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ABSTRACT

To enhance road safety, Vehicular ad hoc networks (VANETs), an emerging wireless

technology used for vehicle-to-vehicle and vehicle-to-infrastructure communication,

are essential components to reduce road accidents and traffic congestion in Intelli-

gent Transportation Systems (ITS). It also provides additional services to vehicles

and their users. However, vehicles must balance awareness and congestion control

in a dynamic environment to efficiently transmit basic safety messages (BSMs) and

event-driven warnings. The limited channel capacity makes the reliable delivery of

BSMs a challenging problem for VANETs. This paper aims to optimize the perfor-

mance of VANETs by effectively managing channel load and reducing congestion by

maintaining the channel busy ratio (CBR) near the threshold value of 0.6. This is

resolved using a transmission power-based congestion control algorithm that employs

a Markov decision process (MDP) and solves it using a Q-Learning algorithm. The

algorithm uses varying transmission power levels to lower the channel busy ratio while

maintaining high awareness for surrounding vehicles. According to simulation results

for various traffic scenarios, the suggested technique chooses a suitable transmission

power depending on the present channel circumstances to achieve a balance between

awareness and bandwidth usage. The findings show that the proposed strategy reli-

ably maintained the channel load at or near the stipulated level without surpassing

it for both low and high traffic densities.
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CHAPTER 1

Introduction

1.1 Vehicular ad-hoc networks

For more than 80 years, ensuring road traffic safety has remained an ongoing concern.

Since motor vehicles are the predominant mode of transportation, their safety holds

immense significance. Despite the global pandemic in 2020, the projected number of

fatalities in motor vehicle crashes reached 38,680, the highest recorded since 2007 [1].

Alongside focusing on driver behavior and attitudes, enhancing vehicle safety through

inter-vehicular communication is a vital factor to address.

A vehicular Ad-Hoc Network (VANET) is a wireless ad-hoc network that facili-

tates vehicle communication [2]. It is a subset of Mobile Ad Hoc Networks (MANETs)

that employ vehicles, whether in motion or stationary, as nodes within a mobile net-

work connected through a wireless network infrastructure [2]. In VANETs, communi-

cation between nodes is typically accomplished using the North American Dedicated

Short-Range Communication (DSRC) standard, which utilizes the IEEE 802.11p

VANET standard for wireless communication. [3]

In 1999, the Federal Communication Commission (FCC) of the United States allo-

cated Dedicated Short-Range Communication (DSRC), a licensed spectrum of 75MHz

in 5.9 GHz frequency bandwidth for communication between vehicles and road-side

units [4]. DSRC, which stands for Dedicated Short-Range Communication, is a ser-

vice utilized for communication over short to medium distances. It offers high-speed

data transfer while minimizing latency. To facilitate communication within vehic-

1



1. INTRODUCTION

ular networks and establish standards for DSRC, the Wireless Access in Vehicular

Environment (WAVE) protocol was introduced. WAVE, based on the IEEE 802.11p

standard, enables communication in vehicular networks and supports the use of DSRC

[5]. However, DSRC has limitations when transmitting large volumes of data and ac-

cessing the Internet of Vehicles. A new standard called Cellular-V2X (C-V2X) has

been introduced to address these limitations. C-V2X, short for the cellular vehicle

to everything, leverages cellular technology to enable connectivity between vehicles,

road-side units, central authorities, and cloud-based services [6].

Figure 1.1: An example of a Vehicular ad-hoc network. [7]

The 5.9 GHz band has been specifically allocated 75 MHz of spectrum for vehicle-

to-vehicle (V2V) communication in Vehicular Ad-Hoc Networks (VANETs) using

dedicated short-range communications/wireless access for the vehicular environment

(DSRC/WAVE) [4]. An additional 30 MHz spectrum is also reserved for cellular

vehicle-to-everything (C-V2X) communication. However, this type of communication

introduces the possibility of simultaneous transmissions, which can lead to packet

collisions and diminish the reliability of the communication [8]. As the number of

vehicles increases, broadcasting Basic Safety Messages (BSMs) can easily result in

congestion on this single channel, leading to lower reception probabilities and reduced

2



1. INTRODUCTION

transmission ranges [3].

1.2 Motivation

The primary objective of this research is to enhance the performance of Vehicular Ad-

Hoc Networks (VANETs) by implementing effective channel load management tech-

niques and minimizing congestion. This is accomplished by maintaining the Channel

Busy Ratio (CBR) close to a predetermined threshold value.

The research endeavors to strike a balance in VANETs, where the paramount

importance lies in establishing awareness among vehicles. In VANETs, vehicles must

communicate and collaborate with each other to facilitate efficient and safe trans-

portation [9]. By addressing the challenges associated with channel load and con-

gestion, this study aims to optimize the overall performance of VANETs, thereby

enhancing the effectiveness of communication and cooperation among vehicles.

1.3 Problem Statement

Vehicular Ad-Hoc Networks (VANETs) are fast emerging as a transformative tech-

nology, capable of significantly improving communication efficiency and safety among

vehicles on the move [10]. Nonetheless, the inherently dynamic and rapidly growing

VANET environment presents formidable challenges, notably in channel congestion

control [10]. Maintaining robust control over channel load and congestion is key to

sustaining reliable and prompt communication among vehicles [10].

Present congestion control strategies in VANETs often fall short of reconciling the

dual needs of maintaining high vehicle awareness while preserving a stable channel

congestion level [11]. This inadequacy leads to many complications, including esca-

lating packet loss, lagging transmission, and a downward spiral in overall network

performance. Further complicating matters is that traditional congestion control

methodologies developed for wired or stationary wireless networks may not directly

3



1. INTRODUCTION

translate into effective solutions for VANETs due to their unique operational charac-

teristic [11].

Consequently, there is a pressing need to devise a novel solution tailored to ad-

dress channel congestion control in the dynamic VANET environment [12]. This

research endeavors to develop an optimized congestion control algorithm, utilizing

innovative strategies such as transmission power adjustment and reinforcement learn-

ing techniques like Q-learning. This dynamic algorithm will adaptively regulate the

transmission power of vehicles, managing channel load and maintaining a stable con-

gestion level, ensuring efficient and reliable communication within the VANET [12].

The central goal of this thesis is to formulate a congestion control algorithm that

balances high vehicle awareness and effective congestion control in VANETs. This

innovative algorithm aims to optimize this delicate balance, promising efficient data

transmission, reduced packet loss, and minimized transmission delays. The proposed

solution, therefore, holds the potential to significantly enhance VANET performance

and pave the way toward the realization of secure and dependable vehicular commu-

nication systems.

By pioneering an innovative approach to tackle channel congestion control in

VANETs, this research aspires to contribute significantly to the body of knowledge

in this field and provide practical insights for the future design and deployment of

efficient congestion control mechanisms in real-world VANET scenarios.

1.4 Solution Outline

This research focuses on designing a congestion control algorithm for Vehicular Ad-

Hoc Networks (VANETs) that utilizes Q-learning and transmission power adjustment.

The algorithm balances the need for high vehicle awareness and maintains a stable

channel congestion level.

Achieving this balance is crucial for the efficient and safe operation of VANETs.

4
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Vehicle awareness refers to a vehicle’s ability to have up-to-date knowledge about its

surrounding environment, typically obtained through exchanging information with

other vehicles or infrastructure. Maintaining a stable channel congestion level is

essential to prevent data traffic overload, which can result in packet loss and increased

transmission delays, thereby affecting the overall performance of vehicular networks.

The proposed algorithm aims to optimize the trade-off between awareness and

congestion control in VANETs by employing Q-learning and adjusting transmission

power. This research seeks to develop an effective solution that enables vehicles to

maintain a high level of awareness while simultaneously ensuring a stable channel

congestion level, ultimately enhancing the efficiency and safety of vehicular networks.

1.4.1 Contributions

The contribution of this research is summarized as follows:

• Development of a Novel Congestion Control Algorithm: The foremost

contribution of this research is the development of a novel congestion control

algorithm that utilizes dynamic transmission power adjustments and reinforce-

ment learning techniques. This innovative algorithm effectively addresses the

unique congestion control challenges in VANETs, offering a customized solution

beyond traditional methodologies.

• Enhancement of Vehicle Awareness and Congestion Control Balance:

By dynamically regulating transmission power and using reinforcement learn-

ing, the proposed algorithm balances high vehicle awareness and stable channel

congestion. This contributes to more efficient data transmission, reduced packet

loss, and reduced transmission delays in VANETs.

• Provision of Practical Insights for Future VANET Development: The

findings and insights gained from this research provide valuable information

for the future design and implementation of VANETs. They could guide the

5



1. INTRODUCTION

development of new congestion control mechanisms and help optimize existing

systems.

• Contribution to Academic Literature: This research adds to the growing

body of academic literature on congestion control in VANETs. It presents a

novel approach to a longstanding problem, offering fresh perspectives that can

spur further studies and technological advancements in this field.

In essence, this research contributes significantly both to the academic com-

munity and the practical implementation of VANETs. It introduces a unique

approach to congestion control that holds promise for enhancing vehicular com-

munication systems’ performance and safety.

To approach the complex problem of channel congestion in VANETs, our research

introduces a framework that leverages Reinforcement Learning (RL) methods to solve

the Markov Decision Process (MDP), focusing particularly on discrete action and

state spaces [9]. At the heart of this framework is the Q-learning algorithm, a model-

free RL method that aids in determining an optimal action-selection policy for a given

MDP.

The training data for our Q-learning algorithm is drawn directly from a simulated

dynamic traffic environment, providing a more realistic representation of state transi-

tions. We gather observations of the Channel Busy Ratio (CBR) values under various

transmission powers and vehicle densities, feeding these into our learning model to

guide decision-making.

In our approach, we define a reward function that integrates both CBR and trans-

mission power. The function is designed to balance the dual objectives of keeping the

channel load under a targeted threshold (to manage congestion) and maximizing the

transmission power (to maintain high vehicle awareness).

The performance of our approach is validated through extensive simulations. The

results demonstrate that the proposed Q-learning-based solution effectively sustains

the desired channel load under various dynamic traffic scenarios. Our solution exhibits

6



1. INTRODUCTION

a lower Beacon Error Rate (BER) than existing methods, underlining its superior

performance in managing channel congestion. This result attests to the effectiveness

of RL, specifically Q-learning, in addressing the challenges of congestion control in

VANETs [9].

1.5 Thesis Organization

This thesis is divided into five main chapters, each detailing a significant stage in the

research process. The remaining outline of this thesis is as follows:

Chapter two provides a comprehensive overview of the broad research area and

explains the fundamental concepts and terminologies related to the study. It delves

into the current research problems and solutions and presents an extensive literature

review of crucial papers about the specific research problem. This chapter serves as

the foundation of the research, setting the stage for the unique contribution proposed

in the following chapter.

Chapter three discusses the proposed approach in detail. It begins with a high-

level outline of the approach, highlighting its differences from existing methodologies

and elucidating any novel or innovative features. The chapter then provides an in-

depth description of the approach, including detailed flowcharts, algorithms, and

comprehensive explanations of these elements. This chapter underscores the unique

contribution of this research to the field of study.

The fourth chapter presents the results of the research. It starts by explaining the

validation process of the proposed approach, including a description of the experimen-

tal and simulation setup. The chapter outlines how the ’success’ of the approach is

evaluated, such as by comparing performance with existing techniques or using stan-

dard/benchmark test inputs. It then presents the results, including data in tables,

figures, and graphs, with detailed discussions to justify the claims and conclusions.

The final chapter summarizes the research findings, discusses the implications of

7



1. INTRODUCTION

the results, and proposes directions for future research. It revisits the research ob-

jectives and explains how the study has achieved them, underscoring the importance

and relevance of the research contributions.

8



CHAPTER 2

Background Review

2.1 Basic Terminology

The following terminologies form the backbone of the concepts and methodologies

discussed in this thesis, providing the necessary language for understanding and im-

plementing the proposed approach to channel congestion control in VANETs.

• Vehicular Ad-Hoc Networks (VANETs): VANETs are a subclass of mobile

ad-hoc networks that allow vehicles to communicate with each other (Vehicle-to-

Vehicle, V2V) or with roadside infrastructure (Vehicle-to-Infrastructure, V2I)

to provide safety and comfort to passengers [2].

• Mobile Ad-Hoc Networks (MANETs): MANETs are wireless networks

where all the nodes are mobile and directly connected to each other without a

centralized administrator or infrastructure [13].

• Nodes: In the context of this research, a node refers to a vehicle equipped with

an onboard unit (OBU) that enables it to send, receive, and relay messages.

• Onboard Unit (OBU): An OBU is a device equipped in vehicles participating

in VANETs that allows the vehicle to communicate wirelessly with other vehicles

or infrastructure [14].

• Channel Load: This refers to the amount of data the communication channel

carries at any given time. High channel load can lead to congestion, resulting

in decreased network performance.

9



2. BACKGROUND REVIEW

• Channel Congestion: Channel congestion occurs when the demand for a

channel’s capacity exceeds its ability to transmit data, leading to packet loss,

delay, or blocking new connections.

• Transmission Power: In wireless communication, transmission power is the

amount of electrical power sent out by a transmitter in the form of a signal.

• Reinforcement Learning: Reinforcement learning is an area of machine

learning concerned with how software agents should take actions in an envi-

ronment to maximize some notion of cumulative reward [15].

• Q-learning: Q-learning is a model-free reinforcement learning algorithm that

seeks to learn the value of being in a given state and taking a specific action

under a policy [16].

• Basic Safety Message (BSM): In the context of Intelligent Transportation

Systems (ITS) and particularly VANETs, a BSM is a packet of data broad-

casted periodically by vehicles to provide situational awareness and enhance

roadway safety. It is also not event-driven. It typically includes important sta-

tus information such as vehicle speed, heading, size, and position data. BSMs

form a crucial part of the communication protocol in VANETs, providing vital

real-time information for safety applications.

• Channel Busy Ration (CBR): The CBR is defined as the ratio between

the time the channel is detected as busy and the total observation time. CBR

is a helpful indicator of the channel load, with higher values indicating higher

channel load and vice versa.
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2.2 Overview of Research Area

Figure 2.1: Vehicular Ad Hoc Network (VANET). [17]

Vehicular Ad-Hoc Networks (VANETs) are a subclass of Mobile Ad-Hoc Networks

(MANETs) that are specially designed for the context of vehicles connected in a wire-

less manner [18]. Intending to improve road safety and facilitate better transportation

services, VANETs stand at the intersection of several research disciplines, including

computer science, telecommunications, and traffic engineering.

VANETs consist of vehicles, often referred to as nodes, that form a dynamic

network and communicate with each other without the need for a fixed infrastructure

[19]. These vehicles have onboard units (OBUs) to transmit and receive messages.

The primary purpose of these networks is to facilitate Vehicle-to-Vehicle (V2V) and

Vehicle-to-Infrastructure (V2I) communication, allowing for the sharing of valuable

information such as traffic conditions, accident warnings, route guidance, and other

safety alerts [19].

In VANETs, each vehicle has the ability to act as a wireless router or node,

allowing cars approximately 100 to 300 meters from each other to connect and, in
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turn, create a network with a wide range. As vehicles fall out of the signal range and

drop out of the network, other vehicles can join in, connecting vehicles to one another

and creating a mobile Internet.

The dynamic and fast-changing nature of VANETs, the high node mobility, and

the unique vehicle patterns present various technical challenges, including security,

privacy, and the efficient management of channel load and congestion, making it a rich

area for research and development [20]. The problem of channel congestion control,

in particular, is the focus of this thesis.

2.3 Overview of VANET

2.3.1 VANET Environment

The VANET environment is a highly dynamic and complex communication envi-

ronment designed to improve road safety and driving comfort [21]. A set of core

components defines this environment:

• Vehicles and their On-Board Units (OBUs): Vehicles are the primary

nodes in the VANET, each equipped with an On-Board Unit. The OBU is

a device that enables a vehicle to communicate wirelessly with other vehicles

and with infrastructure in its vicinity [22]. The OBU can transmit and receive

messages, process data, and execute applications using information from other

vehicles or infrastructure [22]. It is crucial in Vehicle-to-Vehicle (V2V) and

Vehicle-to-Infrastructure (V2I) communications.

• Road-Side Units (RSUs): RSUs are fixed infrastructure components that

complement the OBUs in vehicles. They can provide various services, such as

relaying messages over longer distances, disseminating safety messages or traffic

updates, and connecting the VANET with other networks, like the Internet [23].

RSUs enhance the communication capabilities within the VANET, enabling

information exchange even when direct V2V communication is not possible.
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• Other Infrastructure: Besides OBUs and RSUs, other infrastructural com-

ponents, like traffic signals, can be part of the VANET environment. These

components can be equipped with communication capabilities and sensors to

gather and disseminate data about traffic, road conditions, weather, and other

relevant factors. The data collected by these components can feed into various

VANET applications to improve road safety and traffic efficiency [14].

• Communication Channels: The VANET environment also includes the com-

munication channels used for data transmission. These channels can become

congested due to high vehicle densities or high data transmission rates, a chal-

lenge this thesis aims to address.

Figure 2.2: VANET Model Diagram. [19]

The VANET environment, while providing significant potential for improving road

safety and traffic efficiency, is characterized by high dynamics due to vehicle mobility,

varying vehicle densities, and changing environmental conditions [24]. This poses
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specific challenges for network performance and stability, including the challenge of

channel congestion management that this research focuses on.

2.3.2 Types of Communication

VANETs enable direct communication between vehicles through onboard units (OBUs)

or with infrastructure nodes such as roadside units (RSUs), thereby facilitating the

dissemination of safety-related information. The different types of communication

are:

• In-Vehicle Communication: This refers to communication within a single

vehicle, typically between different devices or components of the vehicle’s in-

ternal network [25]. For instance, various sensors, control units, and display

systems in modern cars often communicate with each other to operate effec-

tively. This type of communication is crucial for in-car infotainment systems,

driver assistance features, and overall vehicle functionality.

• Vehicle-to-Vehicle (V2V) Communication: As the name suggests, V2V

communication involves the direct exchange of information between vehicles

[25]. It’s a fundamental part of VANETs, enabling vehicles to share data such

as speed, direction, position, and other safety-related information. This type

of communication can significantly enhance road safety, allowing vehicles to

anticipate potential hazards and adjust their actions accordingly.

• Vehicle-to-Infrastructure (V2I) Communication: This refers to the com-

munication between vehicles and fixed infrastructure components such as Road-

Side Units (RSUs), traffic lights, and traffic control centers. V2I communication

can provide vehicles with important information about road conditions, traffic

congestion, weather updates, and more [25]. This can enhance both safety and

traffic efficiency.

• Vehicle-to-Everything (V2X) Communication: This umbrella term en-

compasses all types of vehicle communication. It includes V2V, V2I, and com-
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munications with pedestrians (V2P), cyclists, and the broader network [25].

V2X communication is expected to play a key role in the advent of autonomous

driving and smart cities, enabling seamless integration of vehicles into the

broader IoT ecosystem.

2.3.3 Congestion Control in VANET

Congestion control in Vehicular Ad-hoc Networks (VANETs) is a critical aspect af-

fecting the performance and reliability of vehicle communication.

The 802.11p wireless protocol is commonly used in VANETs. It employs the

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocols to

minimize collisions and provide fair access to the communication channel. However,

as a random-access protocol, CSMA/CA can lead to simultaneous transmissions,

collisions, and network congestion [26].

Additionally, in the 802.11p Medium Access Control (MAC) layer, the request-to-

send/clear-to-send (RTS/CTS) handshake is disabled, eliminating a potential means

of reducing collisions and congestion.

As the number of vehicles increases, there will be a rise in the broadcasting of

Basic Safety Messages (BSMs). This amplification in communication activity can

cause congestion on the channel. This can lower the reception probability of messages

and decrease transmission ranges.

In the dynamic and rapidly changing environment of VANETs, achieving optimal

solutions for congestion and awareness is challenging due to the highly mobile nodes.

As vehicular density fluctuates, managing congestion and ensuring the efficient trans-

mission of data becomes complex. When channel congestion occurs, it manifests in

multiple ways:

• Packet Loss: This refers to data packets sent from one vehicle not being

received by another due to congested channels, resulting in loss of information
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and reduced efficiency of VANET applications [27].

• Increased Delay: The time taken for data to be transmitted from one node to

another can significantly increase during congestion, especially in high-density

situations. This can hinder the performance of VANET applications that rely

on timely data transmission [27].

• Reduced Throughput: The overall network data capacity or throughput can

be reduced during congestion, meaning fewer data can be transmitted over the

network. This results in slower and less efficient data exchange [27].

Beyond channel congestion, VANETs face several other challenges, such as ensur-

ing network security, maintaining privacy, and delivering quality service.

Channel congestion, in particular, refers to the state where the wireless communi-

cation channel used by vehicles in a VANET becomes saturated due to a high number

of concurrent data transmissions. An excessive number of vehicles communicating on

the same channel can lead to channel congestion, causing packet loss, increased delay,

and reduced throughput. Hence, effective congestion control strategies are essential

for the efficient operation of VANETs.

2.4 Overview of Machine Learning

Machine learning is the Artificial Intelligence branch that facilitates machines to

perform specific jobs faster and skillfully using statistical learning [28].

Machine Learning is a subfield of Artificial Intelligence (AI) that allows computers

to learn patterns and make decisions from data without being explicitly programmed.

Essentially, it’s about creating algorithms and models that use statistical methods to

improve performance over time. Machine Learning can be broadly categorized into

three types:

• Supervised Learning: This type of learning uses labeled data to train algo-

rithms. In other words, the data input into the algorithm comes with desired
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output labels [28]. By analyzing the input-output pairs, the algorithm learns to

map the input to the correct output. Examples of supervised learning include

regression and classification problems.

• Unsupervised Learning: Unlike supervised learning, unsupervised learning

deals with unlabeled data. The goal is to discover the data’s underlying pat-

terns, structures, or hidden relationships [28]. Standard techniques include

clustering and dimensionality reduction.

• Reinforcement Learning: This type of learning is about making a series of

decisions. The machine is trained to make specific decisions by rewarding and

penalizing its actions [28]. In the long run, it learns to make the best decision

from its experiences. This method is commonly used in robotics, gaming, and

navigation.

2.5 Fundamental Concepts

2.5.1 Channel Congestion

In wireless communication networks, channel congestion refers to the scenario where

too many packets are contending for transmission over a limited bandwidth wire-

less channel [29]. As with general network congestion, this can result in packet loss,

increased latency, and decreased overall network performance. In dynamic and high-

mobility networks like VANETs, channel congestion can be particularly challenging

due to changing network topologies and the potentially high number of nodes con-

tending for channel access.

2.5.2 Congestion Control

Congestion control refers to the mechanisms and techniques used in computer net-

works to avoid or manage congestion, ensuring stable and efficient network perfor-

mance. Congestion occurs when the network’s resource demand exceeds capacity,
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leading to packet loss, decreased throughput, and increased transmission delays [27].

Congestion control aims to prevent such occurrences by controlling the rate at which

packets are sent into the network, often by adjusting it based on network conditions.

Congestion control can be reactive (responding to congestion after it happens by

reducing transmission power) or proactive (preventing congestion by controlling the

data entry rate into the network). In many modern networks, congestion control

is performed by end systems where the sending rate is adjusted based on perceived

network congestion.

2.5.3 Transmission Power

Transmission power in wireless communication refers to the power used to send signals

from a transmitter. It’s a critical parameter because it determines the transmitted

signal’s range and strength, impacting communication reliability, the network’s cov-

erage area, and power consumption.

In VANETs, controlling transmission power is a potential mechanism for managing

channel load and congestion. By reducing transmission power, the communication

range of a node can be limited, reducing the number of contending nodes for channel

access and potentially alleviating congestion. Conversely, increasing transmission

power may increase the communication range and improve connectivity but may also

lead to increased interference and potential congestion.

2.5.4 Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning where an agent learns to

make decisions by taking actions in an environment to achieve maximum cumulative

reward [30]. The agent learns from trial and error, receiving rewards or penalties for

actions. Over time, it learns the optimal policy, i.e., the best action to take in each

state to maximize its total reward over time [30].

RL is particularly useful in scenarios where there’s a need to balance immediate
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rewards with long-term outcomes and where the optimal decision-making policy is

not known upfront and must be learned from interaction with the environment.

2.5.5 Q-Learning

Q-Learning is a specific model-free reinforcement learning algorithm that does not

require a model of its environment. Q-Learning aims to find an optimal policy by

learning a Q-function, which gives a certain action’s expected utility (value) in a given

state [30].

The Q-function is typically represented as a table, with states as rows, possible

actions as columns, and the expected utility of each action in each state as table

entries. Q-Learning involves updating these entries over time based on the rewards

received from the environment and the agent’s exploration of different state-action

pairs.

Q-learning is particularly effective in problems where there is a need to balance

exploration (trying out new actions to see their effect) and exploitation (choosing the

actions known to yield the best results) and where the environment dynamics may

be complex and non-deterministic.

2.6 Literature Review

Vehicular Ad Hoc Networks (VANETs) are essential for supporting various appli-

cations, including safety-critical ones such as forward collision warnings and traffic

signal violation warnings, as well as comfort-oriented applications like weather in-

formation systems and restaurant recommendations [31]. Reliable delivery of alert

messages and periodic broadcasts of Basic Safety Messages (BSMs) containing crucial

information such as vehicle position, speed, and heading is crucial for these safety ap-

plications. However, due to the limited channel capacity and high transmission power

needed for maintaining awareness, ensuring reliable delivery of BSMs can be challeng-

ing in VANETs. This section reviews relevant studies and research contributions on
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congestion control algorithms for vehicular networks.

One classical approach is the linear message rate integration control (LIMERIC)

algorithm [32], which aims to distribute the available channel bandwidth fairly among

vehicles by dynamically adjusting the BSM transmission rate in each iteration. LIMERIC

adapts the transmission rate using linear feedback to manage congestion. Another

approach is the error model-based adaptive rate control (EMBARC) algorithm [33],

which improves LIMERIC by preemptively scheduling messages based on a vehicle’s

movement, thereby reducing instances of large tracking errors. The BSM rate con-

trol over IEEE802.11p vehicular networks (BRAEVE) algorithm [34] estimates the

number of vehicles to achieve smoother convergence and lower packet error ratio,

inter-packet delay (IPD), and tracking error compared to other algorithms.

Another proposed scheme [35] analyzes congestion detection schemes and utilizes

a priority model to adjust the transmission rate of beacon messages, employing the

search algorithm to control network congestion.

Transmission power, another adjustable parameter for congestion control, is cru-

cial in managing the number of vehicles a BSM can reach. The distributed fair

transmit power adjustment for VANETs (D-FPAV) algorithm [36] sets the node trans-

mission power based on the prediction of application-layer traffic and the observed

number of vehicles in the surrounding area. Adaptive beacon transmission power

(ABTP) [37] adjusts transmission power based on vehicle position prediction error,

increasing it for vehicles with large errors and reducing it for vehicles with small

errors.

Data rate control is another aspect of congestion control, with studies like the

binary rate algorithm [38] dynamically adjusting the data rate based on channel load.

The authors in [39] propose an algorithm that directly estimates the appropriate data

rate based on the current BSM reception rate (CBR), leading to faster convergence

and improved packet delivery ratio.

Another study [40] introduces combined power and message-rate adaptation (CPMRA)
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and combined power and data-rate adaptation (CPDRA) mechanisms, adapting trans-

mission power and data rate based on the current congestion situation. Channel-aware

congestion control (CACC) [41] considers received signal strength (RSS) to diagnose

packet loss and determine channel conditions, adjusting data rate and transmission

power accordingly.

Liu, Amour, and Jaekel (2023) [9] introduce a congestion control mechanism for

V2V communication in VANETs that leverages reinforcement learning. Their ap-

proach enables vehicles to learn optimal congestion control policies through inter-

actions with the environment and rewards. By adapting the transmission rate, the

proposed approach aims to mitigate congestion and enhance the performance of V2V

communication. The authors provide a detailed methodology and evaluate the effec-

tiveness of their approach through simulations. The key contribution of this work lies

in the application of reinforcement learning for congestion control in V2V communica-

tion. By utilizing reinforcement learning, the proposed mechanism allows vehicles to

autonomously learn optimal control policies based on rewards obtained from the envi-

ronment. The algorithm optimizes congestion control decisions through the iterative

learning process to improve communication performance in VANETs.

Aznar-Poveda et al. (2021) [16] propose a novel approach called MDPRP, which

leverages Q-learning to control the beaconing rate and transmission power in VANETs

jointly. The goal is to achieve a trade-off between communication reliability and re-

source utilization by dynamically adapting these two parameters. The authors present

a detailed methodology and conduct experiments to evaluate the effectiveness of their

approach. This work’s key contribution lies in applying Q-learning to the joint control

of beaconing rate and transmission power. The MDPRP algorithm enables vehicles

to autonomously learn optimal policies based on local observations and rewards, fa-

cilitating an adaptive control mechanism. By dynamically adjusting the beaconing

rate and transmission power, the algorithm aims to improve communication reliabil-

ity and resource efficiency in VANETs.Compared to related studies, Aznar-Poveda

et al.’s approach stands out due to its focus on the joint control of beaconing rate
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and transmission power using Q-learning. While previous research has explored indi-

vidual control mechanisms or relied on fixed settings for these parameters, this work

presents a holistic approach considering their interaction. This allows for adaptive

decision-making that optimizes the trade-off between communication reliability and

resource utilization.

Liu et al. (2021) in “Balancing Awareness and Congestion in Vehicular Networks

Using Variable Transmission Power” [42] propose a novel approach that dynamically

adjusts the transmission power of vehicles to strike a balance between maintaining

awareness of surrounding vehicles and mitigating network congestion. This paper

addresses balancing awareness and congestion in vehicular networks by utilizing vari-

able transmission power. By adapting the transmission power based on the density

of nearby vehicles and the current network congestion level, their algorithm aims to

optimize communication reliability and network efficiency. The authors conducted

experiments and simulations to evaluate the effectiveness of their approach under

various scenarios. The key contribution of this work lies in the variable transmis-

sion power scheme, which allows vehicles to adjust their transmission power levels

dynamically. By increasing the transmission power in sparser areas with low conges-

tion, vehicles can establish and maintain communication links with nearby vehicles,

thus enhancing situational awareness. Conversely, vehicles can lower their transmis-

sion power in denser areas or when congestion levels rise to mitigate interference and

reduce congestion, thereby improving network efficiency.

The paper titled “Research on adaptive beacon message transmission power in

VANETs” [37] addresses the challenge of adapting beacon message transmission power

in VANETs to optimize communication performance. Wang et al. (2020) propose

an approach that dynamically adjusts the transmission power of beacon messages in

VANETs based on the network conditions and communication requirements. Their

algorithm balances the trade-off between communication range and energy consump-

tion by adaptively controlling the transmission power. The authors conducted ex-

periments and simulations to evaluate the effectiveness of their approach in various
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VANET scenarios. The key contribution of this work lies in the adaptive adjust-

ment of beacon message transmission power. The algorithm optimizes the commu-

nication range while minimizing energy consumption by dynamically modifying the

transmission power based on vehicle density, traffic conditions, and communication

requirements.

Facchina and Jaekel (2020) [43] propose a congestion control scheme that lever-

ages vehicle speed as a key metric to regulate traffic flow and mitigate congestion in

vehicular networks. It is a distributed approach, where each vehicle autonomously

adjusts its speed based on local congestion observations. This work’s key contribu-

tion lies in utilizing vehicle speed as a control parameter for congestion control. By

adjusting vehicle speed in response to observed congestion levels, the scheme aims to

maintain optimal traffic flow and reduce the risk of congestion-related problems, such

as packet loss and increased communication delays.

Patil et al. (2019) [44] propose a decentralized congestion control mechanism

that dynamically adjusts the transmit data rate of vehicles in VANETs to alleviate

congestion. Their algorithm aims to regulate the amount of data transmitted by

each vehicle based on the observed network conditions and congestion levels. The

key contribution of this work lies in the transmit data rate control mechanism for

decentralized congestion control. The algorithm allows each vehicle to autonomously

adapt its data transmission behavior by adjusting the data transmission rate based

on local congestion observations. This decentralized approach reduces the reliance

on centralized control and communication, thereby enhancing the scalability and

robustness of the system.

Mohammed et al. (2022) in [45] proposes a decentralized congestion control mech-

anism for Vehicular Ad Hoc Networks (VANETs). The authors introduce a novel con-

gestion control mechanism that dynamically adjusts the message transmission rate

based on the exponential function. The goal is to manage the communication load

and mitigate congestion within VANETs effectively. They utilize the exponential
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function to adaptively adjust the rate at which messages are transmitted in response

to the changing network conditions and congestion levels. The proposed approach

aims to optimize network performance and ensure efficient information dissemination

in VANETs by dynamically modifying the message transmission rate. This approach

offers a unique perspective on managing congestion within VANETs.

Math et al. (2015) [46] present a congestion control mechanism for V2V commu-

nication that focuses on adjusting the data rate to manage congestion levels in traffic

safety scenarios. The authors recognize the criticality of maintaining reliable commu-

nication for traffic safety applications and propose a methodology that dynamically

adapts the data rate based on observed congestion conditions. The paper analyzes the

proposed approach and presents simulation results to demonstrate its effectiveness.

The key contribution of this work lies in the data rate-based congestion control mech-

anism tailored specifically for traffic safety applications in V2V communication. By

adjusting the data rate based on observed congestion levels, the proposed approach

aims to mitigate congestion and maintain reliable communication links, ensuring a

timely and accurate exchange of safety-related information among vehicles.

Subramaniam et al. (2022) [47] introduce the use of traffic density as a crucial

parameter in their congestion control method. By leveraging real-time traffic density

information, vehicles can dynamically adjust their transmission behavior to adapt to

the current traffic conditions and optimize network performance. This approach offers

a new perspective on congestion control in VANETs, focusing on the traffic density

aspect as a key determinant of congestion. The researchers introduce a congestion-

aware message (CAM) for beacon signals in the vehicle environment that utilizes

vehicle IDs. The CAM model incorporates the unique automobile IDs into the back-

off procedure, weighting the randomized back-off numbers chosen by each vehicle.

This results in the generation of car ID-based randomized back-off codes that reduce

the risk of collisions caused by identical back-off numbers. In this paper, BSMs as

the standard safety messages are not considered.
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While the mentioned approaches address various aspects of congestion control in

VANETs, each has strengths and limitations. Further research is needed to evaluate

their performance under different traffic scenarios and consider their applicability in

real-world deployments.

Table 2.1: Comparison Table of Literature Review.

No. Research Paper Algorithm Parameter Used Approach

1 Liu et al. [9] QBACC Beacon Rate Learning-based

2 Aznar-Poveda et al. [16] MDPRP Hybrid Learning-based

3 Liu et al. [42] BACVT Transmission Power Rule-based

4 Wang et al. [37] ABTP Transmission Power Learning-based

5 Facchina et al. [43] DACC Transmission Power Rule-based

6 Patil et al. [44] CPMRA Hybrid Rule-based

7 Math et al. [46] DR-DCC Date Rate Rule-based

8 Willis et al. [48] DCC Transmission Power Learning-based

9 Bansal et al. [32] LIMERIC Beacon Rate Rule-based

10 Bansal et al. [33] EMBARC Beacon Rate Rule-based

11 Torrent-Moreno et al. [36] D-FPAV Transmission Power Rule-based

12 Cho et al. [41] CACC Hybrid Rule-based

13 Proposed Method QBTPCC Transmission Power Learning-based

2.7 Discussion of Current Research Problems

Through the literature reviews, several research problems and solutions have been

identified regarding congestion control in VANETs. These findings shed light on the

field’s current state and highlight areas for further investigation.

The rapid growth in the number of vehicles equipped with communication devices

has led to increased congestion in the communication channels. This results in de-
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creased performance and reliability of the network and is a major research problem in

VANETs. Current solutions propose adaptive transmission power and rate control,

dynamic spectrum access, and priority-based message dissemination. However, these

solutions often struggle to balance the need for high vehicle awareness and congestion

control.

One significant challenge is finding the right balance between maintaining aware-

ness through reliable message delivery and managing congestion effectively. Re-

searchers have explored various approaches as transmission power and rate directly

impact awareness and congestion. For instance, an RL-based Q-learning approach

balances transmission rate and power trade-offs. This approach utilizes a Markov

decision process (MDP) and Q-learning techniques to optimize the transmission pa-

rameters. Other studies, such as CPMRA and CPDRA, dynamically adapt transmis-

sion power and data rate to balance awareness and congestion based on the current

congestion situation.

Another research problem is determining the optimal selection of transmission pa-

rameters, such as transmission rate, power, and data rate. Different algorithms and

approaches have been proposed to address this problem. For instance, the EMBARC

algorithm improves the linear message rate integration control (LIMERIC) algorithm

by preemptively scheduling messages based on vehicle movement. The BRAEVE

algorithm estimates the number of vehicles to achieve smoother convergence and

lower packet error ratio, inter-packet delay (IPD), and tracking error. These ap-

proaches demonstrate efforts to optimize parameter selection for congestion control

in VANETs.

Reinforcement learning (RL) has emerged as a promising technique for conges-

tion control in VANETs. RL techniques specifically applied the on-policy rule with

function approximation to solve the message rate control problem. Their approach

formulates the problem as a Markov decision process (MDP) and enables vehicles

to learn optimal control policies. Similarly, an RL-based method was proposed that
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directly estimates the appropriate data rate based on the current BSM reception

rate (CBR). These RL-based solutions highlight the potential of RL in addressing

congestion control challenges in VANETs.

Several studies emphasize the need for adaptive and dynamic approaches that can

effectively respond to changing network conditions and traffic scenarios. For example,

D-FPAV sets the node transmission power based on the prediction of application-

layer traffic and observed vehicle density. ABTP adjusts transmission power based

on vehicle position prediction error. These adaptive approaches demonstrate the

importance of dynamically adjusting transmission parameters to manage real-time

congestion.

Despite the advancements in congestion control for VANETs, several research

challenges remain. These challenges include the scalability of the proposed solu-

tions, accurate prediction of congestion levels, handling diverse traffic scenarios, and

considering the impact of network topology. Furthermore, evaluating the proposed

approaches through comprehensive simulations and real-world experiments is crucial

for assessing their performance and practicality.

The proposed solution leverages Machine Learning (specifically, Q-learning) to

dynamically adjust the transmission power of vehicles based on real-time network

conditions. By doing so, it aims to effectively manage channel load, maintain high

vehicle awareness, and improve overall network performance.
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CHAPTER 3

Proposed Approach

3.1 Introduction

As Vehicular Ad Hoc Networks (VANETs) continue to evolve, enabling real-time com-

munication between vehicles and infrastructure, the efficient and reliable exchange of

information has become paramount. One of the most pressing challenges that impede

the realization of the full potential of VANETs is channel congestion. The sporadic

nature of vehicular traffic and the demanding need for high-frequency communication

compound this problem, resulting in packet loss, increased latency, and, ultimately,

a compromise in vehicle safety and efficiency [49].

The conventional mechanisms for congestion control in VANETs often fail to strike

a delicate balance between high vehicle awareness and channel congestion levels. Tra-

ditional approaches, borrowed from wired and wireless networks, are ill-suited for the

dynamic, high-mobility environment characteristic of VANETs. There is a crucial

need for an adaptive congestion control solution explicitly tailored to the unique at-

tributes of VANETs.

Motivated by this pressing need, this thesis presents a novel transmission power-

based congestion control algorithm utilizing Q-learning, a form of reinforcement learn-

ing, to address the challenges above in VANETs. The primary objective of this

algorithm is to dynamically adjust the transmission power of the vehicle’s onboard

units based on the network conditions, effectively balancing the requirements for high

vehicle awareness with the need to maintain stable channel congestion levels.
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Using Q-learning empowers the algorithm to learn from the environment and make

informed decisions on transmission power adjustments based on historical data and

real-time network conditions. This adaptive approach not only enhances network

performance but also ensures the reliability and timeliness of communication, which

are crucial for the safety and efficiency of vehicular networks.

In the following sections, this chapter will delve into the specifics of the proposed

approach, articulating the algorithmic design and detailing how Q-learning is em-

ployed to manage transmission power for congestion control in VANETs dynamically.

3.2 High-level Outline of Proposed Approach

3.2.1 Algorithm Design Framework

Regarding safety considerations, it is imperative to recognize that vehicles closer to

the Ego Vehicle (EV) significantly impact its safety. The rationale is that the time

taken to approach a nearby vehicle is considerably shorter compared to vehicles farther

away, allowing for a narrower margin for corrective actions. Consequently, ensuring

that safety messages are promptly relayed to nearby vehicles is paramount. The actual

outreach of Basic Safety Messages (BSMs) from a vehicle, denoted as the transmission

range (Tx range), is contingent upon the transmission power (TxPower) used. When

a vehicle falls within the transmission range of the EV, it is expected to receive the

BSM effectively, assuming the absence of channel congestion or other interference.

As the transmission power is augmented, there is a corresponding increase in the

transmission range. Other factors, such as obstacles or the number of vehicles in the

vicinity, may also influence the range.

Table 3.1 illustrates the variation in the number of BSMs received between two

vehicles with respect to the distance separating them.

In deriving the data in Table 3.1, we simulated a scenario involving two static

vehicles placed at varying distances, engaging in periodic BSM exchanges. A rudi-
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Table 3.1: Maximum Transmission Range.

Distance (m) Sent BSMs 10 Hz 2 mW 10 Hz 10 mW 10 Hz 20 mW

Received BSMs Lost BSMs Received BSMs Lost BSMs Received BSMs Lost BSMs

100 90 90 0 90 0 90 0

200 90 0 90 90 0 90 0

300 90 0 90 90 0 90 0

400 90 0 90 70 20 90 0

500 90 0 90 0 90 89 1

600 90 0 90 0 90 13 77

700 90 0 90 0 90 0 90

800 90 0 90 0 90 0 90

900 90 0 90 0 90 0 90

1000 90 0 90 0 90 0 90

mentary free-space path loss model, devoid of obstacles consideration, was employed

as an approximation of the transmission range. With a TxPower of 20 mW, it was

observed that most BSMs could be conveyed effectively up to 500 m, and nearly all

BSMs fail to reach when the distance between the vehicles exceeds 600 m. A reduced

TxPower of 2 mW significantly shortens the Tx range. In such a scenario, most BSMs

are successfully received when the vehicles are not more than 100 m apart, and as

the distance increases, the loss of BSMs escalates.

It is important to note that the figures in Table 3.1 depict an idealized scenario

with no other vehicles on the road segment. In real-world scenarios with higher

vehicle density, the effective transmission range will likely be diminished further due

to inter-vehicle interference.

In essence, utilizing a high transmission power (TxPower) can convey Basic Safety

Messages (BSMs) to vehicles that are far away, but this also has the potential to cause

increased interference and channel congestion. The core approach of this work revolves

around giving precedence to the delivery of BSMs to vehicles in close proximity, which

can be achieved by employing a lower TxPower rather than consistently using the

maximum 20 mW TxPower. While retaining some degree of awareness for distant

vehicles is favorable, the update frequency can be less frequent than that for vehicles
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in closer proximity. Modulating the TxPower makes sustaining elevated awareness

levels for nearby vehicles feasible. It concurrently enables occasional BSMs to reach

distant vehicles by selectively employing a higher TxPower for certain BSMs. This

approach ensures that the awareness level concerning emergency vehicles remains

optimal for nearby vehicles while simultaneously alleviating channel congestion since

fewer BSMs are transmitted at a high TxPower.

3.2.2 Design of Elements

Figure 3.1: Reinforcement Learning (RL) Components. [50]

The problem of making decisions is structured using an MDP framework. The ele-

ments listed below form the Reinforcement Learning (RL) framework, which is utilized

to solve the MDP in the context of V2V congestion control [9]:

• The Agent: The learning agent must have the ability to recognize its envi-

ronment’s state and execute actions that have the potential to modify it. In

this context, the vehicle assumes the agent’s role and decides the actions to be

executed [15].

• The Environment: This refers to the volatile world in which the agent per-

forms and communicates. The agent can communicate with the environment

and alter it through its actions. However, it cannot control the environment’s

fundamental rules or behavior [9]. In the Vehicular Ad Hoc Networks (VANETs)

context, the environment includes the wireless channels and the surrounding
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vehicles. Uncertainties arise from various factors, like the dynamic nature of

traffic, including fluctuations in vehicle speeds and density.

• The State (or Observation): The state in the V2V communication problem

aggregates data that reflects the present conditions. This data encompasses

aspects like the status of the wireless channel (e.g., CBR, BER, IPD) and vehicle

density, defined by the number of neighboring vehicles.

In our case, we define the state space as a 2-tuple, including the CBR and

vehicle density, denoted as

S = (CBR, V D),

CBR ∈ R+, 0 ≤ CBR ≤ 1,

and V D ∈ N, 1 ≤ V D ≤ maxVD.

CBR is a number between 0 and 1, representing the channel busy ratio. Vehicle

density means the number of vehicles within a 100m radius, with a maximum

value defined as maxVD (set to 50 in this study). Each vehicle’s density has ten

transmission power levels, so the total state space comprises 500 unique states.

The vehicle chooses a new transmission power from the ten available options in

each state. It updates its state based on the data received from nearby vehicles

via Basic Safety Messages (BSMs).

• The Action: Actions are the tools through which the agent communicates

with and exerts influence over its environment. The most common actions in

the VANET application layer include setting the transmission power, message

transmission rate, or data rate of the messages to be transmitted. In this thesis,

only transmission power is considered to maintain simplicity, and we use ten

discrete powers ranging from 2 to 20 mW.

• The Goal: The primary aim is to make optimal choices for actions correspond-

ing to each state to maximize the total rewards. It is essential for the agent (in

32



3. PROPOSED APPROACH

this case, the vehicle) to have a clearly defined objective, such as minimizing

congestion or improving awareness. This study aims to maximize the rewards

gained from actions that ensure the Channel Busy Ratio (CBR) stays below

0.6.

• The Reward: Rewards are scalar quantities that gauge the efficacy of an

action executed by an agent. The agent utilizes the rewards furnished by the

environment in response to each action to learn and progressively refine its

behavior [15]. Within the scope of V2V communication, the reward is computed

based on the environmental observations and the objectives of the vehicle. A

reward function, tailored to align with the intended learning goals, calculates

rewards. In our proposed methodology, we aim to keep the Channel Busy

Ratio (CBR) below a predetermined threshold, denoted as η, while concurrently

optimizing the number of Basic Safety Messages (BSMs) transmitted. To this

end, we have articulated the reward function as follows:

R(CBR, TxPower) =

TxPower · CBR · −1 if η < CBR

TxPower · CBR · 1 if η ≥ CBR

(1)

An action that leads to the CBR surpassing η is assigned a negative reward,

which can catalyze the learning trajectory [15]. A reward is deliberately dimin-

ished for exceedingly low, unfavorable transmission power. This study adopted

η = 0.6 as the desired channel occupancy. Depending on variant learning goals,

this value can be adjusted, or an alternate reward function can be deployed.

3.2.2.1 The Reward Function

In V2V communication, the reward function is a crucial component that quantifies

the efficacy of an agent’s (vehicle) action. In our approach, the reward function takes

into account the Channel Busy Ratio (CBR), the Transmission Power (TxPower),

and a predefined threshold for CBR, denoted as η. Below, we elaborate on these

elements and explain how the reward function is structured:
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• Channel Busy Ratio (CBR): CBR is a metric that reflects the occupancy

of the communication channel. It ranges from 0 to 1, where a value close to 1

denotes that the track is nearly saturated, and a value close to 0 suggests that

the channel is primarily unoccupied.

• Transmission Power (TxPower): This refers to the power level at which the

vehicle transmits messages. A higher transmission power typically correlates

with an extended communication range.

• Threshold η: η serves as the acceptable limit for CBR. Maintaining CBR

below this threshold is essential to prevent the communication channel from

becoming overly congested.

The reward function can be described as follows:

– Positive Reward: When CBR is lesser than or equal to the threshold η,

it is positive. In this scenario, the reward is directly proportional to Tx-

Power and CBR. This implies that higher transmission power and channel

utilization (without overloading) are favorable.

– Negative Reward (Penalty): Conversely, when CBR surpasses the

threshold η, it is negative. This gives rise to a penalty, as the channel

is overloaded. The penalty motivates the learning agent to select actions

that alleviate channel congestion.

– TxPower · CBR: This term signifies that the reward is directly propor-

tional to the CBR and TxPower. The higher these values, the higher the

reward.

This reward function motivates the agent to keep the Channel Busy Ratio un-

der the designated threshold while efficiently utilizing the channel by preferring

higher transmission powers when the channel is not excessively loaded. The

reward function aims to optimize the transmission power based on current net-

work conditions. If a vehicle’s CBR falls below η, it might decide to increase its
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TxPower (or make other adjustments) to try and improve CBR. On the other

hand, if a vehicle’s CBR is consistently above η, it will reduce its TxPower to

reduce congestion. The function dynamically adjusts transmission behaviors

in a VANET setting, rewarding vehicles or nodes for maintaining their CBR

around a desired threshold η while considering the power used for transmission.

3.2.3 Adaptive Congestion Control Using RL Techniques

In the Vehicular Ad Hoc Networks (VANETs) domain, congestion control is im-

perative for ensuring secure and efficient communication over the constrained

bandwidth of wireless channels. The primary goal of congestion control is to

mitigate the effects of channel congestion. A delicate equilibrium must be main-

tained between focusing on congestion control and awareness control, which be-

comes exceedingly complex in environments with dynamic mobility patterns.

The ability to make informed decisions in varied scenarios is paramount to the

efficacy of congestion control. For instance, amplifying the transmission power

might be advantageous to achieve an extended transmission range in scenarios

where vehicle density is relatively low.

Conversely, it becomes necessary to calibrate the transmission power per the

prevailing conditions in high-density scenarios. The decision-making process

is compounded by numerous variables, including, but not limited to, vehicle

density, channel congestion, and packet delay. These factors render identifying

an optimal transmission power through conventional methodologies a daunting

challenge, especially when certain constraints may be at odds.

RL is a machine learning paradigm where agents learn how to behave in an

environment by performing certain actions and receiving rewards or penalties

in return [51]. The agent’s goal is to learn the optimal policy that will result in

the maximum cumulative reward over time.
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It is essential to recognize that in VANETs, the decision-making process should

be predicated exclusively on the immediate state of affairs. This is due to the

Markov property. A Markov Decision Process (MDP) is a mathematical model

used in decision theory and reinforcement learning to describe environments in

which an agent can interact. States, actions, transition probabilities between

states, and rewards characterize an MDP. The key property of an MDP is the

Markov property, which states that the future state depends only on the current

state and action, not on the sequence of states and actions that preceded it [52].

P [St+ 1|St] = P [St+ 1|S1, . . . , St] (2)

Equation (2) elucidates that the state at the subsequent time step, t + 1, ex-

clusively relies on the current state at time step t. This characteristic enables

us to model the problem as a Markov Decision Process (MDP). Reinforcement

Learning (RL) is a productive framework for deriving solutions [15]. The fun-

damental learning mechanism of an RL cycle, particularly in the context of

Vehicle-to-Vehicle (V2V) communication, is depicted in Figure 3.2.

Figure 3.2: Typical RL Cycle in V2V communication. [9]
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1. Initialization:

– Define the state space encompassing channel status and vehicle den-

sity.

– Define the action space, transmission power, TxP.

– Initialize a Q-table with arbitrary values or zeros.

2. Exploration:

– Based on the current state S and some exploration strategy (like ε-

greedy), the vehicle selects an action A. Exploration can be diminished

over time to prioritize exploiting the learned values.

3. Interaction with the Environment:

– The vehicle takes action A in state S, affecting the V2V communica-

tion environment.

4. Observation:

– After taking the action, the vehicle transitions to a new state S ′ and

receives a reward R.

5. Update Q-values:

– The Q-value for the taken action in the original state is updated using

the Q-learning update rule:

6. Loop:

– Return to the exploration step with updated Q-values.

7. Policy Extraction:

– A deterministic policy can be derived from the Q-values. For any state

S, the best action A∗ is the one with the highest Q-value.

The overarching objective for the vehicle is to maximize the cumulative reward

garnered over time. This entails maximizing the immediate and aggregate re-

wards accumulated over the long term.

37



3. PROPOSED APPROACH

If we designate the sequence of rewards received post time step t as Rt+1, Rt+2,

Rt+3, ..., the maximized reward, referred to as the return Gt, can be computed

as the sum of the rewards received at each time step up to the terminal state.

However, it is important to factor in the time value of rewards in this compu-

tation. This is achieved by introducing a discount factor, γ, which gauges the

present value of future rewards. Specifically, a reward procured k time steps

into the future has ascribed a value of γ(k−1) times the original reward. This

discounting ensures that immediate rewards are accorded a higher weight rela-

tive to distant rewards and also circumvents the possibility of the return being

infinite in non-terminating environments.

The return, Gt, can thus be mathematically represented as [53]:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (3)

The Equation (3) represents the cumulative discounted reward, often referred

to as the “return,” at time step t. Let’s break down the components of this

Equation.

– Gt: This denotes the return or the total accumulated reward starting from

time step t. It measures how good it is for an agent to be in a particular

state, considering the future rewards. In Reinforcement Learning, the goal

is usually to maximize the expected return.

– Rt+1, Rt+2, Rt+3, . . .: These represent the rewards that the agent receives

at each successive time step. Rt+1 is the reward received one step into the

future, Rt+2 two steps, and so on.

– γ: The discount factor is a number between 0 and 1. The discount factor

determines the present value of future rewards - a reward received k time

steps in the future is worth γk−1 times what it would be worth if it were

received immediately. If γ is close to 0, the agent will only care about
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rewards in the near future, whereas if γ is close to 1, the agent will consider

rewards far into the future.

–
∑∞

k=0 γ
kRt+k+1: This is the summation notation which sums up all the

discounted rewards from time t+ 1 to infinity. In practice, we often work

in environments with finite time steps, so the sum doesn’t go to infinity

until the end of the episode.

The entire Equation says that the return Gt at time step t is the sum of all the

agent’s future rewards. Still, each future reward is discounted by a factor of

γ raised to the power corresponding to how far the reward is received into the

future. This mathematical expression is fundamental in Reinforcement Learning

and is known as the discounted return.

3.2.4 The RL Structure for Managing Congestion and

Awareness

This thesis emphasizes the role of Reinforcement Learning (RL) in determin-

ing the best transmission power to manage traffic congestion in Vehicle-to-

Vehicle (V2V) interactions. This decision-making mechanism is framed within

the Markov Decision Process (MDP). Here, we explore the intricacies of crafting

the MDP, bearing in mind these factors:

– Defined state and action realms: At the application level in VANETs,

it’s inferred that every vehicle has a restricted set of potential moves or

actions available in any given situation. Given that the state realm is also

restricted, Q-learning emerges as a suitable approach for this challenge.

– Spotting vehicles in proximity: A vehicle discerns the number of

nearby vehicles by interacting with its surroundings, flagged by the Ba-

sic Safety Messages (BSMs) it receives from these vehicles.

– Inferences drawn from trials: The conclusions are deduced from test

actions executed by the vehicle.
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– Independent decision-making: Every vehicle makes its own choices

based on observations. The sole data exchange between vehicles is re-

stricted to BSMs.

3.3 Proposed Approach

3.3.1 Q-Learning Based Transmission Power Congestion

Control (QBTPCC)

Q-learning is a model-free reinforcement learning (RL) algorithm used to find

the optimal action-selection policy for a given finite Markov decision process. It

helps agents learn how to choose optimal actions that yield the most reward over

time, even when they don’t know anything about their environment beforehand.

The “Q” in Q-learning stands for “quality.” Q-values represent the expected

future reward of an action taken in a given state. These values are stored in a

table called the Q-table.

This thesis uses a Q-learning algorithm with the data for training directly ob-

tained from a simulated dynamic traffic environment. Observing the CBR val-

ues with different transmission power and vehicle densities makes the vehicle’s

state transitions more realistic. We define a reward function combining CBR

and transmission power to maintain the channel load under a target threshold

with the maximum transmission power possible for congestion control. The

proposed congestion control algorithm, leveraging Q-learning, unfolds in a two-

tiered approach as described below:

3.3.1.1 Initial Phase

The Q-learning algorithm is executed through simulation-derived observation

data, resulting in a Q-table. This table showcases the best policies for each

state, as presented in Algorithm 1.
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Algorithm 1 summarizes the proposed Q-Learning Based Transmission Power

Congestion Control (QBTPCC) methodology. The algorithm commences by

setting all the entries in the Q-table to 0; this table encompasses all possible

action-state combinations. Subsequently, at every time instance t, the vehicle

picks an action at, observes the environment, receives a reward rt, transitions

to a new state st+1, and utilizes Equation (4) to update the Q-value, Q(st, at)

[9]:

Q(st, at)← Q(st, at) + α
(
R(st, at) + γmax

a
Q(st+1, a)−Q(st, at)

)
(4)

In Equation (4):

– α denotes the learning rate, which falls in the range 0 < α ≤ 1.

– γ symbolizes the discount factor, also lying in the range 0 < γ ≤ 1.

– Q(st, at) is the present estimate of Q(s, a).

– maxa Q(st+1, a) approximates the optimal future Q-value.

– R(st, at) signifies the reward garnered by the agent when action a is per-

formed in state s at instance t.

The components and functionality of the Q-Learning Based Transmission Power

Congestion Control (QBTPCC) Algorithm:

1. Q-table Initialization: The algorithm initializes a Q-table with all en-

tries set to 0. The Q-table is essentially a matrix where each row represents

a state, and each column represents an action. The entries of the Q-table,

denoted Q(s, a), store the expected future rewards for taking action a in

the state s.

2. Action Selection (at): At each time step t, the vehicle (agent) selects

an action, which could be based on a policy such as ϵ-greedy (choosing the

best action with probability 1− ϵ or a random action with probability ϵ).
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3. Observe Environment and Receive reward (Rt): After executing the

action, the agent observes the new state of the environment and receives a

reward Rt. The reward is typically a scalar feedback signal that tells the

agent how well it is doing concerning the goal it wants to achieve.

4. Transition to a New State (st+1): Based on the action taken, the agent

transitions from its current state st to a new state st+1.

5. Q-value Update: The Q-value Q(st, at) is updated based on the dif-

ference between the estimated future rewards and the current Q-value.

The learning rate α determines how much the Q-value should be updated,

whereas the discount factor γ defines the importance of future rewards.

6. α (Learning Rate): The learning rate determines to what extent newly

acquired information overrides old information. A value of 0 makes the

agent not learn anything, while a value of 1 makes the agent consider only

the most recent data. Typically, it’s set between these extremes.

7. γ (Discount Factor): The discount factor determines how much the agent

cares about rewards in the distant future relative to those in the immediate

future. If γ is close to 0, the agent will be short-sighted and only consider

current rewards. If γ is close to 1, the agent will focus more on the long-

term rewards.

The Q-learning update rule is the Equation (4). It essentially states that the

new Q-value blends the old and new information learned by taking action.

The algorithm continues to learn as it interacts with the environment. Over

time, it converges to an optimal policy where the Q-values represent the ex-

pected future rewards for each action in each state, allowing the agent to make

informed decisions that maximize its rewards.
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Algorithm 1 Q-Learning Based Transmission Power Congestion Control (QBTPCC)

Input: Step size α ∈ (0, 1], small ε > 0, total episodes = 80,000
Output: Updated Q-table representing the value of each state-action combination
1: Setup state space S with each transmission power level as a distinct state
2: Define actions A(s) for each state s as the ten available transmission powers, TxP,

regardless of s’s value
3: Create Q-table, Q, and set Q(s, a) = 0 for all pairs (s, a) where s ∈ S and

a ∈ A(s)
4: for each episode do
5: Randomly select an initial state s from S
6: for each step in the episode do
7: Determine action a for the current state s using the ε-greedy strategy
8: Calculate the reward via Equation (1). Use Equation (6) for CBR computa-

tion, incorporating vehicle density
9: Refine the Q-value Q(s, a) with Equation (4) using the computed reward
10: Execute action a transitioning to the next state
11: Update current state s to the newly arrived state
12: end for
13: end for

In Algorithm 1, the Q-table is generated systematically, incorporating simula-

tion data based on different traffic models. The traffic models represent various

scenarios by altering vehicle densities in a 100 m radius, with densities ranging

from 0 to a maximum value of maxVD, which is set at 50 vehicles.

For each traffic model, simulations were conducted utilizing a predefined ac-

tion space pertaining to varying transmission power levels, spanning from 2

mW up to 20 mW. This simulation exercise aids in obtaining observation data,

specifically the Channel Busy Ratio (CBR), for every state-action pair.

This observation data was then utilized to generate functions for curves that

best fit the data. Essentially, these curves indicate the relationship between

the average transmission power employed by vehicles and the average CBR

experienced within the network. This relation is pivotal for understanding how

the transmission power affects the occupancy of the communication channel

under varying traffic conditions.
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Having established the curves, we created Equation (5), which estimates the

CBR for each transmission power and vehicle density combination. This esti-

mation is based on the trends observed in the data.

estCBR = f(V D, TP ) (5)

estCBR is the estimated Channel Busy Ratio, an estimate of the channel occu-

pancy. VD is the current vehicle density within a 100m radius. TP is the esti-

mated average transmission power utilized by the surrounding vehicles. f(VD,

TP) is a function that estimates CBR based on the best-fit curves generated

earlier.

Notably, a cap of 0.92 was implemented as the maximum return value for the

estimated CBR [9]. This cap ensures that the estimated CBR does not exceed

1 for densities exceeding the tested range. This is critical because the empirical

data indicated a negligible change in CBR at high densities, and exceeding one

would not be meaningful as CBR is generally represented as a fraction between

0 and 1.

Subsequently, the Q-learning algorithm is deployed with the observation data

and Equation (5) to generate the Q-table systematically. This table is formu-

lated for each vehicle density and transmission power combination, accounting

for the entire state space.

The generated Q-table is central to the Q-learning algorithm. It stores the ex-

pected future rewards of taking certain actions (transmission powers) in specific

states (vehicle densities). Through repeated interactions with the environment

and constant updates to the Q-table, the learning algorithm endeavors to find an

optimal policy that minimizes channel congestion while considering the varying

conditions of the vehicular network.
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By utilizing these simulations and observations to create the Q-table, Algorithm

1 is better equipped to make informed decisions on transmission power levels,

ultimately aiming for efficient communication in vehicular networks, even in

environments with varying vehicle densities.

estCBR(V D, TP ) =



0.0137(V D) + 0.0911 if TP = 2

0.0156(V D) + 0.129 if TP = 4

0.0163(V D) + 0.1502 if TP = 6

0.0165(V D) + 0.1553 if TP = 8

0.0165(V D) + 0.1553 if TP = 10

0.0165(V D) + 0.155 if TP = 12

0.0164(V D) + 0.1559 if TP = 14

0.0165(V D) + 0.1556 if TP = 16

0.0165(V D) + 0.1557 if TP = 18

0.0165(V D) + 0.1552 if TP = 20

(6)

Utilizing the Equation (6), the Q-learning algorithm predicts the Channel Busy

Ratio (CBR) for each possible pairing of vehicle density and transmission power.

This prediction is integral to the learning process as it estimates how congested

the communication channel will likely be for different combinations. This en-

ables the Q-learning algorithm to discern which combinations are most con-

ducive to efficient communication.

In the Q-table, each row signifies a unique state characterized by a specific

combination of vehicle density (within the range of 0 to 50) and estimated

average transmission power (spanning from 2 to 20) used by nearby vehicles.

The columns of the Q-table represent different transmission power levels that

can be adopted by the vehicle in question.
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For instance, if the vehicle density is 20 and the average transmission power

of neighboring vehicles is 6, then the corresponding row in the Q-table would

contain the Q-values associated with taking different transmission power levels

under this state.

By calculating the CBR for all combinations and updating the Q-values accord-

ingly, the algorithm learns which actions (i.e., transmission power levels) will

likely yield each state’s highest rewards (or the most efficient communication)

for each state.

As the Q-table gets populated, it becomes an invaluable resource for decision-

making. When the vehicle needs to choose a transmission power level, it can

refer to the Q-table for its state (based on vehicle density and neighboring

transmission power) and select the action with the highest Q-value. This means

that the vehicle is choosing the transmission power level that, according to the

learning process, is expected to yield the best results regarding communication

efficiency.

In Algorithm 1, the construction and utilization of the Q-table are central to

the learning process. This table aids in storing and updating the expected

rewards for taking various actions, in this case, transmission power levels, under

different states characterized by vehicle density and average transmission power

of neighboring vehicles.

Initially, steps 1 and 2 in the algorithm define the state space and action space,

respectively. The state space is the set of all possible combinations of vehicle

density (ranging from 0 to 50) and the estimated average transmission power

used by surrounding vehicles. The action space comprises the transmission

power levels that can be selected by the vehicle.

Step 3 involves initializing the Q-table, where each cell corresponds to a specific

state-action pair and is initially set to 0. Given the absence of a terminal state
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in this problem, the algorithm instead relies on a predefined number of episodes

for the learning process. In this study, the algorithm runs for 80,000 episodes.

Steps 4 to 13 are executed throughout each episode to update the Q-table

continuously. This involves selecting actions and observing the environment

to gauge their impact. The algorithm employs a mixed strategy of exploiting

the best-known actions according to the current Q-table (optimal policy) and

occasionally selecting random actions to explore potentially better strategies.

This combination ensures a balance between exploitation and exploration, which

is fundamental in reinforcement learning for discovering optimal policies.

The parameters γ (gamma) and α (alpha) represent the discount factor and

learning rate, respectively. In this context, γ is set to 0.9, indicating a consider-

able emphasis on future rewards, while α is set to 0.01, representing a cautious

learning rate in updating the Q-values.

As the algorithm iterates over the episodes, it improves the Q-table. After

80,000 episodes, it is observed that the differences between consecutive Q-tables

become negligible, signifying convergence of the algorithm. At this juncture,

the Q-table is deemed to adequately represent the expected future rewards of

actions under different states and is saved to a file for subsequent utilization in

Phase 2.

The complexity of this algorithm is O(n), as mentioned in [15], with n represent-

ing the number of unique state-action pairs. This linear complexity is typical

when dealing with Q-learning algorithms and indicates that the computational

cost increases linearly with the number of state-action pairs. This should be

considered, especially in real-world implementations, to ensure the algorithm

remains computationally feasible.
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3.3.1.2 Q-Table

The Q-table is a 2D list (matrix). This table has rows corresponding to each

state and columns corresponding to each action. In our Q-table, each state

corresponds to the environment with vehicle density, the estimated average

transmission power of surrounding vehicles, and the corresponding estimated

CBR, and each action corresponds to a transmission power that the vehicle can

use.

In Table 3.2, each “Q” is a numerical value that represents the learned value of

taking a particular action (column) from a particular state (row). For instance,

the value in the cell corresponding to a state with TxPower of 2, VD of 25, and

CBR of 0.4336 represents the Q-value of taking an action with TxPower levels

of 2, 10, or 20 when the system is in that state.

Table 3.2: Q-table.

TxPower VD CBR TxPower

2 10 20

2 25 0.4336 Q Q Q

10 25 0.5678 Q Q Q

20 25 0.6455 Q Q Q

1. State Representation: Each row in the Q-table represents a specific

state of the system, described by the combination of TxPower, VD, and

CBR.

2. Actions: The actions the agent can take in any given state seem to be

changing the TxPower to 2, 10, or 20.

3. Q-values: The Q-values in Table 3.2 represent the expected future reward

of taking a particular TxPower action from a given state.
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Initially, in Table 3.3, all Q-values are set to 0, indicating the agent has no prior

knowledge about which actions are best. For each episode, the function starts in

a random state, and either takes action with the maximum Q-value (exploit) or

a random action (explore) based on the epsilon. The Q-values are then updated

using the Q-learning formula. As the agent interacts with its environment and

learns from its experiences, these Q-values will be updated to reflect the agent’s

understanding of which actions yield the highest expected future reward.

Table 3.3: Initial Q-table.

TxPower VD CBR TxPower

2 10 20

2 25 0.4336 0 0 0

10 25 0.5678 0 0 0

20 25 0.6455 0 0 0

The agent typically starts its journey from a randomly selected state. Let’s

assume it started from the state with ‘TxPower’ of 10, ‘VD’ of 25, and ‘CBR’

of 0.5678. The agent decides on an action based on an exploration-exploitation

strategy (like ε-greedy). In the early stages, it’s more likely to explore, which

means choosing a random action.

Let’s say it chose the action ‘TxPower’ 10. The agent interacts with the en-

vironment using the selected action (‘TxPower’ 10). As a result, it receives a

reward from the environment. Let’s say this reward was quite positive, thus

encouraging the agent to favor this action in this state. Using the Q-learning

update rule 4, the agent adjusts its Q-value for the selected action in the given

state. Based on the formula 4, the Q-value for the state-action pair (‘TxPower’

10, ‘TxPower’ 10) was updated to 25.

After the action, the agent transitions to a new state. Let’s say it moves to the
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state with ‘TxPower’ 20, ‘VD’ 25, and ‘CBR’ 0.6455. The agent repeats the

process of action selection, environment interaction, and Q-value update until

the end of the episode. For instance, from the state with ‘TxPower’ 20, ‘VD‘

25, and ‘CBR‘ 0.6455, it might have chosen action ‘TxPower’ 20 and received

a moderate reward, leading to an updated Q-value of 10 for that state-action

pair.

Once the episode concludes, the agent has updated its Q-values based on the

experience of that episode, resulting in the updated Q-table we see in Table 3.4.

Table 3.4: Q-table after the first episode.

TxPower VD CBR TxPower

2 10 20

2 25 0.4336 0 0 0

10 25 0.5678 0 25 0

20 25 0.6455 0 0 100

Following our initial Q-learning episode as presented in Table 3.4, the Q-table

experienced updates in its values, reflecting the agent’s learned experiences

and expected future rewards. Table 3.5 depicts the Q-values after additional

episodes of learning. It demonstrates the agent’s evolving understanding of its

environment based on its interactions and received rewards.

Starting again, let’s consider the agent found itself in the state with ‘TxPower’

of 2, ‘VD’ of 25, and ‘CBR’ of 0.4336. By now, it’s possible that the agent has

shifted slightly from pure exploration and is beginning to exploit its past expe-

riences more. Using the ε-greedy strategy, the agent might decide to take action

with the highest Q-value (due to exploitation) or a random action (exploration).

Suppose the agent opts for the action ‘TxPower’ 20. Upon taking this action,
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the environment provides feedback in the form of a reward. Given that the

Q-value corresponding to this state-action pair (‘TxPower’ 2, ‘TxPower’ 20)

has been updated to 86, it’s safe to infer that this feedback was significant and

positive. The Q-learning update rule 4 aids the agent in updating this value.

Transitioning further, the agent might land in the state with ‘TxPower’ 10, ‘VD’

25, and ‘CBR’ 0.5678. With a mix of its exploration-exploitation strategy, it

could decide to continue with the action ‘TxPower’ 20. This choice might be

influenced by past positive experiences or merely the drive to explore unknown

state-action pairs. The environment once again provides feedback - the Q-value

for this state-action combination (‘TxPower’ 10, ‘TxPower’ 20) gets updated to

93, indicating a strong positive reward.

Lastly, in the state with ‘TxPower’ 20, ‘VD’ 25, and ‘CBR’ 0.6455, the agent

might heavily exploit its past knowledge, choosing the action ‘TxPower’ 2 due to

its high Q-value of 99. This choice represents an action that has, in the agent’s

past experience, led to favorable outcomes in similar states. The significant

Q-value suggests a series of positive feedbacks when this action was taken in

this state.

Table 3.5: Partial Q-table.

TxPower VD CBR TxPower

2 10 20

2 25 0.4336 29 27 86

10 25 0.5678 24 25 93

20 25 0.6455 99 64 100
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3.3.1.3 Application Phase

In this tier, the vehicle harnesses the Q-table produced during the initial phase

to ascertain the transmission power for beacon dispatch. A detailed explanation

can be found in Algorithm 2.

In Phase 2, delineated in Algorithm 2, a vehicle employs the optimal policy as-

certained in Phase 1 to make informed choices regarding its transmission power.

This phase is essential for practical implementation as it enables the vehicle to

dynamically adapt its transmission power based on the prevailing traffic condi-

tions, thus ensuring efficient Vehicle-to-Vehicle (V2V) communication.

Algorithm 2 QBTPCC Policy Execution in OMNeT++ Framework

1: Fetch current CBR as curCBR
2: Acquire current vehicle density as curV D
3: Adjust curV D: curV D = min(curV D,maxV D)
4: Set default index: index = 1
5: Initialize maximum Q-value tracker: maxV al = −∞
6: Start with a default level: level = 1
7: Set TxPower array: TxPower = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
8: for each power level in TxPower do
9: if Estimated CBR with current curV D and power level using Equation (6) is

less than or equal to curCBR then
10: Update index with current power level index
11: break
12: end if
13: end for
14: for each row entry from 0 to 9 in the Q-table corresponding to curV D and index

do
15: Fetch Q-value for the entry as qV al
16: if qV al surpasses maxV al then
17: Set maxV al as qV al
18: Update level with current entry index
19: end if
20: end for
21: Determine optimal transmission power: bestTxPower = TxP [level]
22: Transmit beacon at power bestTxPower

In steps 1 and 2, the vehicle conducts environmental sensing to gauge the Chan-
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nel Busy Ratio (CBR) and the density of vehicles within its vicinity. If the

observed vehicle density exceeds the predetermined maximum value, denoted

by maxVD, it is set to this maximum value (step 3). This ensures the algorithm

operates within the bounds established during the initial phase.

In steps 5, 6, and 7, three variables, index, maxVal, and level are initialized.

maxVal is set to a considerably low value to guarantee that higher values will

be encountered during the subsequent exploration of the Q-table.

Between steps 8 and 13, the algorithm considers neighboring vehicles’ various

average transmission power levels. Using these values alongside the detected

vehicle density, it consults Equation (6) to discern which combination results

in the lowest estimated CBR that is still greater than or equal to the current

CBR. Essentially, this part of the algorithm seeks to identify an optimal state

that matches the current traffic conditions and minimizes channel congestion

without underutilizing it.

From steps 14 to 20, the vehicle selects the transmission power that is deemed

to be the most suitable according to the Q-table. The Q-table is structured

such that each row corresponds to a particular state defined by vehicle density,

the estimated average transmission power of neighboring vehicles, and the es-

timated CBR. The columns represent different transmission power levels that

the vehicle may adopt. The transmission power associated with the highest

Q-value within a particular row is selected as this indicates the optimal policy

for that state. This transmission power is expected to yield the best balance

between communication efficiency and channel congestion for the given traffic

conditions.

This process is repeated as the vehicle moves and the environment changes,

allowing for dynamic adaptation of transmission power levels for efficient V2V

communication in various traffic scenarios.
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In steps 14 through 20, the vehicle undergoes a systematic procedure to identify

the optimal transmission power for its current state. This is achieved by exam-

ining each possible transmission power and selecting the one with the highest

associated Q-value from the Q-table.

Step 16 involves the vehicle accessing the relevant row in the Q-table that

corresponds to its current state. The state encapsulates the prevailing traffic

conditions, such as vehicle density and channel busy ratio (CBR).

Following this, between steps 16 and 19, the algorithm undertakes a comparative

analysis. For each possible transmission power, it evaluates the corresponding

Q-value and compares it with the maximum Q-value encountered up to that

point. If a higher Q-value is found, the maximum value is updated. This

process continues iteratively for each transmission power option.

Upon completing this iterative comparison, in step 21, the vehicle selects the

transmission power associated with the highest Q-value. This is the optimal

action the vehicle should take according to the Q-learning algorithm, and it is

expected to be the most effective choice in balancing communication efficiency

and minimizing channel congestion for the given traffic conditions.

It is important to note that the number of iterations is fixed in Algorithm 2,

implying that the algorithm performs a constant number of operations irre-

spective of the input size. As a result, the time complexity of this algorithm

is O(1), indicating that it executes in constant time. This is highly beneficial

in a vehicular communication environment, as it enables the vehicle to rapidly

determine the best action, which is crucial for real-time decision-making.
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CHAPTER 4

Simulation Result

This chapter delves into the intricacies of the results procured from the appli-

cation of the Q-Learning Based Transmission Power Congestion Control (QBT-

PCC) method. The relevance and reliability of these results are heightened by

the use of the Vehicles in Network Simulation (Veins) framework [54]. This

framework offers a robust platform, simulating real-life vehicular communica-

tion settings which capture a wide array of variables such as traffic densities,

vehicle speeds, and environmental dynamics.

In our study on vehicular communications, we primarily examined the impact

of our QBTPCC on crucial metrics like the Channel Busy Ratio (CBR), indi-

cating network congestion and transmission efficiency. Besides CBR, we evalu-

ated several other performance indicators relevant to vehicular ad-hoc networks

(VANETs). The results are presented broadly before delving into a detailed

analysis of parameter interactions.

By analyzing the simulation data, we provide insights into the relative efficacy of

the QBTPCC approach under different conditions, underscoring its advantages

and potential areas of improvement. Additionally, we compare our model’s

performance against conventional models to establish its practical applicability

and superiority further.
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4.1 Experimental Setup

In the subsequent section, we assess the QBTPCC methodology utilizing the

Vehicles in Network Simulation (Veins) framework [54]. This framework in-

corporates the essential modules of IEEE 802.11p and IEEE 1609 protocols,

enabling the testing of V2V networks. Veins act as a bridge between the widely

recognized network simulation software OMNeT++ (Objective Modular Net-

work Testbed in C++) [55] and the urban mobility simulator SUMO (Simulation

of Urban Mobility) [56].

Figure 4.1: VANET Simulation Tools.

The purpose of this assessment was to gauge the performance of our Q-learning

approach. To accomplish this, we simulated a 20-kilometer-long highway with

four lanes, two for each direction. However, we only focused on a central 4-

kilometer segment of the highway to remove inaccuracies from vehicles entering

or exiting the simulation.

The simulation incorporated 500 and 800 vehicles, with their velocities randomly

set between 80 to 130 kilometers per hour. This setup allowed us to generate

dynamic traffic flows with fluctuating vehicle densities. The two-vehicle quanti-

ties were selected to exemplify low and high-traffic density scenarios. The total

simulation duration was 100 seconds.
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4.1.1 Simulation Parameters

The parameters utilized for our performance evaluation are collated and pre-

sented in Table 4.1. This table provides a comprehensive overview of the specific

configurations employed for this study.

Table 4.1: Configuration Parameters.

Name Value

Transmission Power Variable: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 mW

Beacon Rate 2.5 Hz

BSM Size 512 Bytes

Data Rate 6 Mbps

High Vehicle Density 800 Vehicles

Low Vehicle Density 500 Vehicles

Highway Length/Lanes 4 km

Number of Lanes 4

Simulation Time 100 s

The effectiveness of our QBTPCC method is assessed through a comparative

analysis with other existing techniques, all of which are examined under the

dynamic traffic model as described earlier. The comparative study aims to

illuminate the differences in performance, highlighting the advantages conferred

by our QBTPCC approach.

4.2 Simulation Result

We conduct a comparative performance analysis using several established algo-

rithms. Each algorithm is scrutinized under two different traffic scenarios – one

with low-density traffic comprising 500 vehicles and another with high-density
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traffic comprising 800 vehicles. This comprehensive assessment allows us to fully

gauge the strengths and weaknesses of each algorithm under varying conditions.

To evaluate the proposed algorithm, we have compared its performance with

the following existing techniques in terms of key performance indicators such as

CBR, BER, and IPD.

1. 2 mW: All BSMs transmitted with 2 mW power.

2. 10 mW: All BSMs transmitted with 10 mW power.

3. 20 mW: All BSMs transmitted with 20 mW power.

4. BACVT8 2: 8 BSMs with Tx power = Txn, 2 BSMs with Tx power = Txf.

[42]

5. BACVT5 5: 5 BSMs with Tx power = Txn, 5 BSMs with Tx power = Txf.

[42]

6. MDPRP: An RL-based congestion control algorithm [16]. Results for 800

vehicles were not available for MDPRP, so we have only shown comparisons

for 500 vehicles.

We note that it is possible to use the BACVT algorithms with different values

of Txf and Txn [42]. The transmission power for the far and near ranges used

in BACVT are set to Txf = 20 mW and Txn = 5 mW, respectively. For

comparing the MDPRP method, we use the simulation result published in [9]

for 500 vehicles.

4.2.1 Average Channel Busy Ratio

Channel Busy Ratio (CBR) is a fundamental performance metric in evaluating

vehicular communications systems, providing a dynamic measure of channel

congestion level. By definition, CBR is the ratio of the time duration in which

the channel is sensed as busy (actively transmitting or receiving data) to the

total observation time [9]. Consequently, it serves as a reliable indicator of the
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overall load on the channel: a higher CBR value typically correlates with a

more loaded and potentially congested channel. In comparison, a lower value

suggests a less loaded channel.

To allow a comprehensive observation of the CBR changes during the simulation

process, each vehicle in the network is configured to calculate the prevailing CBR

prior to each Basic Safety Message (BSM) dispatch. This calculation is based

on the channel’s status as detected by the vehicle, taking into account both the

channel’s current activity and the overall traffic density in the network.

However, given the potentially high variability of CBR values across time and

across different vehicles, gauging an overall understanding of channel usage

from these individual CBR calculations can be challenging. To overcome this,

we introduce an additional metric referred to as Average CBR.

The Average CBR metric calculates the mean CBR across all vehicles in the

network at regular intervals - specifically, every 5 seconds. This approach en-

sures that we capture the cumulative channel usage across the entire vehicular

network rather than isolated usage from individual vehicles. This metric thus

provides a more holistic and informative perspective on the overall network

performance, simplifying the analysis of CBR trends over the course of the

simulation.

Figures 4.2 and 4.3 present a comparative analysis of the average Channel Busy

Ratio (CBR) across six different methodologies, employing both 500 and 800

vehicles, respectively. The 20 mW transmission power consistently registers

the highest average CBR across all evaluated scenarios, leading to substantial

channel congestion. On the other hand, the 2 mW transmission power produces

a lower average CBR compared to 10 mW, which is not an optimal choice as

it sends a lesser number of packets for a low CBR value, and the awareness is

also lower for 2 mW which is discussed in section 4.2.3.
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Figure 4.2: Average CBR for 500 vehicles.

Figure 4.3: Average CBR for 800 vehicles.

Both graphs reveal that BACVT5 5 displays a higher average Channel Busy

Ratio (CBR) in comparison to BACVT8 2, especially when contrasted with
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our proposed method, QBTPCC. A noteworthy observation in both traffic

paradigms is the stability exhibited by QBTPCC; its average CBR values uni-

formly remain beneath the threshold of 0.6, a criterion established within the

reward function.

In this comparison, we also compare our method to the MDPRP approach

discussed in the paper [9]. In contrast to QBTPCC, MDPRP exhibits a higher

CBR value, reflecting a distinction between the performance characteristics of

these two approaches.

The results presented in Figures 4.2 and 4.3 highlight the effectiveness of the

QBTPCC approach compared to the other methodologies tested. Not only

does QBTPCC demonstrate a lower average Channel Busy Ratio (CBR) in

both scenarios of 500 and 800 vehicles, but it also exhibits remarkable stability,

maintaining CBR values consistently beneath the threshold of 0.6. This stability

and efficient channel load management set QBTPCC apart from other methods,

making it a compelling choice for handling dynamic traffic scenarios.

4.2.2 Beacon Error Rate

The Beacon Error Rate (BER) is a crucial performance metric in vehicular

communication systems that provides a quantifiable measure of transmission

reliability. Specifically, it represents the proportion of Basic Safety Messages

(BSMs) disseminated throughout the simulation that fails to reach their in-

tended recipients, indicating transmission loss or failure.

Mathematically, BER is computed as the ratio of the total number of lost BSMs

(L) to the total number of sent BSMs (S) in the simulation, i.e., BER = L/S.

The lost BSMs include all messages that, for various reasons such as congestion,

interference, or signal loss, are not successfully received by another vehicle in

the network.
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A lower BER implies a more reliable and efficient transmission system as it sig-

nifies fewer lost messages and, thus, more successful communication attempts.

In contrast, a higher BER may indicate problems in the communication chan-

nel, such as high congestion or excessive interference. Therefore, by minimizing

the BER, we aim to maximize the effectiveness of the V2V communication,

enhancing safety and operational efficiency in the vehicular network.

Thus, the BER serves as an important benchmark for assessing the performance

of our QBTPCC approach, allowing us to gauge its reliability and efficiency in

handling safety-critical BSMs in different traffic density scenarios.

The Beacon Error Rate (BER), a metric that quantifies the proportion of sent

packets that were lost for 500 and 800 Vehicles, is illustrated in Figures 4.4 and

4.5. Among the methodologies examined, QBTPCC consistently demonstrated

low BER values in 500 and 800 vehicles scenarios. Conversely, the MDPRP

approach registered elevated BER values when compared to QBTPCC in 500

vehicles.

Figure 4.4: BER for 500 vehicles.
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Figure 4.5: BER for 800 vehicles.

The comparative analysis with the BACVT algorithms further enriches this

study. All BACVT methods recorded a lower BER compared to the 10 mW

and 20 mW transmission power due to their reduced susceptibility to packet

collisions but a higher value than QBTPCC. In line with expectations, the 2

mW power level exhibited the lowest BER, a consequence of the diminished

transmission power curtailing the likelihood of packet collisions even further.

This detailed understanding highlights how transmission power and network

efficiency are connected, and it confirms that the QBTPCC approach holds

great potential for improving vehicular communications.

In synthesis, the effectiveness of QBTPCC in managing vehicular communica-

tion is evident. By consistently maintaining the channel load below the desig-

nated threshold of 0.6, as stipulated in the reward function, QBTPCC plays a

vital role in ensuring efficient data flow within congested traffic environments.

Adhering closely to the threshold significantly reduces packet loss probability,

leading to enhanced overall network performance, as evidenced by the observed
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metrics for BER.

4.2.3 Inter-Packet Delay

The Inter-Packet Delay (IPD) is a pivotal metric in evaluating the performance

of a vehicular network, defined as the average delay between the successful re-

ceipt of consecutive Basic Safety Messages (BSMs) from one vehicle to another.

We denote ’V’ as the set encompassing all vehicles involved in the simulation.

For a specific pair of vehicles, denoted as (s, r), where s and r belong to the set

V and s is distinct from r, we calculate IPD as follows. Let’s say Ms,r is the

set of all successfully received BSMs for this vehicle pair, and ts,r,i represents

the reception time of the ith BSM in the set Ms,r from vehicle s at vehicle r.

Then, the average IPD across the entire simulation, inclusive of all vehicles, is

given by the formula [42]:

AverageIPD =

∑
s∈V

∑
r∈V,s ̸=r

∑
i∈Ms,r

(ts,r,i − ts,r,i−1)∑
s∈V

∑
r∈V,s ̸=r |Ms,r|

(1)

This formula implies that we take the sum of differences in reception times for

all consecutive BSMs, divided by the total count of successfully received BSMs

across all vehicle pairs in the simulation.

Furthermore, to obtain a more granular analysis of IPD, we can calculate it

within a specific range. For a particular vehicle u in the set V , and a specific

distance range (d1 < d ≤ d2), we define Vu,d1,d2 as the set of all vehicles within

distance d from vehicle u. Subsequently, we modify the Average IPD formula

as follows [42]:

AverageIPDd1,d2 =

∑
s∈V

∑
r∈Vs,d1,d2

∑
i∈Ms,r

(ts,r,i − ts,r,i−1)∑
s∈V

∑
r∈Vs,d1,d2

|Ms,r|
(2)
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This formula enables us to calculate the average IPD for vehicles within a spe-

cific distance range from a given vehicle. This parameter provides valuable in-

sight into the network’s performance in varying proximity scenarios, ultimately

augmenting the depth of our analysis.

The successful implementation of safety applications in VANETs requires low

IPD values. Suppose the delay between the successful reception of two con-

secutive BSMs is too high. In that case, it may lead to outdated or irrelevant

information being received by the vehicles, which in turn may lead to inefficient

decision-making and reduced overall safety.

As demonstrated in Figures 4.6 and 4.7, our simulation results indicate that the

Inter-Packet Delay (IPD) performance of all examined algorithms is remarkably

consistent for messages originating from vehicles within a 280 m radius. Beyond

this range, BACVT8 2 shows the highest delay due to its strategy of transmit-

ting a larger number of Basic Safety Messages (BSMs) at a lower transmission

power. Nevertheless, IPD performance improves significantly when the high-to-

low transmission power ratio is adjusted, as demonstrated by BACVT5 5.

As anticipated, the 20 mW configuration showcases the least IPD values for

larger distances, a result of all BSMs being transmitted at this power level.

It’s worth noting that, despite its admirable performance in terms of Beacon

Error Rate (BER), the 2 mW configuration falls short when considering IPD for

vehicles beyond the 240 m threshold. In both 500 and 800 vehicle densities, this

scheme ceases to receive BSMs beyond a certain distance. Moreover, while the

10 mW configuration demonstrates a lower IPD, it also stops receiving packets

beyond a specified range, albeit outperforming the 2 mW configuration.
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Figure 4.6: IPD for 500 Vehicles.

Figure 4.7: IPD for 800 Vehicles.
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Notably, our proposed method, QBTPCC, attains an IPD metric marginally

above that of the 20 mW configuration, making it an intriguing finding. Across

both vehicular densities, QBTPCC consistently maintains a low IPD and contin-

ues to receive packets across the entire distance, demonstrating the effectiveness

of our approach.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In the realm of Vehicular Ad-hoc Networks (VANETs), the effective manage-

ment of the limited 10 MHz channel capacity is a significant challenge, par-

ticularly with the escalating congestion as vehicular density increases. This

scenario poses a threat to the bandwidth’s ability to ensure the reliable and

timely delivery of crucial safety messages.

In response to this issue, this study presents a pioneering solution: the Q-

learning Based Transmission Power Control for Channel Congestion (QBT-

PCC). Leveraging the capabilities of Reinforcement Learning (RL), specifically

Q-learning, QBTPCC strategically manages the transmission power for Basic

Safety Messages (BSMs), balancing the Channel Busy Ratio (CBR) beneath

a predetermined threshold while optimizing situational awareness in various

traffic conditions.

Evaluations of QBTPCC, based on robust simulations and benchmarking against

existing strategies using constant transmission power and another RL-based

methodology, consistently demonstrated superior performance. QBTPCC effec-

tively maintained channel load at or near the set level, irrespective of whether

the traffic densities were low or high. This consistent performance, keeping

the CBR within the range of 0.5 to 0.6 and preserving high-quality situational
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awareness (as reflected in IPD metrics), is indicative of QBTPCC’s capacity to

navigate the complex balance between awareness and congestion. This capabil-

ity is crucial for efficient and safe communication in VANETs.

Our research provides a substantial contribution towards the evolution of intel-

ligent transportation systems and paves the way towards more efficient, safer,

and technologically advanced road networks. However, recognizing the poten-

tial complexities of real-world scenarios, we suggest that future research should

involve comprehensive field tests. These tests would further validate and refine

our model, ensuring it can adapt to the wide range of challenges inherent in

real-world situations.

In conclusion, our study offers an innovative and effective approach for han-

dling transmission power in VANETs, showcasing the tremendous potential of

machine learning techniques in addressing dynamic and complex issues. We

hope this work acts as a launchpad for further research and development in the

field, pushing the limits of vehicular communication networks and contributing

significantly to the broader ambitions of smart city development.

5.2 Future Work

While our study has laid a solid foundation in the application of Q-learning

for transmission power control in vehicular ad hoc networks, there are several

directions in which this research can be extended and refined.

We can enhance QBTPCC by designing a comprehensive reward function that

takes into account additional metrics. We are also exploring the possibility of

adjusting multiple parameters, transmission power, and data rate, in addition

to the transmission power, to create a more robust Q-table.

Multi-agent Learning: In our current work, we have focused on the perspec-
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tive of individual vehicles. Future research can explore multi-agent learning,

where multiple vehicles work together and learn collectively. This could lead

to more coordinated and effective decisions in the network, potentially further

improving network performance.

Advanced Machine Learning Techniques: While Q-learning has provided

promising results, there are numerous other machine-learning techniques that

could be explored in this context. Deep reinforcement learning, for instance,

could potentially capture more complex patterns and dependencies in the data,

providing even more effective transmission power control.

Security Concerns: Security issues become even more important as we move

towards a more connected vehicular network. Future research could look into

integrating security measures into our approach to protect the integrity and

confidentiality of the data transmitted in the network.

By building upon the work completed in this thesis and addressing these op-

portunities for future research, we can further improve the performance and

robustness of VANETs, contributing to safer and more efficient road transport.
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