems and three-

level systems with a multi-directional excited state, the transformation matrix we employ
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comprises two terms: exp(−iωjt) and exp(−iωi,jt), where the rapid rotation caused by the

transition frequency ωi,j .

The Rotating Wave Approximation (RWA) utilizes to reduce oscillation frequencies in

the system through dividing terms into high and low-frequency. In this approximation the

counter rotating terms are ignored.

A.1 Three-level Λ Systems

In the case of a three-level Λ atomic system interacting with two deriving fields, the total

Hamiltonian is

H= −


−ℏω0 0 µ02Ep(e

−iωpt + eiωpt)/2

0 −ℏω1 µ12Ec(e
−iωct + eiωct)/2

µ02Ep(e
−iωpt + eiωpt)/2 µ12Ec(e

−iωct + eiωct)/2 −ℏω2

 .

(A.2)

Using excited state as a reference level, the unitary transformation matrix is given by

U =


e−i(ωp+ω2)t 0 0

0 e−i(ωc+ω2)t 0

0 0 e−iω2t

 , (A.3)

After neglecting of all high-frequency terms, we find the Hamiltonian in the interaction

picture after RWA

HRWA = −ℏ
2


−2∆p 0 Ωp

0 −2∆c Ωc

Ωp Ωc 0

 , (A.4)

Where ∆p = ωp − ω2 + ω0 and ∆c = ωc − ω2 + ω1 are the laser detunings. Note that the

prime is dropped for convenience.
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A.2 Three-level Λ Systems with a Multi-directional excited

state

The Hamiltonian of a three-level system with a multi-directional excited sate, including

three degenerate excited states, two ground states that are close in energy, is

H= − ℏ



−ω0 0 Ωpx cos (ωpt) Ωpy cos (ωpt) Ωpz cos (ωpt)

0 ω1 −Ωcx cos (ωct) Ωcy cos (ωct) Ωcz cos (ωct)

Ωpx cos (ωpt) Ωcx cos (ωct) −ω2 0 0

Ωpy cos (ωpt) Ωcy cos (ωct) 0 −ω2 0

Ωpz cos (ωpt) Ωcz cos (ωct) 0 0 −ω2


.

(A.5)

In this case, the unitary transformation matrix is taken

U =



e−i(ωp+ω2)t 0 0 0 0

0 e−i(ωc+ω2)t 0 0 0

0 0 e−iω2t 0 0

0 0 0 e−iω2t 0

0 0 0 0 e−iω2t


, (A.6)

By adopting the rotating wave approximation, we have the Hamiltonian in the rotating

frame as

HRWA = −ℏ
2



−2∆p 0 Ωpx Ωpy Ωpz

0 −2∆c Ωcx Ωcy Ωcz

Ωpx Ωcx 0 0 0

Ωpy Ωcy 0 0 0

Ωpz Ωcz 0 0 0


, (A.7)

where ∆p = ωp − ω2 + ω0 and ∆c = ωc − ω2 + ω1 are the detunings of the control and

probe field frequencies from atomic resonance frequencies.
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Lindblad-von Neumann Equation

The density matrix ρ̂ can be expressed as the outer product of the wave function with its

complex conjugate

ρ̂ = |ψ⟩⟨ψ|. (B.1)

By applying a unitary transformation U , the transformed wave function is given as follows

∣∣ψ′〉 = U |ψ⟩, (B.2)

where the prime indicates the transformed frame. The relation between the transformed

density matrix and the original density matrix is determined by

ρ = U †ρ′U. (B.3)

The Lindblad-von Neumann equation is

ρ̇ = − i

ℏ
[H, ρ]− L(ρ) (B.4)

in which the superoperator representing decoherence processes

L(ρ) =
∑
d

γd
2

(
σ†dσdρ+ ρσ†dσd − 2σdρσ

†
d

)
. (B.5)

Now, by substituting the density matrix (B.3) into the above Lindblad-von Neumann equa-
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tion, we get
∂

∂t

(
U †ρ′U

)
= − i

ℏ

[
H,U †ρ′U

]
− L

(
U †ρ′U

)
. (B.6)

The left side of the above equation becomes

∂

∂t

(
U †ρ′U

)
= U †ρ̇′U + U̇ †ρ′U + U †ρ′U̇ . (B.7)

For the right side of the equation (B.6), we have

[
H,U †ρ′U

]
= HU †ρ′U − U †ρ′UH = U †UHU †ρ′U − U †ρ′UHU †U. (B.8)

After doing some calculations, we arrive at

U †ρ̇′U = − i

ℏ
U †

[
UHU † − iℏUU̇ †, ρ′

]
U − L

(
U †ρ′U

)
. (B.9)

By the definition

HT = UHU † − iℏUU̇ †, (B.10)

the above equation is written as follows

U †ρ̇′U = − i

ℏ
U † [HT , ρ

′]U − L
(
U †ρ′U

)
. (B.11)

Then, we multiply by U from the left side and U † from the right side,

ρ̇′ = − i

ℏ
[
HT , ρ

′]− UL
(
U †ρ′U

)
U †. (B.12)

In the transformed frame, the Lindblad operators take the form

σ′d = UσdU
†. (B.13)

Thus, the equation (B.12) yields

ρ̇′ = − i

ℏ
[
HT , ρ

′]− L
(
ρ′
)
, (B.14)
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with

L(ρ′) =
∑
d

γd
2

(
σ′†d σ

′
dρ

′ + ρ′σ′†d σ
′
d − 2σ′dρ

′σ′†d

)
. (B.15)
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Scaling Parameters

In quantum systems employing the RWA approximation, we can leverage the scaling evo-

lution of the systems to reduce the number of free parameters. With this scaling approach,

the Lindblad-Von Neumann master equation,

ρ̇ = − i

ℏ
[HRWA, ρ]− L (ρ) , (C.1)

is then transformed

ρ̇/S = − i

ℏ
[HRWA/S, ρ]− L (ρ) /S, (C.2)

ρ̇′ = − i

ℏ
[
H ′

RWA, ρ
]
− L′ (ρ) . (C.3)

By using the chosen S = 1MHz as a unit, we can define other system parameters in a

consistent manner

γ = γ′S,

△ = △′S,

Ωi = Ω′
iS,

t = t′
1

S
,

ωi = ω′
iS.

(C.4)

Rates given in Chapters 2 and 4 are all scaled using this approach.
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[44] Jean-Pierre Bérenger. Perfectly matched layer (pml) for computational electromagnet-

ics. Synthesis Lectures on Computational Electromagnetics, 2(1):1–117, 2007.

[45] A Fratalocchi, C Conti, and G Ruocco. Three-dimensional ab initio investigation of

light-matter interaction in mie lasers. Physical Review A, 78(1):013806, 2008.

[46] Lukas Novotny and Bert Hecht. Principles of Nano-Optics. Cambridge University

Press, 2012.

[47] Minh Dong Hoang, Ngoc Sau Vu, Xuan Khoa Dinh, Nguyen Huy Bang, et al. Prop-

agation of a laser pulse in a three-level cascade atomic medium under conditions of

electromagnetically induced transparency. Photonics Letters of Poland, 8(3):73–75,

2016.

[48] Marlan O Scully and M Suhail Zubairy. Quantum optics, 1999.

[49] Dong Sun, Zoe-Elizabeth Sariyanni, Sumanta Das, and Yuri V Rostovtsev. Propagation

of 0 π pulses in a gas of three-level atoms. Physical Review A, 83(6):063815, 2011.

[50] David J Tannor. Introduction to Quantum Mechanics: a Time-Dependent Perspective.

University Science Books, Sausalito, CA, United States, 2007.



Vita Auctoris

NAME: Sara Moezzi

PLACE OF BIRTH: Iran

YEAR OF BIRTH: 1988

EDUCATION: Islamic Azad University, B.Sc., Iran, 2011

Vali-e-Asr University of Rafsanjan, M.Sc., Iran, 2015

65


	Electromagnetically Induced Transparency in an Ensemble of Three-Level Lambda Systems
	Recommended Citation

	Declaration of Originality
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	EIT Overview
	Lambda EIT Scheme
	Lindblad-von Neumann Equation
	Linear Susceptibility

	Slow Light

	Modelling a Dense Ensemble of 3-Level  systems
	Maxwell–von Neumann Equations
	 Modeling an Ensemble of Atomic Systems with Directional Basis States
	Two-Level Systems
	Three-Level  Systems (3LS)

	Effective Single Particle Models of an Atomic Ensemble
	Ensemble of Two-Level Atoms
	Ensemble of 3-Level  Systems


	Modelling EIT in an Atomic Ensemble
	EIT in an Atomic Ensemble: Single Particle Model
	Effect of Number Density
	Effect of Control Field Strength and Spontaneous Emission

	Modelling EIT in an Atomic Ensemble with a Pulsed Probe

	Conclusion
	Future Directions
	Limitations

	Appendix The Interaction Picture with the Rotating Wave Approximation (RWA)
	Three-level  Systems
	Three-level  Systems with a Multi-directional excited state

	Appendix Lindblad-von Neumann Equation
	Appendix Scaling Parameters
	Bibliography
	Vita Auctoris

