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Abstract

The development of intelligent systems is progressing rapidly, thanks to advances

in information technology that enable collective, automated, and effective decision-

making based on information collected from diverse sources. Group decision-making

(GDM) is a key part of intelligent decision-making (IDM), which has received con-

siderable attention in recent years. IDM through GDM refers to a decision-making

problem where a group of intelligent decision-makers (DMs) evaluate a set of alterna-

tives with respect to specific attributes. Intelligent communication among DMs aims

to give orders to the available alternatives. However, GDM models developed for

IDM must incorporate consensus support models to effectively integrate input from

each DM into the final decision.

Many efforts have been made to design consensus models to support IDM, depend-

ing on the decision problem or environment. Despite promising results, significant

gaps remain in research on the design of such support models. One major drawback

of existing consensus models is their dependence on the type of decision environment,

making them less generalizable. Moreover, these models are often static and cannot

respond to dynamic changes in the decision environment. Another limitation is that

consensus models for large-scale decision environments lack an efficient communica-

tion regime to enable DM interactions.

To address these challenges, this dissertation proposes developing consensus mod-

els to support IDM through GDM. To address the generalization issue of existing

consensus models, reinforcement learning (RL) is proposed. RL agents can be built

on the Markov decision process to enable IDM, potentially removing the generaliza-

tion issue of consensus support models. Contrary to most consensus models, which

assume static decision environments, this dissertation proposes a computationally ef-

ficient dynamic consensus model to support dynamic IDM. Finally, to facilitate secure

viii



and efficient interactions among intelligent DMs in large-scale problems, Blockchain

technology is proposed to speed up the consensus process. The proposed communica-

tion regime also includes trust-building mechanisms that employ Blockchain protocols

to remove enduring and limitative assumptions on opinion similarity among agents.
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Chapter 1

Introduction

The design of intelligent systems is witnessing an expeditious development due to the

emergence of information technologies and IoT applications for the sake of intelligent,

automatic and collective decision-making by accessing diverse sources of information.

Among the developed technologies, cyber-physical systems (CPSs) have been widely

spread over the past decades due to their functionalities and efficiency for the deep

intertwining of physical and software components, enabling them for the transfer

of large amount of data over an interconnected network. In this respect, one can

refer to smart grids (SGs) as one of the emerging CPSs that, in contrast to the

conventional power systems, benefit from the features of CPSs for a higher reliability

and can be simply modified in case of expansion planning to cover power demands

[5]. However, the geographical dispersion property of SGs make them suffer from

physical vulnerabilities such as outages of generation units, transmission lines and

loads, and short-circuit events [6]. Other than physical vulnerabilities, SGs suffer

from the security and safety of facilities that enable the networking of embedded

components, which can be threatened by an adversary’s actions.

Many efforts have been devoted to the design of diagnostic frameworks for SGs

to deal with physical and cyber threats, where they can generally be divided into

model-based and data driven-based techniques [7]. Model-based techniques rely on

an explicit input-output model of the system for the sake of diagnosing faults and

attacks. These models, however, could become complex especially in dealing with the

complex dynamics of SGs [8]. On the contrary, data driven techniques do not rely on

the system model and are not concerned with the complexity of the constructed model
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[9, 10]. They rely on data measurements collected from the system under different

operational states, which has been enabled by means of wide area measuring system

(WAMS) [11]. A successful WAMS implementation for SGs usually requires proper

communications between the generation nodes and consuming units [12]. This could

be achieved by means of intelligent measuring devices such as phasor measuring units

(PMUs), however, it is then a must to deal with the emerging big dimensionality

[13, 14]. Other than coping with the curse of dimensionality, the performance of

WAMS is highly dependent to signal processing phase for extracting informative

features from the collected data measurements.

Generally speaking, signal processing for feature extraction could be performed

on three different domains, including time domain, frequency domain, and time-

frequency domain. The time-domain features refer to the case, in which statistical

measures such as mean, mode, median of the original data measurements are col-

lected to construct the feature set [15]. The frequency-domain features are statistical

characteristics of the frequency spectrum of the original data measurements [16]. In

order to benefit from the characteristics of both time-domain and frequency-domain

features, various methods have been developed to analyze a signal in a time-frequency

domain [17]. WPD [18], LMD [19], EMD [20], BMPD [21], and its variants such as

OMPD [22] and WMPD [23], and VMD [24] are some well-known signal processing

tools in the time-frequency domain to decompose an arbitrary signal into its principal

modes. The extracted modes can then be used to reconstruct the original signal and

also to construct a set of informative features.

To cope with the curse of dimensionality, data reduction techniques have been

widely employed in the design of intelligent diagnostic frameworks. These techniques

can generally be divided into dimensionality reduction and feature selection methods

in order to reduce the dimension of data so as to improve the efficiency and consistency

of the diagnostic models [7, 25, 26, 27]. Dimensionality reduction techniques aim

to reduce the dimension of data by employing appropriate transformations on the
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feature space and can be divided into linear or non-linear categories depending on

the type of the employed transformation [28]. Feature selection refers to the process of

selecting an informative and adequately-relevant subset of features from the original

set of features. These techniques can be categorized into either filters, wrappers, or

embedded techniques depending on the employed evaluation metrics [29]. Filters are

the earliest techniques used for the feature selection and they just utilize the intrinsic

characteristics of data measurements in order to rank the set of features. Therefore,

these models are known to be fast and computationally efficient [30]. In contrast to the

wrapper methods [31], filters are classifier independent with a better generalization

capability, however, they ignore the dependency among features. Wrappers benefit

from the interaction with a classification model and take the classification accuracy

as the feature selection criterion. These methods are more accurate compared with

the filters, however, they are classifier dependent and computationally expensive.

Embedded techniques take the advantages of the filters and wrappers by embedding

the feature selection into the learning algorithm of the classification models [32].

Other than the signal processing and data reduction that play vital roles in im-

proving the performance of diagnostic systems, the decision-making module could

also be of paramount importance in the design of diagnostic frameworks [33, 34, 35].

This module should be scalable and able to efficiently deal with the extracted fea-

tures through the data processing phase. Furthermore, this module should enable the

decision-making process by taking into account multiple criteria designated to the de-

cision task for making efficient decisions. In this regard, collective decision-making,

or group decision-making (GDM) could be beneficial for the sake of simultaneously

concerning multiple criteria to make the final decision w.r.t. a given set of features.

GDM refers to a group of agents that collectively evaluate a decision task w.r.t. a

given set of criteria in order to select the best available choice for the given decision

problem. However, in order to benefit the most from the opinion of each individual

agent in addition to efficiently augment the impact of the given criteria on the deci-
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sion task, GDM is required to be supported by a consensus model. Therefore, this

dissertation is devoted to the design of consensus models to support multiple criteria

GDM.

1.1 Background

GDM is a core part of intelligent decision-making (IDM) and has gained much at-

tention in recent years [36]. GDM refers to a decision problem, in which a group of

experts is designated to assess a set of alternatives according to a set of attributes

through a communication regime to provide rankings for the available set of alterna-

tives [1]. However, decision-makers (DMs) have different backgrounds and levels of

knowledge, which result in potential conflicts in the expressed opinions, and, there-

fore, there is a need to design mechanisms for consensus achievement in the group

[37]. Such a mechanism is called the consensus reaching process (CRP) in GDM

problems [38].

Ideally, the hope is to reach a total agreement, i.e., a unanimous decision, even

though, this is neither practical nor necessary in many real-life decision problems [39].

Instead, the goal could be making decisions that are agreed on by most of the involved

DMs, so-called consensual decisions. This has consequently paved the way for a softer

consensus methodology that could quantify the level of consensus from absence to the

total agreement [40]. To this end, the CRP could be considered as a convergent and

multi-stage procedure, where the opinions of DMs are initially assessed, and in case

that the level of consensus among them is lower than a given threshold, DMs are

encouraged to negotiate in order to bring their opinions closer to a collective one for

the sake of consensus reaching. This negotiation process, however, is required to be

equipped with an efficient feedback (or adjustment or recommendation) mechanism

in order to guide DMs toward the collective opinion of the group.

To guide DMs within a static decision framework, the feedback mechanism rec-
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ommends each individual to modify his/her opinion to some extent so as to get closer

to the collective opinion of the group. This mechanism, however, needs to be efficient

in terms of the speed and Harmony degree (HD) of DMs. The former is an efficiency

measure to be considered in the design of feedback mechanisms, which means how

many discussion rounds it would take for the group to reach to the desired level of

consensus. The higher the speed, the better the feedback mechanism. The latter,

however, is a measure of the deviation between the original opinion of a DM and the

modified opinion suggested by the feedback mechanism. This deviation is called cost

in the GDM taxonomy. Therefore, the lower the cost, the higher the HD, and the

better the feedback mechanism [41]. Even though realizing these two efficiency mea-

sures is of utmost importance in construction of feedback mechanisms, however, it

becomes more challenging for decision making under dynamic decision environments

[42].

The counterpart of static decision environments is dynamic environments that

typically refer to the changes in alternatives, attributes, DMs, and their importance

weights. In such a framework, the set of alternatives could be subject to changes

during the consensus assessment due to the availability of new alternatives and/or

the feasibility of a previous set of alternatives. DMs’ weights are the keys in deriving

the collective opinion of the group and these weights change from one discussion round

to another. As for the dynamic set of attributes, new attributes can be introduced

to the problem during the CRP so as to speed up the process and/or to evaluate the

decision problem from new viewpoints. And finally, the set of DMs could also be

subject to changes due to the fact that some DMs may leave the negotiation and/or

new individuals might be invited to participate to the decision problem [43].

In the static and dynamic GDM, which we refer to as classical dynamic consensus

models, time does not play a role in modeling the dynamism of the feedback mecha-

nism. However, in opinion dynamics models, not only time does play an important

role in evolution of DMs’ opinions, but also the opinion of an individual is modeled to
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be affected by others through a weighted summation-based aggregation scheme. In

such models, the design of a fusion strategy for the feedback mechanism to satisfy the

constraint on the evolution of opinions while having time involved in the dynamism

is of paramount importance, yet very challenging [44].

Following the given background, we discuss the research problems that are going

to be addressed in this dissertation in the following section.

1.2 Problems

We define three main research problems for each model of the decision environment

including classical dynamic consensus and opinion dynamics models.

1.2.1 Static GDM: CRP Speed and HD Trade-Off

As mentioned earlier in Section 1.1, the speed of CRP and keeping the HD of DMs

at a high level are two important efficiency measures to be considered in the design

of feedback mechanisms for static decision-making. Feedback mechanisms usually

benefit from two rules called identification and direction. The former is the phase, in

which the inconsistent DMs are identified, who need to modify their initial opinions

to get closer to the collective opinion of the group. The latter refers to adjusting

the opinions of inconsistent DMs by augmenting a portion of the collective opinion

into their original opinions. To speed up the CRP through the feedback mechanism,

the portion of the collective opinion to be added to the original opinion needs to be

increased. However, this means that there would a higher deviation between the orig-

inal opinion and the modified opinion of an inconsistent DM, leading to lower HD for

an individual. Following this description, considering the trade-off between the speed

of CRP and the level of HD is a must in construction of feedback mechanisms for

static decision environments. A considerable number of research studies have been

devoted to the design of efficient feedback mechanisms by considering the aforemen-

6



tioned trade-off, however, the developed models are dependent to the representation

structures used for opinion expressions. This means that the developed models are

opinion-dependent and are not generalizable to other decision environments with dif-

ferent types of opinion representation structures.

1.2.2 Dynamic GDM: Dynamic Alternatives

As described in Section 1.1, the CRP in dynamic GDM could be more challenging

compared to the static counterpart due to the dynamical changes in environment.

The dynamic environment in such models refers to the dynamic changes of the set

of alternatives, attributes, DMs, and the importance weights of DMs. In this dis-

sertation, we deal with the situation, in which the set of alternatives is dynamically

changing from one discussion round to another. This could be a realistic situation in

decision-making due to the fact that alternatives to be assessed could vary in each

discussion round based upon the availability of new alternatives and/or the feasibility

of the previous set of alternatives [43]. The CRP under such a dynamic environment,

however, becomes complicated and computationally inefficient. Therefore, the effi-

cient management of DMs and their interactions within the CRP could be of great

importance for reducing the complexity of dynamic decision-making. Furthermore,

consensus assessment and recommendation generation for DMs to reach a desired level

of consensus should also be designed efficiently to reduce their associated complexity

and to speed up the CRP. In this regard, management of the attitude and interest of

DMs, proper and dynamic adjustment of the consensus threshold and DMs’ impor-

tance weights could play an important role in decreasing the associated complexity

to dynamic decision-making.
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1.2.3 ODMs: Trust Building Through Opinion Similarity

The study of opinion dynamics (OD) aims at understanding how opinions evolve

over time among a group of interacting agents. The arithmetic mean of agents’

opinions in a previous time-step is used to determine how agents’ opinions change over

time. It has been decades since opinion dynamics models (ODMs) were developed

utilizing time as the main element of dynamism. The developed models can generally

be categorized into discrete-in-opinion and continuous-in-opinion models. One can

refer to the Voter [45] and Sznajd [46] models as well-known discrete ODMs, where

models such as the DG model [47], and BC models including the HK model [48] and

DW model [49, 50] are of well-known continuous ODMs. The classic models have

been extensively studied, with a variety of variants being proposed in recent years to

improve their fusion process. Even though the developed ODMs show encouraging

results, however, there still exist several challenges that need to be addressed more

efficiently as listed below:

1. It is a new research direction in ODMs to express opinions using linguistic repre-

sentation structures, and the preliminary results are encouraging. There is, how-

ever, room for improvement in the development of linguistic ODMs (LODMs)

based on a more generalized opinion representation structure such as Z-numbers.

2. Even though notable efforts have been made to the design of minimum cost

consensus models for ODMs, however, the willingness of agents to either accept

or refuse the suggested modifications is missing. In ODMs, the willingness is

usually addressed through BC models, yet they conduct bias in evolution of

agents’ opinions.

3. The agents’ willingness is typically characterized by BC notion in ODMs. Such

models rely on the opinion similarity to build trust among agents, meaning

that only agents with similar opinions trust each other and an agent’s opinion
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is formed by means of the trusted peers. Such models can influence agents’

interactions in a biased manner, and agents’ opinions might be influenced by

within group factors (e.g., peer pressure and group pressure).

1.3 Solutions

The three main research problems throughout this dissertation were discussed in

Section 1.2. Following that, here we elaborate more on solutions to the aforementioned

problems.

1.3.1 RL-Based Optimization of the CRP and HD Trade-Off

As mentioned in Section 1.2.1, the issue of the trade-off between the CRP speed and

HD of DMs arise from the amount of the modifications that inconsistent DMs need

to employ to modify their initial opinions. High level of modifications increases the

speed of CRP, but lowers the HD of DMs. In order to address this issue, we resort to

an reinforcement learning (RL)-based optimization strategy in order to automatically

adjust the level of modifications so as to speed up the CRP, while keeping the HD of

DMs as high as possible.

One way to realize RL is thorough Markov decision processes (MDPs). Therefore,

in order to enable the application of RL in GDM, it is required to firstly convert the

decision-making problem into an MDP. To this end, it is proposed to resort to the

consensus degree (CD) of DMs as the states of the underlying MDP, where it will be

proved that such modelling of states satisfies the Markov property, meaning that CD

of DMs at a specific time-step, e.g., t+1, does only depend on values taken from the

previous time-step, i.e., t, and the rest of the history of states, i.e., t = 0, 1, . . . , t− 1,

are not required to determine the value of the current state. Following this formula-

tion, RL could be realized for addressing the trade-off problem by adjustment of the

amount of modifications to be sent to inconsistent DMs. Other than this, it will be
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shown that the adjustment of the DMs’ importance weights could also contribute to

the speed of CRP. Therefore, an RL-based framework will also be developed for the

adjustment of DMs’ weights to further speeding up the CRP. The reason we resort to

the RL is that such a framework is of great generalization capabilities, meaning that

once an RL agent is trained to adjust the level of modifications and weights of DMs

in a specific decision-making environment, the same agent could also be employed in

other decision-making environments without re-training.

1.3.2 Computationally Efficient Dynamic GDM

To address the associated challenges with dynamic GDM mentioned in Section 1.2.2,

three major contributions are made to the dynamic decision-making in this disser-

tation. First, it is proposed to divide the initial set of DMs into several groups

depending on the number of available attributes. Each group of DMs are supposed

to focus on only one attribute for the sake of opinion expressions. This idea, on the

one hand, takes into account the expertise and interest of DMs. On the other hand,

it helps with reducing the computational complexity of dynamic decision-making due

to the fact that DMs’ opinions would be of a lower dimension as they only provide

their opinions w.r.t. a single attribute. Following this, the consensus assessment level

will also be reduced to a two-level mechanism instead of the typical three-level con-

sensus assessment. Second, due to the fact that alternatives are changing from one

discussion round to another, there is a need to look at the history of alternatives to

see which one would be the best one, even though it has been removed from the set

of alternatives. In order to enable this property, it is proposed to equip the dynamic

decision-making framework with a memory cell so as to put aside the best alternative

at the current time-step to be passed to the next time-step to be evaluated w.r.t. the

new set of available alternatives. Third, in order to further reduce the computational

complexity of the model, we propose a technique based on the consensus evolution

networks (CENs) in order to adjust the consensus threshold in a meaningful way that
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could help with speeding up the CRP.

1.3.3 Blockchain-Enabled Trust Building

Following the challenges mentioned in Section 1.2.3, we aim to propose a general

framework that guides the agents towards a collective opinion considering their will-

ingness in accepting or refusing the suggested modifications. Therefore, we are con-

cerned with the design of an LODM, where agents express their initial opinions in

terms of Z-numbers. In order to remove withing group factors (e.g., peer and group

pressure) that might impact the agents’ opinions, and to model agents’ interactions

without concerning the opinion similarity, it is proposed to construct a safe and ef-

ficient communication regime using Blockchain technology. Within this regime, an

agent’s identity and opinion are not disclosed for other peers, yet we propose to build

trust among agents by just enabling them to see how many of their peers have ac-

cepted the suggested modifications by the moderator. To this end, to address the

associated challenges of ODMs, we propose the following solutions:

1. Unlike typical ODMs with numerical opinions, a framework is proposed to deal

with linguistic opinions in terms of Z-numbers.

2. The willingness of agents toward accepting or refusing the suggested modifica-

tions are considered in the constructed framework.

3. Unlike BC models that rely on the similarity of the agents’ opinions in order

to build trust between them, we propose the construction of a Blockchain-

based communication regime for trust building without concerning the opinion

similarity, removing bias in agents’ interactions.
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1.4 Thesis Contributions

GDM problems can be divided into three broad categories including static GDM,

dynamic GDM, and ODMs. This dissertation is devoted to make contributions to

each of these broad categories by proposing novel decision-making strategies to not

only address the associated challenges to each category, but also to contribute to the

efficiency of the CRP and computational complexity.

This dissertation contributes to the static GDM models by resorting to RL

in order to remove the long-standing limitation of such models in terms of their

generalization capabilities. The developed static models suffer from the fact that they

are dependent to the representation structure of opinions, meaning that a developed

model for a specific GDM problem with a specific type of opinion representation

structure is not generalizable to another model with a different opinion representation

structure. The proposed framework based on the RL removes this barrier by modeling

the decision-making problem as an MDP.

Dynamic GDM models are known for suffering from computational complexity

due to the dynamical changes of the decision variables. This dissertation, as discussed

in Section 1.3.2, proposes a novel and general framework to deal with the complexity

of dynamic multiple-attribute GDM (MAGDM) problems through dividing DMs into

several groups w.r.t. the available attributes, and by dynamically adjusting the value

of consensus threshold so as to speed up the CRP withing groups. The proposed

model could deal with the dynamical changes of the set of alternatives.

Within the framework of the third category of models, i.e., ODMs, unlike BC

models that consider the willingness of the agents by resorting to their opinion sim-

ilarity that conducts bias in agents’ interactions for trust building, this dissertation

removes the limitation on opinion similarity for trust building. Other than construct-

ing a novel LODM that benefits from advantages of Z-numbers for opinion expression,

the proposed framework makes use of the Blockchain technology to provide a secure
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and efficient communication regime for agents’ interactions, yet building trust among

them without concerning the opinion similarity of agents.

Finally, in terms of applications, this dissertation makes use of the proposed

dynamic GDM model to formulate the fault location problem in distributed power

systems as a decision-making problem. In this regard, the developed framework is

used to locate open-circuit faults such as load-loss (LL), generator-outage (GO), and

generator-ground (GG) faults for the practical verification of the proposed dynamic

GDM model.

1.5 Outline

The structure of the subsequent chapters of this dissertation is as given below:

Chapter 2 is devoted to the review of state-of-the-art GDM and ODMs. In

this chapter, the major elements of GDM and ODMs are firstly introduced and the

associated decision-making problems are formulated. This is then followed by a com-

prehensive review on the recent advancements in both category of models and the

leading-edge techniques and technologies are surveyed. Following this review, the

research gaps of both models that are either not addressed or are not efficiently ad-

dressed are found and are defined as the research problems to be addressed in this

dissertation.

Chapter 3 relates to the first research problem of this dissertation, i.e., the static

GDM. For this research problem, i.e., the trade-off between the speed of the CRP and

HD of DMs, this problem is firstly discussed in detail and the associated challenges are

highlighted. Following this, the formulation of the problem through MDPs is given

and the Markov property is validated for the decision-making problem to verify the

applicability of RL in the corresponding decision problem. Algorithms for training

the RL agents are precisely discussed and the effectiveness and generalizability of the

proposed technique are verified through the presented simulation studies.
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Chapter 4 discusses the second research problem, i.e., the dynamic GDM with

dynamic set of alternatives. In this regard, the general framework of the proposed

method is illustrated, which is followed by the problem formulation and the practical

verification of the proposed framework.

Chapter 5 is mainly focused on addressing the third research problem, i.e.,

ODMs, where the general limitation of BC models for trust building is firstly demon-

strated and discussed. Then, the proposed LODM based on Z-numbers and Blockchain-

enabled trust building mechanism is formulated, which is then followed by illustration

of the feasibility of the proposed framework and the attained results w.r.t. different

Blockchain protocols.

Chapter 6 presents the attained results by each developed model in Chapters

3, 4, and 5. In this chapter, the detailed discussion on the attained results along

with the illustrations and tables associated with different experiments for the static,

dynamic, and OMDs are presented.

Chapter 7 concludes the dissertation. It firstly begins with a brief review on the

general problems addressed in this dissertation along with a short discussion on the

proposed solutions. The advantages and disadvantages of the proposed frameworks

are discussed and the future research directions have been spotlighted.
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Chapter 2

Literature Review

This chapter is devoted to a very comprehensive review on GDM and ODMs. In

this regard, we firstly give a brief introduction to both kinds of models, and, then,

we specifically focus on the recent developed consensus models under the framework

of GDM and ODM. Following this review, we will identify research gaps that are

required to be further studied, for which we propose solutions in accordance with

what discussed in Chapter 1.

2.1 Background: GDM and ODMs

In GDM, it is usually assumed that a set of DMs D = {d1, . . . , dn}, with n being the

total number of DMs, aim at giving orders to a set of alternatives X = {x1, . . . , xq}

w.r.t. a set of attributes A = {a1, . . . , am} based on the opinions of the group.

The framework for the consensus-based solution to this decision problem through

the soft methodology is depicted in Fig. 2.1. Depending on the decision problem

and the available set of alternatives and attributes, the initial opinions of DMs are

passed into the consensus process block. In case that the consensus level among

DMs satisfies a given threshold, the CRP ends up and the selection process gets

started. Otherwise, a feedback mechanism gets activated and inconsistent DMs will

be provided by recommendations on how to change their opinions for the sake of

consensus reaching. As it can be observed, time does not play a role in this classical

dynamic consensus model. However, in ODMs, time does play an important role in

the modelling of dynamism.

15



Problem, Set of 
Alternatives and 

Attributes

Decision Makers

Evaluations

Consensus 
Measure

Enough 
Consensus?

Advice 
Generation

Selection 
Process

Feedback
Mechanism

Consensus 
Process

YES

NO

Figure 2.1 – The general framework of the consensus reaching process.

In ODMs, the DMs are usually referred to as agents, however, in order to unify this

term for both classical dynamic consensus and ODMs, we use the terminology “DM”

for both models. In ODMs, it is assumed that each DM di (i = 1, . . . , n) expresses

an opinion of the form σi(t) at time t (t = 0, 1, 2, . . .). It is also assumed that the ith

DM gives a weight to the jth DM as wij satisfying wij ≥ 0 and
∑n

i=1wij = 1. Then,

the opinion evolution of the ith DM is modelled as follows:

σi(t+ 1) =
n∑

j=1

wijσj(t) = wi1σ1(t) + . . .+ winσn(t), (2.1)

or equivalently,

Σ(t+ 1) =W × Σ(t), (2.2)

where Σ ∈ Rn and W ∈ Rn×n. This fusion process can lead to a consensus among

DMs in case that limt→∞ σi(t) = C, where i = 1, . . . , n, and C is a constant and it is
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called the consensus opinion.

Definition 1 ([48]). DMs d1, . . . , dn will form a consensus if for any initial set of

opinions Σ(0) ∈ Rn, there exists a constant value C ∈ R for which limt→∞ σi(t) = C,

with i = 1, . . . , n.

Following the Definition 1, it is worth mentioning that in case the fusion process

ends up with two or more than two different consensus opinions, a polarization or

fragmentation will happen, respectively.

2.2 Opinion Representation Structures

In construction of GDM and ODMs, the opinion representation structure plays a

vital role. With opinion representation structure, we mean how DMs express their

opinions, where it could be in terms of numerical or linguistic opinions. To this end,

we firstly review some of the mostly-used structures for opinion expression in GDM

and ODMs.

2.2.1 Preference ordering

This representation format can be used to provide orders for a set of alternatives

from the best to the worst. In particular, for a set of alternatives X = {x1, . . . , xq}, a

DM can express opinions in terms of preference ordering as Ok = {ok(1), . . . , ok(q)},

with ok(.) being a permutation of {1, 2, . . . , q} from the viewpoint of the kth DM. For

instance, suppose that four alternatives X = {x1, x2, x3, x4} are put into discussion

and the first DM d1 provides evaluations in terms of preference ordering as {3, 2, 4, 1}.

This means that from the viewpoint of d1, the best alternative is x4 and x3 is the

worst.
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2.2.2 Multiplicative preference relations

The multiplicative representation format leads to numerical preference relations that

interpret the ratio of the preference degree of an alternative over other alternatives

in a given scale. Specifically, for the DM dk, the multiplicative preference relation

over the set of alternatives X ∈ Rq could be of the form of a matrix as P = [pij]q×q,

being pij belonged exactly to a designated scale to indicate the preference intensity

of alternative xi over the alternative xj. One of the most-widely used scales is the

Saaty 1-9 scale. In this regard, a preference value of pij = 1 denotes no difference

between alternatives xi and xj from the viewpoint of a DM, while pij = 9 indicates

that xi is absolutely preferred to xj.

2.2.3 Fuzzy preference relations

Fuzzy preference relations could be referred to as the most widely-used representation

structure. It is a numerical representation and could be defined as a fuzzy set on the

product set X × X . It is often characterized by means of a membership function

(MF) µP : X × X → [0, 1]. When the cardinality of the set of feasible solutions X is

small, a fuzzy preference relation can be expressed via a matrix P = [pij]q×q, where

pij = µP (xi, xj) with i, j ∈ {1, . . . , q}, and it indicates the preference intensity of

alternative xi over the alternative xj. For instance, pij = 0.5 shows the indifference

evaluation between alternatives xi and xj, or pij = 1 denotes that xi is absolutely

preferred to xj. In this representation, it is required to set pii = 0.5, with i = 1, . . . , q.

In case pij + pji = 1 (∀i, j ∈ {1, . . . , n}), it is said that the evaluation matrix P is

additive reciprocal and the fuzzy preference relation is often called additive preference

relation.
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2.2.4 Linguistic preferences

The linguistic assessment of DMs can be enabled by resorting to linguistic term sets

(LTSs) and computing with word (CWW) methodologies. A balanced LTS S =

{si|i = 0, 1, . . . , 2r}, is a completely ordered and finite set with odd cardinality,

where r is a nonnegative integer value. In this LTS, si represents a linguistic variable,

where for two arbitrary linguistic values si and sj, the following criteria hold: 1)

it is an ordered set, i.e., si ≤ sj iff i ≤ j, and, 2) there is a negation operator

for which neg(si) = sj if i + j = 2r. An example of an LTS can be S = {s0 =

‘very poor’, s1 = ‘poor’, s2 = ‘slightly poor’, s3 = ‘fair’, s4 = ‘slightly good’, s5 =

‘good’, s6 = ‘very good’}.

The semantics of linguistic terms in an LTS can be extracted by means of type-1

and interval type-2 fuzzy sets, however, to employ LTSs in GDM problems, CWW

tools are required to be developed. This has been initiated in [51] by introducing the

concept of 2-tuple linguistic modeling.

Definition 2. Given an LTS S = {s0, s1, . . . , s2r}, suppose that β ∈ [0, 2r] is resulted

by means of a symbolic aggregation operation on S. Then, the equivalent information

to β can be expressed in terms of a 2-tuple as follows:

∆(β) = (si, α), with

si, i = round(β),

α = β − i, α ∈ [−0.5, 0.5),
(2.3)

where ∆ : [0, 2r]→ S × [−0.5, 0.5) and ‘round’ is used to denote the round operation.

In this regard, the following definition represents how to extract the numerical

information from a 2-tuple linguistic assessment.

Definition 3. Given an LTS S = {s0, s1, . . . , s2r} and a 2-tuple (si, α), the numerical
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value β ∈ [0, 2r] of this 2-tuple can be evoked by means of the function ∆−1 as follows:

∆−1(si, α) = i+ α = β, (2.4)

where ∆−1 : S × [−0.5, 0.5)→ [0, 2r].

Following the above definitions, it is straightforward that a linguistic term si ∈ S

can be represented by means of a 2-tuple as si = ∆(si, 0). To this end, in what

follows, we review some of the commonly-used linguistic representation structures in-

cluding fuzzy Z-numbers, hesitant fuzzy linguistic preferences, intuitionistic linguistic

preference relations, and interval linguistic preference relations.

Z-numbers contain two different components to describe an uncertain variable and

have been extensively used in different applications including decision analysis.

Definition 4 ([52]). A Z-number, denoted by Z = (A,B), contains two components,

where the first component, i.e., A, is a constraint on the values that a real-valued

uncertain variable can take. The second component, i.e., B, denotes the certainty of

the first component.

As it can be observed from Definition 4, Z-numbers rely on two LTSs to describe

an assessment on a given variable. As an example, the first component of a Z-number

can be taken from the LTS S = {s0 = ‘very poor’, . . . , s6 = ‘very good’} as before,

and, the certainty about the first component can be chosen from another LTS de-

fined by S ′ = {s0 = ‘very uncertain’, s1 = ‘uncertain’, s2 = ‘slightly uncertain’, s3 =

‘neutral’, s4 = ‘slightly certain’, s5 = ‘certain’, s6 = ‘very certain’}. To this end, a

Z-number can be represented by an ordered pair of fuzzy numbers as Z = (si, s
′
i)

with si ∈ S and s′i ∈ S ′, such as Z = (s6, s
′
6) = (‘very good’, ‘very certain’).

Hesitant fuzzy linguistic term sets (HFLTSs) are also useful tools for DMs to

express their opinions by making use of several LTSs simultaneously. This is to over-

come the limitations of granularity of DMs’ knowledge that might not be concurrent

with the granularity of a given single LTS.
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Definition 5 ([53]). For a given LTS S = {s0, s1, . . . , s2r}, a HFLTS, denoted by H,

is an ordered and finite subset of consecutive linguistic terms of S.

By resorting to the above definition, it is evident that different HFLTSs extracted

from a given LTS may contain different number of linguistic elements. In this re-

gard, several schemes have been developed to normalize HFLTSs. For instance, two

normalization principles, called α-normalization and β-normalization, are proposed

in [54] that rely on the risk preferences of DMs to remove some elements from the

given HFLTSs (α-normalization) or add elements (β-normalization) to maintain the

same number of elements in each HFLTS. To this end, the definition of hesitant fuzzy

linguistic preference relations (HFLPRs) can be given as follows.

Definition 6 ([54]). Assume that MS is a set of HFLTSs constructed based on the

LTS S. An HFLPR can then be represented by a matrix P = (pij)n×n, where pij ∈MS

and the negation operator holds for pij, i.e., neg(pij) = pji.

As an example, let S = {s0 = ‘very poor’, . . . , s6 = ‘very good’} be an LTS as

before. An HFLPR can then be constructed as follows:

P =


{s3} {s2, s6} {s1, s3, s4}

{s3, s5} {s3} {s4, s5, s6}

{s1, s2, s3, s4} {s3, s5} {s3}

 .

Another linguistic representation structure that we review is the intuitionistic

linguistic fuzzy preference relations (ILFPRs). The above-mentioned representation

structures are mainly used to express the preferred assessments of DMs through either

numerical or linguistic preference relations. ILFPRs, however, enable DMs to provide

not only their preferred assessments, but also their non-preferred assessments. This

representation structure is built upon the intuitionistic fuzzy sets (IFSs) that were

firstly introduced by Atanassov [55]. The IFSs are then used by Szmidt and Kacprzyk

[56] to propose IFPRs that are constructed based upon numerical values. The oper-
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ations on IFSs are then extended to linguistic intuitionistic fuzzy sets by Yager [57],

which then led to the introduction of the linguistic intuitionistic fuzzy variables [58]

to qualitatively represent the preferred and non-preferred assessments of DMs.

Definition 7 ([59]). An intuitionistic linguistic set Ã on the set of alternatives X

can be defined as Ã = {⟨xi| < sθ(xi), (u(xi), v(xi)) >⟩}, where sθ(xi) ∈ S is a linguistic

term, u(xi) and v(xi) are used to denote the preferred and non-preferred degrees of the

alternative xi ∈ X to the designated linguistic variable sθ(xi), with u(xi), v(xi) ∈ [0, 1]

and u(xi) + v(xi) = 1,∀xi ∈ X .

With the characteristics of the intuitionistic linguistic sets given in Definition 7,

an intuitionistic linguistic variable can be represented by ã = (sθ(a), < u(a), v(a) >).

Then, an ILFPR can be defined as follows.

Definition 8. An ILFPR on a set of given alternatives X can be represented by a

matrix of the form P = (pij)n×n, where pij = (< sθij , (uij, vij) >) for i, j = 1, . . . , n,

sθij ∈ S, uij and vij being the preferred and non-preferred degrees of alternative xi

over xj w.r.t. the designated linguistic term θij.

As an example, having the LTS S = {s0, . . . , s6} as before, an element of an

ILFPR P can be represented by p12 =< s2, (1, 0) >.

2.3 Consensus Models to Support Classical GDM

Consensus models are equipped with a feedback mechanism, which is typically re-

ferred to as recommendation mechanism, and it aims to help inconsistent DMs with

modifying their opinions to be guided toward the collective opinion of the group

through either a couple of discussion rounds or in one step. The former scheme

is usually employed by means of identification and direction rules, while the latter

scheme can be realized in the context of optimization models. Despite of this general

categorization, we aim to review the most-recent advances in the design of feedback
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mechanisms developed for novel preference structures and operators by considering

the behaviour of DMs, the size of the group, and the employed optimization schemes.

2.3.1 Developed preference structures

The design of a feedback mechanism is highly dependent to the preference structure

and requires the development of tools for the sake of consensus reaching. For in-

stance, linguistic preference relations with self-confidence (LPRs-SC) is proposed in

[60], where a two-step feedback mechanism is suggested in [61] to not only modify the

opinions of DMs, but also to modify their corresponding level of self-confidence. This

has been enabled by proposing an aggregation operator and a self-confidence score

function to meaningfully adjust the weights of DMs. The authors in [62] introduce

the new concept of Pythagorean fuzzy linguistic preference relations (PFLPRs) along

with the Pythagorean fuzzy linguistic values (PFLVs) that account for the linguistic

membership and non-membership degrees and are driven from the Pythagorean fuzzy

sets theory proposed by Yager et al. in 2013 [63]. Based upon the definition of consis-

tency, individual CD, and group CD for PFLPRs, a multi-step feedback mechanism

is proposed to adjust the individual CD of the worst DM at each iteration. The inter-

esting feature of the proposed mechanism is that the consistency level of evaluations

is retained even after the employed adjustments. In [64], authors proposed a novel

preference structure, called flexible linguistic expressions (FLEs), where DMs are al-

lowed to express their opinions by utilizing different subsets of a given LTS along

with the distribution information over the expressed subsets. This structure could

be referred to as an extension to the linguistic distribution (LD) structure, where

not only the LDs, but also incomplete LDs, possibility distribution for HFLTSs and

proportional HFLTSs can be extracted from this representation. To deal with un-

certainties, an aggregation operator with accuracy and minimum preference loss is

proposed for FLEs to construct the collective evaluation and the feedback mechanism

benefits from consensus rules with minimum preference loss to adapt inconsistent
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Table 2.1 – Recently-developed preference representation structures for GDM.

Reference Representation Structure
[74, 75] Pythagorean linguistic preference relations
[76] Flexible Linguistic Expressions
[77] Double hierarchy linguistic preference relations
[78] Comparative linguistic expressions
[79, 80] Z-numbers and their extensions
[81] Nonlinear preference relations
[82] Self-confident linguistic preference relations
[83] q-rung orthopair fuzzy preference relations
[84] Complex intuitionistic fuzzy preference relations
[85, 86] Probabilistic linguistic preference relations
[87] Heterogeneous preference relations

opinions. More recently, a preference structure is proposed in [65] based upon aug-

menting the concepts of self-confidence degree and double hierarchy linguistic pref-

erence relation (DHLPR). The consensus model is then proposed to be built based

on the individual and collective priority vectors, where a feedback mechanism based

on the identification and direction rules is proposed to adjust inconsistent DHLPRs.

Other representation structures based on the extended versions of Z-numbers such

as ZE-numbers [66] and Z probabilistic LTSs [67], Atanassov’s interval valued intu-

itionistic fuzzy sets and trapezium clouds [68], nonlinear preferences [69], unbalanced

probabilistic LTSs [70], incomplete q-rung and interval valued q-rung orthopair FPRs

[71, 72], and complex LTSs [73] have also been developed for the sake of decision

making. Table 2.1 summarizes the developed preference representation structures in

the recent literature works.

2.3.2 Developed operators

New preference structures typically require the introduction of novel operational tools

for the sake of consensus reaching in GDM problems. In this section, we review some

recent efforts toward the development of useful operators to enable consensus reaching
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through feedback mechanisms under different preference structures.

Interval type-2 fuzzy sets (IT2FSs) have attracted the attention of researchers due

to their efficiency in modelling uncertainties. The authors in [88] proposed the con-

version of classical linguistic terms into triangular IT2FSs and by developing weighted

mean and weighted semi-absolute deviation operators for IT2FSs, they constructed a

consensus model for portfolio allocation. The feedback mechanism in this work con-

siders the acceptable tolerance level of DMs in adjusting their preferences and maxi-

mum return and minimum risk models are then suggested for preference adjustment.

An improved version of the Euclidean and Hamming distance measures for ILFPRs

are proposed in [89], and, accordingly, a feedback mechanism is built upon adjusting

the preference elements based on their closeness to a collective one. Various opera-

tional laws for probabilistic linguistic q-rung orthopair fuzzy sets (PLq-ROFS) have

been recently proposed in [90], where the authors proposed to extract the semantics

of PLq-ROFS by means of novel linguistic scale functions (LSFs). The comparison

between PLq-ROFSs is enabled by introducing new score and accuracy functions,

where the aggregation of PLq-ROFSs is performed by means of PLq-ROF weighted

averaging and PLq-ROF ordered weighted averaging. The feedback mechanism ad-

justs the DMs’ preferences by basic operations on PLq-ROFSs and by involving the

correlation measures of each DM. Later in [91], authors proposed the integration of

neutrality aggregation into the q-ROFSs to construct a power aggregation operator

for the sake of GDM. For dual hesitant q-ROFSs [92] and dual probabilistic linguistic

environments [93], required operational laws are developed based on the Dombi and

Bonferroni mean operators for aggregating preferences and ordering alternatives in

the selection process. Furthermore, some attempts have been recently devoted to the

design of operators for Z-numbers based on the Archimedean t-norms and t-conorms

[94], distance operators for HFLTSs [95] and pair-wise preference relations [96]. Table

2.2 summarizes the developed operators in the recent literature works.
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Table 2.2 – Developed operators in the recent literature works.

Reference Developed Operators
[93, 92] Dombi operators and Bonferroni mean operators
[94] Archimedean t-norms and t-conorms
[91] Power neutrality aggregation operator
[96] Distance operator for evidential preferences
[95] Distance operator for hesitant information
[89] Intuitionistic multiplicative distance measures
[90] q-rung orthopair fuzzy weighted averaging operator
[88] Information measures for IT2FSs

2.3.3 Behavioural mechanisms

We generally refer to feedback mechanisms that reflect the DMs’ interests, trust

relations, attitude, and cooperative or non-cooperative behaviour in the consensus

process as the behavioural mechanisms. In what follows, we review the most-recent

advances in this type of feedback mechanisms.

Due to differences in the nature of decision environments or knowledge and expe-

rience of DMs, it is a common practice to take into account the interest of DMs in

selecting an attribute or a set of attributes to evaluate a predefined set of alternatives

[97]. Following this and for a diverse set of DMs, the construction of a heteroge-

neous decision environment is beneficial due to providing an opportunity for DMs to

express their opinions in terms of their preferred preference structures. Developed

techniques for heterogeneous decision environments are usually relying on proposing

and performing proper transformations to augment different structures into a homo-

geneous structure while ensuring the consistency among preference relations [98]. In

this regard, the most-recent techniques have focused on the unbalanced LTSs to ad-

dress the nonlinearities in DM’s cognition [99], case-based reasoning for emergency

decision-making [100], criteria interactions [101], and to deal with dynamic contexts

[102].

Another consideration in behaviour modelling for consensus reaching is the trust
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relationships between a set of anonymous DMs, which is usually realized through a

social network-based mechanism. We categorize these techniques under the large-

scale decision-making models, which will be given in the next section. However, it is

worth mentioning that in contrast to conventional trust or distrust models, recently-

developed techniques treat the trust among DMs as a matter of degree and novel

trust functions and trust scores have been proposed to model relationship among

DMs [103, 104]. The attitude of DMs could also be considered in behavioural mech-

anisms to reflect the attitude of DMs toward consensus reaching. To quantify the

attitude of DMs in a continuous ranging scale to reflect the pessimistic attitudes to

indifferent attitudes in construction of the trust relationships, an attitudinal trust

degree is proposed in [105], which makes use of an ordered weighted average (OWA)

operator guided by a unit-monotonic function. Considering the risk attitude of DMs

in alternative ranking through an evidential reasoning methodology [106] and con-

struction of linguistic quantifiers based upon the attitude of DMs [107] are of recent

trends in attitude-based feedback mechanisms.

As the last category of behavioural mechanisms, we review some recent advances

on managing the non-cooperative behaviour of DMs toward consensus reaching by

means of a feedback mechanism. The non-cooperative behaviour refers to the case,

in which the inconsistent DMs are reluctant to modify their opinions according to

the provided recommendations through the feedback mechanism. In particular cases,

even some DMs intentionally take opposite actions to the recommended adjustments.

Therefore, identifying and managing the non-cooperative DMs are of paramount im-

portance for consensus reaching due to their negative impacts in terms of adjustment

cost and consensus time. Weight punishment and exit-delegation are two commonly

used approaches to manage non-cooperative DMs. The former aims to penalize non-

cooperative DMs by reducing their designated weights so as to make them have less

impact on the decision made by the group. In the latter, the non-cooperative DMs are

removed from the group. In [108], the degree of conflict of DMs are used to identify

27



non-cooperative DMs, where a weight penalty based on the triangular fuzzy numbers

are considered for internal DMs, while external non-cooperative DMs are removed

from the group. For uncertain decision-making during the COVID-19 outbreak, a

co-operation degree is devised in [109] to assign DMs into multiple clusters, where

clusters with low co-operation degree are penalized with a low weight. By resort-

ing to the number of adjustments of each DM, a co-operation index is introduced in

[110] and it is proposed to take different actions for semi-cooperative and fully non-

cooperative DMs in terms of weight penalties. An anti-biased statistical mechanism

based upon a Biasedness index is proposed in [111] to manage non-cooperative DMs

through extreme, moderate, and soft weight punishment schemes.

2.3.4 Large-Scale GDM

Large-scale GDM (LSGDM) is usually referred to a decision problem that involves at

least twenty DMs [112]. Other than the size of the involved DMs, LSGDM approaches

need to deal with heterogeneous information due to the diversity of DMs in terms

of their background and level of expertise. Furthermore, the management of non-

cooperative DMs who interact through a designated social network platform could

also be referred to as other challenges that LSGDM are facing with. In this regard,

the most-recent works in LSGDM have focused on managing non-cooperative DMs

by considering their trust relationships in an interactive social network framework.

Management of the non-cooperative DMs is an inevitable part of LSGDM for the

sake of dimension reduction. This is usually performed by means of assigning DMs

into multiple clusters based upon some constructed similarity indexes, where DMs

with a lower value of the designated similarity index compared with other members

of a cluster can be excluded. Therefore, there is a trend of works on attempting to-

ward the design of efficient clustering-based mechanisms to deal with non-cooperative

DMs w.r.t. preference representation structures. By resorting to the CEN of a large

group of DMs, authors in [113] made use of the Louvain two-phase clustering algo-
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rithm [114] to extract communities. For heterogeneous representation structures, an

extended version of the k-means clustering algorithm could be employed based on

the Euclidean distance between the normalized preference relations and the cluster

centres. In this regard, cooperative and non-cooperative indexes of DMs and clusters

can be constructed based on the enlargement of the deviation between the original

and modified preferences [115] to manage non-cooperative DMs. The same structure

could be implemented based on the weight punishment mechanism for k-means [116]

or grey clustering [117] algorithms.

Another trend of LSGDM works follow the trust-based feedback mechanisms,

which are realized through social networks. This study is important owing to the fact

that trust relationships not only have impacts on the clustering process for dimension

reduction in LSGDM, but also can influence the CRP. Trust relationships are usually

modelled via directed and weighted trust graphs, where the nodes are assumed to be

DMs, edges of the graph denotes the trust relationships, and the designated weights

show the trust score from one DM to another. This modelling of trust relationships,

which is enabled by means of social network analysis, has a significant impact on re-

ducing the complexity of aggregation process by identifying the leadership behaviour

of DMs. This could also help with managing the non-cooperative DMs. The idea is to

divide DMs by means of clustering algorithms such as the one proposed in [118], where

a leader will be assigned to each cluster. In the feedback mechanism, followers (ordi-

nary members of a cluster) are suggested to follow the behaviour of the leader of the

cluster so as to adjust their opinions, while non-cooperative members will be assigned

a lower weight in the consensus process [119]. Opinion similarity could also be aug-

mented with trust relationships in construction of clustering algorithms for LSGDM in

order to involve the level of difference among opinions of DMs [120]. Other than build-

ing consensus based upon the opinion of trusted peers for a DM, recent studies show

that the opinions of distrusted peers could also help with consensus reaching [121].

This could be employed for social networks with high or medium density because for
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low density social networks, the collective intelligence level will be diminished when

the scope of distrust increases [122]. Besides the techniques developed for manag-

ing non-cooperative DMs, a novel scheme is presented in [123] in order to prevent

individual manipulation behaviour by an attitudinal weight-adjustment mechanism

and to prevent group manipulation behaviour through a minimum adjustment cost

framework under social network GDM.

A worthwhile research field in social network-based GDM is the trust propagation

in trust networks. A recent review on trust propagation in social networks is provided

in [124]. As it was mentioned earlier, trust relationships can be modelled via directed

and weighted graphs, where DMs are connected via either a direct or an indirect

path. In case of indirect paths, there is a need to estimate the value of trust among

DMs, which can be done by means of trust propagation techniques. The most-recent

literature works in this field of research are devoted to multi-path trust propagation

[125], linguistic trust propagation [126], and DMs’ weight adjustment through trust

propagation [127]. Managing the minority opinions [128], optimization schemes for

consensus reaching [129, 130], minimizing the information loss [131], and dealing

with incomplete preferences [132] are some interesting and open problems in social

network-based GDM.

2.3.5 Minimum adjustment cost

As it was mentioned earlier, the feedback mechanism can be realized through either

identification and direction rules or minimum adjustment cost mechanisms. The

former relies on an iterative approach to modify the opinion of inconsistent DMs

through multiple discussion rounds. This can in turn have some disadvantages such

as deviation of modified opinions from original ones in a great context, imposing

high computational cost, and delaying the CRP. In this regard, in the last decade,

we have witnessed the emergence of the minimum adjustment cost notion, where the

aim is to adjust the opinions of inconsistent DMs (DMs with lower CD than the given
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consensus threshold) in one step through optimization problems that are subject to

different constraints. The reader is referred to a detailed review on these techniques

given in [133]. In what follows, we review the most-recent feedback mechanisms

constructed based upon the minimum adjustment cost notion.

The basic minimum cost consensus model that is realized by means of an aggre-

gation operator could be constructed as follows:

min
n∑

i=1

ci|σi − σ′
i|

s.t. |σ′
i − σ′

c| ≤ ϵ, i = 1, . . . , n

σ′
c =

n∑
i=1

wiσ
′
i,

(2.5)

where ci denotes the unit adjustment cost of DM di, σi and σ
′
i show the initial and

modified opinions of DM di, respectively, n is the total number of DMs, and σ′
c is

the collective opinion. The unit adjustment cost is usually assumed to be constant,

however, in realistic decision-making this value is uncertain and the uncertainty has

been realized by means of interval values or distribution uncertainty. To this end, an

estimation mechanism is proposed in [134] to estimate ci by augmenting three different

constraints for giving higher costs to DMs who change their preferences frequently,

to model its uncertainty by means of an ellipsoidal set, and to force the sum of total

adjustments costs to be lower than the compensation cost of the moderator. The

minimum adjustment feedback mechanism developed in [135] is subject to a maximum

compromise limit, i.e., the adjusted preferences are required to be within a pre-defined

compromise interval which is rarely studied in social network GDM. Finally, a two-

stage feedback mechanism is proposed in [136], where in the first stage, the aim is to

determine reference points and to adjust the individual positional ordering of DMs,

which are then fed into the second stage for the recommendation generation. Table

2.3 summarizes the developed feedback mechanisms in the recent literature works.
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Table 2.3 – Developed feedback mechanisms in the recent literature works.

Feedback Mechanism Description Reference
Behavioral Mechanisms Mechanisms based on the trust relationships among DMs [97, 103, 104]

Developed mechanisms by considering the attitude of DMs [107, 106]
Management of the non-cooperative behaviour of DMs [108, 109, 110]
Management of the biased DMs [111]

Large-Scale GDM Models Trust-based mechanisms [127, 129, 120]
Trust propagation under social network [125, 122, 126]
Leadership and non-cooperative behaviours [119, 116, 117, 115,

113]
Minimum Adjustment Cost Behavioural mechanisms [123]

Developed mechanisms under social network analysis [135, 134, 126]
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Figure 2.2 – Timeline of some of most important milestones in ODMs.

2.4 Opinion Dynamics for Consensus Reaching

ODMs can be categorized into the time-modelling category of dynamic consensus

approaches. This means that time is involved in opinion evolution of DMs and is an

important parameter to model dynamism in the consensus process. The timeline of

some of the most important milestones in ODMs is represented in Fig. 2.2. In this

regard, we have arguably categorized these models into multiple categories by con-

sidering the DMs’ behaviour, developed models based on the social network analysis,

minimum adjustment cost or optimization models, and linguistic models. We then

provide a detailed description of the new insights that have been brought by means

of RL algorithms in classical dynamic consensus and ODMs.

2.4.1 Decision makers’ behaviour

To consider the willingness of DMs in accepting the provided recommendations through

feedback mechanisms, BC models provide the opportunity for DMs to only consider
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Figure 2.3 – The general framework of recommendation mechanisms with unknown
bounded confidence [3].

preferences that do not exceed their designated confidence levels. The BC level could

be either known or unknown, where the unknown levels are required to be estimated.

Fig. 2.3 depicts a general framework of BC models with known or unknown confi-

dence levels. The general idea is that for Pk = (pkij)n×n being the original opinion

of DM dk, and Pf = (pfij)n×n being the recommended advice generated through the

feedback mechanism, then, the DM dk will accept this recommendation if Dkf ≤ ϵk,

where Dkf is some distance function and ϵ ∈ [0, 1] is the confidence bound. One way

to deal with unknown bound of confidence is to estimate it via an interval [bk, b
k
] and

by setting a BC threshold τ . The estimation would be assumed accurate in case that

b
k−bk ≥ τ [3]. Then, based upon Dkc, i.e., the distance between opinion of dk and the

collective opinion, feedback rules can be generated. For instance, when b
k − bk ≥ τ

and Dkc > bk, the generated advice will be Pf = Pk + bk/Dkc × (Pc − Pk).

Self-persistence behaviour refers to the DMs’ adherence to their opinions, which

should be considered in the weight-adjustment phase of ODMs. One way to realize

this behaviour is through a trust network, where the self-persistence degree of DM
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di, i.e., αi, can form the diagonal elements of the weight matrix W as follows:

wii =

αi, deg−i > 0,

1, deg−i = 0,

(2.6)

where deg−i denotes the sum of the incoming edges to node di in the constructed

trust network of DMs. Other non-diagonal elements could also be shaped based on

α through an influence index,

𭟋i =
αi + κ +ϖ

3
, (2.7)

where κ = deg+i /(n− 1), ϖ = deg−i /3, deg
+
i denotes the sum of outgoing edges, and

n is the total number of DMs. The self-persistence guided weight assignment could

then be as follows:

wij =
𭟋j∑
k 𭟋k

(1− αi)aij, i ̸= j, (2.8)

where
∑

k 𭟋k denotes the sum of influence of one-step neighbours of di and aij denotes

the adjacency elements. This mechanism is extended the case that considers the

influence of two-step neighbours in [137].

The cognitive dissonance of DMs could also shape their communications and up-

dating rule of the ODMs [138]. One case of the cognitive dissonance is the situation,

in which a DM aims to eliminate the uncomfortable feelings, meaning that when

Dij(t) (the distance between opinions of di and a trusted peer dj at time-step t) is

larger than some confidence threshold ϵ, i.e., Dij(t) > ϵ, DM di feels uncomfortable

and breaks the connection with DM dj. Another case refers to a realistic situation

that DMs aim to build more connections so they feel the support of more DMs. Let

I(di,Σ(t)) = {dj|Dij ≤ ϵ, aij = 1} be the confidence set of di. Then, in case DMs di

and dj have a common trusted peer, shown by dk, where dk ∈ I(di,Σ(t))∩I(dj,Σ(t)),
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and Dij(t) ≤ ϵ, DMs di and dj can make a connection. Once the connections and

eliminations are done at time-step t, the weight-adjustment can be simply fulfilled as

follows:

wij =


1

|I(di,Σ(t))| , dj ∈ I(di,Σ(t)),

0, otherwise.

(2.9)

The concept of leadership behaviour has also been used to guide feedback mecha-

nisms in ODMs [139, 140]. The leader is usually referred to DMs with high influence

in the trust network, where different approaches are proposed for identifying the set

of leaders. One common way is to divide the complex network of DMs into multi-

ple sub-networks [141], construct the accessibility matrix [142], and perform iterative

searches in each sub-network to identify DMs with more influential connections [143].

Other than leadership in a group of DMs, the pressure imposed by the group could

also be categorized in the behavioural category of ODMs [144]. This is proposed to

model the situation, in which a DM feels pressured to give away an opinion which is

similar to the collective opinion of the group. A scheme based on the BC model is

proposed in [145] that accounts for the group pressure, where the updating rule of

opinions is formed as follows:

σi(t+ 1) =
(1− ρi)

∑
j∈I(di,Σ(t)) σj(t)

|I(di,Σ(t))|
+ ρiσc(t), (2.10)

where σc(t) is the weighted average of DMs’ opinions and ρi is used to show the group

pressure. Other than the group pressure, a DM may also suffer from the peer pressure

[146]. Other behavioural actions such as stubbornness [147] and prejudice [148] could

also affect the ODMs. To model these all behavioural actions, a stress function of the
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following form is proposed in [149]:

Θi(σi(t), σi(t− 1), t) = ζi
(
σi(t)− σ+

i (t)
)2

+ υ(t)
n∑

j=1

|aij| (σi(t)− sign(aij)σj(t− 1))2 ,

(2.11)

where ζi is used to model the prejudice of the DM di, σ
+
i (t) shows the constant

prejudice of the DM di, and υ(t) denotes the peer pressure. Following this structure,

the aim is to minimize the stress function so as to find the update rule of DMs. It

is resulted that the following update rule will minimize the stress function given in

(2.11):

σi(t) =
ζiσ

+
i + υ(t)

∑n
j=1 aijσj(t− 1)

ζi + υ(t)γi
, (2.12)

where Γ = diag[γ1, . . . , γn] = L+A, γi =
∑n

j=1 aij, and L and A are the Laplacian and

signed adjacency matrix of the DMs’ signed network. By resorting to the graph theory,

the willingness of DMs [150], the problem of unilateral DMs [151] and antagonistic and

indifference DMs [152] have also been recently addressed under the opinion dynamics

framework.

2.4.2 Social networks

Most of the recent research works fall into this category of methods for ODMs. One of

the most-recent advances rely on the continuous opinion and discrete action (CODA)

model [153], which can be categorized as a continuous ODM. Developing ODMs with

the simultaneous evolution of opinions and actions under social network analysis

is an interesting research topic. A model is recently developed in [154] under the

assumption that DMs’ opinions are private [155] and cannot be obtained by others

unless they are directly connected in the social network. The actions, however, are

public and DMs are aware of others’ actions. The relationship between actions and
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opinions is modelled as follows:

Ai(t) =

0, σi(t) ∈ [0, hi)

1, σi(t) ∈ [hi, 1],

(2.13)

where hi is a threshold for action selection of DM di. Then, based upon the rela-

tionships among DMs, the update rule given in (2.14) has been constructed, where

µ ∈ (0, 0.5] is a convergence parameter.

σi(t+ 1) =



σi(t), aij = 1 ∧ |σi(t)− σj(t)| > ϵ,

σi(t) + µ (σj(t)− σi(t)) , aij = 1 ∧ |σi(t)− σj(t)| ≤ ϵ,

σi(t), aij = 0 ∧ |σi(t)− Aj(t)| > ϵ,

σi(t) + µ (Aj(t)− σi(t)) , aij = 0 ∧ |σi(t)− Aj(t)| ≤ ϵ.

(2.14)

Recently, a novel model under the structure of a social graph is proposed in [156],

where the DMs’ interactions do not rely on the proximity of their opinions, but on

the influence of their opinions on one topic to other topics. The continuous opinion

evolution of DMs is modelled as follows:

σi(t+ dt) = σi(t) + C∆σi
(t), (2.15)

where C is used to denote the influence of opinions and ∆σi
is as follows:

∆σi
=

1− β(Pi)

n− 1

∑
j ̸=i

ζ(Pi, Pj)[σj(t)− σi(t)]dt

+ β(Pi)[u(Pi)− σi(t)]dt+ γwi(t), (2.16)

where β(Pi) ∈ (0, 1] is the insensitivity of DM di that holds the Pi personality [157],

ζ(Pi, Pj) is used to model intensity of interactions among DMs, u(Pi) accounts for
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the prejudice of a DM, and wi(t) denotes the endogenous process of opinion evolution

for each DM [158]. Other models are also developed for different types of interactions

in opinion evolution of DMs. For a set of homogeneous DMs, the effect of interaction

intensity is investigated in [159] for biased (opinion-dependent) and unbiased (opinion-

independent) intensity, where the results are then extended to heterogeneous DMs

in [160]. Furthermore, by considering the dependency of DMs’ interactions to their

current and past opinions, a memory-based connectivity mechanism for ODMs under

social network is proposed in [161]. In addition, for social networks with switching

topology, an ODM is proposed in [162], where under an arbitrary switching signal, the

system bipartite (polarization) consensus or consensus is guaranteed. The evolution

of the network over time is studied in [163] by resorting to constructing a rule-base

using a distance matrix, which contains the proximity of opinions of paired DMs. The

network could also evolve w.r.t. temporal activity patterns such as contact strength

of DMs and daily patterns, where the impact of these temporal activities on the speed

of consensus is investigated in [164].

Another interesting research trend in social network-based ODMs is to handle

uncertainties in DMs’ opinions [165]. One way to consider uncertainties is to introduce

novel preference structures for DMs to express their opinions. Recently, the concept of

interval-valued opinions by considering the uncertainty tolerance of DMs is proposed

in [166]. It is proposed to model opinions by numerical intervals σi(t) = [σi(t), σi(t)] ⊆

[0, 1], with σi(t) ≤ σi(t). Then, for the DMs with uncertainty tolerances, the opinion

evolution follows the following updating rule:

σi(t+ 1) = Tiσi(t) +
∑
j ̸=i

wijσj(t), (2.17)

σi(t+ 1) = Tiσi(t) +
∑
j ̸=i

wijσj(t), (2.18)

where Ti is the trust of DM di. As for DMs without uncertainty tolerances, the update
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rules are the same as above, however, the terms σj(t) and σj(t) in the summations are

replaced with fij(t), which is an accurate estimation of opinion dj from di. Linguistic

models have also been proposed to deal with associated uncertainties, which will be

reviewed in the next section.

2.4.3 Linguistic models

As it was mentioned earlier in Section 2.2.4, uncertainty in opinions can also be

modelled through linguistic models. This is a new concept in ODMs and some efforts

have been devoted to the design of linguistic models based on the 2-tuple and fuzzy

linguistic preference structures for opinions evolution [167]. In what follows, the

most-recent literature works on linguistic models are reviewed.

In [168], authors propose a personalized individual semantic LODM under the BC

framework. Following Definition 3 and the idea of numerical scale models for LTSs

[169], the numerical scale of an LTS S = {s0, . . . , s2r} for (si, α) is defined as follows:

NS(si, α) =

NS(si) + α (NS(si+1)−NS(si)) , α ≥ 0,

NS(si) + α (NS(si)−NS(si+1)) , α < 0.

(2.19)

Then, the process of a linguistic model with personalized individual semantic consists

of three steps; (1) semantics translation, in which a linguistic term is translated into

a semantic in the interval [0, 1]; (2) numerical computation, which takes semantics as

input and outputs a numerical value in interval [0, 1]; (3) semantic retranslation, in

which the output of numerical computation step will be retranslated into a 2-tuple.

In this regard, the proposed model can be constructed by following three main steps

discussed below.

The first step for DMs is to estimate the semantics of other peers as given below:

eij(t) = κNSj(σj(t)) + (1− κ)NSi(σj(t)), (2.20)
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where eij(t) with i, j = 1, . . . , n and i ̸= j denotes the estimated semantic of DM dj

by DM di based on their familiarity modeled by κ. Then, the confidence set of DM

di can be constructed as follows:

I(di, σi(t)) = {dj| ∥NSi(σi(t)− eij(t))∥ ≤ ϵ}, (2.21)

and, then, the weights of DMs can be adjusted in the same way as discussed in Eq.

(2.9). The update rule of semantics is proposed to be as follows:

NSi(σi(t+ 1)) = wi1(t)ei1(t) + . . .+ win(t)ein(t). (2.22)

Finally, the evolution of opinions can be modeled as given below:

σi(t+ 1) = NS−1
i (NSi(σi(t+ 1))), (2.23)

where NS−1
i is given in Definition 2 in [168]. This scheme has enabled the emergence

of other ODMs under multi-granular [170] and probabilistic linguistic models [171].

2.4.4 Reinforcement learning-based models

The essence of RL is learning by interacting with an environment by taking actions.

An RL agent takes an action at in its environment and based upon the consequences

of its actions, which is the reward rt it receives from the environment, it can learn

how to alter its behaviour toward collecting more rewards. For each state transition

st+1 in the environment, the agent receives a feedback through a scalar reward rt+1.

The agent aims at learning a policy that maximizes the expected return (also known

as discounted reward). In brief, in case that the environment satisfies the Markov

property, that is the current state is only dependent to the previous state, RL can be

realized through an MDP. The consensus process in GDM models and the fusion pro-

cess in ODMs (despite of the memory-based mechanisms discussed earlier [161]), can
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be treated as MDPs and the solutions can be achieved by means of RL algorithms. A

very limited number of literature opinion dynamics and GDM models have addressed

the application of RL, which we aim to review them in this section.

For consensus boost and recommendations to guide DMs in ODMs, a framework

based on the RL is presented in [172]. The authors proposed a state space to contain

opinions as S = {si|si ∈ [0, 1], i = 1, . . . , n}, and, each agent can take an action from

the constructed action space A = {ai|ai ∈ [−1, 1], i = 1, . . . , n}. Then, a reward

signal is constructed as follows:

rt = w1rac(t) + (1− w1)rcd(t), (2.24)

where rac and rcd account for the adjustment cost and consensus boost, respectively,

and w1 is used to model the trade-off between them. The adjustment cost is modelled

as in the following:

rac(t) = −
n∑

i=1

|ai(t)|, (2.25)

where it is the negative sum of actions taken by agents. For the consensus boost

part, it is required to find the state transition rule, which is realized by means of HK

model. In this regard, for those agents who do not adopt adjustment actions, the

following transition rule is adopted:

s′i(t+ 1) =
1

|I(s′i(t))|
∑
j

s′j(t), (2.26)

where I(s′i) = {s′j(t)| s′j(t) − s′i(t)| ≤ ϵ}, with ϵ being the BC threshold. Then, for

other agents, the transition law is as follows:

si(t+ 1) =
1

|I(si(t) + ai(t))|
∑
j

sj(t) + aj(t), (2.27)
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where I(si(t) + ai(t)) = {sj(t) + aj(t)| (sj(t) + aj(t))− (si(t) + ai(t))| ≤ ϵ}. Finally,

rcd(t) is constructed as follows:

rcd(t) = n[cd(t)− cd′(t)], (2.28)

with cd(t) = 1−
∑n

i=1 |si(t+1)−
∑n

i=1 si(t+1)

n
|

n
and cd′(t) = 1−

∑n
i=1 |s′i(t+1)−

∑n
i=1 s′i(t+1)

n
|

n
. Once

the set of actions, rewards, and transition laws are constructed, any RL algorithm

(depending on the nature of actions and states) can be employed in the learning

process of the agent, where an actor-critic learning algorithm is used in [172] for the

sake of learning. By considering the effect of stubborn, controlled, and uncontrolled

agents, an RL-based mechanism is proposed in [173] for opinion shaping in ODMs

by moderating the behaviour of influential DMs. The opinion evolution is modelled

via a value iteration mechanism, where the policy evaluation is then converted into

a shortest path problem. A model based on the Q-learning algorithm for RL agents

in presented in [174], where agents’ opinions are assumed to be binary, i.e., σi(t) ∈

{−1,+1}, and at each time instant, an agent is randomly selected and expresses

its opinion to a randomly selected neighbour. By considering an internal evaluation

function Q based on the social response of other peers, an update rule of the following

form is constructed:

Qi(σi(t+ 1)) = (1− α)Qi(σi(t)) + αri(t), (2.29)

where ri(t) = σi(t)σj(t) is the reward signal. This is treated as Q-values required

in training of an agent based on the Q-learning algorithm. For the same opinion

dynamics structure, a game theoretic-based mechanism is employed in [175] to model

agents’ interactions, where the Q-learning algorithm is used for each agent to learn

the optimal policy, which is gaining more rewards in their interactions with other

peers. In case that a neighbour of an agent has the same opinion, the agent will
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receive a reward of 1, otherwise, -1. Agents opinions are also supposed to be binary

and to be selected from {−1,+1}. This framework is extended in [176] to the case,

in which agents can take more than two actions. Another game theoretic-based

ODM is proposed in [177], where agents’ communication is random, however, each

agent who decides to express its expression is penalized with a cost, and it will be

penalized more in case the neighbouring agent decides not to reply to its opinions or

express disagreeing opinions. Without considering the exploration and exploitation

[178] in taking actions, a framework based on RL is developed in [179], where agents

are assumed to express their opinions randomly from a continuous set of actions to

communicate in a social network toward maximizing the number of their followers in

mainstream media. RL has also been used for conventional GDM models for DMs’

weight adjustment in context-aware heterogeneous decision environments [180, 181].

Table 2.4 summarizes the developed ODMs.

2.5 Challenges and Research Gaps

Many research works have been recently devoted to the design of CRP for GDM,

which have been reviewed in the present work. Based on the reviewed papers, we

have found some challenges that need to be addressed in future works that aim to

design feedback mechanisms for the sake of consensus reaching.

1. The first issue is regarding the recently-developed representation structures for

opinion expression. As it was mentioned in Section 2.3.1, new representation

structures such as ZE-numbers are recently developed, where, on the one hand,

the development of operational tools such as aggregation and similarity-checking

measures, could be an important research attempt toward evoking the informa-

tion of such representation structures as much as possible. On the other hand,

these newly-developed representation structures pave the way for the design of

novel and efficient CRPs. For instance, the problem of minimum adjustment
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Table 2.4 – Developed ODMs in the recent literature works.

Category Model Characteristics Reference
DMs’ behaviour Bounded confidence Willingness of DMs, known and unknown confi-

dence bound
[3]

Cognitive dissonance behaviours [138]
Opinion natural reversals dynamics [139]
Leadership (opinion leaders and opinion follow-
ers)

[140, 143]

Group and peer pressure [144, 145]
Antagonistic and indifference behaviours be-
tween individuals

[152]

DeGroot Self-persistence of DMs [137]
Leadership with minimum number of interac-
tions

[141]

Peer pressure and stubbornness of DMs [146, 149]
Willingness and self-confidence of DMs [150]

Social networks Bounded confidence Opinion and action evolution, modified ex-
pressed private opinions

[154, 155]

Stochastic interactions [158]
Dynamic interactions among DMs [163]
Fuzzy inference approach to describe bounded
confidence

[182]

Stochastic models Repulsive interactions between DM’s opinions [156]
Modulation of the interaction intensity [160]
Centralized tuning of the strength of interactions
between DMs

[159]

Hybrid model Interactions depend on current and past opinions [161]
DeGroot Competition between DMs and switching topol-

ogy
[162]

Failure mode and effect analysis [165]
Numerical interval opinions and uncertainty tol-
erances

[166]

Deffuant Temporal networks with ordering of interactions [164]
Optimization models Bounded confidence Willingness of DMs [183, 184]

Self-trust and fuzzy trust sets [185]
Network rewiring for maximizing influence on
overall opinion

[186]

DeGroot Network partitioning algorithm [187]
Hybrid model Network partitioning algorithm [188]

Combining pairwise and group interactions for
DMs

[189]

Interconnected dynamics Distributed optimization problems over an un-
balanced digraph

[190]

Linguistic models Bounded confidence Two-tuples linguistic model with numerical scale [167]
Personalized individual semantics model [168]
Multi-granular unbalanced linguistic term sets [170]
Opinion similarity, DMs’ credibility and bounded
rationality

[191]

RL-based models bounded confidence Consensus boost and recommendation mecha-
nism

[172]

Stochastic Stubbornness of DMs [173]
Binary opinions Internal evaluation function based on the social

responses
[174]

Game-theoretic model Reward shaping through interactions with peers [175, 176, 177]
Gossiper-Media model Maximizing the number of followers in main-

stream media
[179]

Fuzzy consensus model Context-aware heterogeneous decision environ-
ment

[180, 181]
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cost, social network-based analysis of GDM, LODMs, and managing the be-

haviour of DMs could all be addressed for these new representation structures.

2. RL has been recently deployed in many control and learning applications. Through-

out our review on CRPs for GDM, we witnessed the lack of application of this

powerful tool in literature. The CRP is a dynamic mechanism by its nature,

because it is modelling the evolution of the consensus among DMs. What makes

the application of RL in GDM possible is the fact that regardless of other in-

volved parameters such as the weight of DMs or attributes, the consensus among

DMs at each discussion round depends only on the consensus of the previous

discussion round. This conducts and satisfies the Markov property in MDP,

and, therefore, RL is applicable in modelling the CRP in conventional GDM

models. RL can be implemented for the adjustment of the weights of DMs,

attributes, alternatives, and even in adjustment of the feedback parameter for

consensus reaching through feedback mechanisms. In this regard, the environ-

ment would be discrete and depending on the purpose of the RL agent, its

actions could be either discrete or continuous. The same is true in the design of

feedback mechanisms based on the ODMs, where an RL agent can be assigned

to the fusion process for managing the evolution of opinions. The old problem

of the trade-off between the consensus speed and HD of DMs (which states that

DMs aim to keep their original opinions as much as possible) can be realized

by means of RL by modelling the consensus process through game-theoretic

mechanisms.

3. Even though some advancements have been made to the LODMs, however, the

results are required to be extended to other linguistic representation structures

as well. This is of paramount importance due to the fact that different DMs

might need to express their opinions using different preference structures due

to their level of knowledge or background. Following this, the design of novel
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heterogeneous GDMmodels under opinion dynamics would be another challenge

and future trend toward paving the way of the application of the developed

LODMs.

4. A common assumption in the reviewed works is that agents with similar opinions

which are less than a given threshold, i.e., the bound of confidence of agents,

are able to communicate in order to modify their opinions. In this mechanism,

other neighbouring agents who do not fall into the confidence bound of agents

are ignored. However, it is quite possible in the real life situations where agents

might have friends with quite different opinions. Taking the opinions of these

long-range neighbours who are out of the confidence bound could also help with

consensus reaching. This idea is missing in the most-recent research works.
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Chapter 3

Reinforcement Learning-Based Consensus

Management for Static Group

Decision-Making

In accordance with the associated problems with static GDM described in Chapter

1, the number of discussion rounds (also referred to as the CRP speed) and HD

of DMs are two crucial efficiency measures to be considered in the development of

CRP for static models. Adjusting the level of opinion modification and importance

weights of the DMs in the feedback mechanism has a considerable impact on these

efficiency measures. The level of opinion modification is typically determined by

means of the feedback parameter in the direction rule of the feedback mechanism that

directly affects the trade-off between the CRP speed and HD of DMs. The importance

weights of DMs, however, are involved in the construction of the collective opinion

that could consequently impact the speed of CRP. Therefore, the feedback parameter

and importance weights of DMs are required to be carefully designed to account for

the aforementioned efficiency measures.

A considerable number of efforts have been devoted to address the aforementioned

efficiency measures in static GDMmodels. However, the developed models suffer from

two critical shortcomings listed below:

1. The majority of devoted efforts to speeding up the CRP fall under a general

category of GDM models, called minimum adjustment cost or minimum cost

consensus. These methods convert the GDM problem into an optimization

problem and try to achieve consensus within the group of DMs in just one
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discussion round. Even though such a framework deals with speeding up the

CRP, however, the HD of DMs is ignored [192, 115, 193, 194, 195]. It will be

presented in the upcoming sections that such models do not necessarily lead to

the best HD of DMs, especially when a higher level of consensus is required.

2. To address the challenge discussed in the first item, some efforts have been re-

cently dedicated to address the trade-off between the CRP speed and HD of

DMs under the minimum adjustment cost or minimum cost consensus frame-

works [196, 197, 198, 199]. Even though such models account for the trade-off

problem, however, they are dependent to the type of opinion representation

structure and a developed model cannot be generalized to deal with other types

of decision environments.

Therefore, the research gap in static GDM problems is the development of an effi-

cient consensus management model for the CRP that not only addresses the trade-off

problem, but also it is generalizable and not dependent to the opinion representation

structure. In this chapter, this research gap is addressed by proposing novel and effi-

cient RL-based adjustment mechanisms. To employ these adjustment mechanisms, it

is proposed to extract the dynamics of state transition from consensus models based

on the distributed linguistic trust functions (DLTFs) and Z-numbers in order to con-

vert the decision environment into an MDP. Two independent RL agents are then

trained by the deep deterministic policy gradient (DDPG) algorithm to adjust the

feedback parameter and importance weights of DMs. The first agent is trained toward

reducing the number of discussion rounds, while ensuring the highest possible level

of HD among DMs. The second agent merely speeds up the CRP by adjusting the

importance weights of the DMs.
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3.1 Developed consensus models

This section presents the prerequisites and development procedure of two consensus

models based on the DLTFs and Z-numbers.

3.1.1 Preliminaries

Following the model proposed in [200], suppose that S = {sα|α = 0, . . . , 2κ} is a

fully ordered LTS. The concept of distribution assessment for an LTS with linguistic

proportions assigned to each element has been proposed in [201] as given below:

Definition 9. p = {(sk, βk)|k = 0, . . . , 2κ} is a distribution assessment of S, in which

βk ≥ 0 with
∑2κ

k=0 βk = 1, is the symbolic proportion of sk ∈ S.

Definition 10. Having S and p as before, the expectation of p can be defined as

follows:

E(p) =
2κ∑
k=0

βksk. (3.1)

Following the concept of distributed linguistic trust given in [202], the DLTFs can

be defined as follows:

Definition 11. For an LTS S, the DLTFs can be defined as R = {(sα, ϕα)|α =

0, . . . , 2κ}, where ϕα is the proportion of sα with ϕα ≥ 0 and
∑2κ

α=0 ϕα = 1.

Definition 12. For a set of DLTFs {R1, . . . ,Rn} with a designated set of weights

{W 1, . . . ,W n}, where Ri = {(sα, ϕi
α)|α = 0, . . . , 2κ} and W i ∈ [0, 1] and

∑n
i=1W

i =

1, a distributed trust weighted average operator can be defined as follows:

DTWA(R1, . . . ,Rn) = {(sα, ϕ̄α)|α = 0, . . . , 2κ}, (3.2)

with ϕ̄α =
∑n

i=1W
iϕi

α.
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Definition 13. Let R be as before, the expectation degree of this DLTF can be defined

as follows:

E(R) =
2κ∑
α=0

Sα × ϕα = S∑2κ
α=0 αϕα

. (3.3)

By modeling the trust degree between DMs ei and ej via a linguistic trust function

tij and their connections via an adjacency matrix J , a sociomatrix of the form TL =

(tij)n×n can then be constructed, with n being the total number of DMs.

Definition 14. For a sociomatrix TL = (tij)n×n associated with a directed graph

G = (D, E, ν) with D = {d1, . . . , dn} being the set of nodes, E = {e1, . . . , eq} being

the set of edges, and distributed linguistic trust weights ν = {νE1 , . . . , νEq } associated

to each edge, the relative in-degree centrality can be formulated as follows:

CE(dk) =
1

n− 1

n∑
i=1

tik. (3.4)

Definition 15. Let G and D be as before, and {CE(d1), . . . , C
E(dn)} be the set of

in-degree centrality values. The importance weight of a DM di (a node of G) can then

be computed as follows:

W i =
E(GE(di))∑n
i=1 E(GE(di))

. (3.5)

Definition 16. The distance between two DLTFs Ri and Rj is measured as given

below:

distr(Ri,Rj) =
1

2κ+ 1

2κ∑
α=0

∣∣∣ϕi
α − ϕj

α

∣∣∣. (3.6)

For a fully-ordered LTS S, the definition of LSFs is as given below [203]:

Definition 17. Let sα be a linguistic term in S. A linguistic scale function can then
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be defined as a mapping F : sα → θα with 0 ≤ θα ≤ 1.

The following LSFs are used in this chapter:

F1(sα) = θα = α
2κ
, (α = 0, . . . , 2κ),

F2(sα) =

 aκ−a(κ−i)

2a(κ−2) , (i = 0, . . . , κ),

aκ+a(i−κ)

2aκ−2
, (i = κ+ 1, . . . , 2κ),

(3.7)

where a ∈ [1.36, 1.4] [204].

Definition 18. For two LTSs S and S ′, a Z-number can be represented by zi = (si, s
′
i),

with si ∈ S and s′i ∈ S ′. Following the procedure given in [205], the corresponding

numerical characteristics of z can be extracted by means of LSFs in terms of NZs as

NZi = ((µi, σi), (exi, eni, hi)).

Definition 19. The distance between two NZs can be calculated as follows:

distz(NZi, NZj) =
∣∣∣ µiσ

2
j

σ2
i + σ2

j

− µjσ
2
i

σ2
i + σ2

j

∣∣∣+∣∣∣ en2
j + h2j

en2
i + h2i + en2

j + h2j
× µiexi

σi
−

en2
i + h2i

en2
i + h2i + en2

j + h2j
× µjexj

σj

∣∣∣. (3.8)

Definition 20. For a set of NZs NZi(i = 1, . . . , n), with an associated set of weights

{w1, . . . , wn}, where wi ∈ [0, 1] and
∑n

i=1wi = 1, the aggregated NZ value can be
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obtained based on a GNZPWA as follows:

GNZPWA(NZ1, . . . , NZn) =
((

(
n∑

i=1

γiµ
λ
i )

1/λ,

(
n∑

i=1

γiµ
λ
i )

1/λ−1 ×

√√√√ n∑
i=1

γiµ
2λ−2
i σ2

i )
)
,
(
(

∑n
i=1 γiµ

λ
i ex

λ
i∑n

i=1 γiµ
λ
i

)1/λ,

(

∑n
i=1 γiµ

λ
i ex

λ
i∑n

i=1 γiµ
λ
i

)1/λ−1 ×

√∑n
i=1 γiµ

λ
i ex

(2λ−2)
i en2

i∑n
i=1 γiµ

λ
i

,

(

∑n
i=1 γiµ

λ
i ex

λ
i∑n

i=1 γiµ
λ
i

)1/λ−1 ×

√∑n
i=1 γiµ

λ
i ex

(2λ−2)
i h2i∑n

i=1 γiµ
λ
i

))
, (3.9)

where,

γi =
wi(1 + P(NZi))∑n
i=1wi(1 + P(NZi))

, (3.10)

with P(NZi) =
∑n

j=1,j ̸=i SD(NZi, NZj) and SD(NZi, NZj) = 1− distz(NZi,NZj)∑n−1
i=1

∑n
j=i+1 distz(NZi,NZj)

being the support degree of NZi from NZj, and λ models the thinking mode of DMs.

3.1.2 Consensus model with DLTFs

Suppose that D = {d1, . . . , dn} is the set of n DMs who are aiming at evaluating

and providing ranking for a set of q alternatives X = {x1, . . . , xq} w.r.t. a set of m

attributes A = {a1, . . . , am}. Having a pre-defined consensus threshold γ and feedback

parameter δ, the goal is to design a consensus model based on DLTFs to support this

GDM problem.

Given the DMs’ connections in terms of an adjacency matrix J , the sociomatrix TL

for a group of DMs with the LTS Sα can be constructed. By extracting the relative in-

degree centrality values from TL as discussed in Definition 14, the importance weights

of DMs {W 1, . . . ,W n} can then be calculated following Definition 15, which can be

used to construct the collective opinion of the group as follows.
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Definition 21. For a set of DLTFs represented in a matrix formatRd = [rij](q×(2κ+1))×m

with d = 1, . . . , n, where q denotes the number of available alternatives, 2κ+ 1 is the

number of linguistic terms in the LTS Sα, and m is the number of available attributes,

the collective evaluation matrix R̄ = [r̄ij](q×(2κ+1))×m can be constructed as follows:

r̄ij =
n∑

d=1

W d × rdij, (3.11)

where W d is the importance weight of the dth DM as defined in Eq. (3.5), and rdij is

the (i, j)th element in the decision matrix of the dth DM.

For the (i, j)th element, the element-level consensus can be computed as follows:

CEdij = 1− listr(r
d
ij, r̄

d
ij). (3.12)

Next, the alternative-level consensus for the dth DM w.r.t. the ith alternative can

be calculated:

CAd
i =

1

m

m∑
j=1

CEdij. (3.13)

Finally, the relation-level consensus for the dth DM can be constructed as follows:

CId = 1

q

q∑
i=1

CAd
i . (3.14)

When the consensus assessment is completed, the recommendation mechanism

gets activated to generate advice for inconsistent DMs. In this regard, given a con-

sensus threshold γ, the feedback mechanism is built based upon the following identi-

fication and direction rules:

1. Construct the set of inconsistent DMs. This set is represented by EXPCH,

where EXPCH = {d|CId < γ}.
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2. Find the set of alternatives that are required to be modified. This set is repre-

sented by ALT and is defined as ALT = (d, i)|d ∈ EXPCH ∧ CAd
i < γ}.

3. Find the set of elements that need to be modified. This set is represented by

APS and is defined as APS = {(d, i, j)|(d, i) ∈ ALT ∧ CEdij < γ}.

Inconsistent DMs are then recommended to modify their corresponding evaluations

in the APS as follows:

rrdij = (1− δ).rdij + δ.r̄ij, (3.15)

where rrdij is the (i, j)th modified evaluation of the dth DM, r̄ij is the (i, j)th element

in the collective evaluation, and δ ∈ [0, 1] is the feedback parameter. The CRP will

be continued until the consensus degree of each DM satisfies CId ≥ γ.

3.1.3 Consensus model with Z-numbers

Following the consensus model discussed in the previous section, we extend the results

to the case, in which DMs’ evaluations are expressed in terms of Z-numbers.

Initial evaluations of DMs are in the form of matrices Rd = (rdij)(q×2m), where each

element is a Z-number as discussed in Definition 18. Following the steps summarized

in Algorithm 3 in [1], initial evaluations can then be translated into NZs to construct

the translated evaluations in terms of matrices R̃d = (r̃dij)q×5m. The same procedure

discussed in the previous section can be implemented to construct the importance

weights of DMs {W 1, . . . ,W n}. Then, the collective evaluation can be constructed

as given below.

Definition 22. For a set of DMs with translated evaluations R̃d
ij = NZd

ij with d =

1, . . . , n, and the constructed set of weights {W 1, . . . ,W n}, the (i, j)th element of the
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collective evaluation r̄cij can be obtained as follows:

r̄cij = GNZPWA(NZ1
ij, . . . , NZ

n
ij). (3.16)

Having the collective evaluation constructed, the consensus assessment can get

started by computing the consensus on three different levels. Compared with the

three-level consensus given in the previous section, Eq. (3.12) will be modified as

follows for NZs:

CEdij = 1− listz(r̃
d
ij, r̄

c
ij). (3.17)

Then, the same procedure can be followed by inconsistent DMs to modify their eval-

uations.

In this section, two consensus models are proposed based on DLTFs and Z-

numbers. These two models are constructed to check for the generalizability of the

trained RL agents in dealing with different decision environments. The construction

of these agents will be presented next and it will be discussed that as long as the

observation of an agent does not change from one decision environment to another,

the same agents can be employed in different decision environments.

3.2 RL-Based Consensus Reaching Process

Following the given discussion in Section 3.1, the ultimate goal is to present a gen-

eralizable mechanism to set the feedback parameter and DMs’ importance weights

that accounts for the trade-off between the CRP speed and HD of DMs, regardless

of the representation structure of evaluations. Toward this end, two consensus mod-

els were presented in the previous section with distinct representation structures of

evaluations. It is intended to demonstrate that once an RL agent is trained on the

decision environment based on the DLTFs, the same agent could also be employed in
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the decision environment based on the Z-numbers.

3.2.1 Problem Description

As discussed in Section 3.1, minimum adjustment cost models fail to address the

trade-off problem. This is due to the fact that such models aim to solve the decision

problem through an optimization model given below:

min
∑

(d,i,j)∈APS

δ|rdij − rij|,

s.t.

 CId ≥ γ,

R = DTWA(R1, . . . ,Rn).
(3.18)

By solving the above optimization problem, the number of discussion rounds for

the consensus achievement will be one, i.e., the CRP speed is optimal. However,

experiments show that such a model does not necessarily lead to the best HD for

DMs, especially for the cases with γ > 0.9. By defining the HD of a DM as follows:

HDd = 1− 1

q ×m

q∑
i=1

m∑
j=1

distr(r
d
ij, rr

d
ij), (3.19)

the results for the minimum adjustment cost model (referred to by ‘MinAdj’) are

compared with those of the proposed consensus model in Section 3.1.2 with δ = 0.33,

and the average HD (AHD) of DMs for 50 simulation runs are collected in Table

3.1. The attained results denote that the ‘MinAdj’ technique sacrifices the HD for a

higher speed, while it is possible to achieve a higher AHD with a lower δ through the

proposed consensus model. Therefore, the trade-off problem could not be addressed

well through the ‘MinAdj’ model and it is required to develop a generalizable model

that accounts for this problem.
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Table 3.1 – The attained AHD values by means of the ‘MinAdj’ and the proposed
consensus model in Section 3.1.2.

Method γ 0.91 0.92 0.93 0.94 0.95

‘MinAdj’
δ 0.4995 0.5572 0.6354 0.6704 0.6753

AHD 0.9287 0.9228 0.9071 0.9052 0.9127

Proposed
δ 0.33 0.33 0.33 0.33 0.33

AHD 0.9295 0.9281 0.9117 0.9104 0.9156

3.2.2 Problem Formulation

In order to address the trade-off problem by means of RL and to train RL agents,

it is required to firstly convert the decision problem into an MDP and extract the

state transition rule for the constructed MDP from the decision environment. The

extracted transition rule must follow the Markov property, which states all that is

needed to determine the next state is information contained in the current state.

Following this concept, it is proposed to consider the DMs’ consensus degree, i.e.,

CId, as the state of the MDP.

Having the consensus index CId calculated at discussion round t, shown by CId(t),

it needs to be verified that the next state, i.e., CId(t + 1), does only depend on

CId(t). Taking the Markov property into consideration, define CId with d = 1, . . . , n

as the state of the environment, for which the state transition should be formulated.

Suppose that the total number of given evaluations by DMs is p = h + ϱ, where

h denotes the modified evaluations according to Eq. (3.15), and ϱ stands for the

unchanged evaluations at discussion round t. Then, the set of modified evaluations is

{rrhij(t)|rrhij(t) = (1− δ)rhij(t)+ δr̄hij(t)} and the set of unchanged evaluations can also

be constructed as {rrϱij(t)|rr
ϱ
ij(t) = rϱij(t)}. In this regard, the collective evaluation

at the next discussion round is as follows:

r̄ij(t+ 1) = W hrrhij(t) +
z∑

k=1,i ̸=h

W krrkij(t) = W hrrhij(t) + r̄ij(t)−W hrhij(t). (3.20)
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Then, following Eq. (3.12), it could be concluded that:

CEhij(t+ 1) = 1−
∣∣∣rrhij(t)− r̄ij(t+ 1)

∣∣∣
= 1−

∣∣∣(1− δ)rhij(t) + δr̄ij(t)−
(
W hrrhij(t) + r̄ij(t)−W hrhij(t)

) ∣∣∣
= 1−

∣∣∣(1− δ)rhij(t) + δr̄ij(t)−(
W h

(
δrhij(t) + (1− δ)rhij(t)

)
+ r̄ij(t)−W hrhij(t)

)∣∣∣
= 1 +

(
δ
(
1−W h

)
− 1

) ∣∣∣rhij(t)− r̄hij(t)∣∣∣
= CEhij(t) + δ

(
1−W h

) ∣∣∣rhij(t)− r̄hij(t)∣∣∣. (3.21)

For the ϱ elements that do not belong to APS, rϱij(t+1) = rϱij(t), meaning that these

evaluations remain unchanged from discussion round (t) to the discussion round (t+1).

Therefore, the CEϱ on these evaluations remain unchanged, i.e., CEϱ(t+ 1) = CEϱ(t).

In a matrix format, CEd(t+1) = CEϱ(t+1)+CEh(t+1), denoting that the overall CE

for the dth DM can be resulted by the summation of CE over unchanged evaluations

ϱ and the modified elements h. By referring to Eq. (3.20), it can be concluded that:

CEdij(t+ 1) = CEϱij(t+ 1) + CEhij(t) + δ(1−W h)|rhij(t)− rhij(t)|

= CEzij(t) + CEhij(t) + δ(1−W h)|rhij(t)− rhij(t)|

= CEdij(t) + δ(1−W h)|rhij(t)− rhij(t)|.

Then, the following state transition rule could be resulted, which satisfies the Markov

property:

CId(t+ 1) =
1

q ×m

q∑
i=1

m∑
j=1

[
CEdij(t) + δ

(
1−W h

)
×
∣∣∣rhij(t)− r̄hij(t)∣∣∣]. (3.22)
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Figure 3.1 – Interactions of an RL agent with its environment.

3.2.3 Training of Agents

In this section, a brief introduction to the DDPG algorithm is given and it is discussed

how this algorithm is used to train agents. Briefly, RL refers to learning by interacting

with an environment [206]. This interaction is shown in Fig. 3.1. An agent takes

action at within state st and receives a reward rt+1 and next state st+1 that offers

the agent guidance on how to alter its behaviour toward collecting more rewards.

The agent’s ultimate goal is to learn an optimal policy that maximizes the expected

reward.

One way to realize RL is through MDPs. In this study, the agent interacts with

the CRP as its environment, and the state of this environment is the consensus at

evaluation matrix level CI. As discussed in Section 3.2.2, the CRP can be formulated

as an MDP and it was proved that the state transition satisfies the Markov property.

As a result, the CRP is an MDP, and RL can be used to address the trade-off problem

outlined above.

By considering the aforementioned trade-off problem, an RL agent, called the δ-

Agent, is trained to adjust the feedback parameter in the CRP. Furthermore, another

agent, called theW -Agent, is trained to dynamically adjust the importance weights of

DMs. For both agents, the observations are the evolution of CI (3.22). The action of

δ-Agent is adjustment of the feedback parameter, while it is the adjustment of DMs’

weights for the W -Agent. Both agents take the necessary actions irrespective of the

representation structure of DMs’ evaluations. The interactions between the δ-Agent

and its environment are illustrated in Fig. 3.2. It shows that the agent observes
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Figure 3.2 – Interactions between the proposed deep deterministic policy gradient
agent and the decision environment [4].

the state of the system st, takes an action at, and receives the next state st+1 and a

reward rt. The δ-Agent sets a value for the feedback parameter at the beginning of

each training episode and receives a reward at the end of the corresponding episode.

The value of this reward is as follows:

r =


∑n

d=1 HDd

n×δ
, ℏ ≤ 6,∑n

d=1 HDd

n×δ×ℏ , otherwise,
(3.23)

where ℏ is the total number of steps in each training episode. This reward encourages

the agent toward maximizing the HD with lower values of δ and discussion rounds. It

is worth mentioning that the δ-Agent is trained toward automatic adjustment of the

feedback parameter by considering the trade-off between the consensus speed and HD

of DMs. It supports the direction rules in the feedback mechanism given in (3.15),

where it automatically adjusts the level of modifications for the collected evaluations

in APS.

As for the W -Agent, it is aimed at adjusting the importance weights of DMs in

each step of each training episode in a way that it reduces the number of discussion
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rounds. This can be achieved by maximizing the level of consensus among DMs

through the following reward function:

r =
n∑

i=1

W i

n∑
j=1,j ̸=i

W jcij, (3.24)

cij = 1− 1

q ×m

q∑
k=1

m∑
l=1

|rikl − r
j
kl|

max{|rikl − r
j
kl|}

. (3.25)

As it can be observed from Eq. (3.24), the reward signal is a weighted summation of

the consensus among all pairs of DMs. This means that W -Agent attempts toward

adjusting W to increase the level of consensus among DMs that will consequently

help with speeding up the CRP. It should be noted that a larger number of alter-

natives and/or attributes results in higher-dimensional evaluations, and, therefore,

construction of the reward requires more computational effort. However, the reward

value is directly affected by the amount of deviations in the DMs’ evaluations. The

higher the deviation, the lower the reward. Having the reward signal constructed,

one can collect training data in order for each agent to learn the optimal policy.

Training of agents is done by employing the DDPG algorithm. This is due to the

fact that environment states (consensus of DMs) and agents’ actions (the value of δ

andW ) take continuous values. To manage high dimensional state and action spaces,

the DDPG algorithm is adopted in training of agents. DDPG agents benefit from

two networks called ‘actor’ and ‘critic.’ The actor network, shown by τ(s|θτ ), takes

the environment states as input and exploits an action. The critic network, shown by

Q(s, a|θQ), makes use of the environment states and the generated action by the actor

network to estimate the expected reward. To train the δ-Agent through the DDPG

algorithm, i.e., to adjust the parameters of the critic θQ and actor θτ networks, it

is firstly required to construct a replay bufferM with tuples of the form (s1, r, sF ),

where s1 is the initial state of the environment at the beginning of a training episode,

r is the collected reward by the agent, and sF is the final state of the environment. By
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randomly sampling a minibatch of size M from the replay buffer, the critic network

can be updated by minimizing the following loss function:

L(θQ) =
1

M

∑
i

(yi −Q(si, ai|θQ))2, (3.26)

where M is the size of the minibatch, and yi = ri + γlQ
′(si+1, τ

′(si+1|θτ
′
)|θQ)2, with

γl being the discount factor. It is worth noting that yi is called the target because

we want the value of agent to be close to this target value. However, in order to

improve the stability of optimization, this target is modeled via target critic Q′ and

actor τ ′ networks. Target networks are periodically updated by the agent during the

learning process. In the same vein, parameters of the actor network are updated by

maximizing the following policy objective function:

▽θτJ ≈
1

M

∑
i

▽aQ(s, a|θQ)|s=si,a=τ(si)▽τ
θ τ(s|θτ )|si . (3.27)

Training of δ-Agent is summarized in Algorithm 1. In the initialization phase,

the replay buffer, actor, critic, and target networks are initialized. In particular, the

initialization of the replay buffer includes defining its capacity (100K), observation

dimension (n× 1), and action dimension, that is 1× 1 for the δ-Agent, and n× 1 for

the W -Agent. As for the actor, critic, and target networks, the weights are randomly

initialized with the values taken from [0, 1] interval. Then, for N training episodes, it

is required to reset the environment to observe the initial state (Line 5). The initial

state is then used by the actor network to exploit an action (Line 6) by considering the

exploration noise N . The taken action is indeed the value assigned to the feedback

parameter δ. The CRP is then executed and the reward is collected from environment

(Lines 7 to 10). The tuple (s1, r, sF ) will then be stored in the replay buffer and by

using a minibatch of these collected tuples, parameters of the actor, critic, and target

networks can be updated (Lines 13 to 14). The same procedure can be followed to
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train W -Agent as shown in Algorithm 2. In each episode, the agent takes an action

to adjust W in each step and it will be continued until the group of DMs reaches to

the desired level of consensus. This stopping criterion is shown by ‘IsDone.’

Algorithm 1: Training of the δ-Agent.

Result: δ-Agent
Inputs: critic learning rate (ρc), actor learning rate (ρa), discount factor (γl),

total number of episodes (N), exploration noise (N );
1 Initialize the replay bufferM;
2 Initialize the critic network Q(s, a|θQ) with θQ;
3 Initialize the actor network τ(s|θτ ) with θτ ;
4 Initialize the target networks Q′ and τ ′ with θQ

′ ← θQ and θτ
′ ← θτ ;

5 for episode=1 to N do
6 Reset the decision environment and compute the initial observation sI .

Select action δ = τ(sI |θτ ) +N ;
7 Execute the CRP with δ;
8 ℏ← the number of discussion rounds;
9 sF ← the state at discussion round ℏ;

10 Compute r based on the Eq. (3.23).;
11 Store the tuple (s1, r, sF ) in the replay bufferM;
12 Sample a minibatch M fromM;
13 Update the critic and actor using (3.26) and (3.27);

14 Update target critic θQ
′ ← ρcθ

Q + (1− ρc)θQ
′
and the target actor

θτ
′ ← ρaθ

τ + (1− ρa)θτ
′
;

15 end

3.3 Illustration of the Proposed Consensus Models

This section illustrates the implementation procedure of the proposed consensus mod-

els in Section 3.1.2 and Section 3.1.3. The results attained by means of the trained

δ-Agent and W -Agent are discussed in detail in Chapter 6 in terms of different ex-

periments.
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Algorithm 2: Training of the W -Agent.

Result: W -Agent
Inputs: critic learning rate (ρc), actor learning rate (ρa), discount factor (γl),

total number of episodes (N), exploration noise (N );
1 Initialize the replay bufferM;
2 Initialize the critic network Q(s, a|θQ) with θQ;
3 Initialize the actor network τ(s|θτ ) with θτ ;
4 Initialize the target networks Q′ and τ ′ with θQ

′ ← θQ and θτ
′ ← θτ ;

5 for episode=1 to N do
6 Reset the decision environment and compute the initial observation sI ;
7 Set t = 1;
8 while IsDone ̸= 1 do
9 Select action W t = τ(st|θτ ) +N according to the current policy;

10 Execute W t, compute st+1 and rt (3.24);
11 Store the tuple (st,W

t, rt, st+1) in the replay bufferM;
12 Sample a minibatch M fromM;
13 Update the critic and actor using (3.26) and (3.27);

14 Update target critic θQ
′ ← ρcθ

Q + (1− ρc)θQ
′
and the target actor

θτ
′ ← ρaθ

τ + (1− ρa)θτ
′
;

15 t← t+ 1;

16 end

17 end
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3.3.1 Consensus Model with DLTFs

Suppose that four DMs {d1, . . . , d4} are asked to evaluate three alternatives {x1, x2, x3}

w.r.t. three designated attributes {c1, c2, c3}. Trust connections among DMs are mod-

eled via an adjacency matrix as given below:

J =


0 0 0 1

1 0 0 1

1 1 0 0

1 1 1 0

 . (3.28)

Consider an LTS S = {s1, s2, s3}, with s1 denoting ‘low,’ s2 denoting ‘middle,’

and s3 denoting ‘high.’ Based on the constructed adjacency matrix in (3.28), suppose

that the level of trust among DMs can be modeled via the following sociomatrix:

TL =



− − −


(s1, 0.6)

(s2, 0.2)

(s3, 0.2)


(s1, 0.31)

(s2, 0.5)

(s3, 0.19)

 − −


(s1, 0.16)

(s2, 0.53)

(s3, 0.31)


(s1, 0.18)

(s2, 0.43)

(s3, 0.39)



(s1, 0.18)

(s2, 0.73)

(s3, 0.09)

 − −


(s1, 0.75)

(s2, 0.17)

(s3, 0.08)



(s1, 0.32)

(s2, 0.37)

(s3, 0.31)



(s1, 0.05)

(s2, 0.39)

(s3, 0.56)

 −



.

Then, the trust centrality degrees can be calculated according to Definition 14, where
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the attained results are given below:

CE(d1) = {(s1, 0.4121), (s2, 0.3671), (s3, 0.2207)},

CE(d2) = {(s1, 0.2488), (s2, 0.2297), (s3, 0.5215)},

CE(d3) = {(s1, 0.0556), (s2, 0.3889), (s3, 0.5556)},

CE(d4) = {(s1, 0.3789), (s2, 0.3632), (s3, 0.2579)}.

Having the centrality degrees calculated, one can compute the importance weights of

DMs according to Definition 15 as W 1 = 0.2138, W 2 = 0.2686, W 3 = 0.2955, and

W 4 = 0.2221.

Now, assume that the initial evaluations of DMs in terms of DLTFs are as given in

Table 3.2. Then, the collective evaluation can be constructed according to Definition

21 as given in Table 3.3. Following the definition of the three-level consensus index,

the attained results for each DM are collected in Table 3.4. Having γ = 0.85, it can

be observed that DMs d2 and d4 are inconsistent and the following set of elements is

required to be modified:

APS = {(2, 1, 1), (2, 1, 2), (4, 2, 1), (4, 2, 2), (4, 2, 3), (4, 3, 3)}.

Selecting δ = 0.3 improves the consensus of each DM in the first discussion round as

CI1 = 0.8742, CI2 = 0.8559, CI3 = 0.8977, and CI4 = 0.8527. Therefore, at the end

of the first round of discussion, the consensus index of each DM is larger than the

given threshold γ, and, therefore, the CRP terminates.

3.3.2 Consensus Model with Z-numbers

For the same example given in Section 3.3.1, the step-by-step implementation of the

consensus model with Z-numbers is discussed in this section. Given the fact that

DMs’ interactions and level of trust remain unchanged compared with the previous
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Table 3.2 – The initial evaluations of the DMs in the consensus model with DLTFs.

X d1 d2
c1 c2 c3 c1 c2 c3

x1

(s1, 0.6)(s2, 0.1)
(s3, 0.3)

 (s1, 0.4)(s2, 0.4)
(s3, 0.2)

 (s1, 0.4)(s2, 0.4)
(s3, 0.2)

 (s1, 0.5)(s2, 0.5)
(s3, 0.0)

 (s1, 0.2)(s2, 0.8)
(s3, 0.0)

 (s1, 0.6)(s2, 0.2)
(s3, 0.2)


x2

(s1, 0.4)(s2, 0.5)
(s3, 0.1)

 (s1, 0.4)(s2, 0.6)
(s3, 0.0)

 (s1, 0.3)(s2, 0.0)
(s3, 0.6)

 (s1, 0.4)(s2, 0.4)
(s3, 0.2)

 (s1, 0.0)(s2, 0.4)
(s3, 0.6)

 (s1, 0.3)(s2, 0.4)
(s3, 0.2)


x3

(s1, 0.3)(s2, 0.2)
(s3, 0.5)

 (s1, 0.6)(s2, 0.1)
(s3, 0.3)

 (s1, 0.6)(s2, 0.2)
(s3, 0.2)

 (s1, 0.3)(s2, 0.5)
(s3, 0.2)

 (s1, 0.2)(s2, 0.3)
(s3, 0.5)

 (s1, 0.4)(s2, 0.5)
(s3, 0.1)


d3 d4

c1 c2 c3 c1 c2 c3

x1

(s1, 0.8)(s2, 0.0)
(s3, 0.2)

 (s1, 0.3)(s2, 0.5)
(s3, 0.2)

 (s1, 0.4)(s2, 0.4)
(s3, 0.2)

 (s1, 0.4)(s2, 0.1)
(s3, 0.5)

 (s1, 0.4)(s2, 0.3)
(s3, 0.3)

 (s1, 0.5)(s2, 0.5)
(s3, 0.0)


x2

(s1, 0.4)(s2, 0.3)
(s3, 0.3)

 (s1, 0.0)(s2, 0.9)
(s3, 0.1)

 (s1, 0.6)(s2, 0.2)
(s3, 0.2)

 (s1, 0.8)(s2, 0.2)
(s3, 0.0)

 (s1, 0.6)(s2, 0.0)
(s3, 0.4)

 (s1, 0.8)(s2, 0.2)
(s3, 0.0)


x3

(s1, 0.4)(s2, 0.1)
(s3, 0.5)

 (s1, 0.3)(s2, 0.6)
(s3, 0.1)

 (s1, 0.3)(s2, 0.4)
(s3, 0.3)

 (s1, 0.2)(s2, 0.5)
(s3, 0.3)

 (s1, 0.4)(s2, 0.5)
(s3, 0.1)

 (s1, 0.0)(s2, 0.6)
(s3, 0.4)



Table 3.3 – The collective evaluation for the consensus model with DLTFs.

X c1 c2 c3

x1

(s1, 0.5844)(s2, 0.1919)
(s3, 0.2237)

 (s1, 0.2808)(s2, 0.5170)
(s3, 0.2022)

 (s1, 0.4652)(s2, 0.3486)
(s3, 0.1862)


x2

(s1, 0.5046)(s2, 0.3453)
(s3, 0.1501)

 (s1, 0.2314)(s2, 0.4836)
(s3, 0.2850)

 (s1, 0.5040)(s2, 0.2312)
(s3, 0.2648)


x3

(s1, 0.3206)(s2, 0.2876)
(s3, 0.3918)

 (s1, 0.3627)(s2, 0.3821)
(s3, 0.2553)

 (s1, 0.3139)(s2, 0.4412)
(s3, 0.2449)
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Table 3.4 – The three-level consensus indexes w.r.t. the initial DMs’ evaluations.

CE CA CI

d1

0.9309 0.9273 0.9603 0.9395
0.86680.8793 0.8100 0.7492 0.8125

0.8934 0.8286 0.8219 0.8480

d2

0.8087 0.7806 0.8746 0.8213
0.84530.9253 0.7860 0.8650 0.8588

0.8565 0.8105 0.9007 0.8559

d3

0.8721 0.9542 0.9236 0.9166
0.89190.9374 0.7427 0.9478 0.8760

0.8376 0.8524 0.9594 0.8831

d4

0.8437 0.8474 0.8759 0.8557
0.81690.7708 0.6776 0.8175 0.7553

0.8702 0.8582 0.7907 0.8397

Table 3.5 – The initial evaluations of the DMs in the consensus model with Z-Numbers.

X d1 d2
c1 c2 c3 c1 c2 c3

x1 (s5, s
′
3) (s7, s

′
4) (s4, s

′
4) (s3, s

′
3) (s3, s

′
4) (s4, s

′
3)

x2 (s4, s
′
5) (s5, s

′
4) (s4, s

′
5) (s5, s

′
3) (s3, s

′
6) (s7, s

′
7)

x3 (s6, s
′
7) (s6, s

′
5) (s7, s

′
3) (s5, s

′
7) (s5, s

′
5) (s4, s

′
5)

d3 d4
c1 c2 c3 c1 c2 c3

x1 (s5, s
′
3) (s7, s

′
3) (s5, s

′
7) (s5, s

′
4) (s5, s

′
5) (s7, s

′
6)

x2 (s4, s
′
6) (s7, s

′
7) (s7, s

′
3) (s6, s

′
6) (s4, s

′
5) (s5, s

′
3)

x3 (s4, s
′
7) (s5, s

′
5) (s6, s

′
7) (s5, s

′
6) (s5, s

′
7) (s6, s

′
4)
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Table 3.6 – Translated evaluations of each DM.

X c1 c2 c3

d1

x1 [(0.7,0.2),(0.4,0.2,0.04)] [(1.0,0.3),(0.5,0.2,0.05)] [(0.5,0.2),(0.5,0.2,0.05)]
x2 [(0.5,0.2),(0.6,0.2,0.04)] [(0.7,0.2),(0.5,0.2,0.05)] [(0.5,0.2),(0.6,0.2,0.04)]
x3 [(0.8,0.3),(1.0,0.3,0.03)] [(0.8,0.3),(0.6,0.2,0.04)] [(1.0,0.3),(0.4,0.2,0.04)]

d2

x1 [(0.4,0.2),(0.4,0.2,0.04)] [(0.5,0.3),(0.5,0.2,0.05)] [(0.5,0.2),(0.5,0.2,0.04)]
x2 [(0.6,0.2),(0.5,0.2,0.04)] [(0.4,0.2),(0.7,0.3,0.03)] [(0.9,0.3),(0.9,0.3,0.02)]
x3 [(0.7,0.2),(1.0,0.3,0.01)] [(0.7,0.2),(0.6,0.2,0.04)] [(0.5,0.2),(0.6,0.2,0.04)]

d3

x1 [(0.7,0.2),(0.4,0.2,0.04)] [(1.0,0.3),(0.4,0.2,0.04)] [(0.7,0.2),(1.0,0.3,0.01)]
x2 [(0.5,0.2),(0.8,0.3,0.02)] [(1.0,0.3),(1.0,0.3,0.01)] [(1.0,0.3),(0.4,0.2,0.04)]
x3 [(0.5,0.2),(1.0,0.3,0.01)] [(0.7,0.2),(0.6,0.2,0.04)] [(0.8,0.3),(1.0,0.3,0.01)]

d4

x1 [(0.7,0.2),(0.5,0.2,0.05)] [(0.7,0.2),(0.6,0.2,0.04)] [(0.9,0.3),(0.7,0.3,0.02)]
x2 [(0.8,0.3),(0.8,0.3,0.02)] [(0.5,0.2),(0.6,0.2,0.04)] [(0.7,0.2),(0.4,0.2,0.04)]
x3 [(0.7,0.2),(0.8,0.3,0.02)] [(0.7,0.2),(0.9,0.3,0.03)] [(0.9,0.3),(0.5,0.2,0.05)]

example, therefore, the same importance weights W d can be resulted.

Suppose that DMs can choose the fuzzy restriction on their evaluations from the

LTS S = {s0, s1, . . . , s6}; s0, very poor; s1, poor; s2, slightly poor; s3, fair; s4,

slightly good; s5, good; and s6, very good. They can also choose the certainty of

their evaluations from S ′ = {s′0, s′2, . . . , s′6}; s′0, strongly uncertain; s′1, uncertain; s
′
2,

somewhat uncertain; s′3, neutral; s
′
4, somewhat certain; s′5, certain; and s

′
6, strongly

certain. Based on these LTSs, the initial evaluations of DMs for ranking alternatives

w.r.t. the given attributes can be expressed using Z-numbers as illustrated in Table

3.5. Then, these evaluations are required to be translated into NZs. The translated

evaluations are collected in Table 3.6. By selecting γ = 0.85 and δ = 0.3, it takes

five discussion rounds (t = 1, . . . , 5) in order for all DMs to satisfy the designated

consensus threshold, where the evolution of CId w.r.t. each discussion round is repre-

sented in Table 3.7. As it can be observed, the proposed consensus model effectively

improves the consensus among DMs.
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Table 3.7 – The evolution of the CId w.r.t. each discussion round t.

CI t = 1 t = 2 t = 3 t = 4 t = 5
CI1 0.9367 0.9497 0.9589 0.9619 0.9643
CI2 0.6580 0.7485 0.8005 0.8364 0.8568
CI3 0.7995 0.8431 0.8650 0.8658 0.8659
CI4 0.6765 0.7483 0.8013 0.8363 0.8553
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Chapter 4

Consensus and Fusion Models to Support

Dynamic Group Decision Making

In contrast to the static decision environment, a dynamic environment in CRP refers

to the changes in the set of alternatives, attributes, DMs, and their importance

weights. In this regard, the set of alternatives could be subject to changes during

the consensus assessment due to the availability of new alternatives and/or the fea-

sibility of the previous set of alternatives [43]. The dynamic set of attributes models

the situations where new attributes are introduced to the problem during the CRP

in order to speed up the process and/or to evaluate the decision problem from new

viewpoints [207, 208]. The set of DMs can also be subject to changes due to the fact

that some DMs may leave the negotiation and/or new individuals might be invited

to participate to the decision problem [209, 210]. DMs’ importance weights, which

are of paramount importance in constructing the collective evaluation of the group,

can also be subject to changes from one discussion round to another in a dynamic

decision environment. Some efforts have been made to address this issue through

the transition probabilities of DMs’ evaluations [211], prior knowledge on the DMs’

personal characteristics [212], and eigenvector-based weight assigning approach [213].

Decision-making with consensus reaching under dynamic environments, however,

becomes more complex compared with static environments due to changes in the de-

cision parameters including the set of alternatives. Efficient management of DMs and

their interactions within the CRP can help with reducing the complexity of dynamic

decision-making. Furthermore, consensus assessment and recommendation genera-

tion for DMs to reach a desired level of consensus should also be efficient to reduce
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their associated complexity and to speed up the CRP. In this regard, management of

the attitude and interest of DMs, proper and dynamic adjustment of the consensus

threshold and DMs’ importance weights could play an important role in coping with

the complexity of decision-making in dynamic environments.

In order to deal with the complexity of dynamic decision-making, this chapter is

devoted to the introduction of a novel and computationally efficient framework based

on the Z-numbers for the sake of dynamic decision-making. In this regard, DMs are

initially divided into several groups, where DMs with the same interest form a group.

This is to reduce the dimension of initial evaluations of DMs and to convert the

multiple attribute decision problem into multiple single attribute problems to ease

the consensus assessment. At each time-step, a set of available alternatives, which

is subject to changes from one time-step to another, is put into discussion for each

group. To construct the collective evaluation of each group based on the provided

evaluations, trust relationships of DMs are integrated into their attitudes through

an attitudinal quantifier, where an OWA operator is then employed to construct the

collective opinion for the sake of consensus assessment. In this regard, the consensus

threshold value is dynamically adjusted through a computationally efficient mecha-

nism that relies on extracting the minimum spanning tree (MST) of the constructed

CEN in each group. The collective evaluations of groups are then aggregated through

an optimal fusion model to be fed into the selection process. The selected alternative

in the selection process will then be carried over to the next time-step by a designated

memory. This process will be continued until all alternatives are evaluated at least

once. To this end, this chapter makes the following contributions to the dynamic

MAGDM models:

1. A computationally efficient framework is proposed for dynamic decision-making

based on Z-numbers.

2. A mechanism is proposed to integrate trust relationships among DMs with their
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attitudes to adjust DMs’ importance weights.

3. The consensus threshold value for each group is determined by means of an

efficient and dynamic mechanism.

4. A novel fusion model is finally proposed to optimally aggregate the collective

evaluations of all groups to be fed into the selection process.

4.1 Preliminaries

Supposed that S is an LTS as defined in Section 3.1.1. In this regard, the definition

of LSFs can be given as follows [214].

Definition 23. Suppose that si is a linguistic term in S, then, an LSF can be defined

as a mapping F : si → θi (i = 0, 1, 2, . . . , 2p), where 0 ≤ θ0 ≤ θ1 ≤ . . . ≤ θ2p ≤ 1.

The following LSFs are used in this chapter:

F1(si) = θi =
i

2p
, (i = 0, 1, . . . , 2p) (4.1)

F2(si) = θi =
{ ap−a(p−i)

2a(p−2) (i = 0, 1, . . . , p)

ap+a(i−p)−2
2ap−2

(i = p+ 1, p+ 2, . . . , 2p)
(4.2)

F3(si) = θi =
{ pκ−(p−i)κ

2pκ
(i = 0, 1, . . . , p)

pς+(i−p)ς

2pς
(i = p+ 1, p+ 2, . . . , 2p)

(4.3)

where p is the number of linguistic terms, a belongs to the interval [1.36, 1.4], and

κ, ς ∈ [0, 1] denote the curvature of the subjective functions for gain and loss, respec-

tively [215].

Definition 24. Following the Definition 20, in case SD (NZi, NZj) = 0, the GNZPWA

operator can then degenerate a GNZWA operator, that is B (NZ1, . . . , NZn).
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Definition 25. [216] By assuming that the set of DMs D are vertices of a weighted

undirected graph, this graph can be represented by G (D, ζ,W) with q vertices, a finite

set of edges ζ = {ζhl} (h, l = 1, 2, . . . , q, h ̸= l), where an edge ζhl denotes the connec-

tion between the hth and lth DMs, and a set of weights W = {whl} (h, l = 1, 2, . . . , q)

with h ̸= l.

Definition 26. [217] In a simple undirected graph G (D, ζ), the neighborhood Nk for

a vertex ek is defined as Nk = {dp : ζkp ∈ ζ}, where the local clustering coefficient for

G can then be defined as:

LCCk =
2|{ζpa : ep, ea ∈ Nk, ζpa ∈ ζ}|

N (ek) [N (ek)− 1]
(4.4)

where ep and ea are neighbors of ek in Nk, N (ek) stands for the number of neighbors

of ek, the |.| operator denotes the cardinality of the enclosed set, and N(ek)[N(ek)−1]
2

shows the total number of edges in G. Therefore, the overall clustering coefficient can

be computed as the average of all local clustering coefficients as given below:

CC = 1

q

q∑
i=1

LCCi. (4.5)

Definition 27. [218]: For a weighted undirected graph G, the MSTM(D′, ζ ′,W ′) is

a subset of the edges of a connected, weighted undirected graph that connects all the

vertices, without any cycles and with the minimum total edge weight possible.

4.2 The General Framework

Traditional MAGDM problems can be referred to as providing rankings for a set of

alternatives X = {x1, x2, . . . , xq} by a set of DMs D = {d1, d2, . . . , dn} w.r.t. multiple

attributes A = {a1, a2, . . . , am}. Such a framework does not benefit the most from the

DMs’ expertise and does not take their interest into consideration. Furthermore, the
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Figure 4.1 – The general framework of the proposed method.

practical decision environments are mostly dynamic and statistical GDM frameworks

are not suitable for such environments. This chapter puts forward an MAGDM

framework to deal with these challenges.

It is proposed to initially divide the DMs into m groups w.r.t. m available at-

tributes. This is to take the interest of DMs into account so that each DM evaluates

alternatives w.r.t. only one attribute. Such a mechanism provides an opportunity

for DMs to choose the most relevant attribute to their expertise. This idea leads

to breaking up the multiple-attribute decision problem into multiple single-attribute

decision problems that consequently helps with reducing the computational burden

of the CRP. The general structure of the CRP and the construction of the collective

evaluation in each group of DMs are illustrated in Fig. 4.1.

Specifically, the designated alternatives at time-step t = 1 will be put into discus-

sion first. This set of alternatives is given to each group of DMs, where the initial
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evaluations w.r.t. each attribute are provided in terms of Z-numbers, which are then

translated into NZs. In each group, the CRP is fulfilled, and, the inconsistent DMs

with a CD lower than a specified threshold are advised to modify their evaluations

through a trust-based recommendation model. The collective evaluation of each group

is then constructed through the GNZWA operator B, and, then, the collective evalu-

ations of all groups are fed into the fusion model to allocate appropriate weights to

each attribute {w(1,1), w(1,2), . . . , w(1,m)}. The proposed fusion model then makes use

of the GNZPWA operator H to construct ratio systems. By extracting the PIS and

the NIS from the constructed ratio systems, the alternatives are ranked based on a

closeness coefficient and the best one is carried over to the next time-step. In the next

time-step, i.e., t = 2, a new subset of alternatives plus the alternative in the memory

(the selected alternative in the previous time-step) are selected to be evaluated. This

process will be continued until all the initial alternatives are evaluated at least once.

The selected alternative at the last time-step is the best one and is considered as the

solution to the decision problem.

4.3 MAGDM with Dynamic Alternatives

Let D, A, and X be the initial set of DMs, attributes, and alternatives, respec-

tively. DMs are initially divided into m groups based on their selected attributes.

Let D(k) = {e(k)1 , e
(k)
2 , . . . , e

(k)
n(k)} (k = 1, 2, . . . ,m) be the kth group of DMs focused

on the kth attribute with n(k) being the number of DMs in the kth group, and

X (t) = {xt1, xt2, . . . , xtq(t)} be the set of alternatives at time-step t, where q(t) shows

the number of alternatives at time-step t.

The initial evaluations of the kth group at time-step t in terms of Z-numbers is

R(k,t) = {R(k,t)
1 ,R(k,t)

2 , . . . ,R(k,t)
n(k)}, where each evaluation relation can be represented

by a matrix R(k,t)
p = [rp,i]

(k,t)
q(t)×1 = [(sp,i, s

′
p,i)]

(k,t)
q(t)×1, in which (sp,i, s

′
p,i) denotes a Z-

number given by the pth DM with sp,i ∈ S and S being an LTS of fuzzy restrictions
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Table 4.1 – Evaluations provided by all groups of DMs.

Group 1 Group 2
x e11 e12 e13 e14 e21 e22 e23 e24
x1 (s3, s

′
6) (s3, s

′
6) (s4, s

′
4) (s4, s

′
5) (s5, s

′
5) (s5, s

′
6) (s4, s

′
4) (s4, s

′
6)

x2 (s3, s
′
5) (s5, s

′
3) (s3, s

′
3) (s4, s

′
5) (s6, s

′
4) (s4, s

′
4) (s5, s

′
4) (s5, s

′
5)

x3 (s5, s
′
3) (s4, s

′
5) (s5, s

′
4) (s4, s

′
4) (s4, s

′
3) (s5, s

′
4) (s4, s

′
3) (s5, s

′
3)

x4 (s4, s
′
5) (s5, s

′
4) (s4, s

′
5) (s4, s

′
4) (s3, s

′
6) (s3, s

′
5) (s3, s

′
5) (s4, s

′
5)

Group 3 Group 4
x e31 e32 e33 e34 e41 e42 e43 e44
x1 (s5, s

′
3) (s4, s

′
3) (s4, s

′
6) (s4, s

′
5) (s6, s

′
6) (s5, s

′
4) (s5, s

′
2) (s5, s

′
3)

x2 (s3, s
′
5) (s5, s

′
4) (s3, s

′
3) (s3, s

′
4) (s4, s

′
5) (s2, s

′
3) (s4, s

′
4) (s5, s

′
2)

x3 (s4, s
′
6) (s3, s

′
4) (s4, s

′
5) (s5, s

′
3) (s4, s

′
5) (s5, s

′
6) (s5, s

′
5) (s5, s

′
4)

x4 (s6, s
′
3) (s4, s

′
5) (s4, s

′
5) (s4, s

′
6) (s5, s

′
6) (s6, s

′
5) (s5, s

′
6) (s6, s

′
2)

on the evaluations, s′p,i ∈ S ′ with S ′ being an LTS of certainty degree of the given

evaluation, p = 1, 2, . . . , n(k), i = 1, 2, . . . , q(t), and k = 1, 2, . . . ,m.

Example 1. Suppose that an initial group of sixteen DMs D = {e1, e2, . . . , e16} are

supposed to review the air pollution potential of four areas X = {x1, x2, x3, x4} w.r.t.

four attributes A = {a1, a2, a3, a4}. The moderator divides DMs into four groups based

on their interests and suppose that there exist four DMs in each group. DMs in each

group can choose the fuzzy restriction on their evaluations from S = {s0, s1, . . . , s6};

s0, very poor; s1, poor; s2, slightly poor; s3, fair; s4, slightly good; s5, good; and

s6, very good. They can also choose the certainty of their evaluations from S ′ =

{s′0, s′2, . . . , s′6}; s′0, strongly uncertain; s′1, uncertain; s′2, somewhat uncertain; s′3,

neutral; s′4, somewhat certain; s′5, certain; and s
′
6, strongly certain. The initial eval-

uations provided by all groups of DMs are collected in Table 4.1.

The initial evaluations in terms of Z-numbers are then used to extract a NZ

from each element. This transformation is used to provide a quantitative repre-

sentation for a Z-number. The set of evaluations R(k,t) are translated into R̃(k,t) =

{R̃(k,t)
1 , R̃(k,t)

2 , . . . , R̃(k,t)
n(k)}, where R̃

(k,t)
p (p = 1, 2, . . . , n (k)) denotes the translated eval-

uations of the pth DM in the kth group. Each evaluation term in R(k,t)
p is then decom-
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Table 4.2 – Translated evaluations of all DMs in the first group.

DM x Translated Evaluation

e11

x1 [(0.6016, 0.2152), (0.7822, 0.2553, 0.0297)]
x2 [(0.6100, 0.2161), (0.7673, 0.2522, 0.0306)]
x3 [(0.6325, 0.2186), (0.7212, 0.2414, 0.0335)]
x4 [(0.6325, 0.2186), (0.7441, 0.2491, 0.0309)]

e12

x1 [(0.6006, 0.2236), (0.7058, 0.2491, 0.0307)]
x2 [(0.6540, 0.2357), (0.6582, 0.2373, 0.0351)]
x3 [(0.6090, 0.2252), (0.7008, 0.2479, 0.0312)]
x4 [(0.6315, 0.2276), (0.7036, 0.2486, 0.0309)]

e13

x1 [(0.7642, 0.2562), (0.6185, 0.2173, 0.0399)]
x2 [(0.7360, 0.2468), (0.6674, 0.2293, 0.0362)]
x3 [(0.7585, 0.2543), (0.6468, 0.2218, 0.0382)]
x4 [(0.7360, 0.2468), (0.6477, 0.2221, 0.0381)]

e14

x1 [(0.6982, 0.2337), (0.7079, 0.2434, 0.0319)]
x2 [(0.7233, 0.2425), (0.6796, 0.2336, 0.0349)]
x3 [(0.7008, 0.2347), (0.7023, 0.2415, 0.0325)]
x4 [(0.7008, 0.2347), (0.6815, 0.2343, 0.0347)]

posed into a five-element NZ. Therefore, the translated evaluations can be expressed

by a matrix of the form R̃(k,t)
p = [r̃

(k,t)
p,i ]

(k,t)
q(t)×5 = [((µp,i, σp,i) , (ϑp,i, ϖp,i, ϱp,i))]

(k,t)
q(t)×5.

Example 2. (Example 1 continuation) Let S and S ′ be as before and U = [0, 1]. The

constructed NZs for all DMs in the first group are given in Table 4.2.

Once the initial evaluations are translated, the CRP in each group gets started. In

what follows, a two-level CD has been suggested to be used for the sake of consensus

assessment.

4.3.1 Consensus Degree based on NZs

A two-level CD is proposed as each group of DMs evaluate a given set of alternatives

w.r.t. only one attribute. Therefore, the proposed scheme aims to break a multiple-

attribute decision problem into multiple single-attribute decision problems to reduce

the consensus assessment in each group into just two levels compared with the typical
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three-level assessments. This consequently helps with making the proposed approach

computationally efficient.

Let R̃(k,t)
h and R̃(k,t)

l be two decision matrices in terms of NZs provided by DMs e
(k)
h

and e
(k)
l in the kth group, respectively, on a set of alternatives X (t) = {x(t)1 , x

(t)
2 , . . . , x

(t)
q(t)}.

Level 1. CD on alternatives : For DMs e
(k)
h and e

(k)
l in the kth group with

k = 1, 2, . . . ,m, their CD on an alternative x
(k,t)
i (i = 1, 2, . . . , q (t)) is defined as

follows:

CE (k,i)h,l

(
R̃(k,t)

h , R̃(k,t)
l

)
= 1− distz

(
r̃
(k,t)
h,i , r̃

(k,t)
l,i

)
, (4.6)

where listz(r̃
(k,t)
h,i , r̃

(k,t)
l,i ) denotes the distance between two NZs as defined in Definition

19. By setting U = [0, 1] , it can be concluded that CE (k,i)h,l (R̃(k,t)
h , R̃(k,t)

l ) ∈ [0, 1],

∀i, h, l.

Level 2. CD on decision matrix : For DMs e
(k)
h and e

(k)
l , their CD on decision

matrices R̃(k,t)
h and R̃(k,t)

l is defined as follows:

CD(k,t)
h,l

(
R̃(k,t)

h , R̃(k,t)
l

)
=

1

q (t)

q(t)∑
i=1

CE (k,i)h,l

(
R̃(k,t)

h , R̃(k,t)
l

)
.

Same as what stated for the CE i, the effective domain of U = [0, 1] leads to

CD(k)
h,l (R̃

(k,t)
h , R̃

(k,t)
l ) ∈ [0, 1]. For a DM in the kth group e

(k)
h , the following average

CD (ACD) can then be defined so as to check his CD with the rest of the peers in a

group:

ACD(k,t)
h =

1

n (k)− 1

n(k)∑
l=1,l ̸=h

CD(k,t)
h,l

(
R̃(k,t)

h , R̃(k,t)
l

)
.

As for the given illustrative example, CD on the decision matrix and ACD values

are collected in Table 4.3 and Table 4.4, respectively.
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Table 4.3 – CD on decision matrix for all groups of DMs.

Group 1 Group 2
e11 e12 e13 e14 e21 e22 e23 e24

e11 - 0.9413 0.9642 0.9503 e21 - 0.9267 0.9285 0.9140
e12 ∗ - 0.9319 0.9640 e22 ∗ - 0.9047 0.9181
e13 ∗ ∗ - 0.9634 e23 ∗ ∗ - 0.9135
e14 ∗ ∗ ∗ - e24 ∗ ∗ ∗ -

Group 3 Group 4
e31 e32 e33 e34 e41 e42 e43 e44

e31 - 0.9444 0.9529 0.9504 e41 - 0.9394 0.9389 0.9209
e32 ∗ - 0.9532 0.9560 e42 ∗ - 0.9184 0.9454
e33 ∗ ∗ - 0.9525 e43 ∗ ∗ - 0.9123
e34 ∗ ∗ ∗ - e44 ∗ ∗ ∗ -

Table 4.4 – The ACD of each DM in each group.

k = 1 k = 2 k = 3 k = 4

ACD(k)
1 0.8262 0.8688 0.7986 0.8019

ACD(k)
2 0.7607 0.8722 0.8515 0.7762

ACD(k)
3 0.7912 0.8651 0.8831 0.7534

ACD(k)
4 0.8097 0.8217 0.8525 0.7596
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4.3.2 Consensus Threshold

The consensus threshold for the kth group during the rth discussion round at time-

step t is denoted by γ
(k,t)
r , and it is proposed to be determined based on the CD. If the

CD among DMs e
(k)
h and e

(k)
l in the rth discussion round at time-step t, i.e., CD(k,r)

h,l , is

larger than γ
(k,t)
r , it can be said that there exist a consensus relationship between these

two DMs. This idea is used to define CENs based on weighted undirected graphs.

Definition 28. In a group of DMs D(k) = {e(k)1 , e
(k)
2 , . . . , e

(k)
n(k)} (k = 1, 2, . . . ,m), the

CEN is a weighted undirected graph G(D, ζ, C) with n(k) vertices, consensus relations

ζ = {ζ(k)hl , h, l = 1, 2, . . . , n(k), h ̸= l}, and consensus relation values C = {c(k)hl =

CD(k)
hl |h, l = 1, 2, . . . , n(k), h ̸= l, CD(k)

hl ≥ γ(k)}. If c
(k)
hl ≥ γ(k), there is an edge in

G connecting DMs e
(k)
h and e

(k)
l with the weight of c

(k)
hl , otherwise, there is no edge

between these two DMs.

Based on the above definition, G(k,t)r (D(k), ζ
(k,t)
r , C(k,t)r ) denotes the CEN of the kth

group in the rth discussion round at time-step t.

Definition 29. For the kth group in the rth discussion round at time-step t, the

complete CEN can be denoted via G(k,t)c,r that consists of n(k) DMs as vertices, con-

sensus relations ζ
(k,t)
c,r and consensus relation values C(k,t)c,r with CD(k,t)

r,hl ≥ γ
(k,t)
c,r , where

γ
(k,t)
c,r = min{CD(k,t)

r,hl }.

A complete CEN is a completely connected network and according to the Defini-

tion 26, the overall CC for a complete CEN is equal to one. Any γ
(k,t)
r > γ

(k,t)
c,r will

result in an incomplete CEN, where for an incomplete CEN, the overall CC is smaller

than one. Furthermore, there exists γ
(k,t)
e,r , for which there is no connection among

all vertices, leading to an empty CEN, where the overall CC is zero. The proposed

method to find the consensus threshold is based on the fact that a lower CC in a

CEN conducts less stable relationships among DMs. There exist a sensitive threshold

value for which a CEN becomes more vulnerable and unstable. This threshold value
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Figure 4.2 – The complete CEN and its corresponding MST for the first group of
DMs.

results in a sensitive CEN and can be selected as a proper consensus threshold. The

following procedure based on the CENs and MSTs is proposed to extract the sensitive

CEN so as to find a proper consensus threshold.

Let G(k,t)c,r (D(k), ζ
(k,t)
r , C(k,t)r ), k, r and t be as before. We then define the MST

of G(k,t)c,r as M(k,t)
r (D′(k), ζ

′(k,t)
r , C ′(k,t)r ). We further define a set of edges from ζ

(k,t)
r

for which, |ζ(k,t)r | = ϵ1, and they are not included in ζ
′(k,t)
r , where |ζ ′(k,t)r | = ϵ2, and

denote it by Nζ
(k,t)
r = {Nζ(k,t)p,hl , Nζ

(k,t)
p+1,hl, . . . , Nζ

(k,t)
ϵ1−ϵ2,hl

}, where its elements are set

in a descent order w.r.t. their corresponding weights, i.e., c
′(k,t)
p,hl ≤ c

′(k,t)
p+1,hl. Following

the fact that the overall CC for an MST is zero, in order to determine the sensitive

CEN and its corresponding consensus threshold, we suggest the following simple rule.

Determine the MST of G(k,t)c,r and compute the overall CC, which must be zero. Then,

add the first edge in Nζ
(k,t)
r , i.e., Nζ

(k,t)
p,hl , to the constructed MST and compute the

overall CC. If the overall CC is not zero, the maximum weight of edges in ζ
′(k,t)
r is the

consensus threshold; otherwise, add the first two edges in Nζ
(k,t)
r to the constructed

MST and compute the overall CC. If it is not zero, the consensus threshold is c
′(k,t)
p,hl ;

otherwise, repeat the previous step. This simple rule should be repeated until the

first sub-graph with a nonzero overall CC is resulted. Algorithm 3 summarizes the

required steps in forming the sensitive CEN to find the consensus threshold.

Example 3. (Example 1 continuation) In order to set the consensus threshold for the
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Algorithm 3: Consensus Threshold

Input : G(k,t)c,r

(
D(k), ζ

(k,t)
r , C(k,t)r

)
: complete CEN of the kth group.

ϵ1: The cardinality of ζ
(k,t)
r , |ζ(k,t)r | = ϵ1.

ϵ2: The cardinality of ζ
′(k,t)
r , |ζ ′(k,t)r | = ϵ2.

Output: γ
(k,t)
r : Consensus threshold of the kth group at round r.

1 while CC ≠ 0 do

2 Extract the MSTM(k,t)
r (D′(k), ζ

′(k,t)
r , C ′(k,t)r ) from the complete CEN

G(k,t)c,r (D(k), ζ
(k,t)
r , C(k,t)r ).

3 Construct Nζ
(k,t)
r = {Nζ(k,t)p,hl , Nζ

(k,t)
p+1,hl, . . . , Nζ

(k,t)
ϵ1−ϵ2,hl

}.
4 for i = 1 : ϵ1 − ϵ2 do

5 Remove the i-first element of Nζ
(k,t)
r and add it (them) to the set of

edges of the MST ζ
′(k,t)
r .

6 Compute the overall CC of T
(k,t)
r (D′(k), ζ

′(k,t)
r , C ′(k,t)r ).

7 if i = 1 ∧ CC ≠ 0 then

8 γ
(k,t)
r = max{c′(k,t)hl |ζ

(k,t)
hl ∈ ζ ′(k,t)r } and terminate the algorithm.

9 else if i ̸= 0 ∧ CC ≠ 0 then

10 γ
(k,t)
r = c

′(k,t)
i−1,hl and terminate the algorithm.

11 else
12 Return to step 6.
13 end

14 end

15 end
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first group of DMs, their CDs are used to construct a CEN. As there are four DMs in

the first group, the constructed CEN consists of four vertices and the corresponding

complete CEN contains six edges. The complete CEN has been shown in Fig. 4.2,

where its MST has been highlighted by red lines. As the overall CC for the MST is zero,

therefore, the next edge that will be added to the MST is ζ
(1,1)
34 , where its corresponding

weight is 0.8135. By computing the overall CC, it will be zero. Therefore, the next

edge to be added to the MST is ζ
(1,1)
24 , where its corresponding weight is 0.8168. In this

case, the overall CC will be obtained as 0.83 that is not zero. Therefore, the consensus

threshold for the first group of DMs is γ
(1,1)
1 =0.8135. By doing the same procedure,

one can conclude that γ
(2,1)
1 = 0.8344, γ

(3,1)
1 = 0.8326, and γ

(4,1)
1 = 0.7969.

4.3.3 Trust Model for Recommendation Generation

In order to generate the adjustment rules for inconsistent DMs in each group, three

main steps are required to be fulfilled.

1. Determine inconsistent DMs in each group. Let k, r, and t be as before. Then,

ACD(k,t)
n denotes the ACD of the nth DM in the kth group at time-step t and

the set of inconsistent DMs can be constructed as follows:

EXPCH(k,t)
r = {e(k)n |ACD(k,t)

n < γ(k,t)r ∈ [0, 1]}.

Example 4. (Example 1 continuation) By comparing the attained results collected in

Table 4.4 with the consensus thresholds obtained in Example 3, the following sets of

inconsistent DMs can be constructed: EXPCH
(1,1)
1 = {e(1)2 , e

(1)
3 , e

(1)
4 }, EXPCH

(2,1)
1 =

{e(2)4 }, EXPCH
(3,1)
1 = {e(3)1 }, and EXPCH

(4,1)
1 = {e(4)2 , e

(4)
3 , e

(4)
4 }.

Definition 30. For a pair of DMs e
(k)
h and e

(k)
l in the same group, their trust rela-
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tionship T R is based on the measured CD and can be defined as:

T R(k,t)
r,hl = CD(k)

r,hl(R̃
(k,t)
h , R̃(k,t)

l ), (4.7)

and, then, the trust matrix of the group T RM can be defined as:

T RM(k,t)
r =

[
T R(k,t)

r,hl

]
q(k)×q(k)

. (4.8)

2. Construct the trust model T RM(k,t)
r .

Suppose that e
(k)
n is an inconsistent DM in EXPCH(k,t)

r . Let the trust relationship

of this DM with other DMs in the group be as {T R(k,t)
r,hl |l = 1, 2, . . . , n(k), l ̸= h}.

Suppose that σ(i) : {1, 2, . . . , n(k)− 1} → {l = 1, 2, . . . , n(k)|l ̸= h} is a permutation

that verifies T R(k,t)
r,hσ(i) ≥ T R

(k,t)
r,hσ(i+1). Then, the trust degrees based on the DMs’

attitude can be calculated through an OWA operator, which is guided by a basic

unit-monotonic function Q as follows:

β
(k,t)
σ(i) = Q( i

n(k)− 1
)−Q( i− 1

n(k)− 1
), i = 1, 2, . . . , n(k)− 1.

For the inconsistent DM e
(k)
n , compute the trust weights β

(k,t)
σ(i) . Then, the collective

evaluation matrix needs to be constructed to generate recommendations for the incon-

sistent DM, where a regularly-increasing monotone quantifier of the form Q (p) = pα

can be used, with α ∈ [0, 1] being the attitudinal parameter to conduct the attitude

of a DM.

Suppose that R̃(k,t)
n is the evaluation of the inconsistent DM e

(k)
n , and R̃(k,t)

l with

l = 1, 2, . . . , n(k) − 1 , and l ̸= h, are the evaluations of other DMs in the group.

Then, a collective decision matrix R(k,t)

r,n = (r
(k,t)
ij ) can be constructed based on the
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attitudinal-based trust degrees where:

r
(k,t)
ij = B

(
β
(k,t)
σ(1) r̃

(k,t)
ij,σ(1), . . . , β

(k,t)

σ
(k,t)
r,1

r̃
(k,t)
ij,σ(q(k)−1)

)
,

with B being the GNZWA operator.

Example 5. (Example 1 continuation) Suppose that we aim at constructing the

collective decision matrix for the inconsistent DM in EXPCH
(2,1)
1 = {e(2)4 }. There

are four DMs in the second group (n(2) = 4), and, therefore, there exist three

((n(2) − 1)) attitudinal-based trust degrees for this DM. It can be concluded that

σ(1) = 2, σ(2) = 3, and σ(3) = 1. By choosing α = 4/6, the attitudinal trust degrees

for the inconsistent DM are β
(2,1)
2 = 0.4807, β

(2,1)
3 = 0.2824, and β

(2,1)
1 = 0.2369.

Then, a collective evaluation can be constructed based on the GNZWA operator as

follows:

R̄(2,1)
1,4 =


0.7468 0.2505 0.9036 0.2774 0.0231

0.7532 0.2526 0.6600 0.2266 0.0369

0.7863 0.2633 0.5600 0.2022 0.0439

0.5395 0.2082 0.7790 0.2663 0.0223

 .

3. The inconsistent DM e
(k)
n is then suggested to modify his evaluations r̃

(k,t)
ij with

i = 1, 2, . . . , q(k) and j = 1, 2, . . . , 5 as in the following:

rr̃
(k,t)
ij =

((
[1− δ]µ̃(k,t)

ij + δµ
(k,t)
ij ,

√
[1− δ](σ̃(k,t)

ij )2 + δ(σ
(k,t)
ij )2

)
,

( [1− δ]µ̃(k,t)
ij ϑ̃

(k,t)
ij + δϑ

(k,t)

ij

[1− δ]µ̃(k,t)
ij + δµ

(k,t)
ij

,

√√√√ [1− δ]µ̃(k,t)
ij (ϖ̃

(k,t)
ij )2 + δµ

(k,t)
ij (ϖ

(k,t)
ij )2

[1− δ]µ̃(k,t)
ij + δµ

(k,t)
ij

,

√√√√ [1− δ]µ̃(k,t)
ij (ϱ̃

(k,t)
ij )2 + δµ

(k,t)
ij (ϱ

(k,t)
ij )2

[1− δ]µ̃(k,t)
ij + δµ

(k,t)
ij

))
, (4.9)

where δ ∈ [0, 1] is the feedback parameter.
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Table 4.5 – The evolution of ACD for each DM in each group.

time-step t = 1
DM Group 1 Group 2

r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5
1st 0.8262 0.8368 0.8918 0.9279 0.9519 0.8688 0.8772 0.8839 0.8912 0.9231
2nd 0.7607 0.8216 0.8798 0.9192 0.9457 0.8722 0.8816 0.8891 0.9028 0.9165
3rd 0.7912 0.8440 0.8955 0.9301 0.9532 0.8651 0.8714 0.8768 0.9035 0.9156
4th 0.8097 0.8592 0.9074 0.9387 0.9592 0.8217 0.8459 0.8655 0.8935 0.9152

Group 3 Group 4
1st 0.7986 0.8487 0.8962 0.9288 0.9492 0.8019 0.8458 0.8992 0.9331 0.9331
2nd 0.8515 0.8663 0.9050 0.9321 0.9512 0.7762 0.8479 0.9009 0.9344 0.9344
3rd 0.8831 0.9003 0.9245 0.9419 0.9528 0.7534 0.8273 0.8849 0.9232 0.9232
4th 0.8525 0.8708 0.9077 0.9342 0.9530 0.7596 0.8318 0.8888 0.9262 0.9262

Example 6. (Example 1 continuation) For the inconsistent DM e
(2)
4 , the modified

evaluation is as follows with δ = 0.33:

RR̃(2,1)
1,4 =


0.6931 0.2319 0.9657 0.2899 0.0169

0.8069 0.2697 0.7424 0.2547 0.0277

0.8178 0.2731 0.5190 0.1958 0.0459

0.6247 0.2177 0.7790 0.2663 0.0223

 .

Inconsistent DMs are recommended to modify their evaluations according to the

above-mentioned trust-based mechanism. The moderator decides about the number

of discussion rounds r. Suppose that the moderator suggests five discussion rounds,

i.e., r = 5. The evolution of the ACD for each DM is collected in Table 4.5. Further-

more, the evolution of the consensus threshold for each group of DMs is represented

in Table 4.6.

4.3.4 Fusion Model and the Selection Process

Once the CRP finishes by reaching to the maximum number of discussion rounds, the

selection process gets started that makes use of a fusion model. This process contains
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Table 4.6 – The evolution of the consensus threshold for each group.

r = 1 r = 2 r = 3 r = 4 r = 5

γ
(1,1)
r 0.8135 0.8765 0.9179 0.9452 0.9634

γ
(2,1)
r 0.8344 0.8628 0.8813 0.9008 0.9140

γ
(3,1)
r 0.8326 0.8841 0.9189 0.9412 0.9525

γ
(4,1)
r 0.7969 0.8538 0.9080 0.9209 0.9209

two main steps. In the first step, the importance of attributes is quantified by a set

of optimal weights that are constructed in the fusion model. In the second step, the

ratio systems are constructed based on the GNZPWA operator. A general rule is used

for weight-assigning in the fusion model. That is, an attribute with a low support

degree from other attributes should be given a low weight. Based on this concept,

and by resorting to the maximum-deviation procedure, an optimization problem is

proposed so as to determine the weight of each attribute.

1. Suppose thatR(k,t)

c = [r
(k,t)
i ]q(k,t)×5 is the final collective evaluation matrix of the

kth group, which has been obtained based on the GNZWA operator, and w(k,t)

is the weight assigned to the kth attribute. Then, the solution of the following

optimization problem leads to an appropriate weight for each attribute:

max
m∑
k=1

w(k,t)

m∑
j=1,j ̸=k

w(j,t)

q(t)∑
i=1

SD
(
r
(k,t)
i , r

(j,t)
i

)
s.t.

m∑
k=1

w(k,t) = 1; w(k,t) ≥ 0, (4.10)

where SD(., .) is the support degree function defined in Definition 20.

Example 7. (Example 1 continuation) By solving the optimization problem (4.10),

the weight of each attribute at time-step t = 1 can be computed as w(1,1) = 0.2334,

w(2,1) = 0.2126, w(3,1) = 0.279, and w(4,1) = 0.275.
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2. Let R(k,t)

f = [r
(k,t)
i ]q(t)×5 and w(k,t) be as obtained in the previous step. Then,

the ratio systems can be constructed as follows by integrating the collective

evaluations in the fusion model:

RSt
i = H

(
w(1,t)r

(1,t)
i , . . . , w(m,t)r

(m,t)
i

)
, (4.11)

where H is the GNZPWA operator. In order to select the best alternative, the PIS

and the NIS can be determined based on the constructed ratio systems as follows:

pt+ =
(
max

i
(µRSt

i
),min

i
(σRSt

i
),max

i
(ϑRSt

i
),min

i
(ϖRSt

i
),min

i
(ϱRSt

i
)
)
,

nt
− =

(
min

i
(µRSt

i
),max

i
(σRSt

i
)),min

i
(ϑRSt

i
),max

i
(ϖRSt

i
),max

i
(ϱRSt

i
)
)
.

Finally, the closeness coefficient of RSt
i can be calculated as:

dtRSt
i
=

distz
(
RSt

i, n
t
−
)

distz
(
RSt

i, n
t
−
)
+ distz

(
RSt

i, p
t
+

) . (4.12)

The closeness coefficient is then used to rank alternatives; the larger the value of dtRSt
i
,

the better the alternative xti.

Example 8. (Example 1 continuation) By applying the GNZPWA operator to R(k,t)

f

w.r.t. the attribute weights w(k,t), the ratio systems can be constructed as in the

following:

RSt =


0.7288 0.2465 0.7436 0.2528 0.0314

0.6355 0.2341 0.6060 0.2206 0.0391

0.7485 0.2528 0.6852 0.2367 0.0351

0.7053 0.2421 0.7785 0.2631 0.0260

 .

Then, following the given formula in (4.12), the closeness coefficients can be com-

puted as dtRSt = {0.4845, 0.4326, 0.5220, 0.4410}. Then, the ordered set of alterna-
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tives is X t
O = {xt3, xt1, xt4, xt2}, i.e., xt3 > xt1 > xt4 > xt2.

4.4 Comparative Analysis and Discussion

In this section, the sensitivity of the proposed MAGDM framework to the design pa-

rameters is discussed in detail. Its practical verification is then investigated through

introducing the application of MAGDM in locating faults in power distribution sys-

tems, where the attained results are presented in Chapter 6.

Parameter λ is used in the GNZPWA operator to model the thinking mode of

DMs. A larger value of λ denotes that DMs are more optimistic, while lower values

denote that DMs are more pessimistic. The sensitivity of the proposed method to λ

is shown in Fig. 4.3. As it can be observed, smaller values speed up the CRP and

lead to higher ACD. The graphs shown in Fig. 4.3 represent the average ACD of 16

DMs used in the illustrative example. The attained results denote that being more

pessimistic helps with speeding up the CRP, while optimistic thinking modes lower

the speed of the CRP and lead to lower consensus among DMs.

Parameter a in F2(si) and parameters κ and ς in F3(si) play an important role

in the extraction of NZs from Z-numbers. The evolution of ACD for each group of

DMs w.r.t. to a is represented in Table 4.7. As it can be observed, the larger values

have just slightly increased the ACD, denoting that the sensitivity to this parameter

is not significant. On the other hand, nine combinations of κ and ς are selected and

the evolution of ACD is represented in Table 4.8. The attained results show that the

selection of lower values for both parameters speeds up the CRP.

In extraction of NZs from Z-numbers, two LSFs are required, where the first

one f(si) extracts information from si ∈ S to construct the first part of NZs, while

the second LSF g(s′i) is applied to s′i ∈ S ′ to construct the second part of NZs.

The combinations of LSFs and the evolution of ACD w.r.t. each combination is

represented in Table 4.9. The attained results denote that the best combination is
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Figure 4.3 – The variation of ACD w.r.t. the changes of λ.

Table 4.7 – The evolution of ACD w.r.t. the changes of ‘a’.

Group 1 Group 2
a r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5

1.36 0.7968 0.8403 0.8935 0.9289 0.9525 0.8568 0.8689 0.8787 0.8977 0.9175
1.37 0.7969 0.8404 0.8936 0.9290 0.9525 0.8569 0.8690 0.8788 0.8978 0.9176
1.38 0.7971 0.8406 0.8937 0.9290 0.9526 0.8571 0.8692 0.8790 0.8978 0.9177
1.39 0.7972 0.7407 0.8938 0.9291 0.9526 0.8572 0.8693 0.8791 0.8979 0.9178
1.40 0.7974 0.8409 0.8939 0.9292 0.9527 0.8574 0.8695 0.8793 0.8980 0.9179
a Group 3 Group 4

1.36 0.8443 0.8697 0.9071 0.9335 0.9511 0.7716 0.8374 0.8929 0.9288 0.9288
1.37 0.8450 0.8703 0.9075 0.9338 0.9512 0.7728 0.8382 0.8935 0.9292 0.9292
1.38 0.8457 0.8709 0.9079 0.9340 0.9514 0.7739 0.8391 0.8940 0.9296 0.9296
1.39 0.8464 0.8715 0.9084 0.9343 0.9516 0.7751 0.8399 0.8946 0.9300 0.9300
1.40 0.8471 0.8716 0.9085 0.9344 0.9517 0.7763 0.8407 0.8951 0.9303 0.9303
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Table 4.8 – The evolution of ACD w.r.t. to κ and ς.

κ ς r=1 r=2 r=3 r=4 r=5
0.1 0.5 0.7466 0.7833 0.8183 0.8590 0.8722
0.9 0.5 0.4865 0.6006 0.6944 0.7407 0.7724
0.5 0.1 0.5685 0.6656 0.7312 0.7596 0.7949
0.5 0.9 0.4710 0.5816 0.6709 0.7274 0.7875
0.5 0.5 0.5189 0.6243 0.6882 0.7432 0.7734
0.9 0.9 0.4386 0.5727 0.6557 0.7084 0.7448
0.1 0.1 0.7957 0.8346 0.8566 0.8851 0.8984
0.1 0.9 0.6958 0.7353 0.7820 0.8247 0.8367
0.9 0.1 0.5356 0.6391 0.7101 0.7460 0.7871

Table 4.9 – The evolution of ACD w.r.t. to linguistic scale function combinations.

f(si) g(s′i) r=1 r=2 r=3 r=4 r=5
F1(si) F2(s

′
i) 0.8188 0.8552 0.8939 0.9228 0.9380

F1(si) F3(s
′
i) 0.7957 0.8346 0.8566 0.8851 0.8984

F2(si) F1(s
′
i) 0.8172 0.8450 0.8688 0.8864 0.9028

F3(si) F1(s
′
i) 0.8166 0.8445 0.8682 0.8863 0.9025

F2(si) F3(s
′
i) 0.8009 0.8388 0.8603 0.8832 0.8961

F3(si) F2(s
′
i) 0.8006 0.8386 0.8602 0.8831 0.8960

f(si) = F1(si) and g(s′i) = F2(s
′
i), however, no significant changes occur from one

combination to another that denotes the robustness of the proposed scheme in coping

with different LSFs.

Next, the effect of recommendation policies w.r.t. α is discussed. α = 0 leads to

the case, in which the inconsistent DM trusts only one peer with the closest evalua-

tions, while α = 1 denotes an indifferent policy, in which the inconsistent DM trusts

all peers equally. Other values than zero and one, e.g., α = 4
6
, gives a higher weight

to peers with closer evaluations. The attained results in terms of the ACD for five

discussion rounds are collected in Table 4.10 and the average values for all groups are

represented in Table 4.11. The attained results in Table 4.11 denote the superiority

of the recommended policy in this work, i.e., the policy with α = 4
6
, for the sake of

speeding up the CRP that consequently leads to higher ACD values.
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Table 4.10 – Comparison of different recommendation policies.

Group 1 Group 2
α r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5
0 0.7968 0.8114 0.8245 0.8423 0.8582 0.8568 0.8610 0.8650 0.8688 0.8782
4
6

0.7968 0.8099 0.8290 0.8461 0.8616 0.8568 0.8603 0.8637 0.8669 0.8669
1 0.7968 0.8095 0.8286 0.8458 0.8613 0.8568 0.8599 0.8629 0.8657 0.8684
α Group 3 Group 4
0 0.8471 0.8534 0.8593 0.8720 0.8836 0.7716 0.7946 0.8011 0.8191 0.8333
4
6

0.8471 0.8543 0.8610 0.8704 0.8815 0.7716 0.7925 0.8104 0.8302 0.8480
1 0.8471 0.8547 0.8616 0.8710 0.8817 0.7716 0.7914 0.8092 0.8246 0.8382

Table 4.11 – The average values of ACD for all groups w.r.t. different values of α.

α r=1 r=2 r=3 r=4 r=5
0 0.8181 0.8301 0.8375 0.8506 0.8633
4
6

0.8181 0.8292 0.8410 0.8534 0.8652
1 0.8181 0.8289 0.8406 0.8518 0.8624

Figure 4.4 – The variation of ACD w.r.t. the changes of feedback parameter δ and
the number of discussion rounds r

.
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In the next experiment, the effect of the feedback parameter δ and discussion

rounds r on the proposed framework is investigated. The general rule is that a larger

value of δ increases the ACD, however, imposes a higher cost to a DM to modify the

initial evaluations. Furthermore, a successful CRP increases the ACD when more dis-

cussion rounds are assigned. Variation of theACD w.r.t. δ = {0.05, 0.1, 0.15, 0.2, 0.25}

and r = {5, 10, 15} is given in Fig. 4.4. As it can be observed, for a specific δ, theACD

increases when the number of discussion rounds is increased. Furthermore, regardless

of the number of discussion rounds, a larger value of δ increases the ACD. This ex-

periment verifies the validness of the proposed dynamic decision-making framework.

4.5 Complexity Analysis

This section discusses the time complexity of the proposed dynamic GDM model.

The proposed model relies on three algorithms discussed before. For the first algo-

rithm, which is used to find the consensus threshold value, suppose that the num-

ber of iterations that it takes for having CC ̸= 0 is ℵ1, and the number of incon-

sistent DMs in each group is at most ℵ2. Then, the complexity of this algorithm

is O (ℵ1 × (ζ1 − ζ2)× n log n). The second algorithm is concerned with the recom-

mendation mechanism. The time complexity of this algorithm is O (ℵ2 × q). The

third algorithm deals with the fusion model, where the complexity of this algo-

rithm is O (m× q2). Therefore, the time complexity of this algorithm will be in

total O (ℵ1 × (ζ1 − ζ2)× n log n+ ℵ2 × q +m× q2). Due to the fact that in dynamic

GDM, the set of alternatives and DMs take high values, therefore, the time complex-

ity could be summarized as O (m× q2), because ℵ1 and ℵ2 could be ignored compared

with n and q.
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Chapter 5

Blockchain-Enabled Consensus

Management in Linguistic Opinion

Dynamics

The study of opinion dynamics aims at understanding how opinions evolve over time

among a group of interacting agents. The arithmetic mean of agents’ opinions in a

previous time-step is used to determine how agents’ opinions change over time. It

has been decades since ODMs were developed utilizing time as the main element of

dynamism [219]. The developed models can generally be categorized into discrete-

in-opinion and continuous-in-opinion models. One can refer to the Voter [45] and

Sznajd [46] models as well-known discrete ODMs, where models such as DeGroot

model [47], and BC models including Hegselmann and Krause (HK) model [48] and

Weisbuch and others (DW) model [220, 50] are of well-known continuous ODMs.

The classic models have been extensively studied, with a variety of variants being

proposed in recent years to improve their fusion process. These models can arguably

be divided into four categories including models that consider agents’ behaviour,

social network-based models, models based on the minimum adjustment notion, and

linguistic models, where we provided a very comprehensive review on such models in

Chapter 2.

Even though the developed ODMs have shown encouraging results, however, there

still exist several challenges that need to be addressed more efficiently.

1. It is a new research direction in ODMs to express opinions using linguistic

representation structures, and preliminary results are encouraging. There is,
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however, room for improvement in the development of LODMs based on a more

generalized opinion representation structure such as Z-numbers.

2. Even though notable efforts have been made to the design of minimum cost

consensus models for opinion dynamics, however, the willingness of agents to

accept or refuse the suggested modifications is missing. In opinion dynamics,

the willingness is usually addressed through the BC models, yet they conduct

bias in evolution of agents’ opinions.

3. The agents’ willingness is typically characterized by BC notion in ODMs. Such

models rely on the opinion similarity to build trust, meaning that only agents

with similar opinions trust each other and an agent’s opinion is formed by means

of the trusted peers. Such models can influence agents’ interactions in a biased

manner, and agents’ opinions might be influenced by within group factors (e.g.,

peer pressure or group pressure).

Following the aforementioned challenges, a general framework that guides agents

toward a consensus opinion by considering their willingness is the subject of this

chapter. This chapter is concerned with the design of an LODM, where agents express

their opinions in terms of Z-numbers. In order to remove within-group factors (e.g.,

group and peer pressure) that might impact agents’ opinions, and to model agents’

interactions without concerning the opinion similarity, it is proposed to construct a

safe and efficient communication regime using the Blockchain technology. Within

this regime, an agent’s identity and opinion are not disclosed for other peers, yet it

proposes to build trust among agents by just enabling them to see how many of their

peers have accepted the suggested modifications by the moderator. To this end, this

chapter contributes to the design of an ODM that accounts for the aforementioned

challenges as summarized below [221]:

1. Construction of an LODM based on Z-numbers;
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2. Considering agents’ willingness to accept or refuse the suggested modifications;

3. Constructing a Blockchain-enabled trust-building mechanism to model agents’

interactions.

5.1 Preliminaries

This section gives an introduction to the concepts of Z-numbers and their transfor-

mation into numerical values.

5.1.1 Z-numbers

Z-numbers consist of two components to describe an uncertain variable to address

the reliability issue of information.

Definition 31 ([52]). A Z-number, denoted by Z = (A,B), is made up of an ordered

pair of fuzzy numbers, where the first component, A, is a restriction on the values

that an uncertain variable X can take, and the second component, B, is a measure of

reliability of the first component.

Components of Z-numbers are typically expressed in natural language, e.g., Z =

(‘very good’, ‘certain’), indicating that Z-numbers can be realized through LTSs,

which are represented by ordinal linguistic scales.

Definition 32 ([222]). S = {s0, s1, . . . , s2r} is a finite and completely ordered LTS

with odd cardinality, where r is a nonnegative integer value. si denotes a linguistic

variable and for two arbitrary linguistic variables si and sj, the following two condi-

tions hold: (1) S is an ordered set, therefore, si ≤ sj iff i ≤ j; (2) There is a negation

operator for which neg(si) = sj if i+ j = 2r.
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5.1.2 Transformation of Z-numbers

A fuzzy set A defined on universe X can be represented by A = {< x, µA(x) > |x ∈

X}, where µA : X → [0, 1] is an MF that quantifies the degree for which x ∈ X

belongs to A. For the fuzzy set A, its fuzzy expectation can be defined as follows.

Definition 33 ([223]). For a fuzzy set A = {< x, µA(x) > |x ∈ X}, its fuzzy

expectation can be defined by:

EA(x) =
∫
X
xµA(x)dx, (5.1)

which is a measure of information strength supporting the fuzzy set A. Given the

above definition, transformation of a Z-number into a crisp value can be perfected in

four steps.

For a given Z-number Z = (A,B), suppose that A and B take linguistic terms

from an LTS, where the semantics of A and B are given in terms of trapezoidal and

triangular MFs. Given A = {< x, µA(x) > |x ∈ [0, 1]} and B = {< x, µB(x) >

|x ∈ [0, 1]}, the first step is to convert B into a crisp value. This crisp value can be

calculated by means of the centroid deffuzification as given below:

α =

∫
X xµB(x)dx∫
X µB(x)dx

. (5.2)

Having α calculated, the next step is to transfer the weight of B to the first part,

through which the weighted Aα can be resulted as Aα = {< x, µAα(x) > |µAα(x) =

αµA(x)|x ∈ [0, 1]}. It is worth mentioning that the fuzzy expected value of Aα

through this process becomes α times the expected value of A. This can be shown

as given below:

EAα(x) =

∫
X
xµAα(x)dx = α

∫
X
xµA(x)dx = αEA(x).
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The weighted Aα is therefore an irregular fuzzy number. The next step is then to

convert this irregular fuzzy number into a regular one. The regularized fuzzy number

can be represented by Ã = {⟨x, µÃ(x)⟩|µÃ(x) = µA(
x√
α
), x ∈ [0, 1]}, and it can be

shown that the regularized fuzzy number is of the same fuzzy expectation value as

that of Aα:

EÃ(x) =
∫
√
αX
xµA(

x√
α
)dx = α

∫
X
tµA(t)dt = αEA(x),

where the last integral is solved by the following change of variable x =
√
αt.

Thus far, the conversion of a Z-number into a regularized fuzzy number has been

discussed. The last step of the proposed conversion technique is to make use of

canonical characteristic values (CCVs) of linguistic variables in order to assign a

crisp value to a fuzzy number. Following the formal definition of CCVs given in [224],

the authors defined three functions including expected value (EV), centre of gravity

(CoG), and mean of maxima (MeOM), for which the following combination could

also be referred to as a CCV function:

ϕ(s) = ϑ1EV(s) + ϑ2CoG(s) + ϑ3MeOM(s), (5.3)

where s is a linguistic term and ϑi ∈ [0, 1] with
∑3

i=1 ϑi = 1. Assuming the semantic

of s being modeled by a trapezoidal MF, F [a, b, c, d], EV, CoG, and MeOM could

then be calculated:

EV(F) = a+ b+ c+ d

4
, (5.4)

CoG(F) =

 a, if a = b = c = d,

c2+d2−a2−b2+cd−ab
3(c+d−a−b)

, otherwise,
(5.5)

MeOM(F) = a+ c

2
. (5.6)
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Figure 5.1 – The general framework of the proposed ODM.

Therefore, the combined CCV function given in Eq. (5.3) could result in a crisp

value from a Z-number.

5.2 The Proposed Opinion Dynamics Model

This section discusses the major components of the proposed LODM and its imple-

mentation procedure. This proposed model is developed to cope with situations, in

which agents might not be interested in updating their initial opinions due to either

lack of trust to the group, or internal, or external reasons. Therefore, the aim is to

build trust among agents through Blockchain protocols to guide the group of agents

toward a consensus opinion.

Framework of the proposed ODM is illustrated in Fig. 5.1. The general idea is that

agents conveniently express their initial opinions in terms of Z-numbers. Linguistic

opinions are then converted into crisp values through the transformation block. This

block generates the translated opinions that are fed into the collective opinion block,

which is constructed based upon a minimum cost consensus strategy to extract the
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collective opinion from the initial ones. The moderator sends back to each agent the

required change of opinion in the event an stopping criterion (will be discussed shortly)

is not met. Agents make up their minds to accept or refuse the suggested modifications

based on their trust to the group, internal reasons, or external reasons for refusal.

Agents, however, anonymously express their decisions following a Blockchain protocol.

This process continues until the group reaches to either the full consensus or the

number of discussion rounds exceeds a threshold (stopping criteria).

5.2.1 Initialization

Consider a group of n agents ai, with i = 1, 2, . . . , n. Linguistic opinion of agent

ai is expressed in terms of a Z-number Zi = (si, s
′
i), where si ∈ S = {s0, . . . , s2r}

and s′ ∈ S ′ = {s′0, . . . , s′2r}. S and S ′ are two LTSs, from which agents initially

select the restriction and reliability values. Without loss of generality, we assume

that semantics of linguistic terms in S and S ′ are characterized by means of trape-

zoidal F [ak, bk, ck, dk] and triangular T [a′k, b′k, c′k] fuzzy MFs, respectively, where k =

0, 1, . . . , 2r.

Initial opinions, i.e., Zi = (si, s
′
i), i = 1, . . . , n, go through the transformation

block. Within this block, following the presented results in Section 5.1, the reliability

part of initial opinions, i.e., s′i, is defuzzified by means of centroid calculation for the

semantic of s′i that is characterized by triangular MF Ti. The resulted defuzzified

value is shown by αi. The weight of reliability part, i.e., αi, is then added to the

restriction part to construct an irregular fuzzy number Zα
i , which is then converted

into a regularized one Z̃i according to the method presented in Section 5.1.2. The

regularized fuzzy number is characterized by means of a trapezoidal MF Fi, where

according to Eqs. (5.4)-(5.6), it is finally converted into a numerical opinion. This

numerical opinion of agent ai is denoted by oi, i = 1, . . . , n. Furthermore, it is

assumed that the level of initial trust among agents is iT with iT ∈ [0%, 100%].

The level of trust iT is a key parameter in our design and it serves two purposes.
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First, the initial trust of each agent to the group is assumed to be selected from a

normal distribution with the mean of iT and variance of σ%, i.e., Ti(1) ∈ N (iT, σ),

where Ti(1) is the initial trust of agent ai at time-step t = 1. Second, we construct a

sociomatrix A = [ai,j]n×n, where ai,j = 1 denotes that agents ai and aj are initially

trusted peers, while ai,j = 0 denotes that agents are not initially connected. In the

sociomatrix A, there exist n× (n− 1)/2 elements that can either take a value of 0 or

1. To construct this matrix, it is supposed that iT% of elements are randomly set to

1, and the rest of the elements are 0. Following this assumption, the weight of agent

ai is:

wi =

∑n
j=1,j ̸=i ai,j

n− 1
. (5.7)

It is worth noting that for the case with iT = 0%, meaning that there is no initial

connections among agents, the importance weights of agents are equal and are set to

wi = 1/n, i = 1, 2, . . . , n.

Therefore, in the initialization phase, linguistic opinions of agents Zi are converted

into numerical opinions oi and importance weights of agents wi are determined.

5.2.2 Construction of the Collective Opinion

Given the translated initial opinions oi, with i = 1, . . . , n, it is assumed that moder-

ator could provide agents with a satisfactory opinion o′ that relatively meets agents’

preferences. To extract o′ from oi, a minimum cost consensus model is proposed. Let

fi(o
′) = |o′−oi|. Further to this, assume ϖi is the unit cost paid by the moderator to

convince agent ai to accept the suggested modification. Following this, it is evident

that ϖifi(o
′) is the total cost to be paid to the agent ai and

∑n
i=1ϖifi(o

′) is the total

cost to be paid to all agents. Obviously, the smaller the value of
∑n

i=1ϖifi(o
′), the

higher the degree of consensus among agents. Therefore, the ultimate goal is to build

a model to minimize
∑n

i=1ϖifi(o
′) to construct the collective opinion o′.
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In this regard, we construct the following model:

min ∆ =
n∑

i=1

ϖifi(o
′) =

n∑
i=1

ϖi|o′ − oi|

s.t.



o′ ∈ O,

oi ∈ [0, 1], i = 1, . . . , n,

o′ =
n∑

i=1

wioi.

(5.8)

The nonlinear programming (5.8) can be transformed into a linear one by introducing

ui = [|o′ − oi|+ (o′ − oi)] /2 and vi = [|o′ − oi| − (o′ − oi)] /2, where ui ≥ 0, vi ≥ 0,

ui ∗ vi = 0, |o′− oi| = ui + vi, and o
′− oi = ui− vi. The linear programming can then

be constructed as follows:

min ∆ =
n∑

i=1

(wiui + wivi)

s.t.



o′ ∈ O,

oi ∈ [0, 1], i = 1, . . . , n,

o′ =
n∑

i=1

wioi,

o′ − ui + vi = oi,

ui ≥ 0,

vi ≥ 0.

(5.9)

Other than ui and vi, solution to model (5.9) provides a collective opinion o′ that

leads to the minimum cost consensus opinion. Furthermore, the collective opinion is

a weighted summation of agents’ opinions.
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5.2.3 Blockchain-Enabled Trust Building

The moderator collects agents’ opinions oi(t) and sends back the required modifica-

tions to agents, those are oi(t)−o′ with i = 1, . . . , n. Agents who accept the suggested

modifications update their opinions through the following rules:

oi(t+ 1) =

 oi(t) + (|oi(t)− o′|), oi(t)− o′ < 0,

oi(t)− (|oi(t)− o′|), oi(t)− o′ > 0.
(5.10)

These update rules compel agents to apply the required modifications at once.

However, there could be another scheme, in which agents only apply a portion of the

suggested modifications and wait for the next discussion rounds:

oi(t+ 1) =

 oi(t) + λi(|oi(t)− o′|), oi(t)− o′ < 0,

oi(t)− λi(|oi(t)− o′|), oi(t)− o′ > 0,
(5.11)

where λi ∈ [0, 1].

To model agents’ interactions, we introduce a Blockchain-based communication

regime. Through this regime, agents anonymously express their willingness toward

accepting or refusing the suggested modifications. Every agent can then observe how

many of the n agents have accepted the modification, however, they are not aware of

the identity and opinion of other agents. Due to the fact that agents are not aware

of others’ opinions, this communication regime must be accompanied by a trust-

building mechanism. This is of utmost importance for agents’ opinions to be closer

to the collective opinion and a consensus opinion sought. In order to accomplish this,

we propose a Blockchain-enabled trust building mechanism.

In the Blockchain protocol, we assume there exists a smart contract logged in a

ledger and it is shared and monitored by agents and the moderator. This contract

will be executed only if µ% of n agents accept to apply the modifications. We show

this set of agents by Ht, where |Ht| ≤ n and |.| denotes the cardinality of the enclosed
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set. If |Ht|/n ≥ µ%, agents in Ht modify their opinions, however, all the n agents

receive the same dividend from moderator, that is:

divi(t) =

[∑
i∈H

|oi(t)− o′|

]
/n, i = 1, . . . , n. (5.12)

On the other hand, if |Ht|/n < µ%, the contract will not be executed, no modifi-

cations will be applied, and no dividend will be received by any of agents. Therefore,

within such a protocol, agents become more willing to trust others and to accept the

modification so that they can ultimately receive more dividends. However, there is a

possibility of betrayal by agents, because they might become tempted to not change

their opinions, yet receive their dividends. We formulate this problem as follows.

To formulate this protocol, at time-step t, agents ai, i = 1, . . . , n, express their

willingness Ei(t) to either accept (Ei(t) = 1) or refuse (Ei(t) = 0) the modification.

It is evident that Ht = {ai|Ei(t) = 1}. The number of agents who accept the

modification is then
∑n

i=1Ei(t). Therefore, the contract will be executed only if:

∑n
i=1Ei(t)

n
≥ µ%. (5.13)

The value of Ei(t) for agent ai, however, depends on three separate items: (1) trust

to the group Ti(t); (2) internal reasons for betrayal ρi(t); and (3) external reasons for

betrayal ϵi(t).

Agents’ trusts Ti(t) are initialized by iT ∈ [0%, 100%]. Initial trust values can

either be increased by η1% or decreased by η2%, depending on the number of betrayals

among agents. The higher the rate of betrayals, the lower the trust of an agent to

the group. This can be formulated as follows:

Ti(t+ 1) =

 Ti(t) + η2,
∑n

i=1Ei(t) ≤
∑n

i=1Ei(t− 1),

Ti(t) + η1, otherwise.
(5.14)
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Following this formulation, we model the first item that impacts Ei(t), by defining a

trust function as given below:

ψ(Ti(t)) =

 1, Ti(t) > γi,

0, otherwise,
(5.15)

where γi ∈ U(0, 100) is the designated trust threshold to the agent ai, with U being a

randomly-generated uniform number in the [0%, 100%] interval. Therefore, betrayal

to the group can negatively impact an agent’ trust, and delays the consensus reaching

process.

To model the second item that impacts Ei(t), i.e., internal reasons of betrayal, it

is assumed that ρi belongs to a binomial distribution B with P(0) = 10%, meaning

that the chance of betrayal due to internal reasons is set to 10% for each agent.

The internal reasons of betrayal are actually proposed to model the characteristics

of individual agents, who might betray the group due to their attitude toward the

decision problem, cognitive dissonance, antagonistic and/or indifference behaviour,

and stubbornness.

Last but not least, external reasons for betrayal are also modelled by ϵi that

belongs to a binomial distribution with P(0) = 30%, meaning that the chance of

betrayal due to external reasons is 30% for an agent. One can refer to situations, in

which an agent is unable to continue the negotiation, or the case, in which an agent

does not update his/her opinion as he/she has already received enough dividends.

All in all, it can be concluded that:

Ei(t) = ψ(Ti(t)) ∧ ρi ∧ ϵi, (5.16)

meaning that agent ai accepts the modification (Ei(t) = 1) if agent’s trust is larger

than γi, ‘and’ the agent does not have internal ‘and’ external reasons for betrayal.

We call this the scenario with Blockchain protocol and denote it by ‘SCB.’
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In a second protocol, we consider the agents’ willingness toward adjustment of the

threshold for contract execution µ%. We call this ‘SCHB’ scenario that stands for the

scenario with heterogenous Blockchain protocol. In this scenario, µ is not constant

and differs for each agent, i.e., the threshold for contract execution for agent ai is

µi ∈ [0%, 100%].

Finally, our third scenario considers the situation, in which agents’ internal reasons

for betrayal is updated in each time-step. This scenario is denoted by ‘SCOHB’

that stands for the optimal heterogeneous Blockchain-enabled trust building. It is

meaningful due to the fact that agents’ belief could be affected by the number of

agents that accept modifications in previous time-steps. The following update rule is

then constructed for this scenario:

ρi(t+ 1) =
n× ρi(t) +

∑n
i=1Ei(t)− µi

n+
∑n

i=1Ei(t)− µi

. (5.17)

In summary, the required modifications in response to the model (5.9) are sent to

the agents. To either accept or refuse the suggested modifications, agents are given

access to a ledger supported by the Blockchain technology. In case the number of

agents who accept the required modifications are larger than µ%, the smart contract

logged in the ledger will be executed, by which agents’ opinions will be updated and

agents will receive their dividends.

5.2.4 Algorithm

In this section, we illustrate the pseudo-codes of the proposed trust-building mecha-

nism w.r.t. ‘SCB,’ where the other two scenarios, i.e., ‘SCHB’ and ‘SCOHB,’ can be

conducted by this algorithm with slight changes. Algorithm 4 summarizes the step-

by-step implementation of the ‘SCB.’ Furthermore, the function ‘minimum cost’ in

line 2 is indeed the presented model by (5.9), where it takes oi, wi, and ϖi as inputs

to result the collective opinion o′ and the minimum cost (denoted by ‘min cost’ in
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Algorithm 4) to construct this opinion.

5.3 Illustration of the Proposed Model

This section discusses how the proposed ODM can be implemented. The sensitivity

and comparison analysis of the proposed model are presented in detail in Chapter 6.

Consider five agents, i.e., n = 5, who initially express their opinions in terms of

Z-numbers Zi = (sj, s
′
j), j = 1, . . . , 2r+1, where the fuzzy restrictions are taken from

the LTS S = {s0, . . . , s6} with a reliability value from S ′ = {s′0, . . . , s′6}. Semantics

of S and S ′ are given in Table 5.1 in terms of trapezoidal F and triangular T fuzzy

MFs. Let Z1 = (s5, s
′
1), Z2 = (s4, s

′
1), Z3 = (s1, s

′
1), Z4 = (s1, s

′
6), and Z5 = (s4, s

′
5)

be the initial opinions of agents. These linguistic opinions are firstly converted into

numerical values. As an example, the conversion of Z1 is given here. The second part

of Z1, i.e., s
′
1, can be converted into a crisp value through the centroid method:

α =

∫
xµs′1

(x)dx∫
µs′1

(x)dx
= 0.0467.

Weight of the reliability part can then be added to the restriction part as given

below:

Zα
1 =
√
0.0467× [0.7, 0.75, 0.85, 0.9; 1]

= [0.1512, 0.1620, 0.1836, 0.1944; 1].

Consider ϑ1 = ϑ2 = ϑ3 = 1
3
. By calculating EV1 = 0.1728, COG1 = 0.1512, and

MeOM1 = 0.1728, the CCV of Z1 is obtained as CCV1 = o1(1) = 0.1656.

Similarly, o2(1) = 0.1404, o3(1) = 0.0360, o4(1) = 0.1789, and o5(1) = 0.5240.

Given iT = 70% and σ = 1%, the initial translated opinions, ϖi = [2, 1, 3, 3, 3], and

w = [0.2660, 0.3256, 0.1642, 0.1340, 0.1102]T , o′ = 0.1772 is the solution to model (5.9)

with a minimum cost of 1.5291.
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Algorithm 4: Blockchain-Enabled Trust-Building
Inputs:
Number of agents (n), number of time-steps (T ),contract execution threshold

(µ),unit cost paid to agent ai (ϖi),initial trust (iT ), variance of the initial trust
(σ),trust increment (η1), trust decrement (η2), trust thresholds (γi), agents’ weights
(wi),internal reasons of betrayal (ρi), external reasons of betrayal (ϵi),number of
agents who do not betray at t = 0 (p).

for i=1:n do
1 Zi = (si, s

′
i)← initial opinion of agent ai;

oi(1)← ϑ1EV(Z̃i) + ϑ2CoG(Z̃i) + ϑ3MeOM(Z̃i);

2 [o′,min cost]← minimum cost(oi(1), ϖi, wi); t← 1;
3 while t < T do
4 for i=1:n do
5 if ϵi(t) = 1 ∧ ρi(t) = 1 ∧ Ti(t) > γi then
6 Ei(t) = 1;
7 else
8 Ei(t) = 0;

9 if
∑n

k=1Ek(t)/n > µ/100 then
10 for i=1:n do
11 if Ei(t) = 1 then
12 oi(t+ 1)← o′;
13 else
14 oi(t+ 1)← oi(t);;

15 divi(t)←
[∑

i∈H |oi(t)− o′|
]
/n;

16 else
17 for i=1:n do
18 oi(t+ 1)← oi(t);di(t)← 0;

19 if t = 1 then
20 if

∑n
i=1Ei(t)/n > p/n then

21 for i=1:n do
22 Ti(t+ 1)← Ti(t) + η1;

23 else
24 Ti(t+ 1)← Ti(t) + η2;

25 else
26 if

∑n
i=1Ei(t) ≥

∑n
i=1Ei(t− 1) then

27 for i=1:n do
28 Ti(t+ 1)← Ti(t) + η1

29 else
30 for i=1:n do
31 Ti(t+ 1)← Ti(t) + η2
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Table 5.1 – Semantics of linguistic terms in S and S ′.

S S ′

s0 ‘very poor’ F [0, 0, 0.1, 0.15] s′0 ‘strongly uncertain’ T [0, 0, 0.15]
s1 ‘poor’ F [0.1, 0.15, 0.25, 0.3] s′1 ‘uncertain’ T [0.05, 0.2, 0.35]
s2 ‘slightly poor’ F [0.25, 0.3, 0.4, 0.45] s′2 ‘somewhat uncertain’ T [0.2, 0.35, 0.5]
s3 ‘fair’ F [0.4, 0.45, 0.55, 0.6] s′3 ‘neutral’ T [0.35, 0.5, 0.65]
s4 ‘slightly good’ F [0.55, 0.6, 0.7, 0.75] s′4 ‘somewhat certain’ T [0.5, 0.65, 0.8]
s5 ‘good’ F [0.7, 0.75, 0.85, 0.9] s′5 ‘certain’ T [0.65, 0.8, 0.95]
s6 ‘very good’ F [0.85, 0.9, 1, 1] s′6 ‘strongly certain’ T [0.85, 1, 1]

Table 5.2 – The betrayal index for each agent at the first time-step E1
i .

Agent ρ ϵ T 1(%) γ(%) E1

a1 0 0 69.21 29.99 0
a2 1 1 69.73 80.71 0
a3 1 1 69.97 91.37 0
a4 1 1 69.64 76.51 0
a5 1 1 70.70 33.42 1

Required modifications will then be suggested to agents, where they can either

accept or refuse them due to lack of trust to the group (T 1
i < γi), or internal (ρ with

P(0) = 10%), or external reasons (ϵ with P(0) = 30%). With this setup, the betrayal

index for each agent at the first time-step (E1
i ) can be resulted as given in Table

5.2. Following this, it is evident that only agent a5 is willing (E1
5 = 1) to employ the

modification. Having µ = 50%, the contract will not be executed (1
5
= 20% < µ),

and, therefore, no initial opinion is modified toward the collective opinion. For 15

time-steps, the evolution of opinions is shown in Fig. 5.2. The results are obtained

for the case with η1 = 5% and η2 = −2%. The attained results denote that it takes

7 time-steps for three agents to accept modifications. The fourth agent accepts the

modification at time-step t = 10, that is t = 11 for the last agent. This is due to the

increase in agents’ trust to the group, where the evolution of average trust for the

group is shown in Fig. 5.3. The group reaches to the consensual opinion at t = 11,

which is the end of group negotiations. Afterwards, even though the group reaches
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Figure 5.2 – The evolution of opinions for 15 time-steps.

Figure 5.3 – The evolution of average trust (%) in the group. The shaded area shows
the trust interval of all agents.

to the maximum level of trust, however, due to the fact that some agents might have

internal or external reasons for betrayal, the level of trust fluctuates. In this regard,

even though there exist fluctuations in the level of trust, however, the group stick to

the consensual opinion and there is no change in the group opinion. In this example,

therefore, the moderator pays 1.5291 in total through 11 time-steps to persuade all

agents. The agents’ dividends are then div1 = 0.0232, div2 = 0.0368, div3 = 0.4237,

div4 = 0.0050, and div5 = 1.0404.
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Chapter 6

Sensitivity Analysis and Practical

Verification of the Proposed Consensus

Models

Following the presented results in Chapter 3, Chapter 4, and Chapter 5, this chap-

ter is devoted to a more detailed analysis of the proposed consensus models in the

previous chapters. In this regard, we firstly verify the applicability and superiority

of the proposed RL-based consensus model for static decision-making through three

different experiments. This discussion is then followed by the practical verification

of the dynamic model proposed in Chapter 4 for locating faults in distributed power

systems. Last but not least, the proposed Blockchain-based trust building mecha-

nism is checked for its sensitivity to the design parameters along with addressing its

superiority compared with two state-of-the-art models.

6.1 Sensitivity Analysis of the RL-based Consen-

sus Model

The trained δ-Agent and W -Agent in Chapter3 are employed in three different ex-

periments. It should be noted that both agents are only trained on the developed

consensus model based on the DLTFs, and, the same agents are used for the consensus

model based on the Z-numbers.

For the following experiments, we set the critic and actor learning rates to ρc =
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0.005, ρa = 0.0001, the total number of episodes to N = 15, 000, the size of minibatch

to M = 256, and γl = 0.99. Five scenarios are considered, where the number of

alternatives can be a random integer number from intervals [2, 5], [6, 10], [11, 15], and

[16, 20]. For any of these cases, we set the number of DMs to n = 5 and the number

of attributes to m = 5. Furthermore, the consensus threshold is set to take values

from γ ∈ [0.85, 0.95]. Each scenario is repeated for 50 times.

6.1.1 First Experiment

In this experiment, the δ-Agent is trained toward speeding up the CRP by properly

adjusting the feedback parameter. For the sake of comparison, the proposed δ-Agent

is trained by means of both DDPG and soft actor-critic (SAC) algorithms. For the

SAC agent, the number of hidden layers in the critic network is two, that is three for

the actor network. The learning rate for both networks is 0.001 and the optimizer

is Adam. Sample time is 1, the size of buffer is 100,000, and the discount factor

and minibatch size are 0.99 and 256, respectively. Following this experiment, the

attained AHD, average value of the feedback parameter δ̄, and the average number

of discussion rounds t̄ are collected in Table 6.1. The attained results suggest that

for the DDPG-based agent, the average number of discussion rounds in all scenarios

is 4.2, that is 3.5 for the SAC-based agent. Furthermore, the average value of AHD

in all scenarios for the DDPG-based and SAC-based agents are 0.9380 and 0.9321,

respectively. The results of this experiment, on the one hand, verify the applicability

of the proposed δ-Agent in adjusting the feedback parameter in the CRP. On the

other hand, it can be concluded that SAC-based agent sacrifices the HD for a lower

number of discussion rounds to speed up the CRP, while the DDPG-based agent leads

to higher HDs, and, therefore, higher discussion rounds.

We repeat the same experiment for the proposed consensus model based on Z-

numbers, where the attained results are collected in Table 6.2. It is worth noting

that the same agents that were trained on the consensus model with DLTFs are
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Table 6.1 – The attained results by means of the δ-Agent w.r.t. different number of
available alternatives in the consensus model based on the DLTFs.

Method X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20]

DDPG
AHD 0.9398 0.9394 0.9337 0.9392
t̄ 4.52 4.14 4.14 4.00
δ̄ 0.1977 0.1990 0.1967 0.1987

SAC
AHD 0.9262 0.9293 0.9252 0.9477
t̄ 3.88 3.72 3.54 2.86
δ̄ 0.3136 0.2898 0.3204 0.3021

Table 6.2 – The attained results by means of the δ-Agent w.r.t. different number of
available alternatives in the consensus model based on the Z-numbers.

Method X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20]

DDPG
AHD 0.9807 0.9826 0.9819 0.9825
t̄ 3.58 3.30 3.24 3.20
δ̄ 0.3243 0.3222 0.3216 0.3222

SAC
AHD 0.9855 0.9825 0.9846 0.9844
t̄ 4.14 3.78 3.74 3.32
δ̄ 0.2707 0.3162 0.2837 0.3123

employed for this consensus model, too. This is due to the fact that both agents

receive the same observations in terms of dimension and range of values, but from

different decision environments. This is to investigate how scalable is the trained

δ-Agent. The presented results in Table 6.2 denote high values of AHD, meaning

that the original evaluations of DMs do not undergo significant changes during the

CRP, while the number of discussion rounds is reduced compared with the previous

case. The average discussion rounds for the DDPG-based agent is 3.33, that is 3.745

for the SAC-based agent. In the same vein, the AHD is 0.9819 for the DDPG-based

agent, that is 0.9842 for the SAC-based agent.

6.1.2 Second Experiment

In this experiment, we only employ the W -Agent in CRP of models based on DLTFs

and Z-numbers to adjust the importance weights of DMs. Two agents are trained
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Table 6.3 – The attained results by means of the W -Agent w.r.t. different number of
available alternatives in the consensus model based on the DLTFs.

Method X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20]

DDPG
AHD 0.9304 0.9320 0.9365 0.9369
t̄ 3.76 3.67 3.42 3.16

SAC
AHD 0.9361 0.9333 0.9362 0.9319
t̄ 3.94 3.91 3.65 3.55

‘TrRel’
AHD 0.9260 0.9257 0.9332 0.9315
t̄ 4.88 4.71 4.39 4.39

utilizing the DDPG and SAC algorithms. In this regard, the attained results for the

consensus model based on DLTFs are collected in Table 6.3. It is worth mentioning

that for this experiment, the value of feedback parameter is constant and is equal to

δ = 0.25. Furthermore, we make a comparison with the case, in which the importance

weights of DMs are conventionally set based on the trust relationships between DMs

according to Eq. (3.5), shown by ‘TrRel’ in Table 6.3.

The attained results denote that W -Agent outperforms the conventional trust-

based weight-assignment mechanism in terms of AHD and the consensus speed. Turn-

ing into details, the average values of AHD and t̄ for the DDPG-based agent are 0.9340

and 3.5, respectively, those are 0.9433 and 3.76 for the SAC-based agent. As for the

‘TrRel’ scenario, the average values of AHD and t̄ are 0.9291 and 4.59, respectively.

The results of this experiment highlight the efficiency of the proposed RL-based CRP,

which can guarantee higher HD values and lower number of discussion rounds com-

pared with conventional techniques.

We then do the same experiment for the consensus model based on Z-numbers to

check for the scalability of the proposedW -Agent. In this regard, the attained results

are collected in Table 6.4. Results verify the superiority of the proposed W -Agent

over the ‘TrRel’ method. Turning into details, the average values of AHD and number

of discussion rounds, for the DDPG-based agent, are 0.9856 and 4.50, respectively.

These values are 0.9842 and 5.18 for the SAC-based agent. As for the ‘TrRel’ method,
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Table 6.4 – The attained results by means of the W -Agent w.r.t. different number of
available alternatives in the consensus model based on the Z-numbers.

Method X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20]

DDPG
AHD 0.9854 0.9856 0.9854 0.9859
t̄ 4.86 4.52 4.40 4.22

SAC
AHD 0.9834 0.9856 0.9835 0.9842
t̄ 5.54 5.20 5.06 4.90

‘TrRel’
AHD 0.9786 0.9789 0.9792 0.9797
t̄ 6.16 6.08 5.68 5.62

AHD and number of discussion rounds are 0.9791 and 5.89, respectively.

6.1.3 Dual-Agent Experiment

In this experiment, we examine four different combinations of DDPG and SAC agents.

For instance, ‘DDPG-SAC’ is a combination, in which the first agent, i.e., DDPG

agent, is employed for adjustment of the feedback parameter, and the second one,

i.e., the SAC agent, is used for the weight assignment. In this regard, the previously-

trained agents are simultaneously employed in the consensus model based on DLTFs

and the attained results are collected in Table 6.5 for each combination. The first

combination leads to the highest averaged AHD value, that is 0.9436, while the third

combination results in the lowest number of discussion rounds, that is 3.18. The

second combination have the lowest averaged value of the feedback parameter, that

is 0.1996, and, therefore, leads to the highest number of discussion rounds.

By repeating the same experiment for the consensus model based on Z-numbers,

the attained results are collected in Table 6.6. In this case, the highest value of

the averaged AHD is obtained for the third combination, that is 0.9831, while the

lowest number of discussion rounds is resulted by the first combination, that is 3.25.

The fourth combination has the highest number of discussion rounds and the second

combination leads to the lowest AHD.
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Table 6.5 – The attained results by employing δ-Agent and W -Agent simultaneously
in the developed consensus model based on the DLTFs.

Combination X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20] Avg.

#1 DDPG-DDPG
AHD 0.9535 0.9409 0.9392 0.9410 0.9436
t̄ 4.06 3.92 3.82 3.90 3.93
δ̄ 0.2006 0.2015 0.1990 0.2001 0.2003

#2 DDPG-SAC
AHD 0.9372 0.9365 0.9365 0.9420 0.9381
t̄ 4.70 4.62 4.18 4.08 4.40
δ̄ 0.2008 0.1999 0.1999 0.1978 0.1996

#3 SAC-DDPG
AHD 0.9372 0.9389 0.9324 0.9345 0.9357
t̄ 3.42 3.04 3.00 3.26 3.18
δ̄ 0.2914 0.3158 0.3223 0.2959 0.3064

#4 SAC-SAC
AHD 0.9341 0.9311 0.9402 0.9324 0.9345
t̄ 4.21 3.23 3.02 3.10 3.39
δ̄ 0.3091 0.3107 0.3241 0.3316 0.3189

Table 6.6 – The attained results by employing δ-Agent and W -Agent simultaneously
in the proposed consensus model based on the Z-numbers.

Combination X q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20] Avg.

#1 DDPG-DDPG
AHD 0.9819 0.9818 0.9834 0.9827 0.9824
t̄ 3.38 3.32 3.22 3.06 3.25
δ̄ 0.3221 0.3276 0.3219 0.3221 0.3234

#2 DDPG-SAC
AHD 0.9838 0.9817 0.9818 0.9820 0.9823
t̄ 3.70 3.46 3.24 3.22 3.41
δ̄ 0.3165 0.3266 0.3219 0.3252 0.3226

#3 SAC-DDPG
AHD 0.9805 0.9844 0.9838 0.9838 0.9831
t̄ 3.68 3.72 3.40 3.34 3.54
δ̄ 0.3203 0.3028 0.3148 0.3252 0.3158

#4 SAC-SAC
AHD 0.9807 0.9819 0.9840 0.9828 0.9824
t̄ 4.00 3.90 3.88 4.30 4.02
δ̄ 0.3355 0.3353 0.3131 0.2921 0.3190
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Table 6.7 – Comparison between the W -Agent and the case with no RL agent for the
weight adjustment in the consensus model based on DLTFs.

Agent q ∈ [2, 5] q ∈ [6, 10] q ∈ [11, 15] q ∈ [16, 20] Avg.

DDPG
AHD 0.9226 0.9224 0.9230 0.9254 0.9233
t̄ 5.1 4.83 4.62 4.54 4.77

SAC
AHD 0.9246 0.9235 0.9248 0.9153 0.9221
t̄ 5.27 5.12 5 5.12 5.13

No Agent
AHD 0.9210 0.9191 0.9140 0.9194 0.9184
t̄ 5.37 5.29 5.30 5.23 5.30

6.1.4 Comparison with the No-Agent Scenario

To further investigate the efficiency of the trained RL agents compared with the case,

in which no RL agent is employed, the second experiment is used for the W -Agent

with γ ∈ [0.91, 0.95]. In this experiment, the feedback parameter is kept constant

(δ = 0.25). For the ‘No Agent’ scenario, the weights of DMs are adjusted based on

the in-degree centrality values and the constructed sociomatrix TL of DMs. In this

regard, the attained results for the consensus model based on DLTFs are collected in

Table 6.7. As it can be observed from this table, both W -Agents, i.e., DDPG and

SAC agents, outperform the ‘No Agent’ scenario in terms of the average number of

discussion rounds t and AHD. Specifically, the average number of discussion rounds

for the DDPG and SAC agents are 4.77 and 5.13, respectively, whereas it is 5.30 for

the ‘No Agent’ scenario. Furthermore, the AHD of the DDPG and SAC agents are

0.9233 and 0.9221, respectively, that is 0.9184 for the ‘No Agent’ scenario. Therefore,

the attained results denote that not only the number of discussion rounds can be

reduced effectively by means of RL agents, but also they improve the HD of DMs.

6.1.5 Robustness of the trained agents

Finally, we perform a sensitivity analysis to verify the robustness of the trained agents

against the changes of ‘λ’ in the aggregation operator (3.9) and ‘a’ in the LSF (3.7).

In this regard, we firstly employ the proposed selection process in [1] to provide
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rankings of alternatives. We then resort to Spearman’s rank-correlation test [225] to

check whether the provided rankings are correlated. This test relies on the following

statistic,

rs = 1− 6

∑q
i=1(ϖi)

2

q(q2 − 1)
, (6.1)

where q is the number of alternatives, and ϖi is the difference between two provided

rankings for the alternative xi. The statistic rs belongs to the [−1,+1] interval,

for which values closer to +1 (−1) denote a stronger positive (negative) correla-

tion between two rankings. In this experiment, we set λ = 1 and a = 1.36 as the

baseline model to provide rankings of alternatives. Then, by the change of λ over

λ = {2, 3, 4, 5} and a = {1.37, 1.38, 1.39, 1.40}, different combinations of parameters

are created. For each combination, 200 simulation runs are completed over a different

number of alternatives q ∈ [2, 5], attributes m ∈ [2, 5], and initial evaluations. We

then compare the rankings provided by each combination with the baseline model. In

this regard, the average absolute value of rs for all simulation runs w.r.t. each combi-

nation are collected in Table 6.8. On the one hand, the attained results indicate that

absolute values of rs are higher than 0.5 in all combinations, denoting a strong cor-

relation between the provided rankings despite the changes in λ and a. On the other

hand, the attained results denote that the changes of a do not significantly affect the

rankings; however, a larger value of λ slightly reduces the correlation between the

rankings, meaning that when DMs become more optimistic (larger λ), there exists

less correlation between their provided rankings and the baseline model.

6.1.6 Discussion

These experiments verified that RL-based mechanisms show promising results in

speeding up the CRP of static GDM models and opens a new pathway toward the

design of CRP.
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Table 6.8 – The attained average absolute values of rs for each combination.

HHH
HHHa
λ

2 3 4 5

1.37 0.7485 0.7930 0.7745 0.7360
1.38 0.8110 0.7415 0.7360 0.7080
1.39 0.8335 0.7545 0.7315 0.7115
1.40 0.8615 0.7845 0.7345 0.6780

Other than the high computational cost of ‘MinAdj’ techniques, the presented

results in Table 3.1 showed that these techniques do not necessarily lead to the best

HD. The results of the first experiment denoted that by observing the initial consensus

among DMs, an RL agent can decide about the required feedback parameter to speed

up the CRP, while DMs can keep their original evaluations in a great context.

The results of the second experiment, on the one hand, indicated the superiority

of the proposed RL-based weight-assignment technique over techniques that rely on

trust relationships among DMs. On the other hand, and compared with the results

of the first experiment, it could be concluded that δ-Agent is more efficient than W -

Agent for improving the CRP, meaning that adjustment of the feedback parameter

can help more with speeding up the CRP than adjustment of the DMs’ weights.

In the third experiment, the first and third combinations led to the best perfor-

mance in dealing with both decision environments, meaning that these combinations

could be better choices to be implemented in the CRP. In these two combinations, the

DDPG agent is employed for the weight assignment, showing that the DDPG agent

is of better performance in weight-assignment. Furthermore, the attained results ver-

ified that the combination of both agents is more effective than implementing them

individually for either feedback adjustment or weight-assignment.

121



6.2 Practical Verification of the Proposed Dynamic

Model

This section discusses the practical verification of the proposed dynamic GDM model

in Chapter 4. In this regard, the problem of fault location in distributed power systems

is formulated into a dynamic decision problem to be addressed by the proposed model.

Power distribution systems are distributed systems and due to their vast geograph-

ical spread, locating a faulty component is challenging. This framework is developed

to address this challenging issue by integrating the opinions of DMs into diagnostic

systems. Its effectiveness and applicability have been verified for locating LL faults

in the IEEE 39-bus power distribution system. As the name recalls, this system con-

tains 39 buses, where 19 of them are load buses, i.e., a load has been attached to the

corresponding bus.

The initialization is performed as previously mentioned in Chapter 4 by assuming

the number of available DMs is sixteen. Four attributes are constructed based on the

frequency measurements collected from each bus in the system. In the presence of a

fault, therefore, there would be 39 potential alternatives {x1, . . . , x39}, as the system

has 39 buses. In what follows, the procedure to locate an LL fault on bus 24 is given.

An LL fault occurs at bus 24, therefore, the solution to the decision problem must

be x24. The moderator decides about the alternatives to be put into discussion at

each time-step t. Suppose that 10 alternatives are assigned to time-steps t = 1, 2, 3,

that is nine for the time-step t = 4. Therefore, there exist four time-steps and

each alternative will be evaluated at least once. At the time-step t = 1, the set of

X (1) = {x1, . . . , x10} is put into discussion in each group. Suppose that the moderator

sets five discussion rounds for each group, i.e., r = 5, and α = 4
6
, δ = 0.22. The

ACD evolution at time-step t = 1 is represented in Table 6.9 and the closeness

coefficients for the first set of alternatives d1 are collected in Table 6.10. The best

alternative is L(1) = x3, where L(t) denotes the memory. In the time-step t = 2, a
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new set of alternatives along with the alternative in the memory are put into the

discussion. Therefore, X (2) = {x11, . . . , x20,L(1)}. With five discussion rounds, the

ACD evolution is represented in Table 6.9 and the closeness coefficients are collected

in Table 6.10. x16 has the largest closeness coefficient, and, therefore, L(2) = x16.

In the same vein, L(3) = x24 and L(4) = x24. After four time-steps, all alternatives

are evaluated at least once, and, L(4) denotes the solution of the decision problem,

that is x24 in this example. Therefore, after four time-steps, the location of fault is

determined, which is bus 24.

The same setup is used to locate other LL faults, where the attained results are

collected in Table 6.11. The proposed framework has only failed in locating the fault

on bus 12, where a performance of 94.73% is achieved in making the right decision

about the location of faults.

6.2.1 Comparative Analysis of the Proposed Dynamic Model

In this section, a comparison is provided with the literature work [1] that puts for-

ward an MAGDM framework for locating faults in smart grids. This comparison is

meaningful as both works are established based on Z-numbers for locating faults. The

evolution of ACD for locating a fault on bus 8 is represented in Table 6.12 for the

proposed dynamic model and the model developed in [1]. As it can be observed, the

proposed dynamic framework is superior in speeding up the CRP and leads to a higher

final ACD for the same number of discussion rounds, which verifies the superiority of

the proposed dynamic model in terms of speeding up the CRP.

In order to further investigate the superiority of the proposed method, a compar-

ative study has been performed with a recent dynamic multi-criteria decision-making

(DMCDM) model [2]. DMCDM can be categorized into the multi-period dynamic

models, where it develops an extended version of the classical alternative queuing

method [226] by means of fuzzy preference relations to provide ranking for alterna-

tives. The opinion of DMs are expressed in terms of intuitionistic fuzzy numbers and
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Table 6.9 – The evolution of ACD for each DM in locating a load loss at bus 24.

time-step t = 1
DM Group 1 Group 2

r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5
1st 0.7753 0.8143 0.8427 0.8427 0.8427 0.8475 0.8561 0.8629 0.8685 0.8798
2nd 0.8201 0.8312 0.8378 0.8378 0.8378 0.8284 0.8484 0.8536 0.8623 0.8746
3rd 0.7867 0.8162 0.8427 0.8427 0.8427 0.7641 0.7975 0.8242 0.8449 0.8679
4th 0.8079 0.8293 0.8366 0.8366 0.8366 0.8119 0.8228 0.8315 0.8378 0.8610

Group 3 Group 4
1st 0.8564 0.8640 0.8699 0.9075 0.9154 0.7831 0.8311 0.8654 0.8900 0.9081
2nd 0.8079 0.8276 0.8452 0.8930 0.9089 0.8661 0.8840 0.8968 0.9062 0.9131
3rd 0.8092 0.8356 0.8582 0.9005 0.9166 0.8719 0.8860 0.8960 0.9030 0.9081
4th 0.8397 0.8501 0.8593 0.9011 0.9173 0.8704 0.8864 0.8978 0.9061 0.9122

time-step t = 2
Group 1 Group 2

1st 0.8121 0.8475 0.8948 0.8948 0.8948 0.7947 0.8466 0.8533 0.8583 0.9021
2nd 0.8312 0.8424 0.8914 0.8914 0.8914 0.7744 0.8361 0.8433 0.8634 0.9073
3rd 0.8245 0.8455 0.8942 0.8942 0.8942 0.8206 0.8426 0.8505 0.8578 0.9039
4th 0.8322 0.8463 0.8934 0.8934 0.8934 0.7792 0.8254 0.8471 0.8548 0.9005

Group 3 Group 4
1st 0.8621 0.8724 0.8724 0.8724 0.8724 0.8170 0.8288 0.8361 0.8504 0.8618
2nd 0.8861 0.8943 0.8943 0.8943 0.8943 0.7681 0.8011 0.8118 0.8412 0.8642
3rd 0.8440 0.8660 0.8660 0.8660 0.8660 0.7871 0.7955 0.8240 0.8467 0.8655
4th 0.8455 0.8686 0.8686 0.8686 0.8686 0.8147 0.8274 0.8379 0.8541 0.8676

Table 6.10 – The closeness coefficients of the set of alternatives in each time step.

t Alternatives L(t)

X (1) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 - x3

d1 0.06 0.07 0.45 0.42 0.34 0.24 0.24 0.22 0.04 0.24 - 0.45

X (2) x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x3 x16

d2 0.03 0.03 0.06 0.05 0.43 0.46 0.35 0.24 0.07 0.07 0.06 0.46

X (3) x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x16 x24

d3 0.17 0.09 0.16 0.53 0.06 0.04 0.04 0.03 0.06 0.05 0.45 0.53

X (4) x31 x32 x33 x34 x35 x36 x37 x38 x39 x24 - x24

d4 0.11 0.05 0.04 0.08 0.06 0.07 0.07 0.08 0.07 0.55 - 0.55
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Table 6.11 – The real location of faults (xf ), the decisions made by the DMs after
four time steps (L4), and the closeness coefficients (d4) of the selected alternative at
time step t = 4.

xf L4 d4 xf L4 d4

x3 x3 0.57 x4 x4 0.56
x7 x7 0.58 x8 x8 0.55
x12 x8 0.55 x15 x15 0.57
x16 x16 0.6 x18 x18 0.6
x20 x20 0.58 x21 x21 0.6
x23 x23 0.6 x24 x24 0.6
x25 x25 0.58 x26 x26 0.58
x27 x27 0.6 x28 x28 0.54
x29 x29 0.5 x31 x31 0.46
x39 x39 0.6 - - -

Table 6.12 – The evolution of ACD by the proposed method compared with [1] in
locating a load-loss fault at bus 8.

Method r=1 r=2 r=3 r=4 r=5
Dynamic Model 0.8056 0.8275 0.8389 0.8500 0.8598

[1] 0.7775 0.8049 0.8129 0.8294 0.8326

an entropy-based mechanism is introduced to adjust the importance weights of DMs.

A common way to compare decision-making models is to check the correlation be-

tween their provided ranking results. In this regard, DMCDM is also employed for

the sake of fault location. Four time periods (t = 1, 2, 3, 4) are considered, where the

best alternative in each period is carried over to the next one. Same as before, the

number of alternatives in the first, second, and third periods is 10, whereas it is 9

in the fourth period. Four criteria are considered for each period and the weights of

criteria are set to [0.25, 0.25, 0.25, 0.25].

As for comparison, the ranking results of DMCDM are compared with those of

the proposed method w.r.t. different quantifiers used for adjustment of the DMs’

weights. This is to check for the sensitivity of the provided rankings by both models

to the quantifier used for adjustment of the DMs’ weights. In this regard, the Spear-
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man’s rank-correlation test [225] is employed, which is a common test to verify the

relationships between provided rankings of each model w.r.t. different quantifiers.

The quantifier used in this work,

Q(p) = pα, (6.2)

and the one used in DMCDM,

Q(p) = (−p2 + 3p)/2, (6.3)

are considered for the adjustment of DMs’ weights. For each employed quantifier,

the ranking results for all time periods are collected and compared by means of the

following statistic of the Spearman’s rank-correlation test:

rs(t) = 1− 6

q(t)∑
i=1

(∆i)
2/q(t)(q(t)2 − 1), (6.4)

where q(t) denotes the number of alternatives in the tth period and ∆i indicates the

difference of alternative xi between two different rankings provided by means of the

aforementioned quantifiers. rs(t) ∈ [−1,+1] and rs(t) = −1 (rs(t) = +1) denotes a

completely negative (positive) relationship between two rankings and a closer value

of rs(t) to −1 or +1 indicates a stronger relationship between two rankings.

DMCDM is compared with the proposed dynamic model for locating ten different

faults and the attained rs(t) and average of absolute values (AAV) are collected in

Table 6.13. As it can be observed from the attained AAVs, the proposed method

outperforms DMCDM in seven out of ten experiments, which are highlighted by bold

text in Table 6.13. In these cases, the AVVs attained by means of the proposed

method are closer to +1 compared with those of the DMCDM method, indicating

stronger relationships between rankings provided by the proposed method. Therefore,

the provided comparative experiment verifies the superiority of the proposed method
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Table 6.13 – The attained rs(t) and average of absolute values (AAVs) by means of
DMCDM [2] and the proposed method in this paper for locating 10 different faults.

Fault Method t = 1 t = 2 t = 3 t = 4 AAV

x3
Ours 0.45 0.60 0.77 0.77 0.65
DMCDM 0.48 0.65 0.15 0.38 0.42

x4
Ours 0.44 0.95 0.52 0.84 0.69
DMCDM -0.03 0.93 0.45 0.56 0.49

x7
Ours 0.98 0.93 0.79 0.79 0.87
DMCDM 0.96 0.85 0.10 0.54 0.61

x8
Ours 1.00 0.76 0.25 0.58 0.65
DMCDM 0.68 0.86 -0.20 0.36 0.53

x12
Ours 0.43 0.63 0.65 0.58 0.57
DMCDM -0.19 0.95 0.46 0.71 0.58

x15
Ours 0.45 -0.78 0.55 0.38 0.54
DMCDM 0.78 -0.96 0.32 0.37 0.61

x16
Ours 0.98 -0.41 0.62 0.05 0.52
DMCDM -0.10 0.11 0.87 -0.02 0.28

x18
Ours -0.38 0.55 0.02 0.13 0.27
DMCDM 0.89 0.11 0.13 0.44 0.39

x20
Ours -0.09 -0.97 0.41 0.39 0.47
DMCDM 0.52 -0.63 -0.17 0.39 0.43

x21
Ours 0.94 -0.18 0.80 0.39 0.58
DMCDM -0.44 -0.76 0.80 0.08 0.52

and indicates that despite of the type of quantifier used for adjustment of DMs’

weights, the proposed method outperforms DMCDM in terms of robustness against

the changes in the quantifiers.

6.3 Sensitivity Analysis of the Blockchain-Enabled

Trust Building Mechanism

Following the presented results in Chapter 5, in this section, a comprehensive sen-

sitivity and comparative study of the proposed Blockchain-enabled trust building

mechanism is provided.
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Table 6.14 – The attained average trust T , consensus achievement ratio r, and average
number of required time-steps for consensus achievement t w.r.t. the changes in variance
of the initial trust iT = 70%.

σ(%) T (%) r(%) t
1 68.92 68.14 27.04
5 68.18 68.14 26.97
10 68.50 66.48 29.76
15 68.50 67.31 34.79
20 68.25 65.37 36.84

6.3.1 Sensitivity Analysis: First Experiment

The amount of trust increment or decrement following the execution status of con-

tracts, i.e., η1 and η2, play an important role in trust improvement and opinion evolu-

tion. In what follows, we firstly explore the impact of η1 and η2 on trust improvement

within the group, which is then followed by a discussion on how these parameters

affect the evolution of opinions.

Remark 1. In the following experiments, the value of σ is set to 1%, however, there

is no restriction on this selection. It is a design parameter and can take any value

depending on the decision problem. Nevertheless, by resorting to the attained results

collected in Table 6.14, it could be concluded that a higher value of σ does not signif-

icantly affect the average trust and consensus achievement ratio, however, it slightly

increases the required number of time-steps for consensus achievement.

In the first experiment, we assume that agent ai, who is persuaded to apply the

modification at time-step t, updates the opinion oi(t) as oi(t + 1) = o′, i.e., the

agent conducts the total required modification at once. To check for trust building

w.r.t. η1 and η2 under this experiment, it is assumed that η1 increases from 1% to

10% with an 0.5% increment step, whereas η2 decreases from −1% to −10% with

a −0.5% decrement step. The number of agents is n = 30, ϖi are pseudo-random

integers drawn from the uniform distribution [1, 3], µ = 50% (µ ∈ [30%, 50%] for

the ‘SCHB’ scenario), iT = 70%, trust thresholds γi are randomly selected from the
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Figure 6.1 – Average trust (%) of all agents in the scenario ‘SCB’ w.r.t. the changes
of η1 and η2.

uniform distribution [0%, 100%], and the number of time-steps is set to T = 200. The

internal ρ and external ϵ reasons of betrayal are modeled by binomial distributions B

with ρ(0) = 10% and ϵ(0) = 30%, respectively. Following this setup, the average value

of agents’ trust for T trials for ‘SCB’ and ‘SCNB’ (the scenario with no Blockchain

protocol) are illustrated in Fig. 6.1 and Fig. 6.2, respectively.

The attained results highlight two important features of the proposed trust-

building mechanism. First, the proposed Blockchain-enabled trust building mech-

anism (‘SCB’ in Fig. 6.1) has led to a significant improvement in trust among agents

compared with the case with no Blockchain-based interactions (‘SCNB’ in Fig. 6.2),

especially for η1 ≥ |η2| combinations. Second, for η1 ≃ |η2| or η1 ≫ |η2| combinations,

the average trust is dramatically increased through the ‘SCB’ scenario, meaning that

such combinations of η1 and η2 not only can help with minimizing the likelihood of

betrayal by agents, but also can increase the chance of consensus achievement.

For other Blockchain-enabled trust building scenarios mentioned in Chapter 5,
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Figure 6.2 – Average trust (%) of all agents in the scenario ‘SCNB’ w.r.t. the changes
of η1 and η2.

the same experiment is conducted and these scenarios are compared in terms of the

average agents’ trust for all combinations of η1 ∈ [1%, 10%] and η2 ∈ [−10%,−1%].

The attained results are collected in Table 6.15. For example, for the case with iT =

70%, compared to ‘SCNB,’ the attained results verify that Blockchain protocols have

notably improved the group trust by about 18%. However, all Blockchain protocols

have almost yielded the same average trust under this experiment. The difference

between these protocols goes back to their impact on consensus achievement and

consensus speed, which are discussed next.
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Table 6.15 – The attained average trust T , consensus achievement ratio r, and average number of required time-steps
for consensus achievement t for different protocols under the first experiment w.r.t. the changes of η1 ∈ [1%, 10%] and
η2 ∈ [−10%,−1%] and the initial trust iT .

iT (%)
‘SCNB’ ‘SCB’ ‘SCHB’ ‘SCOHB’

T (%) r(%) t T (%) r(%) t T (%) r(%) t T (%) r(%) t
0 1 0 - 61.34 65.10 42.29 61.37 65.93 44.38 61.13 66.76 47.45
10 5.24 0 - 61.71 65.93 45.27 61.30 65.93 41.19 61.74 67.04 45.07
20 11.81 0 - 62.54 66.76 43.28 62.05 67.59 45.12 61.83 65.90 44.55
30 19.20 0 - 63.17 65.37 42.49 63.51 65.65 41.81 63.31 67.04 41.07
40 27.02 0 - 64.67 67.04 39.98 64 65.65 38.86 64.55 67.04 39.93
50 35.48 0 - 65.63 66.20 35.10 66.20 66.48 32.36 62.93 67.59 36.27
60 44.30 0 - 67.54 68.14 29.78 67.95 68.98 29.60 67.29 68.70 34.26
70 51.62 0 - 68.92 68.14 27.04 68.73 69.53 23.80 69 68.14 25.87
80 59.09 0 - 70.07 71.47 20.98 69.69 68.98 18.85 70.26 72.02 21.38
90 64.73 0.01 73 71.87 77.84 13.10 70.82 76.73 12.31 71.22 77.84 11.11
100 67.31 0.05 77.35 72.28 92.52 6.27 72.01 94.18 6.52 71.60 93.91 6.18
Avg. 35.16 0.03 75.25 66.34 70.41 31.42 66.16 70.51 30.44 65.90 71.10 32.10
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For the previous experiment, we compare the aforementioned protocols in terms

of the ratio of combinations of η1 and η2, for which the full consensus is achieved r,

and, also, in terms of the average number of required time-steps for achieving the full

consensus t. With the full consensus, we mean all the agents’ opinions reach the same

final state within T = 200 time-steps. To begin with, consider the case with iT =

70%. Our simulations denote that ‘SCNB’ leads to no consensus among agents for

all combinations of η1 and η2. However, those combinations for which the consensus

is achieved under different Blockchain protocols are illustrated in Fig. 6.3. Following

the results presented in Fig. 6.3 and the collected results in Table 6.15, it can be

observed that r = 68.14% of all combinations has led to a consensus under the ‘SCB’

protocol, whereas it is 69.53% for ‘SCHB,’ and 68.14% for ‘SCOHB.’ The attained

results under this experiment, on the one hand, denote that Blockchain protocols

have improved the ratio of consensus achievement with at least 68% compared with

‘SCNB’. One the other hand, the ‘SCHB’ scenario resulted the highest ratio due to

the fact that µ ∈ [30%, 50%] assigns lower thresholds for contract execution for some

agents. Furthermore, one can compare the consensus speed of protocols by resorting

to t. In this regard, the required number of time-steps for consensus achievement

under the ‘SCB’ are illustrated in Fig. 6.4. As it can be observed, for the cases with

η1 ≥ |η2|, a lower number of time-steps are required for the full consensus. For other

protocols, the value of t is collected in Table 6.15 for the case with iT = 70%. The

best performance is achieved under the ‘SCHB’ scenario (t = 23.80) due to lower

contract execution thresholds, which is then followed by the ‘SCOHB’ (t = 25.87)

and ‘SCB’ (t = 27.04), respectively.

Other than η1 and η2, the initial trust level iT could also affect the average trust

in the group T , the rate of consensus achievement r, and the consensus speed t. We

repeat the first experiment for different initial trust levels. Specifically, the initial

trust is changed from 0% to 100% and the attained T , r, and t values are collected

in Table 6.15. Firstly, this comprehensive experiment denotes that ‘SCNB’ leads to
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Figure 6.3 – Consensus achievement under different Blockchain protocols with iT =
70%. The combination led to the full consensus is marked by a ‘×’ symbol.

Figure 6.4 – The required number of time-steps for consensus achievement under the
‘SCB’ scenario w.r.t. the changes of η1 and η2 for the case with iT = 70% within the
framework of the first experiment.
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no consensus when the initial trust level changes from 0% to 80%, and for the cases

with iT = 90% and iT = 100%, a very low rate of consensus achievement (0.01 and

0.05, respectively) with a very low consensus speed (73 and 77.35, respectively) is

achieved in comparison with the Blockchain-based scenarios; Secondly, regardless of

the type of scenario, the increase in the initial trust level improves the average trust,

the rate of consensus achievement, and the consensus speed. Therefore, the higher the

initial trust level, the higher the average trust within the group, the higher the rate

of consensus achievement, and the faster the consensus speed. Thirdly, even though

all Blockchain protocols lead to almost the same trust with the group in average,

however, the ‘SCOHB’ protocol results in a higher rate of consensus achievement,

which is then followed by ‘SCHB’ and ‘SCB,’ respectively.

In addition to η1, η2, and iT , the internal ρ and external ϵ reasons of betrayal could

also impact the rate of consensus achievement. Within the framework of the first

experiment, we set the initial trust level to iT = 50% and assume that η1 ∈ [1%, 10%]

and η2 ∈ [−10%,−1%]. For this setup, the values of ρ and ϵ are changed from 0.05

to 0.5 with an 0.05 increment step. For each combination of ρ and ϵ, the rate of

consensus achievement is illustrated in Fig. 6.5. As expected, the lower the values

of ρ and ϵ, the higher the rate of consensus achievement. Therefore, the attained

results denote that by managing the internal and external reasons of betrayal, one

can improve the rate of consensus achievement by the group of agents.

6.3.2 Sensitivity Analysis: Second Experiment

In the first experiment, it was assumed that agents apply the total amount of re-

quired modifications once they accept the recommended modifications. However, in

our second experiment, it is assumed that agents do not entirely apply the recom-

mended modifications. Instead, they apply a portion of the modification. i.e., oi(t) by

oi(t+ 1) = oi(t)− λi × δi(t), where δi = oi(t)− o′. Under this experiment, the values

of T , r, and t are collected in Table 6.16. Obviously, by applying just a portion of the
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Figure 6.5 – The rate of consensus achievement under the ‘SCB’ scenario w.r.t. the
changes of η1 and η2 with iT = 50% under the framework of the first experiment.

recommended modification, the rate of consensus achievement will be reduced com-

pared with the first experiment. In the same vein, the number of required time-steps

for consensus achievement will also be increased (lower consensus speed). This can be

concluded by comparing the average results presented in Table 6.15 (first experiment)

and Table 6.16 (second experiment). However, the trust-building protocols work well

for both experiments, denoting that the proposed protocols are independent of the

way that modifications are employed. Furthermore, it is worth noting that for the

case with iT = 90%, a better consensus speed (t = 81) is obtained for the ‘SCNB’

compared with other Blockchain protocols (those are t = 113.81, t = 116.25, and

t = 113.04 for ‘SCB,’ ‘SCHB,’ and ‘SCOHB,’ respectively). However, as the rate of

consensus achievement is r = 0.28%, it denotes that consensus is achieved in only

one combination of 361 possible combinations of η1 and η2, which is for the case

with η1 = 2% and η2 = −7%. By checking for the same combination of η1 and η2

for the ‘SCB,’ the consensus speed is 68, which is better than the ‘SCNB’ scenario.
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Therefore, the attained average value does not reflect the better performance of the

‘SCNB’ compared with ‘SCB.’

The proposed trust-building mechanism incorporates variables that take random

values (ρ, ϵ, γ, iT ), and also variables that help with consensus management, i.e., η1,

and η2. Following the provided comprehensive sensitivity analysis and the results

presented in Fig. 6.3, two general properties of the given algorithm could be given as

below, despite the values of the aforementioned random variables:

1. The choice of η1 ≥ |η2| leads to a consensus opinion, even if the selection

of η1 ≃ η2 could take more time-steps for the algorithm to converge to the

collective opinion.

2. The choice of η1 < |η2| could either result in consensus, polarization, or frag-

mentation, depending on the values of the random variables.

6.3.3 Comparative Analysis

To demonstrate its novelty, we compare the proposed Blockchain-enabled trust build-

ing mechanism with other existing methods.

1. Despite the fact that willingness of agents to accept the advice is typically

modeled through the BC framework in ODMs that in turn can conduct bias

in agents’ interactions [227, 228, 219, 154, 229], these techniques do not simul-

taneously consider the internal and external factors that might impact agents’

judgments and interactions. Further to this, trust building using opinion simi-

larity typically involves a trust propagation mechanism to estimate the level of

trust among agents. This mechanism suffers from a high computational com-

plexity that could be as high as O(2V ) for a total number of V agents. On

the contrary, the proposed model in this work removes the opinion similarity

constraint for trust building, and, also, it efficiently incorporates the internal

and external factors that affect agents’ interactions.
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2. Even though some efforts have been devoted to the design of LODMs [228, 230],

however, the recently developed models are mostly concerned with numerical

opinions [231, 232, 233, 234, 235] and less attention is paid to the LODMs.

Our proposed model can be categorized under the LODMs, where we propose

to make use of Z-numbers in order for the agents to conveniently express their

opinions and to model opinion uncertainties more effectively.
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Table 6.16 – The attained average trust T , consensus achievement ratio r, and average number of required time-steps
for consensus achievement t for different protocols under the second experiment w.r.t. the changes of η1 ∈ [1%, 10%] and
η2 ∈ [−10%,−1%] and the initial trust iT .

iT (%)
‘SCNB’ ‘SCB’ ‘SCHB’ ‘SCOHB’

T (%) r(%) t T (%) r(%) t T (%) r(%) t T (%) r(%) t
0 0.13 0 - 61.27 44.04 126.92 61.54 46.26 126.83 61.30 44.04 130.17
10 5.04 0 - 61.28 44.32 133.04 61.47 43.77 129.31 61.51 44.88 127.02
20 12.02 0 - 62.39 44.32 124.54 61.88 43.49 125.96 62.29 42.94 122.31
30 19.29 0 - 63.80 44.04 124.71 63.46 43.49 123.53 63.31 45.98 126.76
40 27.43 0 - 64.57 45.43 121.36 64.41 45.43 123.20 64.39 45.71 124.39
50 30.66 0 - 65.56 45.15 121.53 66.39 44.32 121.23 65.93 45.43 121.62
60 43.52 0 - 67.96 47.37 122.19 67.02 46.54 113.92 67.23 47.92 119.87
70 53.21 0 - 68.70 48.75 115.57 68.88 50.14 118.80 68.43 47.92 114.75
80 59.58 0 - 70.22 47.09 111.02 70.15 49.86 115.44 70.10 49.31 117.56
90 65.32 0.28 81 71.65 50.14 113.81 71.50 49.03 116.25 71.38 50.69 113.04
100 67.69 3.6 86 71.99 49.58 107.36 71.73 50.69 108.22 71.98 49.86 106.62
Avg. 34.93 1.94 83.5 66.31 46.39 120.19 66.22 46.64 120.25 66.19 46.79 120.37
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Table 6.17 – The average number of required time-steps to reach consensus using
different methods.

n 5 15 25 35 50
Li et al., [231] 11.725 46.27 76.19 100.89 116.28
Zha et al., [227] 8.61 34.28 53.65 80.85 107.78
‘SCB’ 7.25 9.31 12.56 13.21 15.87
‘SCHB’ 7.49 8.79 12.16 13.01 14.44
‘SCOHB’ 6.83 9.38 11.05 12.78 15.63

Furthermore, we provide a numerical comparison with two models [231, 227] in

terms of the required number of time-steps for consensus achievement to illustrate

the superiority of the proposed Blockchain-enabled trust building mechanisms. For

the proposed model in [231], the number of alternatives and attributes are set to

4, ϵ ∈ [0, 0.15], β ∈ [0, 1], and the incomplete social trust matrix initially contains

iT = 90% of all possible connections. The proposed model in [227] is also set to deal

with four alternatives, the bounded confidence is set to ϵ ∈ [0, 0.5], and the consensus

threshold is µ = 0.85. Following this setup, the average number of time-steps for

different number of agents n ∈ {5, 15, 25, 35, 50} are collected in Table 6.17 and are

compared with those of our proposed Blockchain protocols with iT = 90%. On the

one hand, the superiority of the proposed protocols over the proposed models in

[231, 227] is evident. On the other hand, the proposed protocols appear more robust

to the increase in number of agents, whereas the other two techniques fail to converge

quickly.

6.4 Summary

In this dissertation, three novel consensus models were introduced to facilitate group

decision-making and opinion dynamics. The first model aimed to enhance the speed

of the consensus reaching process while maintaining a high Harmony degree among

decision-makers. This model is versatile and applicable to various group decision-
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making environments. However, its limitation lies in addressing dynamic environ-

ments where the number of decision-makers fluctuates between discussion rounds.

Adjustments in the action of trained reinforcement learning agents are needed to

adaptively modify the action space size. The second proposed model addressed dy-

namic environments where the number of alternatives can dynamically change during

the negotiation process. However, the model’s limitation arises when the set of at-

tributes also changes dynamically, requiring the dynamic formation of decision-maker

groups, which may not be efficient. Lastly, a Blockchain-based trust-building proto-

col was proposed within the opinion dynamics framework to establish trust among

decision-makers without relying solely on opinion similarity. However, the model’s

limitation lies in the involvement of random variables that impact the evolution of

opinions and trust among decision-makers. A more efficient mechanism is required to

optimally select these random variables to expedite the consensus reaching process.
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Chapter 7

Conclusions and Future Work

Intelligent group decision-making is beneficial for integrating decisions made by di-

verse intelligent decision makers to come up with the solution to a decision problem

that suits all the decision makers. Intelligent group decision-making, however, is

required to be equipped with consensus support models to guid the individual intel-

ligent agents toward the collective decision of the group. In this regard, the design

of consensus support models that efficiently integrate the opinions of decision makers

and speed up the consensus reaching process is of utmost importance for the sake of

intelligent group decision-making. Toward this end, the design of consensus support

models has gained much attention recently and encouraging results have been re-

ported in state-of-the-art works. However, there still exist several shortcomings that

have not been addressed well.

This dissertation is thus devoted to the design of consensus support models for

intelligent group decision-making by concerning the shortcomings of the previous

state-of-the-art works. These shortcomings can be categorized into three distinct

categories such as (i) generalization of static consensus models, (ii) dynamic consensus

models to support dynamic group decision-making, and (iii) the efficient modelling

of the decision makers interactions in large-scale or opinion dynamics models.

The problem (i) refers to the fact that most of the developed consensus models

for static decision-making are specifically designed for a decision environment with a

particular type of representation structure for opinions. This is a limitation of such

models, because a developed model for a specific decision environment is not extend-

able to other environments and such models only work well under the assumptions
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hold for that particular decision environment and they are either not applicable in

other decision environments or their performance could be degraded once the deci-

sion environment changes. Therefore, there is a need to develop consensus models for

static decision environments that are more general and are of good performance in

different decision environments.

The second problem (ii) arises in dynamic environment, in which the decision

variables are subject to changes from one discussion round to another. The developed

models mainly suffer from their computational complexity due to the fact that in

dynamic environments, the consensus reaching process needs to be fulfilled at each

time-step. Therefore, such models could be computationally expensive and there is a

need to develop models that mitigate this issue by efficiently managing the group of

decision makers and their interactions.

The third problem (iii) is mostly concerned with large-scale group decision-making

and opinion dynamics models. Due to the availability of a large group of decision

makers, managing the willingness and interactions of such a group could be chal-

lenging for the sake of consensus reaching. Many efforts have been devoted to the

design of consensus models to build trust among decision makers so as to speed up

the consensus reaching process. However, the developed models try to build trust be-

tween decision makers through the level of opinion similarity which conducts bias in

their interactions. Therefore, it is of paramount importance to not only remove this

limitation, but also to propose more efficient communication regimes so that decision

makers can securely interact to collectively decide on the solution to the decision

problem.

This dissertation addressed the aforementioned challenges by proposing novel con-

sensus support models for intelligent decision-making. To deal with the first issue (i),

it was proposed to resort to reinforcement learning in order to construct a general

consensus model that could deal with different decision environments irrespective to

the type of representation structure used for the opinion expression. This could be
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achieved due to the fact that reinforcement learning is a model-free learning algo-

rithm and once an agent is trained for a specific environment, the same agent could

deal with other decision environments, too. To enable the application of reinforce-

ment learning, however, it was required to convert the decision environment into a

Markov decision process to construct the state transition rules. Following this con-

version, it was proposed to train two agents for adjusting the feedback parameter

and importance weights of decision makers so as to speed up the consensus reaching

process along with keeping the Harmony degree of decision makers at a high level.

The attained results not only verified the applicability of the proposed model, but

also denoted the trained agents are generalizable and the same agents could deal with

diverse static decision environments.

For the second problem (ii), a dynamic framework was proposed that helped

with reducing the computational complexity of dynamic decision environments. This

was done by proposing to divide decision makers into several groups depending on

the number of available attributes, where each group of decision makers was only

focusing on a single attribute for opinion expression. This idea not only helps with

reducing the computational effort of the consensus reaching process by decreasing

the dimensions of the opinions, but also it reduced the required level of consensus

assessment into two levels in contrast to the typical three-level consensus assessment

procedure. Further to this, designing a meaningful, yet effective consensus threshold

for the sake of speeding up the consensus reaching process was another tool that

was proposed in order to reduce the computational complexity of such models. The

attained results verified the applicability of the proposed framework and its practical

verification was also shown by addressing the fault location problem in distributed

power systems.

Last but not least, to address the third problem (iii), it was proposed to make

use of the Blockchain technology in order to provide a safe and secure communication

regime in order for decision makers to interact with each other. The proposed strategy
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was able to remove the long-standing problem in opinion dynamics models, where

the developed models make use of opinion similarity to build trust among decision

makers. This traditional modelling of interactions not only conducts bias, but also

are computationally expensive as they usually involve a trust propagation mechanism

to estimate the level of trust among decision makers. To remove such boundaries,

the proposed Blockchain-enabled trust building mechanism does not concern opinion

similarity for the sake of trust building, yet it was able to build trust among decision

makers and to speed up the consensus reaching process.

7.1 Future Work

The following research directions could be suggested based on the developed consensus

models in this dissertation:

1. The proposed reinforcement learning-based consensus model in Chapter 3 deals

with the situation, in which the decision environment is static. However, ex-

tending this framework to dynamic environments, in which the set of decision

makers could be subject to changes from one discussion round to another, could

be a challenging, yet interesting research direction due to the fact the agent

needs to adjust its actions w.r.t. the number of decision makers.

2. The proposed dynamic framework in Chapter 4 was only concerning the case, in

which the dynamism was modelled by the changes in the number of alternatives.

However, extending this framework or devising new dynamic frameworks that

could deal with the situations that other than the alternatives, the set of decision

makers and attributes are subject to changes, could also be an interesting and

challenging research direction.

3. The proposed Blockchain-enabled trust building is the first attempt toward the

use of this technology in opinion dynamics models. Making use of the proposed
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protocols for decision making under different decision conditions by consider-

ing the attitude and non-cooperative behaviour of decision makers could be a

worthwhile research direction. Furthermore, the proposed protocols control the

agents-moderator interactions, however, there could be a potential application

of such protocols to manage the within-group interactions of agents, too.
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