
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-14-2023

High Radix and Efficient Hardware Implementation of Modular High Radix and Efficient Hardware Implementation of Modular

Integer Multiplication for IoT Cryptosystems Integer Multiplication for IoT Cryptosystems

Fahimeh Pakzadalinodehi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Pakzadalinodehi, Fahimeh, "High Radix and Efficient Hardware Implementation of Modular Integer
Multiplication for IoT Cryptosystems" (2023). Electronic Theses and Dissertations. 9319.
https://scholar.uwindsor.ca/etd/9319

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholar.uwindsor.ca%2Fetd%2F9319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9319?utm_source=scholar.uwindsor.ca%2Fetd%2F9319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

High Radix and Efficient Hardware
Implementation of Modular Integer

Multiplication for IoT Cryptosystems

By

Fahimeh Pakzadalinodehi

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science
at the University of Windsor

Windsor, Ontario, Canada

2023

©2023 Fahimeh Pakzadalinodehi

High Radix and Efficient Hardware Implementation of Modular Integer

Multiplication for IoT Cryptosystems

by

Fahimeh Pakzadalinodehi

APPROVED BY:

I. Saini

School of Computer Science

M. Khalid

Department of Electrical and Computer Engineering

M. Mirhassani, Advisor

Department of Electrical and Computer Engineering

May 15, 2023

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

This thesis presents a new design for a radix-4 Montgomery Modular Multiplier

that is based on field-programmable gate array (FPGA) i mplementation. This work

is an improvement of the radix-4 Montgomery Modular Multiplier structure that

requires no multiplication or subtraction operations in the computation process, re-

sulting in a reduced critical path delay and increased maximum frequency. The

proposed Montgomery modular multiplication design was implemented on Virtex-7

FPGA platform. The final r esult s hows t hat t his work r uns o ne c omplete modular

multiplication for 256-bit operands, in 0.566 µs with maximum clock frequency of

256.5 MHz by consumption of 4534 number of lookup tables (LUTs). A key feature

that also distinguishes the proposed design from the related works is pertinent to

adoption of the Kogge-Stone Adder which enhanced the execution frequency and the

amount of final t hroughput o f d esign. T his e fficient des ign is com pact, mak ing it

suitable for systems with limited resources, like lightweight public-key cryptographic

and embedded devices in IoT.

IV

DEDICATION

I would like to dedicate this thesis to my country’s young deceased hero whose name

is indelibly imprinted in my mind:

Mahsa Amini,

And also to all the brave Iranian people who have sacrificed their lives towards

achieving FREEDOM!

V

ACKNOWLEDGEMENTS

My most profound appreciation goes to Professor. Mitra Mirhassani, my research

advisor, for her invaluable advice and continuous support during my M.A.Sc study.

She has been more than an academic advisor to me and no words can express my grat-

itude to her. Her wealth of experience and thought-provocative ideas have inspired

me in all the time of my academic research and daily life.

My indebted thanks are also extended to Dr. Alexander Leigh and Dr. Moslem

Heidarpur whose precious feedback, encouragement and technical assistance through-

out my research greatly influenced how I conducted my experiments. I could have not

undertaken this journey without their amazing technical guidance.

Last but not least, I’d like to thank my parents and my best friend, Morteza. It

would have been impossible to finish my studies without their unwavering support

over the past year.

VI

III

IV

V

VI

IX

X

XI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY

ABSTRACT

DEDICATION

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

1 Introduction 1
1.1 Cryptography in IoT . 2

1.1.1 IoT Technology . 2
1.1.2 Security Aspect of IoT . 3

1.2 Elliptic Curve Cryptography . 4
1.2.1 Principals of ECC . 5
1.2.2 Framework of ECC . 5

1.3 Montgomery Modular Multiplication 6
1.3.1 Background of Montgomery Modular Multiplication 10
1.3.2 Theory of Montgomery Modular Multiplication 10
1.3.3 Prerequisites for Montgomery Modular Multiplication 12
1.3.4 Efficient Montgomery Modular Multiplication Algorithm . . . 13

1.4 Thesis Organization . 15

2 Literature Review 16
2.1 Improving the Delay of an MMM through Algorithm modifications . 16

2.1.1 High-Radix Implementation of MMM 16
2.1.2 Feed-Forwarding Technique for MMM 18
2.1.3 Efficient Adder for MMM . 18
2.1.4 Hybrid Techniques for MMM 19

2.2 Importance of Adders in VLSI Application 20
2.2.1 Ripple Carry Adder . 20
2.2.2 Carry Look Ahead Adder . 21
2.2.3 Carry Save Adder . 22
2.2.4 Parallel-Prefix Adder . 24
2.2.5 Kogge-stone Adder . 25
2.2.6 Comparison of Adders’ Timing Performance 29

2.3 Motivation for Design of an Efficient Montgomery Modular Multiplier 30

VII

3 Baseline Implementations of Montgomery Modular Multiplier 32
3.1 Basic Radix-2 Montgomery Modular Multiplier 32
3.2 Improved Radix-2 Montgomery Modular Multiplier 35
3.3 Basic Radix-4 Montgomery Modular Multiplier 38
3.4 Discussion about Design of Radix-8 MMM 42
3.5 Radix-4 MMM with Ripple Carry Adder 43

4 Proposed Montgomery Modular Multiplier 45
4.1 Proposed Radix-4 MMM with KSA 45

4.1.1 Proposed Model for Addition in Radix-4 MMM 47
4.1.2 Proposed Model for Subtraction in Radix-4 MMM 48
4.1.3 Calculation of Inverse Multiplicative of A (Ā) 50

4.2 Experimental Results of the Proposed Radix-4 MMM with KSA . . . 50
4.3 Improvements of Proposed Radix-4 MMM with KSA 51

5 Discussion of Results and Comparisons with Previously Proposed
Designs 53
5.1 Comparison the Proposed Modular Multiplier with Related Works . 53

6 Conclusion and Future Works 57
6.1 Summary of Contribution . 57
6.2 Future Work . 58

6.2.1 Radix-4 MMM with 4-Stage KSA 58

REFERENCES 60

VITA AUCTORIS 66

VIII

LIST OF TABLES

1.1.1 Comparison of Related Works for IoT Security 4

2.2.1 Comparison of 4-bit Adders Implemented on Spartan 3E [47] 29

2.2.2 Comparison Table of 4-bit Adders Based on FPGA Implementation [45] 29

2.2.3 Comparison of 8-bit Adders Based on FPGA Implementation [45] . . 30

3.1.1 Basic MMM Synthesized Results on Kintex-7 34

3.2.1 Proposed Truth Table for Radix-2 MMM Algorithm 35

3.2.2 Opt-R2 MMM Synthesized Results on Kintex-7 37

3.3.1 Proposed Truth Table for Radix-4 MMM Algorithm 39

3.3.2 Basic-R4 MMM Synthesized Results on Kintex-7 41

3.5.1 Optimized R4 MMM Synthesized Results on Kintex-7 44

4.1.1 Table of XOR Function . 49

4.2.1 Synthesized Results of the Baselines and Proposed MMM 51

5.1.1 Comparison of Modular Multipliers implemented on Xilinx FPGA (

bit width of 256) . 54

IX

LIST OF FIGURES

1.1.1 IoT Architecture [9] . 3

1.2.1 ECC Telecommunication Model [20] 6

1.2.2 Framework of ECC system . 7

1.3.1 Modular Multiplication using Montgomery Algorithm [25] 8

2.2.1 4-bit Ripple Carry Ahead Adder [46] 21

2.2.2 4-bit Carry Look Ahead Adder [46] 23

2.2.3 An example of a 4-bit CSA function 23

2.2.4 4-bit Carry Save Adder [46] . 24

2.2.5 Organization of a Parallel Prefix Adder [45] 25

2.2.6 Schematic of a PPA [45] . 26

2.2.7 4-bit Kogge Stone Adder [47] . 27

2.2.8 A 4-bit Kogge-Stone Adder [47] . 28

3.1.1 Hardware Architecture of the 256-bit Basic Radix-2 MMM 35

3.3.1 Proposed Hardware Architecture for the 256-bit Basic Radix-4 MMM 42

4.1.1 Final Proposed 256-bit MMM Hardware Architecture 47

4.1.2 General Structure of a 4-bit Adder/Subtractor 49

X

LIST OF ABBREVIATIONS

IoT Internet of Things

ECC Elliptic Curve Cryptography

RSA Rivest-Shamir-Adleman

MMM Montgomery Modular Multiplier

R2 Radix-2

R4 Radix-4

RCA Ripple Carry Adder

CLA Carry Look Ahead Adder

CSA Carry Save Adder

KSA Kogge-Stone Adder

PPA Parallel Prefix Adder

FPGA Field Programmable Gate Arrays

ASIC Application-Specific Integrated Circuit

LUT LookUp Table

FF Flip-Flop

VLSI Very Large Scale Integration

FP Prime Field

Ep Elliptic Group

GCD Greatest Common Divisor

LSB Least Significant Bit

ModMul Modular Multiplication

XI

ALU Arithmetic Logic Unit

FSM Finite State Machine

DSP Digital Signal Processing

VHDL Very High-Speed Integrated Circuit Hardware Description Language

NIST National Institute of Standards and Technology

XII

CHAPTER 1

Introduction

Modular arithmetic operations (i.e., inversion, addition and multiplication) and specif-

ically modular multiplication are considered to be the core of various cryptography

applications such as Rivest-Shamir-Adleman (RSA) algorithm [1], Diffie-Hellman key

exchange algorithm [2], Elliptic Curve Cryptography[3] and the Digital Signature

Standard such as Elliptic Curve Digital Signature [4], to name a few.

Nowadays, due to the dramatic increase of secure communication demands globally,

nearly all applications that are related to the exchange of information will be inte-

grated into cryptographic algorithms. To efficiently operate the modular multiplica-

tion, the Montgomery Modular Multiplication (MMM) algorithm[5] has been widely

adopted over conventional modular arithmetic techniques. The conventional modular

arithmetic operations depend on time-consuming division operations, adding to the

total delay. In a MMM, addition and shift operations are used instead of divisions,

which are simpler for hardware implementation[6].

In order to prevent data tampering in cryptography, it is crucial to employ strong keys

that are randomly generated. It is also important to safeguard keys from unauthorized

access and implement robust security measures such as multi-factor authentication to

prevent unauthorized access to encrypted data. To meet this condition, a large-size

operand is generally used. For example, 256-bit operands are being used in ECC [7],

while other applications such as RSA employs up to 2048 or even more.

The Montgomery Modular Multiplication algorithm is subsumed under two categories

of fixed-precision and scalable [8] designs. The former applies fixed-size operands,

while arbitrary precision is being taken in the latter design. It is important to bal-

1

1. INTRODUCTION

ance the required area/resource and time delay in all these designs.

Although a low delay is preferable, most designs suffer from high area/resource and

convoluted logics. Consequently, striking a balance between delay and area/resource

seems crucially important to acquire a good modular multiplication performance.

This thesis presents a new implementation of radix-2 and radix-4 Montgomery Mod-

ular Multiplication for ECC applications. This work presents the hardware implemen-

tation and synthesized results using Kintex-7.This works’s main feature is optimizing

the classic MMM approach and mitigating its delay while simultaneously keeping the

low area/resource requirement.

In this chapter, some information regarding IoT and its correlation with Crypto-

graphic applications is outlined first. Then, Section 1.2 reviews the ECC algorithm,

while Montgomery Modular Multiplication will be surveyed comprehensively in Sec-

tion 1.3, followed by thesis organization in Section 1.4.

1.1 Cryptography in IoT

This section provides a brief survey of the Internet of Things (IoT), as wll as its

definition, functions and its correlation with cryptography.

1.1.1 IoT Technology

The Internet of Things is a chain of connected physical devices facilitating the commu-

nication and transmission of data over a public network. This technology is expected

to be the promising future of the next Internet era. In general, the term IoT stems

from the three following parts [9]:

• Thing Identification

• Thing Communication

• Thing Interaction

where the last term makes the pervasive computing environment. Also, the prevailing

IoT architectures are subsumed under the three following categories:

2

1. INTRODUCTION

Fig. 1.1.1: IoT Architecture [9]

• Physical layer (i.e., Perception layer)

• Network layer

• Application layer

The physical layer, which includes constrained and unconstrained devices, controls

fraction data for each object [10]. The second layer, the Network layer, transforms

the information from the physical layer like 4G, 3G, 2G, wireless, and fiber optic.

The last layer, which is the Application layer, should detect the application form that

will be used in IoT. Fig. 1.1.1 shows the IoT architecture.

1.1.2 Security Aspect of IoT

The IoT will be integral to human-connected life in the next decade. This emerging

technology will play a vital role in people’s lives and will deal with significantly

sensitive data. These data need proper integrity and security, which is an important

part of the network and needs to prevent unauthorized access. In this regard, Table

1.1.1 shows a few of the pertinent works used for protecting data transmission in IoT.

Due to featuring large key sizes, conventional cryptography algorithms, such as

3

1. INTRODUCTION

RSA, are not suitable alternatives for the security aspects of IoT. This is because

IoT devices are typically resource-constrained edge devices. However, Elliptic Curve

Cryptography (ECC) [11] can address this issue as a well-reputed solution for securing

IoT devices.

Reference Technique Advantage(s)

[12] C-CP Attribute-based Encryption Efficiency in Security

[13] BlowFish Algorithm on FPGA Reduction in Encryption Time

[14] Efficient CP-ABE/Key Management Reduction in Complexity

[15] No-Pairing ABE Technique Based on ECC Reduction in Processing and Communication Overheads

[16] FPGA-Based Implementation of ECC Reduction in Time and Memory

[17] Batch-BASED CP-ABE with Attribute Revocations Access Policy Changes between Two successive Time Slots

Table 1.1.1: Comparison of Related Works for IoT Security

1.2 Elliptic Curve Cryptography

The ECC has been widely established as an efficient cryptographic tool in embedded

systems, aiming to provide security strength for data. This asymmetric cryptographic

method has many advantages, such as short key sizes, fast computation process time,

and high security.

A 256-bit ECC key ensures the same security that a 3072-bit size RSA key provides

[18]. This simple comparison between these two cryptography algorithms illustrates

the efficiency of ECC over RSA. Meanwhile, ECC takes on low memory usage for

storing keys and, more importantly, employs fewer modular operations at a lower

cost than other cryptographic schemes.

However, ECC possesses complexity in its theory that confines its extensive ap-

plications in practice. Consequently, some solutions have been offered to dismiss the

complicated computation steps of ECC.

4

1. INTRODUCTION

1.2.1 Principals of ECC

Dated back in 1985, ECC was proposed by Koblitz and Miller [19]. An Elliptic Curve

is, in fact, the key set of the following equation:

y2 = x3 + ax+ b (mod p), Fp = 0, 1, 2, ..., p− 1 (1.2.1)

where p is a prime number greater than 3 and a, b ∈ Fp, and a and b are non-negative

integers smaller than prime number p.

Equation (1.2.1) is indicative of the general organization of the Weierstrass elliptic

curve [4] that is used in most ECC applications, such as suggested curves by the

National Institute of Standards and Technology (NIST) [4]. However, other general

structures of elliptic curves exist, such as the Montgomery curve [4] and the Edward

curve [4].

In order to use those elliptic curves that have no multiple roots, a and b need to

satisfy the following inequality:

4a3 + 27b2 ̸= 0 (mod p) (1.2.2)

An Elliptic Curve is written as Ep(a, b) or E(Fp).

1.2.2 Framework of ECC

The procedure in the ECC encryption is divided into three categories. The first is

the key generation, the second is the ECC encryption, and the last is related to ECC

decryption.

Fig. 1.2.1 points out the mentioned model. This model, along with the theory

of ECC, can culminate the framework of this method as shown in 1.2.1. It is also

divided into three different layers as follows [20]:

• Big Integer Layer: This layer is related to surveying arithmetic operations such

as addition, subtraction, multiplication, division, and modular arithmetic.

5

1. INTRODUCTION

Fig. 1.2.1: ECC Telecommunication Model [20]

• Point Operation Layer: This layer processes the fundamental operations in

ECC, such as point multiplication and point addition. It also realizes the mul-

tiplicative inverse.

• Application Layer: It determines the key generation, ECC encryption, and

decryption. This layer has the perk of alleviating the convoluted operations of

ECC and bringing users a more friendly interface in its train.

However, RSA and ECC need fast modular multiplication for 192 to 2048 bits num-

bers. In this respect, four modular multiplication algorithms have been well-surveyed

so far. The first one is the Classical algorithm; the second is the Barrett algorithm

[21], the third is the Montgomery algorithm, and the last one is related to the study

of the ZDN algorithm [22].

By comparing these algorithms, Montgomery’s modular multiplication algorithm

performs best for general modular multiplication [23]. What distinguishes this method

is that it casts modular multiplication without computing trial divisions or even inver-

sion. Moreover, this method stands out since it only employs addition, subtraction,

and right shift; all these operations are considered quite smooth for hardware imple-

mentation.

1.3 Montgomery Modular Multiplication

In order to precipitate the process of either encryption or decryption via public-key

cryptosystems, it seems vital to mitigate the number of performed modular multiplica-

6

1. INTRODUCTION

Fig. 1.2.2: Framework of ECC system

tions. To fulfil this, modular reduction algorithms such as Montgomery Multiplication

[24] have emerged to simplify this computational time requirement.

One method to address the speed and reduce delay is to increase the efficiency

of modular multiplication. The Montgomery Multiplication determines the product

of two integers modulo a third party without adopting a chain of divisions by the

modulus. As a result, it generates the reduced product using an order of additions

instead.

Montgomery Modular Multiplication generates the product of two integers, such

as X and Y, which are the multiplier and multiplicand, respectively, with n-bit size

in modulo with M as expressed below:

MMM(X, Y) = XY r−1 modM (1.3.1)

where r is an auxiliary modulus that is usually considered as r = 2n.

7

1. INTRODUCTION

Fig. 1.3.1: Modular Multiplication using Montgomery Algorithm [25]

To satisfy the Montgomery Multiplication prerequisite, r and M should be co-

prime. In other words, their greatest common divisor should yield 1 (i.e., gcd (M,r)

= 1). To meet this condition, M can be chosen as an odd integer, always co-prime, to

r as an even number. Moreover, r should be strictly larger than the current modulus

M , or M < 2n. In addition, either of the inputs, (X and Y) should be smaller than

M.

Inputs are converted to the Montgomery values as follows:

ā = ar mod M (1.3.2)

The final modular Multiplication over the Montgomery domain corresponding to

c, which is a product of a and b, is obtained as follows:

c̄ = cr mod M = MMM(ā, b̄) = abr mod M (1.3.3)

Fig. 1.3.1 indicates the process of Montgomerizing the inputs, as these are explained

below as well:

8

1. INTRODUCTION

1. Converting integer a to its Montgomery version:

ā = MMM(a, r2) = ar2r−1 modM = ar mod M (1.3.4)

2. Converting back from Montgomery to integer:

ā = MMM(ā, 1) = arr−1 modM = a modM (1.3.5)

It is worthwhile to note that the constant r2modM is a pre-computed factor that

is applied as shown in Fig. 1.3.1

Algorithm 1.3.1 Radix-2 Montgomery Modular Multiplication Algorithm (R2 −
MMM)

S := 0
for i := 0 to n− 1 do
return S = S + xi.Y
if S0 = 1 then
S := S +M

end if
S := S/2

end for
if S ≥ M then
S := S −M

end if

According to Algorithm 1.3.1, in each of its iterations, the Montgomery modular

multiplication method employs one single bit of X = (xn−1, ..., x1, x0), (i.e., xi).

This product, known as a partial product of multiplication, is stored in S. Then it

multiplies the outcome by Y .

The Montgomery modular multiplication algorithm consists of simple arithmetic

operations such as a division (right shift) and additions that can easily be implemented

in hardware. Next, it compares the LSB of S, (i.e., the least significant bit of S, S0);

if it equals 1, then MMM adds M to this result to make S0 zero (i.e., S0 = 0). Also,

a shift operation might be applied to this result to keep the product of S inside a

specific interval. At the last step, S might be in the range of [0 , 2M − 1]; therefore,

9

1. INTRODUCTION

a subtraction according to modulus M is performed.

Algorithm 1.3.1 depicts the basic concept of MMM. In the next section, a more

detailed review of MMM is provided.

1.3.1 Background of Montgomery Modular Multiplication

Dated back in 1985, in order to address the bottlenecks mentioned above of modular

multiplication, Peter Montgomery introduced his method [5]. In this method, the

algorithm calculates the product of u = a.b mod n, where a, b and n are in binary

representation form and are in the size of k bits.

The efficiency of this method is due to the adoption of an auxiliary modulus,

namely r, for the successive initial and final scaling, which is far less expensive than

the classic methods [26]. This auxiliary modulus is usually considered a power of 2

to simplify the arithmetic calculation in binary representation.

Montgomery Modular Multiplication can be easily implemented on signal proces-

sors or microprocessors, as these computers operate fast pace arithmetic modulo a

power of 2.

The MMM reduction method processes the result of u without performing any

divisions by n (i.e., modulus). Instead, it performs the division by the power of 2,

which can easily be achieved since the inputs are in binary representation. In the

previous section, the requirement to satisfy the conditions of the MMM algorithm

has been defined. Accordingly, as r is a power of 2, n should be an odd value to fulfil

the following condition:

gcd (r, n) = gcd (2k, n) = 1 (1.3.6)

1.3.2 Theory of Montgomery Modular Multiplication

Assuming that integer a < n, its Montgomery description or n-residue representation

form in accordance with r is as follows below:

ā = a.r mod n (1.3.7)

10

1. INTRODUCTION

According to 1.3.7, the following set includes all numbers in interval of 0 to n− 1

i.r mod n , 0 ≤ i ≤ n− 1 (1.3.8)

The Eq.1.3.8 is a complete residue system (while i is between 0 and n−1), since it has

a set of numbers that includes all the integers between 0 and n−1. The Montgomery

reduction algorithm utilizes a faster multiplication routine to compute the n-residue

of the product of two integers whose n-residues are given (ā and b̄).

Similar to the Montgomerized a, it is assumed that the Montgomerized value of

b can be obtained following the same process. Therefore, the MMM product can be

defined as below:

ū = ā.b̄.r−1 mod n (1.3.9)

where r−1 is defined as the multiplicative inverse of auxiliary modulus r modulo n.

This multiplicative inverse meets the following condition:

r−1.r = 1mod n (1.3.10)

Moreover, in the context of MMM, it is required to have another factor, namely n′

with the following condition [26]:

r.r−1 − n.n′ = 1 (1.3.11)

The multiplicative inverse of r, (i.e., r−1) as well as the factor n′ can be calculated

via the Euclidean algorithm [26].

The Montgomery reduction algorithm calculates the below term:

ū = ā.b̄.r−1 mod n, as shown in Algorithm 1.3.2.

Since r is a power of 2, multiplication modulo r and the division by r can be

executed quickly, which is the main attraction of the MMM. Previously, it was men-

tioned that the modulus n is an odd number, so the 1.3.2 can be rewritten as shown

in Algorithm 1.3.3. It determines the product (i.e., u) of a and b modulo n with n an

11

1. INTRODUCTION

Algorithm 1.3.2 MonPro(ā.b̄)

Step 1. t := ā.b̄
Step 2. m := t.n′ (mod r)
Step 3. ū := (t+m.n)/r
Step 4.
if ū ≥ n then
return ū− n

else
return ū

end if

odd number.

Algorithm 1.3.3 ModMul((a, b, n)

Step 1. Pre-computation of n′ using the extended Euclidean algorithm.
Step 2. ā := a.r (mod n)
Step 3. b̄ := b.r (mod n)
Step 4. ū := MonPro(ā.b̄)
Step 5. u := MonPro(ū.1)
return u

The Algorithm 1.3.3 can be simplified by considering the following feature accord-

ingly:

MonPro(ā, b̄) = (a.b).b.r−1 = a.b mod n (1.3.12)

Based on the above, the MonPro algorithm can be modified as shown in Algorithm

1.3.4.

Algorithm 1.3.4 ModMul((a, b, n)

Step 1. Pre-computation of n′ using the extended Euclidean algorithm.
Step 2. ā := a.r (mod n)
Step 3. ū := MonPro(ā.b)
return u

1.3.3 Prerequisites for Montgomery Modular Multiplication

In this part, to delve into the principles of the MMM algorithm, some preliminaries

will be defined as there is a need to assume that the modular multiplication will be

12

1. INTRODUCTION

run on words of w bits. Also, there are a, b and n that are considered to have s words

of w-bit size. Following this, the product of MMM of a and b modulo n is equal to:

abr−1 mod n, while r = 2sw (1.3.13)

According to the above, the computation of modular multiplication is performed word

by word. The advantage of this procedure over the classic modular multiplication is

mainly about adopting “addition” rather than “subtraction” of a multiple of n for

every single word of the multiplier reduction modulo n.

Furthermore, there is only one digit in charge of choosing this multiple. Another

perk of this method is related to division operation, which prioritized shifting up in

practice.

It is worth mentioning that, generally, U mod n, as a modular reduction, is per-

formed on a word-based procedure. It proceeds iteratively to take the leading digits

of either U and n and then acquire the relevant leading digits of the quotient. This

process consumes a remarkable number of clocks, and the processor also needs to wait

to propagate carries for each word before the following iteration happens.

1.3.4 Efficient Montgomery Modular Multiplication Algorithm

As previously discussed, Montgomery multiplication determines the following value:

MonPro(a, b) = a.b.r−1mod n (1.3.14)

Since r = 2k, MMM can be simplified as below:

MonPro(a, b) = a.b.2−kmod n (1.3.15)

It is also possible to modify MMM and turn it into a bit-level algorithm to calculate

the above amount, illustrated in Algorithm 1.3.5. As it is shown in the bit-level MMM

algorithm, in order to determine the modular multiplicative inverse value of A, the

13

1. INTRODUCTION

following should be done:

Ā = A.R (mod N) (1.3.16)

in which, K is the bit size of current modulus (i.e., N), while R = 2K .

Therefore, to adopt an integer to the power of two (i.e., R), to simplify this calcu-

lation, the Multiplication operation can be replaced by shifting to left and subtraction

operations in lieu. where ai indicates the ith bit via the binary representation form

Algorithm 1.3.5 Bit-Level Montgomery Modular Algorithm

Step 1. u := 0
Step 2.
for i = 0 to k − 1 do
Step 3. u := u+ ai.b
Step 4. u := u+ u0.n
Step 5. u := u/2
Step 6.
if u ≥ n then
return u− n
return u

end if
end for

of a, while u0 points out to the least significant bit of u.

The stage 5 always yields the exact division due to the nature of the modulus

(i.e., n), which is assumed to be an odd integer. This algorithm also dismisses any

pre-computations for the value of n′, as its progress is bit-by-bit. There is only a

need for the least significant bit of n′, which always equals 1. This stems from the

preliminary that has been considered for the modulus (i.e., n) that is set to be always

odd.

This algorithm can also be extended to the word level of MMM, in which there

is a need to assess the least significant word of w-bit sized no
′ of n′. This can be

computed as follows:

2k.2−k − n.n′ = 1 then − n0.n
′
0 = 1mod 2w (1.3.17)

From the above, it is concluded that n′
0 is up to −n′

0 mod 2w. This feature makes

14

1. INTRODUCTION

calculating via a look-up table or Euclidean algorithm feasible. In this case, 1 word

of w-bit size will be computed accordingly. The word level of MMM can be defined

as shown in Algorithm 1.3.6.

Algorithm 1.3.6 Word-Level Montgomery Modular Algorithm

Step 1. u := 0
Step 2.
for i = 0 to s− 1 do
Step 3. u := u+ ai.b
Step 4. u := u+ (−n−1

0).u0.n
Step 5. u := u/2w

Step 6.
if u ≥ n then
return u− n
return u

end if
end for

1.4 Thesis Organization

The remainder of this thesis is categorized into 5 chapters. Chapter 2 points out

the review of the related works for the hardware implementation of MMM. While

chapter 3 presents explanations regarding the baseline implementations of MMM.

The proposed Montgomery Modular Multiplier will be introduced in chapter 4. At

the same time, a comparison between the proposed MMM with other related works

is discussed in Chapter 5. Finally, this thesis will be concluded in chapter 6.

15

CHAPTER 2

Literature Review

In this chapter, a review of state-of-the-art works related to MMM is done. This

chapter mainly aims to determine an efficient MMM hardware architecture design

that provides a reasonable trade-off between area and delay.

2.1 Improving the Delay of an MMM through Al-

gorithm modifications

This section surveyed different approaches towards enhancing the performance of

MMM by mitigating the total number of clocks. This study will be mostly within the

framework of ECC.

2.1.1 High-Radix Implementation of MMM

As a significant design element, Area-Time Product (ATP) determines both latency

factors and area as a joint metric. Any increases in the radix for operating the partial

products of a specific modulus can lead to a decrease in the frequency of the combi-

national circuit, increasing its occupied area and the critical path accordingly.

In [27], a look-up table technique in MR-MMM (Multi-Radix Montgomery Modular

Multiplication) has been proposed to address the mentioned issue. This work miti-

gates the ATP metric while the radix is increasing. To prove their achievement, for

any modulus of bit size in the range of 256 to 4096 along with radices from 2 to 212,

the proposed hardware has been trialled on Virtex 6 and Virtex 7 FPGAs. Their

16

2. LITERATURE REVIEW

final result for a 256-bit size modulus via a radix-2 MMM indicates 146 MH of clock

frequency and the aggregate number of 257 clocks in 1.76 µs. It is also worth noting

that 1555 LUTs and 784 number of flip flops have been used in their design.

In [28], the author worked on a non-least positive form (i.e., NLP) based modular

multiplication method that boasts Karatsuba and school-book multiplication meth-

ods adopted in Montgomery Modular Multiplication. Under this hybrid approach,

256-bit and 512-bit modular multiplication are built with 3-way and 4-way NLP mul-

tipliers implemented on FPGA. Their final result was conducted on Virtex-6 FPGA

and showed a complete modular multiplication for a 256-bit size operand can be car-

ried out 62.6 ns and also employs 3.5K LUTs.

Although increasing the radices is considered efficient to accelerate the operation of

the MMM, it seems impractical, specifically in the low-bit calculation. To address this

problem, a new high-radix algorithm, namely Separated Iterative Digit-Digit Modu-

lar Multiplication (S-IDDMM) has been presented in [29]. The authors experimented

with the results for 256-bit and 512-bit size operands through the radix-32 and radix-

64 MMM. Compared to [28], this work proved to be more flexible in various radices

and obtained a better ATP factor.

In [30], a hardware implementation of modular multiplication within the framework

of ECC is introduced. Their research shows that this design on Xilinx Virtex 7 takes

about 1.683µs to process one 256-bit modular multiplication. In this work, they also

compared radix-2 and radix-4 of MMM. As expected, their results show that for a

256-bit operand, radix-4 is prioritized to Radix-2 regarding the tally number of clocks,

while the former needs more area than the latter one. As another efficient implemen-

tation of radix-2 MMM, [31] applies parallel multipliers, which remarkably speeds up

the modular multiplication. Their final results imported to the Artix-7 shows that a

frequency of 441.38 MHz to run a modular multiplication.

Additionally, there is another Xilinx Virtex-6 FPGA implementation with an en-

hanced rate of efficiency and less occupied area, which is elaborated in [32]. Their de-

sign can run one complete modular multiplication in 1.46µs for 256-bit size operands.

In [33] the proposed 256-bit modular multiplier on Virtex-6 FPGA runs a modular

17

2. LITERATURE REVIEW

multiplication in 1.79µs by consuming 1104 number of LUTs.

The work in [34] is a modular multiplier that mainly aims at reducing the utiliza-

tion area compared to other works. Their final results indicate that their modified

interleaved multiplier computes one complete 256-bit modular multiplication with

160.7 MHz in 257 cycles.

In [35], for a radix-2 Montgomery modular multiplier, the final synthesized results

show the execution frequency of 122.8. The whole process of modular multiplication

takes place in 2440µs.

2.1.2 Feed-Forwarding Technique for MMM

Feed-forward scalable MMM generally relates to transforming the least significant bit

of (i + 1)th word in j-th iteration to the i-th word of j-th iteration. This method is

considered another promising alternative among low-latency Montgomery multipliers

due to its algorithm and hardware structure simplicity.

Although high radix MMM designs apply more bit forwarding, they suffer from

the more convoluted logic with PEs. In [36], a radix-4 design is presented by adopting

double Booth-encoding for multiplier digits, its quotient, and pre-computation fac-

tors. Their FPGA implementation indicates that with 32 PEs and a word of 16-bit

size, one 1024-bit modular multiplication is run in 149 MHz and takes 1130 in 7.58µ

s. Since ECC key sizes are 163, 256, 384 and 512 bits, this work applies to 1024-bit

operands in the RSA cryptography method.

2.1.3 Efficient Adder for MMM

In most of the previous MMM hardware implementations, a pair of adders have been

applied to execute the additions of the algorithm in their architecture. For example,

in [37], the standard implementation of MMM exerts a couple of two-input adders to

perform 2 additions per iteration.

In this regard, the novelty of [38] is to adopt one single ternary adder (i.e., three

inputs) instead of two in their implementation. They targeted to examine only Radix-

18

2. LITERATURE REVIEW

2 multiplication for five NIST recommended-operand fields for ECC on Virtex-7.

Their final results show that for a 256-bit size modulus, they achieved 271.29 MHz in

0.94 µs and 955 number of LUTs usage.

2.1.4 Hybrid Techniques for MMM

A new design and implementation of Montgomery Modular multiplication is intro-

duced in [39]. In this work, a combinational four-stage pipelined Montgomery mod-

ular multiplication based on the KO-3 for 256-bit size operands is designed. Their

synthesized results prove that their Virtex-6 based implementation can be operated

at a 68 MH rate of the clock along with a 187.9k number of LUTs.

Another hybrid approach to port Montgomery modular multiplication on FPGA

has been conducted in [40]. In this research, a 256-bit multiplier with pipelined tech-

nique tested on Altera Cyclone 3 showed the performance of 30.38 MHz as maximum

frequency. In this architecture, finishing a complete modular multiplication takes

place in about 0.1µs. In order to accelerate this process, the authors took advantage

of the Karatsuba-Ofman algorithm [41] to decrease the number of total multipliers

in the embedded device as well.

Under the category of hybrid approaches towards MMM implementation, [42]

used a cross between Knuth [43] and Karatsuba multiplication algorithms in various

parts of their architecture to compute a 256-bit operand in four-level recursions.

They tested the result on Virtex-6 and acquired 197.746 MHz frequency for a full

multiplication while using 16850 number of LUTs for a 256 bit width of operands.

They also attempted to reduce their architecture’s critical path by optimizing the

adders’ performance. In this respect, they adopted carry-save adders and carry-select

adders to enhance the performance of the hardware.

19

2. LITERATURE REVIEW

2.2 Importance of Adders in VLSI Application

The digital adder is a widely used component in various electrical circuits. Adders

generally play a significant role in the context of VLSI applications [44]. They are

the cornerstone of an ALU, which operates arithmetic and logic assessments [45].

This review aims to conclude the most efficient design for the adder used in the

Montgomery Modular Multiplier proposed design, which will be explained in the

next chapter. In this section, there will be an outline of analyzing the performance

of various adders, such as Ripple Carry Adder [46], Carry Look Ahead Adder [46],

Carry Save Adder [46], and Kogge Stone Adder [47]. This comparative evaluation

will be carried out according to their three elements in terms of area, speed and

memory. The addition function of a specific number of bits is an inclusive operation

to pare down the convolution of a circuit’s arithmetic calculation. From the hardware

point of view, it also decreases the number of transistors and the utilized hardware

area. In general, to enhance the efficiency of a circuit’s performance, choosing the

most appropriate adder featuring essential properties seems vital.

The mentioned efficiency is summarized via low consumption and dissipation of

power, low area usage [46], and demonstrating high speed [48]. All these characteris-

tics can not be fulfilled via one adder. Therefore, their features should be over-viewed

first to choose the best key adder for a design. In this respect, there will be a quick

survey through the rest of this part regarding the function of 4-bit adders that are

mostly used in the hardware architecture of the previously mentioned MMM state of

the arts. At the end of this review, the most efficient adder structure will be chosen

accordingly.

2.2.1 Ripple Carry Adder

A Ripple Carry Adder (RCA) structure includes blocks of Full Adders that are linked

to each other in cascade mode. The output of each full adder block is considered the

input of the next full adder block [44]. Similarly, the carry-out of each full adder

is the carry-in of the subsequent adder. According to the procedure of RCA that

20

2. LITERATURE REVIEW

Fig. 2.2.1: 4-bit Ripple Carry Ahead Adder [46]

has been elaborated, its carry bits get waved during an execution of a full addition.

However, the main drawback of an RCA is related to its delay, which corresponds to

its bit number. As the bit numbers increase, the delay and the carriers’ propagation

accordingly are enhanced. To delve into the function of an RCA, A and B are assumed

to be the operands that the addition operation applies, while the final result is stored

in S as Sum and C as Carry. The relevant equation for an RCA works as below:

S = A xor B xor Cin (2.2.1)

Cout = AB +BCin + ACin (2.2.2)

The circuit diagram of the RCA is illustrated in Fig. 2.2.1.

2.2.2 Carry Look Ahead Adder

As mentioned, RCA suffers from a long delay, especially when dealing with large

bit-size integers. To address this concerning issue, Carry Look Ahead adder [46]

has arisen. Carry look-ahead adders determine the carry according to the input

values beforehand [44]. The carry signals are determined by carry-generate and

carry-propagate signals irrespective of input carry in the intermediate step [46]. The

21

2. LITERATURE REVIEW

carry-propagate, carry-generate, sum and carry-out signals, indicated as P , G, Si and

Ci+1 respectively, are obtained as follows:

Pi = Ai xor Bi (2.2.3)

Gi = Ai and Bi (2.2.4)

Si = Pi xor Ci−1 (2.2.5)

Ci+1 = Gi or (Pi and Ci) = Gi + (Pi Ci) (2.2.6)

This feature accelerates the process of calculation compared to ripple carry adders.

However, the main disadvantage of carry look-ahead adders is related to the complex-

ity of the logic blocks when dealing with more than 4 bits input. The circuit diagram

of the carry look-ahead adder is shown in Fig. 2.2.2.

2.2.3 Carry Save Adder

Unlike the two mentioned adders in previous sections, Carry Save Adders do not

shift the intermediate carries to the next addition step [46]. In other words, by

using a full adder, they keep the carry and then add it to the sum of the next stage.

The general structure of an n-bit carry save adder consists of n-bit independent full

adders [44]. Through a CSA, n-bit integers are fed and summed up to produce a

2-bit output, including sum and carry. As an example, Fig. 2.2.3 shows a carry save

adder works. Additionally, Fig. 2.2.4 depicts the diagram of a carry save adder’s

structure. This picture shows that a 4-bit carry save adder takes 3 operands, namely

A, B and Z. The last operand (i.e., Z) is a 4-bit input carry. Through 4 full adders

(the number of full adders is equivalent to the bit size of operands that here is equal

to 4), the corresponding 4 bits of each three operands are summed up. Each full

adder produces its subsequent sum and carry. The carry will not be shifted to the

next full adder, but it is saved and then, by adopting a ripple carry adder, will be

summed up to the next sum. The total delay is the delay of RCA and the delay of full

22

2. LITERATURE REVIEW

Fig. 2.2.2: 4-bit Carry Look Ahead Adder [46]

Fig. 2.2.3: An example of a 4-bit CSA function

23

2. LITERATURE REVIEW

Fig. 2.2.4: 4-bit Carry Save Adder [46]

adders, which is remarkably low. So far, three adders from the family of serial adders

have been surveyed. According to the survey related to MMM works, Montgomery

modular multipliers took advantage of these serial adders that apply serial adding

implementation. Through this procedure, data is assessed bit by bit. This eventually

leads to increasing the complexity of the design [46]. To resolve this issue, Parallel

Prefix Adders [45] have been proposed. What stands them out compared to the

serial adders is due to the internal generation and propagation of carry as an extra

operation which speeds up the performance of the adder.

2.2.4 Parallel-Prefix Adder

A Parallel Prefix adder [45] performs addition in parallel. To fulfil this, three critical

stages should be carried out as expressed below:

1. Pre-Processing: In this step, carry generation and carry propagation are

determined according to the bit size of input operands.

2. Carry Graph: In this part, all the carry signals are computed in parallel.

3. Post-Processing: The final result of the summation of inputs is assessed

24

2. LITERATURE REVIEW

Fig. 2.2.5: Organization of a Parallel Prefix Adder [45]

through this step.

All the three mentioned steps are shown in Fig. 2.2.5. The relevant arithmetic

calculation of each three steps will be elaborated on next chapter. Moreover, The

Schematic of a Parallel-Prefix Adder is shown in Fig. 2.2.6. The following section

will explain the evaluation of Kogge-Stone Adder as a branch of the Parallel Prefix

Adder family.

2.2.5 Kogge-stone Adder

The Kogge Stone Adder [45] is subsumed under the category of parallel prefix form

of the Carry Look-Ahead Adder family and is mainly known to be the fastest adder

to perform arithmetic circuits [46].

25

2. LITERATURE REVIEW

Fig. 2.2.6: Schematic of a PPA [45]

This adder type significantly reduces the circuit’s delay time and is highly adopted

in industrial applications that require high-performance operations [46]. Its diagrams

are depicted in Fig. 2.2.7 and 2.2.8. The related calculations of this adder are

performed via the 3 following steps.

1. Pre-processing step

This step generates G and P by employing n-bit full adders via a n-bit Kogge-Stone

adder, while the input carry is considered 0. In other words, step 1 is used to assess,

generate and propagate P and G signals per each bits of input operands, namely A

and B as follows:

Pi = Ai xor Bi (2.2.7)

Gi = Ai and Bi (2.2.8)

2. Carry Generation Step

This step determines the carries comparable to each bit of operands in a parallel struc-

ture. Through this stage, both carry propagation and carry generation are taken as

intermediate signals that are concluded through the following equations, respectively

26

2. LITERATURE REVIEW

Fig. 2.2.7: 4-bit Kogge Stone Adder [47]

[45]:

CPi:j = Pi:K+1 and PK:j (2.2.9)

CGi:j
= Gi:K+1 or (Pi:K+1 and GK:j) (2.2.10)

3. Post Processing Step

Through this last stage, the result of the final summation is yielded as follows:

Ci−1 = (Pi and Cin) or Gi (2.2.11)

Si = Pi xor (Ci−1) (2.2.12)

The summation bits are calculated according to the first step’s result and the gen-

erated terms. However, despite having a high speed performance, this adder still

consumes a large area of hardware implementation and a complex routing intercon-

nects.

27

2. LITERATURE REVIEW

Fig. 2.2.8: A 4-bit Kogge-Stone Adder [47]

28

2. LITERATURE REVIEW

2.2.6 Comparison of Adders’ Timing Performance

According to the investigated experiments conducted in [47], to determine the various

properties of different adders, all 4-bit adders mentioned earlier have been synthesized

and simulated through Xilinx synthesis and simulation tools, respectively.

The synthesis and simulation reported the utilized area, the aggregate number of

used slices in FPGA as well as the total time of execution as the indicator of adder’s

speed. This comparative evaluation for each 4-bit adder is shown in Table 2.2.1 and

2.2.2. Also, another assessment for 8-bit input adders are shown in Table 2.2.3.

Type of Adder Bit-length No. of Slices Operation Time (ns)

Ripple Carry Adder 4 4 8.959

Carry Look Ahead Adder 4 4 8.920

Carry Save Adder 4 8 9.196

Kogge Stone Adder 4 4 7.820

Table 2.2.1: Comparison of 4-bit Adders Implemented on Spartan 3E [47]

Parameters RCA CLA CSA KSA

LUTs 8 40 30 9

Slices 6 22 18 5

IOBs 14 28 50 15

Delay (ns) 8.959 12.344 12.699 7.963

Table 2.2.2: Comparison Table of 4-bit Adders Based on FPGA Implementation [45]

According to the Tables 2.2.1 to 2.2.3, a 4-bit Kogge-Stone adder is well-suited

in terms of delays and use of memory, while a 4-bit Carry Look Ahead adder is

reasonable in the matter of area usage (i.e., LUTs, Slice).

Moreover, the performance survey from Fig. 2.2.3 indicates that a 4-bit Kogge-

Stone adder demonstrated the fastest performance among all others. Also, from the

29

2. LITERATURE REVIEW

Parameters RCA CLA CSA KSA

LUTs 16 17 30 25

Slices 12 9 18 13

IOBs 26 16 50 26

Delay (ns) 13.20 12.344 12.699 9.123

Table 2.2.3: Comparison of 8-bit Adders Based on FPGA Implementation [45]

comparison review, shown in Table 2.2.1, it is obvious that a 4-bit Ripple Carry adder

takes up smaller area compared to other adders, while its execution time is longer

than theirs.

Regarding a 4-bit Carry Look Ahead adder, its delays is smaller than a Ripple

Carry adder, while they both occupy the same area in hardware. On the other hand,

a 4-bit Carry Save adder, does not have a promising performance in terms of time

and area compared to the other adders.

Finally, a 4-bit Kogge-Stone adder proved to be the fastest one with the lowest

delay among all the other adders. It also consumes the same area utilization similar

to a 4-bit Ripple Carry adder. Therefore, it can be concluded that the most effective

performance can be acquired through the Kogge-Stone adder.

2.3 Motivation for Design of an Efficient Mont-

gomery Modular Multiplier

The work in [49] describes the analysis of various bit-lengths of MMM to compare

its performance in terms of delay timing and area.

According to their experimental result, the higher the bit size are, the more delay

and area will be yielded. Therefore, it seems important to balance the time and area

used in the new design to enhance the performance of MMM. Moreover, according to

the previous section that is related to reviewing the state of the arts, nearly all of the

30

2. LITERATURE REVIEW

multipliers adopted carry ripple adder, carry save adder and carry look ahead adders

for the addition part of MMM.

All these adders, however, are classified as serial adders which proceed bit by bit

via their serial adding structure; this implementation makes the whole system more

tangled accordingly [50].

In order to address this issue and improve the addition section of the Montgomery

Modular Multiplication method, parallel prefix adder, and in specific Kogge-Stone

Adder features higher speed compared to the other mentioned serial adders due to

the internally adoption of carry propagation and carry generation to run the addition

operation; this feature increases the speed of the modular multiplier as a result [51].

Consequently, Kogge-Stone Adder is selected to run the addition part of the proposed

modular multiplier of this thesis.

On the other hand, another efficient way to mitigate the number of clock cycles in

MMM is to enhance its operands’ radices [52]. For accelerating MMM execution speed

in the context of ECC, this project started designing and synthesising MMM from

radix-2 and then proceeded with higher radices to figure out which radix is the most

efficient one to speed up the performance of ECC processors in resource-constraint

devices of IoT.

Another improvement scheme is related to the last step of MMM algorithm; this

stage is pertinent to run a subtraction in accordance with modulus. There have been

some proposed methods such as Walter algorithm [53], to dismiss this step. However,

through this thesis, in order to tackle the problem of final subtraction in MMM

algorithm which takes further clocks, and also, to simplify the hardware architecture,

the adopted Kogge-Stone adder plays as a subtracter. Finally, the implementation is

ported to Kintex-7 FPGA to verify the successfully synthesised results.

31

CHAPTER 3

Baseline Implementations of

Montgomery Modular Multiplier

This Chapter explains baseline implementations of MMM. The basic radix-2 MMM,

the improved radix-2 MMM, the basic radix-4 MMM, and the improved radix-4 MMM

design with RCA will also be elaborated in this chapter. The feasibility of applying

higher radice such as radix-8 in the proposed modular multiplier is also surveyed.

This Chapter mainly aims to use these four implementations as the baselines for

comparison with the proposed MMM design.

3.1 Basic Radix-2 Montgomery Modular Multiplier

As it has been presented in Chapter 1, it is required to calculate the value of U as

the modular multiplication based as follows:

U = A . B mod N (3.1.1)

where N is an odd integer.

To determine this modular multiplication through MMM according to Chapter 1,

the first step is to determine the Ā according to the Eq. (1.3.15). Then, there are

three consecutive iterations, including addition, multiplication, and division opera-

tions from steps 3 to 5 in Algorithm 1.3.5. A subtraction operation is needed, if the

final result of division in step 5 of Algorithm 1.3.5 is bigger than the modulus N .

32

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

For this basic radix-2 MMM design, a generic parameter, namely data−width, has

been defined in its related VHDL codes, equal to the input and output bit size. There

is also a signal called state to run the FSM of design. VHDL codes for the mentioned

FSM have been written using the if and case conditional commands. Command of

if surveys the reset status of the module. When the reset is activated, all the signals

are initialized accordingly. Otherwise, FSM starts to work under the command of

case.

In the states of 1, 2 and 3, the calculation of Ā according to Eq. (1.3.15 is carried

out. To fulfil this stage, 2 multiplexers with selection signals of Sel1 and Sel2, a

subtractor and flip-flops to the number of data− width are used.

In order to conduct the operation of final subtraction in the Algorithm 1.3.5, a

comparison between local signal, namely A1 and N is controlled by the multiplexers.

If A1 is smaller than N , the final subtraction will not happen.

To run the stages 3 to 5 in Algorithm 1.3.5, FSM runs the states 0011, 0100 and

0101, subsequently. Each iteration will be run to the bit size of data − width. In

order to compute these states, 2 multiplexers, one adder and flip-flops to the bit size

of data−width have also been used. The addition operation of this adopted adder is

controlled by the multiplexers that determine which signals should be added in the

relevant states of FSM. Also, the final division is done by running one shift to the

right.

In state 1100 of FSM, the value of temp3, which is equal to the parameter u

in algorithm 1.3.5, should be determined according to the signal Sel3. Finally, the

previously produced signal is transferred to the output in state 0111. Then the

signal Rdy turns to logic 1, which this status is indicative of one completed modular

multiplication.

A VHDL code has also been written to simulate and synthesize the main code

for basic MMM. One clock is consumed through this test bench code to initialize all

signals. In the following, data− width+ 1 clocks are used to calculate Ā.

Moreover, states 0011, 0100 and 0101 are iterated to the bit size of data−width,

33

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

individually. In the final step, output signals will be valued in states 6 and 7. Con-

sequently, The total number of clock cycles for a 256-bit multiplier is determined via

Eq. (3.1.1).

Number of Clock Cycles = Nclk = 1 + 1 ∗ 256 + 1 + 3 ∗ 256 + 2 = 1028 (3.1.2)

Accordingly, the time for one complete modular multiplication is acquired through

the Eq. (3.1.3) It should be noted that 25ns takes to activate the signal reset. Also,

the clock period has been set to 10ns in its simulation file on Xilinx Vivado.

Time of Simulation = Nclk ∗ Tclk + 25 ns = 10280 + 25 = 10305 ns (3.1.3)

Additionally, for 256-bit size operands, it takes 7.424µs with an execution frequency

of 138.466MHz to run one complete modular multiplication via this implementation.

Moreover, the adder used through this implementation is the default CLA adder in

Xilinx Vivado.

Table 3.1.1 shows the implemented results for various length-width of the basic

radix-2 MMM. Besides, the hardware architecture for the 256-bit size basic radix-2

MMM Generic (bit) Radix Frequency (MHz) Time (µs) LUT(s) DSP(s) Clocks

1 Basic 4 2 309.023 0.064 61 0 20

2 Basic 8 2 273.224 0.131 110 0 36

3 Basic 16 2 263.019 0.258 184 0 68

4 Basic 32 2 247.709 0.532 336 0 132

5 Basic 64 2 223.514 1.163 607 0 260

6 Basic 128 2 184.026 2.803 1179 0 516

7 Basic 256 2 138.466 7.424 2462 0 1028

Table 3.1.1: Basic MMM Synthesized Results on Kintex-7

MMM is also shown in Fig. 3.1.1

34

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

Fig. 3.1.1: Hardware Architecture of the 256-bit Basic Radix-2 MMM

3.2 Improved Radix-2 Montgomery Modular Mul-

tiplier

This Section aims to decrease the tally number of clock cycles for the basic radix-2

MMM. To fulfill this, a truth table is developed that helps to dismiss the operation

of multiplication of steps 3 and 4 of Algorithm 1.3.5. In this case, steps 3 to 4 are

consolidated in only one step, as shown in Table 3.2.1. As indicated in Table 3.2.1,

ai b0 u0 Operation

0 0 0 u = u + 0

0 0 1 u = u + n

0 1 0 u = u + 0

0 1 1 u = u + n

1 0 0 u = u + b

1 0 1 u = u + n+ b

1 1 0 u = u + n+ b

1 1 1 u = u + b

Table 3.2.1: Proposed Truth Table for Radix-2 MMM Algorithm

35

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

ai represents ith index of input A, while b0 and u0 are the least significant bits of B

and U according to the Eq. (3.1.1) and Algorithm 1.3.5, respectively.

These inputs mainly form the frame of the proposed truth table for the improved

radix-2 MMM. According to this table, the outputs of steps 3 to 4 in Algorithm 1.3.5

are 4 values of 0, n, b and n+ b. From the hardware point of view, these 4 values can

be controlled by a 4 : 1 multiplexer.

There is also a 2 : 1 multiplexer to control performing division operations pertinent

to the step 5 of the radix-2 MMM algorithm. FSM controls all signals of the mentioned

multiplexers. The same as the basic radix-2 MMM, the first three statuses of FSM

are assigned to calculate Ā.

The term Ā is stored in signal Reg1. To proceed bit by bit of Reg1, signal

Counter1 has been defined that increases to the size of data-width. Then, based on

the command of signal Sel from the 4:1 MUX, each value of 0, n, b and n + b is

determined and will be stored in Temp2.

Another signal, namely Sel3, comes from 2:1 MUX to control the division oper-

ation in step 5 of Algorithm 1.3.5. When this signal is activated (Sel3 = 1) by the

FSM, the value of u in algorithm 1.3.5 is shifted to the right and will be stored in

signal Temp1. The output addition of Temp1 and Temp2 will be stored in signal

Temp3.

Also, to determine the ui, b0 and u0, signal Cnd has been defined. This signal is

based on the concatenation of Reg1(Counter1), least significant bit of B and Reg2(1),

respectively. The Cnd shapes the value of u based on Table 3.2.1.

There is also a new signal named L− nplusb. When activated, the value of n+ b

is determined and stored in the register nplusb.

In the next step, the value of Temp2 is compared to the modulus N . If Temp2 is

bigger than the N , signal Sel4 turns to logic 1 to run the subtraction. Otherwise, it

remains as 0.

Finally, in status 1000, the output is stored in signal Temp and signal Rdy turns

to 1 which is indicative of running of one complete modular multiplication.

36

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

The total number of clocks for a 256-bit size improved radix-2 MMM is obtained

as below:

Number of Clock Cycles = Nclk = 1 + 1 ∗ 256 + 1 + 1 ∗ 256 + 2 = 516 (3.2.1)

Furthermore, for 256-bit size operands, it takes 4.663µs with an execution frequency

of 110.432MHz to run one complete modular multiplication via this implementation

scheme. Besides, the adder used through this implementation is still the default CLA

adder in Xilinx Vivado. Table 3.2.2 shows the implementation results for various

length-width of the improved radix-2 MMM (Opt-R2).

MMM Generic (bit) Radix Frequency (MHz) Time (µs) LUT(s) DSP(s) Clocks

1 Opt-R2 4 2 309.598 0.035 47 0 11

2 Opt-R2 8 2 262.467 0.072 80 0 19

3 Opt-R2 16 2 234.797 0.149 141 0 35

4 Opt-R2 32 2 230.150 0.291 276 0 67

5 Opt-R2 64 2 192.234 0.681 497 0 131

6 Opt-R2 128 2 162.470 1.594 969 0 259

7 Opt-R2 256 2 110.432 4.663 2462 0 516

Table 3.2.2: Opt-R2 MMM Synthesized Results on Kintex-7

Through the improved radix-2 MMM design, we could decrease the number of

clock cycles compared to the basic radix-2 MMM. The improved radix-2 MMM helps

to run one complete modular multiplication with lower latency than the basic radix-2

MMM.

As shown in Eq. (3.2.1), the number of aggregate clocks has decreased by 49%

compared with the previous scheme of basic radix-2 MMM. However, this design’s

timing performance can still be improved.

37

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

3.3 Basic Radix-4 Montgomery Modular Multiplier

As discussed in Chapter 2, one of the efficient ways to speed up the basic MMM

execution frequency is enhancing its radices. The related pseudo code for high radix

MMM is shown in Algorithm 1.3.6. In this scheme, 2w represents the numeric value

of a specific radix. For instance, setting w = 1, 2, 3 yields radices of 2, 4 and 8,

respectively.

In order to proceed with higher radices of MMM algorithm within the framework

of ECC cryptographic method, radix-2 initially was set. Evaluation of its ensued

results led to the implementation of radix-4 that will be discussed in this Section.

The same as Radix-2, a similar truth table is proposed for the basic radix-4 MMM

based on 1.3.6.

This will simplify the steps 3 to 4 of the Montgomery modular algorithm, while w

is set to 2. Table 3.3.1 shows the relevant truth table for the proposed radix-4 MMM

algorithm based on the ith bit of a, least significant bits of u and b, subsequently.

Also, similar to the previous Section, ai represents ith index of input a, while u0

and b0 are the least significant bits of u and b, respectively. According to Table 3.3.1,

it is required to produce 16 combinations of n and b. To do this, 16 registers have

been used. Therefore, two 4-bit addresses were required to write and read into the

selected register. There is also a 4 : 1 MUX to produce values of n, b and control the

final division (shift 2 bits to the right) in Algorithm 1.3.6. Finally, an accumulator is

used to store the final output. All these components are run under the command of

unit control (FSM).

There is a generic parameter called data−width in the entity, which helps initiate

various length bits of input operands. The same as sections 3.1 and 3.2, A, B and N

are the inputs to the bit size of ”data-width”.

There are also four clocked processes with positive-edge-triggered flip-flop for pro-

ducing Ā, running either write or read operations on each 16 register files as well as

conducting the simultaneous addition in step 3 and 4 of Algorithm 1.3.6, producing

the variable counter that increase to the size of data− width and finally for running

38

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

ai n−1
0 (u0 + aib0) Operation

00 00 u = u + 0

00 01 u = u + n

00 10 u = u + 2n

00 11 u = u + 3n

01 00 u = u + b

01 01 u = u + n+ b

01 10 u = u + b+ 2n

01 11 u = u + b+ 3n

10 00 u = u + 2b

10 01 u = u + 2b+ n

10 10 u = u + 2b + 2n

10 11 u = u + 2b + 3n

11 00 u = u + 3b

11 01 u = u + 3b+ n

11 10 u = u + 3b+ 2n

11 11 u = u + 3b + 3n

Table 3.3.1: Proposed Truth Table for Radix-4 MMM Algorithm

39

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

the case and if statements of FSM.

Through the basic radix-4 MMM, the first three states of FSM create the Ā, while

only 0 is written in the first register. Producing Ā consumes the data−width of clocks

and is then stored in Reg1. From state 00010 to state 10000, 16 various combinations

of b, n, 2b, b+n, 2b+n, b+2n, 2n, 2b+2n, b+3n, 2b+3n, 3b+n, 3b+2n, 3b+3n,

3n and 3b are read and written on the 16 registers, respectively. Each of the registers

is to the bit size of (data−width+ 4). This bit extension is due to the multiple 3 of

n and b in Table 3.3.1, which can cause overflow in the modular multiplication.

The process of reading and writing happens by the use of signals Cnd1, Cnd2 and

Cnd3, that have bits of A, 2 least significant bits of B and the multiplication of n−1
o

by (u0 = aib0) via 15 clock cycles. Also, the value of n−1
o that is the multiplicative

inverse of modulus (n) should be determined. Previously, the modulus set to be odd

based on MMM prerequisite condition that was elaborated in Section 1.3.3. Based

on Eq. (1.3.10), n−1 is also always odd. Through basic radix-4 MMM, we need to

proceed 2-bit by 2-bit.

Therefore, the two least significant bits of n−1
o is equal to 01 when N(1downto0) =

11. Otherwise, its 2 least significant bits is corresponding to 11.

To fulfil steps 3 to 5 in Algorithm 1.3.6, signals Temp1, Temp2, NplusB and Reg2 are

considered. Signal Temp1 is for operating the final division in Algorithm 1.3.6 (shift

to 2-bits to the right). It also makes the signals b and n which should be concatenated

by 4-bits to the right to avoid any errors in VHDL codes. Signal NplusB also controls

writing on 16 registers under the command of control unit. In other words, it stores

the output of steps 3 and 4.

Therefore, NplusB and Temp1 should be summed up to produce the final result

of the modular multiplication. This addition is stored in Temp2, while Temp2 is kept

in Reg2.

The last 2 clock cycles are also in charge of comparing the final result to the modulus

(n) (in case if the subtraction is needed) and store the final output in signal Temp.

Following this, signal Rdy turns to logic 1 and one complete modular multiplication

is done.

40

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

In order to test the validation and accuracy of the results of this multiplier, a

VHDL test bench code was written in Xilinx Vivado to run the simulation. Accord-

ingly, the aggregate number of clock cycles for a 256-bit basic radix-4 MMM is as

determined below:

Number of Clock Cycles = Nclk = 256 + 15 + 256/2 + 2 = 401 (3.3.1)

Furthermore, for the 256-bit size operands, it takes 1.207µs with maximum execution

frequency of 119.275MHz to run one complete modular multiplication via this imple-

mentation scheme. This timing report was extracted from Xilinix Vivado Synthesis

tool. The adder that is used through this implementation is still the default CLA

adder in Xilinx Vivado. Table 3.3.2 shows the implemented results for various length-

width of the basic radix-4 MMM (Basic-R4). Through this design, we could decrease

the total number of clock cycles by 61% compared to the basic radix-2 MMM.

The hardware architecture for the 256-bit basic radix-4 MMM is also shown in Fig.

MMM Generic (bit) Radix Frequency (MHz) Time (µs) LUT(s) DSP(s) Clocks

1 Basic-R4 4 4 252.207 0.071 124 0 23

2 Basic-R4 8 4 229.885 0.087 172 0 29

3 Basic-R4 16 4 223.914 0.107 267 0 41

4 Basic-R4 32 4 212.857 0.150 449 0 65

5 Basic-R4 64 4 193.723 0.247 824 0 113

6 Basic-R4 128 4 163.988 0.487 1565 0 209

7 Basic-R4 256 4 119.275 1.207 3483 0 401

Table 3.3.2: Basic-R4 MMM Synthesized Results on Kintex-7

3.3.1.

41

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

Fig. 3.3.1: Proposed Hardware Architecture for the 256-bit Basic Radix-4 MMM

3.4 Discussion about Design of Radix-8 MMM

From the survey of related works in Chapter 2, it has transpired that higher radices

in the context of MMM help to mitigate the latency of running one complete modular

multiplication. This is due to the decrease in the number of total clock cycles in the

circuit. However, this advantage is at the cost of consuming more utilization area in

hardware. So, it seems vital to survey the possibility of applying radix-8 and more

in the context of resource-constraint ECC devices.

By promoting the radix of the multiplier in Section 3.3 from 4 to 8, the value of w

will turn to 3 in Algorithm 1.3.6. The total number of clock cycles through a 256-bit

radix-8 MMM is acquired as shown below:

Number of Clock Cycles = Nclk = 256 + 63 + 256/3 + 2 = 406 (3.4.1)

42

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

As it is shown in Eq. (3.4.1), the total number of clocks for a 256-bit radix-8 MMM

(406 clocks) is more than the clock cycles of radix-4 MMM (401 clocks). Moreover,

the total number of used registers will increase from 16 to 64, while the multiplexer

should also change from a 16 : 1 one to a 64 : 1 multiplexer for the radix-8 MMM

design.

Due to an increase in the number of the utilized resources/area through the radix-8

MMM design, it takes more time for the multiplier to write on each of the registers,

which ensures a long time to run one modular multiplication. However, by increasing

the operand size to more than 256-bit, such as RSA key sizes (1024-bit, 2048-bit and

more), radix-8 would be more efficient in terms of speeding up the modular multiplier.

So, it can be concluded that radix-4 is the most efficient mode for the proposed design

of this thesis.

3.5 Radix-4 MMM with Ripple Carry Adder

Based on the last Section’s analysis, radix-4 MMM is the most efficient way to decrease

our design’s total number of clock cycles. However, to speed up our multiplier, we

can change the type of adder to increase the execution frequency.

For this design, the VHDL codes have been written in Xilinx Vivado and are the

same as in section 3.3. The only difference between these two designs is a 260-bit

ripple carry adder. This Section mainly aims at showing the effect of the used adder

on the execution frequency of the modular multiplier and compare it to the proposed

radix-4 MMM with the Kogge-Stone adder, which will be explained in Chapter 4.

Number of Clock Cycles = Nclk = 15 + 256/2 + 2 = 145 (3.5.1)

This design’s VHDL test bench code was successfully simulated via Xilinx Vivado.

Besides, it has transpired that for a 256-bit operand, it takes 6.324µs with 22.925

43

3. BASELINE IMPLEMENTATIONS OF MONTGOMERY MODULAR MULTIPLIER

MHz execution frequency to run one complete modular multiplication on Kintex-7

FPGA. There is also 2, 312 LUTs.

MMM Generic (bit) Radix Frequency (MHz) Time (µs) LUT(s) DSP(s) Clocks

1 MMM-RCA 256 4 22.925 6.324 2312 0 145

Table 3.5.1: Optimized R4 MMM Synthesized Results on Kintex-7

This design shows that using an RCA can decrease the utilization area by 34% com-

pared to the basic radix-4 MMM. However, the execution frequency has been de-

creased by 81%, and it takes five times longer than running one complete modular

multiplication through the radix-4 MMM with RCA compared to the multiplier in

section 3.3.

44

CHAPTER 4

Proposed Montgomery Modular

Multiplier

Through this Chapter, the final proposed Montgomery Modular Multiplier will be

introduced. So far, it has been determined that the most efficient way to decrease

the clock cycles for a 256-bit MMM is by using the radix-4.

The literature review in Chapter 2 showed that the Kogge-Stone adders proved to

be the fastest among other adders. Therefore, to enhance the speed of MMM, Kogge-

Stone adders are used in the proposed radix-4 MMM. A comparison between the

implementation results of this new design with the previous architectures in Chapter

2 will also be made to show the progress of modular multiplier implementation.

4.1 Proposed Radix-4 MMM with KSA

In order to improve the timing performance of the basic radix-4 MMM, the critical

path of the design via Xilinx Vivado Synthesis tools has been determined. It tran-

spired that the most delay is congested from the MUX 16 : 1 to the 260-bit adder.

In order to address this issue, the basic radix-4 hardware architecture has been

modified by splitting the 260-bit adder into two 130-bit adders. One 130-bit adder

(Adder-L) is for the addition of 130-bit least significant bits of n and b, while the

second one (Adder-H) is in charge of the 130-bit most significant bit of n and b. The

following components are employed in the proposed radix−4 MMM:

45

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

1. One 16 : 1 Multiplexer

2. One 4 : 1 Multiplexer

3. One 1-bit Register

4. One 4 : 16 Decoder

5. Two 260-bit Registers

6. Two 2 : 1 Multiplexers

7. Seven 130-bit Registers

There are 16 260-bit registers as the inputs of the 16 : 1 multiplexer. This multiplexer

is in charge of creating all 16 combinations of n and b. A 4 : 16 decoder controls the

process of writing and reading on each of these 16 registers, while the FSM activates

the signal L−NplusB.

The output of the 16 : 1 MUX is stored in a 260-bit register and then will be

entered into the adder L. Moreover, through the 4 : 1 MUX, signals of n, b, 2n and

2b are created, which are stored in a 260-bit register.

First, the 130-LSB enters the third MUX. If signal Sel2 is activated by the FSM,

it transforms either value of n, b, 2n and 2b to the adder-L. Otherwise, it transfers

their shifted to the right values to the adder-L.

At the same time, the same process happens for the 130-MSB of 4 : 1 MUX. These

bits enter the second 2 : 1 MUX, while the signal Sel3 equals 0. This process helps

to create 130-MSB portion for the 16 combinations of n and b and store these in 16

registers.

Also, the shift to the right values of the 130-MSB portion is transmitted to the

adder-H to form the final division in algorithm 1.3.6 while FSM changes the signal

Sel3 to 1. This procedure mainly aims at keeping one clock per iteration in the new

design.

The FSM controls the final subtraction of the design. When signal AddSub equals

logic 1, the final subtraction in Algorithm 1.3.6 is performed. The outcome is stored

46

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

Fig. 4.1.1: Final Proposed 256-bit MMM Hardware Architecture

in signal Temp. If the MSB of Temp equals 0, it will be transferred as the final result.

Otherwise, it shows that the final result of modular multiplication is a negative value,

and the final subtraction should not have been done. In this case, the final shift

to the right value stored in signal Temp1 will be transmitted as the final modular

multiplication result.

Finally, the total number of clock cycles for a 256-bit radix-4 MMM with KSA is

determined as below:

Number of Clock Cycles = Nclk = 17 + 256/2 + 2 = 147 (4.1.1)

Also, the hardware architecture for the proposed radix-4 MMM with KSA is shown

in Fig. 4.1.1.

4.1.1 Proposed Model for Addition in Radix-4 MMM

From the review in section 2.2, it has transpired that among different categories

of adders (i.e., Ripple Carry Adder, Carry Look Ahead Adder and the Kogge-Stone

47

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

Adder), KSA is the most efficient one in terms of lower delay. Following this, regarding

Chapter 2, two adders (adder-L and adder-H) should be considered for the proposed

radix-4 MMM design.

Each adder consists of two 64-bit KSA and one 2-bit KSA. Each KSA is linked

to the other via a ripple carry adder. This configuration aims at striking a balance

between delay and area in the circuit. As Ripple Carry Adders occupy smaller area

than other adders.

For the proposed radix-4 MMMwith KSA, three modules are required: RCAKSA−

130− bit, RCAKSA− 130bitH and KSA− 2bit. These blocks compose the addition

part of the proposed design.

Each of RCAKSA − 130bit includes two 64-bit KSA plus one 2-bit KSA. Ac-

cordingly, each 64-bit KSA entails six stages for pre-processing, carry generation and

post-processing steps.

4.1.2 Proposed Model for Subtraction in Radix-4 MMM

In a digital circuit, either addition or subtraction operation can be done through one

binary adder/ subtractor in a circuit. An FSM can control this dual operation. This

requires full adder(s), gates of Xor (i.e., Exclusive OR).

In order to delve into the concept of a binary adder/subtractor, 4-bit binary

integers, namely A and B are considered to be given as inputs to the digital circuit

as noted below:

i = 0 to 3 (4.1.2)

Ai = [A3, A2, A1, A0] (4.1.3)

Bi = [B3, B2, B1, B0] (4.1.4)

As there are 4-bit associations of input numbers, the related circuit consists of 4

full adders controlled by a signal line, namely K. Depending on the value that K

brings to the circuit, the subsequent operation will be determined whether to add or

48

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

subtract. This procedure is shown in Fig. 4.1.2. As shown in Fig. 4.1.2, there is a

direct control signal named Cin is linked to the first adder. Also, A0 (LSB of A) is

another immediate input. The third input, however, is the XOR output of B0 (LSB

of B) and the control signal of K. Based on the XOR function, there are different

scenarios for logical results, as shown in Table 4.1.1. Finally, this circuit yields sum

Formula Result Reason

= XOR(1 > 0, 2 < 1) TRUE As the first argument is true and the second is false

= XOR(1 > 0, 2 > 1) FALSE As both arguments are true

= XOR(1 < 0, 2 < 1) FALSE As both arguments are false

Table 4.1.1: Table of XOR Function

(S0) or difference (C0) that is operated on A and B concerning the command that

comes from the control line.

Through the proposed radix-4 MMM with KSA design, FSM controls Add/Sub.

Fig. 4.1.2: General Structure of a 4-bit Adder/Subtractor

49

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

This signal will XOR with B and then will be added to A. If signal Add/Sub equals

1, the first complement of B will be formed, and its addition to A yields the value of

final subtraction.

This work takes advantage of this scheme and is applied for the final subtraction in

either adder-L or adder-H. This is beneficial in terms of decreasing the area utilization,

as there is no need to consider a subtractor in the hardware design.

4.1.3 Calculation of Inverse Multiplicative of A (Ā)

In the proposed radix-4 MMM with KSA, it is assumed that the value of inverse

multiplicative of input operand (A) has already been given. This inverse multiplica-

tive can be determined via MATLAB or Python code. Pre-calculation of Ā can also

decrease the total used clock cycles.

In order to facilitate the calculation of Ā, a MATLAB code has been written.

Through this code, A, B and N that are multiplier, multiplicand and modulus, re-

spectively, should be given.

4.2 Experimental Results of the Proposed Radix-4

MMM with KSA

The proposed radix-4 MMM with KSA has been simulated and synthesized success-

fully via the Xilinx Vivado tool. According to the synthesis report, it takes 0.753µs

with a clock frequency of 195.160 MHz to run one complete modular multiplication

on a Kintex-7 FPGA platform. Through this implementation, 3, 814 LUTs are used

as well.

A second implementation was deployed on Virtex-7. This implementation shows

that to run one complete modular multiplication via the proposed design, the execu-

tion frequency is 256.575µs by consumption of 3, 814 LUTs. The time of execution

is also 0.572 MHz to carry out the Montgomery Modular Multiplication. Table 4.2.1

shows the results of the proposed design.

50

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

FPGA MMM Generic (bit) Radix Frequency (MHz) Time (µs) LUT(s) DSP(s) Clocks

Kintex-7 Basic 256 2 138.466 7.424 2462 0 1028

Kintex-7 Opt-R2 256 2 110.432 4.663 2462 0 516

Kintex-7 Basic-R4 256 4 119.275 1.207 3483 0 401

Kintex-7 MMM-RCA 256 4 22.925 6.324 2312 0 145

Kintex-7 Proposed 256 4 195.160 0.753 3814 0 147

Virtex-7 Proposed 256 4 256.575 0.572 3814 0 147

Table 4.2.1: Synthesized Results of the Baselines and Proposed MMM

4.3 Improvements of Proposed Radix-4 MMMwith

KSA

Through various implementation of MMM that has been discussed in Chapter 3, the

following improvements have been achieved via the proposed 256-bit radix-4 MMM:

1. Decrease in the Total Number of Clock Cycles

As expected from the survey in Chapter 3, by consolidating two stages of addi-

tion in Algorithms 1.3.5 and 1.3.6, the number of iterations have been reduced.

For a 256 bit-size operand from the basic radix-2 MMM design to the proposed

radix-4 MMM with KSA version, the number of total clocks has been reduced

by the rate of 85.71%.

2. Increase of Maximum Frequency

According to the experimental results, the rate of execution frequency varies for

different bit-size of operands. Despite this, the proposed multiplier of MMM

hardware implementation features the maximum frequency of 195.160 MHz im-

ported on Kintex-7 and the value of 256.575 MHz implemented on Virtex-7

family of FPGA. The proposed multiplier proves the 40.9% increase for a 256

bit-size of basic MMM design. It also shows the increase rate of 76.7% com-

pared to a 256-bit size improved radix-2 MMM. Not to mention that the latest

MMM version is 8.5 times faster than a 256-bit Radix-4 MMM with RCA. It is

51

4. PROPOSED MONTGOMERY MODULAR MULTIPLIER

a proof that KSA is much faster than RCA.

3. Decrease of Execution Time

The time of conducting one complete modular multiplication is obtained from

multiplying the number of clocks per maximum frequency (Time = nclk/Frequency).

What is obvious from the experimental results, the time of execution for a 256-

bit size basic MMM has been decreased by more than 90% through the final

MMM version. In other words, the latest MMM architecture is run at the short-

est time among other proposed designs (0.753 µs).

4. Increase of the Factor of Throughput

The proposed MMM design with a throughput rate of 339.973 performs at 9.85

times better than the basic 256-bit radix-2 MMM design with a throughput rate

of 34.482.

5. Increase of the Factor of Efficiency

The proposed Montgomery multiplier also provides more than 6 times better

efficiency than the basic 256-bit size MMM desig

52

CHAPTER 5

Discussion of Results and

Comparisons with Previously

Proposed Designs

Through this chapter, the experimental results of the proposed radix-4 MMM

with KSA is compared to other state-of-work works that were surveyed through

Chapter 2.

5.1 Comparison the Proposed Modular Mul-

tiplier with Related Works

Various works on FPGA implementation of modular multiplication have been

surveyed in Chapter 2. In some of these works, authors attempted to miti-

gate the latency of multiplication, while others aimed at reducing the hardware

utilization. As area and time are contradictory parameters of an FPGA-based

hardware implementation, it is a challenging task to strike a balance between

both of them. Through this thesis, an effort towards speeding up the multiplica-

tion yet with low area utilization has been done. In this respect, a performance

comparison of this project’s proposed multiplier with some of mentioned mod-

ular multipliers in Chapter 2 is indicated in Table 5.1.1.

53

5. DISCUSSION OF RESULTS AND COMPARISONS WITH PREVIOUSLY PROPOSED DESIGNS

It should be noted that some papers have compared the parameter of area

in terms of LUTs instead of slices; while other authors have not reported the

specific number of slices employed for their modular multipliers. Besides, DSPs

are utilized in a few of other designs which skew the resource consumption if

LUTs were the only resource considered. For this reasons area is compared

in terms of LUTs and Normalized LUTs in this comparative study. Also, the

term Normalized-LUT replaces DSP usage with LUT realization, since one DSP

is equivalent to approximately 597 LUTs [32]-[33] for virtex-6 FPGA family.

However, this number will be different between boards and it will vary in this

explanation. Besides, an approximation of 597 LUTs has been considered for

Artix-7 FPGA device for comparison.

In the following, a comparative discussion between this project’s final implemen-

tation results and other works is done. It should be noted that this comparative

study is based on a bit width of 256 for all the modular multipliers mentioned

in Chapter 2. 256-bit length width for the proposed radix-4 MMM was se-

lected, since it is one of the recommended bit-size by the National Institute of

Standards and Technology (NIST) for Elliptic Curves.

Design FPGA Frequency (MHz) Time (µs) Slice LUT(s) Normalized LUT(s) DSP(s) Throughput (Mbps) Efficiency (Mbps/ Area)

Wu et al. 2022[29] Virtex-7 345 0.319 2900 2900 0 802 0.27

Wu et al. 2022[29] Virtex-7 290 0.214 5500 5500 0 1196 0.21

Holguera et al. 2022[31] Artix-7 441.38 0.133 22403 32371 16 1948.16 0.060

Elkader et al. 2021[32] Virtex-6 103.1 0.62 2136 2136 0 412.24 0.193

Elkader et al. 2021[32] Virtex-6 176.1 1.46 620 620 0 174.78 0.282

Ding et al. 2020[28] Virtex-6 256 0.062 3500 17828 24 4129.03 0.23

Islam et al. 2020[34] Virtex-6 160.7 1.60 1551 1551 0 160.07 0.103

Elkader et al. 2022[33] Virtex-6 143 1.79 1104 1104 0 143.01 0.12

Kudithi et al. 2020[35] Kintex-7 122.8 2440 7400 7400 0 104.9 0.014

Proposed Virtex-7 256.575 0.566 4534 4534 0 452.29 0.099

Proposed Kintex-7 195.160 0.753 3814 3814 0 339.97 0.089

Proposed Artix-7 121.566 1.209 3814 3814 0 211.745 0.055

Proposed Virtex-6 204.305 0.719 4305 4305 0 356.059 0.082

Table 5.1.1: Comparison of Modular Multipliers implemented on Xilinx FPGA (bit
width of 256)

Compared to [27], our MMM execution frequency is increased by 83% rate;

not to mention that the aggregate number of clocks used in [27] have been

54

5. DISCUSSION OF RESULTS AND COMPARISONS WITH PREVIOUSLY PROPOSED DESIGNS

decreased by 43% through our design. Also, the final proposed MMM in this

thesis runs one complete modular multiplication on Xilinx FPGA Virtex-7 in

0.566µs which shows an increase of 69% compared to [27]. Despite the men-

tioned improvements of our final results, [27] used 40% area utilized in our

design.

Compared to [28], both designs achieved almost the same frequency on Xilinx

Virtex-6 family FPGAs. It should be mentioned that [28] adopted 24 DSPs.

This caused very high resource usage in their design. There is no DSPs in our

design. So, our design is better-suited for the resource-constrained application

in IoT devices.

Reference [29] has been designed to be flexible in various radices (i.e., radix-

32 and radix-64). To fulfil this, their design runs one modular multiplication

achieved high execution frequency. Their design proved to be the fastest one

among the reviewed works in Chapter 2. However, our design is more compact

compared to their second design that has 5500 number of LUTs.

Our design compare to reference [30], has improved the speed parameters (i.e.,

latency and frequency) to the rate of %67. However, this design uses lower slices

in hardware which is 16% of our LUTs.

Throughput of [31] reaches a high level, and it also remains good efficiency.

Our design, however, has an improvement in efficiency and also occupies much

lower area, which makes it more suitable in resource-constraint devices for IoT

compared to [31].

Our design achieved a 67% improvement in terms of throughput compared to

[38]. This design, however, adopted radix-2 and utilized less area than our

design.

Our design also accomplished 3.77 times faster speed compared to [40] with

using much lower area. Moreover, our design obtained 30% increase in speed

compared to [42] with much lower utilization area in hardware implementation.

Both schemes of [32], are slower than our design in terms of speed with lower

55

5. DISCUSSION OF RESULTS AND COMPARISONS WITH PREVIOUSLY PROPOSED DESIGNS

utilized area as well as lower rates of throughput compared to ours. However,

our design is still relatively small which makes it more beneficial in IoT devices

where speed must be prioritized.

Our deign compared to reference [35] is 79% faster to run a modular multipli-

cation. Moreover, our design remained efficient similar to [35]. However, we

utilized more LUTs in our design.

Compared to reference [34], our design is 59% faster and also more efficient.

However, [34] adopted less LUTs in their hardware implementation.

Our design also acquired the improvement of 61% in terms of speed compared to

[35]. This comparison between our design and [35] is based on implementation

on Xilinx FPGA Kintex-7. In this comparison, our design is much efficient with

3 times better throughput rate.

According to comparative study with other modular multipliers, our design

achieved a good execution frequency, time, throughput and efficiency rate on

Virtex-7. These parameters make our proposed modular multiplier to be well-

suited for devices used in ECC which require high speed and reasonable hard-

ware area.

Through Chapter 5, a review over surveying the implemented results of the

basic and proposed MMM designs was presented. In this Chapter, there was

also a comparison between the proposed design with other related works that

were mentioned in Chapter 2. This work will be concluded in next Chapter.

56

CHAPTER 6

Conclusion and Future Works

Through this final Chapter, a summary of the main contribution of this thesis

is provided. There will also be a notion to enhance the hardware performance

of this work in the future.

6.1 Summary of Contribution

In this thesis, various architectures of Montgomery Modular Multiplier have

been designed and implemented towards reducing the area as well as increasing

the execution frequency of MMM algorithm. The final proposed architecture is

designed and implemented for the ECC NIST prime field size 256. This final

proposed modular multiplier is practical in lightweight ECC applications. To

fulfil the above mentioned goals of the project, the following actions have been

taken.

With the purpose of investigating the general hardware performance of MMM,

the basic radix-2 MMM was designed and implemented on Xilinx Kintex-7

FPGA. This implementation instilled an insight of how to proceed with im-

proving the subsequent MMM designs. In the next stage, an improvement of

the basic hardware of radix-2 MMM has been conducted to reduce the total

number of clocks. Further modifications such as designing radix-4 MMM have

also been done in order to mitigate the tally number of clocks. To fulfil speed-

ing up the design, some revisions related to the operation of addition in the

57

6. CONCLUSION AND FUTURE WORKS

hardware was carried out as well. By introducing an adder/ subtractor which

is a cross between Kogge-Stone and Ripple Carry adders, not only an increase

in maximum execution frequency of hardware design was ensued, but a trade-

off between area and time has also been served. As final revision, there was a

through evaluation of different sections of circuit towards enhancing the per-

formance of hardware design. Following this, a 2-stage technique was adopted

in the addition part which resulted in splitting the adder/ subtractor into two

parts. This design also proved to be efficient in increasing the speed of hardware

design.

What stands out the final proposed design from the related works is pertinent

to enhancing the execution frequency and amount of final throughput.

Therefore, the proposed algorithm is well-suited for an efficient implementation

of lightweight cryptosystem for embedded devices in IoT.

6.2 Future Work

There is a recommendation which feasibly helps enhancing the performance of

the proposed modular multiplier of this thesis.

6.2.1 Radix-4 MMM with 4-Stage KSA

During implementing the results of the proposed radix-4 MMM with KSA,

timing performance of different individual component of the circuit was done.

This investigation makes it possible to figure out which part is slowing down

the multiplication process. By evaluating the frequency of 130-bit adder-L and

the 16 : 1 multiplexer, it transpired that the process of writing on each registers

slows down the frequency of execution. However, to address this issue, the

actions of reading and writing on registers should not be done simultaneously.

58

6. CONCLUSION AND FUTURE WORKS

To resolve this problem, 16 registers should be adopted between the 16 : 1

multiplexer in order to cause a delay. This scheme, however, works at the cost

of increasing the total number of clocks; this also increases the resource/ area.

One of the efficient way to enhance the performance of the final proposed MMM

design is considering 4 stages of addition in the hardware architecture design.

To fulfil this, the VHDL codes related to the four adders to the bit size of

66 have been tested. The successfully synthesized report of this adder via

Xilinx Vivado Suite indicates the frequency of 293.07 MHz (Device: Virtex-

7, xc7vx330t-3fffg1157). This new 4-stage radix-4 MMM design can possibly

increase the execution frequency to more than 14% compared to the final opti-

mized version of MMM that proposed in this thesis.

59

REFERENCES
[1] Adleman, Rivest, Shamir, ”A method for obtaining digital signature and

public key cryptosystems,” Communication of ACM, vol 21, no.2, pp.120-126,

Feb. 1978.

[2] Heliman, Diffie,”New di re ctions in cr yp tography,” IE EE tr an sactions on In-

formation Theory,” vol. IT-22, no.6, pp.64-654, Nov. 1976.

[3] Koblitz, ”Elliptic curve cryptosystems,” Mathematics of computation, vol.

48, no.177, pp.203-209, Jan. 1987.

[4] Shaikh,Nenova,Iliev, Valkova-Jarvis, ”Analysis of Standard Elliptic Curves

for the Implementation of Elliptic Curve Cryptography in Resource-Constrained

E-commerce Applications,” IEEE International Conference on Microwaves, An-

tennas, Communications and Electronic Systems (COMCAS), pp.1-4, Nov.

2017.

[5] Montgomery, ”Modular Multiplication Without Trial Division”, Mathemat-

ics of Computation, vol. 44, no.170, pp. 519–521, Apr. 1985.

[6] Todorov, ”ASIC design, Implementation and Analysis of a Scalable High-

radix Montgomery Multiplier,” M.A.Sc Thesis, School of Eng., Oregon State

Univ., Oregon, USA, Dec. 2000.

[7] Liu, Huang, Hu, Khurram Khan, Seo, and Zhou, ”On Emerging Family

of Elliptic Curves to Secure Internet of Things: ECC Comes of Age,” IEEE

Transactions on Dependable and Secure Computing, vol. 14, no. 3, pp 237-248,

Apr. 2017.

[8] Tenca, Todorov, K. Koç, ”High-radix design of a scalable modular mul-

tiplier,” Cryptographic Hardware and Embedded Systems, Springer, Volume

2162, pp 185-201, Jan. 2001.

[9] Naru, Saini, Sharma, ”A Recent Review on Lightweight Cryptography in

IoT,” International conference on I-SMAC (IoT in Social, Mobile, Ana- lytics

and Cloud), pp 887-890, Feb. 2017.

60

6. CONCLUSION AND FUTURE WORKS

[10] K.Routray, K. Jha, Sharma, Nyamangoudar, Javali, ”Quantum Cryptog-

raphy for IoT:APerspective,” International Conference on IoT and Application

(ICIOT), pp 1-4, May. 2017.

[11] Zhang, Zhu, Wang, Wang, ”Design and Realization of Elliptic Curve Cryp-

tosystem,” International Symposium on Instrumentation Measurement, Sensor

Network and Automation, vol. 1, pp 302-305, Aug. 2012.

[12] Touati, Lyes, Challal, and Bouabdallah, ”Cooperative cipher text policy

attribute-based encryption for the internet of things,” In Advanced Networking

Distributed Systems and Applications (INDS), pp. 64-69, Jun. 2014.

[13] Prasetyo, Nur, Purwanto, and Darlis, ”An implementation of data encryp-

tion for Internet of Things using blowfish algorithm on FPGA,”2nd Interna-

tional Conference on Information and Communication Technology (ICoICT),

pp. 75-79, May. 2014.

[14] Touati, Lyes, Challal, ”Efficient attribute/key management for IoT appli-

cations,” IEEE International Conference on Computer and Information Tech-

nology; Ubiquitous Computing and Communications; Dependable, Autonomic

and Secure Computing; Pervasive Intelligence and Computing, pp. 343-350,

2015.

[15] Yao, Xuanxia, Chen, and Tian. ”A lightweight attribute-based encryp-

tion scheme for the Internet of Things,” Future Generation Computer Systems

Elsevier, vol. 49, PP. 104-112, Aug. 2015.

[16] Nawari, Mustafa, Ahmed, Hamid, and Elkhidir, ”FPGA based implementa-

tion of elliptic curve cryptography,” World Symposium on Computer Networks

and Information Security (WSCNIS), pp. 1-8, 2015.

[17] L. Touati and Y. Challal, ”Batch-based CP-ABE with attribute revocation

mechanism for the Internet of Things,” International Conference on Computing,

Networking and Communications (ICNC), pp. 1044-1049, 2015.

[18] Josias Gbe‘toho Saho, ”Securing Document by Digital Signature through

61

6. CONCLUSION AND FUTURE WORKS

RSA and Elliptic Curve Cryptosystems,” International Conference on Smart

Applications, Communications and Networking (SmartNets), pp. 1-6, Dec.

2019.

[19] Bobade and Mankar, ”VLSI architecture for an area efficient Elliptic Curve

Cryptographic processor for embedded systems,” International Conference on

Industrial Instrumentation and Control (ICIC), pp. 1038-1043, 2015.

[20] Zhang, Zhu, Wang, Wang, ”Design and Realization of Elliptic Curve Cryp-

tosystem,” International Symposium on Instrumentation Measurement, Sensor

Network and Automation, vol. 1, pp. 302-305, 2012.

[21] Knezevic, Vercauteren, and Verbauwhede, ”Faster Interleaved Modular

Multiplication Based on Barrett and Montgomery Reduction Methods,” IEEE

Transactions on Computers, vol. 59, no. 12, pp. 1715-1721, Jan. 2011.

[22] Ploog, Flugel and Timmermann, ”Improved ZDN-Arithmetic for Fast Mod-

ulo Multiplication,” IEEE International Conference on Computer Design: VLSI

on computers and Processors, ICCD, pp. 166-171, 2001.

[23] Bosselaers, Govaerts and Vandewalle, ”Comparison of three modular reduc-

tion functions,” Advances in Cryptology, Lecture Notes in Computer Science,

Springer, vol. 773, pp. 175–186, 1994.

[24] Walter, ”Hardware implementation of Montgomery’s modular multiplica-

tion algorithm,” IEEE Transactions on Computer, vol.42, no.6, pp. 693-699,

1993.

[25] Tawalbeh,”Radix-4 ASIC Design of a Scalable Montgomery Modular Mul-

tiplier Using Encoding Techniques,” M.A.Sc. Thesis, School of Electrical Engi-

neering Computer Science, Oregon State University, Oct. 2002.

[26] K.Koc, Acar, ”Montgomery multiplication in GF(2k),” Designs, Codes and

Cryptography, vol 14, pp. 57–69, Apr. 1998.

[27] Kolagatla, Desalphine, Selvakumar, ”Area-Time Scalable High Radix Mont-

gomery Modular Multiplier for Large Modulus,” 25th International Symposium

62

6. CONCLUSION AND FUTURE WORKS

on VLSI Design and Test (VDAT), pp. 1-4, 2021.

[28] Innan Ding, ”A Low-Latency and Low-Cost Montgomery Modular Multi-

plier Based on NLP Multiplication,” IEEE Transactions on circuits and sys-

tems—II, vol. 67, no. 7, pp. 1319-1323, 2020.

[29] Ruoyu Wu , Ming Xu, Yingqing Yang , Guanzhong Tian , Member, IEEE,

Ping Yu , Yangfan Zhao, Bin Lian , and Longhua Ma, ”Efficient High-Radix

GF(p) Montgomery Modular Multiplication via Deep Use of Multipliers,” IEEE

Transactions on circuits and systems, vol.69, no.12, pp. 5099-5103, 2022.

[30] Selim Hossain and Yinan Kong, ”FPGA-Based Efficient Modular Multi-

plication for Elliptic Curve Cryptography,” International Telecommunication

Networks and Applications Conference, pp. 191-195, 2015.

[31] Pajuelo-Holguera, Granado-Criado, and J. A. Gómez-Pulido, ”Fast mont-

gomery modular multiplier using FPGAs,” IEEE Embedded System Letters.,

vol. 14, no. 1, pp. 19–22, Mar. 2022.

[32] Ahmed Abd-Elkader, Mostafa Rashdan, El-Sayed Hasaneen , and Hesham

Hamed, ”FPGA-Based Optimized Design of Montgomery Modular Multiplier,”

IEEE Transactions on circuits and systems, vol. 68, no. 6, pp. 2137-2141, 2021.

[33] Abd-Elkader, Rashdan, Hasaneen, and Hamed, ”Efficient implementation

of Montgomery modular multiplier on FPGA,” Computer and Electrical Engi-

neering (Elsevier)., vol. 97, pages 107585, Jan. 2022.

[34] Mainul Islam, ”Area-Time Efficient Hardware Implementation of Modu-

lar Multiplication for Elliptic Curve Cryptography,” IEEE Access, vol. 8, pp.

73898-73906, 2020.

[35] Kudithi, ”An efficient hardware implementation of the elliptic curve cryp-

tographic processor over prime field,” International Journal of Circuit Theory

and and applications, vol. 48, Issue. 8, pp. 1256-1273, Aug. 2020.

[36] Tao Wu, ”Improving Radix-4 Feedforward Scalable Montgomery Modular

Multiplier by Pre-computation and Double Booth-Encoding,” 3rd International

63

6. CONCLUSION AND FUTURE WORKS

Conference on Computer Science and Network Technology, pp. 596-600, 2013.

[37] Javeed, ”Design and performance comparison of modular multipliers im-

plemented on FPGA platform,” International Conference on Cloud Computing

and Security (ICCCS), vol. 10039, pp. 251-260, Nov. 2016.

[38] Coliban, ”Fast Radix-2 Montgomery Modular Multiplication on FPGA

Using Ternary Adder,” International Conference on Computing, Electronics

Communications Engineering, pp. 1-5, 2022.

[39] Ruirui Liu, Shuguo Li, ”A Design and Implementation of Montgomery

Modular Multiplier,” IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 1-4, 2019.

[40] Yaxun GongHigh, Shuguo Li, ”High-throughput FPGA Implementation of

256-bit Montgomery Modular Multiplier,” Second International Workshop on

Education Technology and Computer Science, vol. 3, pp. 173-176, 2010.

[41] Gang Zhou, Harald Michalik, and László Hinsenkamp, ”Complexity Analy-

sis and Efficient Implementations of Bit Parallel Finite Field Multipliers Based

on Karatsuba-Ofman Algorithm on FPGAs”, IEEE Transactions on very large

scale integration (VLSI) systems, vol. 18, no. 7, pp. 1057-1066, July. 2010.

[42] Xinkai Yana, Guiming Wub, Dong Wuc, Fang Zhengd, Xianghui Xie, ”An

Implementation of Montgomery Modular Multiplication on FPGAs”, Interna-

tional Conference on Information Science and Cloud Computing, pp. 32-38,

2013.

[43] Xianjin Fang, Longshu Li, ”On Karatsuba Multiplication Algorithm”, The

First International Symposium on Data, Privacy, and E-Commerce (ISDPE),

pp. 274-276, 2007.

[44] Aakansha, Ravi Payal, ”Design and Comparative Analysis of Various Adders

through Pipelining Techniques,” International Journal of Computer Science and

Information Technologies, vol. 7, no. 3, pp. 1448-1456, 2016.

[45] Shilpa K. C and Shwetha, ”Performance analysis of parallel prefix adder

64

6. CONCLUSION AND FUTURE WORKS

for data-path VLSI design”, 2nd International Conference on Inventive Com-

munication and Computational Technologies (ICICCT), pp. 1552-1555, 2018.

[46] Bhavani Koyada, Omair Jaleel and Praneet Raj, ”A Comparative Study

on Adders”, IEEE WiSPNET, pp. 2226-2230, 2017.

[47] Mary James, ”Review of full adder performance analysis using Kogge-Stone

Adder and magnetic tunnel junction”, Fourth International Conference on De-

vices, Circuits and Systems (ICDCS’18), pp. 84-90, 2018.

[48] Saradindu Pandu, Benerjee, Maji, and Mukhopadhyay, ”Power and delay

comparison in between different types of full adder circuits,” Journal of Ad-

vanced Research in Electrical, Electronics and Instrumentation Engineering,

vol. 1, no. 3, pp. 168-172, Sep 2012.

[49] Anoop C, Anu Chalil, ”Performance Analysis of Montgomery Multiplier”,

2nd International Conference on Communication and Electronics Systems, pp.

26-29, 2017.

[50] Jujavarapu Sravana, Hima Bindhu, ”Implementation of Spurious Power

Suppression based Radix-4 Booth Multiplier using Parallel Prefix Adders”, 4th

International Conference on Recent Trends in Computer Science and Technol-

ogy , pp. 428-433, 2021.

[51] Devi Ykuntam, Katta Pavani, Krishna Saladi, ”Design and analysis of High

speed wallace tree multiplier using parallel prefix adders for VLSI circuit de-

signs”, International conference on computing, communication and networking

technologies, pp. 1-6, 2020.

[52] Anane Mohamed, Anane Nadjia, ”High radix Montgomery Modular Mul-

tiplication on FPGA”, 8th IEEE design and Test Symposium, pp. 1-2, 2013.

[53] Walter, ”Hardware implementation of Montgomery’s modular multiplica-

tion algorithm”, IEEE Transactions on Computer, vol.42, no.6, pp. 693-699,

1993.

65

VITA AUCTORIS

NAME: Fahimeh Pakzadalinodehi

PLACE OF BIRTH: Tehran, Iran

YEAR OF BIRTH: 15th of February 1990

EDUCATION: B.Sc in Biomedical Engineering, University of Shahed,
Tehran, Iran, 2008-2013

M.Sc in Electrical Engineering, University of Windsor,
Windsor, Ontario, Canada, 2021-2023

66

	High Radix and Efficient Hardware Implementation of Modular Integer Multiplication for IoT Cryptosystems
	Recommended Citation

	tmp.1707923883.pdf.Hm2Mk

