
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

9-27-2023

Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS

Technology Technology

Chen Zhang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Chen, "Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS Technology" (2023).
Electronic Theses and Dissertations. 9256.
https://scholar.uwindsor.ca/etd/9256

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9256?utm_source=scholar.uwindsor.ca%2Fetd%2F9256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Area-Efficient Finite Field Multiplication Using Hybrid

SET-MOS Technology

by

Chen Zhang

A Dissertation

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfilment of the Requirements for

the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

© 2023, Chen Zhang

Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS

Technology

by

Chen Zhang

APPROVED BY:

E. Atoofian, External Examiner

Lakehead University

X. Yuan

School of Computer Science

J. Wu

Department of Electrical and Computer Engineering

S. Chowdhury

Department of Electrical and Computer Engineering

C. Chen, Co-Advisor

Department of Electrical and Computer Engineering

H. Wu, Co-Advisor

Department of Electrical and Computer Engineering

September 5, 2023

DECLARATION OF

CO-AUTHORSHIP/PREVIOUS PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research,

as follows: Chapters 2-6 of the thesis were developed under the supervision of my

co-advisors, Dr. Huapeng Wu and Dr. Chunhong Chen. My advisors provided the

initial ideas for Chapters 4, 5. The logic gate optimization work for Chapter 5 was

joint research in collaboration with my advisors. In all cases, the author performed

the key ideas, primary contributions, logic gate design and simulation, multiplication

architecture modifications, interpretation, result comparisons, and writing. The con-

tribution of my advisors was primarily through content checking and comments on

the thesis organization, providing feedback on logic gate simulations and performance

evaluations, and editing the manuscript.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

II. Previous Publication

This thesis includes parts from three original papers that have been published and

submitted for publication in conferences and journals, as follows:

iii

Thesis Chapter Publication title/full citation Publication status
Parts of Chap-
ter 2, 3, 4

Chen Zhang, Chunhong Chen, and Huapeng
Wu. “Area-Efficient Finite Field Multiplica-
tion in GF(2n) Using Single-Electron Tran-
sistors.” 2021 IEEE Asia Pacific Conference
on Circuit and Systems (APCCAS), pp. 25-
28, IEEE, 2021.

Published

Parts of Chap-
ter 2, 3, 4

Chen Zhang, Huapeng Wu, and Chunhong
Chen. “Area-Efficient Finite Field Mul-
tiplication Using Hybrid SET-MOS Tech-
nology.” IEEE Transactions on Circuits
and Systems I:Regular Papers 69.11 (2022):
4358-4366.

Published

Parts of Chap-
ter 2, 3, 5

Chen Zhang, Huapeng Wu, and Chunhong
Chen. “Area-Efficient Finite Field Mul-
tiplication Using Combinational SET-MOS
Logic gates” To be submitted to IEEE
Transactions on Very Large Scale Integra-
tion (VLSI) Systems. 2023

Under prepara-
tion

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as a graduate student at

the University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

iv

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

v

ABSTRACT

This work studies area-efficient implementation of bit-parallel binary polynomial

multiplication and Karatsuba algorithm (KA), which have important applications

in error control coding and network security, especially elliptic curve cryptography,

among many other areas. All existing works in this respect are based on traditional

CMOS technology. Research shows that new nanodevices such as single-electron

transistors (SETs) can offer the great potential at device- and technology-level to

further improve area cost in many digital applications (especially multiplication),

thanks to their unique Coulomb oscillation characteristics.

This thesis first proposes hybrid SET-MOS technology to design the XOR net-

works that are extensively used in polynomial multiplication architectures, with the

goal of reducing the total area cost for their implementation. This is done by using

a single SET-MOS gate to realize a multi-input XOR operation which would tradi-

tionally require multiple CMOS gates. The existing KA architectures are modified

and implemented accordingly using SET-MOS XOR gates. Results show that the

proposed multiplier can provide around 37% savings in gate count (with a moderate

increase in latency) for the multiplier size ranging from 256 to 2048, compared to the

best of CMOS-based multipliers.

This thesis also presents novel combinational gates using SET-MOS technology in

order to obtain combined AND/XOR operations within a single logic gate. This leads

to area-efficient implementation for both AND and XOR operations in multiplication

architectures, and produces further reduction in gate count. In comparison with the

best existing CMOS work, the proposed 2-way and 4-way KA multipliers save around

46% in gate count. While the latency of proposed SET-MOS work is longer than

the existing CMOS counterpart, the area-latency product of the former still shows

4% less than that for the latter. The proposed approaches in this thesis not only

promise high area efficiency, but also open up new opportunities for general digital

vi

applications involving extensive multiplications. This could potentially and signifi-

cantly improve the way current multiplier architectures and algorithms are designed

and implemented.

vii

DEDICATION

To my loving Family:

Father and Mother

For their selfless contribution to my life

viii

ACKNOWLEDGEMENTS

I want to express my profound appreciation and gratitude to all those who have

contributed to the completion of this thesis and the journey of my studies. Without

their unwavering support and invaluable input, this achievement would not have been

possible.

First and foremost, I extend my heartfelt thanks to Dr. Huapeng Wu and Dr.

Chunhong Chen, my supervisors, for their guidance, encouragement, and expertise

throughout this endeavour. Their wisdom and mentorship have been instrumental

in shaping the direction and quality of this work. Thanks to their patience and

meticulous instruction, and diligent guidance, I have become a mature person ready

to take on more challenging tasks in my future life.

I want to thank Ms. Andria Ballo, the graduate secretary at the Electrical and

Computer Engineering Department, for her valuable time and unwavering support.

Additionally, I want to thank my parents and friends for their support, under-

standing, and encouragement during this demanding journey. Their belief in me has

been a constant source of motivation and inspiration.

ix

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION iii

ABSTRACT vi

DEDICATION viii

ACKNOWLEDGEMENTS ix

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF ACRONYMS xvii

1 Introduction 1

1.1 Research Motivation . 1

1.2 Problem Statement . 4

1.3 Research Contributions . 5

1.4 Organization of Thesis . 6

2 Math Background 7

2.1 Finite Fields . 7

2.2 Arithmetic in Binary Extension Field 9

2.3 Architectures of Finite Field Polynomial Multiplication 10

3 Research Overview 12

3.1 Quadratic Area Complexity Methods 12

3.1.1 Schoolbook Method . 12

x

3.1.2 Mastrovito Method . 14

3.2 Sub-Quadratic Area Complexity Methods 14

3.2.1 Original 2-Way KA . 14

3.2.2 2-Way KA’s Extensions . 17

3.2.3 4-Way KA and Its Extensions 22

3.2.4 Mixed Algorithm . 27

3.2.5 K-way Split KA, k ̸= 2, 4 . 28

3.3 Logic Gate Implementation . 28

3.3.1 CMOS XOR Gates . 28

3.3.2 CMOS AND Gates . 29

3.4 Single Electron Technology . 29

3.4.1 Single Electron Transistor . 30

3.4.2 Hybrid SET-MOS Transistors 30

4 Proposed SET-MOS XOR Gates and Hybrid SBM-KA Multiplier 33

4.1 Introduction . 33

4.2 Multiple-Input XOR Gates Using SET-MOS 33

4.2.1 Multiple-Input XOR Operation 34

4.2.2 4-Input SET-MOS XOR Gates 35

4.2.3 SET-MOS Versus CMOS . 38

4.3 Multiplications Improved by SET-MOS XOR Gates 39

4.3.1 Area Performance Evaluation 40

4.3.2 SBM Using SET-MOS XOR Gates 40

4.3.3 Original 2-Way KA Using SET-MOS XOR Gates 42

4.3.4 2-Way KA’s Extensions Using SET-MOS XOR Gates 45

4.3.5 Improved Methods Versus Existing Ones 49

4.4 SBM-KA Multiplication Architecture 50

4.4.1 Base Multiplier . 50

xi

4.4.2 2-Way SBM-KA Using SET-MOS XOR Gates 54

4.4.3 Latency Complexity Reduction 55

4.5 Complexity Comparison . 56

4.5.1 Asymptotic Complexitiy Comparison 56

4.5.2 Total Gate Count Comparison 57

4.6 Summary . 60

5 Proposed SET-MOS Combinational Gates and Area-Efficient Mul-

tiplier 61

5.1 Introduction . 61

5.2 SET-MOS Combinational Gates . 61

5.2.1 General Idea . 61

5.2.2 Combined AND/XOR Operation Using SET-MOS 62

5.2.3 Discussion on Input Number Limits 67

5.3 Latency Performance Evaluation . 68

5.3.1 Latency Complexity . 68

5.3.2 Average Gate Delay . 69

5.4 Multiplications Using SET-MOS XOR and Combinational Gates . . . 77

5.4.1 SBM Using SET-MOS Combinational Gates 77

5.4.2 2-Way KA and Its Extensions Using SET-MOS Gates 80

5.4.3 4-Way KA and Its Extensions Using SET-MOS Gates 86

5.5 Area-Efficient Hybrid Multipliers . 93

5.5.1 2-Way SBM-KA Using SET-MOS Gates 94

5.5.2 4-Way SBM-KA Using SET-MOS Gates 96

5.6 Complexity Comparison . 98

5.6.1 Asymptotic Complexity Comparison 98

5.6.2 Gate-Level Comparison . 100

5.7 Summary . 102

xii

6 Conclusion and Future Work 103

6.1 Conclusion . 103

6.2 Future Work . 104

REFERENCES 107

APPENDIX A 117

APPENDIX B 118

VITA AUCTORIS 121

xiii

LIST OF TABLES

2.1 Complexities of different types of multiplication. 11

3.1 Recursive gate count of 2-way KA . 15

3.2 Recursive latency complexity accumulation for 2-way original KA . . 17

3.3 Complexity of 4-way KA without reconstruction process. 24

3.4 Complexity of blocks in the 4-way block recombination 26

4.1 Truth table of 4-input XOR operation 34

4.2 Parameters for a 4-input SET-MOS XOR gate implemented in Fig.4.2 37

4.3 Area cost of logic gates using CMOS versus SET-MOS 39

4.4 (4.3) implemented by SET-MOS XOR4 43

4.5 Gate counts of SBM and 2-way KA using SET-MOS XOR4 for n = 2k 51

4.6 Comparison between the existing methods and the proposed SET-MOS

XOR’s improved methods . 58

4.7 Comparison of total gate count between the proposed and the existing

methods . 59

5.1 Truth table of (a ∧ b)⊕ c operation 63

5.2 Weighted Truth table of (a ∧ b)⊕ c operation 64

5.3 Parameters for a 4-input SET-MOS AndXor3 implemented in Figure 4.2 65

5.4 Gate delays of CMOS XOR2 with different input’s rise/fall times . . . 71

5.5 Gate delays of SET-MOS XOR4 with different input’s rise/fall times . 72

5.6 Gate delays of SET-MOS XOR8 with different input’s rise/fall times . 73

5.7 Gate delays of SET-MOS AndXor3 with different input’s rise/fall times 74

5.8 Gate delays of SET-MOS AndXor4 with different input’s rise/fall times 75

5.9 Average gate delay in multiplier of practical sizes 77

5.10 Complexity comparison of sub-quadratic methods 99

5.11 Complexity comparison of cryptographic sizes 101

xiv

LIST OF FIGURES

3.1 A schematic of 2-bit KA multiplication. 17

3.2 2-input XOR gate designed using PTL and its truth table 28

3.3 2-input AND gate designed using PTL and its truth table 29

3.4 Schematic and simple layout of a single electron transistor 30

3.5 Two popular SET-MOS structures 31

3.6 A typical voltage transfer characteristics (VTC) of Figure 3.5(b). . . 32

4.1 Expected VTC of SET’s input and output to a 4-input XOR gate. . . 35

4.2 A generic SET-MOS structure for multi-input logic gate, such as XOR. 36

4.3 VTCs of SET-MOS via different bias currents and voltages. 36

4.4 Simulated VTC of a 4-input XOR gate from Figure 4.2 37

4.5 Data flow of original 2-way KA using SET-MOS XOR4 44

4.6 Multipliers using SET-MOS XOR4 versus their CMOS counterparts . 49

4.7 Total gate counts of n-bit SBM-KA constructed from different m-bit

base multipliers. 52

5.1 Expected VTC of SET-MOS 3-input combinational gate. 64

5.2 Simulated VTC of SET-MOS 3-input combinational gate for (a ∧ b)⊕ c. 66

5.3 Simulation of SET-MOS AndXor3 with time as the horizontal axis.

From top to bottom are the three inputs a, b, c, and the output Vout. 66

5.4 Oscillation waveform for SET-MOS XOR with 4 or 8 inputs. 67

5.5 Simulation for CMOS 2-input AND gate using PTL. 70

5.6 Simulation for CMOS 2-input XOR gate using PTL. 71

5.7 Simulation for SET-MOS XOR4. 72

5.8 Simulation for SET-MOS XOR8. 73

5.9 Simulation for SET-MOS AndXor4. 74

5.10 Curve fitting to D⊗ and D⊕ with respect to the circuit depth d. . . . 76

5.11 Implementation of a 4-bit base multiplier via different technologies. . 79

xv

5.12 Decomposition of 2-way KA and application scenarios of AndXor4. . 81

5.13 Application scenarios of SET-MOS combinational gates in the 2-way

block recombination. 84

5.14 Comparison of 4-way KA using XOR4 versus XOR8 counterparts re-

specting (a) total gate count and (b) area-latency product. 91

5.15 Sub-quadratic term’s coefficientK(m) with respect to base multiplier’s

size m. 95

xvi

LIST OF ACRONYMS

ASIC Application Specific Integrated Circuit

CM Component Multiplication in block recombination

CMOS Complementary Metal-Oxide-Semiconductor

CPF Component Polynomial Formation in block recombination

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

FPGA Field Programmable Gate Array

GPDK45 45nm generic process design kits

IoT Internet of Things

KA Karatsuba algorithm

PD Propagation delay

PTL Pass-Transistor Logic

RC Reconstruction in block recombination

RFID Radio Frequency Identification

RSA Rivest-Shamir-Adleman

SBM Schoolbook Method

SBM-KA Hybrid multiplication architecture of SBM and KA

SET Single Electron Transistor

SET-MOS Hybrid SET and CMOS

xvii

XOR Exclusive-OR

xviii

1 Introduction

1.1 Research Motivation

Network security refers to the practices and technologies to secure computer net-

works from unauthorized access. In recent years, threat situations have significantly

evolved, with cyber-attacks becoming more frequent and sophisticated. These attacks

can result in data breaches, financial losses, property damage, and even injuries to

life in some cases. Therefore, deploying resilient network security and cryptographic

measures to safeguard against these potential risks is crucial. Cryptography is a

fundamental technology used to ensure the security and privacy of digital commu-

nication. It can provide confidentiality, integrity, and authenticity by ensuring that

data transmission over networks is secure and tamper-proof [1, 2].

Public key cryptography provides more security services than symmetric key cryp-

tography, transforming how we secure digital communication. Unlike symmetric key

cryptography, which relies on a single shared secret key to encrypt data, public key

cryptography uses two mathematically related keys, a public key and a private key, to

encrypt and decrypt information [3]. Public key cryptography has many applications,

including secure email communication, secure online transactions, and digital signa-

ture verification. It is also a critical technology used to implement secure network

protocols, such as SSL/TLS, SSH, and IPsec. Additionally, public key cryptography

establishes trust between two parties who have never met before, enabling secure

communication and collaboration [4].

One of the most significant challenges of public key cryptography is that it is com-

putationally intensive and time-consuming [5]. This is because public key cryptog-

raphy involves complex mathematical computations that require considerable arith-

metic power and resources, making them slow and difficult to establish [6]. A dedi-

cated hardware implementation, such as an accelerator or co-processor, can provide

1

enough computing power and bandwidth to support public key cryptography compu-

tations, allowing for more security strength or time savings [7]. As a result, efficient

hardware implementation on public key cryptography with both low latency and small

area has become a popular research topic in past decades.

The elliptic curve cryptosystem, independently proposed by N. Koblitz [8] and

V. Miller [9] in the mid-1980s, is a widely used public key cryptosystem known for

its security and efficiency. The security of ECC relies on the mathematical diffi-

culty of solving the elliptic curve discrete logarithm problem (ECDLP) over a finite

field [2], while RSA [10], which is the other commonly used public key cryptography,

establishes its security in factoring large numbers. In recent years, elliptic curve cryp-

tosystem has become preferable to RSA, especially in applications requiring smaller

key sizes and better performance with equivalent security levels [11].

In elliptic curve cryptosystems, point multiplication (scalar multiplication) is the

primary operation based on finite field operations. The efficiency of ECC imple-

mentation largely depends on the speed and performance of computing the point

multiplications [12]. The primary operations in point multiplication are finite field

multiplications and finite field inversions (multiplicative inverse). These two finite

field operations have a higher degree of complexity than the other two operations

(additions and subtractions), which can affect the overall efficiency of ECC applica-

tions. Therefore, an efficient implementation of the finite field multiplier is crucial,

especially for applications where resources are constrained and fast execution time

is also required. i.e., smart cards, Radio Frequency Identification (RFID) tags, IoT

devices, and cell phones [13]. Besides cryptography, finite field multipliers also have

applications in coding theory, and other mathematics and computer science areas

where finite fields are used [14].

There are several main types of binary field polynomial multiplication architec-

tures. A bit-parallel polynomial multiplier computes all the bits of the polynomial

2

product in parallel, which are fast but require a large area [15]. A bit-serial poly-

nomial multiplier computes the polynomial product one bit at a time, which is slow

but requires a small area [16]. A digit-serial polynomial multiplier is a compromise

between bit-parallel and bit-serial multiplication [17].

Bit-parallel multiplication is often preferred in real-time systems because it offers

substantially higher processing speed than the other two. However, many applica-

tions have strict requirements for speed meanwhile also requiring a small area. The

schoolbook implementation of bit-parallel multiplier of size n requires O(n2) area

complexity, which can be inefficient regarding area for large polynomial size n [18].

Karatsuba algorithm (KA) is a divide-and-conquer algorithm that reduces the

number of operations required by recursively breaking down the multiplications into

smaller sub-multiplications [19]. KA multiplication can compute the product of two n-

bit operands by three sub-multiplications of n
2
-bit operands along with a few additions,

resulting in an overall area complexity of O(nlog2 3), which is more area-efficient than

schoolbook multiplication, especially for large size multiplier.

Much work has been proposed to improve this algorithm since the KA has been

extended from integer multiplication to finite field multiplications [20]. The recon-

structed KA [21, 22] improved the area complexity of the KA with similar latency

complexity (critical path delay). Overlap-free KA [23] improved the latency com-

plexity and kept the same area complexity compared to the original KA. The block

recombination method [24] further improved the area complexity and kept the same

latency compared to reconstructed KA under the 2-way splits. The optimization

techniques discussed are primarily focused on improving a specific process of the

Karatsuba algorithm, namely the reconstruction process. In addition, other methods

(such as those described in references [25, 26, 27, 28, 29, 30]) aim to further improve

the area or time complexity of the algorithm by using more splits to generate fewer

sub-multiplications.

3

The above improvements of the multiplier are from the algorithm-to-architecture

perspective. When we move to the gate-to-device perspective, bit-parallel multipliers

are implemented using Application Specific Integrated Circuits (ASIC) and Field Pro-

grammable Gate Arrays (FPGA). Both approaches employ Complementary Metal-

Oxide-Semiconductor (CMOS) technology. The Single Electron Transistor (SET) is

a fresh nanoelectronics device that operates on the principle of controlling the flow of

individual electrons through a small circuit [31]. It consists of two tunnel junctions

constructed by ultrathin dielectrics and a conductor between the tunnel junctions as

an island. A thick dielectric coupled to the island serves as gates, each of which con-

trols the flow of electrons through the SET. Applying voltages to the gates(inputs) of

SET makes it possible to occur a unique characteristic, the Coulomb-blockade oscilla-

tion [32]. The oscillation characteristic makes SET appealing for various applications,

particularly those that involve operations with multiple inputs. The finite field mul-

tiplier necessitates a plentiful presence of this type of logic gate that accepts multiple

inputs.

1.2 Problem Statement

Bit-parallel multipliers are indispensable in elliptic curve cryptosystems to provide

high-speed computation. It needs to address the problem of enormous area require-

ments. The KA has significantly reduced the area requirement of bit-parallel polyno-

mial multiplications at the cost of a slight latency increase. However, existing work

focusing on improvements to KA has reached a bottleneck, where the area reduction

is getting less and less. More research efforts, probable gate- or device-level inves-

tigations, are needed to break the research bottleneck and further enhance the area

performance of bit-parallel multipliers.

4

1.3 Research Contributions

This thesis covers a comprehensive research scope on finite field polynomial mul-

tiplications over binary extension field, including architecture- and algorithmic-level

designs, as well as gate- and device-level implementations. We used Cadence software

to design and simulate logic gates, and integrated knowledge from both algorithmic

and digital circuit designs to perform a reasonable scheme for evaluating the multi-

plier’s area and latency performance within our research area.

1. Our research involves the design of 4-input XOR gates using SET technology.

We conducted a comprehensive study on existing parallel polynomial multipli-

cation architectures, with a focus on identifying structures and building blocks

where the 4-input XOR gates can be effectively applied. The utilization of SET

technology in implementing KA multiplication has resulted in a notable im-

provement of approximately 30% in terms of area performance when compared

to the existing best result achieved with CMOS technology. This aspect of the

work was published in the 2021 IEEE Asia Pacific Conference on Circuits and

Systems.

2. Our research presents a hybrid multiplication architecture that is specifically

designed to well-suit SET-based XOR gates for further area savings. The hybrid

multiplication architecture has shown a significant improvement of around 9.8%

in terms of area performance compared to our previous work, and a remarkable

37% improvement when compared to the best results obtained using CMOS

technology. We also enhance the latency of hybrid multiplication architecture.

This aspect of the work was published in IEEE Transactions on Circuits and

Systems I: Regular Papers in November 2022.

3. Our research proposes novel logic gates with SET technology that can achieve

(a∧ b)⊕ c and (a∧ b)⊕ c⊕ d logic operations. We implement these operations

5

directly by observing the truth tables and designing the mapping using the oscil-

lation characteristic of SET-MOS. With the proposed combinational gates, the

proposed 2-way hybrid multiplier outperforms the best of CMOS-based exist-

ing work by saving 46% in gate count and 4% in the area-and-latency-product.

The proposed modified 4-way hybrid multiplier outperforms its CMOS counter-

part by saving 46% in gate count and 6% in the area-and-latency-product. If

compared to our other work, the proposed multiplier with combinational gates

achieves a further 14% improvement in gate count and 2.7%–5.7% improvement

in area-and-latency product. This aspect of the work is going to be submitted

to IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the math back-

ground of finite fields and the architectures of polynomial multiplication. Chapter 3

introduces the implementation of bit-parallel multiplication, followed by an introduc-

tion to SET technology. Chapter 4 designs the multiple-input XOR gate using SET

technology and applies these XOR gates to KA multiplication and its extensions. It

also presents a hybrid KA multiplication architecture with better area performance.

Chapter 5 develops the combinational gates using SET technology and applies the

combinational gates in multiplications. The most area-efficient bit-parallel multipli-

ers are proposed in this chapter. Chapter 6 concludes the thesis and suggests future

research opportunities.

6

2 Math Background

This chapter covers the basics of the finite field and its arithmetic, particularly the

multiplication operation. The latter part of the chapter delves into a discussion on

architectures of finite field multiplication.

2.1 Finite Fields

Definition 2.1. A field, denoted as F , is a set of elements together with two binary

operations, (+) and (∗), on F , which satisfies the following properties [33]:

• (+) operation in F is commutative, which means a + b = b + a; (∗) operation

in F is commutative, which means a ∗ b = b ∗ a.

• (+) operation is associative. For all a, b, c ∈ F , the expression (a + b) + c =

a+ (b+ c) holds; (∗) operation is associative. For all a, b, c ∈ F , the expression

(a ∗ b) ∗ c = a ∗ (b ∗ c) holds.

• There exists an element 0 ∈ F such that 0 + a = a+ 0 = a for all a ∈ F ; There

exists an element 1 ∈ F such that for all a ∈ F , 1 ∗ a = a ∗ 1 = a.

• For every a ̸= 0, a ∈ F , there exists an element a−1 ∈ F such that a−1 + a =

a+ a−1 = 0; for every a ̸= 0, a ∈ F , there exists an element a−1 ∈ F such that

a−1 ∗ a = a ∗ a−1 = 1.

• (∗) operation is distributive over (+) operation: For any a, b, c in F , a∗(b+c) =

a ∗ b+ a ∗ c, and (b+ c) ∗ a = b ∗ a+ c ∗ a.

There are two types of fields, namely, infinite fields and finite fields. An infinite

field is a field that has infinite number of element. The most well-known examples of

infinite fields are the field of real numbers and the field of complex numbers. A finite

field or Galois field is a field that contains a finite number of elements, denoted as

GF (q) or Fq. The general form for finite fields is GF (q) = {0, 1, 2, ..., q − 1}.

7

A finite field can only exist when q equals pn, where p is a prime number (known

as the characteristic of the finite field) and n is a positive integer. If n = 1, the finite

field is known as the prime field GF (p). If n > 1, then it is known as an extension

finite field. When p = 2, the finite field is called the binary extension finite field,

denoted as GF (2n). The arithmetic operations in GF (2n) binary extension fields are

considerably simpler than those in GF (p) prime fields [34]. This thesis concentrates

on the binary extension field GF (2n).

In binary fields, an irreducible polynomial is a polynomial that cannot be factored

into two non-constant polynomials of lower degrees over the field (detailed refer to

[35]). Let f(x) be an irreducible polynomial of degree n over GF (2n). Then a

polynomial basis for GF (2n) over GF (2) can be formed as,

{1, x, x2, x3, ..., xn−1},

where x is a root of f(x). Any elements, such as A, in GF (2n) with respect to the

polynomial basis can be represented as1,

A(x) =
n−1∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1,

where the coefficients ai ∈ {0, 1}. It can also be denoted as a binary vector like

A = (an−1, an−2, · · · , a2, a1, a0).

When representing GF (2n) field elements, there are commonly used bases: polyno-

mial basis, normal basis, dual basis, and redundant basis [36]. The most popular

bases in modern applications are polynomial basis and a specific type of normal ba-

1In this thesis, + denotes modular two addition when operands are signals in a finite field; and
+ denotes the addition of real numbers when operands are real numbers, such as those calculations
of area and latency complexities. It depends on the properties of the operands.

8

sis known as the optimal normal basis [34]. Different representation basis has pros

and cons. Like normal basis can handle squaring operations over at no cost but

just shifting, but it lacks efficiency in hardware implementation and is hard to use

in handling multiplication and inversion [37]. The polynomial basis is more efficient

for multiplication, and it is ideal for hardware implementation [38]. This thesis will

only focus on finite field arithmetic with a polynomial basis. In addition, trinomials,

pentanomials, equally spaced polynomials, and all one polynomials are the major

types of irreducible polynomials that are commonly used in literature for implement-

ing finite field arithmetic. The selection of irreducible polynomial is flexible, and the

complexity of implementation is related to which kind of polynomial is selected.

2.2 Arithmetic in Binary Extension Field

The major arithmetic in GF (2n) are addition, subtraction, multiplication, inversion,

and squaring. With polynomial basis, these operations are described as follows.

• Addition and subtraction are the same. Let A(x) and B(x) be two elements

in GF (2n), we have:

A(x) +B(x) =
n−1∑
i=0

(ai + bi)x
i mod 2. (2.1)

The addition of A and B under modular 2 is equivalent to the bit-wise XOR operation

of A and B.

• Multiplication is the most frequent and fundamental. Let A(x) and B(x) be

two elements in GF (2n), the straightforward multiplication (also called school-

book method or classical method) can be shown as follow,

A(x)B(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j mod f(x) mod 2. (2.2)

9

Noting that the multiplication involves a polynomial multiplication followed by

a modular reduction.

• Squaring can be seen as a special case of multiplication for two identical

operands. For example, A(x) in GF (2n), the squaring of A(x) can be rep-

resented as,

A2(x) =
n−1∑
i=0

aix
2i mod f(x). (2.3)

• Inversion can be achieved by serial multiplications. Let A(x) be an element in

GF (2n). There always exists an element A−1(x), the inverse of A(x), because

the irreducible polynomial f(x) cannot be factorized and the great common

divisor of A(x) and f(x) is 1.

It is seen that in GF (2n), addition, subtraction, and squaring are easy to im-

plement, while inversion can be computed by multiplications. Thus, the importance

of efficient multiplication is evident. Next, three major architectures of finite field

multipliers will be presented.

2.3 Architectures of Finite Field Polynomial Multiplication

Hardware implementation of multiplications in GF (2n) fields can be roughly catego-

rized into these major types: bit-serial, digit-serial, and bit-parallel.

• Bit-serial multiplication performs one bit at one clock cycle, with each bit of

the product generated sequentially. The bit-serial multiplication design can be

relatively easy to implement and efficient in terms of hardware resources (i.e.,

area requirement) [16, 39]. However, its sequential structure can lead to longer

latency and circuit depth in the computation process.

• In bit-parallel multiplications, all the bits of the operands are processed simul-

taneously, typically using parallel logic gates and networks consisting of logic

10

gates [15, 18]. This method can be the fastest than the other two, but it can

also have the greatest demand on area, as it requires a large number of logic

gates to achieve its parallel computation.

• Digit-serial multiplication is a trade-off between the other two types of multi-

plication. This type of multiplier defines a digit size, then divides the two inputs

(any two elements in GF (2)) in terms of digits according to the digit size. Each

clock cycle computes one digit, and the resulting bits are accumulated to form

the final sequence [17, 40]. The complexity of this type of multiplication depends

on the size of the digit.

The asymptotic space and time complexity to evaluate the performance of different

types of multiplication is summarized in Table 2.1, where the area complexity is of

operand count and clock cycle.

Table 2.1: Complexities of different types of multiplication.

Type Area complexity Clock cycle
Bit-serial O(n) O(n)
Digit-serial O(dn)† O(d)
Bit-parallel O(n1+ϵ), 0 < ϵ ⩽ 1 O(1)
† d denotes the digit size.

It is worth noting that the complexity of digit-serial multiplication is influenced

by the size selection of digits. For example, in Table 2.1, as the digit size d increases

from 1 to n, its area complexity can increases from O(n) to O(n2), while its time

complexity can decrease from O(n) down to O(1)[17]. In addition, bit-parallel mul-

tiplication is the fastest of all, and its space complexity, can be affected by different

multiplication architectures. The quadratic area complexity O(n2) can be reduced to

sub-quadratic area complexity O(n1+ϵ), 0 < ϵ < 1, by improvement from the mul-

tiplication algorithm or architecture perspective [15]. And this is the main focus of

this thesis.

11

3 Research Overview

This chapter is an overview of the existing work, including multiplication architectures

with quadratic area complexity O(n2) and sub-quadratic area complexity O(nlog2 3).

3.1 Quadratic Area Complexity Methods

This section introduces the schoolbook method (SBM) represented by polynomial

basis.

3.1.1 Schoolbook Method

Let binary extension field GF (2n) be generated with the irreducible polynomial f(x)

of degree n. Then f(x) introduces a polynomial basis, {1, x, x2, x3, . . . , xn−1}, in

GF (2n). Suppose A and B are two elements in GF (2n) represented with polynomial

basis A(x) =
∑n−1

i=0 aix
i and B(x) =

∑n−1
i=0 bix

i, where ai, bi ∈ GF (2), 0 ≤ i ≤ n− 1.

A bit-parallel polynomial multiplication of A and B can be given as,

A(x)B(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j ≜

2n−2∑
k=0

ckx
k = C(x),

where,

ck =
∑
i+j=k

0≤i,j≤n−1

aibj, k = 0, 1, . . . , 2n− 2. (3.1)

A following-up step of polynomial reduction modulo f(x) would complete finite

field multiplication. In this work we focus on the polynomial multiplication to obtain

ck for given A and B. In the sequel, the polynomial multiplication using (3.1) will be

denoted as the SBM.

There are only two kinds of ground field operations in (3.1), and they can be

conveniently implemented by 2-input XOR and 2-input AND gates. We denote the

gate counts of 2-input AND and 2-input XOR as G⊗ and G⊕, respectively. Latency,

12

denoted as L, is usually evaluated by the number of gates on the longest path (critical

path/circuit depth) from input to output of the multiplier [41, 42, 43]. The gate delay

of 2-input AND and 2-input XOR are denoted as D⊗ and D⊕. Clearly from (3.1) we

see the area complexity of SBM is O(n2) respecting to multiplier size n.

From (3.1), the area complexity of SBM can be summarized as,

G⊗(n) = n2,

G⊕(n) = n2 − 2n+ 1.

(3.2)

The critical path length occurs during the processing of cn−1 = a0bn−1 + · · ·+ an−1b0

from (3.1). Therefore, the latency of SBM is,

L(n) = ⌈log2 (n)⌉D⊕ +D⊗.

The SBM is the fastest among all binary field polynomial multipliers, but it

lack of application scenarios due to the immense area complexity. The area issue

of schoolbook becomes even more pronounced when dealing with larger multiplier

sizes. Therefore, in bit-parallel multiplication, the main objective is to achieve opti-

mal space complexity while maintaining an acceptable critical path delay.

When it comes to improving the area complexity of the bit-parallel multiplier,

there are two classes that need to be talked about. One aims to linearly reduce

the quadratic area complexity O(n2) with modifications on multiplication architec-

ture while keeping the latency no larger than log2 n, such as the Chinese remainder

theorem method [44]. The other class exponentially reduces the area complexity to

sub-quadratic O(nlog2 3) at the cost of doubling to tripling the latency, which will be

discussed in the following section.

13

3.1.2 Mastrovito Method

One quadratic method , the Mastrovito method [45], has an area complexity of O(n2).

It differs from SBM, which focuses on polynomial multiplication, as it involves both

modular reduction and polynomial multiplication. Extensions of this method, such

as [46, 47], improve the Mastrovito multiplier, but their area complexities still remain

quadratic.

3.2 Sub-Quadratic Area Complexity Methods

The following section is dedicated to discussing KA and its extensions, specifically

in regard to 2-way and 4-way splits. These sub-quadratic methods can help reduce

the excessive area complexity of bit-parallel multiplication, albeit at the expense of a

slight increase in latency.

3.2.1 Original 2-Way KA

In order to reduce the quadratic area complexity, KA has been intensively researched

and applied for polynomial multiplication in finite fields [15]. Research has shown

that KA multipliers are with sub-quadratic area complexity, i.e., [19]. The original

KA is described in detail to facilitate an understanding of the complexity calculation.

Let A(x) and B(x) be two elements in the binary extension field GF (2n), where

n is a power of 2. They can be divided into two parts of equal length,

A(x) =
n−1∑
i=0

aix
i = A1(x)x

n
2 + A0(x), B(x) =

n−1∑
i=0

bix
i = B1(x)x

n
2 +B0(x). (3.3)

It can be seen that all Aj(x) and Bj(x) are polynomials of degree n
2
− 1 with x, for

j ∈ {0, 1}. Then, the product C can be calculated as,

C =AB

14

=A0(x)B0(x) + (A0(x)B1(x) + A1(x)B0(x))x
n
2 + A1(x)B1(x)x

n

=P0 + (P2 + P1 + P0)x
n
2 + P1x

n, (3.4)

where
P0 = A0(x)B0(x), P1 = A1(x)B1(x),

P2 = (A0(x) + A1(x))(B0(x) +B1(x)).

(3.5)

The partial product, Pi, are polynomial of degree n − 1, for j ∈ [0, 2], which can be

seen as the products of sub-polynomial multiplication with operand size n
2
. Therefore,

the computation process of C = AB can be divided into,

• Component process: Pre-processing the input operands A0(x) + A1(x) and

B0(x) +B1(x) for P2, which can be implemented by XOR gates.

• Three sub-multiplications: Calculating three multiplications of size n
2
.

• Reconstruction process: Reconstructing the partial products generated by sub-

multiplications. For example, a part of reconstruction is to compute P0+P1+P2,

which XOR gates or networks can implement.

Clearly, KA multiplication recursively uses the “divide and conquer” approach. Based

on (3.4) and (3.5), we can calculate the recursive XOR and AND gate count com-

plexity, denoted by G⊗(n) and G⊕(n), as shown in Table 3.1.

Table 3.1: Recursive gate count of 2-way KA

Process G⊕(n) G⊗(n)
Component n 0

Sub-multiplication 3G⊕(
n
2
) 3G⊗(

n
2
)

Reconstruction 3n− 4 0

Reconstruction for 2-way split KA can be computed in the following two steps.

• Step 1: R = P0 + P1 + P2. Since each Pi has n− 1 bits, R can be processed by

2(n− 1) = 2n− 2 2-input XOR gates.

15

• Step 2: AB = P0+Rx
n
2 +P1x

n. The overlap can be processed by 2(n
2
−1) = n−2

2-input XOR gates.

Consequently, the recursive area complexity of 2-way original KA can be summarized

as,
G⊗(n) = 3G⊗(

n
2
),

G⊕(n) = 3G⊕(
n
2
) + 4n− 4.

(3.6)

Non-recursive area complexity can be solved in many ways, here we directly use the

Lemma given in [48].

Lemma 1 ([48]). Let a, b, k be positive integers. Let n = bk and assume a ̸= b,

a ̸= 1. The solution to the recurrence relations

R1 = e,

Rn = aRn/b + cn+ d.

is shown as follows

Rn = (e+
bc

a− b
+

d

a− 1
)nlogb a +

−bc
a− b

n+
−d
a− 1

. (3.7)

The initial gate counts are G⊕(1) = 0 and G⊗(n) = 1. By using (3.7), non-

recursive area complexity of 2-way original KA can be obtained as,

G⊗(n) = nlog2 3,

G⊕(n) = 6nlog2 3 − 8n+ 2.

(3.8)

Table 3.2 shows an example to find recursive latency complexity. We calculate

the latency complexity of the original KA in 5 stages. From the table we can see the

total delay is one sub-multiplication’s delay plus 3 XOR gates delay.

16

Table 3.2: Recursive latency complexity accumulation for 2-way original KA

Stage Inputs A and B Accumulated Latency

I
Sub-multip.
for P0

A0(x) + A1(x);
B0(x) +B1(x)

Sub-multip.
for P1

D⊕

II Sub-multiplication for P2 P1 + P0 D⊕ + L(n/2)
III R = ((P0 + P1) + P2) 2D⊕ + L(n/2)

V Output C = P0 +Rxn/2 + P1x
n 3D⊕ + L(n/2)

Fig. 3.1: A schematic of 2-bit KA multiplication.

The recursive latency complexity of original KA can be summarized as,

L(n) = 3D⊕ + L(n/2).

The initial latency is L(1) = D⊗. Noting that the 2-bit KA has no overlap as shown

in Figure 3.1, so that L(2) = 2D⊕ +D⊗. For n ≤ 4, each KA recursion will add 3D⊕

to the total latency. Hence, the non-recursive latency complexity can be derived as,

L(n) = (3 log2 n− 1)D⊕ +D⊗

3.2.2 2-Way KA’s Extensions

This section outlines 2-way methods extended from the original KA, optimized for

either area or latency complexity.

17

3.2.2.1 2-Way Reconstructed KA

The reconstructed KA method suggested in [21, 22] can reduce XOR gate count in

polynomial multiplication compared with original KA. Let GF (2n) and elements A,B

be defined in the same way as original KA. The product C is,

C =AB

=A0(x)B0(x) + (A0(x)B1(x) + A1(x)B0(x))x
n
2 + A1(x)B1(x)x

n

=(P0 + P1x
n
2)(x

n
2 + 1) + P2x

n
2 , (3.9)

where the notation for partial products is the same with (3.4).

The component process and sub-multiplications require the same gate counts as

original KA, which is shown in Table 3.1. The totally gate count to implement re-

construction process can be obtained as 5n
2
− 3 XOR gates. Adding the component

process and sub-multiplications shown in Table 3.1, recursive area complexity of re-

constructed KA can be summarized. For latency complexity this method exhibits

the same latency complexity as the original KA, which is 3 additional D⊕ for each

recursion. One D⊕ can be subtracted due to no overlap in L(2), as shown in Fig-

ure 3.1. Therefore, non-recursive complexities of reconstructed KA method can be

summarized as,
G⊗(n) = nlog2 3,

G⊕(n) =
11
2
nlog2 3 − 7n+ 3

2
,

L(n) = (3 log2 n− 1)D⊕ +D⊗.

(3.10)

3.2.2.2 2-Way Overlap-Free KA

An overlap-free method was proposed to speed up KA multiplication by dividing

the input operands into odd and even terms [23]. The overlap-free method doesn’t

decrease the area complexity to the original KA, but it reduces latency. Let GF (2n)

18

be defined in the same way as original KA. Let A and B are two elements in GF (2n)

with degree n− 1. In overlap-free method, A and B can be expressed as,

A =
n−1∑
i=0

aix
i = A1(x

2)x+ A0(x
2), B =

n−1∑
i=0

bix
i = B1(x

2)x+B0(x
2),

where

A0(x
2) =

n
2
−1∑

i=0

a2ix
2i, A1(x

2) =

n
2
−1∑

i=0

a2i+1x
2i,

B0(x
2) =

n
2
−1∑

i=0

b2ix
2i, B1(x

2) =

n
2
−1∑

i=0

b2i+1x
2i.

Aj(x
2) and Bj(x

2) for j ∈ 0, 1 can be seen as equal-length polynomials with degree

n
2
− 1. A0 and B0 contains all the terms of even degree, while A1 and B1 contains all

the terms of odd degree. Let y = x2, the produce of A and B can be expressed as,

C =AB

=A0(y)B0(y) + (A0(y)B1(y) + A1(y)B0(y))x+ A1(y)B1(y)y

=P0 + (P2 + P1 + P0)x+ P1y, (3.11)

P0 = A0(y)B0(y), P1 = A1(y)B1(y),

P2 = (A0(y) + A1(y))(B0(y) +B1(y)).

(3.12)

Noting that a polynomial multiplied by x or x2 in hardware implementation can

be easily done by shifting the polynomial’s coefficients by 1 or 2 bits, which means

no additional gates are required or additional latency happened. In reconstruction

process of (3.11) one D⊕ can be eliminated by this method when compared with

original KA.

The multiplier’s XOR gate count is 4n − 4 plus 3 sub-multiplications; its AND

19

gate count consists of 3 sub-multiplications. Latency is 2 XOR gate delay and 1 sub-

multiplication. It can be seen that for each recursion, this method has one less XOR

gate delay than the original KA. Its non-recursive formulas can be summarized as,

G⊗(n) = nlog2 3,

G⊕(n) = 6nlog2 3 − 8n+ 2,

L(n) = 2 log2 nD⊕ +D⊗.

It is faster than other 2-way KA’s extensions, but still much slower than the SBM.

3.2.2.3 2-Way Block Recombination Method

Block recombination method was first presented for Toeplitz matrix-vector multi-

plications in [49], and later [24] applied and advanced this method to polynomial

multiplications. This method decomposes KA multiplications into three blocks and

calculates the block’s complexity separately.

From input to output, block recombination method decomposes the KA into the

following three blocks.

• Component polynomial formation (CPF): For any elementA inGF (2n), CPFn(A) =

Â, where Â performs an array with log2 3 bits.

• Component multiplication (CM): This block consists of parallel AND gates,

which can process bit-wise multiplications. CM(Â, B̂) = Â⊗ B̂ = Ĉ

• Reconstruction (RC): RC involves the reconstruction process of KA multipli-

cations. It recursively using reconstruction process to compute Ĉ with log2 3

bits down to C with 2n− 2 bits. RCn(Ĉ) = C.

Among these blocks, the CM is the simplest to construct, i.e., nlog2 3 AND gates in

parallel. The detailed description with proofs for the functions of CPF , CM and

20

RC are in [24]. The complexities of CPF and RC can be simply represented by

computing non-recursive formulas for the component process and the reconstruction

process coupled with the sub-multiplications for a certain KA method. For example,

if original KA is applied, following steps illustrate computation of the area complexity

to GCPF
⊕ (n), GCM

⊗ (n) and GRC
⊕ (n), and latency complexity to LCPF (n), LCM(n) and

LRC(n).

For example, if reconstructed KA is applied, the complexity of these block can be

shown as follows,

GCPF

⊕ (n) = nlog2 3 − n, GCM
⊗ (n) = 6nlog2 3,

GRC
⊕ (n) = 7

2
nlog2 3 − 5n+ 3

2
,

LCPF (n) + LCM(n) + LRC(n) = 3(log2 n− 1)D⊕ +D⊗.

(3.13)

The block recombination method requires one more piece of content to be fully ex-

ecuted, which is the two-multiplication-and-add structure. Let A and B be two ele-

ments in GF (2n), A = A0+A1x
n
2 , B = B0+B1x

n
2 , where Ai and Bi are equal length

with degree n
2
− 1 for i ∈ {0, 1}. 2-way block recombination expand the C = AB as

AB = A0B0 + (A0B1 + A1B0)x
n
2 + A1B1x

n.

It can be performed by 4 n
2
-bit KA multiplications as Ci,j = AiBj, i, j ∈ {0, 1}. For

C0,1 + C1,0, one RC block can be omitted by (3.14). A 2n − 1 bit-wise addition is

replaced by a component addition (CA) block consisting of XOR gates.

Lemma 2 ([24]). Let Ĉ and Ĉ ′ be two arrays of nlog2 3 bits. Let RCn be the recon-

struction function, we have:

RCn(Ĉ) +RCn(Ĉ ′) = RCn(Ĉ + Ĉ ′). (3.14)

21

According to the multiplication architecture after the recombination, we can sum-

marize the following The area and latency complexity to different blocks are summa-

rized below.
G⊗(n) = 4GCM

⊗ (n
2
),

G⊕(n) = 4GCPF
⊕ (n

2
) + 3GRC

⊕ (n
2
) +GCA

⊕ (n
2
) + n− 2,

L(n) = LCPF (n
2
) + LCM(n

2
) + LRC(n

2
) + 2D⊕.

The complexities of blocks are shown in (3.13). Therefore, the area and latency

complexities of 2-way block recombination can be summarized as,

G⊗(n) =

4
3
nlog2 3;

G⊕(n) =
31
6
nlog2 3 − 17

2
n+ 5

2
;

L(n) = (3 log2 n− 1)D⊕ +D⊗.

The 2-way block recombination method saves XOR gate count and increases AND

gate count compared to reconstructed KA, with a minor reduction in total gate count.

3.2.3 4-Way KA and Its Extensions

4-way KA has a more complex reconstruction process that provides more room for

further improvements, resulting in better area and latency complexity than 2-way

KA.

3.2.3.1 4-Way KA

A(x) and B(x) with degree n− 1 can be divided into four equal-length polynomials

with degree n
4
− 1 shown as follows,

22

A(x) =
n−1∑
i=0

aix
i =

n
4
−1∑

i=0

aix
i

︸ ︷︷ ︸
A0

+x
n
4

n
4
−1∑

i=0

ai+n
4
xi

︸ ︷︷ ︸
A1

+x
n
2

n
4
−1∑

i=0

ai+n
2
xi

︸ ︷︷ ︸
A2

+x
3n
4

n
4
−1∑

i=0

ai+ 3n
4
xi

︸ ︷︷ ︸
A3

,

B(x) =
n−1∑
i=0

bix
i =

n
4
−1∑

i=0

bix
i

︸ ︷︷ ︸
B0

+x
n
4

n
4
−1∑

i=0

bi+n
4
xi

︸ ︷︷ ︸
B1

+x
n
2

n
4
−1∑

i=0

bi+n
2
xi

︸ ︷︷ ︸
B2

+x
3n
4

n
4
−1∑

i=0

bi+ 3n
4
xi

︸ ︷︷ ︸
B3

.

which can be shortened as

A = A0 + A1x
n
4 + A2x

n
2 + A3x

3n
4 , andB = B0 +B1x

n
4 +B2x

n
2 +B3x

3n
4 . (3.15)

The product of A and B can be performed as,

AB =P0 + (P0 + P1 + P2)x
n
4 + (P0 + P1 + P3 + P6)x

n
2

+ (P0 + P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8)x
3n
4

+ (P1 + P3 + P4 + P7)x
n + (P3 + P4 + P5)x

5n
4 + P4x

3n
2 (3.16)

where the partial products Pi, i ∈ [0, 8] can be expressed as,

P0 = A0B0, P1 = A1B1,

P2 = (A0 + A1)(B0 +B1),

P3 = A2B2, P4 = A3B3,

P5 = (A2 + A3)(B2 +B3),

P6 = (A0 + A2)(B0 +B2),

P7 = (A1 + A3)(B1 +B3),

P8 = (A0 + A1 + A2 + A3)(B0 +B1 +B2 +B3).

(3.17)

23

Table 3.3: Complexity of 4-way KA without reconstruction process.

Computation G⊕ G⊗ L
P0, P1, P3, P4 4G⊕(

n
4
) 4G⊗(

n
4
) L(n

4
)

P2, P5, P6, P7 4(G⊕(
n
4
) + n

2
) 4G⊗(

n
4
) L(n

4
) +D⊕

P8 G⊕(
n
4
) + n

2
G⊗(

n
4
) L(n

4
) + 2D⊕

The gate counts of components process and sub-multiplication implemented with

(3.17) can be calculated in Table 3.3. For example, to carry out the partial products,

P0, P1, P3, and P4, only 4 sub-multiplications are needed. Both XOR gate and

AND gate counts come from these sub-multiplications, and the latency is one sub-

multiplication’s latency. For P2, P5, P6, and P7 ,the XOR gate count comes from 4

sub-multiplications and n
2
XOR gates used to calculate components such as A0 +A1.

Their AND gate count also comes from 4 sub-multiplications. The latency of P2, P5,

P6, and P7 can be determined by one sub-multiplication with n
2
XOR gate delay. For

P8, the XOR gate count arises from 1 sub-multiplication, and one XOR to compute

the component such as A0 + A1 + A2 + A3. Note that the components like A0 + A1

and A2 + A3 have been carried out by computation of P2, P5, P6, and P7, therefore,

only one parallel layer of XOR is needed. The AND gate count arises from one sub-

multiplication. The latency to produce P8 one sub-multiplication’s latency plus two

XOR gate delay.

Typically, previous research enhance the formula (3.16) before utilizing it to a

reconstruction process. This formula is inefficient to implement with CMOS based

gates because it involves multiple overlaps.

3.2.3.2 4-Way Reconstructed Method

It is shown that the reconstruction process in (3.16) can be optimized following these

steps [21].

R0 = P0 + P1x
n
4 + P3x

n
2 + P4x

3n
4 ,

24

R1 = R0 +R0x
n
4 , R2 = R1 + P2x

n
4 + P5x

3n
4

R3 = R2 +R2x
n
2 , R4 = P6 + P7x

n
4

R5 = R4 +R4x
n
4 + P8x

n
4 . (3.18)

The calculation of area complexity is the same as 2-way KA, hence it is skipped here.

About latency complexity, we see from (P0, P1, P3, P4) → R0 → R1 → R2 → R3

the latency in reconstruction process involves 4 XOR gates delay. The latency from

(P2, P5),→ R2 → R3 also includes 3 XOR gates delay, which is the same as (P6, P7)→

R4 → R5. From P8 → R5 the latency has 2 XOR gates delay. In conjunction with the

latency of component and sub-multiplication process in Table 3.3, we can conclude

that each round of KA produces 5 XOR gates delay. In short, the complexity of

reconstructed KA is summarized as,

G⊗(n) = nlog2 3,

G⊕(n) =
217
40
nlog2 3 − 34

5
n+ 11

8
,

L(n) = 5
2
log2 nD⊕ +D⊗.

One can notice that a KA multiplier reconstructed using 4-way block recombination

is superior to its 2-way version regarding both gate count and latency, when n is a

power of 4. In the following paragraphs, we will provide a brief overview of the 4-way

block recombination method.

3.2.3.3 4-Way Block Recombination Method

4-way block recombination is evolved from of 2-way block recombination, and it ex-

hibits reduced area complexity compared to the 4-way reconstructed KA method [24].

Its reconstruction blocks can be implemented using either an area-saving or a latency-

saving method, resulting in optimal complexities in two different orientations. The

25

n-bit operands A(x) and B(x) can be divided into four equal-length polynomials with

degree n
4
− 1, shown as (3.15). Then their product can be expressed as,

AB = C1 + C1x
n
4 + C2x

n
2 + C3x

3n
4 + C4x

n + C5x
5n
4 + C6x

3n
2 , (3.19)

where

C0 = A0B0, C1 = A0B1 + A1B0,

C2 = A0B2 + A1B1 + A2B0,

C3 = A0B3 + A1B2 + A2B1 + A3B0, (3.20)

C4 = A1B3 + A2B2 + A3B1,

C5 = A2B3 + A3B2, C6 = A3B3.

The blocks and extra XOR gates requirement can be calculated from (3.19) and

(3.20), and the area and latency complexities can be summarized as follows,

G⊗(n) = 16GCM

⊗ (n),

G⊕(n) = 8GCPF
⊕ (n

4
) + 7GRC

⊕ (n
4
) + 9GCA

⊕ (n
4
) + 3n

2
− 6;

L(n) = LCPF (n
4
) + LCM(n

4
) + LRC(n

4
) + 3D⊕.

(3.21)

Noting that the latency of these three blocks LCPF (n
4
)+LCM(n

4
)+LRC(n

4
) is equivalent

to the delay of a 4-way KA of size n
4
.

Table 3.4: Complexity of blocks in the 4-way block recombination

GCPF
⊕ (n) GRC

⊕ (n) GCM
⊗ (n) LCPF (n) + LCM(n) + LRC(n)

Area nlog2 3 − n 137
40
nlog2 3 − 24

5
n+ 11

8
nlog2 3 5

2
log2 nD⊕ +D⊗

Latency nlog2 3 − n 31
8
nlog2 3 − 6n+ 17

8
nlog2 3 2 log2 nD⊕ +D⊗

The area and latency complexity regarding reconstruction blocks is summarized

in Table 3.4. The left column displays the two designs for the block recombination

26

method, area-oriented (area) and latency-oriented (latency). The latency-oriented

method is the 4-way KA method proposed in [24], which has lower latency com-

plexity. The middle three columns are the area complexities of CPF , RC and CM

blocks with respect to the input size. The right column is the latency required for

these three blocks. By combining Table 3.4 and equation (3.21), we can determine

the complexities of both the area-oriented and latency-oriented 4-way block recombi-

nation methods.

For the area-oriented method:
G⊗(n) =

16
9
nlog2 3,

G⊕(n) =
1639
360

nlog2 3 − 89
10
n+ 29

8
,

L(n) = (5
2
log2 n− 2)D⊕ +D⊗.

(3.22)

For the latency-oriented method:

G⊗(n) =

16
9
nlog2 3,

G⊕(n) =
353
72
nlog2 3 − 11n+ 71

8
,

L(n) = (2 log2 n− 1)D⊕ +D⊗.

(3.23)

It becomes apparent that the two methods are the most efficient among all the

existing methods mentioned in this chapter, in terms of area complexity and latency

complexity, respectively, when n is an integer power of 4.

3.2.4 Mixed Algorithm

In [50], a “mixed” algorithm that combined the SBM with KA was used to search

for the best space complexity for 3 ≤ n ≤ 128. This method was also used in

[51] to design multipliers of several sizes in the range of 113 ≤ n ≤ 283 for FPGA

implementation.

27

3.2.5 K-way Split KA, k ̸= 2, 4

There are KA architectures with other splits, for example, the 3-way KA can use 6

sub-multiplications to achieve an area complexity of nlog3 6 ≈ n1.63[52]. Montgomery

presented presented 5, 6, and 7 split KA architectures and listed the bounds with

repect to the exponent of n [30]. Research [53, 28, 26, 54] further improved multi-

split KA and obtained better bounds than [30].

3.3 Logic Gate Implementation

The finite field multiplier described earlier employs the 2-input AND and the 2-input

XOR gate as its fundamental logic gates.

3.3.1 CMOS XOR Gates

If we consider area-saving as a priority, Pass-Transistor Logic (PTL) is a better choice

[55, 56] than conventional CMOS logic. A schematic of 2-input XOR gate designed

with PTL is shown in Figure 3.2.

Fig. 3.2: 2-input XOR gate designed using PTL and its truth table

The XOR gate is designed using only 4 transistors, 3 n-MOS and 1 p-MOS. It

operates in the following manner. If both input signals (a and b) are logic “low”, the

n-MOS connected to a and b generates a logic “low” signal, which is then inverted

to produce a logic “high” output. (The output is preceded by an inverter consisting

28

of an n-MOS and a p-MOS; the other n-MOS is off) If both input signals are logic

“high”, the n-MOS linked to them generates a logic “low” signal (the other n-MOS

is off), which is also inverted to produce a logic “high” output. Finally, if two inputs,

one is logic “high” and the other one is logic “low”, the two n-MOS on the left both

deliver logic “low”, causing the output to be logic “high”.

3.3.2 CMOS AND Gates

A schematic of 2-input AND gate designed with PTL is shown in Figure 3.3.

Fig. 3.3: 2-input AND gate designed using PTL and its truth table

From the schematic on the left in Figure 3.3, it can be seen that when b is logic

“low”, the upper left n-MOS is off, and lower left n-MOS performs logic “high”

signal. Passing the inverter, and output shows logic “low”. When both b and a are

logic “high”, the lower left n-MOS is off, the upper left n-MOS performs logic “high”,

and output would be logic “low”. When b is logic “high” and a is logic “low”, both

the left 2 n-MOS generate logic-low signals, and output should be logic “high”.

3.4 Single Electron Technology

One of the most potential candidates for the next generation of nanoelectronics is

the single electron technology [57], which enables the manipulation and control of

either one or a small group of electrons. It is believed that the initial detection of

Coulomb blockade, which led to the discovery of single electron technology, was likely

29

first performed by Gorter [58] in 1951. The research on single-electron device physics

did not see significant activity until the mid-1980s, when Averin and Likharev [59, 60]

introduced the single-electron transfer oscillation and single electron transistor, which

sparked a renewed interest in the area of research.

3.4.1 Single Electron Transistor

The single electron transistor (SET) is an emerging nanoelectronics device that op-

erates on the principle of controlling the flow of individual electrons through a small

circuit. It consists of two tunnel junctions constructed by ultrathin dielectrics, and

a conductor between the tunnel junctions as island. Thick dielectrics coupled to the

island serve as gates, each of which controls the flow of electrons through the SET,

as shown 3.4.

Fig. 3.4: Schematic and simple layout of a single electron transistor

SET is distinguished by its exceptionally small size, minimal power consumption,

and distinctive Coulomb blockade oscillation characteristics. By leveraging the unique

Coulomb blockade oscillation of the SET, one can achieve novel functionalities with

fewer transistor count. However, pure SET has its shortcomings, such as low current

drive capability, lack of room temperature operations, and small voltage gain.

3.4.2 Hybrid SET-MOS Transistors

Research has shown that hybrid SET and CMOS (SET-MOS) transistor is an excel-

lent solution to pure SET’s intrinsic drawbacks [61]. The unique Coulomb blockade

oscillations of SET provide it with advantages in low power consumption and new

30

functionality, while CMOS compensates for the intrinsic drawbacks of SET with its

high-speed driving and voltage gain [32].

We design logic gates based on SET-MOS, and when it comes to simulation, the

Monte Carlo technique is regarded as the most precise approach to simulate SET,

using probability calculations. Nevertheless, this technique becomes time-consuming

when simulating large circuits and is not suitable for co-simulation with CMOS gates.

The compact model of SET known as MIB (initials of the author’s name [62]) offers

fast simulation and is attractive for hybrid CMOS and SET co-simulation. The

model is developed using the Master Equation technique and has been verified with

perfect match to the Monte Carlo result. The Verilog-A version of MIB model can

be readily integrated into Cadence using the Verilog-A interface [63]. In this thesis,

the co-simulations of SET-MOS gates are performed using Cadence Spector simulator

integrated the MIB compact model, along with CMOS technology of 45nm generic

process design kits(GPDK45).

Fig. 3.5: Two popular SET-MOS structures

Figure 3.5 shows two commonly utilized SET-MOS structures. The serial SET-

MOS structure was first put forward in [64] with many applications such as random-

access memory [64] and analog-to-digit converter [64, 65]. Our designs are based on

parallel SET-MOS structure, which was first launched in [66] to increase the current

31

drivability. To achieve a high voltage gain, the n-MOS followed by SET in Figure

3.5(b) is biased in the sub-threshold region. Specifically, Vin0 is used to adjust the

initial phase of voltage oscillation at the SET’s drain terminal, while Vbias compensates

for the gate-to-source voltage of the n-MOS transistor. The n-MOS transistor is biased

with a constant current, allowing the oscillation to be transferred to the output node

with an amplified amplitude.

Fig. 3.6: A typical voltage transfer characteristics (VTC) of Figure 3.5(b).

When the voltage of Vin1 increases linearly, Vout is shown in Figure 3.6 with param-

eters of CTS = CTD = CG1 = CG2 = 0.1aF , Ibias = 80nA, Vin0 = 0, Vbias = −180mV ,

IDC = 1uA, RTS = RTD = 1MΩ. It can be seen that SET-MOS can produce an

oscillating waveform at room temperature thanks to the Coulomb blocking effect of

SET and the compatibility with CMOS devices. By adjusting the parameters of the

circuit, such as increasing or decreasing the bias current and voltage, input capaci-

tance, periodicity of oscillation, initial phase, amplitude, the peak and valley of the

waveform can be changed. In short, SET-MOS provides great flexibility, but design-

ing SET-MOS circuits with appropriate parameters to generate stable and suitable

oscillation waveform can be a challenging task.

32

4 Proposed SET-MOS XORGates and Hybrid SBM-

KA Multiplier

4.1 Introduction

Bit-parallel multipliers are crucial for achieving high-speed computation and ensur-

ing the efficient operation of the elliptic curve cryptosystem. However, implementing

SBM (the schoolbook/classical method for bit-parallel multiplier) requires a signifi-

cant area (gate count). Fortunately, the introduction of KA (Karatsuba algorithm

for bit-parallel multiplier) has substantially reduced the required area for implement-

ing bit-parallel multipliers. Much of recent work on parallel finite field multipliers is

based on or related to KA. Notably, there are reconstructed KA [21], overlap-free KA

[23], block recombination method [24], and “mixed” methods [50, 51].

Noting that most research progress in this regard has been made using traditional

CMOS technologies. Further performance improvement may be possible from an al-

gorithmic and architectural perspective, but the room seems limited. Research shows

that new nanodevices, such as SET devices, can play an essential role in this challenge

from a device-level point of view [67]. With their unique oscillation characteristics

and the compatibility with CMOS, SET-MOS can provide high flexibility and area

savings in implementing logic operations, especially multiple-input XOR logic.

4.2 Multiple-Input XOR Gates Using SET-MOS

In this section, multiple-input XOR gates are designed using SET-MOS, simulated,

and compared with CMOS counterparts.

33

4.2.1 Multiple-Input XOR Operation

A multiple-input XOR has the same logic as a 2-input XOR shown in Figure 3.2. It

reveals a pattern that shows when the sum of all inputs that equal to logic “1” is odd,

and the output is logic “1”; if the sum of all inputs that match logic “1” is even, the

output is logic “0”. When it comes to a 4-input XOR operation, the truth table can

be shown as follows.

Table 4.1: Truth table of 4-input XOR operation

Input “a” Input “b” Input “c” Input “d” Sum of inputs Output
0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 0 1 1
1 0 0 0 1 1
0 0 1 1 2 0
0 1 1 0 2 0
1 1 0 0 2 0
0 1 0 1 2 0
1 0 0 1 2 0
1 0 1 0 2 0
0 1 1 0 2 0
0 1 1 1 3 1
1 0 1 1 3 1
1 1 0 1 3 1
1 1 1 0 3 1
1 1 1 1 4 0

We have added a column “Sum of input” to Table 4.1. By comparing the “Sum of

input” and output columns, it can be seen that the output is 1 for odd “Sum of input”

and 0 for even “Sum of input.” Furthermore, this correspondence between input and

output perfectly aligns with the oscillation characteristic of SET. CMOS technology

typically constructs multi-input XOR gates using multiple 2-input XOR gates, where

the input number is directly proportional to the transistor count (an indicator of

the area performance of the multiplier in this thesis). Conversely, SET devices can

incorporate multiple inputs with a single gate, as demonstrated by the fabrication

34

of multiple-input SET devices [68], which have been used in various applications

[69, 70]. By adjusting the parameters of a multiple-input SET-MOS, we can design

a multiple-input XOR gate with fewer transistors than its CMOS counterpart.

4.2.2 4-Input SET-MOS XOR Gates

A 4-input XOR gate can be developed by adding inputs and a CMOS inverter to the

parallel MIB structure shown in Figure 3.5(b). The expected VTC of SET for the

XOR operation from Table 4.1 can be sketched in Figure 4.1. Then we need to adjust

the parameters to make the SET-MOS gate follow with this VTC.

Fig. 4.1: Expected VTC of SET’s input and output to a 4-input XOR gate.

Regarding the selection of parameters, such as logic high/low values, and oscilla-

tion periodicity. A fundamental assumption can be made that the minimum value of

capacitance is 0.1aF , and let CTD, CTS, and CG be equal to this value in this thesis.

The periodicity of SET’s VTC can be obtained by e
CG

[66], where e is the electronic

charge (1.6 × 10−19C), and CG is the gate capacitance (0.1aF in this case)—the os-

cillation periodicity can be concluded as 1.6V . The logic high value of the input and

output can be set to 0.8V , i.e., one-half periodicity of the VTC, and the logic low

value to 0. To determine the structure of a 4-input XOR, three identical inputs can be

added to the SET (with all CG values being 0.1aF) followed by a CMOS inverter to

boost its driving capability. Figure 4.2 displays a multiple-input SET-MOS structure

that comprises a 4-input SET-MOS XOR gate.

35

Fig. 4.2: A generic SET-MOS structure for multi-input logic gate, such as XOR.

To figure out the remaining parameters, some simulations on VTC of SET-MOS

(Vin−i to Vout1, excluding the CMOS inverter) are shown in Figure 4.3 for ranging Ibias

from 50nA to 90nA and Vbias from −180mV to 350mV , while keeping CTS = CTD =

CG1 = CG2 = 0.1aF , Vin0 = −100mV , IDC = 1uA, RTS = RTD = 1MΩ. We aim to

make the peak and valley values of the oscillation waveform closer to 0.8V and 0V ,

respectively. It seems that the parameters of Ibias = 65nA and Vbias = −265mV are

closer to our target. In addition, when Vout1 goes through the inverter and outputs

Vout2, whether it can reach 50% duty cycle is also a key consideration.

Fig. 4.3: VTCs of SET-MOS via different bias currents and voltages.

After several attempts, the results of Figure 4.4 were obtained with the parameters

36

shown in Table 4.2.

Table 4.2: Parameters for a 4-input SET-MOS XOR gate implemented in Fig.4.2

Device
Variable

Parameter Value

SET
CTD, CTS, CGi 0.1aF
RTD, RTS 1MΩ

Bias current
IDC 1uA
Ibias 65nA

Bias voltage
Vin0 −100mV
Vbias −250mV
VDD 0.8V

p-MOS
Vth −0.56V
W 360nm
L 45nm

n-MOS
Vth 0.59V
W 120nm
L 45nm

Temperature T 300K

It is worth mentioning that the width of the p-MOS to about three times that of

the n-MOS where the width of n-MOS transistors is 120nm and the width of p-MOS

transistors is 360nm. It improves the noise margin of the circuit as stated in reference

[71]. It can be seen that the output Vout2 is 0.8V (i.e., logic “high”) if and only if the

sum of all input voltages is an odd multiple of the logic “high” value (each input can

be either logic high of 0.8V or logic low of 0V), implementing an XOR logic.

Fig. 4.4: Simulated VTC of a 4-input XOR gate from Figure 4.2

37

Notably, the horizontal coordinate of Figure 4.4 is ΣVin, where ΣVin = Vin1+Vin2+

Vin3 + Vin4. This is equivalent to using Vin−i as the horizontal coordinate. Because

all gate capacitors are identical, each input has the same influence on the potential

of the SET’s island [32].

With slightly modified circuit parameters, Figure 4.2 can implement an XOR gate

with a different number of inputs. For instance, if the bias voltages and currents of

Table 4.2 change toVin0 = −92.5mV ,Ibias = 105nA and Vbias = −125mV while keep-

ing the same for the rest of parameters, one can implement a 2-input XOR gate.

The 3-input XOR gates can also be alternatively implemented using a 4-input XOR

gate with one input grounded. Theoretically, Figure 3.1 can be used to implement

XOR gates with any number of inputs. However, gates with more inputs introduce

larger capacitance which would generally require very low temperature for reliable

operation. This is due to the fact that the maximum temperature is inversely pro-

portional to the total capacitance with SET transistor [61]. Typically, with the total

capacitance around 1aF , hybrid SET-MOS circuits can operate reliably under the

room temperature of T = 300K, which is used throughout this thesis.

4.2.3 SET-MOS Versus CMOS

It can be seen from Figure 4.2 that with SET-MOS structure, a 4-input XOR gate

requires three MOS transistors, one SET transistor, and five capacitors. In contrast,

implementing the 4-input XOR gate in CMOS technology generally requires three

2-input XOR gates. Assuming each 2-input XOR gate consists of four transistors

on average using pass-transistor logic (PTL) plus an inverter being added at the

output, the total number of transistors can be estimated as 3 × 4 + 2 = 14. In

other words, the number of transistors increases linearly with the number of inputs

for XOR gates in traditional CMOS technology. This area-saving feature makes the

SET-MOS technology a promising candidate for area-efficient implementation of finite

38

field multiplications which involve a large number of multiple-input XOR operations.

Table 4.3: Area cost of logic gates using CMOS versus SET-MOS

Logic gate 2-input XOR 4-input XOR 2-input AND
Technology SET-MOS CMOS SET-MOS CMOS CMOS

Transistor count 4 4 4 14 4
Capacitor count 3 - 5 - -

It should be noted that the transistor count remains the same using hybrid SET-

MOS technology for both 2-input and 4-input XOR gates with slightly different delay.

As shown in Table 4.3, the hybrid SET-MOS technology saves nearly 2
3
of the tran-

sistor count when implementing a 4-input XOR operation, thanks to the Coulomb

oscillation characteristics with SET. We can disregard the capacitor in SET when

estimating the circuit area since it is too small to have an impact.

In short, the Coulomb Blockade empowers SET-MOS with the convenience of

designing multi-input logic and makes it a promising choice for efficiently implement-

ing finite field multiplications that need many multiple-input XOR networks while

conserving space.

4.3 Multiplications Improved by SET-MOS XOR Gates

Implementation of polynomial multiplication in GF (2n) would require both XOR and

AND gates. This section proposes SET-MOS based methods to implement several

bit-parallel polynomial multiplication architectures over GF (2n) where AND gate

is implemented with CMOS PTL and XOR networks are realized with SET-MOS

XOR4. In the following of this thesis, we will use XOR2, XOR4, AND2 to denote 2-

input and 4-input XOR gates, and 2-input AND gates, respectively. Before discussing

the multiplier implementation, let us introduce the scope of this research and how

the area performance of multipliers be evaluated.

39

4.3.1 Area Performance Evaluation

Existing research on area efficiency of multiplication methods at the architecture

point of view typically uses asymptotic area complexity as a metric for comparison,

as demonstrated in [24, 23, 72, 29, 73]. Other studies [49, 24, 74, 75] consider specific

ranges of n and the area cost of XOR/AND gates to compare the area efficiency of

different multiplication architectures.

However, emerging SET devices and utilization of PTL design push the scope of

this research to the device level, which requires a more reasonable approach to eval-

uating the area efficiency of multiplication architectures. We use the total transistor

count of a multiplier implementation as a metric to compare area performance. As

shown in Table 4.3, all gates involved in this work consist of 4 transistors. Therefore,

we can also use gate count to estimate the area cost of a multiplier. Although a more

accurate area estimation would require physical layout design, gate count/transistor

count can serve as a reasonable measure of area cost.

4.3.2 SBM Using SET-MOS XOR Gates

The utilization of SET-MOS XOR4 can effectively reduce the area complexity of the

numerous XOR networks present in the SBM. Suppose A and B are two elements in

GF (2n) represented with polynomial basis of degree n − 1, the product of A and B

can be given in (3.1). The general process of SBM can be understood as follows:

• First, the input polynomials A and B are fed into a parallel layer of 2-input

AND gates, generating aibjs, 0 ≤ i, j ≤ n− 1.

• These signals, aibjs, are then passed through XOR networks of size k for k < n

(or 2n− 2− k for k ≥ n), resulting in output cks.

Implementing an XOR network of size n in CMOS technology requires n− 1 2-input

XOR gates. However, calculating the XOR gate count becomes complicated when

40

dealing with multiple input XORs. We have made a program to calculate the XOR

gate count required for an n-bit schoolbook multiplication when m-input XOR gates

are available, as shown in algorithm 4.1. An m-input XOR can also implement XOR

with less than inputs by simply grounding the excess inputs. For example, algorithm

4.1 can be used to determine the XOR gate count for a 256-bit SBM with 4-input

XOR by setting the input parameters m to 4 and n to 256.

Algorithm 4.1 Counting m-input SET-MOS XOR gates in the n-bit SBM

Input: m,n; #m is input number of XOR gate, n is multiplication size;

Output: G⊕; # G⊕ is XOR gate count;

Initialization of variables: G⊕, i, j ← 0;

1: for i := 2 to n do

2: j ← i;

3: while j < m do

4: G⊕ ← G⊕ +Div(j,m); # Div(a, b) returns integer of a divided by b

5: j ← Div(j,m)+Mod(j,m); # Mod(a, b) returns reminder of a divided by b

6: end while

7: G⊕ = G⊕ + 1;

8: end for

9: for i := n− 1 downto 2 do

10: j ← i;

11: while j < m do

12: G⊕ ← G⊕ +Div(j,m);

13: j ← Div(j,m) +Mod(j,m);

14: end while

15: G⊕ = G⊕ + 1;

16: end for

17: return G⊕;

In addition to using computer programs, we have also derived mathematical formulas

to calculate the XOR gate count in the SBM. With SBM, item ck in (3.1) is a sum

of multiple aibjs for k = 1, 2, . . . , 2n− 3. Note that ck has k + 1 terms of aibjs when

1 ≤ k ≤ n− 1, and (2n− k− 1) terms of aibjs when n ≤ k ≤ 2n− 3. The gate count

41

of XOR4 for SBM can be estimated as,

G⊕(n) = (2n− 3)⌈n− 1

3
⌉ − 3⌊n− 2

3
⌋⌈n− 1

3
⌉ ⩽ n2

3
+

n

3
. (4.1)

Noting that a 2-input or 3-input XOR operation can be implemented using a SET-

MOS XOR4 with the redundant inputs grounded. The gate count of AND2 is n
2, and

the critical path delay is L(n) = (log4 n)DX4 + D⊗, where DX4 denotes the latency

of one SET-MOS XOR4. The area and latency complexity of SBM implemented by

CMOS AND2 and SET-MOS XOR4 can be summarized as,

G⊗(n) = n2,

G⊕(n) ≈ 0.33n2 + 0.33n,

L(n) = 1
2
log2 nDX4 +D⊗.

(4.2)

Compared with the CMOS-based SBM, as shown in (3.2), SBM improved by SET-

MOS XOR4 saves approximately 67% in terms of XOR gate count, and about 33%

in terms of total gate count.

4.3.3 Original 2-Way KA Using SET-MOS XOR Gates

Using SET-MOS XOR4 can significantly reduce the XOR gate count of the original

KA. Let A and B be two polynomials over GF (2n) with degree n− 1, which can be

divided into two equal-length polynomials with degree n
2
−1, shown as A = A0+A1x

n
2

and B = B0 + B1x
n
2 . Original KA method can be explained in (3.4) and (3.5). We

rewrite (3.4) here for convenience, and the computation involved in this equation can

42

be illustrated in Table 4.4.
P0 = A0B0, P1 = A1B1,

P2 = (A0 + A1)(B0 +B1),

AB = P0 + (P2 + P1 + P0)x
n
2 + P1x

n.

(4.3)

Table 4.4: (4.3) implemented by SET-MOS XOR4

Degree range Operation SET-MOS implementation

[x0, x
n
2
−1] P0 −

[x
n
2 , xn−2] P0x

−n
2 + (P0 + P1 + P2) (n

2
− 1) XOR4s

xn−1 P0 + P1 + P2 1 XOR4

[xn, x
3
2
n−2] (P0 + P1 + P2)x

−n
2 + P1 (n

2
− 1) XOR4s

[x
3
2
n−1, x2n−2] P1 −

[x0, x2n−2] P0 + (P0 + P1 + P2)x
n
2 + P1x

n (n− 1) XOR4s

It can be seen from Table 4.4 that only n − 1 SET-MOS XOR4s are used to

implement (4.3). Note that the gate count in the component process for implementing

P2 is n. Therefore, one round of KA requires (n− 1) + n = 2n− 1 XOR4 gates along

with three half-sized multipliers. The latency incurred is 2DX4. The complexity for

one round of 2-way KA using SET-MOS XOR gates can be given as

G⊗(n) = 3G⊗(

n
2
),

G⊕(n) = 3G⊕(
n
2
) + 2n− 1,

L(n) = L(n
2
) + 2DX4.

(4.4)

Compared to the CMOS-based method to implement KA (3.6), the gate count saved

in (4.4) is (4n − 4) − (2n − 1) = 2n − 3. The initial 1-bit multiplier has G⊕(1) = 0,

G⊗(n) = 1 and L(1) = D⊗. When applying KA recursively to n-bit multiplication in

43

GF (2n), the gate count and the critical path delay can be estimated using (3.7) as

G⊗(n) = n1.58,

G⊕(n) = 3.5n1.58 − 4n+ 0.5,

L(n) = 2 log2 (n)DX4 +D⊗.

(4.5)

Since nlog2 3 is approximately equal to 1.58, we use 1.58 to replace nlog2 3 in the area

complexity in the subsequent this thesis.

Fig. 4.5: Data flow of original 2-way KA using SET-MOS XOR4

Figure 4.5 shows the data flow of one round of KA using SET-MOS XOR4.

Its architecture is straightforward compared to pure CMOS work, and each round

of KA only adds two layers of parallel SET-MOS XOR4 before and after the sub-

multiplications.

Comparing (4.5) and (3.8), it can be found that when n = 256, the XOR reduction

of KA using SET-MOS XOR4 compared to CMOS counterpart can reach (37320 −

21940)/37320 = 41%. However, the gate count of AND2 in the CMOS KA multiplier

is not reduced. When considering the total gate count, which includes both AND and

XOR gates, the drop is about 35% for the CMOS-based 2-way KA.

44

4.3.4 2-Way KA’s Extensions Using SET-MOS XOR Gates

This subsection will investigate the application of SET-MOS XOR gates to several

popular existing KA’s extensions to improve their area performance.

4.3.4.1 2-Way Reconstructed KA Using SET-MOS XOR Gates

The application of SET-MOS XOR4 to the reconstructed KA leads to a reduction in

its area complexity. Consider Ai and Bi, i ∈ {0, 1}, discussed in (3.3) and P0, P1,

and P2 in (4.3). The multiplication AB with three steps reconstructions from (3.9)

can be summarized as,

1) R0 = P0 + P1x
n
2 .

2) R1 = R0 +R0x
n
2 .

3) AB = R1 + P2x
n
2 .

The SET-MOS XOR4 has the capability to process four inputs simultaneously, thus

allowing for the condensation of the KA method’s three steps into just two, as shown

below.

I) R = P0 + P1x
n
2 : Both P0 and P1 are polynomials with n − 1 bits (of degree

n− 2). After shifting n
2
bits, from degree n

2
to n− 2, each degree has two bits

overlap. Thus, XOR requirement in this step is n
2
− 1.

II) AB = R + Rx
n
2 + P1x

n
2 : From degree n

2
to 3n

2
− 2, each degree has 3 bits in

overlap. Therefore, n− 1 XOR4s are needed with one input grounded.

This reconstruction process requires 1.5n− 2 XOR4 in total, besides additional n− 1

XOR4 in the component process. The recursive XOR gate count for one round of

reconstructed KA can be given as

G⊕(n) = 3G(
n

2
) + 2.5n− 2, (4.6)

45

It is clear that the AND gate has the same complexity as (3.10). The latency com-

plexity is increased by three DX4s per round of recursion. The area and latency

complexity of reconstructed KA improved by SET-MOS XOR4 can be obtained as,

G⊗(n) = n1.58,

G⊕(n) = 4n1.58 − 5n+ 1,

L(n) = (3 log2 n− 1)DX4 +D⊗.

(4.7)

Comparing (4.7) and (3.10), it can be found that when n = 256, the XOR reduction of

reconstructed KA using SET-MOS XOR4 compared to its CMOS counterpart reaches

(34259− 24965)/34259 = 27%. Total gate count drop is about 23%.

4.3.4.2 2-Way Overlap-Free KA Using SET-MOS XOR Gates

After utilizing SET-MOS XOR4, the overlap-free method, like other KA methods

that have applied SET-MOS XOR4, exhibits a decrease in area complexity. Let A

and B be two elements in GF (2n) with degree n− 1. In the overlap-free method, A

and B can be expressed as A = A0+A1x and B = B0+B1x, respectively. A0 and B0

involves all terms of the even degree of A and B, while A1 and B1 involve all terms

of the odd degree of A and B. With SET-MOS XOR4, the reconstruction function

of the overlap-free method can be rewritten as follows,

P0 = A0B0, P1 = A1B1,

P2 = (A0 + A1)(B0 +B1),

AB = P0 + (P2 + P1 + P0)x+ P1x
2.

(4.8)

In each round, the added XOR gate count and latency can be analyzed as follows,

• Components process: Pre-process the input operands A0 +A1 and B0 +B1 for

46

P2, n XOR gates are required.

• Sub-multiplications: Three multiplications of size n
2
.

• Reconstruction process: P0 + P1 + P2, each partial product is of degree n − 2,

which can be implemented by n − 1 XOR4 with one input grounded. P0 + P2

needs n− 2 XOR4.

Therefore, the recursive area and latency complexities of the overlap-free method

improved by SET-MOS XOR4 can be summarized as,

G⊗(n) = 3G⊗(

n
2
),

G⊕(n) = 3G⊕(n) + 3n− 3,

L(n) = L(n
2
) + 2D⊕.

(4.9)

And the non-recursive complexities of the overlap-free method improved by SET-MOS

XOR4 are shown as follows,

G⊗(n) = n1.58,

G⊕(n) = 4.5n1.58 − 6n+ 1.5,

L(n) = 2 log2 nDX4 +D⊗.

(4.10)

For the overlap-free method when n = 256, the XOR gate and total gate count

reduction by using SET-MOS XOR4 are about 25% and 16%, respectively.

4.3.4.3 2-Way Block Recombination Method Using SET-MOS XORGates

The data flow for 2-way block recombination using SET-MOS XOR4 can be described

as follows. After operands A and B be divided into two equal-length parts, A0, A1

and B0, B1, they go through 4CPF blocks and generate (Âi) and (B̂i) for i ∈ {0, 1}

with nlog2 3 bits. These vectors (or arrays) are grouped two by two. Two groups

47

Â0B̂0 and Â1B̂1 perform two CM blocks, the others, Â0B̂1 and Â1B̂0, through two

CA and one CA blocks. After passing three RC blocks, the results of RC shift to

the most significant bit, then perform a bit-wise addition consisting of n− 2 parallel

XOR gates. (This is because each Ci,j, i, j ∈ {0, 1} has n − 1 bits. After shifting,

the overlap is 2(n
2
− 1) = n− 2 bits). To calculate the area complexity, we see there

are four CPF blocks, four CM blocks, three RC blocks and one CA with n − 2

XOR gates for the final addition. For latency complexity, one of the critical paths is

from B0 to C, which is composed of the latency of one CPF , one CM , one CA, one

RC and one XOR gate delay. The multi-input XOR operations can only be found

in the RC blocks where SET-MOS XOR4 can reduce their gate count. For a lower

area complexity, the reconstructed KA improved by SET-MOS XOR4 is considered

to implement the RC blocks, where its area complexity can be shown as follows,

GRC
⊕ (n) = 2nlog2 3 − 3n+ 1. (4.11)

Bring n
2
into the RC formulas in (3.13) and (4.11), multiplying by 3 and subtracting.

As a result, (3
2
nlog2 3−3n+ 3

2
) XOR gates can be saved by applying SET-MOS XOR4.

And therefore, The area and latency complexities of 2-way block recombination im-

proved by SET-MOS XOR4 are summarized as,

G⊗(n) =

4
3
n1.58,

G⊕(n) =
11
3
n1.58 − 11

2
n+ 1,

L(n) = (3 log2 n− 1)DX4 +D⊗.

(4.12)

Applying SET-MOS XOR4 reduces approximately 28% of the XOR gate count and

23% of the total gate count for the block recombination method when n = 256.

48

4.3.5 Improved Methods Versus Existing Ones

Figure 4.6 compares the total gate counts between the SET-MOS XOR4 improved

methods and CMOS-based methods presented in the previous section for n equal to

[28, 210]. Comparing the hatched and blank bars in the figures indicates that the SBM

[18] in 4.6(a) and the original KA [19] in 4.6(b) get significant gate count drop after

using SET-MOS XOR4.

Fig. 4.6: Multipliers using SET-MOS XOR4 versus their CMOS counterparts

The other three 2-way KA’s extensions shown in 4.6(c), 4.6(d), 4.6(e) are not as

well adapted to SET-MOS XOR4 as 4.6(a) and 4.6(b). This is because the capability

of SET-MOS, which processes multiple inputs with less area cost, has changed the way

for optimization of the reconstruction process in KA. In other words, these extension

methods based on CMOS XOR gates only partially exploit the capability of multi-

input processing when integrated with SET-MOS XOR gates. It can also be seen

that the original KA with SET-MOS XOR4 has the lowest total gate count for the

49

same n value. (i.e., for n = 1024, we can see original KA with SET-MOS XOR4 in

Figure 4.6(b) reaches a total gate count of around 280K, while Figure 4.6(c) is over

300K, and both Figure 4.6(d) and Figure 4.6(e) exceed 290K.)

Worth noting that, when compared with the most efficient existing method of

block recombination [24], a reduction of (6.5 − 4.5)/6.5 = 30.7% in area complexity

has been achieved asymptotically for n ≫ 1 with the proposed SET-MOS XOR

improved KA. When we bring n = [25, 210] into the area complexity formulas, it

can be concluded that the proposed SET-MOS XOR’s improved KA has a 26 −

30% improvement in area performance compared with the most area-efficient existing

method.

4.4 SBM-KA Multiplication Architecture

In this section, we advance the idea in [51] by providing a general formula for calcu-

lating the area complexity of hybrid architecture using SET-MOS XOR gates when

the multiplier sizes are n = 2k, where k is greater than or equal to 2.

4.4.1 Base Multiplier

Consider the proposed SBM with the complexity shown in (4.2) and the complexity

of the 2-way KA improved by SET-MOS XOR4 given in (4.4). Clearly, compared

to KA multiplier with sub-quadratic complexity, SBM requires the higher gate count

due to its quadratic complexity for large n, the multiplier size. However, SBM could

require fewer gates than KA method when n is sufficiently small. In Table 4.5, we

list the gate count of SBM and KA multiplier improved by XOR4 in GF (2n), n = 2k

for small values of k.

50

Table 4.5: Gate counts of SBM and 2-way KA using SET-MOS XOR4 for n = 2k

#AND2 + #XOR4

k 1 2 3 4 5

SBM
4 + 1 16 + 5 64 + 21 256 + 85 1024 + 341
= 5 = 21 = 85 = 341 = 1365

KA
3 + 3 9 + 16 27 + 63 81 + 220 243 + 723
= 6 = 25 = 90 = 301 = 966

The complexity of the base multiplier and the reconstruction process of KA are

both impacted by the value of k. It is imperative that the value of k is carefully

examined and considered to make the multiplier more area-efficient. To determine

the optimal value of k that minimizes the total number of gates required for the entire

multiplication process, we initially computed the gate count for n = 256, 512, and

1024 with varying values of k (1, 2, and 3) using a program.

Algorithm 4.2 Total gate count in 2-way SBM-KA multiplication architecture

Input: m,n; #m is base multiplier size, n is entire multiplier size.

Output: G; # G is XOR gate count plus AND gate count, G = G⊕ +G⊗.

Initialization of variables:

G,G⊕, G⊗ ← 0; # Entire multiplier’s gate counts.

GB
⊕ = Algorithm; 4.1(m, 4); GB

⊗ = m2 #Base multiplier’s gate count.

k ← m; #label for sub-multiplication size.

1: while k ≤ m do

2: if k = m then

3: G⊕ ← GB
⊕;

4: G⊗ ← GB
⊗;

5: k ← 2k; # Base multiplication completed;

6: else

7: G⊕ ← 3G⊕+2k− 1 # k-bit KA improved by SET-MOS XOR4 in (4.4);

8: G⊗ ← 3G⊗;

9: k ← 2k; # Next round of KA multiplication;

10: end if

11: end while

12: G = G⊕ +G⊗;

13: return G;

The program used to calculate the total number of gates for hybrid multiplication is

51

presented in Algorithm 4.2. The input parameter m represents the size of the base

multiplier, which is a positive integer power of 2, m = 2k1; and n represents the size

of the entire multiplication, which is also a positive integer power of 2 for n = 2k,

0 < k1 < k.

Fig. 4.7: Total gate counts of n-bit SBM-KA constructed from different m-bit base
multipliers.

Total gate count of SBM-KA multiplications for n = 2k, k ∈ {8, 9, 10, 11}, where

the base multiplier size m ranges from 2j, j ∈ {1, 2, 3} are shown in Figure 4.7. Based

on the four graphs Figure 4.7(a)-(d), it can be concluded that the optimal size for the

base multiplier is 4, which results in the minimum number of gates for the multiplier

when n ∈ {256, 512, 1024}.

In addition to the program calculation, we also derived a generic formula to cal-

culate the asymptotic area complexity of SBM-KA multiplication, shown in (4.14).

Lemma 3. Let a, b, k, k1 be positive integers. Let m = nk1, n = bk and assume

a ̸= b, a ̸= 1. The solution to the recurrence relations

Rm = e;

Rn = aRn/b + cn+ d.

(4.13)

52

is shown as follows

Rn = (e+
bc

a− b
m+

d

a− 1
)(
n

m
)
logb a

+
−bc
a− b

n+
−d
a− 1

. (4.14)

Proof is given in Appendix B. By bringing the formulas of (4.2) and (4.4) for XOR

and AND gate counts into (4.14), the area complexity of hybrid multiplication can

be expressed as follows,

G(n) ≈ (1.33m2 + 4.33m− 0.5)(
m

n
)1.58 − 4n+ 0.5, (4.15)

where G(n) denotes the total gate count and can be calculated as G(n) = G⊕(n) +

G⊗(n). Since Table 4.5 shows the value of m = 2k for k = 1, 2, 3 would make the area

complexity of hybrid multiplication minimum, we used the SBM improved by SET-

MOS XOR4 of size m = 2, 4, and 8 as the bases of the recursive KA and took them

into (4.15). The results show that the total gate count is asymptotically lowest when

m = 4. The derivation of the area and latency complexities of this 2-way SBM-KA

multiplication for m = 4 will be explained in the following subsection.

53

4.4.2 2-Way SBM-KA Using SET-MOS XOR Gates

By setting the base to be a 4-bit SBM with XOR4, the recursive KA method can be

modified to build a polynomial multiplier in G(2n).

G⊗(4) = 16,

G⊕(n) = 5,

L(4) = DX4 +D⊗,

G⊗(n) = 3G⊗(
n
2
),

G⊕(n) = 3G⊕(
n
2
) + 2n− 1,

L(n) = L(n
2
) + 2DX4.

(4.16)

Note that the 4-bit SBM multiplier requires 16 AND2 and 5 XOR4 gates and has

a critical path delay of DX4+D⊗. Thus, the recursive complexity formulas of the

proposed 2-way hybrid SBM-KA can be shown in (4.16) recursively for n ≥ 8.

Non-recursive area complexity expressions for the proposed 2-way SBM-KA mul-

tiplier using XOR4 can be obtained from their recursive relation (4.16) as

G⊗(n) = 1.78n1.58,

G⊕(n) = 2.28n1.58 − 11
2
n+ 1,

L(n) = 2 log2 (
n
4
)DX4 +DX4 +D⊗.

(4.17)

The total gate count for the proposed 2-way hybrid multiplication architecture, SBM-

KA multiplier, can be obtained as,

G(n) = G⊗(n) +G⊕(n) = 4.06n1.58 − 4n+ 0.5. (4.18)

This area complexity of the 2-way SBM-KA multiplier, when compared with (4.5) for

54

the original KA, suggests that the number of XOR gates is substantially reduced. In

contrast, the AND gate count increases moderately. Consequently, the sum of XOR

and AND gates required for the hybrid SBM-KA method using SET-MOS XOR4 is

significantly lower than the original KA improved by SET-MOS XOR4.

4.4.3 Latency Complexity Reduction

By inspecting the structure of the SBM-KA multiplier using SET-MOS XOR4, we

found that certain SET-MOS XOR4 on the critical path are used to implement 2-

input XOR operations. For example, the implementation of the P2 in component

process in each round of KA, as shown in (3.4), would contribute one DX4 to the

multiplier’s latency. If CMOS XOR gates are utilized instead in implementing P2,

then the latency complexity can be reduced by the difference of DX4 −D⊕ for each

round of KA, while the total gate count remains unchanged. Generally speaking,

DX4 is larger than D⊕ due to the SET’s characteristics. Particular gate delays will

be discussed in the next chapter.

The proposed SBM-KAmethod with latency reduction can be described as follows.

SET-MOS XOR4 improves 4-bit SBM and will be used as the 2-way KA recursion base

reconstructed by SET-MOS XOR4. For each round of KA architecture, the operations

in (3.4) are implemented with CMOS-based XOR gates, while the computations in

Table 4.4 are implemented with SET-MOS XOR4s. The reduced latency for one

round of KA would be DX4−D⊕. Thus, the recursive representation for the reduced

latency complexity is given as (n ≥ 8).

L(4) = DX4 +D⊗,

L(n) = L(n
2
) +DX4 +D⊕.

(4.19)

L(n) in (4.17) can be replaced with the shortened recursive latency complexity given

55

above. Therefore, the non-recursive latency complexity for the 2-way SBM-KA mul-

tiplier with latency reduction can be shown as,

L(n) = (log2(
n

4
))(DX4 +D⊕) +DX4 +D⊗,

= (log2 (n)− 1)DX4 + (log2 (n)− 2)D⊕ +D⊗, (4.20)

while its AND and XOR gate counts remain the same as in (4.17).

4.5 Complexity Comparison

This section contains two comparisons. The first sub-section compares the area com-

plexity of all methods introduced in the last chapter and proposed in this chapter

using SET-MOS XOR4. The second sub-section compares the total gate count of the

proposed area-efficient method with existing methods.

4.5.1 Asymptotic Complexitiy Comparison

A comparison between the existing work and the proposed methods, including the

SET-MOS XOR4 improved methods and hybrid SBM-KA, is shown in Table 4.6. It

can be seen that there are three sections in the table, where the top and middle

sections list the existing work and their SET-MOS XOR4 improved counterparts,

respectively. The bottom section in Table 4.6 shows the proposed SBM-KA with

SET-MOS XOR4.

From the top two sections in the table, it can be seen that the proposed SET-MOS

XOR4 improved SBM, KA, reconstructed KA, overlap-free KA, and block recombina-

tion KA require less gate count than their CMOS-based architectures. Among them,

the SET-MOS4’s improved KA has the lowest area complexity than any of the recon-

struction KA, overlap-free KA and block recombination KA, even though these KA

extensions are more efficient than the original KA in area and/or latency complexity

56

when implemented with CMOS-based gates.

The asymptotic area complexity savings for SET-MOS XOR4 improved methods,

including KA, the reconstruction KA, overlap-free KA and block recombination KA,

are respectively 30.8%, 23.1%, 15.4% and 23.1%, compared to the best result of the

existing method. In that regard, the KA with SET-MOS XOR4 has also achieved the

largest reduction, with asymptotic area savings of 30.8%.

Note that the asymptotic saving of 30.8% is calculated with (6.5 − 4.5)/6.5 =

30.8%, where the number 4.5 is the coefficient of the highest order term (n1.58) in

total gate count for the KA multiplier improved by SET-MOS XOR4 and 6.5 is

coefficient of the highest order term in total gate count among all the existing works

of sub-quadratic area complexity in comparison.

The proposed hybrid SBM-KA method with SET-MOS XOR4, shown at the bot-

tom of the table, has a significantly lower gate count than all the existing methods. It

can be seen from the table that the total gate count for the proposed 2-way SBM-KA

method achieves 37.5% asymptotic savings compared to the best existing method.

Additionally, when compared to 2-way KA improved by SET-MOS XOR4 [76], it can

be seen that the asymptotic area complexity saving of 2-way SBM-KA proposed in

this section is (4.5− 4.06)/4.5 = 9.8%.

4.5.2 Total Gate Count Comparison

To further demonstrate the clear advantage of our method in area efficiency, a com-

parison of total gate count has been made between the proposed 2-way SBM-KA

method with SET-MOS XOR4 and the existing CMOS methods for multiplier size

of n = 32, 64, 128, 256, 512, and 1024, as shown in Table 4.7. It can be seen that our

proposed 2-way SBM-KA with SET-MOS XOR4 improves the area performance by

34% - 37% compared to the most area-efficient existing method.

57

Table 4.6: Comparison between the existing methods and the proposed SET-MOS XOR’s improved methods

Existing methods

Methods #XOR #AND
#XOR + #AND

Latency
Gate count Asym. savings

SBM[18] n2 − 2n+ 1 n2 2n2 − 2n+ 1 − log2(n)D⊕ +D⊗
KA (2-way)[15] 6n1.58 − 8n+ 2 n1.58 7n1.58 − 8n+ 2 − ((3 log2 n)− 1)D⊕ +D⊗

Reconst. KA (2-way)[21, 22] 5.5n1.58 − 7n+ 1.5 n1.58 6.5n1.58 − 7n+ 1.5 − ((3 log2 n)− 1)D⊕ +D⊗
Overlap-F. (2-way)[23] 6n1.58 − 8n+ 2 n1.58 7n1.58 − 8n+ 2 − (2 log2 n)D⊕ +D⊗

Block recom. (2-way)[24] 5.17n1.58 − 8.5n+ 2.5 1.33n1.58 6.5n1.58 − 8.5n+ 2.5 − ((3 log2 n)− 1)D⊕ +D⊗

Adapted existing architectures with SET-MOS XOR4

Methods #XOR #AND
#XOR + #AND

Latency
Gate count Asym. savings

SBM [76] 0.33n2 + 0.33n n2 1.33n2 + 0.33n 33%† 0.5 log2(n)DX4 +D⊗
KA (2-way) [76] 3.5n1.58 − 4n+ 0.5 n1.58 4.5n1.58 − 4n+ 0.5 30.8% 2 log2(n)DX4 +D⊗

Reconst. KA (2-way) 4n1.58 − 5n+ 1 n1.58 5n1.58 − 5n+ 1 23.1% (3 log2(n)− 1)DX4 +D⊗
Overlap-F. (2-way) 4.5n1.58 − 6n+ 1.5 n1.58 5.5n1.58 − 6n+ 1.5 15.4% 2 log2(n)DX4 +D⊗

Block recom. (2-way) 3.67n1.58 − 5.5n+ 1 1.33n1.58 5n1.58 − 5.5n+ 1 23.1% (3 log2(n)− 1)DX4 +D⊗

Proposed SBM-KA with SET-MOS XOR4

Methods #XOR #AND
#XOR + #AND

Latency
Gate count Asym. savings

SBM-KA (2-way) 2.28n1.58 − 4n+ 0.5 1.78n1.58 4.06n1.58 − 4n+ 0.5 37.5% log2 (n)− 1)DX4 + (log2 (n)− 2)D⊕ +D⊗
† This is obtained by comparing to the quadratic result of the existing work, i.e., (2− 1.33)/2 = 33.3%, while the other results in the column are
obtained by comparing to the best sub-quadratic results among the existing work in comparison.

58

Table 4.7: Comparison of total gate count between the proposed and the existing methods

Method

Gate count Size of multiplication
32 64 128 256 512 1024

SBM [18] 1985 8065 32513 130052 523265 2095105
Reconstructed KA (2-way) [21, 22] 1357 4292 13321 40856 124357 376652

Overlap-Free KA (2-way) [23] 1447 4593 14287 43881 133687 405153
Block recombination (2-way)[24] 1310 4197 13130 40473 123590 375117

Proposed SBM-KA (2-way) 858 2701 8358 25585 77778 235381
Achieved reduction 34.5% 35.7% 36.5% 36.8% 37.1% 37.3%

Note: Achieved reduction is obtained by comparing the proposed method to the best existing method.

59

4.6 Summary

The Coulomb oscillation of SET brings excellent flexibility to logic circuit design,

particularly finite field multiplication. We designed SET-MOS XOR gates in this

chapter and applied them to bit-parallel finite field polynomial multiplications. Com-

pared with the existing sub-quadratic complexity architectures, the proposed method

has a significant gate count and area efficiency advantage. Moreover, we proposed a

hybrid multiplication architecture - a 2-way SBM-KA method with implementations

for further improvement in area and latency. The results of the proposed meth-

ods show substantial savings in gate count compared with the existing methods.

However, worth noting that the delay of SET is commonly more considerable than

CMOS, which may make the proposed SBM-KA method’s area superior at the cost

of increased latency. The proposed work is expected to be favoured for applications

where high-speed elliptic curve computation is required, and the compact area is also

critical. With this in mind, the elliptic curve cryptosystems can be more area-efficient

as single-electron technology develops and thus have broader applications in future

network security.

The proposed approach promises high area efficiency and opens new opportunities

for general finite field multiplications, which could change the way current multiplier

architecture and algorithms are designed and implemented. More area savings would

be likely if further work can be done to explore new architectures that allow for

direct implementations of such multiplications without assuming AND/XOR gates as

building blocks. Meanwhile, although the main objective of this thesis is to reduce the

area of the bit-parallel multiplier, the latency performance still needs to be considered

and explored. In other words, a reasonable evaluation between SET and CMOS gate

delays is necessary to ensure that the area improvement achieved by the proposed

method does not make the latency run out of control.

60

5 Proposed SET-MOS Combinational Gates and

Area-Efficient Multiplier

5.1 Introduction

In this chapter, the logic gates that can achieve (a ∧ b) ⊕ c and (a ∧ b) ⊕ c ⊕ d

logic operations will be proposed thanks to the oscillation characteristics of SET

technology. We refer them to as combinational gates that can process a 2-input AND

operation followed by one or two 2-input XOR operations, achieving a specific type

of logic operation. This design approach can leverage the flexibility of SET, which

is distinct from widely used CMOS design. Furthermore, this chapter evaluates all

the SET-MOS and CMOS gate delays in this thesis. Among 2-way KA and its

extensions, where the conjunctions between the AND gate and XOR gates, there are

some application scenarios of the SET-MOS combinational gate. Applying the SET-

MOS combinational gates to last chapter’s 2-way KA and its extensions, their area

complexity can be further reduced. In addition, this chapter will improve the 4-way

KA and its extensions based on SET-MOS XOR and combinational gates.

5.2 SET-MOS Combinational Gates

In this section, we will propose novel combinational gates using SET-MOS such that

a single gate can implement multiple different two-input logical operations. (i.e.,

(a ∧ b)⊕ c and (a ∧ b)⊕ c⊕ d)

5.2.1 General Idea

The initial idea of combinational gates was to “directly use one SET-MOS gate to

implement a specific output bit of the multiplier.” For example, the output bit ‘c1’,

where c1 = a0b1 + a1b0, in 2-bit multiplication. By adjusting the ratio between the

61

SET-MOS gate capacitance of inputs, it is possible to apply different weights to the

input signals. Once the input is weighted and summed, it can be matched to the

output to achieve the desired output bit. Unfortunately, after many attempts, this

idea still needs more effort for c1 = a0b1+a1b0. No matter how to adjust the weighting

between the inputs, there will always be several sets of inputs and outputs that do

not correspond.

Nevertheless, in the effort of experimenting, we came up with a solution that takes

a step back. Two SET-MOS gates are used to implement the logic a0b1+a1b0, the first

4-input SET-MOS to correct those input combinations that are not corresponding,

and the second 5-input SET for the output. Consequently, we successfully imple-

mented the a0b1 + a1b0 logic using two SET-MOS. This reduced one gate (One-third

reduction in total gate requirement) compared to the CMOS implementation.

After more discussions, one optimized solution was determined. We replaced two

multi-input SET-MOS gates with one 2-input AND gate and one 3-input SET-MOS

gate. The optimized solution mainly achieves an (a∧b)⊕c logic operation. Moreover,

this change would decrease latency from two SET-MOS gates’ delay to one SET-MOS

and one CMOS gates’ delay. Less input number of SET-MOS also provides a more

stable functionality.

5.2.2 Combined AND/XOR Operation Using SET-MOS

In the previous chapter, a generic schematic diagram of a parallel SET-MOS gate

with multiple inputs is shown in Figure 4.2. This gate can perform a 4-input XOR

operation by adjusting its parameters. This gate can also be configured to operate as

a combinational gate (i.e., (a∧ b)⊕ c and (a∧ b)⊕ c⊕ d) by changing the oscillation

characteristics and parameters.

62

Table 5.1: Truth table of (a ∧ b)⊕ c operation

Input “a” Input “b” Input “c” Sum of inputs Output
0 0 0 0 0
0 0 1 1 1
0 1 0 1 0
1 0 0 1 0
0 1 1 2 1
1 0 1 2 1
1 1 0 2 1
1 1 1 3 0

When designing the XOR operation using SET-MOS, we made adjustments to

the periodicity and phase of the oscillation such that an odd sum of inputs produces

an output of logic “1”, and an even sum of inputs produces an output of logic “0”.

However, it is not possible to design the operation shown in Table 5.1 in the same

manner as the XOR because the bolded cells (Last two cells of the 3rd and 4th rows)

in the table indicate that when the sum of inputs is “1”, the output can have two

different possibilities. By researching, we have found a solution to this problem.

From our research, changing the gate capacitance of different inputs is the key to

designing combinational gates. The on-off state of SET is controlled by the potential

of its island [66], denoted as Visland. Assuming the background charge is negligible,

the Visland of SET with three inputs (a, b and c) can be expressed in (5.1).

Visland =
CTD

CΣ

VDS +
CG1

CΣ

Vin−a +
CG2

CΣ

Vin−b +
CG3

CΣ

Vin−c +
CG0

CΣ

Vin0. (5.1)

Each input in (5.1), including Vin−a, Vin−b, and Vin−c, has the same logic-high and

logic-low values. One possible solution for achieving such a combinational gate that

follows Table 5.1 is to change the ratio of the different input’s gate capacitance. (By

changing the capacitance ratio, the effect of each input on Visland is scaled up or

down depending on the size of the gate capacitance.) Moreover, by making a lot of

attempts and simplifications, it is finally found that when the input capacitance of a

63

and b is half that of c, each input corresponds to a single output. The weighted truth

table with an added column “Sum of weighted inputs” can be shown in Table 5.2.

Table 5.2: Weighted Truth table of (a ∧ b)⊕ c operation

(1×)Input “a” (1×)Input “b” (2×)Input “c” Sum of inputs Output
0 0 0 0 0
0 0 2 2 1
0 1 0 1 0
1 0 0 1 0
0 1 2 3 1
1 0 2 3 1
1 1 0 2 1
1 1 2 4 0

To implement (a∧ b)⊕ c operations, Table 5.2’s two right columns imply that we

can develop a SET oscillation waveform that yields “0” output when Visland equals

0- or 1-times the high-level input voltage; and “1” output when Visland equals 2- or

3-times the high-level input voltage. Additionally, we know that the periodicity of

SET oscillation can equal 4 times the high-level input voltage. The expected voltage

transfer characteristic (VTC) of SET can be sketched in Figure 5.1. Noting that to

get a better duty cycle, it is desirable to keep the rise of the oscillation as close to 1.5

units as possible and the fall as close to 3.5 units, as shown in Figure 5.1.

Fig. 5.1: Expected VTC of SET-MOS 3-input combinational gate.

Consistent with the basic assumption used to design SET-MOS XOR gates, we

assume that the minimal gate capacitance at the input is 0.1aF . Therefore, CG1 and

64

CG2, which are the gate capacitance of input a and b, respectively, can be determined

as 0.1aF ; the gate capacitance of input c, CG3, can be attributed to 0.2aF . Then

VTC’s oscillation periodicity, P , can be calculated as 1.6V from P = e
CG

, where e is

the charge of a single electron. The high-level input voltage can be equal to a quarter

of oscillation periodicity, which is 0.4V . The high-level output voltage is equal to

VDD, which is 0.8V . Table 5.3 shows the parameters of a 3-input SET-MOS that

implements an (a ∧ b)⊕ c operation, denoted as SET-MOS AndXor3.

Table 5.3: Parameters for a 4-input SET-MOS AndXor3 implemented in Figure 4.2

Device
Variable

Parameter Value

SET
CTD, CTS, CGi 0.1aF

CG0-CG2 0.1aF
CG3 0.2aF

RTD, RTS 1MΩ

Bias current
IDC 1uA
Ibias 65nA

Bias voltage
Vin0 −320mV
Vbias −250mV
VDD 0.8V

p-MOS
Vth −0.56V
W 360nm
L 45nm

n-MOS
Vth 0.59V
W 120nm
L 45nm

Temperature T 300K

The simulation of a 3-input combinational gate by Cadence with GPDK45 is

shown in Figure 5.2.

65

Fig. 5.2: Simulated VTC of SET-MOS 3-input combinational gate for (a ∧ b)⊕ c.

The horizontal axis is the summation of each input multiplied by its weight. The

vertical axis is the final output of the gate. The dashed box in the figure contains

the eight input combination cases from Table 5.2, and it can be seen that each set of

inputs corresponds to the correct output.

Fig. 5.3: Simulation of SET-MOS AndXor3 with time as the horizontal axis. From
top to bottom are the three inputs a, b, c, and the output Vout.

Figure 5.3 also shows the simulation result of the SET-MOS AndXor3 with time

as the horizontal axis. From top to bottom are input a, input b and input c and the

final output (Vout2 in Figure 4.2). The periodicity of the input signals from a to b

and then to c are reduced to 1
2
of the previous one to simulate all input cases. (The

rise/fall time of the input signals is 1ps.) All input combinations corresponding to

Table 5.1 can be found in Figure 5.3 from various time slots, which confirms that the

proposed SET-MOS AndXor3 works appropriately.

66

Furthermore, one can implement an AndXor4 using the SET-MOS by adding one

more input (i.e., input d) with a 0.2aF gate capacitance and modifying the value of

Vbias and Vin0 to −279.5mV and −150mV from Table 5.3 The simulation of SET-MOS

AndXor4’s VTC is similar to that of SET AndXor3 and can be explained as follows.

Since the gate capacitance of Vin−d is 0.2aF (Twice Vin−a or Vin−b), Vin−d ∗w is equal

to 0.8V , which is half of the oscillation period in Figure 5.2. The result of (a∧ b)⊕ c

remains unchanged for d = 0; (a ∧ b)⊕ c⊕ d = 1 for d = 1 and (a ∧ b)⊕ c = 0; and

(a∧ b)⊕ c⊕d = 0 for d=1 and(a∧ b)⊕ c = 1. It means that increasing the oscillation

periodicity by one-half corresponds exactly to the result of (a∧ b)⊕ c being reversed,

resulting in correct (a ∧ b)⊕ c⊕ d. Therefore, SET-MOS AndXor4’s correctness can

be easily explained by the simulation results of SET-MOS AndXor3. Moreover, the

8-input XOR gate can also be implemented if 4 more inputs are added with 0.1aF

gate capacitance and changing Ibias and Vbias in Table 5.3 to 45nA and −360mV ,

respectively.

5.2.3 Discussion on Input Number Limits

Logic operation implemented by SET-MOS gate can save more area than CMOS

counterparts; however, there would be a limitation on the input number.

Fig. 5.4: Oscillation waveform for SET-MOS XOR with 4 or 8 inputs.

67

Figure 5.4 shows that when the number of inputs is increased from 4 to 8, the gap

from the peak to the valley of the oscillation decreases significantly. When the gap

is reduced, it lowers the stability of the SET-MOS gates. As per [61], it is crucial to

note that adding more inputs to SET will result in a rise in total capacitance, which

can have an adverse effect on its operation. Therefore, the maximal input number of

SET-MOS gates in this thesis is that “For XOR gates, the number of inputs for XOR

does not exceed 8; For combinational gates, the number of inputs does not exceed

4.” The reason for this difference is that the input gate capacitance of combinational

gates is generally twice the input gate capacitance of XOR gates.

All relevant logic gates in this thesis have been introduced. Next, we will discuss

the evaluation of the multiplier latency and average gate delay.

5.3 Latency Performance Evaluation

In existing work, latency complexity is a formula that involves the critical path of a

multiplier with respect to the multiplier size n. The speed of multipliers is roughly

estimated by comparing the coefficients before log2 n in latency complexity [72, 73,

49, 41]. Specifically, the latency performance can be represented as the product of

the number of gates on the critical path and their corresponding gate delays [74, 77,

78, 79], with n being a given value.

In this thesis, latency performance of multipliers will be evaluated roughly in la-

tency complexity by comparing the coefficients before log2 n and also bringing the

specific n and gate delays into latency complexity to find the exact latency of multi-

pliers in ns.

5.3.1 Latency Complexity

In the previous chapter, latency complexity of different multiplication architectures

was derived and summarized in Table 4.6. It can be seen that the SET-MOS XOR4’s

68

improved method does not differ much from CMOS in terms of latency complexity.

The quadratic SET-MOS XOR4 SBM is even better than its CMOS counterpart.

However, DX4 is generally considered to be larger than D⊕ due to SET devices’ lower

current drive capability. The following section will introduce an evaluation scheme

for the gate delays of SET-MOS and CMOS gates and present the simulation results.

5.3.2 Average Gate Delay

To evaluate gate delays, we begin by simulating the propagation delays generated

by various input combinations and then calculate the average of these propagation

delays, which is used as the gate delay for a certain logic gate.

The simulation results indicate that two key factors affecting the average are

the rise/fall time of inputs and the circuit depth. As the circuit depth increases, it

becomes harder to maintain a short rise/fall time for each gate. A longer rise/fall time

can negatively impact gate delays, especially for gates that use CMOS technology.

This sub-section starts by simulating the delays of individual gates under two different

rise/fall times of inputs without loads and then observes the differences. Next, the

total delay of multiple gates connected in series will be simulated, and the average

delays are summarized based on circuit depth. Finally, a curve fit will be used to

approximate the gate delays.

69

Fig. 5.5: Simulation for CMOS 2-input AND gate using PTL.

Figure 5.5 displays the delay simulation results for the AND2 gate. The left-hand

side of the figure shows three lines representing Vin1, Vin2, and Vout. The propagation

delay occurs when Vin1 transitions from low to high and Vout transitions from low

to high in response. The propagation delays are displayed in an enlarged format on

the right-hand side of the figure. In the lower right corner of the figure, it can be

seen that enlarged views of the two output-falling-edge propagation delays for input

rise/fall time are equivalent to 1ps or 1ns. Similarly, there is another propagation

delay when Vin2 transits from high to low and Vout transits from high to low, shown

in the top right corner. The right-hand side of Figure 5.5 shows that when the input’s

rise/fall time is 1ps, the rising edge produces a propagation delay of 0.03ns, while

the falling edge produces a propagation delay of 0.63ns. The average gate delay is

0.33ns. In contrast, when the input’s rise/fall time comes to 1ps, the average gate

delay increases to 0.53ns, which is the average of 0.25ns and 0.81ns.

70

Fig. 5.6: Simulation for CMOS 2-input XOR gate using PTL.

The simulation for CMOS XOR2 designed by PTL is shown in Figure 5.6. 4

propagation delays (PD) occur on the two rising and two falling edges of the output

(indicated by Rise 1, 2 and Fall 1, 2). These PDs and the averaged Gate delays are

shown in Table 5.4. Table 5.4 contains two sub-tables of gate delays, distinguished

by the inputs’ different rise/fall times.

Table 5.4: Gate delays of CMOS XOR2 with different input’s rise/fall times

Input rise/fall time = 1ns Input rise/fall time = 1ps

PD (ns)
Gate

delay (ns)

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 1 Rise 2
0.37 0.31 0.07 0.04
Fall 1 Fall 2

0.64
Fall 1 Fall 2

0.35
1.02 0.86 0.64 0.64

The simulation for SET-MOS XOR4 can be shown in Figure 5.7. When input’s

rise and fall time is 1ns or 1ps, 10 PDs shown in Figure 5.7 and gate delays are

summarized in Table 5.5.

71

Fig. 5.7: Simulation for SET-MOS XOR4.

Table 5.5: Gate delays of SET-MOS XOR4 with different input’s rise/fall times

Input rise/fall time = 1ns

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 3 Rise 4 Rise 5
2.25 2.37 2.25 2.25 2.25
Fall 1 Fall 2 Fall 3 Fall 4 Fall 5

1.9
1.52 1.52 1.52 1.49 1.52

Input rise/fall time = 1ps

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 3 Rise 4 Rise 5
2.29 2.29 2.30 2.30 2.29
Fall 1 Fall 2 Fall 3 Fall 4 Fall 5

1.89
1.48 1.48 1.48 1.48 1.48

The simulation of SET-MOS XOR8 can be shown in Figure 5.8.

72

Fig. 5.8: Simulation for SET-MOS XOR8.

The 8 PDs shown in Figure 5.8 and the gate delays of SET-MOS XOR8 for different

input rise/fall times are summarized in Table 5.6.

Table 5.6: Gate delays of SET-MOS XOR8 with different input’s rise/fall times

Input rise/fall time = 1ns Input rise/fall time = 1ps

PD (ns) Gate
delay
(ns)

PD (ns) Gate
delay
(ns)

Rise 1 Rise 2 Rise 3 Rise 4 Rise 1 Rise 2 Rise 3 Rise 4
2.92 2.93 2.94 2.94 2.92 2.93 2.93 2.93
Fall 1 Fall 2 Fall 3 Fall 4

2.7
Fall 1 Fall 2 Fall 3 Fall 4

2.68
2.47 2.47 2.47 2.49 2.44 2.44 2.44 2.44

The simulation for SET AndXor3 is shown in Figure 5.3, where PDs occur on 3

rising and falling edges of the Vout. The gate delays for 1ns and 1ps can be summarized

in Table 5.7.

73

Table 5.7: Gate delays of SET-MOS AndXor3 with different input’s rise/fall times

Input rise/fall time = 1ns Input rise/fall time = 1ps

PD (ns)
Gate

delay (ns)

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 3 Rise 1 Rise 2 Rise 3
2.72 1.67 1.67 2.49 2.00 2.01
Fall 1 Fall 2 Fall 3

1.9
Fall 1 Fall 2 Fall 3

1.88
1.57 1.94 1.94 1.55 1.70 1.57

Fig. 5.9: Simulation for SET-MOS AndXor4.

Figure 5.9 shows 9 PDs on 5 rising edges and 4 falling edges of Vout. The PDs and

gate delays can be summarized in Table 5.9 for inputs’ rise/fall times to be 1ns and

1ps, respectively.

74

Table 5.8: Gate delays of SET-MOS AndXor4 with different input’s rise/fall times

Input rise/fall time = 1ns

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 3 Rise 4 Rise 5
2.7 1.91 1.91 2.33 2.69

Fall 1 Fall 2 Fall 3 Fall 4
- 2.4

2.79 2.24 2.24 2.79

Input rise/fall time = 1ps

PD (ns)
Gate

delay (ns)
Rise 1 Rise 2 Rise 3 Rise 4 Rise 5
2.41 2.22 2.22 2.34 2.40
Fall 1 Fall 2 Fall 3 Fall 4

- 2.39
2.45 2.53 2.53 2.45

An observation can be made comparing the gate delays of 1ns and 1ps using SET-

MOS and CMOS technology presented in this sub-section. The inputs’ rise and fall

time barely affect the delays of SET-MOS gates, while the delays of CMOS gates are

significantly affected. In the case of multiple gates connected, such as a critical path

in a multiplier, where the input of the previous gate is the output of the next gate,

it is difficult to maintain a very short rise/fall time of inputs for all the gates on the

critical path.

Assuming a multiplier’s circuit depth is d. Since the latency of the multipliers in

this work generally ranges from (2 log2 n− 3) to (3 log2 n+ 1), d ∈ [9, 31] for n in the

range of [256, 2048] (n is a power of 2). Simulations were performed to measure the

delay of XOR2 and AND2 with respect to circuit depth d. The average gate delays of

CMOS XOR2 and AND2 are dotted in Figure 5.10, and the curved fitting lines, D⊗(d)

and D⊕(d) as functions of d, can be expressed in the following equations. Noting that

75

the first gates are with very short input rise/fall time for 1ps.

D⊗(d) = −0.28/d+ 0.61 = 0.33 +

(
d− 1

d

)
× 0.28 ns.

D⊕(d) = −0.31/d+ 0.66 = 0.35 +

(
d− 1

d

)
× 0.31 ns,

(5.2)

Fig. 5.10: Curve fitting to D⊗ and D⊕ with respect to the circuit depth d.

(5.2) shows that D⊗(1) = 0.33ns and D⊕(1) = 0.35ns, which are the same values

as the previous simulated gate delays shown in Figure 5.5 and Table 5.4. It is impor-

tant to note that D⊗(d) → 0.61ns and D⊕(d) → 0.66ns when d ≫ 1. For the range

of circuit depth d of the practical interest, we approximate D⊗ and D⊕ with 0.6ns

and 0.65ns, respectively, as the average gate delay for XOR2 and AND2 in multiplier

implementation. Simulations also showed that the gates using SET-MOS technol-

ogy, including XOR4, AndXor3 and AndXor4, are almost unaffected by the different

input’s rise/fall time and the loads caused by series connection. The average gate

delays in this chapter are summarized in Table 5.9. Subsequently, we will re-examine

the existing multiplier architectures to find possible application scenarios for all types

of SET-MOS gates discussed in this section.

76

Table 5.9: Average gate delay in multiplier of practical sizes

Technology CMOS SET-MOS
Gate name AND2 XOR2 XOR4 XOR8 AndXor3 AndXor4
Notation for

D⊗ D⊕ DX4 DX8 DAX3 DAX4gate delay
Gate delay(ns) 0.6 0.65 1.89 2.68 1.88 2.39

5.4 Multiplications Using SET-MOS XOR and Combinational

Gates

Like SET-MOS XOR4 can be applied to some structures/building blocks that contain

multiple XOR operations in the multiplier, SET-MOS combinational gates can be ap-

plied to structures combining AND and XOR operations, reducing the gate/transistor

count required by multiplications.

In the previous chapter, we introduced the SET-MOS XOR4 improvements to the

existing SBM, 2-way KA and its extensions. This section will provide SET-MOS

combinational gate improvements to these multiplier architectures. In addition, this

section will apply the SET-MOS XOR4 and combinational gates to the existing 4-way

KA-like architectures to improve their area performance.

5.4.1 SBM Using SET-MOS Combinational Gates

The key to implementing SBM is to realize each of the cks in (3.1). SET-MOS

AndXor3s are ideally suited to implement this “AND followed by XOR operation”

required by cks. For each ck in (3.1), it is only necessary to implement the first

aibj with one CMOS AND2 and then use SET-MOS AndXor3s to implement the

subsequent “+ai′bj′ . . . ”. Therefore, the gate count required for each ck is k, i.e., one

CMOS AND2 and k − 1 SET-MOS AndXor3. The area complexity of an n-bit SBM

77

improved by SET-MOS AndXor3 can be summarized as,

G(n) =
n∑

i=1

i+
n−1∑
j=1

j = n2. (5.3)

In this chapter, we no longer distinguish between G⊕(n) and G⊗(n) but use G(n) to

denote the multiplier’s area complexity, whereG(n) = G⊕(n)+G⊗(n). This is because

XOR gates have the same transistor count as AND gates in this work. Moreover, we

consider each gate shown in Table 5.9 has the same impact on the multiplier’s area

complexity.

The latency of this implementation can be calculated intuitively, i.e., the critical

path delay of cn−1, which contains n− 1 SET-MOS AndXor3 and one CMOS AND2,

shown below.

L(n) = (n− 1)DAX3 +D⊕. (5.4)

It is worth mentioning that the application SET-MOS AndXor4 can optimize

the latency of (5.4) at no additional delay cost. For example, various gate-level

implementations of a 4-bit SBM are shown in Figure 5.11, where Figure 5.11(a) is a

pure CMOS design, Figure 5.11(b) uses SET-MOS AndXor3 gates, and Figure 5.11(c)

utilizes both SET-MOS AndXor3 and AndXor4. It can be seen that a multiplier’s

gate count is reduced from 25 in Figure 5.11(a) to 16 in Figure 5.11(b)(c), which is

equivalent to 36% gate count savings. Furthermore, the proposed implementation in

Figure 5.11(c) keeps the same circuit depth compared to its CMOS counterpart in

Figure 5.11(a). The optimized latency of SBM improved by SET-MOS combinational

gates is,

L(n) ≤ ⌈n− 1

2
⌉DAX4 +D⊗, (5.5)

where DAX3 and DAX4 are the gate delays of the SET-MOS AndXor3 and AndXor4,

respectively. (5.5) represents the implementation with reduced latency using AndXor4

78

Fig. 5.11: Implementation of a 4-bit base multiplier via different technologies.

79

gates, as illustrated in Figure 5.11(c), where L(n) = n−1
2
DAX4 +D⊗ if n is odd, and

L(n) = (n
2
− 1)DAX4 +DAX3 +D⊗ if n is even.

In the previous chapter, we introduced an SBM that used SET-MOS XOR and

reduced the area complexity to 1.33n2 +0.33n, compared to the conventional CMOS

implementation that required 2n2 − 2n + 1. In this chapter, we have further im-

proved the SBM using combinational gates, and the improved SBM only requires

n2 gates. This implementation is also comparable in circuit depth to the other two

implementations, especially for a small multiplier size of n ≤ 4.

5.4.2 2-Way KA and Its Extensions Using SET-MOS Gates

In this sub-section, we will continue to enhance the 2-way KA and its extensions

which we improved in the previous chapter. The SET-MOS XOR4, AndXor3 and

AndXor4 will be deployed in suitable scenarios of these multiplication architectures.

5.4.2.1 Original 2-Way KA Using SET-MOS Gates

By applying the SET-MOS combinational gates, the area complexity of the 2-way

KA using SET-MOS XOR4 proposed in the previous chapter can be further reduced.

Consider two polynomials, A and B, over GF (2n), both with a degree of n − 1.

Each of these polynomials can be split into two equal-length polynomials with a

degree of n
2
− 1. The original 2-way KA [19] multiplication architecture decomposed

into three blocks of CPF , CM , and RC according to [49, 24], as shown in Figure

5.12.

80

Fig. 5.12: Decomposition of 2-way KA and application scenarios of AndXor4.

As can be seen from the enlarged illustration on the right-hand side of Figure 5.12,

part of the AND2 in CM block and the two XOR2 in the first layer in RC block can

be replaced by one AndXor4. Each application of AndXor4 can reduce two gates. In

the multiplication implementation, the CPF blocks are created using CMOS XOR2,

while the CM and RC blocks are made with AND2, AndXor4 and XOR4. It is

essential to mention that the RC block primarily uses SET-MOS AndXor4 for the

first layer and SET-MOS XOR4 for subsequent layers. The reconstruction process is

the same as in Table 4.4 in the previous chapter. Therefore, the area complexity of

the improved CM +RC can be shown as follows:

• Recursive formula
GCM+RC(2) = 3,

GCM+RC(n) = 3GCM+RC(n
2
) + n− 1,

(5.6)

• Non-recursive formula

GCM+RC(n) =
13

6
n1.58 − 2n+

1

2
, (5.7)

81

Note that CM +RC is a combined block of CM and RC, which can be improved by

SET-MOS AndXor4, and GCM+RC is the area complexity for that CM + RC block.

CPF blocks are the same as the existing method, which has an area complexity of

GCPF = n1.58− n. Regarding latency, CMOS XOR2s are used in CPF blocks. Thus,

the gate delays of one CMOS XOR2 and one SET-MOS XOR4 are increased per

round of KA. L(2) can be observed from Figure 5.12 as one CMOS XOR2 and one

SET-MOS AndXor4 (because Table 5.9 demonstrates that the delay of AndXor4 is

more significant than that of AND2). As a result, the area and latency complexity of

KA improved by AndXor4 and XOR4 can be summarized as,

G(n) = 2GCPF (n) +GCM+RC(n) = 4.16n1.58 − 4n+ 0.5,

L(n) = log2 n(DX4 +D⊕)−DX4 +DAX4,

(5.8)

A brief comparison can be made between (5.8) and (4.5). When n = 256, the reduc-

tion of total gate counts (G⊗ + G⊕) can be estimated by (28501 − 26314)/28501 =

7.7%.

5.4.2.2 2-Way Reconstructed KA Using SET-MOS Gates

Let us decompose the 2-way reconstructed KA by three blocks. As with the original

2-way KA, the block between CM and RC can be improved with AndXor4 to increase

the area complexity further. From (5.8) and (4.5), we can see that the reduced AND

gate count is 1
3
n1.58. For latency, CPF blocks and R = P0 + P1x

n step of RC block

can be implemented with CMOS XOR2. In each round of reconstructed KA, the

added gate delays are two CMOS XOR2 and one SET-MOS XOR4. L(2) consists

of one CMOS XOR2 and one SET-MOS AndXor4. In short, the area and latency

complexities of 2-way reconstructed KA improved by AndXor4 and XOR4 can be

82

summarized as,

G(n) = 4.77n1.58 − 5n+ 1,

L(n) = 2 log2 nD⊕ + log2 nDX4 −D⊕ −DX4 +DAX4.

(5.9)

Taking a quick look at (5.9) and (4.7) and assuming n = 256, we can estimate a

reduction in total gate counts of (31782− 29595)/31782, amounting to 6.9%.

5.4.2.3 2-Way Overlap-Free KA Using SET-MOS Gates

Like the previous two KA-like architectures, applying SET-MOS AndXor4 can con-

tribute to a slight area improvement for 2-way overlap-free KA. A reduction of 1
3
n1.58

can be achieved by constructing CM and RC blocks with the help of SET-MOS

AndXor4. Regarding latency, CPF blocks and the step P0 + P2 in the RC block

can be implemented with CMOS XOR2. CMOS XOR2, used to process P0+P1, and

SET-MOS XOR4, used to process P0 + P1 + P2, operate simultaneously. Since the

gate delay of SET-MOS XOR4is longer than that of CMOS XOR2, the delays added

to each round of overlap-free KA are one CMOS XOR2 and one SET-MOS XOR4. As

a result, the area and latency complexities of overlap-free KA improved by SET-MOS

AndXor4 and XOR4 are as follows.

G(n) = 5.17n1.58 − 6n+ 1.5,

L(n) = log2 n(D⊕ +DX4)−DX4 +DAX4.

(5.10)

When the value of n is 256, comparing equations (4.10) and (5.10) shows that

using SET-MOS AndXor4 can further reduce the area complexity of overlap-free

KA (Improved by SET-MOS XOR4). The reduction is indicated by the equation

(35063− 32876)/35063, which results in a 6.3% area reduction.

83

5.4.2.4 2-Way Block Recombination Using SET-MOS Gates

Applying SET-MOS combinational and XOR gates can reduce the area complexity

of 2-way block recombination method. Let A and B be two polynomials over GF (2n)

with degree of n−1. These polynomials can be split into two equal-length polynomials,

A0, A1 and B0, B1, with the degree of n
2
− 1. The data flow of AB = C is displayed

in Figure 5.13.

Fig. 5.13: Application scenarios of SET-MOS combinational gates in the 2-way block
recombination.

As shown in Figure 5.13, SET-MOS AndXor4 can be applied to two CM and

RC combos; SET-MOS AndXor3 can be applied to one CM and CA combo. If the

original 2-way KA is used for the RC blocks and SET-MOS XOR4 is applied. (This

is different from existing work in [24] and proposed work in the previous chapter. The

RC blocks in this chapter apply the original KA using XOR4). We have,

GCM(n) = nlog2 3, GCM+CA(n) = nlog2 3.

GRC(n) = 3
2
nlog2 3 − 2n+ 1

2
,

84

The area complexity can be calculated as follows,

G(n) = 4GCPF (n

2
) +GRC(n

2
) +GCM(n

2
) + 2GCM+RC(n

2
) +GCM+CA(n

2
) + n− 2,

G(n) = 71
18
nlog2 3 − 4n− 1

2
,

where GCPF (n
2
) = 4

3
nlog2 3 − n

2
and GCM+RC(n

2
) can be calculated from (5.7). Note

that CM + CA is the combined block of CM and CA, which can be improved by

AndXor3. G
CM+CA denotes its area complexity. As for the latency, it can be seen from

Figure 5.13 that one CMOS XOR on the critical path is replaced with an AndXor3.

The path of the left and right branches shown in Figure 5.13 and the path of the

middle line are counted as follows.
Ll:h(n) = log2 nD⊕ + (log2 n− 2)DX4 +DAX4,

Lm(n) = log2 nD⊕ + (log2 n− 1)DX4 +D⊗ +DAX3,

where Ll:h(n) shows the path from Ai/Bi → CM + RC → Addition → to C, and

Lm(n) is from Ai/Bi → CM → CM + CA → RC → Addition → to C. From

Table 5.9, it can be seen that DAX3 + DX4 + D⊗ is longer than DAX4. Thus, the

middle line (Lm) is the critical path. The area and latency complexities of 2-way

block recombination improved by SET-MOS gates are,

G(n) = 3.94n1.58 − 4n− 0.5,

L(n) = log2 n(D⊕ +DX4)−DX4 +D⊗ +DAX3

(5.11)

When the value of n is 256, comparing equations (5.11) and (4.12) shows that the

new result of 2-way block recombination using all types of SET-MOS gates achieves

a (31398 − 24855)/31398 = 21% area reduction to its predecessor in the previous

chapter. It’s important to note that this reduction is not solely due to the application

85

of the SET-MOS combinational gates, but also because in this chapter, RC applies

the original KA using SET-MOS XOR4.

5.4.3 4-Way KA and Its Extensions Using SET-MOS Gates

In this sub-section, we will use all types of the SET-MOS gates proposed in this thesis

to enhance the 4-way KA, as well as the 4-way block recombination multiplication

architecture.

5.4.3.1 4-Way KA Using SET-MOS Gates

4-way KA can be considered as two rounds of 2-way KA using 9 n
4
-bit sub-multiplications.

In contrast to 2-way KA, 4-way KA has more terms in each round of the reconstruc-

tion process than the 2-way KA, and this is the application scenario where SET-MOS

XOR8 can exploit its multi-input processing capability.

Considering A and B are two elements in GF (2n) represented to polynomial basis

with degree n−1. Each of them can be divided into four equal-length polynomials with

the degree n
4
− 1 shown in (3.15). The multiplication AB = C can be represented

in (3.16) and (3.17). The component process is given in Table 3.3, where we can

summarize the non-recursive formula for the CPF block in 4-way KA. GCPF (n)

equals nlog2 3 − n, equivalent to that in 2-way KA.

The reconstruction process of the 4-way KA with SET-MOS XOR8 can be area-

efficient as one gate can process up to 8 bits simultaneously. Dividing each partial

product in (3.17), Pi, into two parts,

Pi = Pi,hx
n
4 + Pi,l, i = 0, 1, . . . , 8, (5.12)

such that Pi,l has
n
4
bits and Pi,h has n

4
− 1 bits. We propose the reconstruction

process implemented with SET-MOS XOR8 as follows,

86

Step 1. Compute in parallel Ri, i = 0, 1, 2, 3, 4, using SET-MOS XOR8:

R0 = P0,h + P0,l + P1,l + P2,l,

R1 = P0,h + P1,h + P2,h + P0,l + P1,l + P3,l + P6,l,

R2 = P0,h + P1,h + P3,h + P6,h + P1,l + P2,l + P4,l + P7,l,

R3 = P1,h + P2,h + P4,h + P7,h + P3,l + P4,l + P5,l,

R4 = P3,h + P4,h + P5,h + P4,l.

Step 2. Compute in parallel R′
i, i = 0, 1, using SET-MOS XOR8:

R′
0 = R2 + P0,l + P2,l + P5,l + P6,l + P8,l,

R′
1 = R2 + P3,h + P4,h + P5,h + P7,h + P8,h.

The multiplication product can be obtained as

AB = P0,l +R0x
n
4 +R1x

n
2 +R′

0x
3n
4 +R′

1x
n +R3x

5n
4 +R4x

3n
2 + P4,hx

7n
4 .

There are n
4
SET-MOS XOR8 required to implement each of R0, R1, R2, and R3,

while only n
4
− 1 XOR8 gates are needed to realize R4. As a result, 5n

4
− 1 XOR8s

are used to implement the Step 1. In the Step 2, R′
0 requires

n
4
XOR8 and R′

1 utilizes

n
4
− 1 XOR8s. Obtaining the product AB does not require extra gates because all

coefficients are below n
4
-bit, where no overlap occurs. In total, there are 7n

4
− 2 SET-

MOS XOR8s required to implement the reconstruction process for each round of

4-way KA. It is worth mentioning that the connection between CM and RC can still

be improved using SET-MOS AndXor4 in the first round of KA, i.e., a 4-bit 4-way

KA multiplication (2 rounds of (5.6)). Then the area complexity of the CM + RC

blocks can be calculated as follows, n ≥ 4.

87

• Recursive formula
GCM+RC(4) = 12,

GCM+RC(n) = 9GCM+RC(n
4
) + 7n

4
− 2,

• Non-recursive formula

GCM+RC(n) =
347

180
n1.58 − 7

5
n+

1

4
,

About latency complexity, we see from (P0, P1, . . . , P7) → Step 1 → Step 2 involves

two SET-MOS XOR8’s delay. The latency from P8 → Step 2 involves one SET-MOS

XOR8’s delay. Taking the latency of the component and sub-multiplication process in

Table 3.3, the added latency of each round KA are one CMOS XOR2 plus two SET-

MOS XOR8. Briefly, the area and latency complexities of KA improved by AndXor4

and XOR8 can be summarized as follows for n ≥ 4.

G(n) = 2GCPF (n) +GCM+RC(n) = 3.93n1.58 − 3.4n+ 0.25,

L(n) = (log2 n− 2)(DX8 + 0.5D⊕) + 2D⊕ +DAX4 +DX8.

(5.13)

Considering that the high delay of SET-MOS XOR8 may lead to unexpected costs

in terms of multiplier’s latency, we propose another version of 4-way KA that recon-

structed by SET-MOS XOR4. The only difference between XOR4 version and the

XOR8 version presented above is the reconstruction process, which will be presented

as follows.

Dividing each partial product, Pi, into two parts, which are the same as (5.12).

We propose the reconstruction steps implemented with SET-MOS XOR4 as follows,

88

Step 1. Compute in parallel Ri, i = 0, 1, 2, . . . , 5, using SET XOR4:

R0 = P1,h + P6,h + P6,l + P7,l,

R1 = P6,h + P7,h + P3,l + P7,l,

R2 = P0,h + P0,l + P1,l + P2,l,

R3 = P0,h + P1,h + P2,h + P1,l,

R4 = P3,h + P3,l + P4,l + P5,l,

R5 = P3,h + P4,h + P5,h + P4,l.

(5.14)

Step 2. Compute in parallel R′
i, i = 0, 1, 2, 3, using SET XOR4:

R′
0 = R3 + P0,l + P3,l + P6,l,

R′
1 = R0 +R2 +R4 + P8,l,

R′
2 = R1 +R3 +R5 + P8,h,

R′
3 = R4 + P1,h + P4,h + P7,h.

(5.15)

The product is then obtained as

AB = P0,l +R2x
n
4 +R′

0x
n
2 +R′

1x
3n
4 +R′

2x
n +R′

3x
5n
4 +R5x

3n
2 + P4,hx

7n
4 . (5.16)

It can be seen in Step 1 that there are n
4
XOR4 required to implement R0, R1, R2,

and R4 each, while only n
4
− 1 XOR4 are needed to realize R3 and R5. As a result,

3n
2
−2 XOR4 gates are used to implement Step 1. In Step 2, each R′

i requires
n
4
XOR4,

except R′
3 utilizes only

n
4
−1 XOR4 gates. Note that there are no further gates needed

in obtaining the product AB, as all the coefficients are of no more than n
4
-bit.

In summary, there are 5n
2
−3 XOR4 gates required for reconstruction of each 4-way

KA. The AndXor4 can be applied to the same location as the XOR8 version. Then

89

the area complexity of the CM +RC blocks with SET-MOS AndXor4 and XOR4 can

be obtained as follows for n ≥ 4.

• Recursive formula
GCM+RC(4) = 12,

GCM+RC(n) = 9GCM+RC(n
4
) + 5n

2
− 3,

• Non-recursive formula

GCM+RC(n) =
157

72
n1.58 − 2n+

3

8
, (5.17)

When considering the latency, this XOR4 version is almost identical to the XOR8

version, only replacing XOR8 with XOR4. The added latency is one CMOS XOR2

and two SET-MOS XOR4 for each round of 4-way KA. In short, the area and latency

complexities for n ≥ 4 can be shown as,

G(n) = 4.18n1.58 − 4n+ 0.375,

L(n) = (log2 n− 2)(DX4 + 0.5D⊕) + 2D⊕ +DAX4 +DX4.

(5.18)

The following evaluation will focus on 1) area, and 2) the product of area and latency.

The XOR4 version and XOR8 version of 4-way KA introduced in this sub-section are

compared as follows.

90

Fig. 5.14: Comparison of 4-way KA using XOR4 versus XOR8 counterparts respecting
(a) total gate count and (b) area-latency product.

When n ∈ (256, 1024), we bring n into G(n), L(n) in (5.13) and (5.18), and also

bring the particular gate delays from Table 5.9 into L(n), yields the specific gate

count and latency. The area-latency product is the product of these two specific

values, which is shown in Figure 5.14(b). From Figure 5.14(a), it can be seen that the

XOR8 version has a lower area, but from Figure 5.14(b), it can also be concluded that

its area comes at the cost of more latency, resulting in a weaker area-latency product

than the XOR4 version. Because of the high cost in latency, the XOR8 version of the

4-way KA will not be covered in subsequent comparisons.

5.4.3.2 4-Way Block Recombination Using SET-MOS Gates

Let A and B be two polynomials with degree n−1 inGF (2n). They can be represented

as (3.15) in four equal-length polynomials with degree n
4
− 1. Their product AB = C

can be expressed as (3.19) and (3.20). (5.19) gives the application scenario of SET-

91

MOS combinational gates in the 4-way block recombination.

C0 = A0B0︸ ︷︷ ︸
CM+RC

, C1 = A0B1︸ ︷︷ ︸
CM

+A1B0︸ ︷︷ ︸
CM+CAAndXor3︸ ︷︷ ︸

RC

, C2 = A0B2︸ ︷︷ ︸
CM

+A1B1︸ ︷︷ ︸
CM

+A2B0︸ ︷︷ ︸
CM+CAAndXor4︸ ︷︷ ︸

RC

,

C3 = A0B3︸ ︷︷ ︸
CM

+A1B2︸ ︷︷ ︸
CM

+A2B1︸ ︷︷ ︸
CM+CAAndXor4

+A3B0

︸ ︷︷ ︸
CM+CAAndXor3︸ ︷︷ ︸

RC

,

C4 = A1B3︸ ︷︷ ︸
CM

+A2B2︸ ︷︷ ︸
CM

+A3B1︸ ︷︷ ︸
CM+CAAndXor4︸ ︷︷ ︸

RC

, C5 = A2B3︸ ︷︷ ︸
CM

+A3B2︸ ︷︷ ︸
CM+CAAndXor3︸ ︷︷ ︸

RC

, C6 = A3B3︸ ︷︷ ︸
CM+RC

.

(5.19)

Briefly, the blocks’ area complexities in (5.19) can be summarized as follows.

GCPF (n
4
) = 1

9
nlog2 3 − n

4
,

GCM(n
4
) = GCM+CA(n

4
) = 1

9
nlog2 3,

GCM+RC(n
4
) = 157

648
nlog2 3 − n

2
+ 3

8
,

GRC(n
4
) = 13

72
nlog2 3 − n

2
+ 3

8

And the area complexity of (5.19) is,

G(n) = 8GCPF (n

4
) + 8GCM(n

4
) + 6GCM+CA(n

4
)+

2GCM+RC(n
4
) + 5GRC(n

4
) + 3n

2
− 6,

G(n) = 2483
648

nlog2 3 − 11
2
n+ 21

8
.

When considering the latency complexity, from (5.19) we can see four different paths:

1. A|B CPF−−−→ Â0|B̂0, Â3|B̂3
CM+RC−−−−−→ C0, C6

Addition−−−−−→ C.

92

2. A|B CPF−−−→ Âi|B̂j, i, j ∈ [0, 3]
CM−−→ Â0B̂1, Â2B̂3

CM+CAAndXor3−−−−−−−−−−→ Â0B̂1+Â1B̂0, Â2B̂3+

Â3B̂2
RC−−→ C1, C5

Addition−−−−−→ C.

3. A|B CPF−−−→ Âi|B̂j, i, j ∈ [0, 3]
CM−−→ Â0B̂2|Â1B̂1, Â1B̂3|Â2B̂2

CM+CAAndXor4−−−−−−−−−−→ Â0B̂2+

Â1B̂1 + Â2B̂0, Â1B̂3 + Â2B̂2 + Â3B̂1
RC−−→ C2, C4

Addition−−−−−→ C.

4. A|B CPF−−−→ Âi|B̂j, i, j ∈ [0, 3]
CM−−→ Â0B̂3|Â1B̂2

CM+CAAndXor4−−−−−−−−−−→ Â0B̂3 + Â1B̂2 +

Â2B̂1
CM+CAAndXor3−−−−−−−−−−→ Â0B̂3 + Â1B̂2 + Â2B̂1 + Â3B̂0

RC−−→ C3
Addition−−−−−→ C.

It is readily apparent that the path through C3 is critical path.

L(n) = LCPF (
n

4
) +D⊗ +DAX4 +DAX3 + LRC(

n

4
) +D⊕.

Consequently, the area and delay complexity of 4-way block recombination using

SET-MOS gates can be summarized as,

G(n) = 3.83n1.58 − 5.5n+ 2.625,

L(n) = (log2 n− 2)(DX4 + 0.5D⊕) +DAX4 +DAX3 +D⊗ +D⊕.

(5.20)

When n equals 256, 4-way block recombination using SET-MOS gates of (5.20) shows

an (39260− 23735)/39260 = 40% advantage in area compared with the area-oriented

4-way block recombination method in [24]. Latency of this SET-MOS method is

longer than the CMOS counterpart, while the area-delay product of the SET-MOS

method also achieves a reduction of 39260×12.3−23735×18.81
39260×12.3

= 7.5%.

5.5 Area-Efficient Hybrid Multipliers

It was reported that a hybrid KA architecture that includes both base multipliers and

KA recursions is more efficient than a multiplier of pure KA recursion [51, 80]. The

base multipliers can take up to 57% of the whole KA multiplier in terms of gate count

93

[80]. In this section, hybrid 2-way and 4-way SBM-KA architectures are proposed

using SET-MOS gates to achieve the maximal gate count reduction.

5.5.1 2-Way SBM-KA Using SET-MOS Gates

In a hybrid KA multiplier, base multipliers with SBM are conventionally implemented

with both AND and XOR logic gates. We propose to utilize the new SET-MOS

combinational gates for replacing XOR gates and most of AND gates such that a

significant reduction in gate count can be achieved for the base multipliers. The area

and latency complexities of base multiplier is shown in (5.3), (5.4) and (5.5).

The base multiplier size can affect the gate count requirement of the whole SBM-

KA multiplier. An optimal size of base multipliers can lead to better area performance

of the hybrid SBM-KA multiplier. The previous chapter gave two approaches to find-

ing the optimal value. Here we assume the base multiplier size is m; the component

process of the whole SBM-KA multiplier is from (4.3) and then optimized with (4.19),

where the multiplier’s reconstruction process follows Table 4.3. The recursive area and

latency complexities with initial conditions can be given as follows, for 0 < m < n,

m and n are positive powers of 2.

G(m) = m2,

L(m) = (m− 1)DAX3 +D⊗,

G(n) = 3G(n
2
) + 2n− 1,

L(n) = L(n
2
) +DX4 +D⊕.

(5.21)

The non-recursive area and latency complexities for an n-bit hybrid SBM-KA multi-

plier using the CMOS AND2, XOR2, SET-MOS XOR4 and AndXor3 can be given in

94

(5.22).
G(n) = (m2 + 4m− 0.5)(n

m
)1.58 − 4n+ 0.5,

L(n) = log2
n
m
(2DX4 +D⊕) +D⊗ + (m− 1)DAX3.

(5.22)

It can be seen that the coefficient of the highest order term in the area complexity

G(n) shown in (5.22) can be extracted separately. We denote the coefficient of n1.58

in (5.22) by K(m) = (m2+4m−0.5)/m1.58, then GF (n) can be asymptotically lowest

when K(m) reaches the minimum value. Figure 5.15 shows the curve of K(m) with

m.

Fig. 5.15: Sub-quadratic term’s coefficient K(m) with respect to base multiplier’s size
m.

Since m should be a positive power of 2, it can be found in Figure 5.15 that the

asymptotically lowest G(n) can be obtained whenm equals 4. Considering the latency

complexity, it consists of two parts- the base multipllier and the KA recursion. The

structure base multiplier is shown in Figure 5.11(c). The latency of component and

reconstruction processes are the same with 2-way KA using XOR4. As a result, for

the proposed 2-way SBM-KA, we obtain the recursive and non-recursive complexity

95

of gate count and latency in (5.21) and (5.22), respectively.

G(n) = 3G(n
2
) + 2n− 1,

G(4) = 16,

L(n) = L(n
2
) +DX4 +D⊕,

L(4) = DAX4 +DAX3 +D⊗.

(5.23)

G(n) = 3.5n1.58 − 4n+ 0.5,

L(n) = (log2(n)− 2)(DX4 +D⊕) +DAX4 +DAX3 +D⊗.

(5.24)

As can be seen from (5.24), 2-way SBM-KA using SET-MOS gates achieves the lowest

area complexity in this thesis. Its area performance and area-delay product will be

compared in the next section.

5.5.2 4-Way SBM-KA Using SET-MOS Gates

In the 4-way SBM-KA architecture, we still use the SBM as base multipliers presented

in (5.3) and (5.5); the component process and sub-multiplications can be implemented

by the methods described in (3.17) and Table 3.3; and the reconstruction process is

implemented by the methods described in (5.12), (5.14), (5.15), and (5.16). Here are

the area and latency complexities with initial conditions presented recursively, where

m and n are positive powers of 2 and 0 < m < n.

G(m) = m2,

L(m) ≤ ⌈m−1
2
⌉DAX4 +D⊗,

G(n) = 9G(n
4
) + 5n− 3,

L(n) = L(n
4
) + 2DX4 +D⊕.

96

Bringing the m-bit base multipliers to the 4-way SBM-KA recursions improved by

SET-MOS gates, the non-recursive G(n) and L(n) can be evaluated as,

G(n) = (m2 + 4m− 0.375)(n

m
)1.58 − 4n+ 0.375,

L(n) ≤ log4
n
m
(2DX4 +D⊕) +D⊗ + ⌈m−1

2
⌉DAX4.

(5.25)

We also investigate K(m) in order to minimize the area complexity G(n)—noting

that m, in this case, is a positive integer even power of 2. The trend of K(m) vs.

m, in this 4-way case, is similar to Figure 5.15. It is found that the optimal value

of m for the asymptotically lowest G(n) can be obtained as m = 4. Therefore, the

complexity expressions for the 4-way modified KA can be given as follows.

G(n) = 3.51n1.58 − 4n+ 0.375,

L(n) = (log2(n)− 2)(DX4 + 0.5D⊕) +DAX4 +DAX3 +D⊗.

(5.26)

Comparing (5.24) and (5.26), it can be seen that the 4-way SBM-KA has a mi-

nor increase in area complexity compared to the 2-way SBM-KA, and in exchange

for a latency reduction (50% of the XOR2 gate delays). In more detail, this de-

lay reduction can be explained as follows. Usually, 4-way SBM-KA can be directly

derived from two rounds of 2-way SBM-KA, while we design a new 2-Step recon-

struction in (5.12), (5.14), (5.15), (5.16) so that the output of P8 is directly con-

nected to Step 2. This makes the original critical path in each round of 4-way

recursion from AiBj, i, j ∈ [0, 3]
2D⊕−−→ Sub-multiplication

∆−→ P8
2DX4−−−→ Output be-

come AiBj, i, j ∈ [0, 3]
2D⊕−−→ Sub-multiplication

∆−→ P8
DX4−−→ Output, while the

new critical path becomes AiBj, i, j ∈ [0, 3]
D⊕−−→ Sub-multiplication

∆−→ P2, P5, P6,

P7
2DX4−−−→ Output. This means for each round of 4-way SBM-KA, one D⊕ can be

saved. This exchange allows the 4-way SBM-KA to guarantee an outstanding area

performance while the area-latency product is comparable to other multiplication

97

architectures.

5.6 Complexity Comparison

A complexity comparison between the existing and proposed work is first made re-

garding the asymptotic savings of area complexities. And then, the multiplier’s par-

ticular gate counts and latency in time units are compared between the proposed

work and the others for the multiplier size ranging from 256 to 2048. As seen from

Table 5.9, the gate delays of SET-MOS are higher than that of CMOS. In order to

make sure that our proposed work does not cost too much latency while improving

area performance, we also compare the area-delay product.

5.6.1 Asymptotic Complexity Comparison

This sub-section summarizes the area and latency complexities of the proposed meth-

ods using SET-MOS gates along with existing methods from the architecture per-

spective. The column of relative savings in Table 5.10 is obtained by comparing the

coefficient of the sub-quadratic term, n1.58, which asymptotically indicates the area

performance of a method (lower is better). The proposed SET-MOS 2-way and 4-

way work introduced in Sections 5.4.2 and 5.4.3 shows noticeable advantages in area

complexity compared to the existing counterparts, as shown in Table 5.10. The pro-

posed SET-MOS work on existing methods can achieve 109%− 148% relative saving

in asymptotic area complexity, which is better than the CMOS works with that of

186% − 205%, at some cost in latency. However, even with the SET-MOS improve-

ment, these proposed SET-MOS work are still not as efficient as the final work, i.e.,

the 2-way and 4-way SBM-KA using SET-MOS gates proposed in Section 5.5.

98

Table 5.10: Complexity comparison of sub-quadratic methods

2-way methods
Method Technology Area complexity Relative saving† Latency complexity
[15]

CMOS

7n1.58 − 8n+ 2 200% 3 log2(n)D⊕ −D⊕ +D⊗
[23] 7n1.58 − 8n+ 2 200% 2 log2(n)D⊕ +D⊗

[21, 22] 6.5n1.58 − 7n+ 1.5 186% 3 log2(n)D⊕ −D⊕ +D⊗
[24] 6.5n1.58 − 8.5n+ 2.5 186% 3 log2(n)D⊕ −D⊕ +D⊗
[80]

SET-MOS

4.06n1.58 − 4n+ 0.5 113% log2(n)(DX4 +D⊕)−DX4 − 2D⊕ +D⊗
Proposed work on [15] 4.16n1.58 − 4n+ 0.5 119% log2(n)(DX4 +D⊕)−DX4 +DAX4

Proposed work on [23] 5.17n1.58 − 6n+ 1.5 148% log2(n)(DX4 +D⊕)−DX4 +DAX4

Proposed work on [21, 22] 4.77n1.58 − 5n+ 1 136% 2 log2(n)D⊕ + log2(n)DX4 −D⊕ −DX4 +DAX4

Proposed work on [24] 3.94n1.58 − 4n− 0.5 113% log2(n)(DX4 +D⊕)−DX4 +D⊗ +DAX3

Proposed final work 3.5n1.58 − 4n+ 0.5 100%
log2(n)(DX4 +D⊕)− 2DX4

−2D⊕ +DAX3 +DAX4 +D⊗
4-way methods

Method Technology Total gate count Relative saving† Latency
[21]

CMOS
6.43n1.58 − 6.8n+ 1.38 183% 2.5 log2(n)D⊕ +D⊗

[24](latency-oriented) 6.69n1.58 − 11n+ 8.88 191% 2 log2(n)D⊕ −D⊕ +D⊗
[24](area-oriented) 6.34n1.58 − 8.9n+ 3.63 181% 2.5 log2(n)D⊕ − 2D⊕ +D⊗

Proposed work on [19]

SET-MOS

4.18n1.58 − 4n+ 0.375 119% log2(n)(DX4 + 0.5D⊕)−DX4 +D⊕ +DAX4

Proposed work on [24] 3.83n1.58 − 5.5n− 2.625 109% log2(n)(DX4 + 0.5D⊕)− 2DX4 +D⊗ +DAX3 +DAX4

Proposed final work 3.51n1.58 − 4n+ 0.375 100%
log2(n)(DX4 + 0.5D⊕)− 2DX4

−D⊕ +DAX3 +DAX4 +D⊗
† Asymptotic relative gate count savings. Obtained by comparing the coefficient of the sub-quadratic term in gate count.

99

It can be seen that the area saving of the proposed final work in 2-way methods

saves (113% − 100%)/113% = 11.5%, compared to the existing work using only

SET-MOS XOR4 and not combinational gates [80]. The area saving of the proposed

method shows (186% − 100%)/186% = 46.2% when compared to the best existing

work using CMOS technology. Among the multipliers based on 4-way methods shown

in Table 5.10, the proposed final work has clear advantages over all the existing work

in area. Compared to the best of existing work with CMOS gates [24] (area-oriented),

the proposed final work utilizes nearly half the gate counts, as the asymptotic savings

in gate count are (181%− 100%)/181% = 44.8%.

Table 5.10 shows that the circuit depth is proportional to O(log2(n)) for all the

work in comparison. As discussed in Section 5.3, the propagation delays of SET-

MOS gates are usually more extensive than that of CMOS gates. While the proposed

methods require substantially lower gate counts, the proposed methods are expected

to have higher latency because of the application of SET-MOS gates. The following

subsections will discuss the gate-level comparison of multiplier implementations with

the simulated gate delays in Table 5.9.

5.6.2 Gate-Level Comparison

The gate count, latency in time units and area-latency product are calculated for

the proposed final work and several best existing work for multiplier size of practical

interest, as shown in Table 5.11.

100

Table 5.11: Complexity comparison of cryptographic sizes

2-way methods

Methods Technology
n = 256 n = 512

Total gate count (G) Latency (L, ns) G×L(%) Total gate count (G) Latency (L, ns) G×L(%)
[21, 22]

CMOS
40856 186.2% 15.55 77.3% 144.0% 124357 186.0% 17.5 77.3% 143.7%

[23] 43881 200.0% 11.0 54.7% 109.4% 133687 200.0% 12.3 54.3% 108.6%
[24] 40473 184.5% 15.5 77.3% 142.6% 123590 184.9% 17.5 77.3% 142.9%
[80]

SET-MOS
25585 116.6% 17.73 88.2% 102.8% 77778 116.4% 20.27 89.5% 104.1%

Proposed final work 21940 100% 20.11 100% 100% 66843 100% 22.65 100% 100%

Methods Technology
n = 1024 n = 2048

Total gate count (G) Latency (L, ns) G×L(%) Total gate count (G) Latency (L, ns) G×L(%)
[21, 22]

CMOS
376652 185.9% 19.45 77.2% 143.6% 1137121 185.9% 21.4 77.2% 143.4%

[23] 405153 200.0% 13.6 54.0% 108.0% 1223647 200.0% 14.9 53.7% 107.5%
[24] 375117 185.2% 19.45 77.2% 143.0% 1134050 185.4% 21.4 77.2% 143.0%
[80]

SET-MOS
235381 116.2% 22.81 90.6% 105.2% 710238 116.1% 25.35 91.4% 106.1%

Proposed final work 202576 100% 25.19 100% 100% 611823 100% 27.73 100% 100%

4-way methods

Methods Technology
n = 256 n = 1024

Total gate count (G) Latency (L, ns) G×L(%) Total gate count (G) Latency (L, ns) G×L(%)
[21]

CMOS
40415 183.4% 13.6 74.9% 157.1% 372428 183.1 % 16.85 74.6 % 157.7%

[24] (area-oriented) 39260 178.2% 12.3 67.7% 120.7% 364703 179.3% 15.55 68.8% 123.4%
[24] (latency-oriented) 41024 186.2% 10.35 57.0% 106.1% 383225 188.4% 12.95 57.3% 108.0%
Proposed final work SET-MOS 22031 100% 18.16 100% 100% 203396 100% 22.59 100% 100%

101

Among 2-way methods, the proposed final work outperforms all the other work

in gate count and the product of gate count and latency. The gate counts savings of

the proposed final work are at least 14%2, compared to a recent work using similar

SET-MOS technology [80]. The improvement in the area-latency product of the

proposed contribution ranges from 2.7% for n = 256 to 5.7%3 for n = 2048. Suppose

a comparison is made with the existing CMOS results. In that case, the proposed

4-way SBM-KA architecture achieves around 46% gate count reduction with the area-

latency product improvement of 7.0% - 8.6% for the different multiplier sizes.

The proposed 4-way SBM-KA using SET-MOS technology has also shown clear

advantages on both gate count and area-delay product over all the existing CMOS

work in comparison. The gate count improvements are from 46.3% to 46.9%, and

the area-latency product improvements range from 5.7% to 7.4% for multiplier sizes

n = 256 and 1024.

5.7 Summary

In this chapter, we proposed two multiple-input SET-MOS gates to implement com-

bined AND/XOR logic operations. The SET-MOS combinational gates have a similar

area cost as a two-input CMOS gate because they all use the same number of tran-

sistors. The proposed combinational gates’ delays are moderately higher than their

CMOS counterpart when implementing a multiplier. Furthermore, we applied these

SET-MOS combinational gates to bit-parallel finite field multipliers to improve the

area performance. Compared to the previous chapter’s work [80], the proposed 2-way

and 4-way SBM-KA architectures achieve considerable area reduction by using com-

binational gates. The comparison on area-latency product ensures that the cost of

latency is within a reasonable range.

2(116%− 100%)/116% ≈ 14%
3(102.8%− 100%)/102.8% = 2.7% and (106.1%− 100%)/106.1% = 5.7%.

102

6 Conclusion and Future Work

6.1 Conclusion

Bit-parallel finite field multipliers are crucial for achieving high-performance cryp-

tographic systems, as they highly affect the speed of computations. However, bit-

parallel multipliers suffer from problems in large area requirements. Researchers and

engineers continuously strive to develop algorithms and architectures to implement

finite field multipliers efficiently. However, improvements made solely from the al-

gorithm or architecture perspective, such as the KA’s extensions, yield diminishing

returns.

The algorithms and architectures are closely related to the device characteristics.

The findings of this thesis can be summarized in three aspects. Firstly, we design

4-input XOR gates using the emerging SET-MOS technology. We also analyze ap-

plication scenarios in these existing multiplier architectures where 4-input XOR can

be effectively applied. Modifications are made to the existing multiplication archi-

tectures, including the quadratic method, SBM, and sub-quadratic methods, such as

KA, to suit the SET-MOS XOR better. The SET-MOS XOR improved KA multi-

plier can result in a substantial 25%-30% enhancement in the bit-parallel multiplier’s

area performance, surpassing the most area-efficient multiplier that employs CMOS

technology.

Secondly, we develop a hybrid architecture of SBM and KA implemented with

SET-MOS XOR. The base multipliers of this hybrid architecture affect the complete

multiplier’s area performance. This thesis shows two methods for finding the suitable

size of base multipliers, programmatically and mathematically. The proposed hybrid

multiplier using SET-MOS XOR results in a 10% area improvement compared to

the first aspect of work and a remarkable 37% improvement compared to the most

area-efficient existing work.

103

Lastly, this thesis proposes novel combinational gates using SET-MOS technol-

ogy. Specifically, it proposes new logic gates with SET technology that can perform

(a ∧ b) ⊕ c and (a ∧ b) ⊕ c ⊕ d logic operations. These operations are obtained by

adjusting the oscillation characteristic of SET-MOS and observing the truth tables.

This design approach for combinational gates is very different from CMOS designs.

Combinational gates’ application scenarios are explored for constructing area-efficient

multipliers with complexity comparisons. The result shows that the 2-way SBM-KA

using combinational gates achieves a 46% reduction in area and a 4% decrease in

the area-latency product compared to the most area-efficient CMOS multiplier. The

proposed 4-way SBM-KA outperforms other 4-way multiplication using CMOS by

46% in area and 6% in the area-latency product. Moreover, this thesis discusses the

latency cost of using SET-MOS gates and compares the delays of SET-MOS XOR

and combinational gates with CMOS-based solutions. The lower area-latency prod-

uct validates that the area-efficient multiplier proposed in this thesis substantially

reduces the area while its increase in latency is within acceptable bounds.

Overall, our work breaks the bottleneck of bit-parallel multipliers for further area

improvements. It promotes high-speed cryptosystems to be implemented on smaller

chips, which can provide fast and secure network communications. The proposed

work is expected to be favoured for applications where high-speed elliptic curve com-

putation is required, and the compact area is also of critical importance, such as

satellite phones, wearable equipment and smart homes.

6.2 Future Work

The research work proposed in this thesis integrates the essence of promising SET

technology from the device point of view with the recent research efforts on sub-

quadratic multiplication architectures. It proposes innovative logic gates and modifi-

cations on architecture. It breaks the bottleneck encountered in the improvements of

104

finite field multipliers and provides a new perspective to make further improvements.

The finite field multipliers can be more efficient by further unleashing the ca-

pabilities of SET-MOS. There is significant potential for advancements in the two

perspectives that can be further explored and promoted.

• From a gate-to-device point of view, this thesis presents combinational gates

for (a∧ b)⊕ c and (a∧ b)⊕ c⊕ d by observing their input and output patterns.

We have not yet developed a comprehensive methodology for the design of

SET-MOS combinational gates. Therefore, a methodology is very likely to

be sketched out in future works on how to design a combinational gate with

arbitrary combinations of XOR and AND operations with 4-inputs or 3-inputs.

With the help of the new methodology, it is possible to continue exploring the

feasibility of (a ∧ b)⊕ (c ∧ d), which this thesis has not successfully designed.

• An 8-input SET-MOS XOR gate was also designed when I was working on

the thesis. However, its application has not been fully investigated. For the

2-way and 4-way hybrid multiplication covered in this thesis, the 4-input SET-

MOS XOR is sufficient. (The 8-input XOR cannot play any area saving than

the 4-input XOR in the 2-way hybrid multiplication; 8-input XOR in a 4-way

KA brings a slight area improvement but high costs in latency.) Among the

existing bit-parallel multiplication architectures, research is dedicated to k-way

multiplication [54, 28, 53, 26]. Theoretically, a higher number of splits will

lead to more partial products in the reconstruction process of multiplication

architecture, giving more room for 8-input XOR to perform its multiple-input

handling capability. Therefore, the 8-input XOR gate may find a more suitable

application scenario in k-way KA-like multiplications.

Investigating the power consumption of SET-MOS multipliers can be another

possible future research direction. The estimation of power consumption is usually

105

divided into two parts: dynamic power consumption and static power consumption.

• Dynamic power consumption: The power consumption in CMOS occurs

when the transistor states switch. If the frequency of the switching, or we say

the clock frequency, gets higher, the dynamic power consumption will increase

in CMOS based work [81]. In SET-MOS based work, on the other hand, there

is always a small current flowing in the SET part. Its power consumption is

barely affected by frequency, and its dynamic power consumption is apparently

lower than CMOS work for high clock frequency.

• Static power consumption: Static power consumption in CMOS based work

is also known as leakage power, which arises from the leakage current that flows

through transistors even when they are in the off state. As the feature size

decreases, this part of the power consumption gradually becomes not negligi-

ble. In SET-MOS, the power consumption is mainly static power consumption

because there is always current flowing in its SET part. Since the current is

always present, the “leakage current” in SET-MOS is different from that of

CMOS, which is temperature-dependent [82].

Detailed comparisons would require reasonable assumptions, such as clock frequency,

temperature, supply voltage, technology, and so on, which needs more research efforts.

In addition, the issue of SET-MOS circuit reliability can be addressed in the future,

with comparison to CMOS circuit. For example, transient faults are a concern when

it comes to CMOS technology. With decreasing feature sizes, CMOS-based circuits

become vulnerable to soft errors. The SET-based circuit, on the other hand, is more

affected by background charge and temperature. These factors could impact the

accuracy and reliability of these circuits, which can be discussed as future work and

possibly to find methods to increase reliability.

106

REFERENCES

[1] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2020.

[2] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryptog-

raphy. Springer Science & Business Media, 2006.

[3] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied

cryptography. CRC press, 2018.

[4] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transac-

tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[5] W. Diffie, “The first ten years of public-key cryptography,” Proceedings of the

IEEE, vol. 76, no. 5, pp. 560–577, 1988.

[6] L. Batina, S. B. Örs, B. Preneel, and J. Vandewalle, “Hardware architectures for

public key cryptography,” Integration, vol. 34, no. 1-2, pp. 1–64, 2003.

[7] G. M. De Dormale and J.-J. Quisquater, “High-speed hardware implementations

of elliptic curve cryptography: A survey,” Journal of systems architecture, vol. 53,

no. 2-3, pp. 72–84, 2007.

[8] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48,

no. 177, pp. 203–209, 1987.

[9] V. S. Miller, Use of elliptic curves in cryptography. Springer, 1986.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems,” Communications of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

[11] I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography. Cambridge

university press, 1999, vol. 265.

107

[12] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic pro-

cessor,” IEEE Transactions on Computers, vol. 52, no. 4, pp. 449–460, 2003.

[13] B. Rashidi, “A survey on hardware implementations of elliptic curve cryptosys-

tems,” arXiv preprint arXiv:1710.08336, 2017.

[14] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications.

Cambridge university press, 1994.

[15] C. Paar, “A new architecture for a parallel finite field multiplier with low com-

plexity based on composite fields,” IEEE Transactions on Computers, vol. 45,

no. 7, pp. 856–861, 1996.

[16] M. Wang and I. F. Blake, “Bit serial multiplication in finite fields,” SIAM Journal

on Discrete Mathematics, vol. 3, no. 1, pp. 140–148, 1990.

[17] L. Song and K. K. Parhi, “Low-energy digit-serial/parallel finite field multi-

pliers,” Journal of VLSI signal processing systems for signal, image and video

technology, vol. 19, pp. 149–166, 1998.

[18] H. Wu, “Bit-parallel finite field multiplier and squarer using polynomial basis,”

IEEE Transactions on Computers, vol. 51, no. 7, pp. 750–758, 2002.

[19] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital numbers by

automatic computers,” in Doklady Akademii Nauk, vol. 145, no. 2. Russian

Academy of Sciences, 1962, pp. 293–294.

[20] A. A. Karatsuba, “The complexity of computations,” Proceedings of the Steklov

Institute of Mathematics-Interperiodica Translation, vol. 211, pp. 169–183, 1995.

[21] D. J. Bernstein, “Batch binary edwards,” in Advances in Cryptology-CRYPTO

2009: 29th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 16-20, 2009. Proceedings. Springer, 2009, pp. 317–336.

108

[22] G. Zhou and H. Michalik, “Comments on” a new architecture for a parallel

finite field multiplier with low complexity based on composite field”,” IEEE

Transactions on Computers, vol. 59, no. 7, pp. 1007–1008, 2010.

[23] H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free karatsuba–ofman poly-

nomial multiplication algorithms,” IET Information security, vol. 4, no. 1, pp.

8–14, 2010.

[24] M. Cenk, M. A. Hasan, and C. Negre, “Efficient subquadratic space complexity

binary polynomial multipliers based on block recombination,” IEEE Transac-

tions on Computers, vol. 63, no. 9, pp. 2273–2287, 2013.

[25] M. Cenk, C. K. Koç, and F. Ozbudak, “Polynomial multiplication over finite

fields using field extensions and interpolation,” in 2009 19th IEEE Symposium

on Computer Arithmetic. IEEE, 2009, pp. 84–91.

[26] M. Cenk and F. Ozbudak, “Improved polynomial multiplication formulas over

F2 using chinese remainder theorem,” IEEE Transactions on computers, vol. 58,

no. 4, pp. 572–576, 2008.

[27] H. Fan, M. Gu, J. Sun, and K.-Y. Lam, “Obtaining more Karatsuba-like formulae

over the binary field,” IET Information Security, vol. 6, no. 1, pp. 14–19, 2012.

[28] I. Oseledets, “Improved n-term Karatsuba-like formulas in GF(2n),” IEEE

Transactions on Computers, vol. 60, no. 8, pp. 1212–1216, 2010.

[29] Z. Dyka, P. Langendoerfer, and F. Vater, “Combining multiplication methods

with optimized processing sequence for polynomial multiplier in GF(2k),” in

Research in Cryptology: 4th Western European Workshop, WEWoRC 2011,

Weimar, Germany, July 20-22, 2011, Revised Selected Papers 4. Springer,

2012, pp. 137–150.

109

[30] P. L. Montgomery, “Five, six, and seven-term Karatsuba-like formulae,” IEEE

Transactions on Computers, vol. 54, no. 3, pp. 362–369, 2005.

[31] M. A. Kastner, “The single-electron transistor,” Reviews of modern physics,

vol. 64, no. 3, p. 849, 1992.

[32] S. Mahapatra and A. M. Ionescu, Hybrid CMOS single-electron-transistor device

and circuit design. Artech House, Inc., 2006.

[33] X. Zhang, VLSI architectures for modern error-correcting codes. CRC Press,

2017.

[34] N. Sklavos and X. Zhang, Wireless security and cryptography: specifications and

implementations. CRC press, 2017.

[35] J. A. Beachy and W. D. Blair, Abstract algebra. Waveland Press, 2019.

[36] W. Geiselmann and H. Lukhaub, “Redundant representation of finite fields,” in

Public Key Cryptography. Springer, 2001, pp. 339–352.

[37] B. Sunar and C. K. Koç, “An efficient optimal normal basis type ii multiplier,”

IEEE Transactions on Computers, vol. 50, no. 1, pp. 83–87, 2001.

[38] H. Wu, “Bit-parallel polynomial basis multiplier for new classes of finite fields,”

IEEE Transactions on Computers, vol. 57, no. 8, pp. 1023–1031, 2008.

[39] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao, “Finite field multiplier using

redundant representation,” IEEE Transactions on Computers, vol. 51, no. 11,

pp. 1306–1316, 2002.

[40] S. H. Namin, H. Wu, and M. Ahmadi, “Low-power design for a digit-serial poly-

nomial basis finite field multiplier using factoring technique,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 441–449,

2016.

110

[41] N. Petra, D. De Caro, and A. G. Strollo, “A novel architecture for galois fields

GF(2m) multipliers based on Mastrovito scheme,” IEEE Transactions on Com-

puters, vol. 56, no. 11, pp. 1470–1483, 2007.

[42] H. Wu and M. A. Hasan, “Low complexity bit-parallel multipliers for a class

of finite fields,” IEEE Transactions on Computers, vol. 47, no. 8, pp. 883–887,

1998.

[43] C. K. Koc and B. Sunar, “Low-complexity bit-parallel canonical and normal

basis multipliers for a class of finite fields,” IEEE Transactions on Computers,

vol. 47, no. 3, pp. 353–356, 1998.

[44] H. Fan, “A Chinese Remainder Theorem approach to bit-parallel GF(2n) poly-

nomial basis multipliers for irreducible trinomials,” IEEE Transactions on Com-

puters, vol. 65, no. 2, pp. 343–352, 2015.

[45] E. D. Mastrovito, “VLSI designs for multiplication over finite fields GF(2m),”

in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 6th In-

ternational Conference, AAECC-6 Rome, Italy, July 4–8, 1988 Proceedings 6.

Springer, 1989, pp. 297–309.

[46] B. Sunar and C. K. Koc, “Mastrovito multiplier for all trinomials,” IEEE Trans-

actions on Computers, vol. 48, no. 5, pp. 522–527, 1999.

[47] Y. Li, X. Ma, Y. Zhang, and C. Qi, “Mastrovito form of non-recursive Karatsuba

multiplier for all trinomials,” IEEE Transactions on Computers, vol. 66, no. 9,

pp. 1573–1584, 2017.

[48] H. Fan and M. A. Hasan, “A new approach to subquadratic space complexity

parallel multipliers for extended binary fields,” IEEE Transactions on Comput-

ers, vol. 56, no. 2, pp. 224–233, 2007.

111

[49] M. A. Hasan, N. Meloni, A. H. Namin, and C. Negre, “Block recombination

approach for subquadratic space complexity binary field multiplication based

on Toeplitz matrix-vector product,” IEEE Transactions on Computers, vol. 61,

no. 2, pp. 151–163, 2010.

[50] J. von zur Gathen and J. Shokrollahi, “Efficient FPGA-based Karatsuba mul-

tipliers for polynomials over F2,” in Selected Areas in Cryptography: 12th In-

ternational Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005,

Revised Selected Papers 12. Springer, 2006, pp. 359–369.

[51] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity analysis and efficient im-

plementations of bit parallel finite field multipliers based on Karatsuba-Ofman al-

gorithm on FPGAs,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 18, no. 7, pp. 1057–1066, 2009.

[52] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba algorithm for

efficient implementations,” Cryptology ePrint Archive, 2006.

[53] H. Fan and M. A. Hasan, “Comments on “five, six, and seven-term Karatsuba-

like formulae”,” IEEE Transactions on Computers, vol. 56, no. 5, pp. 716–717,

2007.

[54] M. Cenk and M. A. Hasan, “Some new results on binary polynomial multiplica-

tion,” Journal of Cryptographic Engineering, vol. 5, pp. 289–303, 2015.

[55] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS versus pass-

transistor logic,” IEEE journal of solid-state circuits, vol. 32, no. 7, pp. 1079–

1090, 1997.

[56] Y. Ono, H. Inokawa, and Y. Takahashi, “Binary adders of multigate single-

electron transistors: Specific design using pass-transistor logic,” IEEE Transac-

tions on nanotechnology, vol. 1, no. 2, pp. 93–99, 2002.

112

[57] K. Likharev and A. Zorin, “Theory of the Bloch-wave oscillations in small

Josephson junctions,” Journal of low temperature physics, vol. 59, no. 3-4, pp.

347–382, 1985.

[58] C. Gorter, “A possible explanation of the increase of the electrical resistance of

thin metal films at low temperatures and small field strengths,” Physica, vol. 17,

no. 8, pp. 777–780, 1951.

[59] D. Averin and K. Likharev, “Probable coherent oscillations at single-electron

tunneling,” SQUID, vol. 85, p. 197, 1985.

[60] K. Likharev, “Single-electron transistors: Electrostatic analogs of the

DC SQUIDS,” IEEE transactions on magnetics, vol. 23, no. 2, pp. 1142–1145,

1987.

[61] A. M. Ionescu, M. J. Declercq, S. Mahapatra, K. Banerjee, and J. Gautier, “Few

electron devices: towards hybrid CMOS-SET integrated circuits,” in Proceedings

of the 39th annual Design Automation Conference, 2002, pp. 88–93.

[62] S. Mahapatra, A. M. Ionescu, and K. Banerjee, “A quasi-analytical SET model

for few electron circuit simulation,” IEEE Electron device letters, vol. 23, no. 6,

pp. 366–368, 2002.

[63] S. Mahapatra, K. Banerjee, F. Pegeon, and A. M. Ionescu, “A CAD frame-

work for co-design and analysis of CMOS-SET hybrid integrated circuits,” in

ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.

No. 03CH37486). IEEE, 2003, pp. 497–502.

[64] H. Inokawa, A. Fujiwara, and Y. Takahashi, “A multiple-valued logic with

merged single-electron and mos transistors,” in International Electron Devices

Meeting. Technical Digest (Cat. No.01CH37224). IEEE, 2001, pp. 7.2.1–7.2.4.

113

[65] X. Ou and N.-J. Wu, “Analog-digital and digital-analog converters using single-

electron and MOS transistors,” IEEE transactions on nanotechnology, vol. 4,

no. 6, pp. 722–729, 2005.

[66] S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee, and A. M. Ionescu, “An-

alytical modeling of single electron transistor for hybrid CMOS-SET analog IC

design,” IEEE Transactions on Electron Devices, vol. 51, no. 11, pp. 1772–1782,

2004.

[67] M. Bounouar, F. Calmon, A. Beaumont, M. Guilmain, W. Xuan, S. Ecoffey, and

D. Drouin, “Single electron transistor analytical model for hybrid circuit design,”

in 2011 IEEE 9th International New Circuits and systems conference. IEEE,

2011, pp. 506–509.

[68] Y. Takahashi, A. Fujiwara, Y. Ono, and K. Murase, “Silicon single-electron de-

vices and their applications,” in Proceedings 30th IEEE International Symposium

on Multiple-Valued Logic (ISMVL 2000). IEEE, 2000, pp. 411–420.

[69] T. Oya, T. Asai, T. Fukui, and Y. Amemiya, “A majority-logic device using an

irreversible single-electron box,” IEEE Transactions on Nanotechnology, vol. 2,

no. 1, pp. 15–22, 2003.

[70] G. Deng and C. Chen, “Binary multiplication using hybrid MOS and multi-gate

single-electron transistors,” IEEE transactions on very large scale integration

(VLSI) systems, vol. 21, no. 9, pp. 1573–1582, 2012.

[71] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated circuits.

Prentice hall Englewood Cliffs, 2002, vol. 2.

[72] C. Negre, “Efficient binary polynomial multiplication based on optimized

Karatsuba reconstruction,” Journal of Cryptographic Engineering, vol. 4, pp.

91–106, 2014.

114

[73] F. Rodŕıguez-Henŕıquez, “On fully parallel Karatsuba multipliers for GF(2m),”

in Proc. International Conference on Computer Science and Technology-CST

2003, May. Acta Press, 2003.

[74] S.-H. Choi and K.-J. Lee, “Efficient systolic modular multiplier/squarer for fast

exponentiation over GF(2m),” IEICE Electronics Express, vol. 12, no. 11, pp.

1–6, 2015.

[75] Z. Ge, G. Shou, Y. Hu, and Z. Guo, “Design of low complexity GF(2m) multiplier

based on Karatsuba algorithm,” in 2011 IEEE 13th International Conference on

Communication Technology. IEEE, 2011, pp. 1018–1022.

[76] C. Zhang, C. Chen, and H. Wu, “Area-efficient finite field multiplication in

GF(2n) using single-electron transistors,” in 2021 IEEE Asia Pacific Conference

on Circuit and Systems (APCCAS). IEEE, 2021, pp. 25–28.

[77] S. R. Pillutla and L. Boppana, “Low-latency area-efficient systolic bit-parallel

GF(2m) multiplier for a narrow class of trinomials,” Microelectronics Journal,

vol. 117, pp. 1–9 (105 275), 2021.

[78] S. E. Mathe and L. Boppana, “Design and implementation of a sequential poly-

nomial basis multiplier over GF(2m),” KSII Transactions on Internet and Infor-

mation Systems (TIIS), vol. 11, no. 5, pp. 2680–2700, 2017.

[79] W.-T. Huang, C.-H. Chang, C. W. Chiou, and F.-H. Chou, “Concurrent error

detection and correction in a polynomial basis multiplier over GF(2n),” IET

information security, vol. 4, no. 3, pp. 111–124, 2010.

[80] C. Zhang, H. Wu, and C. Chen, “Area-efficient finite field multiplication using

hybrid SET-MOS technology,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 69, no. 11, pp. 4358–4366, 2022.

115

[81] A. Wiltgen, K. A. Escobar, A. I. Reis, and R. P. Ribas, “Power consumption

analysis in static CMOS gates,” in 2013 26th Symposium on Integrated Circuits

and Systems Design (SBCCI). IEEE, 2013, pp. 1–6.

[82] S. Mahapatra, A. M. Ionescu, K. Banerjee, and M. J. Declercq, “Modelling and

analysis of power dissipation in single electron logic,” in Digest. International

Electron Devices Meeting,. IEEE, 2002, pp. 323–326.

116

APPENDIX A: Permission for IEEE Publications

117

APPENDIX B: Lemmas and Proofs

The proof of Lemma 3 is given as follows.

Lemma 3. Let a, b, k, k1 be positive integers. Let m = nk1, n = bk and assume

a ̸= b, a ̸= 1. The solution to the recurrence relations

Rm = e;

Rn = aRn/b + cn+ d.

(B.1)

is shown as follows

Rn = (e+
bc

a− b
m+

d

a− 1
)(
n

m
)
logb a

+
−bc
a− b

n+
−d
a− 1

. (B.2)

Proof. Expanding (B.1) shows,

Rm = e,

Rmb = aRm + cmb+ d,

Rmb2 = aRmb + cmb2 + d,

...

Rn/b = aRn/b2 + c(n/b) + d,

Rn = aRn/b + cn+ d.

(B.3)

118

Taking n = bk, m = bk1 which gives

Rbk1 = e,

Rbk1+1 = aRbk1 + cbk1+1 + d,

Rbk1+2 = aRbk1+1 + cbk1+2 + d,

...

Rbk−1 = aRbk−2 + cbk−1 + d,

Rbk = aRbk−1 + cbk + d.

(B.4)

Multiplying both sides by ak−k1−i for 0 ≤ i ≤ k − k1.

ak−k1Rbk1 = ak−k1e,

ak−k1−1Rbk1+1 = ak−k1Rbk1 + ak−k1−1cbk1+1 + ak−k1−1d,

ak−k1−2Rbk1+2 = ak−k1−1Rbk1+1 + ak−k1−2cbk1+2 + ak−k1−2d,

...

aRbk−1 = a2Rbk−2 + acbk−1 + ad,

Rbk = aRbk−1 + cbk + d.

(B.5)

Summing up both sides separately, we have,

Rbk +
k−k1∑
i=1

aiRbk−i =
k−k1∑
i=1

aiRbk−i + c

k−k1−1∑
i=0

aibk−i + d

k−k1−1∑
i=0

ai + eak−k1. (B.6)

Both sides have
k−k1∑
i=1

aiRbk−i , which can be cancelled. Then summing the geometric

119

series,

c

k−k1−1∑
i=0

aibk−i =
bk((a

b
)k−k1 − 1)
a
b
− 1

c

=
bk((a

kbk1

ak1bk
)− 1)

a
b
− 1

c

=
(akbk1 − ak1bk)bc

ak1(a− b)

= ak−k1bk1
bc

(a− b)
− bk

bc

(a− b)
.

(B.7)

d
k−k1−1∑

i=0

ai =
(ak−k1 − 1)

(a− 1)
d

= ak−k1 d

(a− 1)
− d

(a− 1)
.

(B.8)

Now we have,

Rbk = ak−k1bk1
bc

(a− b)
− bk

bc

(a− b)
+ ak−k1 d

(a− 1)
− d

(a− 1)
+ eak−k1

Rbk = eak−k1 + ak−k1bk1
bc

(a− b)
+ ak−k1 d

(a− 1)
− bk

bc

(a− b)
− d

(a− 1)

Rbk = (e+ bk1
bc

(a− b)
+

d

(a− 1)
)ak−k1 − bk

bc

(a− b)
− d

(a− 1)

(B.9)

Making bk1 = m,bk = n, and ak−k1 = ak

ak1
= alogb n

alogb m = (n
m
)logb a .

Rn = (e+m
bc

a− b
+

d

a− 1
)(
n

m
)logb a +

−bc
a− b

n+
−d
a− 1

(B.10)

■

120

VITA AUCTORIS

NAME: Chen Zhang

PLACE OF BIRTH: Hebei, China

YEAR OF BIRTH: 1992

EDUCATION: Zhuhai College of Science and Technology, Zhuhai,
China
Bachelor of Computer Science and Technology, 2011-
2015

University of Windsor, Windsor, ON, Canada
Master of Engineering, Electrical and Computer Engi-
neering, 2016-2018

University of Windsor, Windsor, ON, Canada
Master of Applied Science, Electrical and Computer En-
gineering, 2018-2019

University of Windsor, Windsor, ON, Canada
Doctor of Philosophy, Electrical and Computer Engi-
neering, 2019-2023

121

	Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS Technology
	Recommended Citation

	tmp.1707854763.pdf.6dqoK

