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ABSTRACT 

In compliance with international commitments to address the increasingly 

urgent need to reduce greenhouse gas (GHG) emissions, countries prepare national 

GHG inventories (NGHGI). NGHGIs include annual estimates of anthropogenic 

GHG emissions and removals. Reliable data in NGHGIs are essential for creating 

effective climate change policies and mitigation strategies, determining compliance 

with internationally agreed-upon targets, and tracking the sources and trends of 

GHG emissions and reductions. The above-ground biomass (AGB) carbon pool 

from the forestry sector is expected to contribute largely to carbon reductions; 

however, data for this sector is highly uncertain due to quantification challenges. 

These uncertainties have adversely impacted the reliability of the climate mitigation 

strategies and policies based on this data. AGB is quantified mainly by employing a 

Tier 3 approach involving allometric models derived from forest inventory data. A 

review of published literature indicated a need for research on the methods used to 

quantify model uncertainties and the effects of these uncertainties on carbon 

estimates from AGB. This research employs a simulation-based uncertainty analysis 

to quantify model uncertainties in carbon estimates from AGB allometric models. 

The literature, manuals, and R software were used to develop the uncertainty 

analysis. Alternative uncertainty analysis approaches were proposed to determine 

their effects on the uncertainty estimates. Case studies were performed for study 

areas in Canada and Sweden to determine the feasibility of the uncertainty analysis 

method when used in different countries. The results of this study demonstrated how 

model uncertainties can be quantified using the proposed uncertainty analysis 

method, and how estimates can be adjusted for uncertainties. The uncertainty 

estimates did not differ significantly from using the alternative uncertainty analysis 

methods. The main causes of model uncertainty for both case studies were due to 

measurement uncertainty in the model input variables and residual uncertainty. 

Recommendations were made on how uncertainties can be reduced by prioritizing 

methodological and data collection improvements in these areas. The effects of 

uncertainties on climate change mitigation strategies and methods to incorporate 

uncertainty information into climate change policies were assessed. 
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1.0 INTRODUCTION 

1.1 Background and Problem Statement 

Despite accords established at the United Nations (UN) Conference of Parties 

(COP), commitments to reduce greenhouse gas (GHG) emissions and stabilize global 

temperature rise have not been on track to limit global warming (COP26 Explained, 2021; 

UNEP, 2022). The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment 

report emphasized the need for a rapid decline in GHG emissions, as climate resilient 

developments will become increasingly limited if global warming levels exceed 1.5℃ 

(IPCC, 2022). Many countries acknowledged the urgency for climate action through 

commitments to achieve net-zero emissions within the next few decades (van Soest et al., 

2021). For example, the Canadian government plans to transition to net-zero GHG 

emissions by 2050, and the Swedish government by 2045 (Canadian Institute for Climate 

Choices, 2021; Government Offices of Sweden Ministry of the Environment and Energy, 

2018). However, policymakers are concerned with the feasibility of planning for net-zero 

amidst uncertainties in GHG emission and removal data (Canadian Institute for Climate 

Choices, 2021).  

In compliance with the UN Framework Convention on Climate Change 

(UNFCCC), participating countries prepare annual national GHG inventories (NGHGI) 

that include estimates of anthropogenic GHG emissions by sources and removals by sinks 

(Environment and Climate Change Canada, 2022; United Nations, 1992). Reliable data in 

NGHGIs are essential for creating effective climate change policies and mitigation 

strategies, determining compliance with internationally agreed-upon targets, and tracking 

the sources and trends of GHG emissions and reductions (Gillenwater et al., 2007; Lee et 

al., 2014, Polish Academy of Sciences, 2015).  However, NGHGI data are associated with 

varying degrees of uncertainty (Fortin, 2021; Ritter et al., 2010).  

Uncertainties in the land-use, land-use change, and forestry (LULUCF) sector are 

larger and more challenging to quantify in comparison to others sectors mainly due to the 

complexity of the processes involved in the GHG fluxes (Fortin, 2021; McGlynn et al., 

2022; Ritter et al., 2010; United Nations, 1992). These uncertainties may result in 

challenges enacting appropriate mitigation measures, policies, and tracking GHG reduction 
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progress. This may undermine the confidence of emission reduction claims, particularly 

for the forestry sector, which is expected to contribute largely to GHG reductions 

(McGlynn et al., 2022). 

The forestry sector is an  area of importance that can be used to mitigate climate 

change by increasing carbon dioxide removals from the atmosphere or halting the loss of 

carbon stock from the land (UNFCCC, 2020). The more stringent GHG reduction targets 

rely heavily on land-based mitigation options. Researchers have reported that one-third of 

GHG reductions needed to prevent the most severe consequences of climate change can be 

provided by the LULUCF sector (Shukla et al., 2020; UN-REDD Programme, 2022). 

Above-ground biomass (AGB) is an important carbon pool in forest ecosystems that most 

carbon estimates are derived from, as the extent of AGB determines current and future 

carbon storage capacities (Fu et al., 2017). The scope of this research will address 

uncertainties in large-area carbon quantification from AGB in the forestry sector, as the 

quantification methods employed on this scale are used to determine estimates for 

NGHGIs. AGB is most commonly quantified using allometric models calibrated from 

forest inventory data (Návar, 2010). However, measuring the effects of model uncertainties 

on carbon estimates from AGB is challenging, prompting the need for research related to 

uncertainty analysis methods (McRoberts and Westfall, 2014; Qin et al., 2021; Wayson et 

al., 2015).  

Uncertainty analysis is an important tool that is required by the IPCC and 

designated as a good practice to improve the reliability of NGHGI estimates (Lee et al., 

2020; Ritter et al., 2010). Uncertainty analysis assesses and documents the causes of 

uncertainty in individual estimates and the overall total (Paciornik et al., 2019). The 

information provided by uncertainty analysis can be used to prioritize methodological and 

data collection improvements (Paciornik et al., 2019). Quantifying uncertainty estimates 

requires analysts to have a scientific and technical understanding of the carbon fluxes and 

the quantification methods associated with the system, as uncertainty analysis only 

provides reliable results if properly implemented (Frey et al., 2006). Hence, there is a need 

to assess if the IPCC’s guidelines for reporting uncertainties in NGHGI’s are sufficient 

when accounting for model uncertainties for complex systems, such as the forestry sector.  
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1.1.2 Knowledge Gaps 

A comprehensive literature review was conducted to: investigate the sources of 

uncertainty in carbon from AGB quantification and the methods used to quantify these 

uncertainties, review the IPCC guidelines for uncertainty analysis and identify areas where 

improvements may be needed, and review studies on uncertainty analysis methods to 

identify alternative methods that may improve the precision of uncertainty estimates.  The 

scope of the research was established based on the following knowledge gaps identified 

through the literature review: 

1. Quantifying the Effects of Model Uncertainties: Carbon emissions and removals 

from the forestry sector are challenging to quantify. Models calibrated from forest 

inventory data are commonly used in large-area estimation (Návar, 2010). 

However, model uncertainty is complex and in practice are rarely quantified 

(McRoberts and Westfall, 2016; Metsaranta et al., 2017). Based on existing 

research, there is a need for more studies on quantifying the effects of model 

uncertainty on carbon estimates from AGB.  

2. Guidance on Implementing Simulation-Based Uncertainty Analysis Methods: 

The IPCC recommends using Monte Carlo Simulation (MCS) to quantify 

uncertainties in complex systems, such as the forestry sector, where large 

uncertainties are expected (Frey et al., 2006). However, few countries have 

implemented simulation based uncertainty analysis methods (Monni et al., 2007). 

By reviewing existing guidelines for MCS, this research suggests that more 

guidance is needed on how to employ this method when quantifying uncertainties 

in models involving complex algorithms. 

3. Comparison of Alternative Uncertainty Analysis Methods: Despite the growing 

literature on uncertainty analysis methods, guidelines for the use of MCS have not 

been updated since 2006 (Paciornik et al., 2019). Additional research is needed to 

assess how alternative uncertainty analysis methods impact uncertainty estimates, 

and if an alternative method can improve the precision of estimates. 

4. Improved Documentation of Uncertainty Analysis Methods: Quantifying 

uncertainty estimates must be comparable between countries for NGHGIs to be 

used for policy purposes and to determine compliance with international 
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commitments (Gillenwater et al., 2007). Improved documentation can assist 

countries to better understand and replicate procedures for uncertainty analysis. 

Additional work is needed to clearly outline the procedure used to quantify model 

uncertainties per TACCC reporting principles and assess how these methods apply 

to different countries.  

1.1.3 Objectives 

This research suggests that improvements can be made in how uncertainty analysis 

methods are used in NGHGIs when quantifying model uncertainties to increase the 

reliability of uncertainty estimates, improve implementation, and comply with TACCC 

reporting principles. This research will assess and quantify the uncertainties in carbon 

estimation from AGB allometric models used in the forestry sector. The uncertainty 

analysis method proposed can be used by countries to adopt and improve uncertainty 

quantification, and better understand the effects of uncertainties. The following objectives 

are proposed in order to achieve the overall objective: 

1. Assess the causes and the types of uncertainties associated with carbon 

quantification from AGB in the forestry sector. 

2. Review the IPCC guidelines for conducting uncertainty analysis used in NGHGIs. 

Identify alternative uncertainty analysis methods that may better define 

uncertainties compared to the methods recommended by the IPCC.  

3. Develop a methodology to quantify uncertainties in carbon estimates from AGB. 

4. Conduct case studies to investigate how uncertainties can be quantified in carbon 

estimates from AGB using different uncertainty analysis approaches.  

5. Evaluate the impacts of these uncertainties on carbon quantification from AGB. 

1.2 Methodology 

The objectives are achieved by following the methodology outlined in Figure 1.1. 
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Figure 1.1 Overview of the research methodology 
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1.2.1 Phase 1: Identifying Uncertainties 

Phase 1 consisted of an in-depth literature review which identified the challenges 

in quantifying carbon from AGB, and the associated sources of uncertainty. For large-area 

estimates used in NGHGIs, the most common method consists of deriving allometric 

models from forest inventory data that are obtained from direct measurements or remote 

sensing (Návar, 2010; Picard et al., 2012). The main sources of uncertainty in error analysis 

for forest inventories are from measurement, sampling, and model uncertainty (Cunia, 

1965). Based on the literature, the scope of this study was to determine the causes and 

quantification of model uncertainty. The sources of model uncertainty are due to variances 

in model parameters, residual variance, and measurement error in the model input variables 

(Berger et al., 2014; Fu et al., 2017; McRoberts and Westfall, 2014, 2016; Qin et al., 2021). 

The uncertainty analysis procedure, including identifying alternative uncertainty analysis 

approaches, for analyzing uncertainties in carbon from AGB due to model uncertainty was 

formulated by reviewing guidelines from the IPCC and relevant literature. Phase 1 was 

concluded by identifying the sources of model uncertainties, and the proposed alternative 

uncertainty analysis approaches.  

1.2.2 Phase 2: Data Collection 

Phase 2 consisted of identifying the particular allometric model and the associated 

data needs. Case studies for an area in British Columbia (B.C.), Canada, and in 

Västernorrland County, Sweden, were proposed to determine the feasibility of the 

uncertainty analysis method when used in different countries. Data was collected from 

forest inventory maps. Phase 2 was concluded by constructing observed datasets for each 

of the study areas.  

1.2.3 Phase 3: Uncertainty Analysis 

 Phase 3 consisted of a four-part uncertainty analysis. Parts 1 to 3 evaluated each 

individual source of model uncertainty and their effects on the estimation of carbon from 

AGB. Part 4 evaluated the combined effects of the sources of model uncertainty to calculate 

the overall effect on carbon from AGB quantification. The method was repeated for both 

study areas and for each of the alternative uncertainty analysis approaches identified in 

Phase 1.  
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1.2.4 Phase 4: Results and Discussion 

Phase 4 consisted of assessing the results of the uncertainty analysis conducted in 

Phase 3. The results were compared to determine the effects of the individual sources of 

uncertainty on carbon estimates from AGB, and how results differed for the different study 

areas. This information was used to recommend methodological and data collection 

improvements in carbon quantification from AGB, and to assess the impacts of 

uncertainties on the creation of climate change mitigation strategies and policies. The 

alternative uncertainty analysis approaches were compared to determine how uncertainty 

estimates differed and if a method produced more precise estimates. This information was 

used to determine if recommendations could be made to the IPCC’s guidelines for 

uncertainty analysis.  

1.3 Thesis Organization 

The thesis consists of five chapters with the following contents: 

Chapter 1. Introduces the background, problem statement, and objectives of the 

research. The methodology followed to achieve the research objectives 

presented. 

Chapter 2. Presents a comprehensive literature review that justifies the motivation for 

the research objectives.  

Chapter 3. Describes the study systems and data collection methodology. An in-depth 

methodology of the four part uncertainty analysis method is presented.  

Chapter 4. Presents the results of the uncertainty analysis conducted in Chapter 3. The 

results were interpreted to identify: (1) the main sources of uncertainty, (2) 

the effects of using alternative uncertainty analysis approaches, (3) the 

methodological and data collection improvements to reduce uncertainties, 

and (4) the effects of uncertainties on the creation of climate change 

mitigation strategies and policies.  

Chapter 5. Summarizes the contributions of the research and discusses the limitations 

of the study and the opportunities for future work.  
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2.0 LITERATURE REVIEW 

2.1 Introduction 

Reliable greenhouse gas (GHG) emission and removal data in national GHG 

inventories (NGHGIs) are essential for planning climate action and policies. This research 

will investigate the causes and quantification methods for the uncertainties in carbon 

estimates from above-ground biomass (AGB). The following literature review will: 

1. Discuss the need for GHG quantification and monitoring as it relates to current and 

foreseen challenges to climate change and existing global commitments. 

2. Provide a background of GHG sources and sinks from the forestry sector to explain 

the significance of AGB quantification.  

3. Discuss AGB quantification methods and the associated challenges contributing to 

uncertainties. 

4. Identify sources of uncertainties in AGB quantification and review the literature on 

the methods used to quantify these uncertainties. 

5. Review guidelines for uncertainty analysis provided by the Intergovernmental 

Panel on Climate Change (IPCC) to identify areas where improvements are needed. 

6. Review the literature on alternative uncertainty analysis methods to identify 

methods that will be assessed in this study. 

2.2 Overview of Greenhouse Gases and Climate Change 

Climate change is one of the greatest challenges affecting many weather and 

climate extremes in every region across the globe (IPCC, 2021). The IPCC, established by 

the World Meteorological Organization (WMO) and the United Nations (UN) 

Environment, aims to provide authoritative and objective scientific and technical sources 

of information (IPCC, 2014b). According to reports by the IPCC, the scale of recent 

changes across the climate system as a whole and the present state of many aspects of the 

climate system are unprecedented over many centuries to many thousands of years (IPCC, 

2021). Human influence has unequivocally contributed to atmospheric warming (IPCC, 

2021). Anthropogenic GHG emissions have increased significantly since the pre-industrial 

era (IPCC, 2014b). GHGs absorb heat in the atmosphere and re-release is as infrared 

radiation back to the Earth’s surface (United Nations, 1992). Therefore, mean global 
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temperature rise increases along with increases in the concentration of GHGs in the Earth’s 

atmosphere (IPCC, 2014b). Climate change is a threat multiplier that will continue to 

impact human and natural systems, as the severity of adverse impacts is predicted to 

increase with increases in global temperatures (IPCC, 2018). The IPCC’s Sixth Assessment 

Report found that climate resilient developments are increasingly limited if GHG emissions 

do not rapidly decline, especially if global warming levels exceeds 1.5˚C in the near-term 

(IPCC, 2022). Developments may not be possible in some regions and sub-regions if global 

warming levels exceed 2˚C (IPCC, 2022). Limiting climate change would require strong 

and sustained reductions in GHG emissions globally, including a decline of anthropogenic 

CO2 emissions by approximately 45% from 2010 levels by 2030, reaching net zero by 2050, 

while also reducing net non-CO2 radiative forcing (IPCC, 2018, 2021). This would require 

rapid and far-reaching transitions, prompting the need for strengthened global responses 

(IPCC, 2014, 2018). 

2.3 A Brief History of Global Responses to Climate Change 

The UN first recognized climate change as global concern at The Rio de Janeiro 

Earth Summit in 1992 (Council on Foreign Relations, 2022). The summit resulted in some 

of the first international agreements on climate change that would become the foundation 

for future accords, including the United Nations Framework Convention on Climate 

Change (UNFCCC) (Council on Foreign Relations, 2022). The UNFCCC acknowledges 

human activities have substantially increased atmospheric GHG emissions that have 

caused temperatures to rise in the Earth’s surface and atmosphere, adversely affecting 

natural ecosystems and humankind. (United Nations, 1992). The UNFCCC calls for 

cooperation between all countries, and their participation in effective and appropriate 

international responses to climate change, with respect to the capabilities of individual 

countries (United Nations, 1992). This requires frequent meetings between ratifying 

countries, leading to the formation of the Conference of Parties (COP) (Council on Foreign 

Relations, 2022). The ultimate objective of the UNFCCC along with legal agreements 

adopted by the COP is to stabilize GHG concentrations in the atmosphere at a level that 

would prevent dangerous anthropogenic interference with the climate system (United 

Nations, 1992). Strategies to mitigate climate change require accurate GHG emission and 

removal data that can be used to plan, analyze, validate, and at a global scale verify 
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mitigation efforts while analyzing future scenarios (Ometto et al., 2014). Commitments in 

achieving this objective include the development of NGHGIs of anthropogenic emissions 

by sources and removals by sinks of all GHGs not controlled by the Montreal Protocol, 

using methodologies developed by the IPCC (IPCC, 1996; United Nations, 1992).  

However, as of 1994 the UNFCCC did not legally bind signatories to reduce GHG 

emissions, and no targets or timetables were established (Council on Foreign Relations, 

2022).   

The Kyoto Protocol in 1998, and the Paris Agreement in 2015 aimed to strengthen 

global response to climate change under the UNFCCC (UNFCCC, 2016; United Nations, 

1998). The Kyoto Protocol was the first legally binding climate treaty: however, this 

protocol did not compel developing countries to take action (Council on Foreign Relations, 

2022). The Paris Agreement is significant compared to previous accords, as it requires 

many countries to commit to common and ambitious efforts to combat climate change and 

adapt to its effects (Council on Foreign Relations, 2022; IPCC, 2014b; UNFCCC, 2016). 

This emphasizes the urgent need to maintain increases in the global average temperature 

well below 2℃ above pre-industrial levels while pursuing efforts to limit the temperature 

increase to 1.5℃ above pre-industrial levels (UNFCCC, 2016). Under the Paris 

Agreement, countries prepare, communicate, and maintain successive nationally 

determined contributions (NDCs) (United Nations, 2015). NDCs are a countries plan to 

achieve the goals of the Paris Agreement and may include strategies, actions, and 

mitigation targets for reducing GHG emissions (UNFCCC, 2021). NGHGIs are significant 

when setting and measuring the progress of each country’s NDC, as well as supporting 

domestic climate policy development and evaluation (McGlynn et al., 2022). This is 

significant in decision making and adaptive governance to create common understanding 

and advance the effectiveness of policies (Shukla et al., 2020).  

2.4 Carbon Sources and Sinks in the Forestry Sector 

The forestry sector is an area of importance that can be used to mitigate climate 

change by increasing carbon removals from the atmosphere or halting the loss of carbon 

stock from land (UNFCCC, 2020). Forests are carbon sinks if more carbon is absorbed 

from the atmosphere than released (Natural Resources Canada, 2007). This can be achieved 
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through carbon sequestration, a process in which carbon is removed from the atmosphere 

and stored into carbon pools (Ravin and Raine, 2007). Emissions can be decreased through 

conserving sinks, as a loss of carbon is equivalent to an emission (Bird et al., 2011). 

Additionally, the removal of carbon from the atmosphere through sinks can be considered 

as a negative emission (Bird et al., 2011). Due to the high mitigation potential the more 

stringent GHG reduction targets rely heavily on land-based mitigation options, as up to 

one-third of GHG reductions needed to prevent the most severe consequences of climate 

change can be provided by the land use, land-use change, and forestry (LULUCF) sector 

(UN-REDD Programme, 2022). Ninety percent of the second-generation of NDCs 

included the foretsry sector, and 57% referred specifically to forests as domestic options 

for GHG reduction (UNDP, 2021; UN-REDD Programme, 2022). 

Although the forestry sector is able to remove carbon dioxide (CO2) from the 

atmosphere, the main drawbacks are the potential loss of carbon and release of GHGs to 

the atmosphere as a result of human activities and natural disturbances (UNFCCC, 2020). 

Forests are sources of carbon if more carbon is released than absorbed (Natural Resources 

Canada, 2007). Carbon can be released through management practices, decay, disturbances 

(such as fires), and respiration (Natural Resources Canada, 2007; Salomón et al., 2017). 

The net balance between carbon emissions and removals determines whether a 

forest is a carbon source or sink. However, this can be difficult to quantify due to the 

complexity of the processes involved in carbon flows, and the numerous factors that 

contribute to carbon stock changes. 

2.4.1 Significance of Above-Ground Biomass as a Carbon Pool 

The IPCC categorizes carbon stock changes according to the following three carbon 

pools: biomass (above-ground and below-ground biomass), dead organic matter 

(deadwood and litter), and soil organic matter (Paustian et al., 2006). AGB consists of 

biomass in all living vegetation above soil including, stems, branches, bark, seeds and 

foliage, making AGB the largest visible carbon pool in forest ecosystems (Aalde et al., 

2006). Forest carbon stock estimates are mainly derived from AGB (Fu et al., 2017), 

making AGB an important variable for determining carbon sequestration in forest 

ecosystems, as the extent of AGB determines current and future carbon storage capacities. 
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The effects of human activities, natural disturbances, and climate change can have a rapid 

and large influence on carbon uptake through AGB, with the potential to convert many 

ecosystems that are currently carbon sinks into sources (Hoover and Smith, 2023; IPCC, 

2022b; Li et al., 2022, 2020). This study will focus on assessing the uncertainties in AGB 

estimation, as reliable AGB estimates are crucial in quantifying and monitoring carbon 

stock changes in forests.  

2.5 Uncertainties in Quantifying Carbon from Above-Ground Biomass 

The methods and data used to quantify GHG emissions and removals employed by 

the IPCC is a three-tiered approach in which higher tiers have higher complexities (Michael 

et al., 2019). Tier 1 methods, the simplest approach, employs equations and default 

parameters (such as globally available emission factors) (Michael et al., 2019; Ogle et al., 

2019). Tier 2 methods employ the same methods as Tier 1, only default data is replaced 

partially or entirely by country-specific data (Michael et al., 2019; Ogle et al., 2019). Tier 

3 methods are advanced systems that use country specific data, measurements, and/or 

modeling (IPCC, 2003; Ogle et al., 2019). The IPCC guidelines provide minimal general 

guidance on Tier 3 methods, as measurements and models are tailored for specific national 

circumstances (Federici and Grassi, 2011). Therefore, the IPCC does not recommend or 

limit the selection of Tier 3 sampling schemes or modeling methods; but instead provides 

general guidance to assist in implementing Tier 3 methods (Ogle et al., 2019). Defining the 

quantification approach is important for managing the overall inventory uncertainty 

(UNFCCC, 2022). Although Tier 2 and 3 methods produce more reliable estimates, the 

complexities of these approaches introduce more potential sources of uncertainty. There is 

a need for uncertainty analysis methods that address the individual sources of uncertainty, 

and their impacts on the total uncertainty, to validate the reliability of emission estimates.  

2.5.1 Carbon Quantification Methods from Above-Ground Biomass 

The carbon content in all plants organisms is generally assumed to account for 50% 

of the total plant biomass (Kurz et al., 2009; Matthews, 1993; Morhart et al., 2016; 

Pretzsch, 2010). This assumption has been supported by several studies such as Pretzsch 

(2010) who suggested that carbon content can be calculated using volume tables, density 

and a general conversion factor. Matthews (1993) reviewed methods for the direct analysis 
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of carbon, estimations for constituent compounds whose carbon contents are known, and 

estimation from destructive distillation data to identify the carbon content of trees. The 

results from these studies found that the carbon content tends to cluster around 49% to 51% 

with slight variations depending on tree species. In comparison, Matthews (1993) 

concluded that when considering uncertainty, assuming carbon content to be 50% of the 

total plant biomass is a reasonable assumption. The challenging aspect of measuring carbon 

content is the estimation of biomass.  

 Although the IPCC provides default parameters and methods to employ a Tier 1 

quantification approach, the Tier 2 and 3 approaches are preferred because they provide 

more reliable estimates for relatively large fluxes in AGB, particularly on a national or 

large-scale where forest inventories are available (Aalde et al., 2006; Picard et al., 2012). 

Calculating AGB is most accurate when based on field measurements; however, sampling 

is costly, time-consuming, and destructive, making this method impractical for large scale 

estimation (Huynh et al., 2021; Li et al., 2020; Picard et al., 2012; Qin et al., 2021). The 

standard method of quantifying AGB is through the development and application of 

allometric models using forest inventory data (Návar, 2010). Allometric models use 

variables that are easily measured to make predictions for more challenging to measure 

variables, such as AGB (Návar, 2010; Picard et al., 2012). Models can be calibrated using 

measurements from remote sensing technology, such as high resolution satellite images, 

low resolution aerial photographs or sensors, in conjunction with field measurements to 

validate estimates (Picard et al., 2012). Remote sensing has become increasingly common, 

as this method is less time intensive, costly, destructive, and requires less manual work, 

while covering large areas, including inaccessible areas (Turton et al., 2022). On a national 

or large-scale, individual tree measurements are estimated as mean values within a plot, 

and plot-level estimates are averaged and expressed as a mean value per area (Fu et al., 

2017; McRoberts and Westfall, 2016; Picard et al., 2012). 

2.5.2 Sources of Uncertainty in Quantifying Carbon from Above-Ground Biomass 

When referring to error analysis in forest inventories, many studies refer to Cunia’s 

(1965) classification of the main sources as follows: measurement, sampling, and model 

uncertainty (Berger et al., 2014; Fu et al., 2017; Qin et al., 2019, 2021). The contributions 
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of the different sources of uncertainty may differ for different study systems, and would 

need to be evaluated on a case-by-case basis. Assessing the individual sources of 

uncertainty and their overall impact on AGB estimation is essential for identifying and 

prioritizing methodological and data collection improvements. The following section will 

review published literature on the sources of uncertainties in AGB quantification to identify 

research needs and define the scope of this study.  

Measurement error refers to the uncertainty in the forest inventory data that are 

used in AGB allometric models to predict carbon (Qin et al., 2019). Many factors 

contributing to measurement errors, include the influences of measurement methods, 

techniques, technology, and natural variations (McRoberts et al., 1994; Qin et al., 2019, 

2021). For example, when remote sensing is employed the accuracy of measurements is 

affected by the efficiency of the technology used and the ability to differentiate forest types 

(Picard et al., 2012; Skovsgaard et al., 1998). Estimates can be hindered by cloud cover 

and are susceptible to saturated signals for certain vegetation types (Picard et al., 2012). 

For field measurements, errors may occur due to variations in the instruments used, 

divergences in tape placements when manually measuring, recording errors, and 

differences in sampling techniques and skills (Elzinga et al., 2005; McRoberts et al., 1994; 

Qin et al., 2019; Williams et al., 1994). Variations in measurements can occur naturally 

due to differences in a variable among a subject that would otherwise be considered similar 

(McRoberts et al., 1994). For example, a variation in tree diameter at breast height (Dbh) 

can occur naturally for a tree species but may appear as an outlier in an otherwise uniform 

dataset. Several studies have assessed the impacts of measurement errors due to differing 

quantification techniques and under various conditions (Elzinga et al., 2005; McRoberts et 

al., 1994; Persson et al., 2022; Westfall and Patterson, 2007; Williams et al., 1994). The 

effects of measurement errors on the uncertainty in carbon estimation from AGB are a less 

researched topic; however, this concern is becoming increasingly important in validating 

estimates. Accurately and precisely estimating the uncertainty in a response variable as a 

result of predictor variables is challenging according to work by Qin et al. (2019) and Wang 

et al. (2009). Berger et al. (2014) outlined a procedure to construct measurement error 

models from forest inventory data using a method by Hosmer and Lemeshow (1989). This 

method has been used in studies by Qin et al. (2019, 2021)  and Shettles et al. (2015) to 
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quantify measurement error in AGB estimation. Despite the research on this topic, very 

few generalizations are possible, as the effects of measurement error need to be assessed 

on a case-by-case basis (McRoberts and Westfall, 2016). 

Sampling errors are the uncertainty caused by extrapolating data from sample plots 

distributed over an area to predict data for a larger unknown area (Breidenbach et al., 2014; 

Melo et al., 2018). Factors such as the sampling plot size, the sample size of the plots, and 

the heterogeneity of the landscape can affect sampling-related uncertainty (Qin et al., 

2021). According to Berger et al. (2014), national forest inventories often consider only 

the uncertainty from sampling variability. Several studies have assessed the impacts of 

sampling error on AGB estimation, individually or in conjunction with modeling error 

(Breidenbach et al., 2014; Butt et al., 2013; Fu et al., 2017; Melo et al., 2018; Qin et al., 

2021; Ståhl et al., 2014). Ståhl et al. (2014) has argued that the methods suggested in the 

IPCC’s Good Practice Guidance for the LULUCF sector (IPCC, 2003) do not apply to 

sample surveys used in national forest inventories, and combining the effects of sampling 

and model errors is very complex, thus proposing a new uncertainty analysis method. 

Based on arguments by Ståhl et al. (2014), an alternative method was proposed by Fu et al. 

(2017). In comparison to work by Ståhl et al. (2014), Fu et al. (2017) proposal was more 

effective at separately quantifying sampling and modeling uncertainty with higher 

prediction accuracy. Fu et al. (2017) concluded that more studies should focus on reducing 

the effects of model error and improving model performance to reduce uncertainties and 

increase the accuracy of AGB predictions. Sampling errors have a considerable effect on 

the reliability of AGB estimates: however, based on existing research, methods to quantify 

this uncertainty source are well-defined, whereas there is a need for more studies on the 

effects of model errors. 

In practice, model uncertainties are rarely quantified (McRoberts and Westfall, 

2016; Metsaranta et al., 2017). Model error refers to the uncertainty caused by the 

deficiency of the AGB allometric model to predict carbon (Qin et al., 2021). Model 

uncertainties arise mainly due to the choice of the allometric model, the values of the 

predictor variables, residual variability, and model parameter estimates (McRoberts and 

Westfall, 2014; Qin et al., 2021). Carbon from AGB is commonly quantified from existing 
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generalized allometric models when local models are unavailable, but these rarely include 

an assessment of uncertainty and guidance for the appropriate application, particularly 

when the models used were derived decades ago (Wayson et al., 2015). Assessing model 

uncertainty becomes challenging when there is a lack of information about the model fit 

statistics (i.e., fit parameters’ confidence intervals, R2, n, etc.) and the original raw data 

used to derive these models (Wayson et al., 2015). Although Wayson et al. (2015) proposed 

a method to generate pseudo-data from incomplete fit statistics to assess parameter 

uncertainty, they recommend using this method only if there are no other possible options 

to recover information for the allometric models used. Rather than assessing the uncertainty 

in existing models, studies by McRoberts and Westfall (2016) and Qin et al. (2021) 

demonstrated how to derive allometric models for a study area and quantify the associated 

model uncertainty. Due to the challenges in recovering fit statistics for existing allometric 

models, the work in this thesis will follow a similar procedure. Several studies have 

compared the performance of different forms of allometric models when predicting AGB 

(Balbinot et al., 2018; Fradette et al., 2021; Mensah et al., 2017; Mugasha et al., 2016; Qin 

et al., 2021; Sadono et al., 2021; Segura et al., 2006; Shettles et al., 2015). Conclusions 

from these studies will be used to select the form of the allometric model: therefore, the 

uncertainty from model misspecification will not be assessed in this study. McRoberts and 

Westfall (2014) confirmed that all parameters in AGB models are influenced by 

measurement errors that should be considered when assessing the uncertainty in AGB 

predictions. Therefore, measurement error will be assessed as it relates to the uncertainty 

in the model input variables.  

Although Qin et al. (2021) emphasized that AGB has been widely investigated, 

further studies are required to determine which uncertainties contribute the most to overall 

errors. The contribution of uncertainty sources differ between countries due to differences 

in measurements, input variables, and methods (Qin et al., 2021). This study will contribute 

to research on uncertainties in carbon estimates from AGB by demonstrating a procedure 

to quantify model uncertainties from allometric models. The results can be used to identify 

and prioritize methodological improvements. Model uncertainties for study areas in 

Canada and Sweden will be assessed to demonstrate how this procedure can be employed 

in different countries and how the contributions from sources of uncertainty differ.   
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2.6 Uncertainty Analysis Methods 

Uncertainty analysis is an important tool that can be used to produce a quantitative 

estimate of the interval of a measured value within which the true value with a given 

confidence is expected to reside (Wells, 1992). The information provided by uncertainty 

analysis can be used to determine the reliability of estimates, and prioritize methodological 

and data collection improvements (Paciornik et al., 2019). 

Uncertainty analysis methods that are most commonly used based on IPCC 

recommendations are propagation of error and Monte Carlo Simulation (MCS) (Paciornik 

et al., 2019). As shown in Table 2.1, there are many benefits to MCS in comparison to error 

propagation. MCS can handle both simple and complex models in which correlations may 

occur and uncertainties may differ for different years, resulting in more detailed and 

reliable analysis.  

Table 2.1 Comparison of the Uncertainty Analysis Approaches Recommended by the 

IPCC 

Approach 1: Error Propagation  Approach 2: Monte Carlo Simulation 

Works well if uncertainties are relatively 

small, symmetric and follow normal 

distribution 

Works well if uncertainties are large, 

follow a non-normal distribution, involve 

complicated algorithms, and vary over 

time 

Standard Deviation/Mean < 0.3  Detailed category-by-category 

assessment method 

Simple Approach  

• Assessment can be 

completed using a 

spreadsheet and simple 

equations provided in the 

IPCC guidelines 

Complex Approach 

• Assessment requires 

specialized software 

• Requires shape of probability 

density function (PDF), 

however; identifying which 

function best fits a set of data 

can be difficult 

Difficult to assess correlations  Able to assess varying degrees of 

correlation 

Sources: (Frey et al., 2006; Grassi et al., 2016; Paciornik et al., 2019; Tanabe, 2016) 
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In practice MCS should be used for Tier 2 and 3 quantification methods, 

particularly for complex systems in the LULUCF sector where large uncertainties are 

expected (Frey et al., 2006). However, this is not always the case. Within the past decade, 

simulation-based uncertainty analysis methods have only been implemented in some 

countries. For example, in the European Union only 8 countries use MCS for uncertainty 

estimates (Monni et al., 2007). This is likely due to implementation challenges such as high 

data requirements, the time needed to conduct simulations, and the complexity of the model 

and results (Fauser et al., 2012; Molina-Castro, 2022; Monni et al., 2007).  

Quantifying uncertainty estimated using MCS requires analysts to have a scientific 

and technical understanding of GHG fluxes and the quantification methods associated with 

the system, as MCS only provides reliable results if properly implemented (Frey et al., 

2006). However, the guidelines provided by the IPCC are very general. The IPCC’s 2006 

Guidelines for National Greenhouse Gas Inventories Volume 1 Chapter 3 on Uncertainties, 

the Good Practice Guidance and Uncertainty Management in National Greenhouse Gas 

Inventories Chapter 6 “Quantifying Uncertainties in Practice” and the Good Practice 

Guidance for Land Use, Land-Use Change and Forestry Chapter 5 “Cross-Cutting Issues” 

provide similar guidance for MCS. This process consists of specifying uncertainties in 

input variables, constructing probability density functions (PDFs), and using readily 

available statistical software packages to conduct simulations and calculate uncertainties 

(Frey et al., 2006; IPCC, 2001a; Paciornik et al., 2003). An example of this process is 

shown in Figure 2.1.  
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Figure 2.1 Example of Monte Carlo method for uncertainty analysis in GHG 

quantification. Information source: (Frey et al., 2006) 

 

 



  

20 

 

The IPCC does not provide guidance on how to implement this approach when 

accounting for model uncertainties that involve complex algorithms. For example, when 

calculating the uncertainty in model parameters, the model is re-fit, and parameters are re-

calculated for each iteration after varying the input data. Most commercially available 

software packages follow a simple procedure similar to the procedure shown in Figure 2.1. 

However, this procedure and may not be capable of processing the method required to 

calculate model uncertainties. The IPCC recommends conceptualizing model uncertainties 

by (1) qualitatively discussing the implications of uncertainties in estimates obtained by 

the model; (2) comparing the model results with independent data to verify the accuracy of 

results; (3) comparing the results of the model to the results of alternative models; and (4) 

providing estimates based on expert judgment (Frey et al., 2006). No amendments were 

made to guidelines related to uncertainties associated with models and methods for MCS 

in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas 

Inventories (Paciornik et al., 2019). Limited guidance is provided on how to quantitatively 

assess model uncertainties. Point (2) faces limitations in data availability as models for 

AGB are mainly used to represent large areas for which measurements can be challenging 

to obtain and may also be subject to uncertainties, and point (3) would only provide 

information on how a model compares to another model that may also be uncertain, rather 

than accounting for the uncertainties in the individual model. These guidelines are 

insufficient when quantifying model uncertainties using simulation-based uncertainty 

analysis methods and research is needed to demonstrate how to quantify uncertainties for 

models involving complex algorithms. 

Individual countries are responsible for ensuring that uncertainty analysis methods 

are documented by following the TACCC reporting principles (Goodwin et al., 2019). 

These principles ensure the reporting of NGHGIs are transparent, accurate, complete, 

comparable, and consistent between countries (UNFCCC, 2022). However, numerous 

challenges exist in implementing consistent methods across different countries, especially 

when the methods used are not well documented. Very few countries report uncertainties 

systematically (IPCC, 2001b). Quantifying uncertainty estimates must be comparable 

between countries for NGHGIs to be used for policy purposes and to determine compliance 

with international commitments (Gillenwater et al., 2007). There is a need to clearly outline 
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the procedure used to quantify model uncertainties as per the TACCC reporting principles 

and assess how these methods apply to different countries. 

Another criticism is a conflict between IPCC guidelines and the latest peer 

reviewed literature (Yona et al., 2022). Despite the growing literature on the topic of 

uncertainty analysis methods, guidelines for using MCS have not been updated since 2006 

(Paciornik et al., 2019). One possible explanation is the IPCC does not want to recommend 

alternative uncertainty analysis methods that may be less well-tested when compared to 

MCS (Yona et al., 2022). Incorporating recent information into existing guidelines require 

more research to validate alternative uncertainty analysis approaches or improvements to 

MCS. Literature comparing alternative uncertainty analysis methods to those 

recommended by the IPCC were reviewed in Table 2.2. Many of the studies presented in 

Table 2.2 compared the precision of the uncertainty estimates quantified using different 

uncertainty analysis approaches to determine a preferred approach. Since the true value of 

the uncertainty estimates are unknown, the accuracy cannot be compared. However, the 

precision of the estimates, which refers to the closeness between estimates, is compared 

mainly in terms of variance (Fortin, 2021). In some studies, factors such as the number of 

simulations and the assumptions required were accounted for when determining the 

preferred uncertainty analysis approach.  
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Table 2.2 Alternative Uncertainty Analysis Methods used in Literature 
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Conclusions based on the comparison shown in Table 2.2 are described in the 

following statements. In most cases, an alternative uncertainty analysis approach was 

preferred in comparison to MCS, except for disagreements reported by Salway (2010) and 

Frauser et al. (2012). The comparison by Salway (2010) found that MCS performed 

similarly to the LHS and Bootstrap methods. According to Salway (2010) and Frauser et 

al. (2012) MCS was preferred compared to error propagation. However, these findings 

lacked consistency. For example, Camacho et al. (2015) reported no significant difference 

between MCS and Bayesian methods: however, McCandless and Gustafson (2017) 

reported Bayesian as the preferred method. Lee et al. (2020) found bootstrapping to be 

preferred when compared to MCS: however, Salway (2010) and Romano et al. (2004) 

found the results for both methods to be similar. An important note to consider is that each 

comparison was for one or a few study systems, with different quantification methods and 

limited data points. To assess the effects of alternative uncertainty analysis methods on the 

estimated uncertainties, uncertainty analysis methods incorporating MCS, bootstrap, and 

Bayesian bootstrap will be investigated in this thesis. 

2.6.1 Monte Carlo Simulation  

For decades, Monte Carlo methods have been commonly and successfully used to 

predict uncertainties (Johansen, 2010). Contrary to the usual problem of statistics, rather 

than estimating random quantities in a deterministic manner, MCS employs random 

quantities to establish deterministic estimates (Johansen, 2010). This procedure is 

performed by defining input domains, such as probability density functions (PDFs), for the 

sources of uncertainty (Hayes, 2011; Shreider et al., 1966). PDFs can be derived from 

repeatedly measuring a process, theoretical arguments, and/or expert judgment (Hayes, 

2011). Using the principles of statistical interference random numbers are generated from 

these PDFs and used to establish approximations for an unknown quantity (Hayes, 2011; 

Johansen, 2010).  

The theoretical justification for establishing the MCS procedure works can be 

explained by evaluating the integral shown in Equation 2.1, which represents the 

expectation of the function ℎ(𝑥) of the random variable X, under the probability density 
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𝑓(𝑥), in which 𝜒 is the input domain from where the random variable takes its value 

(Hayes, 2011; Robert and Casella, 2004a). 

𝔼𝑓[ℎ(𝑋)] =  ∫ ℎ(𝑥)𝑓(𝑥) 𝑑𝑥            (2.1) 

 A Monte Carlo estimate is determined from repeatedly sampling random numbers 

𝑥𝑗 from the distribution 𝑓(𝑥), and using the sampled dataset 𝑥𝑗 to calculate a value 

for ℎ(𝑥𝑗), in which ℎ(𝑥𝑗) is a possible outcome of the function ℎ(𝑥) (Hayes, 2011). For 

each iteration in which this process is completed an average value of ℎ(𝑥𝑗) is calculated 

according to Equation 2.2 (Robert and Casella, 2004a).  

ℎ̅𝑛 =  
1

𝑛
 ∑ h(xj)

n
j=1           (2.2) 

 The most elementary Monte Carlo method is justified by employing two theorems 

(Johansen, 2010). According to the Strong Law of Large Numbers, ℎ̅𝑛 converges to 

𝔼𝑓[ℎ(𝑋)], and based on the Central Limit Theorem, if ℎ2 has finite expectation under 𝑓, 

ℎ̅𝑛 converges in distribution to a normal distribution centered at 𝔼𝑓[ℎ(𝑋)] with variance 

𝑣𝑛 that can be calculated using Equation 2.3 (Johansen, 2010; Robert and Casella, 2004a). 

𝑣𝑛 =  
1

𝑛2  ∑ [ℎ(𝑥𝑗) −  ℎ̅𝑚]
2𝑛

𝑗=1            (2.3)  

A major limitation to implementing MCS is the high data requirement, which if not 

met is substituted by making assumptions in the place of empirical information (Ferson, 

2008). The issue of identifying the type of PDF can be challenging (Frey et al., 2006). 

According to studies that quantified uncertainties related to allometric models, this shape 

of the PDFs were assumed, presumably from expert judgment or past studies (Berger et 

al., 2014; McRoberts and Westfall, 2016; Qin et al., 2021). Depending on the type of 

distribution, statistical parameters such as the minimum, maximum, standard deviations, 

and/or mean of a dataset, are used to generate PDFs. Therefore, PDFs do not take into 

account variations in datasets, but instead generate values based on the shape of the 

distribution. In many cases, several PDFs will accurately fit a dataset within a given 

probability limit, however; different PDFs can significantly change the outcome of an 

uncertainty analysis (Frey et al., 2006). The assumptions considered in selecting the type 
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of the PDFs can significantly impact the predicted uncertainty. The alternative uncertainty 

analysis methods investigated in this thesis will incorporate different statistical re-sampling 

methods into MCS that place less dependence on PDFs, thus requiring fewer assumptions. 

2.6.2  Bootstrap 

 Bootstrap methods were introduced by Efron (1979) as a method to estimate the 

statistical properties of a parameter of interest 𝜃 given a random sample 𝑋 =

(𝑋1, 𝑋2, … , 𝑋𝑛) from an unknown distribution 𝐹 by re-sampling the observed dataset 𝑋. 

More precisely, according to Equation 2.4, assume the property of interest is 𝜃(𝐹), which 

can be calculated using the function ℎ(𝑥) where 𝑥𝑖 =  𝑋𝑖 are values from the unknown 

distribution 𝐹 (Robert and Casella, 2004b).  

𝜃(𝐹) =  ∫ ℎ(𝑥)𝑑𝐹(𝑥)          (2.4) 

Using bootstrap methods, random samples 𝑋∗𝑖 = (𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗) are taken with 

replacement from the observed dataset 𝑋 resulting in a distribution 𝐹𝑛 (Efron, 1979; Efron 

and Gong, 1983; Robert and Casella, 2004b). Using the re-sampled dataset 𝑋∗𝑖 an estimate 

for 𝜃(𝐹𝑛) can be calculated using Equation 2.5 (Robert and Casella, 2004b). 

𝜃(𝐹𝑛) =  ∫ ℎ(𝑥)𝑑𝐹𝑛(𝑥)           (2.5) 

This method is justified by the Glivenko-Cantelli Theorem that guarantees the sup-

norm convergence of  𝐹𝑛 to 𝐹, thus guaranteeing that 𝜃(𝐹𝑛) is a consistent estimator of 

𝜃(𝐹) (Robert and Casella, 2004b). This estimate becomes more accurate by simulating this 

approach, for example by using MCS (Efron, 1979; Robert and Casella, 2004b).  

 Bootstrapping differs from MCS as values are selected from an observed dataset 

rather than a specified PDF. This can be advantageous as bootstrapping is capable of 

accounting for variations in the dataset. However, this also places a high dependence on 

the observed dataset, which can be a limitation depending on the reliability of the observed 

dataset, especially when the observed data is a sample meant to represent a larger unknown 

population.  
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2.6.3 Bayesian Bootstrap  

Bayesian methods are derived from Bayes Theorem proposed by Bayes (1763). The 

theorem explains the probability of an event occurring based on prior knowledge of the 

conditions associated with the event (Joyce, 2021; K. Hackenberger, 2019). The Bayesian 

bootstrap method introduced by Rubin (1981) is the Bayesian analogue of the bootstrap, 

capable of incorporating information on the distribution 𝐹 from previous simulations 

(Hjort, 1991). Bayesian bootstrap differs from bootstrap as each Bayesian bootstrap 

replication generates a posterior probability for each 𝑋𝑖
∗ re-sampled from the observed 

dataset  𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) (Rubin, 1981). Posterior probabilities are probabilities 

assigned after the acquisition of new data (Weirich, 2011). For example, prior to re-

sampling each value in the dataset 𝑋 has a posterior probability of zero. After an iteration 

of re-sampling each value 𝑋𝑖
∗ selected during re-sampling has a posterior probability based 

on the number of times each value was selected, whereas values that were not selected have 

a posterior probability of zero (Rubin, 1981). Therefore, in the next iteration values are 

more likely to be selected during re-sampling according to prior knowledge of the posterior 

probabilities from the previous iterations.  

 Rubin (1981) suggests the advantages of Bayesian bootstrap over the bootstrap 

relate to the resulting inferences between the parameters. Bayesian bootstrap generates 

likelihood statements rather than frequency statements about statistics under assumed 

values for parameters. Bayesian bootstrap can be considered an ‘informative extension’ of 

the bootstrap that smooths out outside data points (Hjort, 1991). However, there is a lack 

of research comparing the results of Bayesian bootstrap and bootstrap concerning data re-

sampling or uses in estimating error. 

2.7 Summary 

 This chapter reviewed the need for accurate and reliable GHG emission and 

removal data in NGHGI. AGB from the forestry sector is an area of importance when 

quantifying carbon, but is often associated with high degrees of uncertainty due to the 

complexity of the tier 3 quantification methods employed. Based on literature, there is a 

need for research on quantifying the effects of model uncertainty. However, the research 

in this thesis argues that IPCC guidelines for simulation-based uncertainty analysis 
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methods (such as MCS) are insufficient when accounting for model uncertainty. A lack of 

guidance may result in challenges implementing consistent methods across countries. 

Furthermore, alternative uncertainty analysis approaches may predict more precise 

uncertainty estimates. The knowledge gaps identified through this chapter justify the 

objectives of this research outlined in Chapter 1.  
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3.0 SIMULATION-BASED UNCERTAINTY ANALYSIS METHODOLOGY 

FOR CARBON QUANTIFICATION FROM ABOVE-GROUND TREE BIOMASS 

ALLOMETRIC MODELS IN CANADA AND SWEDEN 

3.1 Introduction 

 This research will examine improvements to the Intergovernmental Panel on 

Climate Change (IPCC) guidelines for simulation-based uncertainty analysis methods. 

Improved documentation can assist in applying consistent uncertainty analysis methods 

between countries and improve the understanding and reliability of emission estimates. 

The objectives of this chapter are as follows: to outline the methodology employed to 

quantify model uncertainties in carbon estimates from above-ground biomass (AGB) 

allometric models. The sources of model uncertainties are due to model parameter 

uncertainty, model residual variance, and measurement uncertainty for model input 

variables: diameter at breast height (Dbh) and canopy height (Ht) (McRoberts and Westfall, 

2014; Qin et al., 2021). Methods to incorporate  the following alternative uncertainty 

analysis approaches will be assessed: Monte Carlo Simulation (MCS), MCS with 

bootstrap, and MCS with Bayesian bootstrap. The feasibility of the proposed methodology 

when used in different countries will be assessed by conducting a case study in British 

Columbia (B.C.), Canada and in Västernorrland County, Sweden.   

3.2 Above-Ground Biomass Allometric Model  

The standard method of quantifying AGB is through the development and 

application of allometric models (Návar, 2010). Allometry relates the measurement of one 

easily measurable variable to a more difficult to quantify variable (Návar, 2010; Vorster et 

al., 2020). Allometric models are statistically parameterized with measured tree data in 

which effect or independent variables (e.g. Dbh, bole base, Ht, wood specific gravity, etc.) 

and the response or dependent variable (volume, dry foliage, branch, bole and/or total 

AGB) for a number of trees are fit to a model by estimating parameters (βs and αs) (Návar, 

2010; Picard et al., 2012). Allometric models are commonly in the form of Equation 3.1 

(McRoberts and Westfall, 2014; Picard et al., 2012). 

𝑌 =  𝛽0𝑋1
𝛽1 × 𝑋2

𝛽2 ×  … × 𝑋𝑝

𝛽𝑝 × 𝜀            (3.1)                                                             
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In Equation 3.1, 𝑌 is the response or dependent variable, 𝑋 is the effect or 

independent variable, and ε is a random residual error that can be estimated from the 

Gaussian distribution (0,1) (McRoberts and Westfall, 2014, 2016; Picard et al., 2012). The 

most common forms of this model used for a wide range of forest ecosystems and species 

globally involve Dbh alone or with Ht as the independent variables and AGB as the 

dependent variable (Fradette et al., 2021). For example, this model can be written in the 

forms of Equations 3.2, 3.3, and 3.4. 

𝐴𝐺𝐵𝑖 = 𝛽0𝐷𝑏ℎ𝑖
𝛽1 + 𝜀𝑖            (3.2) 

𝐴𝐺𝐵𝑖 = 𝛽0(𝐷𝑏ℎ𝑖
2𝐻𝑡𝑖)

𝛽1
+ 𝜀𝑖            (3.3) 

𝐴𝐺𝐵𝑖 = 𝛽0(𝐷𝑏ℎ𝑖)
𝛽1(𝐻𝑡𝑖)

𝛽2 + 𝜀𝑖           (3.4) 

Several studies that evaluated and compared the performance of different model 

forms concluded that in consideration of challenges in measuring tree data, Equation 3.2 is 

robust enough to provide reliable predictions. However, models with additional 

independent variables are more precise and have a lower degree of uncertainty (Balbinot 

et al., 2018; Fradette et al., 2021; Mensah et al., 2017; Mugasha et al., 2016; Qin et al., 

2021; Sadono et al., 2021; Segura et al., 2006). Due to the challenges in obtaining 

measurements for multiple independent variables, Equation 3.4 is the preferred model 

(Fradette et al., 2021) and, will be used in this thesis to obtain precise estimate of AGB and 

the resulting impacts of model uncertainties including uncertainties in measurements from 

both Dbh and Ht. 

Equation 3.4 can be expressed in a linear form by applying the natural logarithmic 

(ln) transformation to both sides of the equation, resulting in the reformulated model shown 

in Equation 3.5 (McRoberts and Westfall, 2016; Picard et al., 2012). 

ln(𝐴𝐺𝐵𝑖) = 𝛼0 + 𝛼1 × ln(𝐷𝑏ℎ𝑖) + 𝛼2 × ln(𝐻𝑡𝑖) + 𝜀𝑖′          (3.5) 

Equation 3.5 simplifies the estimation of model parameters and removes 

heteroskedasticity, thus eliminating the need for weighted regressions (McRoberts and 
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Westfall, 2016). According to McRoberts and Westfall (2016), Equation 3.6 is obtained by 

converting the model to the original scale. 

𝐴𝐺�̂�𝑖 = exp [𝛼0 + 𝛼1 × 𝑙𝑛(𝐷𝑏ℎ𝑖) + 𝛼2 × 𝑙𝑛(𝐻𝑡𝑖) +
�̂�𝜀

2
]        (3.6) 

The term 
�̂�𝜀

2
 represents half the residual standard deviation on the ln-ln scale, and is 

the correction factor that compensates for the bias that arises from transforming the 

equation from the ln-ln scale to the original scale (Baskerville, 1972; McRoberts and 

Westfall, 2016).  

3.2.1 Model Fitting 

 The AGB model was fitted and validated following a manual by Picard et al. (2012) 

using the linearized form shown in Equation 3.5 and forest inventory data. The model was 

evaluated according to the following statistical parameters.  

The 𝑝 value is commonly used to explain the statistical significance of the 

relationship between independent variables and the dependent variable (Thiese et al., 

2016). The 𝑝 value tests the hypothesis that the independent variables do not affect the 

dependent variable, in which a 𝑝 value > 0.05 indicates that there is strong evidence against 

this hypothesis (Thiese et al., 2016). However, several studies have criticized the 

interpretation of the 𝑝 value and indicated that numerous factors (such as sample size, bias, 

and random error) negatively impact the 𝑝 value. (Di Leo and Sardanelli, 2020; Dorey, 

2010; Thiese et al., 2016). 

The 𝑅2 value is calculated to explain the quality of the fit. The 𝑅2 value measures 

the variance of the sample accounted for by the model relative to the total sample variance, 

in which a value closer to 1 indicates a better fit (Brown et al., 1989). However, the 

interpretation of 𝑅2 has limitations and is not recommended as a reliable criterion for 

selecting the shape of a model, as higher 𝑅2 values may be the result of model over-

parameterization to a specific dataset (Picard et al., 2012).  

Although the 𝑅2 value and the 𝑝 value provide important statistical information 

describing the model, based on the previously mentioned criticisms, these parameters was 
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not used to validate the fit of the model. Instead the method reported by Picard et al. (2012) 

was used.  

Fitting the model is concluded when the following conditions are satisfied: (1) The 

residuals are independent, (2) The residuals follow a normal distribution, and (3) The 

residuals variances are constant (Picard et al., 2012). The independence of the residuals 

can be assumed when the sampling plan is robust (Picard et al., 2012). The hypotheses that 

the residuals are normally distributed and independent were tested by visual inspection. By 

graphing the empirical quantiles of the residuals against the theoretical quantiles a near 

straight line indicates that the residuals are normally distributed (Picard et al., 2012). By 

graphing the residual values against the fitted values a cluster of points that show no 

particular trend or structure indicates that the variance of the residuals are constant (Picard 

et al., 2012).  

3.3 Description of Study Areas 

 To assess and compare the applicability of the uncertainty analysis method for 

different countries model uncertainties were evaluated for one study area in B.C., Canada, 

and the other in Västernorrland County, Sweden. These areas were selected as this research 

is a collaboration between institutes in Canada and Sweden: however, this methodology 

can be employed in other areas and countries where similar forest inventories are available. 

3.3.1 Study Area 1 

 Study Area 1 is in the Petitot Plain Ecosection in northeastern B.C., Canada. The 

area includes approximately 12,365 ha of land consisting of riparian habitats, wetlands, 

and upland forests (BC Parks, 2001; Demarchi, 2011), located at the northern end of the 

Thinahtea protected area, as shown in Figure 3.11. The forest types are mainly boreal white 

and black spruce but also contain trembling aspen, lodgepole pine, tamarack, paper birch, 

and balsam poplar.   

 
1 'Maps throughout this research were created using ArcGIS® software by Esri. ArcGIS® 

and ArcMap™  are the intellectual property of Esri and are used herein under license. 

Copyright © Esri. All rights reserved. For more information about Esri® software, please 

visit www.esri.com.' 
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Figure 3.1 Study area 1 in B.C., Canada. (1) Provincial view (ESRI, 2018). (2) Satellite 

view (ESRI, 2009a). (3) View of polygons within the study area (BC, Canada Study Area, 

2023). 
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3.3.2 Study Area 2 

 Study Area 2 is in the High Coast region in Västernorrland County, Sweden. The 

area includes approximately 10,000 ha of land consisting of mountainous terrain, wetlands, 

and forests (Poutanen and Steffen, 2015; “Sweden’s National Parks,” 2023), surrounding 

the Skuleskogen National Park, as shown in Figure 3.2. The forest types are mainly Norway 

spruce and Scots pine but also contain birch, contorta, and other hardwoods.  

 

Figure 3.2 Study area 2 in Västernorrland County, Sweden. (1) Country view (Sweden 

Forest Volume, 2023). (2) Satellite view (ESRI, 2009b). (3) View of polygons within the 

study area (Västernorrland County, Sweden Study Area, 2023) 
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3.4 Data Collection 

 To calibrate the AGB models, geospatial forest inventory datasets were collected 

using ArcMap version 10.8.2 (ESRI, 2023). These datasets are referred to as the observed 

datasets. The following sections describe the data collection procedures for each study area.  

3.4.1 Study Area 1 

Data was collected at the provincial level from the government of British 

Columbia’s Vegetation Resource Inventory (VRI), which is compiled and maintained as 

required by the Ministry of Forests, Lands and Natural Resource Operations (FLNRO) 

Forest Inventory Strategic Plan (FLNRO, 2013). The VRI is a photo-based, two-phased 

vegetation inventory. In the first phase, aerial photographs are used to estimate vegetation 

characteristics (FLNRO, 2022a). Land is delineated into polygons according to these 

characteristics. In the second phase, ground sampling is used to verify the accuracy of the 

photo estimates (FLNRO, 2022a).  

Polygons for non-vegetated areas or with missing data were eliminated and 580 

polygons were available for this study. The average polygon area was approximately 12.0 

ha, the average basal area was approximately 21.0 m2/ ha, and the average number of live 

stems per polygon was 1195.  Data for the mean Dbh, Ht, and AGB per polygon was 

collected.  

The Dbh was based on a 13.5 cm utilization was expressed in cm for each polygon 

(VRI Relational Data Dictionary (version 5.0), 2019). The Dbh was calculated based on 

the basal area and the number of live stems, resulting in an estimate that assign greater 

weighting to trees that occupy a larger basal area (FLNRO, 2022a; Kivari et al., 2011).  

Data for the mean projected Ht weighted by basal area and expressed in metres was 

available for the leading and second species for each polygon (VRI Relational Data 

Dictionary (version 5.0), 2019). For the remaining species, the commonly used Chapman-

Richards height-diameter model using parameters from Huang et al. (1992) and Peng et al. 

(2001) were used to predict the average tree height per species for each polygon. The 

weighted mean Ht for all trees within a polygon were calculated using weights based on 

the percentage of the basal area each species occupied. Data for AGB included the biomass 
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in the whole stem, branches, bark, and foliage for all species per polygon on a utilization 

of 4.0 cm expressed as tonnes/ha (VRI Relational Data Dictionary (version 5.0), 2019). 

Work by McRoberts and Westfall (2014) reported that not much is gained by using species-

specific models for large area AGB estimates. Hence a single non-species-specific 

allometric model was derived for each study area. Therefore, the Dbh, Ht, and AGB values 

were not aggregated according to the tree species. 

3.4.2 Study Area 2 

 Date collected from the 2015 SLU Forest Map was obtained from the Swedish 

University of Agricultural Sciences (SLU) Division of Forest Remote Sensing at the 

Department of Forest Resource Management. SLU, the official Swedish provider of forest 

statistics, is responsible for the Swedish National Forest Inventory (Wallerman et al., 

2021). The SLU Forest Map is produced from co-processing field data from the Swedish 

NFI, satellite images, and surface models (Wallerman et al., 2021).  

 The SLU Forest Map is based on raster data in which the grid cell sizes are 12.5 m 

x 12.5 m  (SLU, 2021). For this study, the data was aggregated into 300 m x 300 m (9.0 

ha) grid cells to reduce the computer memory requirements and the time needed to run the 

model. This resulted in 1120 grid cells. The average basal area was approximately 19.2 

m2/ha and the average number of live stems per grid cell was 561. Data for the mean Dbh, 

Ht, and AGB per polygon was collected. 

 Similarly to section 2.2.1, the Dbh was expressed in cm for each grid cell; however, 

there was no Dbh limit. The mean Ht for all species greater than 3.0 m was weighted 

according to the basal area and expressed in metres for each grid cell (SLU, 2021). Data 

for AGB included the biomass in the trunk of the tree excluding the stump, the branches, 

and the tops for all species per grid cells expressed as ton TS/ha (SLU, 2021). 

3.5 Uncertainty Calculation 

Simulations of the uncertainty analysis were concluded when the mean and 

uncertainty of the parameter for which the uncertainty is being assessed stabilized. Similar 

to approaches by McRoberts and Westfall (2016) and Qin et al. (2021) the mean and 

variance over replications were calculated following Rubin (1987). The mean over 
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replications �̅�𝐴𝐺𝐵 was calculated based on the mean AGB for the entire study area 𝐴𝐺𝐵̅̅ ̅̅ ̅̅
𝑘 

for each replication 𝑘. 

�̅�𝐴𝐺𝐵 =
1

𝑛
∑ 𝐴𝐺𝐵̅̅ ̅̅ ̅̅

𝑘
𝑛
𝑘=1                          (3.7)  

The variance of �̅�𝐴𝐺𝐵 was calculated by combining the mean variance between 

simulations 𝑊1 and the mean variance within-simulation 𝑊2. 

𝑉𝑎𝑟(�̅�𝐴𝐺𝐵) = (1 +
1

𝑛
) × 𝑊1 + 𝑊2                       (3.8) 

𝑊1 =  
1

𝑛−1 
∑ (�̅�𝑃 − 𝐴𝐺𝐵̅̅ ̅̅ ̅̅

𝑘)2𝑛
𝑘=1            (3.9)  

𝑊2 =
1

𝑛−1
𝑉𝑎𝑟(𝐴𝐺𝐵̅̅ ̅̅ ̅̅

𝑘)            (3.10) 

The relative uncertainty 𝑅𝐴𝐺𝐵 was calculated from the standard error 𝑆𝐸(�̅�𝐴𝐺𝐵).  

𝑆𝐸(�̅�𝐴𝐺𝐵) = √𝑉𝑎𝑟(�̅�𝑃)                   (3.11) 

𝑅𝐴𝐺𝐵 =
𝑆𝐸(�̅�𝐴𝐺𝐵)

�̅�𝐴𝐺𝐵
 × 100%          (3.12) 

 The procedure described in this section calculates the mean and relative uncertainty 

of AGB estimates. As discussed in Chapter 2 Section 2.5.1, when considering uncertainty 

it is reasonable to assume the carbon content to be 50% of the AGB (Matthews, 1993). 

Therefore, it was assumed that there was no added uncertainty by applying a 50% 

conversion factor to calculate the carbon content of AGB. Hence the relative uncertainty 

of AGB is equal to the relative uncertainty of carbon from AGB. 

3.6 Statistical Software 

All statistical analysis and modelling were performed using R version 4.2.2 (R Core 

Team, 2023), and extension packages were downloaded from CRAN. The package boot, 

written by Canty and Ripley (2022) based on functions from Davidson and Hinkley (1997), 

was used for the bootstrap analysis. The package bayesboot, written by Bååth (2018) was 

used for the implementation of the Bayesian bootstrap described in Rubin (1981).  
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3.7 Simulating Uncertainty in Above-Ground Biomass Models  

This thesis aims to assess the effects of model uncertainties on carbon estimation 

from AGB from the following sources: model parameter uncertainty, model residual 

variance, and measurement uncertainty for model input variables Dbh and Ht. The 

proposed uncertainty analysis investigated how model uncertainties can be quantified 

considering three sources of model uncertainties. Parts I to III evaluated each individual 

source of model uncertainty and their effects on the estimation of carbon from AGB. Part 

IV discussed the method employed to conduct uncertainty analysis considering each source 

of model uncertainty in order to calculate the overall effects of model uncertainty on carbon 

from AGB quantification. To investigate how the results differ between countries, the study 

areas considered were in Canada and Sweden. The results from the following approaches 

assessed the effects of alternative uncertainty analysis methods on the estimated 

uncertainties. Approach 1 uses MCS by assuming the shapes of PDFs; 2 uses bootstrap re-

sampling with MCS; and 3 uses Bayesian bootstrap re-sampling with MCS. Each section 

of the methodology was repeated for both study areas and the three approaches.  

3.7.1 Part I: Parameter Uncertainty 

 MCS and statistical re-sampling can simulate the sampling process of a dataset to 

generate multiple pseudo-datasets. The variances of the model parameters were estimated 

by repeatedly refitting the model to randomly sampled pseudo-datasets in order to obtain a 

distribution of possible model parameters. The proposed method follows a similar 

procedure as Wayson et al. (2015) and McRoberts and Westfall (2016). The procedure 

shown in Figure 3.3 was used to calculate the uncertainty in model parameters.  
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Figure 3.3 Method to calculate uncertainty in model parameters 

Step 1. Values for AGB, Dbh, and Ht from the observed dataset were aggregated into 

20 classes and each class contained at least 30 values.   

a. Approach 1: Values in each class were assumed to have a uniform 

distribution based on studies by Qin et al. (2021) and Wayson et al. (2015). 

Each variable was randomly re-sampled according to the assumed 

distribution until a pseudo-dataset containing 10,000 values was generated.  

b. Approach 2: Values in each class were resampled using bootstrap 

resampling until a pseudo-dataset containing 10,000 values was generated. 

c. Approach 3: Values in each class were resampled using Bayesian bootstrap 

resampling until a pseudo-dataset containing 10,000 values was generated. 

Step 2. Random values were sampled from the pseudo-datasets until the original sample 

size of the observed dataset was achieved.  

Step 3. The AGB model was fit to these random values and the model parameters were 

calculated and stored in a database.  

Step 4. Following the method described in Chapter 3 Section 3.5, the mean and relative 

uncertainty for each of the parameters was calculated. 

Step 5. Steps 2 – 4 were repeated until the mean and uncertainty stabilized.  
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The procedure shown in Figure 3.4 was used to calculate the uncertainty in AGB as 

a result of parameter uncertainty. 

 

Figure 3.4 Method to calculate uncertainty in AGB due to parameter uncertainty 

Step 1. A distribution of parameters was obtained from the database described in 

previous procedure (Step 3). A set of parameters were randomly selected for the 

AGB model. 

Step 2. Values for Dbh and Ht from the observed dataset, and the parameters selected 

in Step 1, were used to calculate an estimate for AGB . Calculated values were 

stored in a database. 

Step 3. The mean and uncertainty of the AGB estimates in the database were calculated 

using the method described in Chapter 3 Section 3.5. 

Step 4. Steps 1 – 3 were repeated until the mean and uncertainty for the AGB estimates 

stabilized. 

3.7.2 Part II: Residual Uncertainty 

 The residual error is the result of the differences between the observed value of the 

dependent variable and the predicted value calculated from the model (Triyason et al., 

2015). For this study, the observed value was the AGB from the observed dataset, and the 

predicted value was the 𝐴𝐺�̂� generated by the AGB model on the original scale based on 

Equation 3.6. The proposed method followed a similar procedure reported by Qin et al. 

(2021) and McRoberts and Westfall (2016); however, Qin et al. (2021) assumed the 
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residual error model that relates the standard deviation of residuals 𝜎𝑔 and the mean 

predicted 𝐴𝐺�̂� to be linear, but McRoberts and Westfall (2016) described this relationship 

using a power model. In this thesis, several forms of this model were examined, and the 

investigation demonstrated a second-order polynomial best fit this relationship. The 

procedure shown in Figure 3.5 was used to derive the residual error model. 

 

Figure 3.5 Method to derive the residual error model 

Step 1. The  model was fitted using the observed dataset and AGB values were re-

calculated from this model using the independent variables of the observed 

dataset. The AGB values from the observed dataset are referred to as 𝐴𝐺𝐵 and 

the AGB values predicted from the model are referred to as 𝐴𝐺�̂�. 

Step 2. 𝐴𝐺�̂� and the corresponding 𝐴𝐺𝐵 values were paired and arranged in ascending 

order with respect to 𝐴𝐺�̂�. These values were aggregated into classes containing 

20 values. 

Step 3.  For each class, the following parameters were calculated: 

a. The mean of the observed (𝐴𝐺𝐵)̅̅ ̅̅ ̅̅ ̅ and predicted (𝐴𝐺𝐵)̂  values. 

b. The residual for each pair 𝜀 = 𝐴𝐺𝐵𝑖 − 𝐴𝐺�̂�𝑖. 

c. The standard deviation of the residuals (𝜎𝑔). 
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Step 4. The relationship between 𝜎𝑔 and 𝐴𝐺�̂� was represented using Equation  3.13: 

𝜎𝑔 = 𝛾1 +  𝛾2 (𝐴𝐺�̂�)
2

+  𝛾2 (𝐴𝐺�̂�)         (3.13) 

Using the values calculated in Step 2, the model parameters 𝛾1, 𝛾2, 𝛾3 were 

estimated. 

Step 5. 𝐴𝐺𝐵∗ represents the AGB adjusted for residual error that can be calculated using 

Equation 3.14: 

𝐴𝐺𝐵∗ = 𝐴𝐺�̂� + (𝜀 × 𝜎𝑔)         (3.14) 

In which 𝜀 is a random residual error that follows a Gaussian distribution (0,1) 

in which |ε| < 1.96 assuming a 95% confidence interval (McRoberts and 

Westfall, 2016). With respect to Approaches 1, 2, and 3, 𝜀 is sampled from the 

assumed distribution, by bootstrapping, or by Bayesian bootstrapping the 

distribution.  

The procedure shown in Figure 3.6 was used to calculate the uncertainty in AGB 

as a result of residual uncertainty. 

 

Figure 3.6 Method to calculate uncertainty in AGB due to residual uncertainty 

Step 1. The AGB model was fit using the observed dataset and AGB values were re-

calculated from this model using the independent variables of the observed 

dataset. 
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Step 2. Using Equations 3.13 and 3.14, the calculated values of AGB were adjusted for 

residual error. The adjusted AGB values were stored in a database. 

Step 3. The mean and uncertainty of the AGB estimates in the database were calculated 

using the method described in Chapter 3 Section 3.5. 

Step 4. Steps 2 – 3 were repeated until the mean and uncertainty for the AGB estimates 

stabilized. 

3.7.3 Part III: Measurement Uncertainty 

The measurement error is the result of uncertainties in the input variables for the 

model and the resulting impacts on the AGB estimates (Berger et al., 2014). The proposed 

method followed the procedure described in Berger et al. (2014) to derive measurement 

error models for Dbh measurements that relates the standard deviation of the measurement 

differences 𝜎𝑀
𝐷𝑏ℎ and the mean of the measurements 𝐷𝑏ℎ̅̅ ̅̅ ̅̅ . Studies by Berger et al. (2021) 

and Qin et al. (2019, 2021) assumed this relationship to be linear. However, Berger et al. 

(2014) emphasized that linearity is merely an approximation using a non-linear regression 

model that results in similar but larger results. In this thesis, several forms of this model 

were examined, and the investigation demonstrated a second-order polynomial best fit this 

relationship. The procedure shown in Figure 3.7 was used to derive the measurement error 

model for Dbh measurements. 

 

Figure 3.7 Method to derive Dbh measurement uncertainty model 
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Step 1. Dbh measurement values were arranged in ascending order. For every two 

values the mean 𝐷𝑏ℎ̅̅ ̅̅ ̅̅ =  
𝐷𝑏ℎ1+ 𝐷𝑏ℎ2

2
 and the difference 𝐷𝑖𝑓𝑓𝐷𝑏ℎ =  𝐷𝑏ℎ1 −

 𝐷𝑏ℎ2 was calculated where   𝐷𝑏ℎ1 was the first value and 𝐷𝑏ℎ2 was the second 

value.  

Step 2. The 𝐷𝑏ℎ̅̅ ̅̅ ̅̅  and the corresponding 𝐷𝑖𝑓𝑓𝐷𝑏ℎ values were grouped into classes 

containing 20 values. 

Step 3.  For each class, the standard deviation of 𝐷𝑖𝑓𝑓𝐷𝑏ℎ was calculated (𝜎𝑀
𝐷𝑏ℎ). 

Step 4. The relationship between 𝜎𝑔 and 𝐷𝑏ℎ̅̅ ̅̅ ̅̅  was represented using Equation 3.15: 

𝜎𝑀
𝐷𝑏ℎ = 𝑐1 +  𝑐2(𝐷𝑏ℎ̅̅ ̅̅ ̅̅ )

2
+  𝑐2(𝐷𝑏ℎ)         (3.15) 

Using the values calculated in Step 2 and 3, the model parameters 𝑐1, 𝑐2, and 𝑐3 

were calculated.  

Step 5. Due to large variations in Dbh measurements in the observed dataset, the 

significance of outliers was tested and two outliers were eliminated using 

Dixon’s Q-test.  

Step 6. 𝐷𝑏ℎ∗ represents the Dbh adjusted for measurement error that can be calculated 

using Equation 3.16: 

𝐷𝑏ℎ∗ = 𝐷𝑏ℎ + (𝜀 × 𝜎𝑀
𝐷𝑏ℎ)        (3.16) 

In which 𝜀 is a random residual error that follows a Gaussian distribution (0,1) 

in which |ε| < 1.96 assuming a 95% confidence interval (McRoberts and 

Westfall, 2016). With respect to Approaches 1, 2, and 3, 𝜀 is sampled from the 

assumed distribution, by bootstrapping, or by Bayesian bootstrapping the 

distribution. 

Estimates for errors in Ht measurements followed a similar procedure reported by 

McRoberts and Westfall (2014) and Qin et al. (2021). The minimum tolerances for Ht 

measurements was 15% according to the B.C. government’s Vegetation Resources 

Inventory Photo Interpretation Quality Assurance Procedures and Standards (version 4.6) 

(FLNRO, 2022b), and 12% according to the quality reported for the 2015 SLU Forest Map 

(SLU, 2021). Measurement uncertainty is commonly assumed to follow a Gaussian 

distribution with mean 0 and standard deviation equal to 𝜎 =
𝑋−𝜇

𝑍
  (Berger et al., 2014; 
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McRoberts and Westfall, 2016; Qin et al., 2021; Shettles et al., 2015). Following the 

procedure described by McRoberts and Westfall (2016), the standard deviation for Ht 

measurement error for study areas 1 and 2 can be calculated according to Equations 3.17 

and 3.18 respectively.  

𝜎𝑀
𝐻𝑡 =  

𝑥− 𝜇

𝑧
=  

0.15 ×𝐻𝑡

1.440
          (3.17) 

𝜎𝑀
𝐻𝑡 =  

𝑥− 𝜇

𝑧
=  

0.12 ×𝐻𝑡

1.554
           (3.18) 

𝐻𝑡∗ represents the Ht adjusted for measurement error that can be calculated using 

Equation 3.19: 

𝐻𝑡∗ = 𝐻𝑡 + (𝜀 × 𝜎𝑀
𝐻𝑡)          (3.19) 

In which 𝜀 is a random residual error that follows a Gaussian distribution (0,1) in 

which |ε| < 1.96 assuming a 95% confidence interval. With respect to Approaches 1, 2, and 

3, 𝜀 is sampled from the assumed distribution, by bootstrapping, or by Bayesian 

bootstrapping the distribution.  

The procedure shown in Figure 3.8 was used to calculate the uncertainty in AGB 

as a result of measurement uncertainty. 

 

Figure 3.8 Method to calculate uncertainty in AGB due to measurement uncertainty 

Step 1. The AGB model was fit using the observed dataset and AGB. 
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Step 2. Using Equations 3.16 and 3.17, the model input variables were adjusted for 

measurement error.  

Step 3. Values for AGB were calculated using the values from Steps 1 and 2. Calculated 

values were stored in a database.  

Step 4. The mean and uncertainty of the AGB estimates in the database were calculated 

using the method described in Chapter 3 Section 3.5. 

Step 5. Steps 2 – 5 were repeated until the mean and uncertainty for the AGB estimates 

stabilize. 

3.7.4 Part IV: Overall Uncertainty Analysis 

The following uncertainty analysis method shown in Figure 3.9 was used to 

calculate the overall model uncertainty resulting from model parameter uncertainty, model 

residual variance, and measurement uncertainty for model input variables Dbh and Ht. 

 

Figure 3.9 Overall model uncertainty method 

Step 1. Values for the model input variables Dbh and Ht were selected from the 

observed dataset. These values were adjusted for measurement error following 

the method described in Part III. 

Step 2. Model parameters were randomly generated from the distributions created in 

Part I for each respective approach. 
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Step 3. Using the AGB model (Equation 3.6), the values simulated in Steps 1 and 2 

were used to calculate a value for AGB. 

Step 4. The value of AGB calculated in Step 3 was adjusted for residual error 

following the method described in Part II. The adjusted AGB value was stored 

in a database. 

Step 5. The mean and uncertainty of the AGB estimates in the database were calculated 

using the method described in Chapter 3 Section 4.0. 

Step 6. Steps 2 – 6 were repeated until the mean and uncertainty for the AGB estimates 

stabilize. 

3.8 Summary 

 This chapter presented the methodology for the simulation-based uncertainty 

analysis that can be employed to quantify model uncertainties in carbon estimates from 

AGB due to: model parameter uncertainty, model residual variance, and measurement 

uncertainty for model input variables: diameter at breast height (Dbh) and canopy height 

(Ht). The procedure is summarized in Figure 3.10. 
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Figure 3.10 Summary of the uncertainty analysis methodology 
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4.0 EVALUATING THE EFFECTS OF MODEL UNCERTAINTIES ON 

CARBON QUANTIFIED FROM ABOVE-GROUND BIOMASS MODELS: 

ADJUSTMENTS AND IMPLICATIONS FOR METHODOLOGICAL AND 

POLITICAL DECISION-MAKING 

4.1 Introduction 

 Case studies were conducted to demonstrate how the uncertainty analysis 

methodology proposed in Chapter 3 was employed to estimate model uncertainties in 

carbon quantification from above-ground biomass (AGB) allometric models. Case study 1 

used forest inventory data for an area in British Columbia (B.C.), Canada, and case study 

2 in Västernorrland County, Sweden. The main sources of model uncertainty were due to 

the following: model parameter uncertainty, model residual variance, and measurement 

uncertainty for model input variables: diameter at breast height (Dbh) and canopy height 

(Ht) (McRoberts and Westfall, 2014; Qin et al., 2021). Uncertainty estimates were 

quantified for the following uncertainty analysis approaches: Monte Carlo Simulation 

(MCS), MCS with bootstrap, and MCS with Bayesian bootstrap. The objectives of the case 

studies were to indicate how the different sources contribute to the overall model 

uncertainty and how alternative uncertainty analysis approaches affect the uncertainty 

estimates. These results were used to adjust the carbon estimates for model uncertainty.  

4.2 Above-Ground Biomass Allometric Model Fitting 

For case study 1, the model fitted to the observed data shown in Equation 4.1 

resulted in a residual standard deviation of �̂�𝜀 = 0.62, a 𝑝 value less than 2.20 × (10-16) 

indicating that the model was highly significant, and an R2 = 0.69.  

𝐴𝐺𝐵𝑖 = 0.228 × (𝐷𝑏ℎ𝑖)−1.397(𝐻𝑖)
3.688          (4.1) 

For case study 2, the model fit to the observed data shown in Equation 4.2 resulted 

in a residual standard deviation of �̂�𝜀 = 0.11, a 𝑝 value less than 2.20 × (10-16) indicating 

that the model was highly significant, and an R2 = 0.96.  

𝐴𝐺𝐵𝑖 = 6.898 × (𝐷𝑏ℎ𝑖)−1.956(𝐻𝑖)
3.247          (4.2) 
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The relationship between the predicted and observed AGB values described by 

equations 4.1 and 4.2 are shown in Figure 4.1. The conditions discussed in Chapter 3 

Section 1.1 were tested to validate the model fit. For both case studies, visual inspection 

concluded that the residuals were normally distributed and the variance of the residuals 

was constant. The graphs used to validate the conditions are available in Appendix A. 

 

Figure 4.1 The relationship between the predicted and observed AGB described by (a) 

Equation 4.1, and (b) Equation 4.2 

 It is evident that Equation 4.2 derived for case study 2 resulted in more accurate 

predictions compared to Equation 4.1 derived for case study 1. Both case studies were 

observed for similarly sized areas that each implemented extensive data collection and 

validation procedures. The differences in the models may be due to natural variations in 

the observed datasets or the deficiency of the model form to mimic the system's behavior. 

By comparing the data used for both case studies, differences in the technology or sampling 

strategies used may have resulted in improved data quality in case study 2. For example, 

(a) (b) 
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case study 2 contained more data as the grid cells used for sampling were smaller, resulting 

in a more comprehensive depiction of the study area.  

The following sections will discuss the uncertainties associated with the derived 

AGB models when estimating carbon for both case studies.  

4.3 Case Study 1: Uncertainty Analysis 

This section reviews the results of the four-part uncertainty analysis for case study 

1 in BC, Canada. The three uncertainty analysis approaches investigated resulted in the 

same conclusions. Histograms depicting the distribution of the pseudo-data generated from 

the three approaches for both case studies are available in Appendix B. Measurement errors 

had the most significant impact on carbon quantification from AGB, followed by model 

residual variance, which had similar uncertainties. Although the individual model 

parameters were highly uncertain, this did not have a significant impact on carbon 

quantification.  

4.3.1 Parameter Uncertainty  

 Figures 4.2, 4.3, and 4.4 show the uncertainty in the individual model parameters 

based on the form of the model shown by Equation 3.6 in Chapter 3 Section 3.1. For the 

three approaches investigated, the parameter "ao" had the highest relative uncertainty 

(57.1%, 24.6%, and 29.0%), followed by "a1" (10.9%, 12.5%, and 13.9%), and "a2" (4.8%, 

6.4%, and 6.9%). However, as shown in Figure 4.5, these uncertainties did not significantly 

impact the carbon estimation from the AGB model. The predicted mean carbon from each 

approach was 67.2, 70.7, and 69.8 tonnes/ha. The associated relative uncertainty due to 

parameter uncertainty was 2.1%, 3.6%, and 3.7%. By adjusting for uncertainty, the mean 

value of carbon would be between 65.8 to 68.6 tonnes/ha, 68.1 to 73.3 tonnes/ha, and 67.3 

to 72.4 tonnes/ha for each approach. 
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Figure 4.2 Simulated uncertainty for parameter "ao" in Equation 3.6 using (a) approach 

1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 

 

Figure 4.3 Simulated uncertainty for parameter "a1" in Equation 3.6 using (a) approach 

1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 
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Figure 4.4 Simulated uncertainty for parameter "a2" in Equation 3.6 using (a) approach 

1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 

 

Figure 4.5 Simulated uncertainty in carbon from AGB due to variances in model 

parameters using (a) approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) 

approach 3: Bayesian bootstrap and MCS 
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4.3.2 Residual Uncertainty 

The residual error model shown in Equation 4-3 resulted in an R2 = 0.57.  

𝜎𝑔 = 21.2 + (30.0 × 10−5) × (𝐴𝐺�̂�)
2

+ (3.21 × 10−2) × (𝐴𝐺�̂�)      (4.3) 

The alternative models investigated for are shown in Appendix C. As shown in 

Figure 4.6, residual variance had a significant impact on carbon quantification from the 

AGB model. The predicted mean carbon from each approach was 53.9, 54.2, and 53.7 

tonnes/ha. The associated relative uncertainty due to residual uncertainty was 24.2%, 

24.1%, and 24.0%. By adjusting for uncertainty, the mean value of carbon would be 

between 41.2 to 67.2 tonnes/ha, 41.1 to 67.3 tonnes/ha, and 40.8 to 66.6 tonnes/ha for each 

approach.  

 

Figure 4.6 Simulated uncertainty in carbon from AGB due to residual variances using (a) 

approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian 

bootstrap and MCS 

4.3.3 Measurement Uncertainty 

The Dbh measurement error model shown in Equation 4.4 resulted in an R2 = 0.66.  

𝜎𝑀
𝐷𝑏ℎ = 0.24 + (90.0 × 10−5) × (𝐷𝑏ℎ̅̅ ̅̅ ̅̅ )

2
+ (2.91 × 10−2) × (𝐷𝑏ℎ)           (4.4) 



  

54 

 

The alternative models investigated are shown in Appendix D. As shown in Figure 

4.7, measurement errors in the model input variables contributed the most to the uncertainty 

in carbon from the AGB model. The predicted mean carbon from each approach was 56.8, 

55.8, and 56.4 tonnes/ha. The associated relative uncertainty due to measurement 

uncertainty was 32.5%, 33.2%, and 32.8%. By adjusting for uncertainty, the mean value of 

carbon would be between 38.3 to 75.3 tonnes/ha, 37.3 to 74.3 tonnes/ha, and 37.9 to 74.9 

tonnes/ha for each approach. 

 

Figure 4.7 Simulated uncertainty in carbon from AGB due to measurement error in model 

input variables using (a) approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) 

approach 3: Bayesian bootstrap and MCS 

4.3.4 Total Uncertainty 

 Figure 4.8 shows the results of the overall uncertainty in the carbon estimates from 

AGB due to the following sources of model uncertainties: model parameter uncertainty, 

model residual variance, and measurement uncertainty for model input variables. The 

observed mean carbon for study area 1 was approximately 54.4 tonnes/ha. The predicted 

carbon from the AGB model and the associated uncertainty for each approach was 

approximately 75.4 tonnes/ha (56.4% uncertain), 81.7 tonnes/ha (69.2% uncertain), and 

80.6 tonnes/ha (80.6% uncertain). By adjusting for uncertainty, the mean value of carbon 
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would be between 32.9 to 118 tonnes/ha, 25.2 to 138 tonnes/ha, and 26.1 to 135 tonnes/ha 

for each approach. 

 

Figure 4.8 Overall simulated uncertainty in carbon from AGB using (a) approach 1: MCS, 

(b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and MCS 

4.4 Case Study 2: Uncertainty Analysis 

This  section will review the results of the four-part uncertainty analysis for case 

study 2 in Västernorrland County, Sweden. The results of case study 2 were similar to that 

of case study 1. The three uncertainty analysis approach resulted in the same conclusions: 

measurement errors had the most significant impact on carbon quantification from AGB, 

followed by model residual variance, and parameter uncertainty was insignificant.  

4.4.1 Parameter Uncertainty 

Figures 4.9, 4.10, and 4.11 show the uncertainty in the individual model parameters 

based on the form of the model shown by Equation 3.6 in Chapter 3 Section 3.1. For the 

three approaches investigated, the relative uncertainty of parameter "ao" was 18.7%, 

48.2%, and 55.7%, "a1" was 29.9%, 49.9%, and 45.3%, and "a2"  was 20.7%, 32.3%, and 

39.5%.  
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Figure 4.9 Simulated uncertainty for parameter "ao" in Equation 3.6 using (a) approach 1: 

MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 

 

Figure 4.10 Simulated uncertainty for parameter "a1" in Equation 3.6 using (a) approach 

1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 
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Figure 4.11 Simulated uncertainty for parameter "a2" in Equation 3.6 using (a) approach 

1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 

As shown in Figure 4.12, these uncertainties did not significantly impact the carbon 

estimation from AGB. The predicted mean carbon from each approach was 38.2, 38.6, and 

38.6 tonnes/ha. The associated relative uncertainty due to parameter uncertainty was 0.6%, 

0.4%, and 0.6%. By adjusting for uncertainty, the mean value of carbon would be between 

38.0 to 38.4 tonnes/ha for approach 1 and  38.4 to 38.8 tonnes/ha for approaches 2 and 3. 
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Figure 4.12 Simulated uncertainty in carbon from AGB due to variances in model 

parameters using (a) approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) 

approach 3: Bayesian bootstrap and MCS 

4.4.2 Residual Uncertainty 

The residual error model shown in Equation 4.5 resulted in an R2 = 0.68. 

𝜎𝑔 = 3.77 + (20.0 × 10−5) × (𝐴𝐺�̂�)
2

+ (2.39 × 10−2) × (𝐴𝐺�̂�)      (4.5) 

The alternative models investigated are shown in Appendix C. As shown in Figure 

4.13, the predicted mean carbon from each approach was 38.9 tonnes/ha. The associated 

relative uncertainty due to residual uncertainty was 8.1% for approach 1, and 8.0% for 

approaches 2 and 3. By adjusting for uncertainty, the mean value of carbon would be 

between 35.7 to 42.0 tonnes/ha for approach 1 and 35.8 to 42.0 tonnes/ha for approaches 2 

and 3. 
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Figure 4.13 Simulated uncertainty in carbon from AGB due to residual variances using (a) 

approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian 

bootstrap and MCS 

4.4.3 Measurement Uncertainty 

The Dbh measurement error model shown in Equation 4.6 resulted in an R2 = 0.74.  

𝜎𝑀
𝐷𝑏ℎ = 0.16 + (70.0 × 10−5) × (𝐷𝑏ℎ̅̅ ̅̅ ̅̅ )

2
+ (2.15 × 10−2) × (𝐷𝑏ℎ)           (4.6) 

The alternative models investigated are shown in Appendix D. As shown in Figure 

4.14, measurement errors in the model input variables contributed the most to the 

uncertainty in carbon from the AGB model. The predicted mean carbon from each 

approach was 40.0, 40.1, and 40.5 tonnes/ha. The associated relative uncertainty due to 

measurement uncertainty was 28.6%, 27.9%, and 29.3%. By adjusting for uncertainty, the 

mean value of carbon would be between 28.6 to 51.4 tonnes/ha, 28.9 to 51.3 tonnes/ha, and 

28.6 to 52.4 tonnes/ha for each approach. 
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Figure 4.14 Simulated uncertainty in carbon from AGB due to measurement error in model 

input variables using (a) approach 1: MCS, (b) approach 2: bootstrap and MCS, and (c) 

approach 3: Bayesian bootstrap and MCS 

4.4.4 Total Uncertainty  

Figure 4.15 shows the results of the overall uncertainty in the carbon estimates from 

AGB due to the following sources of model uncertainties: model parameter uncertainty, 

model residual variance, and measurement uncertainty for model input variables. The 

observed mean carbon for study area 1 was approximately 39.1 tonnes/ha. The predicted 

carbon from the AGB model and the associated uncertainty for each approach was 

approximately 38.1 tonnes/ha (10.7% uncertain), 38.6 tonnes/ha (11.4% uncertain), and 

38.6 tonnes/ha (11.1% uncertain). By adjusting for uncertainty, the mean value of carbon 

would be between 34.0 to 42.2 tonnes/ha, 34.2 to 43.0 tonnes/ha, and 34.3 to 42.9 tonnes/ha 

for each approach. 
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Figure 4.15 Overall simulated uncertainty in carbon from AGB using (a) approach 1: 

MCS, (b) approach 2: bootstrap and MCS, and (c) approach 3: Bayesian bootstrap and 

MCS 

4.5 Comparison of Results  

Case Studies 1 and 2 assessed the effects of model uncertainties on carbon 

estimation from AGB from the following sources: model parameter uncertainty, model 

residual variance, and measurement uncertainty for model input variables Dbh and Ht. The 

results of both case studies are summarized in Table 4.1.  

The contributions of the individual sources of uncertainty to the overall model 

uncertainty were consistent for both case studies. The measurement errors for the model 

input variables were the largest source of uncertainty, followed by the model residual 

variance. The relative uncertainty due to variances in model parameters was the smallest 

source of uncertainty.  

The effects of using alternative uncertainty analysis approaches on the uncertainty 

estimates were negligible in most cases, as each approach resulted in similar estimates.  
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Table 4.1 Summary of Results for Case Studies 1 and 2 

Case 

Study 

Uncertainty 

Source 

Approach 1 Approach 2 Approach 3 

Mean C 

from AGB 

(tonnes/ha) 

Uncertainty 

(tonnes/ha, 

%) 

Variance Mean C 

from AGB 

(tonnes/ha) 

Uncertainty 

(tonnes/ha, 

%) 

Variance Mean C 

from AGB 

(tonnes/ha) 

Uncertainty 

(tonnes/ha, 

%) 

Variance 

Case 

Study 

1 

Model 

Parameters 
67.2 (±1.4, 2.1) 

81.3 

(10-1) 
70.7 (±2.5, 3.6) 26.5 69.8 (±2.6, 3.7) 29.3 

Model 

Residual 

Variance 

53.9 
(±13.0, 

24.2) 

68.1 

(10) 
54.2 

(±13.1, 

24.1) 

68.3 

(10) 
53.7 

(±12.9, 

24.0) 

67.2 

(10) 

Model Input 

Measurements 
56.8 

(±18.5, 

32.5) 

13.6 

(102) 
55.8 

(±18.5, 

33.2) 

13.7 

(102) 
56.4 

(±18.5, 

32.8) 

13.7 

(102) 

Overall 75.4 
(±42.5, 

56.4) 

72.4 

(102) 
81.7 

(±56.5, 

69.2) 

12.8 

(103) 
80.6 

(±54.5, 

67.5) 

12.8 

(103) 

Case 

Study 

2 

Model 

Parameters 
38.2 (±0.2, 0.6) 

18.7 

(10-2) 
38.6 (±0.1, 0.4) 

12.3 

(10-2) 
38.6 (±0.2, 0.6) 

18.6 

(10-2) 

Model 

Residual 

Variance 

38.9 (±3.1, 8.1) 39.7 38.9 (±3.1, 8.0) 38.5 38.9 (±3.1, 8.0) 38.5 

Model Input 

Measurements 
40.0 

(±11.4, 

28.6) 

52.4 

(10) 
40.1 

(±11.2, 

27.9) 

49.9 

(10) 
40.5 

(±11.9, 

29.3) 

56.4 

(10) 

Overall 38.1 (±4.1, 10.7) 66.8 38.6 
(±4.40, 

11.4) 
77.4 38.6 (±4.3, 11.1) 73.6 
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4.6 Effects of Implementing Alternative Uncertainty Analysis Approaches 

This thesis suggests that the IPCC’s guidelines for MCS are insufficient when 

quantifying uncertainties for models that involve complex algorithms. By researching 

literature related to uncertainties in allometric models, the procedure outlined Chapter 3 

demonstrated a method that can be used to quantify model uncertainties for carbon 

quantification from AGB. To assess the effects of alternative uncertainty analysis methods 

on the estimated uncertainties, the following approaches were proposed: Approach 1 used 

MCS by assuming the shapes of PDFs; 2 used bootstrap re-sampling with MCS; and 3 used 

Bayesian bootstrap re-sampling with MCS. The results of this thesis found that for both 

case studies there were no significant differences by quantifying uncertainties using the 

alternative approaches. Each approach resulted in similar carbon estimates and the 

associated uncertainties, resulting in a difference of less than 2.0% for each uncertainty 

source in both case studies, with the exception of the overall uncertainty calculated for case 

study 1 in which this difference was less than 13.0%. The variance was measured to assess 

the precision of the carbon estimates due to the difference sources of uncertainty. In most 

cases there was no significant difference in precision for both case studies, with the 

exception of the carbon estimated taking into account parameter uncertainty and the overall 

uncertainty for case study 1, in which variance differed by a value of 21.2 and 556 between 

approach 1 and approaches 2 and 3. However, despite the differences in precision, all 

results converged to similar estimates after 5,000 simulations, therefore any lack of 

precision did not significantly impact carbon estimates from AGB, or estimates of 

uncertainty. The results of this study conclude that no recommendations are made 

according to the alternative approaches assessed in this study.  

4.7 Evaluation and Applications of the Predicted Uncertainties 

The information provided by the uncertainty analysis can be used to determine the 

reliability of carbon estimates from AGB, and prioritize methodological and data collection 

improvements (Paciornik et al., 2019). This section aims to discuss (1) how the results of 

this study compare to similar assessments; (2) the impacts of uncertainties on carbon from 

AGB quantification methods; and (3) the affects of uncertainties on the creation of climate 

change policies and mitigation strategies.  
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4.7.1 Comparison to Similar Assessments 

Contributions of the individual sources of uncertainty to the overall uncertainty 

differed in comparison to similar studies: 

• This thesis followed similar methodologies reported by McRoberts and Westfall 

(2016) and Qin et al. (2021). However, these studies concluded the effects of model 

uncertainty were mainly due to the uncertainty in parameter and residual variance, 

noting that higher parameter uncertainty resulted in increased residual variance. 

• Breidenbach et al. (2014), Chen et al. (2015), and Persson et al. (2022) followed a 

different methodology. Breidenbach et al. (2014) and Chen et al. (2015)  reported 

findings similar to McRoberts and Westfall (2016), and Qin et al. (2021).  Persson 

et al. (2022) described residual uncertainties were large, whereas measurement and 

parameter uncertainty were negligeable 

However, due to methodological differences, Breidenbach et al. (2014) and Chen 

et al. (2015) assumed that some measurement values were without errors or assessed 

measurement values as they relate to variances in model parameters and residuals but not 

as an individual source of error.  

The results of this thesis emphasize the importance of assessing the effects of 

measurement errors on model uncertainty. Shettles et al. (2015) concluded that uncertainty 

in AGB prediction is underestimated if measurement errors are not considered when 

quantifying model uncertainty, and Qin et al. (2019) concluded that model outputs may not 

be representative if measurement errors are not considered. Persson et al. (2022) explained 

measurement errors should be assessed as they relate to model uncertainty, as the 

magnitude of measurement errors may be inflated through the model. Furthermore,  

measurement variances may be larger depending on individual forest inventories, 

emphasizing the importance of assessing uncertainties on a case-by-case basis (Persson et 

al., 2022). 

Measurement errors in national forest inventories are often assumed to be error-

free. Magnussen and Russo (2012) quantified the uncertainty in photo-interpreted data in 

Canada’s National Forest Inventory. Magnussen and Russo (2012) found that the 
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uncertainty ranged from 0% to 36.0%, which is consistent with the approximately 33.0% 

measurement error quantified in case study 1. SLU (2021) predicted the uncertainty in the 

SLU Forest map to be 12.0% for height and 16.0% for diameter. The results of case study 

2 predicted a higher value of 28.5% uncertain. 

Based on this comparison, generalizations that apply to all study systems cannot be 

made. Evaluating the effects of the individual sources of uncertainty on carbon 

quantification from AGB allometric models should be assessed on a case-by-case basis, as 

the contributions to the overall uncertainty from each source can differ among study 

systems due to variations in the quantification approaches used. For example, several 

factors including the difference in the choice of the allometric model, the amount and 

quality of the data obtained, the sampling procedures and standards implemented by the 

data compilers, and the representativeness and natural variability in the study area may 

result in different sources of uncertainty being more prevalent than others.  

4.7.2 Impacts of Uncertainties on Quantification Methods 

Assessing the individual sources of uncertainties can be used to identify areas in 

which methodological and data collection improvements in carbon quantification from 

AGB are needed (Paciornik et al., 2019). In this study, the largest source of uncertainty 

was due to measurement errors. Factors that impact the reliability of measurements include 

sampling techniques, equipment, and skills when directly measuring samples, and the 

efficiency of technology and the allocation sampling plots when using remote sensing 

(McRoberts et al., 1994; Picard et al., 2012; Skovsgaard et al., 1998). However, even if 

improvements are implemented, measurement errors can still occur (Elzinga et al., 2005; 

Qin et al., 2021). The need for research on how proposed improvements affect uncertainties 

and the associated economic trade-offs remains outstanding.  

 Increasing the sample size can improve the accuracy of the model (Chen et al., 

2016; Qin et al., 2021). This can be seen by comparing the results of case studies 1 and 2. 

Both case studies were conducted in similar areas (12,365 and 10,000 ha); however, case 

study 1 had 580 mean values per polygon (each polygon containing 1195 live stems), and 

case study 2 had 1120 mean values per polygon (each polygon containing 561 live stems). 

The average polygon area was significantly less in case study 2 (12.5 m x 12.5 m or ~15.6 
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x 10-3 ha) compared to case study 1 (~12.0 ha), resulting in a larger sample size. The model 

fit was improved in case study 2, and the variances in model parameters and residuals was 

less by approximately 2.6% and 16.1%. However, increasing the sample size can be 

technically and economically challenging (Persson et al., 2022; Qin et al., 2021). In AGB 

quantification, increasing the plot size is equivalent to accumulating more trees, hence 

larger plot sizes result in lower residual error (Picard et al., 2015). Alternatively, AGB 

models that incorporate more predictor variables tend to produce more reliable estimates, 

resulting in lower variances in parameters and residuals; however, studies have found that 

incorporating additional variables did not significantly improve estimates and were not 

worth the high cost of obtaining representative measurements for additional predictor 

variables (Balbinot et al., 2018; Fradette et al., 2021; Mensah et al., 2017; Mugasha et al., 

2016; Picard et al., 2015; Qin et al., 2021; Sadono et al., 2021; Segura et al., 2006).  

 Evaluating the improvements to carbon quantification from AGB is a complicated 

process that involves evaluating the technical and economic trade-offs with respect to the 

capabilities of individual study areas.  Future research may focus on the costs and benefits 

of modifying quantification methods to reduce uncertainties. 

4.7.3 Impacts of Uncertainties on Climate Change Policy Creation 

 There are numerous applications requiring reliable data in National Greenhouse 

Gas Inventories (NGHGIs), including the creation of climate change policies (Gillenwater 

et al., 2007). However, this data is associated with high uncertainty, particularly in the 

forestry sector, prompting the need for research on how uncertainty information can be 

incorporated in practical applications (Gillenwater et al., 2007; Ulvdal et al., 2023).  

 Considering case study 1, a report by Skene and Polanyi (2021) published by the 

National Resource Defense Council in Canada criticized the government for excluding 

large uncertainties in forest carbon estimates from policy decisions. The report explains 

that current accounting and regulating practices misrepresent the actual carbon cost of 

industrial logging and wood products, allowing certain industries to emit more carbon 

without repercussions, thus undervaluing the benefits of protecting existing forests (Skene 

and Polanyi, 2021). A potential solution requires basing policies on worse-case projections 

predicted from the high range of uncertainty estimates (Skene and Polanyi, 2021). 
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 Considering case study 2, a study by Knaggård (2014) reported that scientific 

uncertainty played a very marginal role in the creation of Swedish climate change policies 

from 1975 to 2007. The article explains a need for methods to translate scientific 

uncertainties to political applications, as most policies were made according to knowledge 

of what was politically possible, rather than desirable from a scientific perspective 

(Knaggård, 2014). 

Uncertainty estimates within the forestry sector are rarely applied in the decision 

making process  (de Pellegrin Llorente et al., 2023).  Enhanced efforts in communicating 

the theoretical framework for uncertainty analysis can lead to an increased understanding 

of uncertainties between researchers and policymakers, which can assist in incorporating 

uncertainty information into policies (de Pellegrin Llorente et al., 2023).  Another method 

involves  adjusting emission estimates in NGHGIs to include uncertainty information  

(Gillenwater et al., 2007). As a result, policies would be implemented based on the  worst-

case projection. For example, Chapter 4 Section 4.3 presents intervals for the emission 

estimates within which the true value is expected to reside. Adjusting emission estimates 

for uncertainty would require reporting the upper bound of the interval as the true value.  

Future research may focus on the feasibility and resulting political and economic impacts 

of incorporating uncertainties in climate change policies. 

4.7.4 Impacts of Uncertainties on Climate Change Mitigation Strategies 

Due to the high mitigation potential, ninety percent of the second-generation of 

nationally determined contributions (NDCs) included the forestry sector, and 57% referred 

specifically to forests as domestic options for greenhouse has (GHG) reduction (UNDP, 

2021; UN-REDD Programme, 2022). However, GHG reductions can be overestimated if 

uncertainties are not accounted for.  

 Emission trading under the Kyoto Protocol is an example of a mitigation strategy 

with uncertain reliability in reducing GHGs. Emission trading allows companies or 

individuals to offset GHG emissions by purchasing carbon credits from entities that remove 

or reduce GHGs (UNDP, 2022). Trading in carbon credits is predicted to reduce the cost 

of implementing NDCs by more than half by 2030 (Edmonds et al., 2019). However, 

forestry projects employed to generate carbon credits have long been considered unreliable 
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due to the high uncertainties associated with forest carbon quantification (IPCC, 2014a; 

van der Gaast et al., 2016). Furthermore, Article 6 of the Paris Agreement (2015) allows 

mitigation outcomes towards NDCs to be transferred internationally. Research reported by 

van der Gaast et al. (2016) concluded that improved carbon accounting in the forestry 

sector can enhance the scope and feasibility of the related NDCs. Proper accounting is an 

important requirement to ensure consistency and comparability when trading carbon 

credits between countries.  

The outcomes of this thesis can be used to improve the quantification of 

uncertainties in carbon accounting, which can be used when determining the reliability of 

carbon estimates. However, further work is needed on how to incorporate uncertainty 

information in carbon estimates when developing NDCs. 

4.8 Summary 

Case studies 1 and 2 demonstrated the application of the uncertainty analysis 

methodology outlined in Chapter 3. The results of the uncertainty analysis were used to 

assess the effects of model uncertainties on carbon estimation from AGB from the 

following sources: model parameter uncertainty, model residual variance, and 

measurement uncertainty for model input variables Dbh and Ht. Contributions from the 

individual sources of uncertainty to the overall model uncertainty were consistent for both 

case studies. The measurement errors for the model input variables were the largest source 

of uncertainty, followed by the model residual variance, and model parameters were the 

smallest source of uncertainty. There was no significant difference in the carbon estimates 

or the associated uncertainty from using the different uncertainty analysis approaches. By 

comparing the results to similar studies, few generalizations can be made that apply to all 

study systems. The significance of different sources of uncertainty can differ between study 

systems, thus emphasizing the importance of evaluating uncertainty on a case-by-case 

basis. Assessing the individual sources of uncertainty can be used to prioritize 

methodological and data collection improvements. In this study, measurement and residual 

variances were the largest sources of uncertainty, and improvements that may reduce these 

uncertainties were proposed. Uncertainty information within the forestry sector is rarely 

applied in climate change decision-making, resulting in challenges regulating emissions. 
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Studies that assessed methods to incorporate this information into climate change policies 

recommended enhancing efforts to communicate the theoretical framework for uncertainty 

analysis to improve the understanding of uncertainties. Another method involves adjusting 

emission estimates to include uncertainty information so that policies are based on worst-

case projections.  
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5.0 CONCLUSIONS 

5.1 Summary, Conclusions, and Contributions 

 This thesis contributes to the understanding and implementation of uncertainty 

analysis methods used to quantify model uncertainties in carbon estimates from above-

ground biomass (AGB) due to the following sources: model parameter uncertainty, model 

residual variance, and measurement uncertainty for model input variables: diameter at 

breast height (Dbh) and canopy height (Ht). A summary of the contributions and 

conclusions for each of the research objectives are shown in Table 5.1. 

Chapter 2 reviewed the need for accurate and reliable greenhouse gas (GHG) emission and 

removal data in national GHG inventories (NGHGIs), particularly for AGB in the forestry 

sector. AGB is expected to contribute largely to GHG reductions; but contains highly 

uncertain estimates. It was determined that further studies are needed on quantifying the 

effects of model uncertainties in carbon estimation from AGB. Furthermore, this research 

reported a lack of guidance pertaining to the methods recommended by the 

Intergovernmental Panel on Climate Change (IPCC) for simulation-based uncertainty 

analysis methods that accounts for model uncertainty.  

Chapter 3 proposed a simulation-based uncertainty analysis method for quantifying 

model uncertainties in AGB allometric models derived from forest inventory data. This 

method assessed the uncertainty as a  result of the individual sources and the overall total. 

Uncertainty analysis approaches were proposed to assess the affects of using alternative 

approaches on uncertainty estimates. Approach 1 used Monte Carlo Simulation (MCS) by 

assuming the shapes of probability density functions; 2 used bootstrap re-sampling with 

MCS; and 3 used Bayesian bootstrap re-sampling with MCS.  

Chapter 4 employed the uncertainty analysis methodology discussed in Chapter 3 

for a study area in British Columbia (B.C.), Canada and in Västernorrland County, Sweden. 

The effects of the sources of uncertainty on carbon estimates from AGB were reported and 

estimates were adjusted to account for uncertainty. In both case studies, the measurement 

errors for the model input variables were the largest source of uncertainty, followed by the 

model residual variance, and model parameters were the smallest source of uncertainty. 
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There was no significant difference in the carbon estimates or the associated uncertainty 

from using the different uncertainty analysis approaches investigated. This chapter 

discussed how uncertainty estimates can be used to prioritize methodological and data 

collection improvements, and the impacts of uncertainties on climate change policies and 

mitigation strategies.  

This thesis contributes a comprehensive guide for countries to follow when 

quantifying model uncertainties in carbon estimates from AGB allometric models using 

simulation-based uncertainty analysis. This is significant, as reliable carbon estimates in 

NGHGIs are essential for creating effective climate change policies and mitigation 

strategies, determining compliance with internationally agreed-upon targets, and tracking 

the sources and trends of GHG emissions and reductions. 

This research demonstrates how the results of the uncertainty analysis can be 

interpreted and how estimates can be adjusted for uncertainty. It is important to assess the 

uncertainties in individual estimates on a case-by-case basis to determine areas in which 

methodological and data collection improvements may be needed to reduce uncertainties. 

The results of this research indicate that reducing measurement errors in forest inventory 

data had the highest potential to reduce uncertainties in carbon estimates from AGB. This 

could be achieved by improving sampling techniques, equipment, and skills when directly 

measuring samples, and the efficiency of technology and the allocation sampling plots 

when using remote sensing.  

Rarely incorporating uncertainty information into practical applications 

undermines the confidence and effectiveness of climate change policies and mitigation 

strategies, resulting in the mismanagement of GHG emissions. To assist in incorporating 

uncertainty information into climate change decision-making: this research recommends 

improving the understanding of uncertainties by enhancing the communication of the 

theoretical framework for uncertainty analysis, similar to the methodology demonstrated 

in Chapter 3. Additionally, climate policies may be based on emission estimates that are 

adjusted for uncertainty, as demonstrated in Chapter 4, so that policies are based on worst-

case projections, thus utilizing more reliable predictions of carbon from AGB. 
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Table 5.1 Summary of Contributions and Conclusions 

Phase Sub-Objective Contribution/Conclusion 

Phase 1:  

Literature 

Review 

1. Assess the types and sources of 

uncertainties associated with carbon 

quantification from AGB in the forestry 

sector 

2. Review the IPCC guidelines for 

conducting uncertainty analysis used in 

NGHGIs. Identify alternative uncertainty 

analysis methods that may better define 

uncertainties compared to the methods 

recommended by the IPCC 

• Types of uncertainty: sampling, model & measurement 

• Sources of model uncertainty: model misspecification, 

parameters, residuals, and measurements in input data 

• Lack of guidance from the IPCC on simulation-based 

uncertainty analysis for model uncertainty 

• Effects of alternative uncertainty analysis methods on 

uncertainty methods were inconclusive in literature 

• In many cases alternative methods were better than MCS: 

however, further research is needed on this topic to 

evaluate the effects in different study systems 

Phase 2:  

Data 

Collection 

3.   Develop a methodology to quantify 

uncertainties in carbon estimates from 

AGB 

• Contributes a guide to assist countries in quantifying 

uncertainties in carbon quantified from AGB allometric 

models when using different uncertainty analysis 

approaches  
Phase 3: 

Uncertainty 

Analysis 

Phase 4:  

Results and 

Discussion 

4.   Conduct case studies to investigate 

how uncertainties can be quantified in 

carbon estimates from AGB using 

different uncertainty analysis approaches. 

5. Evaluate the impacts of these 

uncertainties on carbon quantification 

from AGB 

• Demonstrates how the methodology outlined in Phases 2 

and 3 can be applied to different countries, and how 

results can be interpreted and adjusted for uncertainties 

• Evaluated the impacts of uncertainties when prioritizing 

methodological and data collection improvements, and 

planning climate change policies and mitigation 

strategies 
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5.2 Limitations and Future Work 

 The following lists limitations encountered as the research progressed and the 

adjustments made to mitigate the effects. Recommendations are made to assist future work. 

5.2.1 Uncertainty Types 

 The scope of the project was narrowed to focus on model uncertainties due to 

following sources: variances in model parameters, model residual variance, and 

measurement errors for model input variables Dbh and Ht. However, there are several 

sources of uncertainty, some of which may affect other sources. The amount of uncertainty 

sources was a limiting factor in this study as the scale of the project would significantly 

increase by considering more sources. The scope of the project was justified in Chapter 2 

Sections 2.5.2 by reviewing literature on the sources of uncertainties in carbon 

quantification from AGB allometric models. However, this review only consisted of the 

quantitative sources of uncertainty. Qualitative sources of uncertainty are an important, but 

significantly under researched topic. To address this need, it is recommended that future 

work assesses the uncertainties due to the following sources: (1) uncertainties in classifying 

the source of GHG emissions and removals (direct human-induced, indirect human-

induced, or natural), (2) uncertainties in using different land definitions between countries, 

(3) uncertainties in delineating land areas according to the managed land proxy (MLP), (4) 

and uncertainties in omitting unmanaged lands from reporting in NGHGIs (IPCC, 2006; 

IPCC, 2009; Michael et al., 2019; Ogle et al., 2018).  

5.2.2 Methodological Uncertainties 

The results of the uncertainty analysis may include uncertainties that arise due to 

methodological decisions. In Chapter 3 Sections 3.7.2 and 3.7.3, error models were derived 

to quantify the uncertainties due to measurement errors in the input variable Dbh and 

residual variance. However, different studies assumed different shapes for these error 

models (Berger et al., 2014; McRoberts and Westfall, 2016; Qin et al., 2021). The effects 

of this uncertainty was mitigated by selecting the shape of the error model by investigating 

the shapes of alternative models. This resulted in some R2 values being less than 0.70. 

Although these methods are well defined in literature, future work is needed to validate the 

shape of the error models.  
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5.2.3 Data Availability 

 The accuracy of the model in predicting carbon from AGB is dependent on the 

amount and quality of data obtained. Validating the allometric model using field 

measurements would improve the accuracy (Picard et al., 2012). However, in this study 

only forest inventory measurements were available. These measurements were mainly 

derived from remote sensing and verified using ground sampling (FLNRO, 2022a; 

Wallerman et al., 2021). Although the data availability was limited, based on the standards 

implemented in compiling the forest inventories, it was assumed that this data was accurate 

enough to construct the allometric models.   

5.2.3 Incorporating Uncertainties in Practical Applications 

 Based on the discussion provided in Chapter 4, the following research needs were 

identified to assist in implementing this research into practical applications. Assessing the 

sources of uncertainties can be used to identify and prioritize the need for methodological 

and data collection improvements. However, due to the complexities of quantifying carbon 

from AGB, research is needed assess the associated technical and economic trade-offs of 

the proposed changes to quantification methods. Recommendations were made to 

incorporate uncertainty information into policies; however, the associated political and 

economic impacts would need to be assessed. Lastly, there is a research need to incorporate 

the uncertainties in the creation and implementation of NDCs in order to advance effective 

and reliable climate change mitigation strategies.  

 

 

 

 

 

 

 



  

75 

 

REFERENCES 

Aalde, H., Gonzalez, P., Gytarsky, M., Krug, T., Kurz, Werner.A., Ogle, S., Raison, J., 

Schoene, D., Ravindranath, N.H., Elhassan, N.G., Heath, Linda.S., Higuchi, N., 

Kainja, S., Matsumoto, M., Sanz Sánchez, M.J., Somogyi, Z., Carle, J.B., Murthy, 

I.K., 2006. “Forest Land” in Volume 4: Agriculture, Forestry and Other Land Use of 

the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

Bååth, R., 2018. bayesboot: An Implementation of Rubin’s (1981) Bayesian Bootstrap. R 

package version 0.2.2. https://cran.r-project.org/package=bayesboot (accessed 2.1.23) 

Balbinot, R., Trautenmüller, J.W., Caron, B.O., Breunig, F.M., Borella, J., Carvalho, R.R., 

2018. Modelling of Allometric Equations for Biomass Estimate in Deciduous Forest. 

Floresta 49, 143. https://doi.org/10.5380/RF.V49I1.58490 

Baskerville, G.L., 1972. Use of Logarithmic Regression in the Estimation of Plant 

Biomass. Canadian Journal of Forest Research 2, 49–53. https://doi.org/10.1139/x72-

009 

Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. By the 

late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, 

A. M. F. R. S. Philos Trans R Soc Lond 53, 370–418. 

https://doi.org/10.1098/rstl.1763.0053 

BC, Canada Study Area [map]. Scale Not Given. Data layers: Forest Vegetation Composite 

Rank 1 Layer [dataset]. BC Geographic Warehouse: Generated by Aby Sabzwari, 

2.14.23. Using: ArcGIS [GIS software]. Version 10.8.2. Redlands, CA: Esri, 2021. 

BC Parks, 2001. Thinahtea South Protected Area. https://bcparks.ca/thinahtea-south-

protected-area/#park-about-container (accessed 6.13.23) 

Berger, A., Gschwantner, T., Gabler, K., Schadauer, K., 2012. Analysis of tree 

measurement errors in the Austrian National Forest Inventory. Austrian Journal of 

Forest Science 129, 153-181 



  

76 

 

Berger, A., Gschwantner, T., McRoberts, R.E., Schadauer, K., 2014. Effects of 

Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian 

National Forest Inventory. Forest Science 60, 14–24. 

https://doi.org/10.5849/FORSCI.12-164 

Bird, N., Cowie, A., Cherubini, F., Jungmeier, G., 2011. IEA Bioenergy Using a Life Cycle 

Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy 

Breidenbach, J., Antón-Fernández, C., Petersson, H., Mcroberts, R.E., Astrup, R., 2014. 

Quantifying the Model-Related Variability of Biomass Stock and Change Estimates 

in the Norwegian National Forest Inventory. Forest Science 60, 25-33. 

https://doi.org/10.5849/forsci.12-137 

Brown, S., Gillespie, A., Lugo, Ariel.E., 1989. Biomass Estimation Methods for Tropical 

Forests with Applications to Forest Inventory Data. Forest Science 35, 881–902 

Butt, N., Slade, E., Thompson, J., Malhi, Y., Riutta, T., 2013. Quantifying the sampling 

error in tree census measurements by volunteers and its effect on carbon stock 

estimates. Ecological Applications 23, 936–943. https://doi.org/10.1890/11-2059.1 

Camacho, R.A., Martin, J.L., Mcanally, W., Díaz-Ramirez, J., Rodriguez, H., Sucsy, P., 

Zhang, S., 2015. A Comparison of Bayesian Methods for Uncertainty Analysis in 

Hydraulic and Hydrodynamic Modeling. Journal of the American Water Resources 

Association 51, 1372–1393. https://doi.org/10.1111/1752-1688.12319 

Canadian Institute for Climate Choices, 2021. Canada’s Net Zero Future Finding Our Way 

In The Global Transition. https://climatechoices.ca/wp-

content/uploads/2021/02/Canadas-Net-Zero-Future_FINAL-2.pdf  

Canty, A., Ripley, B., 2022. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-

28.1. https://cran.r-project.org/package=bootstrap (accessed 2.1.23) 

Chen, Q., Vaglio Laurin, G., Valentini, R., 2015. Uncertainty of remotely sensed 

aboveground biomass over an African tropical forest: Propagating errors from trees 



  

77 

 

to plots to pixels. Remote Sensing of Environment 160, 134–143. 

https://doi.org/10.1016/j.rse.2015.01.009 

Chen, Q., McRoberts, R.E., Wang, C., Radtke, P.J., 2016. Forest aboveground biomass 

mapping and estimation across multiple spatial scales using model-based inference. 

Remote Sensing of Environment 184, 350–360. 

https://doi.org/10.1016/j.rse.2016.07.023 

COP26 Explained, 2021. UN Climate Change Conference UK 2021 In partnership with 

Italy 

Council on Foreign Relations, 2022. Timeline: UN Climate Talk. 

https://www.cfr.org/timeline/un-climate-talks (accessed 9.18.22)  

Cunia, T., 1965. Some Theory on Reliability of Volume Estimates in a Forest Inventory 

Sample. Forest Science 11, 115–128. 

https://doi.org/10.1093/FORESTSCIENCE/11.1.115 

Davidson, A., Hinkley, D., 1997. Bootstrap Methods and Their Applications. Cambridge 

University Press, Cambridge 

de Pellegrin Llorente, I., Eyvindson, K., Mazziotta, A., Lämås, T., Eggers, J., Öhman, K., 

2023. Perceptions of uncertainty in forest planning: contrasting forest professionals’ 

perspectives with the latest research. Canadian Journal of Forest Research 53, 391–

406. https://doi.org/10.1139/cjfr-2022-0193 

Demarchi, Dennis.A., 2011. An Introduction to the Ecoregions of British Columbia. 

Victoria. https://www2.gov.bc.ca/assets/gov/environment/plants-animals-and-

ecosystems/ecosystems/broad-

ecosystem/an_introduction_to_the_ecoregions_of_british_columbia.pdf (accessed 

3.6.23) 

Di Leo, G., Sardanelli, F., 2020. Statistical significance: p value, 0.05 threshold, and 

applications to radiomics—reasons for a conservative approach. European Radiology 

Experimental 4, 18. https://doi.org/10.1186/s41747-020-0145-y 



  

78 

 

Doctor, P.G., Jacobson, E.A., Buchanan, J.A., 1988. A comparison of uncertainty analysis 

methods using a groundwater flow model. Richland, WA (United States). 

https://doi.org/10.2172/7179168 

Dorey, F., 2010. In Brief: The P Value. Clinical Orthopaedics and Related Research 468, 

2297–2298. https://doi.org/10.1007/s11999-010-1402-9 

Edmonds, J., Forrister, D., Clarke, L., de Clara, Stefano., Munnings, C., 2019. The 

Economic Potential of Article 6 of the Paris Agreement and Implementation 

Challenges. IETA, University of Maryland and CPLC. Washington, D.C.  

Efron, B., 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of 

Statistics 7, 1–26 

Efron, B., Gong, G., 1983. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-

Validation. The American Statistician 37, 36–48 

Elzinga, C., Shearer, R.C., Elzinga, G., 2005. Observer Variation in Tree Diameter 

Measurements. Western Journal of Applied Forestry 20, 134–137. 

https://doi.org/10.1093/WJAF/20.2.134 

Environment and Climate Change Canada, 2022. National Inventory Report 1990-2020: 

Greenhouse Gas Sources and Sinks in Canada. 

ESRI, 2009a. “BC Provincial Satellite Imagery” [basemap]. Scale Not Given. “ArcGIS 

Earth” (accessed 5.14.23) 

ESRI, 2009b. “Sweden Satellite Imagery” [basemap]. Scale Not Given. “ArcGIS Earth” 

(accessed 5.14.23) 

ESRI, 2018. "BC Provincial Basemap (Albers)" [basemap]. Scale Not Given. “ArcGIS 

Online Map Viewer”. 

https://www.arcgis.com/apps/mapviewer/index.html?webmap=4de95fc6335d49acba

c108924540ea2d (accessed 3.9.23) 



  

79 

 

ESRI, 2023. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems 

Research Institute 

Fauser, P., Sørensen, P.B., Nielsen, M., Winther, M., Plejdrup, M.S., Hoffmann, L., 

Gyldenkaerne, S., Mikkelsen, H., Albrektsen, R., Lyck, E., Thomsen, M., Hjelgaard, 

K., Nielsen, O.-K., Mikkelsen, M.H., 2012. Monte Carlo (Tier 2) uncertainty analysis 

of Danish Greenhouse gas emission inventory. Greenhouse Gas Measurement and 

Management 1, 145–160. https://doi.org/10.1080/20430779.2011.621949 

Federici, S., Grassi, G., 2011. Review of information reported using higher-tier methods 

and complex models in the LULUCF sector 

Ferson, S., 2008. What Monte Carlo methods cannot do. Human and Ecological Risk 

Assessment: An International Journal 2, 990–1007. 

https://doi.org/10.1080/10807039609383659 

FLNRO, 2013. Forest Inventory Strategic Plan. 

https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-

industry/forestry/stewardship/forest-analysis-

inventory/vri/vri_plan_forest_inventory_strategic_plan_feb22_final.pdf (accessed 

3.6.23) 

FLNRO, 2022a. Vegetation Resources Inventory: Photo Interpretation Procedures. 

https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-

industry/forestry/stewardship/forest-analysis-inventory/forest-cover-

inventories/photo-

interpretation/standards/vri_photo_interpretation_procedures_version_38.pdf 

(accessed 3.6.23) 

FLNRO, 2022b. Vegetation Resources Inventory: Photo Interpretation Quality Assurance  

Procedures and Standards (version 4.6). https://www2.gov.bc.ca/assets/gov/farming-

natural-resources-and-industry/forestry/stewardship/forest-analysis-inventory/forest-

cover-inventories/photo-



  

80 

 

interpretation/standards/vri_photo_interpretation_quality_assurance_procedures_and

_standards_version_46.pdf (accessed 3.6.23) 

Fortin, M., 2021. Comparison of uncertainty quantification techniques for national 

greenhouse gas inventories. . Mitigation and Adaptation Strategies for Global Change 

26, 1–20. https://doi.org/10.1007/S11027-021-09947-4/TABLES/4 

Fradette, O., Marty, C., Tremblay, P., Lord, D., Boucher, J.F., 2021. Allometric Equations 

for Estimating Biomass and Carbon Stocks in Afforested Open Woodlands with Black 

Spruce and Jack Pine, in the Eastern Canadian Boreal Forest. Forests 12, 1-59. 

https://doi.org/10.3390/F12010059 

Frey, C., Penman, J., Hanlet, L., Monni, S., Ogle, S., 2006. “Uncertainties” in Volume 1: 

General Guidance and Reporting of the 2006 IPCC Guidance for National Greenhouse 

Gas Inventories. 

Fu, Y., Lei, Y., Zeng, W., Hao, R., Zhang, G., Zhong, Q., Xu, M., 2017. Uncertainty 

assessment in aboveground biomass estimation at the regional scale using a new 

method considering both sampling error and model error. Canadian Journal of Forest 

Research 47, 1095–1103. https://doi.org/10.1139/CJFR-2016-0436 

Garcia-Alfonso, H., Cordova-Esparza, D.M., 2018. Comparison of uncertainty analysis of 

the Montecarlo and Latin Hypercube algorithms in a camera calibration model. 2018 

IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018. 

https://doi.org/10.1109/CCRA.2018.8588138 

Gillenwater, M., Sussman, F., Cohen, J., 2007. Practical policy applications of uncertainty 

analysis for national greenhouse gas inventories. Accounting for Climate Change: 

Uncertainty in Greenhouse Gas Inventories - Verification, Compliance, and Trading, 

31–54. https://doi.org/10.1007/978-1-4020-5930-8_4/COVER 

Goodwin, J., Gillenwater, M., Romano, D., Radunsky, K., 2019. “Introduction to National 

GHG Inventories” in Volume 1: General Guidance and Reporting of the 2019 

Refinement to the 2006 Guidelines for National Greenhouse Gas Inventories 



  

81 

 

Government Offices of Sweden Ministry of the Environment and Energy, 2018. The 

Swedish climate policy framework. 

https://cdn.climatepolicyradar.org/navigator/SWE/2017/the-swedish-climate-policy-

framework_4d29ca793f2bf5c7782ed55f5f62c434.pdf 

Grassi, G., Monni, S., Achard, F., Langner, A., Herold, M., 2016. Module 2.7 Estimation 

of uncertainties: REDD+ training materials by GOFC-GOLD, Wageningen 

University, World Bank FCPF 

Hackenberger, B.K., 2019. Bayes or not Bayes, is this the question? Croatian Medical 

Journal 60, 50–52. https://doi.org/10.3325/cmj.2019.60.50 

Hayes, K., 2011. Uncertainty and uncertainty analysis methods. CSIRO; 2011. 

csiro:EP102467. https://doi.org/10.4225/08/585189e5f2360 

Hjort, N.L., 1991. Bayesian and Empirical Bayesian  Bootstrapping, University of Oslo 

and Norwegian Computing Centre, 1-24 

Hoover, C.M., Smith, J.E., 2023. Aboveground live tree carbon stock and change in forests 

of conterminous United States: influence of stand age. Carbon Balance and 

Management 18, 1–11. https://doi.org/10.1186/S13021-023-00227-Z 

Hosmer, D.W., Lemeshow, S., 1989. Applied Logistic Regression. John Wiley & Sons, 

Inc. , New York 

Huang, S., Titus, S.J., Wiens, D.P., 1992. Comparison of nonlinear height–diameter 

functions for major Alberta tree species. Canadian Journal of Forest Research 22, 

1297–1304. https://doi.org/10.1139/x92-172 

Huynh, T., Lee, D.J., Applegate, G., Lewis, T., 2021. Field methods for above and 

belowground biomass estimation in plantation forests. MethodsX 8, 101192. 

https://doi.org/10.1016/J.MEX.2020.101192 

IPCC, 1996. “Introduction” in Reporting Instructions Volume 1 of the Revised 1996 IPCC 

Guidelines for National Greenhouse Gas Inventories 



  

82 

 

IPCC, 2001a. “Quantifying Uncertainties in Practice” in IPCC Good Practice Guidance 

and Uncertainty Management in National Greenhouse Gas Inventories 

IPCC, 2001b. “Introduction” in IPCC Good Practice Guidance and Uncertainty 

Management in National Greenhouse Gas Inventories 

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry 

IPCC, 2006. “Consistent Representation of Lands” in 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories 

IPCC, 2009. Revisiting the Use of Managed Land as a Proxy for Estimating National 

Anthropogenic Emissions and Removals IPCC Expert Meeting Report 

IPCC, 2014a. Carbon offsets, tradable permits, and leakage working group III. Mitigation.  

IPCC, 2014b. Climate Change 2014: Synthesis Report. Contribution of Working Groups 

I, II and III to the Fifth Assessment Report of the  Intergovernmental Panel on Climate 

Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)] 

IPCC, 2018. Global warming of 1.5°C An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas 

emission pathways, in the context of strengthening the global response to the threat of 

climate change, sustainable development, and efforts to eradicate poverty  

IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science 

Basis. Contribution of Working Group I  to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, 

S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. 

Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.  Maycock, T. Waterfield, O. 

Yelekçi, R. Yu, and B. Zhou (eds.)]., Cambridge University Press. In Press. . 

https://doi.org/https://doi.org/10.1017/9781009157896.001 

IPCC, 2022. Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation  

and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report 

of the Intergovernmental Panel  on Climate Change [H.-O. Pörtner, D.C. Roberts, E.S. 



  

83 

 

Poloczanska, K. Mintenbeck, M. Tignor,  A. Alegría, M. Craig, S. Langsdorf, S. 

Löschke, V. Möller, A. Okem (eds.)]. Morgan Wairiu., Cambridge University Press. 

In Press.  https://doi.org/10.1017/9781009325844.001 

Johansen, A.M., 2010. Monte Carlo Methods. International Encyclopedia of Education 3, 

296–303. https://doi.org/10.1016/B978-0-08-044894-7.01543-8 

Joyce, J., 2021. Bayes’ Theorem. The Stanford Encyclopedia of Philosophy (Fall 2021 

Edition), , Edward N. Zalta (ed.), 

https://plato.stanford.edu/archives/fall2021/entries/bayes-theorem/ 

Kim, Y.-J., Bahadory-Jahromi, A., 2017. Monte Carlo vs. Fuzzy Monte Carlo Simulation 

for Uncertainty and Global Sensitivity Analysis. Sustainability 9, 539. 

https://doi.org/10.3390/SU9040539 

Kivari, A., Xu, W., Otukol, S., 2011. Volume to Biomass Conversion for British Columbia 

Forests 

Knaggård, Å., 2014. What do policy-makers do with scientific uncertainty? The 

incremental character of Swedish climate change policy-making. Policy Studies 35, 

22–39. https://doi.org/10.1080/01442872.2013.804175 

Kurz, W.A., Dymond, C.C., White, T.M., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, 

C., Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J., Apps, M.J., 2009. 

CBM-CFS3: A model of carbon-dynamics in forestry and land-use change 

implementing IPCC standards. Ecological Modelling 220, 480–504. 

https://doi.org/10.1016/J.ECOLMODEL.2008.10.018 

Lee, S., Choi, Y., Woo, J., Kang, W., Jung, J., 2014. Estimating and comparing greenhouse 

gas emissions with their uncertainties using different methods: A case study for an 

energy supply utility. Journal of the Air & Waste Management Association 64, 1164–

1173. https://doi.org/10.1080/10962247.2014.930078 



  

84 

 

Lee, M.H., Lee, J.S., Lee, J.Y., Kim, Y.H., Park, Y.S., Lee, K.M., 2017. Uncertainty 

Analysis of a GHG Emission Model Output Using the Block Bootstrap and Monte 

Carlo Simulation. Sustainability 9, 1522. https://doi.org/10.3390/SU9091522 

Lee, K.M., Lee, M.H., Lee, J.S., Lee, J.Y., 2020. Uncertainty Analysis of Greenhouse Gas 

(GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and 

Nonparametric Bootstrap Method. Energies 13, 4965. 

https://doi.org/10.3390/EN13184965 

Li, Y., Li, M., Li, C., Liu, Z., 2020. Forest aboveground biomass estimation using Landsat 

8 and Sentinel-1A data with machine learning algorithms. Scientific Reports 10, 1–12. 

https://doi.org/10.1038/s41598-020-67024-3 

Li, Y., Li, M., Wang, Y., 2022. Forest Aboveground Biomass Estimation and Response to 

Climate Change Based on Remote Sensing Data. Sustainability (Switzerland) 14, 

14222. https://doi.org/10.3390/SU142114222/S1 

Magnussen, S., Russo, G., 2012. Uncertainty in photo-interpreted forest inventory 

variables and effects on estimates of error in Canada’s National Forest Inventory. 

The Forestry Chronicle 88, 439–447. https://doi.org/10.5558/tfc2012-08 

Matthews, G., 1993. Forestry Commission Technical Paper: The carbon content of trees 

McCandless, L.C., Gustafson, P., 2017. A comparison of Bayesian and Monte Carlo 

sensitivity analysis for unmeasured confounding. Statistics in Medicine 36, 2887–

2901. https://doi.org/10.1002/SIM.7298 

McGlynn, E., Li, S., Berger, M.F., Amend, M., Harper, K.L., 2022. Addressing uncertainty 

and bias in land use, land use change, and forestry greenhouse gas inventories. 

Climatic Change 170, 1–25. https://doi.org/10.1007/S10584-021-03254-

2/FIGURES/3 

McRoberts, R.E., Hahn, J.T., Hefty, G.J., Van Cleve, J.R., 1994. Variation in forest 

inventory field measurements. Canadian Journal of Forest Research 24, 1766–1770. 

https://doi.org/10.1139/X94-228 



  

85 

 

McRoberts, R.E., Westfall, J.A., 2014. Effects of Uncertainty in Model Predictions of 

Individual Tree Volume on Large Area Volume Estimates. Forest Science 60, 34–42. 

https://doi.org/10.5849/FORSCI.12-141 

McRoberts, R.E., Westfall, J.A., 2016. Propagating uncertainty through individual tree 

volume model predictions to large-area volume estimates. Annals of Forest Science 

73, 625–633. https://doi.org/10.1007/S13595-015-0473-X/TABLES/2 

Melo, L.C., Schneider, R., Fortin, M., 2018. Estimating model- and sampling-related 

uncertainty in large-area growth predictions. Ecological Modelling 390, 62–69. 

https://doi.org/10.1016/J.ECOLMODEL.2018.10.011 

Mensah, S., Veldtman, R., Seifert, T., 2017. Allometric models for height and aboveground 

biomass of dominant tree species in South African Mistbelt forests. Southern Forests: 

a Journal of Forest Science 79, 19–30. 

https://doi.org/10.2989/20702620.2016.1225187 

Metsaranta, J.M., Shaw, C.H., Kurz, W.A., Boisvenue, C., Morken, S., 2017. Uncertainty 

of inventory-based estimates of the carbon dynamics of Canada’s managed forest 

(1990–2014). Canadian Journal of Forest Research 47, 1082–1094. 

https://doi.org/10.1139/CJFR-2017-0088/SUPPL_FILE/CJFR-2017-

0088SUPPLA.PDF 

Michael, S.O., Sanz Sanchez, M.J., Rocha, M.T., MacDonald, J.D., Dong, H., 2019. 

“Introduction” in Volume 4: Agriculture, Forestry and Other Land Use of the 2019 

Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

Molina-Castro, G., 2022. A Monte Carlo Method for Quantifying Uncertainties in the 

Official Greenhouse Gas Emission Factors Database of Costa Rica. Frontiers in 

Environmental Science 10, 896256. 

https://doi.org/10.3389/FENVS.2022.896256/BIBTEX 

Monni, S., Peltoniemi, M., Palosuo, T., Lehtonen, A., Mäkipää, R., Savolainen, I., 2007. 

Uncertainty of forest carbon stock changes - Implications to the total uncertainty of 



  

86 

 

GHG inventory of Finland. Climatic Change 81, 391–413. 

https://doi.org/10.1007/S10584-006-9140-4/METRICS 

Morhart, C., Sheppard, J.P., Schuler, J.K., Spiecker, H., 2016. Above-ground woody 

biomass allocation and within tree carbon and nutrient distribution of wild cherry 

(Prunus avium L.) – a case study. Forest Ecosystems 3, 1–15. 

https://doi.org/10.1186/S40663-016-0063-X/FIGURES/7 

Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., 

Sola, G., Crete, P., Henry, M., Kashindye, A., 2016. Allometric Models for Estimating 

Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. 

International Journal of Forestry Research 2016, 13. 

https://doi.org/10.1155/2016/8076271 

Natural Resources Canada, 2007. Canadian Forest Service Science-Policy Notes. Is 

Canada’s forest a carbon sink or source? 

https://publications.gc.ca/collections/collection_2007/nrcan-rncan/Fo93-1-2-

2007E.pdf 

Návar, J., 2010. Measurement and Assessment Methods of Forest Aboveground Biomass: 

A Literature Review and the Challenges Ahead, in: Momba, M., Bux, F. (Eds.), 

Biomass. IntechOpen,  27–64 

Ogle, S.M., Domke, G., Kurz, W.A., Rocha, M.T., Huffman, T., Swan, A., Smith, J.E., 

Woodall, C., Krug, T., 2018. Delineating managed land for reporting national 

greenhouse gas emissions and removals to the United Nations framework convention 

on climate change. Carbon Balance and Management 13, 1–13. 

https://doi.org/10.1186/S13021-018-0095-3/FIGURES/4 

Ogle, S.M., Kurz, W.A., Green, C., Brandon, A., Baldock, J., Domke, G., Herold, M., 

Bernoux, M., Chirinda, N., de Ligt, R., Federici, S., Garcia-Apaza, E., Grassi, G., 

Gschwantner, T., Hirata, Y., Houghton, R., House, J.I., Ishizuka, S., Jonckheere, I., 

Krisnawati, H., Lehtonen, A., Kinyanjui, M.J., McConkey, B., Naesset, E., Niinisto, 

S.M., Ometto, J.P., Panichelli, L., Paul, T., Petersson, H., Reddy, S., Regina, K., 



  

87 

 

Rocha, M.T., Rock, J., Sanz Sanchez, M.J., Sanquetta, C., Sato, A., Somogyi, Z., 

Trunov, A., Vazquez-Amabile, G., Vitullo, M., Wang, C., Waterworth, R.M., Collet, 

M., Harmon, M., Lehmann, J., Shaw, C.H., Shirato, Y., Woolf, D., McRoberts, R.E., 

2019. “Generic Methodologies Applicable to Multiple Land-Use Categories” in 

Volume 4: Agriculture, Forestry and Other Land Use of the 2019 Refinement to the 

2006 IPCC Guidelines for National Greenhouse Gas Inventories. Australia. 

Ometto, J.P., Bun, R., Jonas, Matthias, Nahorski, Zbigniew, Gusti, Mykola I, Ometto, J., 

Bun P Ometto, R.J., Jonas, M, Gusti, M I, Nahorski, Z, 2014. Uncertainties in 

greenhouse gases inventories – expanding our perspective. Climatic Change 124, 451–

458. https://doi.org/10.1007/S10584-014-1149-5 

Paciornik, N., Rypdal, K., Baritz, R., Barry, S., Dolman, A.J., Eve, M., Gillenwater, M., 

Kohl, M., Kruger, D., Lim, B., Makipaa, R., Matteucci, G., Okuda, T., Sanz-Sanchez, 

M.J., Singh, T.P., Ståhl, G., Valentini, R., Van Der Merwe, M., Brown, S., Flugsrud, 

K., Inoue, G., Kaendler, G., Lindroth, A., Nishida, K., Ogle, S., Olsson, M., Philips, 

G., Sussman, F., Yamagata, Y., Vine, E., Wirth, C., 2003. “Cross-Cutting Issues” in 

IPCC Good Practice Guidance for LULUCF  

Paciornik, N., Gillenwater, M., De Lauretis, R., Romano, D., Monni, S., Ogle, S.M., 

Kareinen, T., Alsaker, C., 2019. “Uncertainties” in Volume 1: General Guidance and 

Reporting of the 2019 Refinement to the 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories 

Park, Y.S., Yeon, S.M., Lee, G.Y., Park, K.H., 2019. Proposed consecutive uncertainty 

analysis procedure of the greenhouse gas emission model output for products. 

Sustainability (Switzerland) 11. https://doi.org/10.3390/SU11092712 

Paustian, K., Ravindranath, N.H., van Amstel, A., Gytarsky, M., Kurz, W.A., Ogle, S., 

Richards, G., Somogyi, Z., 2006. “Introduction” in Volume 4: Agriculture, Forestry 

and Other Land Use of 2006 IPCC Guidelines for National Greenhouse Gas 

Inventories 



  

88 

 

Peng, C., Zhang, L., Liu, J., 2001. Developing and Validating Nonlinear Height–Diameter 

Models for Major Tree Species of Ontario’s Boreal Forests. Northern Journal of 

Applied Forestry 18, 87–94. https://doi.org/10.1093/njaf/18.3.87 

Persson, H.J., Ekström, M., Ståhl, G., 2022. Quantify and account for field reference errors 

in forest remote sensing studies. Remote Sensing of Environment 283, 113302. 

https://doi.org/10.1016/J.RSE.2022.113302 

Picard, N., Saint-André, L., Henry, M., 2012. Manual for building tree volume and biomass 

allometric equations from field measurement to prediction. Food and Agricultural 

Organization of the United Nations, Rome, and Centre de Coopération Internationale 

en Recherche Agronomique pour le Développement, Montpellier, 215 

Picard, N., Boyemba Bosela, F., Rossi, V., 2015. Reducing the error in biomass estimates 

strongly depends on model selection. Annals of Forest Science 72, 811–823. 

https://doi.org/10.1007/s13595-014-0434-9 

Polish Academy of Sciences, 2015. 4th International Workshop on Uncertainty in 

Atmospheric Emissions. 

https://previous.iiasa.ac.at/web/home/research/researchPrograms/AdvancedSystems

Analysis/event/Leaflet_4th_Uncertainty_Workshop.pdf  

Poutanen, M., Steffen, H., 2015. Land uplift at Kvarken Archipelago / high coast UNESCO 

World Heritage area. Geophysica 50, 49–64 

Pretzsch, H., 2010. Forest dynamics, growth and yield: From measurement to model, 

Forest Dynamics, Growth and Yield: From Measurement to Model. Springer Berlin 

Heidelberg. https://doi.org/10.1007/978-3-540-88307-4/COVER 

Qin, L., Liu, Q., Zhang, M., Saeed, S., 2019. Effect of measurement errors on the estimation 

of tree biomass. Canadian Journal of Forest Research 49, 1371–1378. 

https://doi.org/10.1139/CJFR-2019-0034 



  

89 

 

Qin, L., Meng, S., Zhou, G., Liu, Q., Xu, Z., 2021. Uncertainties in above ground tree 

biomass estimation. Journal of Forest Research 32, 1989–2000. 

https://doi.org/10.1007/S11676-020-01243-2/METRICS 

R Core Team, 2023. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. Vienna. Austria. https://www.R-project.org/ 

Ravin, A., Raine, T., 2007. Best Practices for Including Carbon Sinks in Greenhouse Gas 

Inventories 

Ritter, K., Lev-On, M., Shires, T., 2010. Understanding Uncertainty in Greenhouse Gas 

Emission Estimates: Technical Considerations and Statistical Calculation Methods. 

American Petroleum Institute. 

Robert, Christian.P., Casella, G., 2004a. Monte Carlo Integration, in: Casella, G., Fienberg, 

S., Olkin, I. (Eds.), Monte Carlo Statistical Methods. Springer Science Business Media 

Inc 

Robert, Christian.P., Casella, G., 2004b. Introduction, in: Casella, G., Fienberg, S., Olkin, 

I. (Eds.), Monte Carlo Statistical Methods. Springer Science Business Media Inc 

Romano, D., Bernetti, A., De Lauretis, R., 2004. Different methodologies to quantify 

uncertainties of air emissions. Environment International 30, 1099–1107. 

https://doi.org/10.1016/J.ENVINT.2004.06.006 

Rubin, D.B., 1981. The Bayesian Bootstrap. The Annals of Statistics 9, 130-134. 

https://doi.org/10.1214/aos/1176345338 

Rubin, D.B., 1987. Underlying Bayesian Theory: Introduction and Summary of Repeated-

Imputation Inferences, in: Rubin, D.B. (Ed.), Multiple Imputation for Nonresponse in 

Surveys. John Wiley & Sons, Inc., Hoboken, NJ, USA, 76–77. 

https://doi.org/10.1002/9780470316696 

Sadono, R., Wardhana, W., Wirabuana, P.Y.A.P., Idris, F., 2021. Allometric Equations for 

Estimating Aboveground Biomass of  Eucalyptus urophylla S.T. Blake in East Nusa 



  

90 

 

Tenggara. Jurnal Manajemen Hutan Tropika 27, 24–24. 

https://doi.org/10.7226/JTFM.27.1.24 

Salomón, R.L., Rodríguez-Calcerrada, J., Staudt, M., 2017. Carbon Losses from 

Respiration and Emission of Volatile Organic Compounds—The Overlooked Side of 

Tree Carbon Budgets, in: Oaks Physiological Ecology. Exploring the Functional 

Diversity of Genus Quercus L. Springer, Cham, 327–359. https://doi.org/10.1007/978-

3-319-69099-5_10 

Salway, A.G., 2010. Treatment of Uncertainties for National Estimates of Greenhouse Gas 

Emissions 

Segura, M., Kanninen, M., Suárez, D., 2006. Allometric models for estimating 

aboveground biomass of shade trees and coffee bushes grown together. Agroforestry 

Systems 68, 143–150. https://doi.org/10.1007/S10457-006-9005-X/METRICS 

Shettles, M., Temesgen, H., Gray, A.N., Hilker, T., 2015. Comparison of uncertainty in per 

unit area estimates of aboveground biomass for two selected model sets. Forest 

Ecology and Management 354, 18–25. 

https://doi.org/10.1016/J.FORECO.2015.07.002 

Shreider, Yu.A., Buslenko, N.P., Golenko, D.I., Sobol, I.M., Sragovich, V.G., 1966. 

Principles Of The Monte Carlo Method, in: The Monte Carlo Method. Pergamon Press 

Ltd., 1–90. https://doi.org/10.1016/B978-0-08-011088-2.50005-5 

Shukla, P.R., Skea, J., Slade, R., Van Diemen, R., Haughey, E., Malley, J., Pathak, M., 

Portugal Pereira, J., 2020. Technical Summary, 2019. In: Climate Change and Land: 

an IPCC special report on climate change, desertification, land degradation, 

sustainable land management, food security, and greenhouse gas fluxes in terrestrial 

ecosystems, Lennart Olsson. Prajal Pradhan 

Skene, J., Polanyi, M., 2021. Missing The Forest: How Carbon Loopholes For Logging 

Hinder Canada’s Climate Leadership. https://naturecanada.ca/wp-

content/uploads/2021/10/Missing-the-Forest.pdf (accessed 6.9.23) 



  

91 

 

Skovsgaard, J.P., Johannsen, V.K., Vanclay, J.K., 1998. Accuracy and precision of two 

laser dendrometers. Forestry 71, 131–139 

SLU, 2021. SLU Forest Map 2015 – forest estimates from stereo-matched aerial images 

and Sentinel-2 

Ståhl, G., Heikkinen, J., Petersson, H., Repola, J., Holm, S., 2014. Sample-Based 

Estimation of Greenhouse Gas Emissions From Forests—A New Approach to 

Account for Both Sampling and Model Errors. Forest Science 60, 3–13. 

https://doi.org/10.5849/FORSCI.13-005 

Sweden Forest Volume [map]. Scale Note Given. Data layers: SLU Forest Map 2015 

[dataset]. SLU: Generated by Aby Sabzwari, 2.28.23. Using ArcGIS [GIS software]. 

Version 10.8.2. Redlands, CA: ESRI, 2021. 

Sweden’s National Parks, 2023. https://www.sverigesnationalparker.se/en/ (accessed 

6.13.23) 

Tanabe, K., 2016. Unceratinty Analysis in Emission Inventories: Africa Regional 

Workshop on the Building of Sustainable National Greenhouse Gas Inventory 

Management Systems, and the Use of 2006 IPCC Guidelines for National Greenhouse 

Gas Inventories 

Thiese, M.S., Ronna, B., Ott, U., 2016. P value interpretations and considerations. Journal 

of Thoracic Disease 8, 928–931. https://doi.org/10.21037/jtd.2016.08.16 

Triyason, T., Valaisathien, S., Vanijja, V., Kanthamanon, P., Chan, J.H., 2015. VoIP 

Quality Prediction Model by Bio-Inspired Methods, in: Bio-Inspired Computation in 

Telecommunications. Elsevier, 95–116. https://doi.org/10.1016/B978-0-12-801538-

4.00005-7 

Turton, A.E., Augustin, N.H., Mitchard, E.T.A., 2022. Improving Estimates and Change 

Detection of Forest Above-Ground Biomass Using Statistical Methods. Remote 

Sensing 14, 4911. https://doi.org/10.3390/RS14194911 



  

92 

 

Ulvdal, P., Öhman, K., Eriksson, L.O., Wästerlund, D.S., Lämås, T., 2023. Handling 

uncertainties in forest information: the hierarchical forest planning process and its 

use of information at large forest companies. Forestry: An International Journal of 

Forest Research 96, 62–75. https://doi.org/10.1093/forestry/cpac02 

UNDP, 2021. Nationally Determined Contributions (NDC) Global Outlook Report 2021: 

The State of Climate Ambition 

UNDP, 2022. What are carbon markets and why are they important? 

https://climatepromise.undp.org/news-and-stories/what-are-carbon-markets-and-

why-are-they-important (accessed 7.23.23) 

UNEP, 2022. Emissions Gap Report 2022: The Closing Window — Climate crisis calls  

for rapid transformation of societies. Nairobi. https://www.unep.org/emissions-gap-

report-2022 

UNFCCC, 2016. Report of the Conference of the Parties on its twenty-first session, held 

in Paris from 30 November to 13 December 2015 Appendum Part two: Action taken 

by the Conference of the Parties at is twenty-first session 

UNFCCC, 2020. Land Use, Land-Use Change and Forestry (LULUCF). 

https://unfccc.int/topics/land-use/workstreams/land-use--land-use-change-and-

forestry-lulucf (accessed 9.18.22) 

UNFCCC, 2021. Nationally determined contributions under the Paris  Agreement - 

Synthesis report by the secretariat. Glasgow 

UNFCCC, 2022. CGE Training Materials for the Preparation of National Communications 

from non-Annex I Parties | UNFCCC. https://unfccc.int/process-and-

meetings/bodies/constituted-bodies/consultative-group-of-experts/cge-training-

materials/cge-training-materials-for-the-preparation-of-national-communications 

(accessed 9.19.22) 

United Nations, 1992. United Nations Framework Convention On Climate Change: United 

Nations 



  

93 

 

United Nations, 1998. Kyoto Protocol To The United Nations Framework Convention On 

Climate Change, Kyoto: United Nations 

United Nations, 2015. Adoption of the Paris Agreement, 21st Conference of the Parties, 

Paris: United Nations 

UN-REDD Programme, 2022. Linking REDD+, the Paris Agreement, Nationally 

Determined Contributions and the sustainable development goals 

van der Gaast, W., Sikkema, R., Vohrer, M., 2016. The contribution of forest carbon credit 

projects to addressing the climate change challenge. Climate Policy 18, 42-48. 

https://doi.org/10.1080/14693062.2016.1242056 

van Soest, H.L., den Elzen, M.G.J., van Vuuren, D.P., 2021. Net-zero emission targets for 

major emitting countries consistent with the Paris Agreement. Nature 

Communications 12, 2140. https://doi.org/10.1038/s41467-021-22294-x 

Västernorrland County, Sweden Study Area [map]. Scale Not Given. Data layers: SLU 

Forest Map 2015 [dataset]. SLU: Generated by Aby Sabzwari, 2.28.23. Using ArcGIS 

[GIS software]. Version 10.8.2. Redlands, CA: ESRI, 2021. 

Vorster, A.G., Evangelista, P.H., Stovall, A.E.L., Ex, S., 2020. Variability and uncertainty 

in forest biomass estimates from the tree to landscape scale: The role of allometric 

equations. Carbon Balance Manag 15, 1–20. https://doi.org/10.1186/S13021-020-

00143-6/FIGURES/9 

VRI Relational Data Dictionary (version 5.0), 2019. 

https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-

industry/forestry/stewardship/forest-analysis-inventory/data-

management/standards/vegcomp_poly_rank1_data_dictionaryv5_2019.pdf (accessed 

3.10.23) 

Wallerman, J., Axensten, P., Egberth, M., Jonzén, J., Sandström, E., Fransson, J.E.S., 

Nilsson, M., 2021. SLU Forest Map - Mapping Swedish Forests Since Year 2000, in: 



  

94 

 

2021 IEEE International Geoscience and Remote Sensing Symposium, 6056–6059. 

https://doi.org/10.1109/IGARSS47720.2021.9554458 

Wang, G., Oyana, T., Zhang, M., Adu-Prah, S., Zeng, S., Lin, H., Se, J., 2009. Mapping 

and spatial uncertainty analysis of forest vegetation carbon by combining national 

forest inventory data and satellite images. Forest Ecology and Management 258, 1275–

1283. https://doi.org/10.1016/J.FORECO.2009.06.056 

Wayson, C.A., Johnson, K.D., Cole, J.A., Olguín, M.I., Carrillo, O.I., Birdsey, R.A., 2015. 

Estimating uncertainty of allometric biomass equations with incomplete fit error 

information using a pseudo-data approach: methods. Annals for Forest Science 72, 

825–834. https://doi.org/10.1007/S13595-014-0436-7/FIGURES/ 

Weirich, P., 2011. The Bayesian Decision-Theoretic Approach to Statistics, in: Philosophy 

of Statistics. Elsevier, 233–261. https://doi.org/10.1016/B978-0-444-51862-0.50007-

1 

Wells, Chester. V, 1992. Principles and Applications of Measurement Uncertainty 

Analysis in Research and Calibration 

Westfall, J.A., Patterson, P.L., 2007. Measurement variability error for estimates of volume 

change. Canadian Journal of Forest Research 37, 2201–2210. 

https://doi.org/10.1139/X07-082 

Williams, M.S., Bechtold, W.A., LaBau, V.J., 1994. Five Instruments for Measuring Tree 

Height: An Evaluation. Southern Journal of Applied Forestry 18, 76–82. 

https://doi.org/10.1093/SJAF/18.2.76 

Yona, L., Cashore, B., Bradford, M.A., 2022. Factors influencing the development and 

implementation of national greenhouse gas inventory methodologies. Policy Design 

and Practice 5, 197–225. 

https://doi.org/10.1080/25741292.2021.2020967/SUPPL_FILE/RPDP_A_2020967_

SM7444.DOCX 



  

95 

 

Yu, P.S., Yang, T.C., Chen, S.J., 2001. Comparison of uncertainty analysis methods for a 

distributed rainfall–runoff model. Journal of Hydrology 244, 43–59. 

https://doi.org/10.1016/S0022-1694(01)00328-6 

 

 



  

96 

 

APPENDIX A: MODEL FITTING RESULTS 

 

Figure A.1 Model fitting results for case study1 hypothesis test: (a) quantile - quantile plot 

(b) residuals plotted against fitted values 

 

Figure A.2 Model fitting results for case study 2 hypothesis test: (a) quantile - quantile 

plot (b) residuals plotted against fitted values 
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APPENDIX B: HISTOGRAMS OF THE OBSERVED DATA AND THE PSEUDO-

DATA 

 

Figure B.1 Case study 1: Dbh histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 



  

98 

 

 

Figure B.2 Case study 1: Ht histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 
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Figure B.3 Case study 1: AGB histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 
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Figure B.4 Case study 2: Dbh histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 
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Figure B.5 Case study 2: Ht histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 
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Figure B.6 Case study 2: AGB histograms for (a) the observed dataset and (b) the pseudo-

data generated from approach 1: MCS, approach 2: bootstrap and MCS, and approach 3: 

Bayesian bootstrap and MCS 

 

 

 

 

 

 

 

 



  

103 

 

APPENDIX C: INVESTIGATED RESIDUAL ERROR MODELS 

 

Figure C.1 Case study 1 residual error model: second-order polynomial model 
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Figure C.2 Case study 1 residual error model: linear model 
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Figure C.3 Case study 1 residual error model: logarithmic model 
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Figure C.4 Case study 1 residual error model: exponential model 
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Figure C.5 Case study 1 residual error model: power model 
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Figure C.6 Case study 2 residual error model: second-order polynomial model 
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Figure C.7 Case study 2 residual error model: linear model 
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Figure C.8 Case study 2 residual error model: logarithmic model 
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Figure C.9 Case study 2 residual error model: exponential model 
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Figure C.10 Case study 2 residual error model: power model 

 

 

 

 

 

 

 

 

 

 



  

113 

 

 

APPENDIX D: INVESTIGATED DBH MEASUREMENT ERROR MODELS 

 

Figure D.1 Case study 1 measurement error model: second-order polynomial model 
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Figure D.2 Case study 1 measurement error model: linear model 
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Figure D.3 Case study 1 measurement error model: logarithmic model 
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Figure D.4 Case study 1 measurement error model: exponential model 
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Figure D.5 Case study 1 measurement error model: power model 
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Figure D.6 Case study 2 measurement error model: second-order polynomial model 
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Figure D.7 Case study 2 measurement error model: linear model 
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Figure D.8 Case study 2 measurement error model: logarithmic model 
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Figure D.9 Case study 2 measurement error model: exponential model 
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Figure D.10 Case study 2 measurement error model: power model 
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