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Abstract

This thesis compares three methods for estimating battery parameters of the electri-

cal equivalent circuit model (ECM) based on electrochemical impedance spectroscopy

(EIS). These methods are referred to as least squares (LS), exhaustive search (ES),

and nonlinear least squares (NLS). The ES approach utilizes the LS method to roughly

determine the lower and upper bounds of the ECM parameters, while the NLS ap-

proach incorporates a Monte Carlo run, allowing for different initial guesses to enhance

the accuracy of EIS fitting. The proposed approaches are validated using both simu-

lated and real-world EIS data. When the signal-to-noise ratio (SNR) is high, both the

ES and NLS approaches exhibit better fitting accuracy compared to the LS approach.

Furthermore, in the validation using simulated EIS data as well as actual EIS data

obtained from LG 18650 and Molicel 21700 batteries, the NLS approach consistently

outperforms the LS and ES approaches in terms of fitting accuracy. Additionally, the

computational time required for the NLS approach is significantly shorter than that

of the ES approach, and the NLS approach demonstrates only a minimal difference in

computational time compared to the LS approach while providing significantly better

fitting performance.
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Chapter 1

Introduction

1.1 The Application of Battery Management Sys-

tem (BMS)

The BMS is crucial in modern battery-based energy storage systems. Its primary

objective is to guarantee the secure and effective functioning of the battery pack by

overseeing and regulating multiple parameters; it is also critical in optimizing battery

performance, extending longevity, and minimizing potential safety hazards [1].

Electric vehicles (EVs) represent a significant application area for BMS. Within

EVs, BMS actively monitors individual cells’ voltages, temperatures, and state of

charge [2]. This monitoring process aims to optimize the battery’s overall performance

and prevent potentially hazardous situations such as overcharging or over-discharging.

Additionally, BMSs play a crucial role in voltage balancing by redistributing the

charge among cells, ensuring uniformity and enhancing the overall efficiency of the

battery. Moreover, BMS can provide the range an EV can travel on a single charge

and diagnose the battery’s overall health [3]. Fig. 1.1 illustrates the main features of

a BMS [4].
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Figure 1.1: Key features of BMS [4].

1.2 The Importance of Electrochemical Impedance

Spectroscopy (EIS) in BMS

Electrochemical impedance spectroscopy (EIS) is widely used to provide useful in-

formation relevant to the battery’s chemical-physical properties, which can impact

battery aging or failure events [5].

Characterizing the impedance is crucial for determining the operational limits of

a battery, evaluating its performance, and monitoring its state of health (SOH) [6,7],

state of charge (SOC) [8, 9], and internal temperature [10]. Moreover, EIS can be

used for grading battery packs for its second-life applications [11]. Furthermore, EIS

is a non-invasive method that can be applied at any stage of the battery’s lifespan

without causing damage [12].
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1.3 Identification of Battery Equivalent Circuit Model

(ECM) Parameters via EIS

EIS provides valuable information about the internal processes occurring within a

battery by measuring its impedance response to an applied sinusoidal excitation sig-

nal. EIS can be employed to determine the parameters (resistance, capacitance, and

inductance) of the ECM [13], representing the battery’s electrochemical behaviour.

However, identifying ECM parameters via battery EIS poses several challenges to

overcome for accurate characterization.

The behavior of batteries shows nonlinear effects such as diffusion limitations,

concentration polarization, and nonlinear electrode kinetics that can significantly im-

pact the impedance spectroscopy [14]. Neglecting these nonlinearities may lead to

inaccurate parameter estimation of ECM; as a result, advanced ECMs that consider

nonlinear phenomena, such as Warburg elements and double-layer capacitances, need

to be employed [12].

In addition, EIS measurements are susceptible to various defects and noise sources

that can compromise the accuracy of parameter identification. Factors such as stray

inductance, contact resistances, cable impedance, and thermal gradients can introduce

unwanted distortions in the impedance spectra. Proper experimental setup, including

careful sample preparation, high-quality instrumentation, and robust data analysis

techniques, is necessary to minimize these errors [15].

Furthermore, the identification of ECM parameters from EIS data is an inverse

problem that often suffers from parameter correlation; different combinations of

ECM parameters can yield similar impedance spectroscopy, making it challenging

to uniquely determine the true values; as a result, advanced parameter estimation

techniques are required to improve parameter identifiability.
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1.4 Organization of the Thesis

The thesis is presented in the manuscript format with three Chapters.

The remainder of this thesis is organized as follows: Chapter 2 details the per-

formance comparisons of three approaches, i.e., LS, ES, and NLS, to extract battery

ECM parameters based on the EIS data simulated via MATLAB and on the EIS data

collected from LG and Molicel batteries. Chapter 3 concludes the thesis.
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Chapter 2

Comparison of Approaches to

Battery ECM Parameters

Estimation Based on EIS
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2.1 Introduction

A Battery Management System (BMS) is a crucial component in electric vehicles

(EVs), renewable energy systems, and other applications that use rechargeable bat-

teries to ensure safe and efficient operation. The primary function of a BMS is to

monitor the battery’s state of charge (SOC) and state of health (SOH) [1]. Elec-

trochemical impedance spectroscopy (EIS) was proposed by Heaviside 1894 [2]; it

has become an essential tool in the study and development of batteries; this allows

researchers to better understand the fundamental electrochemical mechanisms such

that correct strategies can be implemented in BMS for improving battery performance

and lifespan.

EIS has been used to study the ion transport properties and electrode/electrolyte

interfacial behavior of Li-ion batteries, providing insights into their performance and

potential avenues for improvement [3]. In a typical EIS experiment, a small am-

plitude sinusoidal current/voltage signal is applied to the battery, and the resulting

voltage/current response is measured over a range of frequencies [4]. The resulting

impedance data can be analyzed using equivalent electrical circuit models to extract

information on the underlying electrochemical behavior [5]. EIS can provide detailed

information on the electrochemical processes occurring within the battery, includ-

ing the charge transfer kinetics, ion transport properties, and electrode/electrolyte

interfacial behavior [6]. Pastor-Fernández et al. [7] conducted the battery aging iden-

tification and quantification research by analyzing the EIS of four parallel Li-ion cells.

The EIS can be characterized using an equivalent circuit model (ECM), which

represents the battery as a combination of resistive, inductive, and capacitive com-

ponents; then, the ECM parameters can be identified by fitting the ECM to the

measured EIS data [8]. There are different ECM models relevant to different types of

batteries; this requires prior knowledge of the battery chemistry [9]; furthermore, by

iteratively adjusting the ECM parameters, the best fit can be obtained.
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There are various approaches to fit the ECM model to the measured EIS data.

For instance, nonlinear least squares (NLS) approach can be used to estimate the

parameters of a nonlinear model; this aims to optimize the nonlinear function such

that the difference between experimental data and the estimations based on the ECM

model can be minimized [10]. Xu et al. [11] applied a NLS approach to fit the EIS

data of a supercapacitor using the ECM model; this approach can identify the ECM

parameters by minimizing the error between measurements and predictions.

Artificial Neural Network (ANN) can also identify the ECM parameters. Xu et

al. [12] used ANN-based EIS fitting approach to predict the impedance of battery at

different frequencies.

Besides, Genetic Algorithm (GA) is a population-based optimization approach

that can also be used in fitting the ECM to EIS data; however, the computational

complexity of this approach will increase significantly with the number of ECM pa-

rameters, which means that a large number of iterations are needed; furthermore,

the selection of population size, mutation rate, and crossover rate requires continuous

tuning to reach the optimal estimation [13].

The complex nonlinear least squares (CNLS) approach is widely used to fit the

ECM model to EIS data. Pastor-Fernández et al. [7] applied the CNLS algorithm

to fit ECM to the EIS data measured from four Lion-ion batteries. Feng et al. [14]

applied CNLS approach to estimate ECM parameters using the EIS data collected

from a battery cell at different SOC levels and temperatures. The drawback of this

approach is that the fitting accuracy can easily be affected by the initial guess of the

ECM parameters; for instance, the optimization algorithm may converge to a local

minimum instead of converging to a global minimum if the initial guess is selected

inappropriately; this will lead to inaccurate ECM parameter estimation. Also, CNLS

approach requires the specification of ECMmodels, such as the number of components

and the arrangement of RC circuits, which leads to extra work being done before

the fitting process; furthermore, CNLS is a computationally expensive approach,
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especially when the size of EIS measurements are large [15].

Ghadi [16] applied the least squares (LS) approach to fit the EIS data to identify

ECM parameters by assuming the solid electrolyte interface (SEI) arc and charge

transfer (CT) arc as semicircle, and the solid electrolyte interface resistance RSEI

and charge transfer resistance RCT is the diameter of the SEI arc and the CT arc,

respectively; the merit of this approach is that the estimation of the parameters can

be expressed in closed form; however, the main drawback is that the accuracy of this

approach is not sufficient. One of the improvements is to apply the exhaustive search

(ES) approach to identify more accurate estimations of ECM parameters with the

assistance of LS approach.

In this chapter, we proposed a novel NLS approach which only needs to define

the objective function at the beginning, then randomly select the initial guess in each

Monte-Carlo run to achieve the best fitting accuracy. Besides, the computational

time is around 2 seconds, which is very promising in fitting real battery’s EIS data.

While the ES approach can reach a better fitting accuracy compared with the LS

approach, the computational time is still very slow. As a result, the NLS approach

based on Monte-Carlo run can be applied for the extraction of ECM parameters.

The contributions of this chapter can be summarized as follows:

1. This chapter compares the performance of the LS, ES, and Monte-Carlo-based

NLS approaches to identifying battery ECM parameters.

2. Compared to the LS approach presented in [16], the ES and the NLS approach

can significantly boost the fitting accuracy of EIS measurements.

3. This chapter presents a novel approach to implementing NLS through Monte

Carlo runs. At each Monte Carlo run, the initial parameters required for the

NLS approach are selected randomly. This approach results in better accuracy

and much faster computation time than the ES approach.

4. All the methods are validated in simulated EIS data with different SNRs and
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are also validated in actual EIS data collected from two different types of Li-

ion batteries, the fitting performance of the NLS approach outweighs other

approaches in all cases.

The remainder of this chapter is organized as follows: Section 2.2 describes the

analysis of battery ECM parameters via EIS in the frequency domain. Section 2.3 de-

scribes the algorithms to estimate ECM parameters using the least squares approach.

Section 2.4 describes algorithms of exhaustive search, the Monte-Carlo-based nonlin-

ear least squares approach is explained in section 2.5. Implementation procedure is

explained in section 2.6. Results are discussed in section 2.7. Section 2.8 concludes

this chapter.

2.2 Analysis of ECM Parameters in Frequency Do-

main

EIS is a widely used technique to investigate the impedance response of the battery.

As shown in Fig. 2.2 [17], to measure the EIS, a small perturbation voltage or current

with a wide range of frequencies (0.01 Hz to 10 kHz) is injected to the battery; then,

by using Fast Fourier Transform (FFT), the measured voltage and current in the

time domain can be converted to the frequency domain; thus, the impedance in

the frequency domain can be analyzed [18, 19]. The battery impedance can then be

represented by the real part of the impedance and the imaginary part of the impedance

on the complex plane to form the Nyquist plot [20, 21]. This plot represents the

impedance spectrum of the battery at a range of frequencies; the ECM parameters

can be estimated by fitting the EIS data with suitable fitting algorithms.

The frequency domain approach uses the Adaptive Randles (AR) ECM shown in

Fig. 2.3. The AR-ECM consists of the following components [19]:

� Voltage Source, EMF

11



(a) (b)

Figure 2.2: EIS Measurement [17]. (a) Perturbation signal. (b) Electrochemical
response.

� Stray Inductance, L

� Ohmic Resistance, RΩ

� Solid Electrolytic Interface (SEI) Resistance, RSEI

� SEI Capacitance, CSEI

� Charge Transfer (CT) resistance, RCT

� Double Layer (DL) Capacitance, CDL

� Warburg Impedance, ZW

−
+

EMF

L RΩ

CSEI

RSEI

CDL

RCT Zw

Ĩ(ω)

+

−

Ṽ (ω)

Figure 2.3: Adaptive Randles equivalent circuit model (AR-ECM) of a bat-
tery.
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Fig. 2.4 shows the Nyquist plot relevant to the AR-ECM. According to this figure,

the AC impedance Z(w) corresponding to the AR-ECM can be written as [16]

Z(ω) ≜ Z(jω)

= jωL+RΩ +
1

1
RSEI

+ jωCSEI

+
1

1
RCT+Zw(jω)

+ jωCDL

= jωL+RΩ︸ ︷︷ ︸
ZRL

+
RSEI

1 + jωRSEICSEI︸ ︷︷ ︸
ZSEI

+
RCT + Zw(jω)

1 + jω (RCT + Zw(jω))CDL︸ ︷︷ ︸
ZCT&DF

(2.1)

Where ZRL denotes the impedance in the RL arc, ZSEI denotes the impedance in the

SEI arc, and ZCT&DF denotes the impedance in the CT arc and DF arc.

2.3 Least Squares Approach

To solve the problem of ECM parameter estimation, Ghadi [16] applied the LS al-

gorithm to fit the EIS measurements; furthermore, this approach can express the

estimation of ECM parameters in closed form. In this section, an improved LS ap-

proach to AR-ECM parameter estimation is presented.

Fig. 2.4 shows the impedance spectrum/Nyquist plot corresponding to the AR-

ECM shown in Fig. 2.3. Each data point in the Nyquist plot is obtained through

the procedure as shown in Fig. 2.5, where zv(t) and zc(t) are the measured voltage

and current in the time domain while injecting sinusoidal current to the battery at

different frequencies; Zv(ω) and Zc(ω) are the Fourier transform of the corresponding

voltage and current measurements.

It can be observed that the Nyquist plot needs to be divided into four parts to see

how it is directly related to the AR-ECM. The feature points of the Nyquist plot are

indicated by index kDF1 and kDF2 in the DF arc; are indicated by kCT1 and kCT2 in

the CT arc; are indicated by kSEI1 and kSEI2 in the SEI arc; and are indicated by kRL1

and kRL2 in the RL arc. Different parts of the Nyquist plot represent the battery’s

13



impedance at different frequencies [22]. In this chapter, to keep the consistency of

nomenclature, we define:

� kDF1 is the index of the first data point in the DF arc, in this chapter, we define

kDF1 = 1.

� kDF2 is selected such that the data points from kDF1 to kDF2 follows the linear

line.

� kCT1 is selected at the beginning of the CT arc such that the data points start

to follow the arc.

� kCT2 is selected at the end of the CT arc such that data points between kCT1 and kCT2

follow the CT arc.

� Similarly, kSEI1 is selected at the beginning of the SEI arc.

� kSEI2 is selected at the end of the SEI arc such that data points between

kSEI1 and kSEI2 follow the SEI arc.

� kRL1 is selected at the beginning of the RL arc.

� kRL2 is selected at the end of the RL arc.

2.3.1 Estimation of Ohmic Resistance and Stray Inductance

As shown in Fig. 2.4, based on the impedance measurements in the RL arc, the ohmic

resistance RΩ can be estimated as

R̂Ω =
1

kRL2 − kRL1 + 1

kRL2∑
k=kRL1

zr(k) (2.2)

and stray inductance L can be estimated using the improved method:

L̂ =
zi(kRL2)

ωkRL2

(2.3)
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Figure 2.4: The theoretical Nyquist plot corresponding to the AR-ECM.

Figure 2.5: The procedure to obtain EIS.

where as shown in Fig. 2.5,

zr(k) = Re(Z(ωk)), zi(k) = Im(Z(ωk)), (2.4)
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and ωkRL1
≤ ωk ≤ ωkRL2

.

2.3.2 Estimation of Diffusion Arc’s Gradient m

Considering the imaginary part of the measured impedance zi(k) and the real part

of the measured impedance zr(k) in the Diffusion arc, it can be represented with a

linear model:

zi(k) = mzr(k) + a (2.5)

Assuming the measurements are from kDF1 to kDF2 as shown in Fig. 2.4, the

following can be written as

zi(kDF1) = mzr(kDF1) + a

zi(kDF1+1) = mzr(kDF1+1) + a

...

zi(kDF2) = mzr(kDF2) + a

(2.6)

Equation (2.6) can be written in the matrix form


zi(kDF1)

zi(kDF1 + 1)

...

zi(kDF2)


︸ ︷︷ ︸

y

=


zr(kDF1) 1

zr(kDF1 + 1) 1

...

zr(kDF2) 1


︸ ︷︷ ︸

A

m
a


︸ ︷︷ ︸

k

(2.7)

m and a can be estimated using the LS approach:

k̂ = (ATA)−1(ATy) (2.8)

m̂ = k̂(1), â = k̂(2) (2.9)
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Algorithm 1 estimates quantities (list) based on the following impedance values:

zr = [zr(1), zr(2), . . . , zr(n)] (2.10)

zi = [zi(1), zi(2), . . . , zi(n)] (2.11)

In this thesis, the uppermost bound of the DF arc is denoted as kH
DF , the lowest

bound of the CT arc is denoted as kL
CT , and the lowest bound of the SEI arc is denoted

as kL
SEI , these boundaries can be identified by applying moving average filter (MAF)

to process the measured impedance data via Algorithm 1, the filtered EIS data is

shown in Fig. 2.6a. The algorithms presented in this chapter are written by utilizing

MATLAB syntax. Algorithm 1 uses the following MATLAB commands: ’smooth’,

’min’ ’break’, and ’continue’.

Algorithm 1 Boundary identification.

Input: zr, zi.
Output: kL

SEI , k
L
CT , k

H
DF

1: szr ← smooth(zr, 10)
2: szi ← smooth(zi, 10)
3: iter = 0
4: while true do
5: iter = iter + 1
6: if (szi(iter + 1) ≥ min(szi(1 : iter)) | (iter ≥ kSEI2) then
7: kL

SEI ← iter + 10
8: kL

CT ← iter + 10
9: kH

DF ← iter
10: break
11: else
12: continue
13: end if
14: end while

The gradient m of the Diffusion arc can be estimated by fitting the Diffusion arc

with the linear model mentioned in (2.5) and searching out the best fit using Algo-

rithm 2. The fitting process is also demonstrated in Fig. 2.6b and 2.6c. Algorithm 2

uses the following MATLAB commands: ’mean’, ’find’, and ’max’.
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Algorithm 2 Diffusion arc fitting.

Input: zr, zi, k
H
DF

Output: m̂, kDF2

1: for i = 1 : kH
DF − 1 do

2: zr(k), k = 1, 2, ..., i+ 1 ← zr(1 : i+ 1)
3: zi(k), k = 1, 2, ..., i+ 1 ← zi(1 : i+ 1)
4: m(i)← Estimate gradient in ith iteration via Eq. (2.5) - (2.9)
5: ŷ ← Estimate imaginary part of the impedance based on the fitted linear

model.
6: Sr =

∑i+1
k=1 (zi(k)− ŷ(k))2 ▷ the sum of error squares

7: St =
∑i+1

k=1 (zi(k)−mean(ŷ))2 ▷ the total sum of squares around the mean

8: r(i) =
√

St−Sr

St
▷ correlation coefficient

9: end for
10: kDF2 ← find(r == max(5 : end)) ▷ written in MATLAB syntax
11: m̂←m(kDF2)
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Figure 2.6: DF arc fitting process. (a) Smooth the EIS using MAF. (b) Find the
highest correlation coefficient r when fitting the DF arc. (c) Fitted DF arc.

2.3.3 First Estimation of Warburg Coefficient σ

From the observation of EIS measurements in [22], it was found that the gradient of

the Diffusion arc varies with the SOC level; in addition, gradients may be different

even at the same SOC level of batteries from two different manufacturers; therefore,

an improved method to represent Warburg impedance is defined mathematically as

Zw(jω) = (1− jm)
σ√
ω

(2.12)

18



where σ is the Warburg coefficient, m is the gradient of fitted DF arc, and j is
√
−1.

It must be emphasized here that in [16] the gradient was assumed to be m = 1. In

this chapter, it is proposed to estimate the gradient m to achieve better EIS fitting.

It can be shown based on (2.1) that the Warburg impedance is significant only

at lower frequencies. In Fig. 2.4, impedance measurements from kDF1 to kDF2 are

selected to estimate the Warburg coefficient (we define kDF1 = 1, and kDF2 is obtained

via Algorithm 2). Considering the real part of the impedance zr in the diffusion arc:

zr(kDF1)− zr (kDF2) = σ

(
1

√
ωkDF1

− 1
√
ωkDF2

)
zr(2)− zr (kDF2 − 1) = σ

(
1
√
ω2

− 1
√
ω(kDF2−1)

)
...

zr(n)− zr (kDF2 − n+ 1) = σ

(
1
√
ωn

− 1
√
ω(kDF2−n+1)

)
(2.13)

where n = ⌊kDF2−kDF1+1
2

⌋.

The observation model corresponding to (2.13) is

z̃ = bσ (2.14)

where

z̃ =


zr(1)− zr (kDF2)

zr(2)− zr (kDF2 − 1)

...

zr(n)− zr (kDF2 − n+ 1)


,

19



b =



(
1√
ω1
− 1√

ωkDF2

)(
1√
ω2
− 1√

ω(kDF2−1)

)
...(

1√
ωn
− 1√

ω(kDF2−n+1)

)


and the LS estimate of σ is

σ̂LS = (bTb)−1(bT z̃) (2.15)

2.3.4 Estimation of RSEI and CSEI

As shown in Fig. 2.4, to fit the SEI arc precisely, we select feature points that lie

between kSEI1 and kSEI2. Let us denote the impedance measurements in the SEI arc

as

sr(k) ≜ zr(k) s.t. kSEI1 ≤ k ≤ kSEI2

si(k) ≜ zi(k) s.t. kSEI2 ≤ k ≤ kSEI2

(2.16)

where zr(k) = Re(Z(ωk)) and zi(k) = Im(Z(ωk)).

The estimation of RSEI is to fit the SEI arc using a semicircle with its centre lying

on the real axis; the coordinate of this semicircle’s center can be denoted as (xs, 0);

the radius of the semicircle can be denoted as rs; thus, the measurements in (2.16)

should satisfy the equation of the semicircle [22]:

(sr(k)− xs)
2 + (si(k)− 0)2 = rs

2 (2.17)

sr(k)
2 − 2xssr(k) + x2

s + si(k)
2 = rs

2 (2.18)
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Let c = −2xs and d = x2
s − rs

2, thus

rs
2 =

c2

4
− d (2.19)

rs =

√
c2

4
− d (2.20)

And (2.18) can be rewritten as

sr(k)
2 + si(k)

2 + csr(k) + d = 0 (2.21)

In the matrix form, (2.21) can be written as



− (sr(kSEI1)
2 + si(kSEI1)

2)

− (sr(kSEI1 + 1)2 + si(kSEI1 + 1)2)

− (sr(kSEI1 + 2)2 + si(kSEI1 + 2)2)

...

− (sr(kSEI2)
2 + si(kSEI2)

2)


︸ ︷︷ ︸

z

=



sr(kSEI1) 1

sr(kSEI1 + 1) 1

sr(kSEI1 + 2) 1

...

sr(kSEI2) 1


︸ ︷︷ ︸

B

c
d


︸︷︷︸
xSEI

+


nv(1)

nv(2)

...

nv(n)


︸ ︷︷ ︸

n

(2.22)

Using LS algorithm, the estimate of x̂SEI will be given by

x̂SEI = (BTB)−1(BTz) (2.23)

21



The estimates of c and d are:

ĉ = x̂SEI(1), d̂ = x̂SEI(2) (2.24)

From Fig. 2.4, RSEI is the diameter of the SEI arc; thus, by substituting the values

of c and d in (2.20), the estimate of RSEI is

R̂SEI = 2r̂s = 2

√
ĉ2

4
− d̂ (2.25)

The estimated centre of the semicircle can then be expressed as

(x̂s, 0) = (− ĉ

2
, 0) (2.26)

The fitting accuracy of the SEI arc can be evaluated as [23]

RMSESEI =

√ ∑kSEI2

k=kSEI1
dk

2

kSEI2 − kSEI1 + 1
(2.27)

Where dk is the geometrical distance between the actual EIS data point and

predicted EIS data point, which is defined as

dk =

√
[sr(k)− x̂s]

2 + [si(k)− 0]2 − r̂s (2.28)

It can be shown in (2.1) that when the frequency is very high, the impedance in

CT arc and Diffusion arc will be minimal so that it is negligible; thus, we assume the

ZCT&DF term will be zero, that is

Z = ZRL + ZSEI + 0 (2.29)
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Therefore, the impedance in SEI arc can be expressed as:

ZSEI = Z − ZRL (2.30)

RSEI

1 + jωRSEICSEI

= Z(ω)− jωL−RΩ (2.31)

1 + jωRSEICSEI =
RSEI

Z(ω)− jωL−RΩ

(2.32)

jωRSEICSEI =
RSEI

Z(ω)− jωL−RΩ

− 1 (2.33)

jωCSEI =
1

Z(ω)− jωL−RΩ

− 1

RSEI

(2.34)

Take the imaginary part on both sides of the above equation,

CSEI =

(
1

ω

)
Im

(
1

Z(ω)− jωL−RΩ

− 1

RSEI

)
(2.35)

CSEI =

(
1

ω

)
Im

(
1

Z(ω)− jωL−RΩ

)
(2.36)

Substituting the expression for RΩ and L from (2.2) and (2.3), respectively, in

(2.36) at ω = ωk (kSEI1 ≤ k ≤ kSEI2):

C̃SEI(k) =

(
1

ωk

)
Im

(
1

Z(ωk)− jωkL̂− R̂Ω

)
(2.37)

Finally, average all the estimates C̃SEI(k) to obtain the final estimate

ĈSEI =
1

kSEI2 − kSEI1 + 1

kSEI2∑
k=kSEI1

C̃SEI(k) (2.38)

Using the LS approach to identify RSEI and CSEI via the automatic selection of

feature points are fully described in Algorithm 3. In addition, Fig. 2.7a shows the

RMSE of the fitted SEI arc in each iteration and 2.7b shows the SEI arc, which is

selected since it can reach the best fit. Algorithm 3 uses the following MATLAB

commands: ’floor’, ’length’.
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Algorithm 3 Estimate RSEI and CSEI via automatic feature detection

Input: zr, zi, k
L
SEI , R̂Ω, L̂

Output: R̂SEI, ĈSEI.

1: n = 0
2: range SEI ← floor(length(zr)/4)
3: kSEI2 ← length(find(−zi ≥ 0))
4: for kSEI1 = kL

SEI : kSEI2 − range SEI do
5: n = n+ 1
6: zfitr ← zr(kSEI1 : kSEI2)
7: zfiti ← zi(kSEI1 : kSEI2)
8: kID(n, :)← [kSEI1, kSEI2]
9: RSEI(n)← Use zfitr and zfiti to compute RSEI via Eq. (2.16) - (2.25)
10: RMSE(n)← Compute RMSE via Eq. (2.26) - (2.28)
11: end for
12: idx← Find the index points to the lowest value in RMSE
13: R̂SEI ← RSEI(idx)
14: kSEI index ← kID(idx, :) ▷ Identify the range of data points that can reach

the best fit
15: ĈSEI ←Use the kSEI index to estimate CSEI via Eq. (2.37) - (2.38)
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Figure 2.7: Fitted SEI arc and CT arc using LS approach. (a) RMSE of the
fitted SEI arc. (b) Best fitting of SEI arc.

2.3.5 Estimation of RCT and CDL

It can be observed in Fig. 2.4 that to fit the CT arc using a semicircle precisely, we

need to select feature points that lie between kCT1 to kCT2; therefore, the impedance

24



measurements in the CT arc can be denoted as:

cr(k) ≜ zr(k) s.t. kCT1 ≤ k ≤ kCT2

ci(k) ≜ zi(k) s.t. kCT1 ≤ k ≤ kCT2

(2.39)

where zr(k) = Re(Z(ωk)) and zi(k) = Im(Z(ωk)).

Assuming that the centre of the semicircle lies on the real axis, which is noted as

(xc, 0), the radius of the semicircle can be noted as rc; thus, the measurements in

(2.39) should satisfy the equation of the semicircle [22]:

(cr(k)− xc)
2 + (ci(k)− 0)2 = rc

2 (2.40)

cr(k)
2 − 2xccr(k) + x2

c + ci(k)
2 = rc

2 (2.41)

Let g = −2xc and h = x2
c − rc

2, thus

rc
2 =

g2

4
− h (2.42)

rc =

√
g2

4
− h (2.43)

And (2.41) can be rewritten as

cr(k)
2 + ci(k)

2 + gcr(k) + h = 0 (2.44)
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In the matrix form, (2.44) can be written as



− (cr(kCT1)
2 + ci(kCT1)

2)

− (cr(kCT1 + 1)2 + ci(kCT1 + 1)2)

− (cr(kCT1 + 2)2 + ci(kCT1 + 2)2)

...

− (cr(kCT2)
2 + ci(kCT2)

2)


︸ ︷︷ ︸

p

=



cr(kCT1) 1

cr(kCT1 + 1) 1

cr(kCT1 + 2) 1

...

cr(kCT2) 1


︸ ︷︷ ︸

C

g
h


︸︷︷︸
xCT

+


nv(1)

nv(2)

...

nv(n)


︸ ︷︷ ︸

n

(2.45)

From (2.45), xCT can be estimated using LS algorithm

x̂CT = (CTC)−1(CTp) (2.46)

Thus, the estimates of a and b are:

ĝ = x̂CT(1), ĥ = x̂CT(2) (2.47)

As shown in Fig. 2.4, RCT is the diameter of the CT arc; thus, by substituting

the values of a and b in (2.43), the estimate of RCT is

R̂CT = 2r̂c = 2

√
ĝ2

4
− ĥ (2.48)
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The estimated centre of the semicircle can then be expressed as

(x̂c, 0) = (− ĝ

2
, 0) (2.49)

The fitting accuracy of the CT arc can be evaluated as [23]

RMSECT =

√ ∑kCT2

k=kCT1
dk

2

kCT2 − kCT1 + 1
(2.50)

Where dk is the geometrical distance between the actual EIS data point and

predicted EIS data point, which is defined as [23]

dk =

√
[cr(k)− x̂c]

2 + [ci(k)− 0]2 − r̂c (2.51)

Based on (2.1),

Z = ZRL + ZSEI + ZCT&DF (2.52)

Therefore, the impedance in CT arc and DF arc can be expressed as:

ZCT&DF = Z − ZRL − ZSEI (2.53)

RCT + Zw(jω)

1 + jω (RCT + Zw(jω))CDL

= Z(ω)− jωL−RΩ −
RSEI

1 + jωRSEICSEI

(2.54)

Thus,

jω (RCT + Zw(jω))CDL

=
RCT + Zw(jω)

Z(ω)− jωL−RΩ − RSEI

1+jωRSEICSEI

− 1
(2.55)
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Then,

jωCDL =
1

Z(ω)− jωL−RΩ − RSEI

1+jωRSEICSEI

− 1

RCT + Zw(jω)

(2.56)

Take the imaginary part on both sides of (2.56), and substitute Zw(jw) with the

expression given in (2.13), we obtain

CDL

=

(
1

ω

)
Im

(
1

Z(ω)− jωL−RΩ − RSEI

1+jωRSEICSEI

− 1

RCT + (1− jm) σ√
ω

) (2.57)

Substituting L, RΩ, RSEI, CSEI, RCT and σ with the estimations given in (2.3),

(2.2), (2.25), (2.38), (2.48) and (2.15) respectively, in the above equation at ω = ωk

(kCT1 ≤ k ≤ kCT2):

C̃DL(k)

=

(
1

ωk

)
Im

 1

Z(ωk)− jωkL̂− R̂Ω − R̂SEI

1+jωkR̂SEIĈSEI

− 1

R̂CT + (1− jm̂) σ̂√
ωk

) (2.58)

Finally, average all the estimates C̃DL(k) to obtain the final estimate

ĈDL =
1

kCT2 − kCT1 + 1

kCT2∑
k=kCT1

C̃DL(k) (2.59)

Using the LS approach to identify RCT and CDL via the automatic selection of

feature points is shown in Algorithm 4. Furthermore, Fig. 2.8a shows the RMSE of

the fitted CT arc in each iteration, and 2.8b shows the CT arc selected since it can
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Figure 2.8: Fitted SEI arc and CT arc using LS approach. (a) RMSE of the
fitted CT arc. (b) Best fitting of CT arc.

reach the best fit. Algorithm 4 uses the following MATLAB commands: ’floor’ and

’round’.

Algorithm 4 Estimate RCT and CDL via automatic feature detection

Input: zr, zi, k
L
CT , kSEI2, R̂Ω, L̂, R̂SEI, ĈSEI, σ̂LS, m̂

Output: R̂CT, ĈDL,

1: n = 0
2: kU

CT ← kSEI2 − floor((kSEI2 − kL
CT )/2) ▷ the uppermost bound of the CT arc

3: rangeCT ← round((kU
CT − kL

CT )/2)
4: for kCT1 = kL

CT : (kU
CT − rangeCT ) do

5: for kCT2 = (kL
CT + rangeCT ) : k

U
CT do

6: n = n+ 1
7: zfitr ← zr(kCT1 : kCT2)
8: zfiti ← zi(kCT1 : kCT2)
9: kID(n, :) = [kCT1, kCT2]
10: RCT(n)← Use zfitr and zfiti to compute RCT via Eq. (2.39) - (2.48)
11: RMSE(n)← Compute RMSE via Eq. (2.49) - (2.51)
12: end for
13: end for
14: idx← Find the index points to the lowest value in RMSE
15: R̂CT ← RCT(idx)
16: kCT index = kID(idx, :) ▷ the range of data points that can reach the best fit
17: ĈDL ←Use the kCT index to estimate CDL via Eq. (2.58) - (2.59)
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2.3.6 Evaluation of the General Fitting Accuracy

In the complex plane, the absolute value of the error between the measured EIS and es-

timated EIS is actually the distance between measured EIS data points and estimated

EIS data points as shown in Fig.2.9, d1, where d2, ... dn are the distances between

measured EIS data point (zr(k), zi(k)) and estimated EIS data point (ẑr(k), ẑi(k)),

which can be used to evaluate the fitting accuracy, the distance dk is represented as.

dk =
√
[zr(k)− ẑr(k)]2 + [zi(k)− ẑi(k)]2 (2.60)

Where n is the number of measurements, k ∈ 1, 2, ..., n.

Figure 2.9: Geometrical distance between measured EIS data point and
predicted EIS data point.
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Therefore, the evaluation of EIS fitting can be expressed as

MAE =
1

N

N∑
k=1

dk =
1

N

N∑
k=1

∣∣∣Z(ωk)− Ẑ(ωk)
∣∣∣ (2.61)

Where Z(ωk) is the measured impedance at ωk, Ẑ(ωk) is the impedance estimation at

ωk, which is computed based on (2.1) with the estimated ECM parameters, N is the

total number of measurements, | · | denotes the absolute value of the complex number.

The goal is to fit the EIS measurements such that the fitted EIS can achieve the

lowest MAE.

The percentage error of the estimated parameters can be expressed as:

Percentage Error (%)

=

∣∣∣∣True Value− Predicted Value

True Value

∣∣∣∣× 100%
(2.62)

2.4 Exhaustive Search Approach

2.4.1 Second Estimation of Warburg Coefficient σ

Assume RΩ, L, RSEI , CSEI , RCT , CDL and m are given, based on (2.54),

1
1

RCT+Zw(jω)
+ jωCDL

= Z(ω)− jωL−RΩ −
RSEI

1 + jωRSEICSEI

(2.63)

1

RCT + Zw(jω)
+ jωCDL

=
1

Z(ω)− jωL−RΩ − RSEI

1+jωRSEICSEI

(2.64)
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thus,
1

RCT + Zw(jω)

=
1

Z(ω)− jωL−RΩ − RSEI

1+jωRSEICSEI

− jωCDL

(2.65)

RCT + Zw(jω)

=
1

1

Z(ω)−jωL−RΩ−
RSEI

1+jωRSEICSEI

− jωCDL

(2.66)

then, the Warburg impedance can also be expressed as:

Zw(jω)

=
1

1

Z(ω)−jωL−RΩ−
RSEI

1+jωRSEICSEI

− jωCDL

−RCT
(2.67)

Take the real part on both sides of the above equation, at ω = ωk (kDF1 ≤ k ≤

kDF2),

Re (Zw(jωk))

= Re

(
1

1

Z(ωk)−jωkL−RΩ−
RSEI

1+jωkRSEICSEI

− jωkCDL

−RCT

)
(2.68)

The real part of the Warburg impedance can be noted as:

Wr(k) ≜ Re (Zw(jωk)) s.t. kDF1 ≤ k ≤ kDF2 (2.69)

Take the real part on both sides of (2.12), we get

Wr(k) =
σ
√
ωk

(2.70)

Thus,

σ̃ES
k = Wr(k)

√
ωk (2.71)
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Finally, average all the estimates σ̃ES
k to obtain the final estimate

σ̂ES =
1

kDF2 − kDF1 + 1

kDF2∑
k=kDF1

σ̃ES
k (2.72)

2.4.2 Specify the Range of Parameters for Exhaustive Search

As presented in section 2.3, the rough estimations of ECM parameters are given;

therefore, we can assign the lower and upper bound for each parameter such that

the exhaustive search approach can identify the most suitable parameter between the

boundary. As shown in Algorithm 5, the range of each ECM parameter is assigned

based on the empirical coefficient. In this chapter, the size of possible values in each

ECM parameter is restricted to 20 such that the computational time is within the

acceptable range. Algorithm 5 uses the MATLAB command ’linspace’.

Algorithm 5 Set the range of ECM parameters estimated by LS approach .

Input: R̂SEI, ĈSEI, R̂CT, ĈDL, m̂
Output: {Rmin

SEI , . . . , R
max
SEI }, {Cmin

SEI , . . . , C
max
SEI }, {Rmin

CT , . . . , Rmax
CT },

{Cmin
DL , . . . , Cmax

DL }, {mmin, . . . ,mmax}

1: {Rmin
SEI , . . . , R

max
SEI } ← linspace(0.2R̂SEI, 2R̂SEI, 20)

2: {Cmin
SEI , . . . , C

max
SEI } ← linspace(ĈSEI, 2.5ĈSEI, 20)

3: {Rmin
CT , . . . , Rmax

CT } ← linspace(0.5R̂CT, 1.5R̂CT, 20)
4: {Cmin

DL , . . . , Cmax
DL } ← linspace(ĈDL, 3ĈDL, 20)

5: {mmin, . . . ,mmax} ← linspace(0.8m̂, 1.2m̂, 20)

2.4.3 Implement Exhaustive Search

Algorithm 6 describes the ES approach that can be applied to precisely identify

the ECM parameters, which are roughly estimated in the previous section. Fig.

2.10 shows the MAE evaluated from the initial iteration throughout the end of the

exhaustive search process; by finding the lowest MAE in this figure, one can identify

the best estimation of ECM parameters via the ES approach.
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Algorithm 6 Exhaustive Search Approach.

Input: {Rmin
SEI , . . . , R

max
SEI }, {Cmin

SEI , . . . , C
max
SEI }, {Rmin

CT , . . . , Rmax
CT }, {Cmin

DL , . . . , Cmax
DL },

{mmin, . . . ,mmax}, R̂Ω, L̂
Output: MAEES

min, PES

1: n = 0
2: for RSEI ∈ {Rmin

SEI , . . . , R
max
SEI } do

3: for CSEI ∈ {Cmin
SEI , . . . , C

max
SEI } do

4: for RCT ∈ {Rmin
CT , . . . , Rmax

CT } do
5: for CDL ∈ {Cmin

DL , . . . , Cmax
DL } do

6: for m ∈ {mmin, . . . ,mmax} do
7: n = n+ 1
8: Second Estimation of σ using Eq. (2.68) to (2.72)
9: Use the estimated ECM parameters in each iteration to generate

simulated EIS data
10: Compute MAE(n) using Eq. (2.61)
11: end for
12: end for
13: end for
14: end for
15: end for
16: MAEES

min ← Find the lowest value of MAE
17: idx ← Find the index of MAEmin in MAE
18: PES← Identify the ECM parameters using the index idx that points to the lowest

MAE
19: Compute percentage error (In EIS simulation test procedure)
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Figure 2.10: Find the lowest MAE of ES approach.

2.5 Nonlinear Least Squares Approach

The concept of implementing the NLS approach based on the Monte-Carlo run is

shown in Fig. 2.11. This approach randomly selects initial guesses of the ECM

parameters in each Monte Carlo run to fit the EIS data in different cases.

2.5.1 Objective function

The goal is to find the optimized ECM parameters to minimize the following function.

x̂ = argmin
x

N∑
k=1

|Ẑ(ωk)− Z(ωk)| (2.73)

Where,

x = [RΩ, L,RSEI , CSEI , RCT , CDL, σ,m] (2.74)
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Ẑ(ωk) = x̂(1) + jωkx̂(2) +
1

1
x̂(3)

+ jωkx̂(4)

+
1

1

x̂(5)+(1−jx̂(8))
x̂(7)√
ωk

+ jωx̂(6)

(2.75)

and Z(ωk) is the measured impedance at ωk, N is total number of measurements, | · |

denotes the absolute value of the complex number.

The nonlinear least square approach is implemented in MATLAB using the built-

in function lsqnonlin to fit the EIS data.

2.5.2 Initial Guess

Instead of setting the lower bound and upper bound for the NLS approach, in this

chapter, we randomly select the initial guess in each Monte-Carlo run to try different

NLS fitting based on different initial guess; this way, to find the best fit among all

cases. In MATLAB the initial guess is defined as:

x0 = [abs(randn(1,7)),1] (2.76)

2.5.3 Algorithm Switch

To reach the best fit, firstly, the NLS approach will apply ’trust-region-reflective’

algorithm [24, 25], then the NLS approach will switch to ’levenberg-margquardt’ al-

gorithm [26–28]; since, in some cases, the curvature of the objective function can be

negative; as compared to using the Levenberg-Marquardt algorithm, using the Trust

Region method can reach better performance [29]. After that, the algorithm that

can achieve the lowest mean absolute error (MAE) will be selected as the approach

that can reach the best fit. The detailed approach is shown in Algorithm 7. This

algorithm uses the following MATLAB commands: ’abs’ and ’randn’.
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Algorithm 7 NLS Approach.

Input: measured impedance Z
Output: MAENLS

min , PNLS

1: Define objective function
2: n = 0
3: while n ≤ 100 do
4: x0 = [abs(randn(1, 7)), 1] ▷ Randomly set initial guess
5: Solver switches to ’trust-region-reflective’ algorithm
6: Solver switches to ’levenberg-marquardt’ algorithm
7: Compute MAE
8: n = n+ 1
9: end while
10: Find the lowest MAE computed by ’trust-region-reflective’ algorithm, denote as

MAEtrf
min

11: Find the lowest MAE computed by ’levenberg-marquardt’ algorithm, denote as
MAElvbm

min

12: if MAEtrf
min ≤ MAElvbm

min then
13: MAENLS

min = MAEtrf
min

14: else
15: MAENLS

min = MAElvbm
min

16: end if
17: PNLS ← Identify the ECM parameters using the index points to the lowest MAE
18: Compute Percentage Error (In EIS simulation data validation procedure)
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Figure 2.11: Monte-Carlo based Nonlinear Least Sqaures Approach.

2.6 Implementation

In this chapter, we implemented three ECM parameter estimation approaches in

MATLAB R2020a with a 3 GHz Processor and 16 GB RAM.

2.6.1 Simulate EIS data

The simulated EIS data was generated using Algorithm 8, where the frequency ranges

from 0.01 Hz to 10 kHz, and the number of EIS measurements is 121; this is because

we want to keep the conformity with the sampling size set in the EIS experiment

conducted in [22]. Table 2.1 shows the true ECM parameters for simulating EIS

data. Algorithm 8 uses the MATLAB command ’linspace’.

The signal-to-noise ratio (SNR) is defined as [32]:

SNR(dB) = 10 log10

(
Psignal

Pnoise

)
= 20 log10

(
Asignal

Anoise

)
(2.77)
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Algorithm 8 EIS simulation.

Input: fL, fH , n
P: True ECM paramters, 8× 1 vector
Output: zr, zi, f : Frequencies range from the lowest to the highest

1: q = linspace(log10fL, log10fH , n)
2: fi = 10q(i), i ∈ 1, 2, ..., n
3: f = [f1, f2, ..., fn]

T

4: ω = 2πf ▷ Angular frequency, n× 1 vector
5: Z ← Compute impedance via Eq. (2.1) based on the given ECM parameters P

▷ Where, P = [RΩ, L,RSEI , CSEI , RCT , CDL, σ,m]T

6: zr ← real(Z)
7: zi ← −imag(Z)

Table 2.1: True ECM parameters used for EIS simulation

RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F ) RCT(mΩ) CDL (F ) σ (×10−3) m
34 95 6 1 18 8 5 1

Where P is the average power, A is the root mean square (RMS) amplitude.

In this chapter, we imposed Gaussian noise on the simulated EIS data. Assume

the standard deviation is σnoise, the amplitude of the signal is RΩ, if SNR (dB) is

given, then the σnoise can be defined as

σnoise =
RΩ

10
SNR
20

(2.78)

2.6.2 Collect Real EIS data

The impedance data is measured from two Li-ion batteries: LG 18650 and Moli-

cel 21700. In addition, the specifications of LG and Molicel batteries are shown

in [22, Tab. 1]. The data are collected using the Arbin battery cycler (Model:

LBT21084UC), which has 16 channels that can operate in parallel. In this exper-

iment, eight channels were used to collect data simultaneously at room temperature

(23 ◦C).

As shown in Fig. 2.12, the EIS data are measured by the EIS device (Gamry
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Figure 2.12: Experimental Setup [31].

interface 5000P). We operated the Gamry EIS device and Arbin battery cycler using

the software MitsPro provided by Arbin company. The voltage measurement error of

the Gamry EIS device is 0.2 mV as specified from [30]. In this chapter, we validated

LS, ES, and NLS approaches on EIS data collected from one LG and one Molicel

battery when the SOC is at 90%, 50% and 10%, while discharging from a fully charged

state.

2.7 Results

In this section, fitting results obtained from the simulated and real EIS data are

shown and discussed.

2.7.1 Estimation Results of ECM Parameters Using Simu-

lated EIS Data

The comparisons of simulated EIS data fitted by LS, ES, and NLS approaches are

shown in Fig. 2.13a to Fig. 2.13d. It can be observed that the LS approach shows
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Table 2.2: Estimated ECM parameters, computational time, and accuracy of using
LS, ES and NLS approaches to fit simulated EIS data

SNR
(dB)

Approach
RΩ

(mΩ)
L

(nH)
RSEI

(mΩ)
CSEI

(F)
RCT

(mΩ)
CDL

(F)
σ

(×10−3)
m

Runtime
(sec)

MAE
(×10−4)

LS 34.1732 90.0059 6.5913 0.7001 20.2695 3.7199 5.9541 0.7955 0.8179 36
35 ES 34.1732 90.0059 5.6893 1.0318 17.6020 7.6356 5.1542 0.9546 132.5195 7.7635

NLS 34.1513 94.9926 5.8394 0.9940 17.9632 7.9505 4.9704 1.0083 2.4578 7.5761

LS 33.9115 89.3443 7.9729 0.8487 21.0450 4.4013 5.6291 0.8273 1.3832 37
40 ES 33.9115 89.3443 6.1266 0.9827 17.7220 8.1076 5.1341 0.9754 150.6105 4.3921

NLS 33.9639 91.2816 5.9986 0.9877 18.0590 7.9177 4.9947 1.0035 2.4566 4.2861

LS 34.0076 93.6538 7.6838 0.8704 21.0861 4.7606 5.0606 1.0132 0.8481 31
45 ES 34.0076 93.6538 5.9044 1.0078 18.3116 7.7674 4.9456 1.0025 133.6487 2.5021

NLS 34.0100 96.2899 5.8936 1.0074 17.9556 7.8518 5.0690 0.9891 2.0977 2.2978

LS 33.9983 93.1031 7.6353 0.9300 20.8236 4.6782 5.4055 0.8688 0.7761 32
50 ES 33.9983 93.1031 5.8671 1.0034 18.0840 7.6328 4.9885 1.0060 134.4532 1.6276

NLS 33.9979 93.9546 5.9664 1.0366 17.9481 7.9246 5.0128 0.9960 2.0583 1.3904

insufficient goodness of fitting, whereas ES and NLS approaches generally reach con-

siderable goodness of fitting. Table 2.2 shows that at any SNR, the computational

time of the LS approach is the fastest; however, the fitting accuracy MAE is the

lowest. On the contrary, the ES approach has the slowest computational time, but

the fitting accuracy is significantly improved compared with the LS approach. The

NLS approach reaches the lowest MAE and considerably faster computational time,

which only takes around two seconds to complete the EIS fitting. Furthermore, with

the SNR increasing, the MAE decreases.

As shown in Fig. 2.14a to Fig. 2.14d, it is clear that at any SNR, the percentage

error of the estimated RC components reaches the highest when using the LS approach

and reaches the lowest when using NLS approach, except for that the percentage error

of CSEI estimated at 50 dB is higher than that when using NLS approach; besides, at

any SNR, the percentage errors of estimated ECM parameters using NLS approach

are well below 5% showing significantly higher estimation accuracy compared with

ES and LS approaches.
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Figure 2.13: Fitting simulated EIS measurements via LS, ES, and NLS ap-
proaches at different SNR. (a) 35 dB. (b) 40 dB. (c) 45 dB. (d) 50 dB.

2.7.2 Estimation Results of ECM Parameters Using Real EIS

Data

We selected LG 18650 and Molicel 21700 Li-ion batteries to validate whether the LS,

ES, and NLS approaches show consistency in fitting real EIS data that are collected

at 90%, 50%, and 10% SOC.

Fig. 2.15a, 2.15b, and 2.15c show the fitted EIS of LG 18650 battery using LS,

ES, and NLS approaches; similarly, Fig. 2.15d, 2.15e, and 2.15f show the fitted EIS

of Molicel battery using same approaches. It can be observed that the LS approach

cannot fit the EIS data accurately in all cases; however, both ES and NLS approaches
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Figure 2.14: Percentage difference between true and estimated ECM pa-
rameters at different SNR. (a) 35 dB. (b) 40 dB. (c) 45 dB. (d) 50 dB.

show better goodness of fitting.

In Table 2.3, it can be observed that when fitting the LG battery’s EIS data, the

fitting accuracy of the ES approach is quite similar to that of the NLS approach,

but at any SOC level, the EIS approach shows slightly better goodness of fitting;

furthermore, comparing to the computational time, the ES approach considerably

slower, whereas the NLS approach only needs around 2 seconds to fit the EIS data.

Though the LS approach still shows the fastest computational time, the MAE is the

highest among all SOC levels. Additionally, in Table 2.4, the validation on the Molicel

battery shows consistent results.

2.8 Conclusion

This chapter presents the LS, ES, and NLS approaches to extract ECM parameters

through battery impedance measurements. Compared to the LS approach, the ES
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Figure 2.15: Fitting real EIS measurements of LG and Molicel batteries at
different SOC levels via LS, ES, and NLS approaches. (a) LG battery at 90%
SOC. (b) LG battery at 50% SOC. (c) LG battery at 10% SOC. (d) Molicel battery
at 90% SOC. (e) Molicel battery at 50% SOC. (f) Molicel battery at 10% SOC.
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Table 2.3: Estimated ECM parameters, computational time, and accuracy of using
LS, ES and NLS approaches to fit real EIS data collected from LG 18650 battery
while discharging

SOC
(%)

Approach
RΩ

(mΩ)
L

(nH)
RSEI

(mΩ)
CSEI

(F)
RCT

(mΩ)
CDL

(F)
σ

(×10−3)
m

Runtime
(sec)

MAE
(×10−4)

LS 33.3308 555.2298 4.8670 0.3253 4.1876 0.7179 1.9801 1.0186 0.729 16
90 ES 33.3308 555.2298 3.7399 0.3253 3.6366 2.1536 2.1423 0.9221 133.9269 4.8733

NLS 32.8162 544.9949 3.9102 0.1691 4.0532 1.9840 2.1418 0.8933 1.8634 3.9978

LS 33.3500 550.4295 3.9987 0.2971 3.0794 0.4795 1.5624 1.4540 0.7036 16
50 ES 33.3500 550.4295 2.6938 0.2971 2.6742 1.2366 1.6223 1.1632 131.8468 4.1756

NLS 33.1436 529.4929 2.8149 0.1890 2.8303 1.2932 1.5826 1.1364 1.7841 4.012

LS 33.7480 548.8295 6.3127 0.2972 14.3045 1.7628 2.8718 2.4868 0.7296 31
10 ES 33.7480 548.8295 6.6449 0.2972 18.4450 5.1029 2.6614 1.9894 133.3339 12

NLS 33.7766 593.9607 6.6475 0.2611 16.1871 5.2409 3.5550 1.3235 2.1813 9.3198

Table 2.4: Estimated ECM parameters, computational time, and accuracy of using
LS, ES and NLS approaches to fit real EIS data collected from Molicel 21700 battery
while discharging

SOC
(%)

Approach
RΩ

(mΩ)
L

(nH)
RSEI

(mΩ)
CSEI

(F)
RCT

(mΩ)
CDL

(F)
σ

(×10−3)
m

Runtime
(sec)

MAE
(×10−4)

LS 12.3167 128.0069 3.4751 0.1814 2.5873 0.3466 1.6716 0.3333 0.763 12
90 ES 12.3167 128.0069 2.3411 0.1814 2.9278 1.0399 1.8852 0.4000 137.6328 5.8928

NLS 12.1632 124.6571 2.5830 0.1318 2.9435 0.9523 1.7920 0.7169 1.8859 3.2337

LS 12.3167 128.0069 3.2931 0.1772 2.7962 0.3224 1.6401 0.5792 0.7237 15
50 ES 12.3167 128.0069 2.2185 0.1772 2.1339 0.8994 1.6279 0.6950 135.3571 2.7111

NLS 12.2259 126.3043 2.0331 0.1294 2.4749 0.7420 1.5924 0.8763 1.891 1.3862

LS 12.4444 129.6070 3.8936 0.1900 3.0673 0.3903 1.9573 1.5757 0.7366 12
10 ES 12.4444 129.6070 2.6230 0.1900 3.7937 1.1708 1.7966 1.3269 134.0528 3.3286

NLS 12.4349 126.2317 3.1777 0.1418 3.3352 1.9094 1.7361 1.3533 1.9071 2.7548

and NLS approach can extract ECM parameters more accurately. Furthermore, the

presented novel NLS approach is based on the Monte Carlo run to fit the AR-ECM

to the simulated and actual EIS measurements, which resulted in faster computation

time and higher accuracy. When fitting the simulated EIS data, both ES and NLS

approaches show considerably high accuracy when the SNR is low, and the fitting

accuracy improves as the SNR increases. In contrast, the LS approach shows insuffi-

cient goodness of fitting at any SNR level. When fitting the actual EIS measurements

collected from two different Li-ion batteries, the NLS approach still shows faster and

more accurate fitting performance than the ES approach; this result is consistent

with the validation in simulated EIS data. Though the ES approach shows accept-

able accuracy, the computational time is considerably longer than the NLS approach.

45



Therefore, among the three proposed approaches, the best option is to apply the

Monte-Carlo-based NLS approach to identify the ECM parameters through battery

EIS.
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Chapter 3

Thesis Conclusion

This thesis introduced the process of measuring battery impedance response and its

graphical representation; and, most importantly, using the presented LS, ES, and

NLS approaches to extract ECM parameters through battery impedance measure-

ments from simulation data and actual EIS data collected from LG 18650 and Molicel

21700 batteries. Compared to the LS approach, the ES and NLS approaches reveal

superior accuracy in ECM parameter extraction. Notably, the novel NLS approach

incorporates Monte Carlo simulations to fit the AR-ECM to simulated and actual

EIS measurements, resulting in faster computation time and higher accuracy. For

simulated EIS data, the ES and NLS approaches demonstrate remarkable accuracy

even under low signal-to-noise ratio (SNR) conditions, with improved fitting precision

as the SNR increases. Conversely, the LS approach fails to provide satisfactory fitting

quality across all SNR levels. When applied to actual EIS measurements collected

from the two different Li-ion batteries, the NLS approach consistently outperforms

the ES approach regarding both fitting speed and accuracy, corroborating the find-

ings from the validation via simulated EIS data. While the ES approach exhibits

acceptable accuracy, its computational time is significantly longer compared to the

NLS approach. Therefore, considering the results obtained from the three proposed

approaches, the Monte-Carlo-based NLS approach emerges as the optimal choice for
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identifying ECM parameters through battery EIS.

Future work

In future works, we will investigate deploying the NLS approach to the BMS board

combined with the rapid EIS measurement hardware to improve the accuracy and

computational time for ECM parameters estimation; the BMS can then adopt these

precisely estimated ECM parameters for more accurate online SOC/SOH estimation.
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