
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-14-2023

MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR

MECHANICAL VENTILATORS MECHANICAL VENTILATORS

Ryan Keith Wardell
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Wardell, Ryan Keith, "MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR MECHANICAL VENTILATORS"
(2023). Electronic Theses and Dissertations. 9326.
https://scholar.uwindsor.ca/etd/9326

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholar.uwindsor.ca%2Fetd%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9326?utm_source=scholar.uwindsor.ca%2Fetd%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

MODEL-GUIDED EXTREMUM SEEKING

CONTROL FOR MECHANICAL

VENTILATORS

by

Ryan K. Wardell

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Mechanical, Automotive & Materials Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2023

©2023 Ryan K. Wardell

MODEL-GUIDED EXTREMUM SEEKING

CONTROL FOR MECHANICAL

VENTILATORS

by

Ryan K. Wardell

APPROVED BY:

X. Chen
Department of Electrical & Computer Engineering

J. Ahamed
Department of Mechanical, Automotive & Materials Engineering

J. Defoe, Advisor
Department of Mechanical, Automotive & Materials Engineering

May 19, 2023

Declaration of Co-Authorship / Pre-

vious Publication

I Co-Authorship

I hereby declare that this thesis incorporates material that is the result of joint re-

search, as follows: The thesis was authored by Ryan K. Wardell under the supervision

of professor Dr. J. Defoe. In Chapter 2, Palak Saini designed the first version of the

experimental setup which was further refined and reassembled by myself. In all other

cases, the key ideas, primary contributions, numerical designs, data analysis, inter-

pretation, and writing were performed by the author; Dr. J. Defoe provided feedback

on refinement of ideas and editing of the manuscript.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

II Previous Publication

This thesis includes 2 original papers that are to be published/submitted for publi-

cation in peer reviewed journals, as follows:

iii

Thesis Chapter Publication title/full citation Publication status

Wardell R.; Saini, P.; Defoe, J. To be submitted to the

Model-guided Extremum Seeking Journal of Dynamic

Chapter 2 Control for Mechanical Ventilators Systems, Measurement

Part 1: Measured Performance and Control, Transactions

of the ASME

Wardell R.; Defoe, J. Model-guided To be submitted to the

Extremum Seeking Control for Journal of Dynamic

Chapter 3 Mechanical Ventilators Part 2: Systems, Measurement

Numerical Assessment of Impacts of and Control, Transactions

Geometry Changes on Performance of the ASME

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as a graduate student at

the University of Windsor.

III General

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

iv

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

v

Abstract

Mechanical ventilators are an important lifesaving medical device and because of

the COVID-19 pandemic, they were in a massive demand for them to help the pa-

tients most severely affected by the disease. A large number of open-source hardware

ventilator projects were established during the pandemic, most of which did not pro-

vide sufficient information on the design of their control systems. In this thesis, a

model-guided extremum seeking control scheme is proposed for use on a open-source

hardware ventilator design. The performance of the control scheme is intended to not

be significantly affected by changes to the patient, nor to variations in the ventila-

tors geometry. To test the robustness of the model-guided extremum seeking control

scheme to patient variation, a prototype ventilator was built, using the hardware

design from one of the open-source hardware ventilator projects, and experiments

were conducted using a test lung. In this process it was determined that the control

scheme was able to achieve its goal of converging unto a targeted volumetric flow

rate during inspiration for all volume-controlled ventilation tests performed. To test

the robustness of the model-guided extremum seeking control scheme to variations in

the ventilator design, a numerical model was created that replicates the experimental

device. The numerical model was able to reproduce the experimental results with a

16% difference for the tidal volumes and a 14% difference for the positive end expi-

ratory pressures. Various ventilator parameters were investigated, and it was found

that the only geometric parameters that had a significant effect on the ventilators

performance were the diameter of the main ventilator piping and the length of the

expiratory piping. Through all the tests performed via the numerical model, the

model-guided extremum seeking control scheme was always able to converge upon

the target volumetric flow rate during inspiration.

vi

Acknowledgments

I am grateful to have worked with an incredibly passionate and supportive supervisor,

Dr. Jeff Defoe. His work knowledge, and passion towards engineering is what influ-

enced me to pursue education past the undergraduate level. Additionally, I would like

to thank my committee members Dr. Jalal Ahamed and Dr. Xiang Chen for both

their time in reviewing my thesis, and specifically Dr. Chen for his comments and

suggestions made during my thesis proposal that significantly improved the quality

of my work and education.

vii

Contents

Declaration of Co-Authorship / Previous Publication iii

Abstract vi

Acknowledgments vii

List of Figures xi

List of Tables xiii

Nomenclature xiv

1 INTRODUCTION 1

1.1 Objective and High-Level Approach 2

1.2 Major Findings and Conclusions . 2

1.3 Thesis Outline . 4

1.4 Bibliography . 5

2 MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR ME-

CHANICAL VENTILATORS PART 1: MEASURED PERFOR-

MANCE 6

2.1 Introduction . 6

2.2 MVM Hardware Implementation . 10

viii

2.2.1 Sensors . 12

2.2.2 Actuators . 13

2.2.3 Power and Signal Management 13

2.3 Model-Free and Model-Guided ESC 16

2.3.1 System Model . 18

2.3.2 Our ESC Parameters . 19

2.4 Software . 20

2.5 Testing Requirements . 21

2.5.1 Test Lung . 21

2.5.2 ISO Standard . 22

2.6 Uncertainty Quantification . 24

2.7 Results and Discussion . 26

2.7.1 Assessment of Ventilator Measurement Capability 26

2.7.2 Model-Guided ESC . 28

2.7.3 Comparison of Open-Loop Control and Model-Guided ESC . . 31

2.7.4 Comparison of Model-Free and Model-Guided ESC 34

2.7.5 Varying Supply Pressure for ISO Test 2 36

2.7.6 Quantifying the Controller Robustness 38

2.8 Conclusions . 39

2.9 Bibliography . 41

3 MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR ME-

CHANICAL VENTILATORS PART 2: NUMERICAL IMPACTS

OF GEOMETRY CHANGES ON PERFORMANCE 45

3.1 Introduction . 45

3.2 Model-Guided Extremum Seeking Control for the MVM 47

3.3 Complete Model of the Ventilation System 49

3.3.1 Ventilator Model . 49

ix

3.3.2 Proportional Valve . 51

3.3.3 Control System . 54

3.3.4 Lung Model . 56

3.4 Model Verification . 59

3.5 Changing Parameters . 62

3.6 Results and Discussion . 66

3.7 Conclusion . 78

3.8 Bibliography . 80

4 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 81

4.1 Summary . 81

4.2 Contributions . 83

4.3 Future Recommendations . 84

Appendices 86

Appendix A Ventilator Hardware 87

A.1 Assembly Instructions . 88

A.2 Bill of Materials . 90

A.3 Software . 95

A.3.1 Main Python Script . 95

A.3.2 Huzzah32 Script . 107

A.3.3 Emergency Valve Close Script 109

Appendix B Complete Amesim model 110

Vita Auctoris 113

x

List of Figures

2-1 Overview of the current implementation of the MVM 10

2-2 Power distribution schematic . 14

2-3 Schematic of ESC implementation . 17

2-4 Proportional valve characteristic . 18

2-5 PEEP calculation differences for ISO test 3 28

2-6 MGESC ensemble average flow rate with uncertainty and standard

deviation for ISO Test 1, 2, 3, 5, and 6 30

2-7 Open-Loop ensemble average flow rate 32

2-8 Ensemble average control input during inspiration for MGESC and OL

ISO Test 1 . 33

2-9 Model-free ensemble average flow rate 34

2-10 Model-free average control input per breath with the standard devia-

tion as error bars for ISO tests 1 and 5 35

2-11 Varying supply pressure for ISO test 2 37

3-1 Extremum seeking controller design 47

3-2 Schematic of ventilator, lung, and control system model in AmeSim . 50

3-3 Experimental valve behaviour . 53

3-4 Schematic of proportional valve model implemented in Amesim . . . 54

3-5 Control signal Amesim components 55

3-6 Simplified lung model . 57

xi

3-7 Lung model Amesim integration . 59

3-8 Inspiratory glow rate ensembled average for ISO test 2 and 7 61

3-9 Diameter changed pressure waveform 66

3-10 Diameter changed expiratory flow rate ensemble average 69

3-11 eLength expiratory flow rate ensemble average 71

3-12 Supply pressure changed inspiratory flow rate ensemble average . . . 72

3-13 Supply pressure changed tidal volumes 73

3-14 Supply pressure changed average control input 74

3-15 τ2,before changed inspiratory flow rate ensemble average 75

3-16 τ2,after changed inspiratory flow rate ensemble average 76

3-17 τ2,before and τ2,after affect on average tidal volume 77

A-1 Ventilator component layout . 88

A-2 Ventilator wiring diagram . 90

B-1 Complete Amesim model . 112

xii

List of Tables

2-1 Key ventilator components . 11

2-2 Flow meter uncertainties . 12

2-3 Huzzah32 ADC pin descriptions . 15

2-4 Test lung measurement uncertainties 22

2-5 VCV ISO testing parameters . 23

2-6 Error between ventilator and lung measurements 26

2-7 Model-Guided and Model-Free ESC convergence times 36

2-8 Quantification of ventilator performance and robustness 38

3-1 Amesim pneumatic components . 51

3-2 ISO test results . 60

3-3 Test matrix . 65

3-4 Darcy friction factor for each piping diameter 67

A-1 Ventilator Bill of Materials (BOM) 91

A-2 Python packages used . 95

B-1 All Amesim components . 111

xiii

Nomenclature

Symbols

A Area

Q Volumetric flow rate

D Diameter

L Length

V Voltage

V ol Volume

p Pressure

b y-intercept

m slope

s Spring stiffness coefficient

c Dash-pot damper coefficient

θ Control input

k Integration gain

x Lung displacement

σ Standard deviation

ω Frequency

ϕ Phase angle

τ Time constant

ϵ Relative roughness

xiv

Subscripts

out Outputted measurement

meas Measured

min Minimum

max Maximum

sup Supply

i Interface

insp Inspiration

exp Expiration

tidal Tidal volume

airway At the patient’s mask

demod Demodulation

mod Modulation

s Sampled

branch Inspiratory branch section

tubing Tubing from solenoid valve to the normally-open expiratory control valve

Superscripts

∗ Value at extremum point in objective function

xv

Abbreviations

PID Proportional Integral Derivative

ISO International Organization for Standardization

MVM Mechanical Ventilator Milano

PEEP Positive end expiratory pressure

OVSI Oxygen and Ventilator System Initiative

OSH Open-source Hardware

VCV Volume controlled ventilation

PCV Pressure controlled ventilation

BAP Baseline Airway Pressure

BPM Breaths per minute

ESC Extremum seeking control

MGESC Model-guided extremum seeking control

MFESC Model-free Extremum seeking control

OL Open-loop

PV Proportional valve

NPR Negative pressure relief valve

APLV Airway pressure limiting valve

SV Three-way solenoid valve

NOV Normally-open Expiratory Valve

EPRV Expiratory pressure regulating valve

FSS Full scale span

FS Full scale

DC Direct current

PWM pulse-width modulation

RP4 Raspberry Pi 4 8GB B+

DAC Digital-to-analog converter

xvi

ADC Analog-to-digital converter

LPF Low-pass filter

HPF High-pass filter

FiO2 Fraction of inspiratory Oxygen

RMS Root-mean-squared

xvii

Chapter 1

INTRODUCTION

Because of the COVID-19 pandemic, there was a global shortage of hospital grade

ventilators. Academia and industry came together during this time to develop and

support new, low-cost, open-source hardware ventilator designs. By investigating

many such projects, it was determined that most did not provide detail on the ven-

tilator’s control design, and the ones that did used proportional/integral/differential

(PID) based controllers. It became clear that developing an adaptive control system

that would be impervious to both uncertainty in the hardware design of the ventilator,

and variations in the patient’s condition would be desirable. The use of an extremum

seeking based controller (ESC) was explored as a model-free control approach; how-

ever, from reviewing the literature on ESC it was found that the introduction of a

simple model to provide the ESC with an initial guess for the control input could sig-

nificantly improve the controller’s convergence time [1]. With a mechanical ventilator

being an important life saving medical device it was clear that faster convergence

times was a desirable feature. So, a model-guided ESC (MGESC) scheme was to be

created with the overall goal of no significant loss of performance when applied to

different ventilator designs and patients.

1

1.1 Objective and High-Level Approach

The objective of this thesis is to create a MGESC that can adapt and perform on

various open-source ventilator designs and under various adult patient lung condi-

tions. To do so, a completely open-source mechanical ventilator was built based on

an open-hardware design from Mechanical Ventilator Milano (MVM) [2], and a dual

adult test lung was purchased from Michigan Instruments [3] to test the MGESC

against ISO tests meant for emergency ventilators operating in volume controlled

ventilation modes [4]. The performance of the ventilator was measured by comparing

the ventilator’s measurements (of each breath’s tidal volume and the positive end

expiratory pressure (PEEP)) to the test lung’s measurements as well as their target

value. To test the MGESC on various ventilator geometries and designs, a numerical

model of the entire ventilator experimental setup was created in Siemens’ Simcenter

Amesim [5]. The accuracy of the model was determined by comparing the ISO test

results performed experimentally to the numerical results achieved in Amesim. Var-

ious geometric and non-geometric parameters of the ventilator were changed in the

model, and the change in performance of the MGESC was assessed by comparing the

tidal volume and PEEP values against their target for the ISO test used.

1.2 Major Findings and Conclusions

In Chapter 2, it was found that after removing outliers, the tidal volume measured

within 21% of the test lung’s measurements and the PEEP measured within 13%

of the test lung’s measurements. The introduction of a model to provide the ESC

with an initial control input reduced convergence time by a minimum of 29 breaths,

and this result was achieved even though it was determined that the model used

consistently under predicts the control input needed to achieve the target volumetric

flow rate. The settling time for the flow rate during inspiration was unaffected by the

2

type of control used, and the settling time was a function of the control input. Most

importantly, the MGESC was able to converge upon the specified target inspiratory

volumetric flow rate for all tests; solidifying that the control scheme is able to perform

across the range of parameters defined by the ISO standard.

In Chapter 3, it was determined that an increase in error between the numerical

and experimental tidal volume calculations occurred when the lung’s resistance setting

is increased and when the target tidal volume is decreased. A part of the reason for

this was because the Amesim model does not accurately capture the more rapid rise

time associated with the lower flow rate target because the modelling of the main

inflow-controlling proportional valve is kept constant, although its behavior suggests

that it is a function of the target volumetric flow rate. From Chapter 2, it is known

that the experimental expiratory pressure release valve that controls the baseline

airway pressure could only go as low as 5.4 hPa; but, the valve in the numerical model

follows the ISO test BAP setting of 5 hPa, resulting in the error in PEEP calculations

between the experimental and numerical results being inflated for tests with a BAP of

5 hPa. Discounting cases with these sources of error, the numerical model was able to

achieve tidal volumes within 16% and PEEP values within 14% of the experimental

results. The ISO tests with the best performance was used for testing variations of

the ventilator parameters. Of the geometric parameters investigated, only two were

found to have a significant effect on the ventilator’s performance: the main diameter

of piping, and the length of the expiratory piping section. The MGESC was able to

adapt to all of the ranges of parameters tested and was always able to converge upon

the target flow rate. However, undesirable fluctuations in flow rate occurred when

the length of the expiratory section was less than 50 cm. Similar to the results in

Chapter 2, it was determined that the model that provides the initial control input

guess to the ESC is not sensitive enough to changes in the supply pressure.

3

1.3 Thesis Outline

This thesis is split into two major chapters. In Chapter 2, the MGESC is introduced

and tested on the ventilator design that is fully described within the paper. The

MGESC is used with the open-source ventilator design and tested with the test lung

across a range of varying settings listed in the relevant ISO standard. In Chapter 3, the

MGESC scheme and the ventilator design from Chapter 2 is modelled in numerical

simulation software in order to test the control system against various ventilator

parameters. The complete numerical model and how it was created is described and

its results are compared against the experimental results in Chapter 2 to determine its

accuracy. Once that is completed various parameters of the model are changed within

a logically chosen range and the control scheme’s performance is assessed. Lastly in

Chapter 4, conclusions are drawn from this work and recommendations for improving

both the ventilators accuracy and the model’s accuracy are given.

4

1.4 Bibliography

[1] Ying Tan, Xiang Chen, Youying Hua, and Qingyuan Tan. Model-guided ex-

tremum seeking case studies. International Journal of Adaptive Control and Signal

Processing, 36(3):708–728, December 2021.

[2] A. Abba et al. The novel mechanical ventilator milano for the COVID-19 pan-

demic. Physics of Fluids, 33(3):037122, mar 2021.

[3] Training & Test Lung Training & Test Lung Operation Manual. Michigan Instru-

ments, January 2021.

[4] Iso 80601-2-12:2020. International Organization for Standardization, 2021.

[5] Siemens. Siemens Simcenter Amesim 2020.2, 2020.

5

Chapter 2

MODEL-GUIDED EXTREMUM

SEEKING CONTROL FOR

MECHANICAL VENTILATORS

PART 1: MEASURED

PERFORMANCE

2.1 Introduction

People ill with respiratory diseases such as SARS-COV-2 (COVID-19) sometimes

require a ventilator [1]. The early days of the COVID-19 pandemic led to concerns

around a shortage of ventilators [2]. Due to the perceived need for very large numbers

of ventilators, many government and industry-backed projects were initiated with

the aim of creating an “open-source” design for a mechanical ventilator at lower cost

than typical ventilators, and which could be produced in large quantities at need.

New ventilators can cost up to $50,000 USD [3], and production of these machines

6

typically had lead times of around 8 weeks pre-pandemic and during the pandemic the

lead times increased to several months [4]. Good examples of open-source ventilator

projects are the Mechanical Ventilator Milano (MVM) [5] and Cambridge OVSI [6].

A common aspect of these projects is that rather than being truly “open-source” in

the sense that all details are provided to enable others to reproduce the designs, they

are only open-source hardware (OSH) designs, excluding major design details neces-

sary to create a fully-operational ventilator. Santos, Zacharia, and Cota stated that

these projects’ lack of adherence to best practices and lack of development towards

certification could reduce the viability of OSH ventilators as a tool in overcoming

pandemic-related healthcare challenges [7]. In their paper, they review the major

OSH ventilator projects and assess each project’s real-life viability by comparing the

milestones the projects have achieved on their way to actually being used in a medical

environment. One of the better-performing ventilator projects listed in this paper was

the MVM. MVM’s design is simple, low-cost, and consists of almost all off-the-shelf

components. However, its downfall comes in the design of the control system and

software. In their paper, little to no information regarding the control system de-

sign is included, and no information regarding the software design architecture. This

trend is consistent with similar projects. Stanford University’s O2U ventilator’s entire

control system is described simply as a “closed feedback loop” [8]. Imperial College

London’s ventilator design had no information on their control system [9], and the

University of Cambridge’s OVSI also includes no information on their control system

design [6]. Projects that include information on the design of their control system

generally use a proportional/integral/derivative (PID) controller [10, 5, 11].

When the system being controlled is a ventilator and patient, large model un-

certainties can exist due to the large patient-to-patient variation that can occur; this

makes tuning a PID controller challenging in this application. For healthy adult lungs,

the compliance can range from 0.01 to 0.1 L/hPa, and the resistance can range from 5

7

to 50 hPa/L/s [12]. This motivates consideration of more robust control schemes such

as adaptive control and H-infinity. Adaptive control system parameters are adjusted

automatically to compensate for changing conditions [13], and have been found to

yield shorter settling times than PID when the parameters of the system being con-

trolled vary significantly from the values assumed in the PID design[14]. Like PID

controllers, H-infinity also need a model of the system to function and their control

parameters are constant, but they have increased robustness due to being designed

for a worst-case operating point [15].

A control approach which does not require a model may be advantageous for a

ventilator due to the large variations in patients; a popular model-free adaptive control

method is extremum-seeking-control (ESC) [16]. Using a model-free adaptive control

approach such as ESC not only helps to address patient-to-patient variation, but

may enable a single controller to be implemented for variations of a given ventilator

design. A key challenge to address with applying ESC for a ventilator application

is the convergence time, since an inherent drawback of the model-free nature of this

data-driven approach is a slow convergence rate [17]. To a great extent, this can be

addressed by using model-guided ESC (MGESC), in which a system model, which

can be approximate and need not derive from first principles, is integrated into an

ESC [17]. In this paper, we apply MGESC to the OSH design from the MVM project

[5].

There are two main categories of ventilation modes: pressure-controlled ventila-

tion (PCV) and volume-controlled ventilation (VCV); in this paper we consider only

VCV. In VCV, the inspiratory flow rate is regulated, and the expiratory flow rate

is a consequence of the pressure difference between the lung and the baseline airway

pressure (BAP) setting, which regulates the minimum pressure during the expiratory

phase.

The key findings are that the ventilator’s measurements were comparable to the

8

test lung’s measurements to within 21% for the tidal volume calculations and 10%

for the positive end expiratory pressure calculations for the five out of the seven tests

performed. The other two tests had too large of difference to continue with for the

remainder of the results. The model used to find the initial control input for the ESC

consistently under predicts, but still leads to an increase in convergence time of 29

breaths or more over the model-free ESC scheme. The settling time of the flow rate

during inspiration is a function of the control input and is unaffected by the control

scheme. The flow rate does not settle to its target value until the end of inspiration,

thus the tidal volumes are consistently under their target. To help increase the tidal

volume, and thus the average flow rate during inspiration, it was found that increasing

the supply pressure would do so. Overall, the proposed MGESC scheme is able to

converge upon its targeted volumetric flow rate during inspiration for all VCV tests

performed.

The remainder of this paper is organized as follows. Section 2.2 introduces the

high-level hardware design of the ventilator and then goes into detail on each actu-

ating, sensing, and computing component. Section 2.3 introduces the ESC structure

along with the model used for the final MGESC scheme. Section 2.4 explains the

software design of the ventilator design and the programs used to complete the ex-

periments. Section 2.5 explains how the experiments will be conducted and the tools

used to test the ventilator. Section 2.6 explains how the uncertainty of each mea-

surement is calculated following the propagation of uncertainty principle. Finally in

Section 2.7 the results of the experiment are shown and discussed leading into Section

2.8 where the important conclusions and take-aways from this study are listed.

9

2.2 MVM Hardware Implementation

Using the MVM hardware design layout [5], similar commercially available hardware

was purchased and a prototype ventilator was fabricated. This section provides a brief

overview of the hardware implementation, focusing on aspects in which the design

differs from the MVM’s OSH design. Figure 2-1 is a schematic of the hardware

layout that illustrates the gas pathways, sensors, and actuators. Arrows indicate the

direction of flow. The key components in Figure 2-1 and their functions are explained

briefly in Table 2-1. A detailed diagram showing each ventilator hardware component,

with assembly instructions, and a bill of materials are given in Appendix A.

Air Supply

Flow
Meter

Lung System

Pressure Sensor

Pressure
Sensor

Atmosphere

PV

Reg SV

EPRV

NOV

APLV
NPR

Inspiratory Path

Expiratory Path

Figure 2-1: Overview of the current implementation of the MVM

10

Table 2-1: Key ventilator components

Component Description

Proportional valve Controls airflow through

(PV) the inspiratory path

Negative pressure relief valve Allows for the patient to

(NPR) take spontaneous breathes

Airway pressure limiting valve Safety measure to limit

(APLV) pressure in the inspiratory path

Three-way solenoid valve Control valve responsible

(SV) for actuating NOV

Normally-open valve Controls airflow though

(NOV) the expiratory path

Expiratory pressure regulating valve Controls the minimum pressure in

(EPRV) the expiratory path to the BAP setting

The mechanical functionality of our ventilator is almost identical to that of the

MVM [5], so we focus next on differences between our hardware implementation and

that described by Galbiati, Abba and Zardoni. Our ventilator is a prototype and

is not suitable for medical use, though the intention is for the control scheme to

be applicable to medical-grade products based on the MVM design. Our prototype

ventilator lacks a GUI and the control system does not include any alarms or system

warnings which need to be in place as described in the ISO standard [18]. A piece

of hardware that was left out which is needed for a medical-grade ventilator is a

condensation trap in the expiratory path to remove moisture from a real patient’s

expiration. Additionally, a pressure sensor upstream of PV was included since the

valve response is a function of supply pressure, and this is used in the model of the

11

system discussed in Section 2.3.1.

2.2.1 Sensors

Our design uses three sensors: the flow meter, the supply pressure transducer, and

the lung airway pressure transducer.

The flow meter is the SFM3300-AW from Sensirion, and is capable of measuring

bi-directional flow from -250 to 250 standard liters per minute (sL/min) [19]. The

measurement uncertainties for the flow meter, listed in it’s specification manual [19],

can be found in Table 2-2.

Table 2-2: Flow meter uncertainties

Flow Rate Q Resolution Accuracy Noise

(sL/min) (% Measured Value) (% Measured Value) (% Measured Value)

Q ≤ 25 0.07 4 2.25

100 > Q > 25 0.07 4 4

Q > 100 0.07 8.5 4

The supply pressure transducer is a Honeywell SSCDANN100PAAA5, and the

lung airway pressure transducer is a Honeywell SSCDRRN001PDAA5 [20]. Both

pressure transducers require a 5.00± 0.25 V direct current (DC) supply voltage, and

have a minimum output resolution of 0.03% of the full scale span of the pressure

range (%FSS) [20]. The accuracy of both transducers are the same and is listed as

a maximum of 0.25 %FSS, which includes uncertainty associated with non-linearity,

hysteresis, and repeatability [20]. The output voltage signals are [20]

Vout =

(
0.8

pmeas − pmin

pmax − pmin

+ 0.10

)
Vsup (2.1)

where pmin and pmax are the minimum and maximum pressures the transducers can

12

measure, respectively, pmeas is the pressure being measured, and Vsup is the supply

voltage. The supply pressure transducer has a range of 0 to 689 kPa absolute. The

airway inlet pressure transducer has a range of -6.89 to 6.89 kPa gauge.

2.2.2 Actuators

There are three actuating valves in the ventilator’s design: the proportional valve

(PV), the normally open valve (NOV), and the 3-way solenoid valve (SV) that ac-

tuates the NOV. The PV is the AP-7211-QW2-U711-OX2 made by Camozzi, which

has an orifice diameter of 2.4 mm, can operate with a maximum supply pressure

of 4 bar gauge, and has a maximum flow capacity of 113 normal liters per minute

(nL/min) [21]. The PV is actuated by a 24 V pulse-width modulation (PWM) signal.

The hysteresis for the PV is 10% of the full scale of the control input (%FS), and

the repeatability is 7% FS [21]. The NOV is a 3-way directional control spool valve,

6124K401 from McMaster-Carr, with a minimum actuation pressure of 200 kPa, and

that can be either normally open or normally closed based on how it is connected [22].

Thus, the regulator depicted in Figure 2-1 is set to 241.317 kPa to allow for proper

actuation of the valve. The solenoid valve used is a compact threaded 3-way solenoid

diverting valve, 2565N15 from McMaster-Carr, that is actuated by a 0 or 24 V DC

signal [23]. Both the PV and SV are directly actuated by the control system hard-

ware, whereas the NOV is actuated by pressurization/depressurization of its supply

line, controlled by the SV.

2.2.3 Power and Signal Management

The main power source for the ventilator is a 24 V, 5 A power supply, 1470-3098-ND

purchased from Digikey, that was branched off to power all the electronic components

of the ventilator, apart from the Raspberry Pi. A voltage step-down board, LM2596

purchased from Amazon, is used to bring the voltage down to the recommended volt-

13

age for the pressure transducers. The main computer in the ventilator is a Raspberry

Pi 4 8GB B+ (RP4) which requires a power source at 5 V with a minimum avail-

able current of 3 A [24], which exceeds what the step-down board could supply, so

a separate 5 V 3 A USB type-C charger is used. The power supply connectivity is

illustrated in Figure 2-2.

24 V 5 A Laptop
Charger

Voltage Step-Down
Board [5 V OUT]

5 V 3 A USB Type
C Charger

RP4

Huzzah32

Upstream Pressure
Transducer

Mask Pressure
Transducer Solid-State Relay PV Control Board

SV PV Flow Meter

Figure 2-2: Power distribution schematic

As the RP4 has only digital outputs, a micro-controller, the Adafruit Huzzah32

[25], is included due to its ability to read and send analog voltage signals, critical for

actuating the PV and for reading the pressure transducers outputs. The Huzzah32

is powered by the RP4 via USB, and the two devices also communicate via the same

connection. A complete wiring diagram is located in Appendix A.

The RP4 uses digital 3.3V logic [24], but the SV requires a 25 V DC signal. We

employ a solid-state relay (DC60S3 from Crydom) in connection with the 24 V power

supply . The relay wiring diagram is included in Appendix A.

The PV is powered and controlled by the electronic control for proportional valve

board 130-222 made by Camozzi [26]. The control board requires a 4 to 20 mA analog

current input that corresponds to 0 to 100% FS for the PV, and the board has an

internal resistance of 185.3 Ω [26]. The analog current input for the control board

is supplied from the Huzzah32. Digital-to-analog (DAC) channel 25 is used to send

14

the control signal to the PV’s control board which has an 8-bit digital range; the

corresponding analog output is 0-3.3 V DC which gives a resolution for the control

signal of 0.013 V. As a result, the maximum analog current signal is 18 mA or 87.5%

FS. From the proportional valve’s characteristic in Figure 2-4 (discussed in detail

later) it is shown that a signal of 87.5% FS would result in a flow rate of approximately

100 L/min, at nominal supply pressure, which is significantly higher than 30 L/min,

which is the maximum flow rate being tested; thus, this control method for the PV

is sufficient.

The ADC pins read 0 to 3.3V analog signals and converts them to 12 bit digital

readings, giving a measurement resolution of 0.00081 V. To avoid over-voltage to the

ADC pins since they are reading from 5 V systems, voltage dividers consisting of

two resistors arranged in series so that an input voltage is divided by some known

value that is a function of the two resistances. There is an uncertainty of 6% of the

measured voltage for the ADC pins on the Huzzah32 (below 3 V) [25]. In Table 2-3

a description of the three measurements read onto the Huzzah32 ADC pins is given.

Table 2-3: Huzzah32 ADC pin descriptions

Pin No. Measurement Measurement Voltage Pin voltage

range divider range

32 Supply pressure 419 - 501 kPa 3/4 2.09 - 2.68 V

transducer

12 Lung airway pressure 0 - 2.942 kPag 3/4 1.78 - 2.64 V

transducer

33 Pressure transducer 4.75 - 5.25 V 3/5 2.85 - 3.15 V

power supply

15

The pin voltage range in the table are the voltage that is read onto the Huzzah32.

The minimum value of the pressure transducer ranges are calculated using Equation

2.1 using the minimum possible pressure transducer supply voltage of 4.75 V, then

the maximum value of the range is calculated using the maximum possible supply

voltage of 5.25 V. As you can see from the pin voltage range column, the values are all

under the maximum possible readable voltage of 3.3V, and both pressure transducer

voltage readings are under 3 V giving the least uncertainty associated with the ADC

pins.

2.3 Model-Free and Model-Guided ESC

In its original formulation, ESC is a model-free, real-time adaptive control algorithm

that is most effective when the system dynamics are unknown [27]. While most meth-

ods for adaptive control aim to drive the output process to a known set point, the

goal of ESC is to find a system input that maps to an extremum, either a minimum or

maximum [28]. Using the inputs and/or outputs of the model, an objective function

can be created and this is what the ESC seeks to regulate to an extremum. The

basic concept of how ESC does this is can be simplified into 4 stages: modulation,

system response, demodulation, and state regulation. In the first stage, the system is

perturbed by a low-amplitude periodic input signal. Next the system response yields

a new objective function value. In demodulation, the objective function is multi-

plied by the same periodic function but with a different, typically larger, amplitude.

Finally, the demodulated signal passes through a low-pass filter (LPF) to remove high-

frequency noise, and goes through a state regulator, commonly an integrator, that by

using the demodulated signal, can iteratively seek an extremum point [28, 27]. Much

more detail of the functioning of ESC can be found in the literature, e.g. refs [29, 27].

In this paper, we employ a simple discrete ESC scheme with a sinusoidal perturba-

16

tion signal, also referred to as a dither signal, and include a low-pass filter (LPF), but

not a high-pass filter (HPF) as can be found in some implementations. Figure 2-3

illustrates the basic ESC scheme that has been implemented, where the system has

output y and input u; t is time. The design parameters for this control scheme are the

perturbation signal amplitudes (ademod and amod), the perturbation signal frequency

(ω), the perturbation signal phase angle (φ), the LPF cut-off frequency (fcutoff), and

the integration gain (k).

Integrator
ωs

ωcutoff
k

LPF

sin(ωt + φ)

Inspiratory
control valve

Volumetric
Flow Meter

|Q*- Qn|

+

+

Inspiratory control
valve model

Q*

Qn

amod ademod

Figure 2-3: Schematic of ESC implementation

Krstić and Wang [29] indicate that the cut-off frequency of the filter needs to be

lower than the frequency of the perturbation signal, the integration gain must be

low, and the amplitude of the periodic perturbation must be small for better con-

vergence and stability. Ariyur and Krsticacute [27] give guidelines indicating that

the amplitude of the demodulation signal must be much greater than the ampli-

tude of the modulation signal, and that the phase angles must satisfy the criteria of

cos(φdemod − φmod) > 0. We found a HPF not to be necessary for adequate perfor-

17

mance. The design parameters allow for a trade between convergence time, stability,

and transient behavior to be made while choosing the values [28]. The use of a model

to provide an initial guess (θ̂∗) for the ESC scheme is to ensure the objective function

is initially not far from its extremum (θ∗) to decrease convergence times enough so

that the base ESC parameters can focus on stability.

2.3.1 System Model

With supply pressures in the acceptable range of 419 kPa to 501 kPa, the flow will

always be choked at the PV. Downstream of the PV the flow Mach numbers are much

less than unity, so the flow downstream of the PV can be considered incompressible.

Thus, the system model for MGESC is solely based on the characteristics of the PV.

The characteristics of the PV are given in its specifications [21], from which Figure

2-4 is adapted.

30 40 50 60 70 80 90 100
Control Input [%FS]

0

20

40

60

80

100

120

Fl
ow

 R
at

e
[N

L/
m

in
]

400 kPa
300 kPa
200 kPa
100 kPa

Figure 2-4: Proportional valve characteristic

From the four lines, a relationship was created to estimate the slope (m) and y-

intercept (b) of the valve’s characteristic at a specific supply pressure. To solve for the

18

slope given the gauge supply pressure in units of bar, a 2nd order polynomial function,

m = −0.1105p2sup + 0.8058psup + 0.5309, was used with a correlation coefficient of

R2 = 0.9975. A linear relation was used to calculate the y-intercept given the gauge

supply pressure in units of bar, b = 33.896psup − 6.7395, which has a correlation

coefficient of R2 = 0.9988. Using these two equations, and knowing the upstream

supply pressure, the valve’s behavior can be estimated for any gauge supply pressure

between 1 to 4 bar. The purpose of this model is to give an initial guess of the

PV %FS control input value (θ̂∗) required for the target flow rate (Q∗) based on the

measured supply pressure which is shown in Equation 2.2.

θ̂∗ =
Q∗ − 33.896psup + 6.7395

−0.1105p2sup + 0.8058psup + 0.5309
+ 12 (2.2)

The additional constant value of 12%FS added to the prediction was found to be

necessary to match measured to predicted flow rates in steady-state tests with our

valve; it is possible this value would need to be calibrated for each individual valve

unit.

2.3.2 Our ESC Parameters

The objective function for the chosen ESC scheme is simply the absolute value of

the difference between the target flow rate and the current flow rate. This objective

function results in a peak at which the control input would result in the target flow

rate being measured. The ESC parameters are selected according to the guidelines

laid out in refs. [27, 29]. The selected parameters are: amod = 0.0001, ademod = 0.01,

k = 1, φ = 0, and ωcutoff = 0.4π rad/s. The only parameter that does not stay

constant throughout testing is the perturbation signal frequency ω, which is chosen

19

as a function of the breaths per minute (BPM) value set:

ω =


2BPM BPM ≤ 14

BPM BPM > 14

.

Using these MGESC parameters resulted in the best performance for the control

scheme.

2.4 Software

The RP4 uses the Raspbian GNU/Linux 10 (Buster) operating system, and the main

ventilator program is written in Python 3.7.3. The python packages used are listed

in Appendix A.3, with their versions and use cases noted. The programming for the

Huzzah32 was performed on the RP4 using the Arduino IDE software version 1.8.15.

Communication between the RP4 and the Huzzah32 is via serial communication

through the USB cable connected to both devices with a baud rate of 9600, 8 bit

byte size, no parity, 1 stop bit, and a timeout of 1 second. A key implementation

detail of note is that the Huzzah32 could read in its inputs much faster than the

Python code on the RP4 could execute, causing the measurement buffer to fill. This

would introduce a time lag while reading in these values to the RP4. This problem

is solved by clearing the measurement buffer in the Python script on the RP4 at

initialization and at the beginning of each inspiratory cycle. Additionally, the data

transferred to the RP4 is sent with start and stop bits to ensure no data is lost or

corrupted in the communication.

The flow meter is powered by the RP4, and communicates with it through a

USB connection as introduced in Section 2.2.3. A software program was provided by

the manufacturer to read the flow measurements for a flow meter running a similar

hardware chip [30], such that the code could be used for our flow meter with minor

20

updates to the scripts provided. The full Python script and Huzzah32 code are

available in Appendix A.3. Appendix A.3 also includes code for an additional Python

script that acts as an emergency shutoff program that closes the PV in case the main

script crashes.

A modified version of the Python script is used to perform open-loop and model-

free tests; these are commented out, but included, in the code in Appendix A.3. For

the open-loop test cases the control input is set by using the model’s initial guess and

then remains at that value for the entirety of each inspiratory cycle. For the model-

free test cases, the initial control input guess is given as a constant value that is just

large enough that the valve would open and there would be non-zero flow through

the PV. Using the valve’s characteristic, at a supply pressure of 446 kPa, a value of

60% FS was found to work as the initial guess for the model-free control scheme.

Due to the processing time of sending and receiving measurements, as well as

code execution, the fastest time step that could be used for the inspiratory cycle is

0.025 seconds. The time step for the expiratory cycle was kept as the same as the

inspiratory cycle for simplicity in post-processing.

2.5 Testing Requirements

International Organization for Standardization (ISO) Standards dictate ventilator

testing requirements. Test lung machines that mimic human lungs and trachea are

normally used for ventilator testing.

2.5.1 Test Lung

The test lung used for the work reported on in this paper is the Michigan Instruments

Dual Adult Lung [31]. The device has compliance and resistance capabilities suitable

for the range of adult patients. The test lung’s compliance can be varied continuously

21

from 10.2 to 102 mL/hPa, and the resistance values available are 5.1, 20.4, and 51

hPa/L/s. The test lung can be connected through USB to a device running aWindows

operating system and the Michigan Instruments PneuView 3 software. The software

allows for the live readings of lung information and ventilator settings. A beta version

of the software, PneuView 3.4, is used in this paper, as it can record live data at a

rate of 167 data points per second and export this data to a comma-separated values

(.csv) file. The uncertainty and resolution of the lung measurements made with this

system are listed in Table 2-4 [12].

Table 2-4: Test lung measurement uncertainties

Value Resolution Uncertainty

Flow Rate [L/min] 0.1 ±2%

Volume [mL] 0.1 ±3%

Pressure [hPa] 0.1 ±5%

2.5.2 ISO Standard

The standard used is ISO 80601-2-12:2020(en) which is for Medical electrical equip-

ment. Relevant for ventilators is Part 2-12 which states the particular requirements

for basic safety and essential performance of critical care ventilators. Additionally,

since we are only testing out ventilator in a VCV mode only section 201.12.1.101 of

the ISO standard is used in the creation of our testing guidelines since it is for volume-

control inflation-type ventilators. Moving forward, when it is mentioned that we are

following the ISO standard, it is specifically referring to ISO 80601-2-12:2020(en),

part 2-12, section 201.12.1.101. The ISO standard states that the results displayed

should at least include (1) the maximum error of the inspiratory volume in relation to

the set tidal volume; (2) the maximum error of the PEEP in relation to the set value

of BAP; (3) the maximum error of the inspiratory oxygen (O2) concentration at the

22

patient-connection port in relation to the set value; and (4) the disclosed accuracy

shall include the effects of the range of the rated input oxygen concentration.

As discussed in 2.2, our prototype ventilator does not include a gas blender or

oxygen sensor so the FiO2 cannot be measured or controlled, thus the third and

fourth criteria are omitted from the results. Table 2-5 gives the seven tests included

in the ISO standard that are able to be performed given the test lung’s compliance and

resistance ranges. The standard states that the results can be split into categories

based on the ranges of intended tidal volume with the categories being: equal or

greater than 300 ml, less than or equal to 50 ml, or between or equal to 300 and 50

ml. Thus, all of the results are able to be grouped together as they are all 300 mL or

greater.

Table 2-5: VCV ISO testing parameters

Test lung parameters Ventilator settings

Intended Linear Inspiratory Inspiratory

Test tidal Compliance resistance Set time pressure

No. volume ml/hPa hPa/l/s rate ∆tinsp ∆pinsp BAP

(ml) ± 10% ± 10% BPM s hPa hPa

1 500 50 5 20 1 10 5

2 500 50 20 12 1 15 10

3 500 20 5 20 1 25 5

4 500 20 20 20 1 25 10

5 300 20 20 20 1 15 5

6 300 20 50 12 1 25 10

7 300 10 50 20 1 30 10

The standard also provides step by step instructions to follow while performing

each test. Given the ventilator and test lung capabilities, the key points are that

23

each test should be ran for a minimum of 30 breaths, the tests should not start until

steady-state conditions are achieved, and that the PEEP should be calculated as the

average of the airway pressure measurements over the last 50 ms of the expiratory

phase.

2.6 Uncertainty Quantification

As indicated in Section 2.5.2, the results that need to be included for each ISO test are

the tidal volume and PEEP measurements. The tidal volumes are calculated using

the flow meter measurements, and the PEEP calculations use the airway pressure

sensor measurements; both sensors have their uncertainties listed in Section 2.2.1.

The tidal volume is the change in volume during each inspiratory cycle, and the

volume is calculated using a trapezoidal integration of the flow rate measurements

during each inspiration period. By propagating uncertainties, the uncertainty of each

tidal volume calculation is

σtidal =

√∑(
σQ∆t (1 +Qn−1)

2

)2

(2.3)

where, σQ is the uncertainty in the flow measurement, ∆t is the inspiratory cycle

time-step, and Qn−1 is the previous flow measurement during inspiration. Note that

for the first flow measurement during the inspiratory cycle, Qn−1 = 0. In Table 2-2,

the noise and accuracy of the measurement changes depending on the measured flow

rate and a range is given for each. The noise and accuracy uncertainties σnoise and

σaccuracy used are the mean values of the ranges, and the uncertainty for each flow

measurement is then calculated using,

σQ =
√
σ2
noise + σ2

accuracy. (2.4)

24

Since the ventilator’s control software time step is constant at 25 ms, the PEEP is

calculated as the average of the last two mask pressure measurements to adhere to the

ISO standard requirements. The uncertainty in the lung airway pressure voltage read

on the Huzzah32 comes from measurements of the supply voltage and the transducer

output, the voltage division, as well as the uncertainty in reading the ADC pin on the

Huzzah32. The resistors used in the voltage dividers were measured using an Ohm-

meter with a resolution of 0.1 Ω; so, the error in the measurement from the voltage

divider was deemed negligible compared to the other sources of error. Resulting in

the uncertainty of the lung airway pressure voltage read on the Huzzah32 being,

σVairway
=

√
(σVout)

2 + (σpin12)
2 (2.5)

where σVout is given as 0.25% in 2.2.1, and the uncertainty of pin 12 on the Huzzah32

was measured using a voltage supply and comparing the known supply voltage sent to

the pin and what was read by the pin. The average error of these measurements was

taken which resulted in σpin12 being 4.1% of the measured value. The same process

was performed on pin 33 which reads the voltage supply of the pressure transducer.

The uncertainty of the voltage supply measurement is solely the uncertainty of the

reading on pin 33, since the voltage division error is assumed to be negligible, σpin33

was found to be 4.6% of the measured value. Following the propagation of uncertainty

analysis and knowing the PEEP is calculated as the average of the last two pressure

measurements of the expiratory cycle and how the mask pressure measurement is

calculated using Equation 2.1, the expected uncertainty of the PEEP value can be

found using

σPEEP =

√(
σpairway,1

(1 + pairway,2)

2

)2

+

(
σpairway,2

(1 + pairway,1)

2

)2

(2.6)

where pairway,1, and pairway,2 are the last and second last pressure measurements during

25

the expiratory cycle, and σpairway,1
and σpairway,2

are their associated uncertainties. The

uncertainty of a pressure measurement can be calculated using,

σpairway
=

√√√√(3.125σVairway

Vsupply

)2

+

(
−3.125VairwayσVsupply

V 2
supply

)2

(2.7)

where σVsupply
is equal to σpin33, Vsupply is the current voltage supply measurement

read on pin 33, and Vairway is the voltage read on pin 12.

2.7 Results and Discussion

2.7.1 Assessment of Ventilator Measurement Capability

In this section, we assess the tidal volume and PEEP value measurements from the

ventilator’s sensors by comparing to the values measured by the test lung. Data

is presented for each of the seven ISO tests using the MGESC scheme. The data

presented is for the last 30 of 40 breaths in each test. Table 2-6 contains the average

of the difference between the ventilator and lung’s tidal volume and PEEP calculations

normalized by the target value for each ISO test.

Table 2-6: Error between ventilator and lung measurements

ISO Test Average Tidal Volume Error % Average PEEP Error %

1 5.61 9.20

2 7.87 -5.84

3 11.5 17.30

4 20.86 2.91

5 20.9 5.91

6 19.66 -10.99

7 33.71 -12.15

26

From the table it is shown that for the tidal volume calculations the ventilator

measurements are always greater than the lung measurements. The tidal volume

calculations for ISO tests 1 and 2 have an average difference of 8% and below, tests

3, 4, 5, and 6, have an average difference of 21% and under, then ISO test 7 has an

average difference of 34%. Referring to Table 2-5, it is probable that the test lung’s

compliance setting has an inversely proportional relationship with the difference in

tidal volume measurement from the ventilator to the test lung. The difference in the

tidal volume calculations for test 4 and 5 are very similar which is a good indication

that the target flow rate does not effect the measurement accuracy of the flow rate.

While conducting the tests with the prototype ventilator it was found that there was

a large amount of leakage for all tests between the ventilators flow meter and the

entrance to the test lung where its flow meter is. Between the two flow meters there

are a lot plastic connections which began to crack over time which has led to air being

able to be felt coming out of the joints. One joint in particular was at the connection

to the test lung, the lung’s resistance couplers needed to be swapped for almost every

test causing the connection to the each coupler to become more loose and cracked.

This connection was not able to be permanently sealed as the couplers needed to be

changed to perform other ISO tests; so we moved forward in the results by using the

ventilator’s tidal volume calculations in all future comparisons.

For the differences in the PEEP calculations it is found that the minimum error

was 2.91%, the average error was 9.19%, and the maximum error was 17.3%. All of

the ISO tests had an error of less than 13% besides ISO test 3 with the maximum error

of 17.3%. The ventilator measurements are larger than the lung’s measurements for

tests 1, 3, 4, and 5 then they are lower for tests 2, 6, and 7. This behaviour does not

correlate with any parameter settings displayed in Table 2-5. Since ISO test 3 has the

largest difference in PEEP measurements, each PEEP calculation for the ventilator

27

and lung are plotted with their associated uncertainty for ISO test 3 in Figure 2-5.

0 5 10 15 20 25 30
Breath Number

4

5

6

7

8

9
Av

er
ag

e
PE

EP
 [h

Pa
]

Target
Lung
Ventilator

Figure 2-5: PEEP calculation differences for ISO test 3

In the figure, it is clear that the ventilator PEEP measurements are different than

the test lungs PEEP measurements from the distance between the markers for each

breath. However, the figure also shows that 21 of the 30 breaths have the uncertainty

bars overlap each other. Since this is the ISO test with the largest error in the PEEP

value this shows that even for the worst test case the results are acceptable. However,

moving forward in the results, the PEEP measurements from the test lung will be

used as they are more accurate and reliable.

2.7.2 Model-Guided ESC

In this section the performance of the ventilator with MGESC is assessed for the 7

ISO tests. In this and the remaining presentation of the data, ensemble averages of

28

the flow rate over the course of the inspiratory portion of a breath cycle are used to

examine the details of the ventilator and control system’s response. The ensemble

averaged flow rate is

⟨Q (t)⟩ = 1

N

N∑
k=1

Q

(
t+ (k − 1)

60

BPM

)

where Q is the instantaneous flow rate, 0 ≤ t < ∆ti, and the index k captures the

time associated with the kth out of N breaths. For our data, N = 30, and ∆ti = 1

s from Table 2-5. In Figure 2-6, the ensemble averages for ISO test 1, 2, 3, 5, and 6

are shown along with the standard deviation of the ensemble averaged flow rate, and

its associated measurement uncertainty as shaded regions surrounding the averaged

flow rate for only ISO tests 1 and 5. The standard deviation and uncertainty regions

are only shown for test 1 and 5 because all of the tests at the target tidal volume

of 500 mL and all of the tests at 300 mL behave the same so only one test was

shown that best represents each group. Moving forward for the model-guided, model-

free, and open-loop results only results from test 1 and 5 will be shown as they are

representative of the other tests at their respective target tidal volume category.

29

0.0 0.2 0.4 0.6 0.8 1.0
Inspiratory Time [s]

0

5

10

15

20

25

30
Fl

ow
 ra

te
 [L

/m
in

]

T1 Uncrty
T1 Std
T1 Avg
T2 Avg
T3 Avg
T5 Uncrty
T5 Std
T5 Avg
T6 Avg

Figure 2-6: MGESC ensemble average flow rate with uncertainty and standard devi-
ation for ISO Test 1, 2, 3, 5, and 6

At first glance it is immediately evident that for all of the tests, the control system

was able to converge to the target flow rate. The first thing that is evident is that the

control scheme is targeting the flow rate derived from the target tidal volume, rather

than the actual volume. This will result in the tidal volumes being under target for

most of the tests. The system response is able to approach get within ∼ 20% of the

target flow rate within 0.2 s, but then gradually converge to near the target flow rate,

leading to overall tidal volumes below target. It is seen that the tests with a target

flow rate of 30 L/min all reach nearly steady operation 0.8 seconds into inspiration,

and at this point the ensemble averages, and their respective standard deviation and

uncertainty bands, clearly show the flow rate converging onto its target. For the tests

with a target of 18 L/min, the ensemble averaged flow rates converge at or above the

target flow rate 0.6 seconds into inspiration, leading to larger overall tidal volumes,

30

in line with the data in Table 2-6. Again the uncertainty bands cover the target

flow rate over that final 0.4 s period for all three tests. The actual uncertainties

are smaller for the lower target flow rate, while the standard deviations are similar

regardless of target flow rate. This is intuitive as we know from Table 2-2 that the

uncertainty of the flow rate measurement increases when the flow is greater than 25

L/min since the noise increases from 2.25 to 4%, as well as the uncertainty scaling

with the magnitude of the flow rate. Then the standard deviation should mainly be

driven by the ESC perturbation amplitudes a, which does not change from test to

test thus, the standard deviation regions are similar. With the goal of the MGESC

scheme to target a specific inspiratory volumetric flow rate, it is clear that for all of

the tested ISO tests that the goal is achieved.

2.7.3 Comparison of Open-Loop Control and Model-Guided

ESC

In this section, we present open-loop results to demonstrate the impact that the

MGESC has on ventilator performance and to find out if there are limitations of the

MGESC scheme which stem from the hardware used. For the open-loop tests, the

control input is determined solely from the valve model (Equation 3.1). Figure 2-7

shows the results of the open-loop tests compared to the MGESC tests, following the

style of Figure 2-6.

31

0.0 0.2 0.4 0.6 0.8 1.0
Inspiratory Time [s]

0

5

10

15

20

25

30

Fl
ow

 ra
te

 [L
/m

in
]

MGESC Uncrty
OL Uncrty
Std
T1 MGESC Avg
T1 OL Avg
T5 MGESC Avg
T5 OL Avg

Figure 2-7: Open-Loop ensemble average flow rate

Comparing the shape of the ensemble average flow rates shown in this figure it

is evident that the flow rate behaves in the same qualitative manner in both the

MGESC and open-loop control schemes, and since in the open-loop cases a constant

control input is used the entire time, the rapid initial rise and then longer, slow rise is

seen to be the PV’s opening transient behavior. Although the transient behaviour’s

are similar, the open-loop results all under-predict the target flow rate, using the

initial guess calculated in Equation 2.2. Now, despite a constant control input, in

the first 0.2 seconds of inspiration the standard deviation regions have similar sizes

comparing the MGESC to open-loop results. In the above section reviewing the

MGESC results it is said how the standard deviation region should be mainly driven

by the oscillating nature of ESC. However, with this comparison it is clear that the

standard deviation is not entirely driven by the control scheme used, and in the first

0.2 seconds of inspiration it is driven by what is most likely measurement uncertainty

32

and non-repeatability of the valve’s initial opening transient.

In Figure 2-7, it is shown how the settling time for the flow rate is roughly 0.6 s

for the 18 L/min target and 0.8 s for the 30 L/min target. This settling time seems

to be unaffected by the use of a control scheme. This illustrates that the MGESC

scheme rapidly finds the appropriate control input, but cannot accelerate the valve’s

transient behavior. This can be further confirmed by reviewing the ensemble average

of the control input during inspiration for ISO test 1, shown in Figure 2-8.

0.0 0.2 0.4 0.6 0.8 1.0
Inspiratory Time [s]

62

63

64

65

66

67

68

69

70

C
on

tro
l i

np
ut

 [%
FS

]

MGESC Std
MGESC Avg
OL Avg

Figure 2-8: Ensemble average control input during inspiration for MGESC and OL
ISO Test 1

From the figure it is clear that the ensemble average of the control input during

inspiration stays practically constant further supporting that the used of the MGESC

control scheme does not accelerate the valve’s transient behavior. An interesting result

found in the figure is that when the flow rate reaches a kinking point, in which it’s fast

response turns to a slow response, the standard deviation of the ensemble average of

33

control input narrows at the same time during inspiration. This means that at around

0.1 seconds the control scheme gives the most consistent control input, not explain

why the valve’s transient behavior changes at this point.

2.7.4 Comparison of Model-Free and Model-Guided ESC

In this section we compare model-free ESC (MFESC) and MGESC to demonstrate

the impact of the model on system performance. Figure 2-9 shows the results of the

MFESC tests compared to the MGESC tests, following the style of Figure 2-7.

0.0 0.2 0.4 0.6 0.8 1.0
Inspiratory Time [s]

0

5

10

15

20

25

30

Fl
ow

 ra
te

 [L
/m

in
]

MGESC Std
MGESC Uncrty
MFESC Std
MFESC Uncrty
T1 MGESC Avg
T1 MFESC Avg
T5 MGESC Avg
T5 MFESC Avg

Figure 2-9: Model-free ensemble average flow rate

From the figure it is clear that the standard deviation for the ensemble average

for each test is significantly larger than the uncertainty. This is intuitive because the

flow rates are increasing from breath to breath as they approach the target flow rate,

shown in Figure 2-10 which illustrates the average flow rate during each breath with

34

its standard deviation as the y-axis error bar.

0 5 10 15 20 25 30 35 40
Breath Number

5

10

15

20

25

30

35
Fl

ow
 R

at
e

[L
/m

in
]

Model-guided
Model-free

Figure 2-10: Model-free average control input per breath with the standard deviation
as error bars for ISO tests 1 and 5

The standard deviation region for the model-free tests, shown as the red shaded

area, is large and the upper region, just reaches the target flow rate for the 30 L/min

and slightly undershoots the 18 L/min tests in Figure 2-9 which coincides with the

results in Figure 2-10 as the average flow rate for each breath converges for test 1

but does not for test 5 for the model-free cases. Convergence will be defined for

the model-guided and model-free cases, using the data illustrated in Figure 2-10, as

when the average flow rate for a breath settles while the standard deviation above

the average includes the target flow rate. With the natural transient of the valve,

the target flow rate can not be achieved for the entire duration of inspiration and

thus the average will always be below the target. Using this method, the MGESC

scheme for ISO test 1 converges after 2 breaths, and for ISO test 5 it converges after

35

11 breaths. Then for the MFESC scheme ISO test 1 converges after 31 breaths, and

test 5 converges fails to converge within 40 breaths. All of the convergence times for

the ISO tests for both the MGESC and MFESC schemes are listed in Table 2-7.

Table 2-7: Model-Guided and Model-Free ESC convergence times

Test No.
Convergence Time [# of Breaths]

Model-Guided ESC Model-Free ESC

1 2 31

2 6 40++

3 2 40+

5 11 40+

6 22 40++

Reviewing the model-guided ESC’s convergence times it is found that the control

scheme converges fastest for ISO test 1 and 3, followed by test 2 then test 5, and

finally test 6 with the slowest convergence of 22 breaths. For the model-free ESC

tests only ISO test 1 converged within the 40 breaths at 31 breaths, then ISO test 3

and 5 appeared to be converging shortly after the 40 breath mark. ISO test 2 and 6,

both having a BPM of 12, appeared to be a long way from converging. So, because

the model-free tests were unable to converge for most tests within the 40 breaths

tested, it is clear the value added from using a model to provide the ESC scheme

with an initial starting control input.

2.7.5 Varying Supply Pressure for ISO Test 2

Using the MGESC scheme and the parameters listed for ISO test 2, the supply pres-

sure is varied from 419 kPa to 501 kPa to determine the robustness of the control

scheme to variations in supply pressure. ISO test 2 parameters were used as the

MGESC has good performance for these parameters compared with the other ISO

36

tests. Now, both the valve’s initial guess for the target volumetric flow rate and

the ’just closed’ value, for the expiratory control input that results in zero flow, are

calculated using Equation 3.1. Using the average of the volumetric flow rate during

inspiration for each breath, found in Figure 2-11, the effect of the varying supply

pressure on the flow rate during inspiration will be illustrated.

0 5 10 15 20 25 30 35 40
Breath number

15

20

25

30

35

40

Fl
ow

 ra
te

 [L
/m

in
]

501 kPa
419 kPa

Figure 2-11: Varying supply pressure for ISO test 2

From this figure it is clear that by increasing the supply pressure, the average flow

rate during inspiration is increased for all breaths. Although the average flow rate is

significantly lower than the target flow rate, the standard deviation bar for the 419

kPa test undershoots the target by a small amount for the majority of breaths. With

the average flow rate lower than target and not reaching the target flow rate during

inspiration for most breaths, the MGESC scheme operating at a supply pressure of

419 kPa will significantly undershoot the target tidal volume. Whereas at a supply

37

pressure of 501 kPa the average flow rate will be larger than it is at nominal supply

pressure and from Figure 2-11 at this higher supply pressure the results will be much

closer to the target tidal volume than at the nominal supply pressure.

2.7.6 Quantifying the Controller Robustness

From Section 2.7.2, it is known that the MGESC works as intended for all 7 ISO tests.

Each ISO test can be treated as a unique patient and thus a unique disturbance for

the controller. The average achieved tidal volume as a fraction of the target value for

each test indicates the performance of the ventilator, while the standard deviation of

these normalized averages is an indication of the MGESC’s robustness to variations

in the patient. These quantities are given in Table 2-8.

Table 2-8: Quantification of ventilator performance and robustness

ISO Test Average Normalized Tidal Volume

1 0.89

2 0.96

3 0.90

4 1.00

5 1.00

6 0.98

7 1.12

Average 0.98

StDev. 0.077

From the average values in the table, it is found that the ventilator undershoots

the intended tidal volume by a maximum of 11% and overshoots the intended tidal

38

volume by a maximum of 12%. Considering that the control scheme targets volumetric

flow rate rather than tidal volume, the +12%/-11% range is indicative of adequate

performance. The standard deviation of these normalized averages is also given in

the table (7.7%), and this is an indication of how much the ventilator performance

varies based on variations in target tidal volume and patient parameters. Thus, we

can expect the ventilator to typically reach within +/-7.7% of the target tidal volume.

2.8 Conclusions

Implementing the proposed model-guided ESC scheme on the open-source ventilator

design and performing the available ISO standard tests resulted in the control scheme

being able to converge across the range of test lung parameters. The ventilator mea-

surements were accurate to their target values and comparable to the measurements

gathered by the test lung with the largest average error in the difference between the

ventilator tidal volume calculation and the test lung’s calculation being 34%, then for

the PEEP calculation it was 17.30%. With the two tests removed the difference in

tidal volume calculations from the ventilator to the test lung are within 21% for the

tidal volume, and within 13% for the PEEP for ISO tests 1, 2, 4, 5, and 6. Despite the

ventilator measurements for ISO test 3 and 7 being inaccurate, the MGESC scheme

was still able to converge upon a specified target inspiratory volumetric flow rate.

For the robustness of the controller it was determined that a standard deviation in

tidal volume measurement of 7.7% of the intended tidal volume was the maximum

contribution from varying the patient parameters.

Key observations on the control scheme and ventilator hardware were made in

the results section whilst comparing the MGESC scheme to the MFESC and open-

loop control schemes. It was found that the settling time for the flow rate during

inspiration is 0.6 seconds for the tests with a 18 L/min target flow rate and 0.8

39

seconds for the tests with a 30 L/min target. These times were unaffected by the use

of a control scheme as the same settling times where found in the open-loop results

were the control input is held constant. Although the settling times were unaffected

by the control used, they were found to be a function of the proportional valve’s

control input. This meaning that despite the control scheme changing the control

input, if a constant input is given throughout the breath the flow rate during one

inspiratory breath would look similar during that settling time, if the flow rates are

comparable. This illustrates that the MGESC scheme rapidly finds the appropriate

control input, but cannot accelerate the valve’s transient behavior. The opening

transient behaviour of PV was found to be largely non-repetitive by reviewing the

open-loop test result’s standard deviation of the ensemble average flow rate during

inspiration. The ability of the MGESC to quickly find the appropriate control input

is due to the use of a model. This is confirmed when the converge time of the MGESC

scheme was compared with the convergence time of the MFESC scheme for all valid

ISO tests. It was determined that the introduction of a model to provide an initial

guess to the ESC scheme reduces the convergence time by a minimum of 29 breaths.

From the open-loop results it is found that the model used under predicts consistently

and needs to be increased from its current value of +12%FS. Reviewing the MGESC

results it is found that during inspiration the target flow rate is only achieved in

the later part of the breath, and thus the tidal volumes are constantly undershoot

their target. A change in the ESC’s objective function to include the tidal volume

calculations would essentially increase the average flow rate during inspiration to the

target flow rate. The average flow rate during inspiration was also found to increase

as the supply pressure was increased from nominal. Overall, the ventilator design

is able to provide accurate measurements to the control system, and the proposed

model-guided ESC scheme is able to achieve convergence across the range of varying

lung parameters given by the ISO standard.

40

2.9 Bibliography

[1] Health Canada Services. Ventilators for patients with COVID-19, April 2022.

[2] Medical Device Shortages During the COVID-19 Public Health Emergency, De-

cember 2022.

[3] Peter Loftus. Ventilator makers ramp up production amid coronavirus crunch.

Wall Street Journal, March 2020.

[4] Nonhlanhla Dube, Qiujun Li, Kostas Selviaridis, and Marianne Jahre. One

crisis, different paths to supply resilience: The case of ventilator procurement

for the COVID-19 pandemic. Journal of Purchasing and Supply Management,

28(5):100773, dec 2022.

[5] A. Abba et al. The novel mechanical ventilator milano for the COVID-19 pan-

demic. Physics of Fluids, 33(3):037122, mar 2021.

[6] University of Cambridge. The oxygen and ventilator system initiative (ovsi).

2022.

[7] Maikon Lorran Santos, Leonardo Rakauskas Zacharias, and VinÃcius Rosa Cota.

Open-source hardware to face COVID-19 pandemic: the need to do more and

better. Research on Biomedical Engineering, 38(1):127–138, February 2021.

[8] Samuel J. Raymond, Sam Baker, Yuzhe Liu, Mauricio J. Bustamante, Brett Ley,

Michael J. Horzewski, David B. Camarillo, and David N. Cornfield. A low-cost,

highly functional, emergency use ventilator for the COVID-19 crisis. PLOS ONE,

17(3):e0266173, March 2022.

41

[9] Michael Madekurozwa, Willy V. Bonneuil, Jennifer Frattolin, Daniel J. Wat-

son, Axel C. Moore, Molly M. Stevens, James Moore, Jakob Mathiszig-Lee, and

Joseph van Batenburg-Sherwood. A Novel Ventilator Design for COVID-19 and

Resource-Limited Settings. Frontiers in Medical Technology, 3, October 2021.

[10] Sara Zulfiqar, Hamza Nadeem, Zamen Tahir, Minnaam Mazhar, and K. M.

Hasan. Portable, Low Cost, Closed-Loop Mechanical Ventilation Using Feed-

back from Optically Isolated Analog Sensors. In TENCON 2018 - 2018 IEEE

Region 10 Conference. IEEE, October 2018.

[11] Julienne LaChance, Manuel Schottdorf, Tom J. Zajdel, Jonny L. Saunders, So-

phie Dvali, Chase Marshall, Lorenzo Seirup, Ibrahim Sammour, Robert L. Chat-

burn, Daniel A. Notterman, and Daniel J. Cohen. PVP1 The People’s Ventilator

Project: A fully open, low-cost, pressure-controlled ventilator research platform

compatible with adult and pediatric uses. PLOS ONE, 17(5):e0266810, May

2022.

[12] PneuViewÂ®3.3 Software Manual. Michigan Instruments, rev: 2021-01 edition,

2021.

[13] Juergen Hahn and Thomas F. Edgar. Process control systems. In Encyclopedia

of Physical Science and Technology, pages 111–126. Elsevier, 2003.

[14] H. Shibata and N. Mitsukawa. Comparison of robustness between adaptive con-

trol and PID control. In Proceedings of TENCON ’93. IEEE Region 10 Interna-

tional Conference on Computers, Communications and Automation. IEEE.

[15] J. Doyle. Robust and optimal control. In Proceedings of 35th IEEE Conference

on Decision and Control. IEEE.

[16] Learning-Based Adaptive Control. Elsevier, 2016.

42

[17] Ying Tan, Xiang Chen, Youying Hua, and Qingyuan Tan. Model-guided ex-

tremum seeking case studies. International Journal of Adaptive Control and

Signal Processing, 36(3):708–728, December 2021.

[18] Iso 80601-2-12:2020. International Organization for Standardization, 2021.

[19] Datasheet SFM3300. Sensirion, version 1.4 edition, March 2022.

[20] TruStabilityÂ® Board Mount Pressure Sensors: SSC Series. Honeywell, 1985

Douglas Drive NorthGolden Valley, MN 55422, October 2021.

[21] Series AP directly operated proportional valves. Camozzi Automation, May 2022.

[22] McMaster-Carr. Air Directional Control Valve 6124k402.

[23] McMaster-Carr. Compact Threaded Solenoid Diverting Valve 2565n15.

[24] Raspberry Pi 4 Computer Model B. Raspberry Pi Trading Ltd., January 2021.

[25] Adafruit HUZZAH32 ESP32 Feather Board.

[26] Use and Maintenance Manual: Series AP Directly Operated Proportional Valves.

Camozzi Automation.

[27] Kartik B. Ariyur and Miroslav Krsti&cacute. Real-Time Optimization by

Extremum-Seeking Control. Wiley-Interscience, 2003.

[28] Alexander Skafte. An Introduction to Extremum-Seeking Control. 2017.

[29] Miroslav Krstić and Hsin-Hsiung Wang. Stability of extremum seeking feedback

for general nonlinear dynamic systems. Automatica, 36(4):595–601, April 2000.

[30] RS485 Sensor Cable: Sensirion-HDLC Command Set. Sensirion The Sensor

Company, 7 edition, June 2018.

43

[31] Training & Test Lung Training & Test Lung Operation Manual. Michigan In-

struments, January 2021.

44

Chapter 3

MODEL-GUIDED EXTREMUM

SEEKING CONTROL FOR

MECHANICAL VENTILATORS

PART 2: NUMERICAL

IMPACTS OF GEOMETRY

CHANGES ON PERFORMANCE

3.1 Introduction

At the beginning of the COVID-19 pandemic, academia and industry came together

to support and create “open-source” ventilator designs. Publications stemming from

most of these projects contained little information on the ventilator control systems.

To address this gap, the current authors developed an model-guided extremum-

seeking control (MGESC) approach [1] and applied it to the Mechanical Ventilator

45

Milano (MVM) hardware design [2]. MGESC was used since Tan et al. [3] found

that for ESCs, the use of a model to provide an initial guess of the control input

significantly reduces convergence times, which is desirable for a medical device such

as a ventilator. In ref. [1], the model is purely based on the main proportional control

valve which controls the inspiratory flow rate; changes to the specifics of other com-

ponents may have little impact on performance since the flow is choked at the valve.

The aim of this paper is to assess the robustness of the MGESC scheme used in ref.

[1] to changes in hardware details. This is relevant due to the fact that components

sourced for the prototype ventilator in ref. [1] will not necessarily be available in the

future and/or in some geographic regions. Further, if the prototype design is imple-

mented into a medical-grade product, presumably the details of many components

would change and it is useful to know if the control scheme from ref. [1] would still

be applicable.

In this paper, we employ numerical simulations to explore the effect of changing

component details on ventilator performance. A 1-D flow network model is employed

to easily vary component details. The key finding is that the numerical model is

able to reproduce the experimental results with moderate accuracy. While investi-

gating various ventilator parameters it was discovered that the main piping diameter

throughout the ventilator and length of the piping in the expiratory section of the ven-

tilator are the only two geometric parameters that significantly affect the ventilator’s

performance.

The remainder of this paper is organized as follows. In Section 3.2, a brief review

of MGESC and the details of the control scheme used here, from ref. [1], is presented.

In Section 3.3, the details of the flow model as implemented in the Amesim code

by Siemens and is introduced. This is followed by assessment of the model against

experimental data in Section 3.4. The parameters varied to assess robustness are

then presented in Section 3.5. Finally, the results of the numerical investigation are

46

detailed in Section 3.6.

3.2 Model-Guided Extremum Seeking Control for

the MVM

ESC is a type of adaptive control in which the controller adjusts to changes in the

system without a need for a system model. ESC uses an objective function, that

is created as a function of the system’s measurements and user targets, where the

ESC will attempt to locate the global minima or maxima of said objective function.

The process of seeking this extremum point is typically slow; however, with the

introduction of a simple model, the ESC can locate the global extremum point faster

than without one [1] [3]. The real-time model-guided extremum seeking controller

design used in ref. [1] is to be created in the numerical model with the layout and

parameters as illustrated in Figure 3-1.

Integrator
ωs

ωcutoff
k

LPF

sin(ωt + φ)

Inspiratory
control valve

Volumetric
Flow Meter

|Q*- Qn|

+

+

Inspiratory control
valve model

Q*

Qn

amod ademod

Figure 3-1: Extremum seeking controller design

The simple ESC depicted takes measurements from the ventilator system, in real-

47

time, to create an objective function with an output of y. The objective function

output is then multiplied by the perturbation signal with an amplitude of ademod,

a frequency of ω, and a phase shift of φ. The product of the multiplication goes

through a low-pass filter (LPF) with a sampling frequency of ωs and a cutoff frequency

of ωcutoff . The outputted signal from the LPF then undergoes discrete integration

following the trapezoidal rule with an integration gain of k. Following integration,

the perturbation signal is added to the signal with a different amplitude of amod, and

a different phase shift of φ, with the sum going back into the system as the control

input.

The ESC scheme used in ref. [1] implements a model that is solely based on the

proportional valve in the inspiratory pathway of the ventilator to provide the ESC

with an initial guess for the control input. The same model is implemented for the

ESC scheme used in this study making it a model-guided extremum seeking control

(MGESC) scheme. The model uses a measurement of the supply pressure (psup) to

estimate the control input (θ̂∗) that would result in the target flow rate (Q∗) for

the given supply pressure using the valve’s characteristic defined in it’s specification

manual [4]. The equation for the model is:

θ̂∗ =
Q∗ − 33.896psup + 6.7395

−0.1105p2sup + 0.8058psup + 0.5309
+ 12. (3.1)

As shown, the model relies on empirical data for the proportional valve given in it’s

documentation; so, in the case that a proportional valve with different properties is

sourced, these values can easily be updated to reflect the new valve’s characteristic.

The same MGESC parameters are used in this study than the ones given in [1]. These

parameters being: amod = 0.0001, ademod = 0.01, k = 1, φ = 0°, ωcutoff = 0.4π rad/s,

and ωs = 40 Hz . Then the perturbation frequency ω is a function of the breaths per

48

minute (BPM) value such that:

ω =


2BPM BPM ≤ 14.

BPM BPM > 14.

3.3 Complete Model of the Ventilation System

To enable rapid exploration of controller robustness in the face of changes to the hard-

ware, a numerical model is employed. The numerical model uses a one-dimensional

compressible flow network implemented in the Siemens code Amesim version 2020.2

[5]. A test lung model and the control scheme are also implemented within the

Amesim model.

3.3.1 Ventilator Model

Using the Amesim pneumatic library, the ventilator’s air pathways are created. All

components take into consideration compressibility and frictional effects. The ven-

tilator design used in the Amesim model is the same as the physical design in ref.

[1], which the hardware design in that paper is based off of ref. [2]. The pneumatic

components of the Amesim model, which are the ventilator components, are displayed

in Figure 3-2, alongside the control signal components depicted in red.

Very few different pneumatic components were needed to create the ventilator

in Amesim as there are many repeat components. This was done to stay true to

the ventilator design in ref. [1], each individual physical component in the actual

ventilator was modelled as an individual, and sometimes more than one, component

in Amesim. A list of the ventilator components in the Amesim model is found in

Table 3-1 along with a part description, their Amesim part name, and the quantity

used in the model. A more detailed description of each individual component in the

Amesim model is available in Appendix B.

49

Air Supply

Flow
Meter

Lung Model

Atmosphere

Regulator Valve

Control
Valve

Regulator

Relief
Valve

Pressure
Source

Flow
Meter

Pressure
Sensor

Plug

Switch

CondiƟon

Control
Valve

Relief
Valve

Model-guided Extremum
Seeking Controller

Figure 3-2: Schematic of ventilator, lung, and control system model in AmeSim

50

Table 3-1: Amesim pneumatic components

Part No. Part description Amesim part name(s) Quantity

1 Pipe section PNPC0 7
PNPC1 2
PNPC2 9
PNPC4 3

2 Pipe elbow PNBP001 1
3 Pipe t-joint PN3P000 3

TPTE001 3
4 2-port proportional valve PNTV01 4
5 3-port proportional valve PNPV001 1
6 Pressure regulator PNPR12 2
7 Pressure relief valve PNRV00 2
8 Supply pressure PNCS001 1
9 Flow sensor PNQS02 2
10 Pressure sensor PNPS001 1
11 Lung model feedback PNVS001 1
12 Solenoid valve PNSV231 04 1
13 Atmosphere PNAS001 4
14 Plug PNPL01 1

It should be noted that all pneumatic components in Amesim take into considera-

tion both compressibility and frictional effects. For parts 1 and 3, the pipe section and

pipe t-joint, there are different Amesim part names for the components that refer to

the specific sub-model used for each individual section of pipe. Different sub-models

needed to be used depending on the sub-models of the surrounding components in

order for the model to properly compile in Amesim. The remainder of this section

focuses on the modeling details of the proportional valve (PV), control system, and

lung model within Amesim.

3.3.2 Proportional Valve

Available PV models in Amesim have either 1st or 2nd order responses. The measure-

ments discussed in ref. [1] showed that the valve response is complex, as depicted in

their open-loop test results displayed in Figure 3-3. It can be seen how the response

51

consists of an initial rapid rise to ∼ 70% of the final value, followed by a slow response

which eventually reaches a steady-state value. The experimental data is the ensemble

average of the flow rate across 30 breaths during inspiration; the standard deviation

across breaths is also shown to give a sense of the variability of the valve. Importantly,

it was shown in ref. [1] that this behavior is inherent to the valve dynamic response

and occurs in both open-loop and controlled tests.

To determine how best to model this behavior in Amesim, an analytical approx-

imation of the response is developed. The flow rate appears to have characteristics

of two first-order responses, one fast and one slow, that blend together at an aver-

age of 0.1285 seconds into the inspiration period, and with a standard deviation of

0.0002 seconds across all tests performed. Hereafter this transition is referred to as

the “kink.” Merging two such first order responses with the fraction of total rise and

kink time fixed leaves only a single degree of freedom, however, which was inadequate

to reproduce the experimentally-produced response. It was found that a combination

of two first order exponential decay functions before the kink and a different combina-

tion of two first order exponential decay functions after the kink matched the valve’s

flow rate behavior well. This combining of functions is written out in Equation 3.2

where t is time in seconds, τ1 is the slow time constant that stays the same before

and after the kink, and τ2 is the fast time constant that is different before and after

the kink.

fcombined =
(1− e

−t
τ1) + (1− e

−t
τ2)

2
(3.2)

To create the combined function seen in Figure 3-3: τ1 = 0.01 seconds, τ2,before =

0.4 seconds, τ2,after = 0.8 seconds, and a delay of 0.025 seconds is introduced at

the beginning of each inspiration cycle as that is the time lag associated with the

experimental results from ref. [1].

52

��� ��� ��� ��� ��� ���

��������������������

���

���

���

���

���

���

�
�
�
�
�
��
�
�
�
��
��
�
��
�
�
�

����������

�����������������������������

�����������������

������

Figure 3-3: Experimental valve behaviour

It is clear that the function is not a perfect match to the experimental results;

but, overall it captures the valve response accurately. The root-mean-squared (RMS)

error for the analytical model over the full 1 second of response is 0.0533 L/min.

To capture this behavior in Amesim, a system of four valves is used. Three of

the valves are used as the three unique first order responses, and the fourth valve is

used to merge the paths of the two slow time constant valves that switch at the kink

point. This is illustrated in Figure 3-4.

53

Supply Pressure

ProporƟonal
Valve, τ1

ProporƟonal
Valve, τ2,before

ProporƟonal
Valve, τ2,aŌer

Control Valve

- +

Figure 3-4: Schematic of proportional valve model implemented in Amesim

Referring to Table 3-1, the three 2-port valves represent the three different time

constants used, then the single 3-port valve acts as a switch which changes the flow

from the middle valve, to the right valve at the specified kink point at 0.1282 seconds

for all tests. The control signals for the left 2-port valve has a time constant of

0.01 seconds that receives flow for the entire duration after the 0.025 second delay

mentioned above. The middle valve receives a control signal from 0.025 to 0.125

seconds, and the right valve receives a signal from 0.125 to 1 second. The control

signals for the valves come from the ESC and the timing is controlled by a switch

and a square wave for each valve. The layout of this is more clearly shown in Figure

3-5, where the control signal components are explained.

3.3.3 Control System

The MGESC described in Section 3.2 is implemented in Amesim using elementary

control signal components. Using the signal output from the volumetric flow sensor at

54

Figure 3-5: Control signal Amesim components

the end of the inspiratory pathway (see Figure 3-2), the objective function is created

as the target flow rate is a user-supplied constant for a given test. The measure-

ments from the sensor are sampled every 25 ms, matching the sampling rate achieved

experimentally in ref. [1]. Figure 3-5 illustrates the control system implementation.

The dither signal is created using a single sinusoidal function block the phase

angle is constant for both demodulation and modulation, but the amplitudes are

different, so the signal is split into two with each section having its own gain a

and b. After demodulation, the product undergoes discrete integration using the

trapezoidal method, which is the same method used in ref. [1]. The control signal

55

after modulation is subtracted by a constant and then saturated to be within the

boundaries of 0 and 1 to correspond with 0% and 87.5% full scale (%FS), which are

the limitations on the control input explained in ref. [1]. The subtraction is done on

the control signal before the saturation, to keep the valve’s characteristic nature in

relation to the supply pressure is preserved in the model. This is because the valve

characteristic requires a minimum input before the valve opens, and this minimum

input is a function of supply pressure; the details can be found in ref. [1]. Both the

initial guess and the subtracted constant are a function of the supply pressure. After

saturation, the control input is then split up to go to all three of the valves. However,

each valve is only active during the inspiratory part of each breath cycle, and none

of the valves are active for the entire inspiration period. To control the timings of

the valves, a square-wave function is used in pairing with a switch for each valve’s

control signal as explained in Section 3.3.2.

3.3.4 Lung Model

To model the patient or test lung in Amesim, a simple piston-cylinder device with a

spring and damper is used with inspiration coming from [6]. The simple system is

depicted in Figure 3-6.

56

x+xdead

s c

Ai

Figure 3-6: Simplified lung model

In the illustration of the model, the lung’s volume (V ol) can be found using V ol =

Aix, whereAi is the piston interface area in units of [m2], x is the piston’s displacement

which represents the lung’s displacement in meters. It should be noted that in the

figure the piston’s displacement has a constant xdead added to it to represent the dead

volume of the lung. For testing this value is kept at 0 m. For the lung’s properties

in the model, the spring’s stiffness coefficient s represents the lung’s compliance in

units of [mL/hPa], and the dash-pot’s damper coefficient c represents the lung’s linear

resistance in units of [hPa/L/s]. From the application of Newton’s 2nd law to the

piston, an equation relating the gauge lung pressure in the lung (plung) to the lung’s

resistance and compliance is derived as cẋ+ sx = plungAi. Another equation relating

to the volumetric flow rate in and out of the lung, in terms of the lung displacement

x in meters, is derived as Aiẋ = Q.

To connect the lung model to the rest of the ventilator in Amesim, it is necessary

that the volumetric flow rate be an input to the system and the pressure in the lung

57

be an output of the system. For monitoring purposes, both the flow rate and volume

of the lung need to be outputs of the system as well. Using this information and the

two equations derived above, a one-state state-space representation (SSR) is created

that models the lung that has a state equation of:

ẋ = [0]x+

[
1

Ai

]
Q (3.3)

and an output equation of:


Q

V ol

plung

 =


0

Ai

s
Ai

x+


1

0

c
A2

i

Q. (3.4)

To integrate this lung model and state-space representation in Amesim, the output

of flow sensors are sampled every 0.025 seconds and feed into a discrete state-space

block. Only the plung output of the SSR is needed to feedback into the pneumatic

ventilator portion of the model such that the pressure increases during inspiration,

and decreases during expiration. How these components are combined is displayed in

Figure 3-7.

58

Figure 3-7: Lung model Amesim integration

3.4 Model Verification

The experiments in ref. [1] were carried out for seven standard tests from ISO

80601-2-12:2020(en), part 2-12, section 201.12.1.101 for testing a ventilator in volume-

controlled ventilation modes [7]. To determine the accuracy of the Amesim model,

the same seven ISO tests are simulated. In the ISO tests, the lung’s resistance and

compliance are varied, as well as the ventilator’s BPM, bypass airway pressure (BAP)

setting, and the target tidal volume. For all of the tests, the inspiration duration stays

constant at 1 second. To analyze the experimental and numerical results from the

ISO tests, both a quantitative and qualitative approach was taken. Quantitatively,

the average error of the tidal volume and PEEP values and their respective standard

deviations are compared. In Table 3-2, said comparison is performed by taking the

difference of the Amesim measurement to the ventilator measurement and dividing

59

the difference by ventilator measurement and displaying as a percentage.

Table 3-2: ISO test results

ISO Average Tidal Standard Deviation Average PEEP Standard Deviation

Test Error [%] of Tidal Error [%] Error [%] of PEEP Error [%]

1 -4.8 3.7 -26.4 2

2 -12.9 4.8 -4.7 0.1

3 -7.0 3.1 -23.9 3.1

4 -15.9 5.7 13.7 5.1

5 -18.3 7.0 -17.5 8.3

6 -19.6 6.6 -6.1 2.3

7 -27.8 4.8 0.5 5.2

Reviewing the tidal volume average error, it is clear that for all tests the Amesim

measurements are lower than the ventilator measurements. The largest average error

is seen in ISO test 7 at -28%, and the smallest error is seen in ISO test 1 at -5%.

ISO tests 1 and 3 have the smallest average errors, which these two tests exclusively

share the same lung resistance setting of 5 hPa/L/s. As the lung resistance setting

is increased, the average tidal volume error increases, with ISO test 6 and 7 having

the worst performance at a lung resistance setting of 50 hPa/L/s. With this trend in

mind, reviewing ISO test 2 and 6 with the other tests with the same lung resistance,

both tests have the lowest error in their respective lung resistance groups and these

two tests are the only tests with a BPM of 12. The difference in the tidal volume

calculations essentially stem from the average flow rate during inspiration for each

breath and by plotting the ensemble average of the flow rate during inspiration the

difference in the Amesim and ventilator results during the course of inspiration for

ISO test 2 and 7 is illustrated in Figure 3-8.

Reviewing the tidal volume errors, tests 1 through 4 perform significantly better

60

than tests 5 through 7, not only by having a lower average error, but by having a lower

standard deviation as well. In Figure 3-8, the ensemble inspiratory flow rate during

inspiration for ISO test two and seven are plotted to compare the results qualitatively.

It is clear that the Amesim model does not accurately capture the more rapid rise

time associated with the lower flow rate target.

��� ��� ��� ��� ��� ���

��������������������

�

�

��

��

��

��

��

�
��
�
��
�
��
��
�
��

��
�

�����������

��������

�������

�����������

����������

�����������

����������

Figure 3-8: Inspiratory glow rate ensembled average for ISO test 2 and 7

Only ISO tests 2 and 7 were shown because ISO test 2 has the least tidal volume

error out of the tests with a lung resistance setting of 20 hPa/L/s, and has the least

average PEEP calculation out of the test with a 30 L/min target flow rate. Test 7 was

shown as it has the largest tidal volume error and the least PEEP calculation error out

of the tests with a target flow rate of 18 L/min. Both in Figure 3-2 and Figure 3-8, it

is clear that the Amesim model does not accurately capture the more rapid rise time

associated with the lower flow rate target after the kink point. This occurs because

the slow valve’s time constant after the kink point is kept constant for all target flow

rates, with the values stated in Section 3.3.2. The physical valve in the experiment

demonstrates that the slow time constant after the kink point (τ2,after) is inversely

61

proportional to the targeted control input. Thus, to achieve better performance in

the Amesim model, τ2,after should be a function of the control input, and not constant

at 0.8 seconds.

For the difference in PEEP values between the experimental and numerical results,

there is one major problem that is due to the hardware used in the experiment. In

ref. [1], it is explained how the expiratory pressure release valve (EPRV) that controls

the baseline airway pressure (BAP) could not be set to a BAP of 5 hPa as it could

only go down to around 5.4 hPa intermittently. This means that the ISO tests with

a BAP setting of 5 hPa (ISO test 1, 3, and 5) will inherently have larger average

errors as the BAP setting is different from the numerical model to experiment. The

average PEEP error for the tests with a BAP of 10 hPa are low, with the largest error

being ISO test 4 14% with a standard deviation of 5%, and that of the four tests, two

have the Amesim calculations larger on average, and the other two have the Amesim

calculations smaller.

In summary, the Amesim model is most accurate for tests targeting the higher

flow rate of 30 L/min, a lower lung resistance setting, and with a BAP setting of 10

hPa. This leaves ISO test 2 with the with the greatest simulation accuracy out of

the 7 tests, so moving forward, ISO test 2 is used for assessment of the impact of

changing geometric system parameters.

3.5 Changing Parameters

In this section, physical ventilator parameters that are impractical to change in the

experimental setup are changed in the Amesim model. Each parameter is varied

individually, keeping all other parameters at their nominal values. There are ten

parameters considered that could change in the ventilators design: the length of

tubing in the branch off of the main inspiratory path (Lbranch), the diameter for the

62

majority of piping (D), the length of the expiratory path (Lexp), the length of the

main inspiratory path (Linsp), the length of tubing from the three-way solenoid valve

to the normally-open pneumatic valve that controls the flow in the expiratory path

(Ltubing), the relative roughness of the piping components (ϵ), the supply pressure

(psup), the time constant of the slow valve before the kink point (τ2,before), and the

time constant of the slow valve after the kink point (τ2,after).

Each parameter was chosen as they could change if different components are used

in the ventilator, but after initial investigation it was determined that most of the

parameters will not have a significant affect on performance. These parameters are:

Linsp, Lbranch, Ltubing, and ϵ. The reasoning for Linsp, and Lbranch is that in the

inspiratory pathway, flow is controlled by the proportional valve which has a time

constant of 0.01 seconds [4] and it is known that the flow after the valve will always

be choked, incompressible, and laminar in practice. The pressure ratio across the

inspiratory pressure valve will be 0.0228, from the upstream pressure supply at 50

psi and the maximum pressure allowed in the lung being 1.14 psi, so the flow will

be choked since the critical pressure ratio for air is 0.528. To ensure that the flow is

laminar in this section the Reynolds number can be calculated from

Re =
ρD(4Q

πD2)

µ
. (3.5)

Using the properties for ideal air at 20°C, the density (ρ) can be estimate as 1.204

kg/m3, and the dynamic viscosity (µ) can be estimated as 1.825 × 10−5 kg/m-s.

Taking the nominal piping diameter (D) for this section used as 0.01905 m (0.75

in), and the maximum flow rate in the section (Q) to be 0.0005 m3/s (30 L/min),

the Reynolds number can be estimated as 2205 which puts the flow in the laminar

regime. For Ltubing, the flow will be incompressible through this section. The control

valve NOV has a time constant of 0.01 seconds, and operates with a 248 kPa pressure

63

difference from full to empty; so, assuming the local speed of sound of the air as 343

m/s, the length of this section would need to be 1.72 meters for a pressure wave to

travel the length of the tube and bounce back. Finally, the relative roughness of the

internal surface of the main piping in the ventilator will not matter, as the flow will

be in the laminar regime and thus the friction loss in the piping is not a function of

roughness.

The remaining parameters should have some significant effect on the ventilator’s

performance due to their definition, location, and operating conditions. Lexp does not

have the same behavior as the inspiratory path because it operates at a significantly

smaller pressure difference. The pressure difference between the inflated lung and the

BAP setting is never larger than 1 psi meaning the flow across the expiratory control

valve will not be choked. So, changing the length of the expiratory pathway while

the diameter and pressure difference remains constant will: reduce the energy loss

of the air as it flows through the pipe, increase the initial velocity throughout the

section, and thus lower the residence time of the air. Then by changing the diameter

of the piping in both the inspiratory and expiratory paths will change the Reynolds

number, and increase the velocity of the fluid through the pipes as the flow rate is held

constant during inspiration. Due to the proportional valve’s characteristic, varying

the supply pressure will change the control input that results in the target flow rate,

and thus the system may take longer or shorter to reach the target flow rate based on

how good the model’s initial guess is in Equation 3.1. Note that the minimum supply

pressure tested of 4 bar is still sufficient enough to maintain choked flow through the

inspiratory pathway. Lastly the slow time constant τ2 will evidently have an affect

on the valve’s transient behavior during inspiration. When τ2,before is increased, the

maximum flow rate that is reached before the kink point should decrease. Then by

is increasing τ2,after, the time it takes to settle on the target flow rate will increase.

The range of values tested for each significant parameter is listed in Table 3-3. For

64

each parameter, the nominal value is defined to be the value used in the experimental

setup defined in ref. [1] and is the value used in the model verification in Section 3.4.

Table 3-3: Test matrix

Run 4

Parameter Unit Run 1 Run 2 Run 3 (nominal Run 5 Run 6 Run 7

value)

D [cm] 0.3175 0.635 1.27 1.905 2.54 2.8575 3.81

Lexp [cm] 25 50 75 107 125 150 175

psup [bara] 4 4.2 4.4 4.5 4.6 4.8 5

τ2,before [s] 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τ2,after [s] 0.5 0.6 0.7 0.8 0.9 1 1.1

The limits of the range of values for each parameter were chosen as practical

limits for each component. For the expiratory path length, Lexp, the minimum and

maximum values were set to be extreme conditions where the path is unrealistically

long or short. For the piping diameters (D), each value corresponds to NPT piping

sizes that could be purchased from the typical hardware store or generic supplier. The

minimum and maximum values of this range were set for practicality as one should

be able to source components between this large range from 0.3175 to 3.81 cm. For

the supply pressure range, it was said that a hospital’s air supply typically fluctuates

by ±0.345 bar, so the minimum and maximum ranges tested are ±0.5 bar. Finally,

the ranges for the slow time constant τ2 were set by incrementally increasing and

decreasing by 0.1 seconds from the nominal value.

65

3.6 Results and Discussion

In this section, the results presented focus on the parameters that are predicted to

have a significant effect on the ventilator’s performance as discussed in Section 3.5.

All of the parameters that were not expected to not affect the ventilator’s performance

were verified to have their range of values not change the results in practice.

For the diameter of the piping sections, it was found that the change in flow

rate during inspiration was insignificant (as expected); however, the peak inspiratory

pressure was increased as the diameter was decreased, and the PEEP increased as the

diameter was decreased. In Figure 3-9, the average peak inspiratory pressure (PIP)

and average PEEP across all breaths against the varying diameter is plotted on a

dual-y axis.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Diameter [cm]

14.9

15.0

15.1

15.2

Av
er

ag
e

Pe
ak

 In
sp

ira
to

ry
 P

re
ss

ur
e

[h
Pa

]

9.45

9.50

9.55

9.60

9.65

9.70

Av
er

ag
e

PE
EP

 [h
Pa

]

Figure 3-9: Diameter changed pressure waveform

Immediately it is seen that both the average peak pressure and average PEEP

share a similar relationship with the piping diameter. The PEEP and average pressure

increase at a slow linear pace until a diameter of less than 0.6 cm is achieved in which

the slope is increased. In the inspiratory section the friction loss can be defined using

66

the Darcy-Weisbach equation for head loss:

∆p

L
=

8fDρQ
2

π2D5
. (3.6)

Where ∆p
L

is the pressure loss per unit length in [Pa/m], ρ is the density of the fluid in

[kg/m3], Q is the volumetric flow rate of the fluid in [m3/s], fD is the Darcy friction

factor, and D is the diameter of the piping in [m]. The Darcy friction factor depends

on the Reynolds number of the flow and since the diameter is changing, the flow

regime also changes. Using 64 over the Reynolds number for laminar flows, and the

Moody Diagram for transitional and turbulent flows, in Table 3-4, the flow regime

and friction factor for each diameter is listed.

Table 3-4: Darcy friction factor for each piping diameter

Diameter [cm] Flow regime fD

0.3175 Turbulent 0.029

0.635 Turbulent 0.036

1.27 Transitional 0.019

1.905 Laminar 0.029

2.54 Laminar 0.039

2.8575 Laminar 0.044

3.815 Laminar 0.058

While the flow is laminar, the friction factor decreases with diameter until the

flow starts to transition from laminar to turbulent. As this transition occurs the

friction factor increases by a factor of 1.9. As the diameter is further decreased,

the flow becomes completely turbulent and the friction factor again decreases. Now,

this trend is not seen in any of the results and does not follow the trend shown in

Figure 3-9 meaning that the friction factor in the pipes has an insignificant affect

67

on the ventilator’s performance. Knowing that the changes in fD are insignificant,

we can look back to Equation 3.6 and know that the diameter is the only other

variable that changes in the inspiratory path and that as the diameter is decreased,

the frictional losses increase and scale with 1/D5. This results in the total pressure in

the inspiratory piping to increase and the velocity through the inspiratory section to

increase. Both the pressure loss from after the valve to the patient, and the velocity

of the fluid within this section scales with 1/D2. So, because the total pressure at the

inspiratory line inlet, after the valve, is increased, the outlet pressure into the lung will

increase as well. Thus, resulting in the average PIP to be increasing as the diameter

is decreased. The PEEP follows the same trend as the PIP to keep the pressure

difference across the expiratory pathway constant at around 5.5 hPa. Even with the

increase in slope in Figure 3-9, the average PIP only increases by 0.3 hPa which will

be insignificant to the patient, and the PEEP actually increases to be closer to the

BAP setting. Thus, changing the diameter does not have a significant affect on the

pressure measurements during ventilation. To understand the effect of changing the

PIP and PEEP has on the performance during expiration, the ensemble average of

the flow rate during expiration is plotted for the smallest and largest diameter tested,

shown in Figure 3-10.

68

��� ��� ��� ��� ��� ��� ��� ��� ���

��������

��

��

�

��

�
��
�
��
�
��
��
�
��

��
�

�������������

�����������

���������

�������

Figure 3-10: Diameter changed expiratory flow rate ensemble average

In the figure, it was found that for all the tests except for the smallest diameter,

the curves were essentially identical which coincides with the results in Figure 3-9 how

the slope stays the same and then increases at the smallest diameter. The reason a

similar trend occurs in the flow rate during expiration is because in the previous

paragraph it is explained how decreasing the diameter but keeping the same pressure

difference across the section will result in an increase in velocity in the pipes due to

the increase in frictional losses. Then it is this increase in frictional losses as the

diameter decreases that causes the expiratory flow rates to be smaller for the smallest

diameter case as this scales approximately with 1/D5, as previously mentioned.

Next we focus on the other geometric parameter which impacts performance, the

length of the expiratory path. During expiration, it was found that when the length

reached a certain minimum threshold of less than 50 cm, pressure fluctuations, and

in turn flow rate fluctuations, start to occur. This phenomenon is illustrated in Fig-

ure 3-11 where the ensemble average of flow rate during the expiration period for

the smallest length of 25 cm, shows large oscillations at the beginning of expira-

69

tion and then smaller oscillations towards the end. The physical mechanism behind

this behaviour is suspected to be the pressure waves within the tubing section. Ap-

proximating the local speed of sound of the air as 343 m/s, when the length of the

expiratory section is 50 cm, the round-trip travel time of the pressure wave originating

from the lung is 0.0015 seconds, and when the length is 25 cm, the round-trip travel

time is 0.00073 seconds. Since the NOV has a time constant of 0.01 seconds, this

explains why all of the tests have this initial oscillation from the air filling the entire

volume after the valve completely opens. By decreasing the length of the section, it

decreases the length the pressure wave has to travel, and thus its round-trip travel

time, which appears to increase the magnitude and duration of the initial oscillation.

The oscillations begin to occur again in the flow rate measurement 1.5 seconds into ex-

piration which are also presumably caused by the acoustic resonances of the pressure

waves within the expiratory section. To further understand why they occur a more

detailed acoustic analysis needs to be performed at this minimum length; however,

that is outside the scope of this work. For our purposes, it is known that undesirable

fluctuations in the volumetric flow rate occur once the length of the expiratory section

is decreased to less than 50 cm. A length which is unrealistic in a practical setting as

the expiratory length includes all piping components from the patient’s mask to the

expiratory pressure relief valve which will almost always be greater than 50 cm, as in

our case it is 107 cm where 70 cm of that length is the generic hospital tubing from

the patient’s mask to the ventilator.

70

��� ��� ��� ��� ��� ��� ��� ��� ���

��������

��

��

��

��

��

�

��

��

�
��
�
��
�
��
��
�
��

��
�

���������

����������

����������

�����

������

������

Figure 3-11: eLength expiratory flow rate ensemble average

Plotting the ensemble average of the flow rate during expiration also demonstrates

that as the length of the expiratory section is increased, the peak expiratory flow rate

is decreased. This coheres with the understanding of incompressible un-choked flow

through a pipe. When the expiratory control valve is first opened, since the flow is

incompressible, the pressure difference between the lung and the expiratory pressure

release valve is at its maximum. Thus, when it first opens the velocity of the flow is

at its maximum and with a shorter length, the flow has to travel less thus resulting

in a higher peak flow rate.

Moving onto the non-geometric parameters that impacted the ventilator’s perfor-

mance, the changing of the supply pressure significantly affected the flow rate during

inspiration, indicating that the model for the valve flow rate vs. open fraction was

not being correctly adjusted for the supply pressure. Using the ensemble average of

flow rates during inspiration in Figure 3-12, it is seen how as the supply pressure is

increased above nominal, the flow rate is consistently increased.

71

��� ��� ��� ��� ��� ���

��������

�

�

��

��

��

��

��

��

�
��
�
��
�
��
��
�
��

��
�

�������

�����������

�������

�����������

�����

���������

Figure 3-12: Supply pressure changed inspiratory flow rate ensemble average

The shaded regions in the figure shows the standard deviation of the ensemble

average at that moment in time during inspiration, which are all large, for the three

tests illustrated. Note that the smallest supply pressure tested, as listed in Table

3-3, of 4 bar is not included as the target volumetric flow rate of 30 L/min could not

be achieved with a control input less than or equal to the maximum control input

of 87.5%FS. Thus, the lowest supply pressure tested that yielded usable results was

4.2 bar. For the range of pressure supply from 4.2 to 5 bar, it is illustrated how the

MGESC does it’s job by converging the flow rate to the target because all of the

standard deviation ranges include the target flow rate. When the tidal volume for

each breath is plotted for the same three tests, shown in Figure 3-13, it supports this

result as the tidal volumes converge for all the tests converge as more breaths are

simulated.

72

� �� �� �� �� ��

�������������

���

���

���

���

���

���

���

���

���

�
��
�
��
�
�
��
�
�
��
�
�
�

�������

�������

�����

Figure 3-13: Supply pressure changed tidal volumes

This behavior is desirable as it shows the control scheme’s ability to eventually

converge onto the same results despite large changes in supply pressure from nominal.

However, this really only proves that the ESC is working correctly, not the model

that provides the initial guess. When the average control input during inspiration

per breath is plotted for the same three tests, it becomes clear that the model is not

adequately adapting to changing supply pressure. This is illustrated in Figure 3-14,

with the y-axis error bars being the standard deviation of the average control input

during inspiration for each breath.

73

� � �� �� �� �� �� �� ��

�������������

����

����

����

����

����
�
�
�
��
�
��
��
�
�
��
��

��
�

�������

�������

�����

Figure 3-14: Supply pressure changed average control input

In the figure it is clear that the model that provides the initial control input guess

to the ESC is not sensitive enough to the supply pressure, as it is seen to vary a little

– but not enough. The ESC is working as lower the supply pressure evidently results

in a larger control input needed as shown by the points diverging after 20 breaths.

The last two non-geometric parameters that affected the ventilators performance

were the slow time constant before and after the kink point, τ2,before and τ2,after. Both

parameters significantly changed the behaviour of the flow rate during inspiration;

however, both parameters did not have a significant impact on the tidal volume.

Graphing the ensemble average of the flow rate during inspiration for τ2,before in

Figure 3-15, it is clear only one thing changes.

Investigating the change of the slow valve’s time constant before the kink drasti-

cally changed the behavior of the flow rate before the kink point during inspiration.

Figure 3-15 shows the ensembled average of the flow rate during inspiration and it

74

is evident that as the time constant is decreased, the peak flow rate before the kink

point is increased.

��� ��� ��� ��� ��� ���

��������

�

�

��

��

��

��

��
�
��
�
��
�
��
��
�
��

��
�

�����

���������

�����

���������

�����

���������

Figure 3-15: τ2,before changed inspiratory flow rate ensemble average

The one thing that changes is the peak flow rate before the kink point which

intuitively increases as the time constant decreases. Due to how the proportional

valve is modelled in Amesim, the flow rate at the kink point remains unchanged.

This increase in peak flow rate does increase the tidal volume per breath; however,

the increase is small and insignificant. Similarly for τ2,after, Figure 3-16 is created in

the same manner as Figure 3-15.

75

��� ��� ��� ��� ��� ���

��������

�

�

��

��

��

��

��

�
��
�
��
�
��
��
�
��

��
�

�����

���������

�����

���������

�����

���������

Figure 3-16: τ2,after changed inspiratory flow rate ensemble average

From the figure it is clear that τ2,after had a large impact on the flow rate during

inspiration after the kink, and a small impact before the kink point. As expected,

when the time constant is decreased, the flow after the kink point is increased. But, it

is also shown how as the time constant is decreased, the peak flow rate before the kink

slightly decreases and the flow rate at the kink point is decreased. Now, the change

in flow rates appear to be larger for τ2,after compared to τ2,before; but, to demonstrate

this the average tidal volume as a function of the time constants are shown in Figure

3-17.

76

��� ��� ��� ��� ���

�����������������

���

���

���

���

���

���

�
��
�
��
�
�
��
�
�
��
�
�
�

�����������

����������

Figure 3-17: τ2,before and τ2,after affect on average tidal volume

For τ2,before, the difference in tidal volume for the smallest and largest time con-

stant is roughly 14 mL; and for τ2,after, the largest difference being roughly 27mL.

This results in the time constant after the kink point having twice as large of an af-

fect on the average tidal volume achieved than for the time constant before the kink

point. The inspiration duration is constant at 1 second; so, this result is likely due to

the time after the kink point being significantly longer than the time before the kink

point. Overall, these conclusions imply that for better performance the valve should

have the fastest, or smallest, time constant both before and after the kink point.

The other parameters listed in Section 3.5 that were said to not affect the ventila-

tors performance, as their value is varied, were also tested using Amesim as to verify

our initial claim. The results from the simulations confirmed that varying their value

did not affect the ventilators performance.

77

3.7 Conclusion

Using the proposed ventilator design and model-guided extremum seeking controller

design from ref. [1], a numerical model of the system was created. For the numerical

model we employed a a 1-D flow network model in Amesim to explore the effect of

changing component details on ventilator performance. The entire Amesim model

included the ventilator, control system, and a model of a patient’s lung such that any

parameter could be investigated within the system. Using 7 ISO standard tests the

Amesim model results were compared to the experimental results given in ref. [1].

It was determined that an increase in error between the numerical and experimental

tidal volume calculations when the lung’s resistance setting is increased and when the

target tidal volume is decreased. Also that the Amesim model does not accurately

capture the more rapid rise time associated with the lower flow rate target because

τ2’s value before and after the kink point are kept constant although their behavior

suggests they are a function of the target volumetric flow rate. Thus, to achieve

better performance τ2,before and τ2,after should be a function of the target flow rate.

In ref. [1], it is stated that the EPRV that controls the BAP could only go as low as

5.4 hPa; but, the EPRV in the numerical model follows the ISO test BAP setting of

5 hPa. This resulting in the difference in PEEP calculations between the numerical

and experimental results for ISO tests 1, 3, and 5, to be abnormally large. Overall, it

was determined that ISO test 2 had the greatest simulation accuracy out of the seven

tests; so, only settings listed in ISO test 2 were used while varying the ventilator’s

parameters. Out of all of the parameters investigated, only two geometric parameters

had an effect on the ventilator’s performance: D, and Lexp. A decrease in D resulted

in a slight increase in the average peak inspiratory pressure, PEEP, and expiratory

flow rate, until a large increase was seen in these values for the smallest diameter

tested of 0.3175 cm. This sudden increase is a result of the cross-sectional area being

proportional to the square of the piping diameter. During expiration, it was found

78

that when Lexp reached a minimum threshold of 25 cm, pressure fluctuations, and in

turn flow rate fluctuations, start to occur. For the non-geometric parameters, varying

the supply pressure demonstrated that the ESC works; but, it made it clear that the

model that provides the initial control input guess to the ESC is not sensitive enough

to the supply pressure. By varying the slow time constant of the proportional valve

before and after the kink, τ2,before and τ2,after, it was determined that by decreasing

either time constant, the average tidal volume across all breaths would increase. More

specifically, the difference in tidal volume for the smallest and largest time constant

tested for τ2,before was roughly 14 mL, and for τ2,after it was determined to be roughly

27 mL. Deeming τ2,after twice as significant as τ2,before on the ventilator’s performance.

For all of the parameters investigated, the ESC scheme was effective at converging

to the target flow rate during inspiration. A major design flaw in the numerical

model was that the slow time constant associated with the proportional valve in the

inspiratory path before and after the kink point τ2,before and τ2,after were kept constant

when they need to be a function of the target volumetric flow rate. Besides this design

error and the faulty EPRV, the numerical model was able to achieve tidal volumes

within 16% difference and PEEP values within 14%.

79

3.8 Bibliography

[1] R. Wardell, P. Saini, and J. Defoe. Model-guided extremum seeking control for

mechanical ventilators part 1: Measured performance. TBD, 2023.

[2] A. Abba et al. The novel mechanical ventilator milano for the COVID-19 pan-

demic. Physics of Fluids, 33(3):037122, mar 2021.

[3] Ying Tan, Xiang Chen, Youying Hua, and Qingyuan Tan. Model-guided ex-

tremum seeking case studies. International Journal of Adaptive Control and Signal

Processing, 36(3):708–728, dec 2021.

[4] Use and Maintenance Manual: Series AP Directly Operated Proportional Valves.

Camozzi Automation.

[5] Siemens. Siemens Simcenter Amesim 2020.2, 2020.

[6] Sunder Neelakantan, Yi Xin, Donald P. Gaver, Maurizio Cereda, Rahim Rizi,

Bradford J. Smith, and Reza Avazmohammadi. Computational lung modelling in

respiratory medicine. Journal of The Royal Society Interface, 19(191), jun 2022.

[7] Iso 80601-2-12:2020. International Organization for Standardization, 2021.

80

Chapter 4

SUMMARY, CONTRIBUTIONS,

AND FUTURE WORK

In this thesis, a model-guided extremum seeking control scheme is created for a me-

chanical ventilator with the intent of the control scheme’s performance not being

significantly affected by changes in patient parameters as well as major changes in

the ventilator’s design. In this chapter, the two works shown in this thesis are out-

lined with a description of how they relate to one another. Subsequently, the key

contributions and recommendations for future work are discussed.

4.1 Summary

The testing of model-guided extremum seeking controllers on various applications has

been sparsely investigated, and the use of adaptive control techniques for mechanical

ventilators has been studied by many. The combination of these two fields has not

been investigated. This clear gap in literature, as well as its practical uses, are the

motivation behind the current work. Due to its possible benefits, a model-guided

extremum seeking controller was created, that requires minimal knowledge on the

ventilator’s design, to be able to adapt to large patient variations as well as variations

81

in the design of the mechanical ventilator.

In Chapter 2, it was found that ISO test 7 had a 34% difference in it tidal volume

calculation between the ventilator and lung measurement, and ISO test 3 had a 17.3%

difference in the PEEP calculation. But, by removing these two tests from the results

leads to the tidal volume calculations being within 21% and the PEEP calculations

being within 13%. The introduction of a model to provide the ESC with an initial

control input reduced convergence time by a minimum of 29 breaths, and this result

was achieved even though it was determined that the model used consistently under-

predicts the control input needed to achieve the target volumetric flow rate. The

settling time for the flow rate during inspiration was unaffected by the type of control

used, and that the settling time was a function of the control input. But, most

importantly, the MGESC was able to converge upon the specified target inspiratory

volumetric flow rate for all tests; and it was determined that a standard deviation

in tidal volume measurement of 7.7% of the intended tidal volume was the average

contribution from varying the patient parameters. Solidifying that the control scheme

is able to perform, and is robust, across the range of patient parameters defined by

the ISO standard.

In Chapter 3, it was determined that an increase in error between the numerical

and experimental tidal volume calculations occurred when the lung’s resistance setting

is increased and when the target tidal volume is decreased. A part of the reason for

this was because the Amesim model does not accurately capture the more rapid

rise time associated with the lower flow rate target because the modelling of the

proportional valve is kept constant although it’s behavior suggests that it is function

of the target volumetric flow rate. From Chapter 2, it is known that the experimental

expiratory pressure release valve that controls the baseline airway pressure could

only go as low as 5.4 hPa; but, the valve in the numerical model follows the ISO

test BAP setting of 5 hPa, resulting in the error in PEEP calculations between the

82

experimental and numerical results being inflated for tests with a BAP of 5 hPa.

Without these sources of error, the numerical model was able to achieve tidal volumes

within 16% difference and PEEP values within 14% of the experimental results. Out

of the ISO tests performed, ISO test 2 had the best performance so its parameters

were used for testing the varying ventilator parameters in the model. Out of the

geometric parameters investigated only two were found to have a significant affect

on the ventilator’s performance: the main diameter of piping, and the length of the

expiratory piping section. Now, the MGESC was able to adapt to all of the ranges

of parameters tested and was always able to converge upon the target flow rate.

However, undesirable fluctuations in measurements occurred when the diameter of

piping was less than 0.635 cm, or when the length of the expiratory section was less

than 50 cm. Similar to the results in Chapter 2, it was determined that the model

that provides the initial control input guess to the ESC is not sensitive enough to

changes in the supply pressure.

These works both relate to each other by demonstrating the performance of the

proposed model-guided extremum seeking control scheme. Chapter 2 shows the con-

trol scheme’s performance on a physical experimental setup with changing lung pa-

rameters. Then, Chapter 3 uses a numerical model of the experimental setup to test

the control scheme’s performance by varying different parameters within the ventila-

tor’s design. Together these two works clearly demonstrate the suitability of the use

of a model-guided extremum seeking controller for a mechanical ventilator operating

in volume-controlled ventilation modes.

4.2 Contributions

This thesis makes several contributions. An open-source ventilator hardware and soft-

ware design is created using all commercially available components and open-source

83

software. The ventilator hardware measurements were tested against the measure-

ments from a test lung apparatus to demonstrate the accuracy of the sensors in

Chapter 2. An open-source numerical model of the open-source ventilator design

is created using a common industrial software in Chapter 3. Within the numerical

model it is explained how to represent the behaviour the proportional valve in the

open-source ventilator design, and how to model a lung using a simple state-space

representation. A model-guided extremum seeking controller was created using only

the volumetric flow rate measurement, and the model used for the controller is spe-

cific to the main inflow controlling proportional valve. The robustness of the MGESC

scheme to patient variation is tested experimentally, in Chapter 2, using the open-

source ventilator design and by following the proper ISO standard procedures. The

robustness of the MGESC scheme to changes in the ventilators geometry is tested, in

Chapter 3, using a 1-D flow network model to perform the numerical simulations. In

both the experimental results and numerical simulations, it is shown that the MGESC

scheme performs throughout all of the variations in patient and ventilator geometry.

This proves that a MGESC is a viable choice for mechanical ventilators operating in

volume-controlled ventilation modes.

Most importantly, the works in this thesis introduce extremum seeking control

techniques to the application of mechanical ventilators. The MGESC, open-source

ventilator design, and 1-D flow network model created in this thesis could be improved

upon and used as a starting point to conduct further research involving extremum

seeking controllers for use on mechanical ventilators.

4.3 Future Recommendations

This section contains recommendations for future work that would significantly im-

prove both the ventilator and model-guided extremum seeking controllers performance

84

based on the observations made in this thesis. To improve the ventilator’s results,

the pressure measurements from the patient’s mask need better filtering as there is

significant noise which led to large inaccuracies in PEEP calculations. A new EPRV

valve should be sourced that is capable of reaching 5 hPa, and the ventilator should

be more thoroughly investigated for leakage as it was quite significant.

To improve the MGESC, the model needs to be tuned to be more accurate, and

to be more sensitive to changes in the supply pressure. Furthermore, the objective

function for the ESC should be created by using the projected tidal volume during

inspiration and comparing it to the target tidal volume so that the ventilator can

better achieve the target tidal volumes.

85

Appendices

86

Appendix A

Ventilator Hardware

Only a high-level description and illustration of the hardware of the ventilator was

given in the main body as that is all that is needed for the purpose of the paper as

more focus is on the design of the control scheme for the ventilator. However, it is

still important that the detailed information on the ventilator’s hardware is included

to make all resources open-source for this project. A more in depth image of the

ventilator layout is given in Figure A-1 below, which shows all of the individual

piping components between the major components of the ventilator.

87

9

27

1 11 25 11 21 14

16 2

2

22

3

4 5 6 5 6

5 5

7 12 19

13 13

8 8

24 20

8

8

13

7

11

23 10 15

3

13

8

18

26

26 Test Lung

Supply Pressure

Figure A-1: Ventilator component layout

The entire ventilator was built in-house and instructions on how to assemble the

ventilator from start to finish as well as the full bill of materials are included in the

sections below.

A.1 Assembly Instructions

1) Using the detailed ventilator layout in Figure A-1, layout all of the hardware

components in the correct orientation and sequence.

2) Using the pipe joint tape, wrap the male threads of all of the pipe components

then apply a small amount of the pipe joint compound on top of the tape.

3) Make all of the male to female pipe connections in which you prepped the male

88

end in step 2.

4) For the connections between part 8 and 13, which there are 4 of them, the 3/4

NPTF X 1/4 NPTF fitting must be drilled out on the 1/4 NPTF side. The threads

must be drilled out to allow for the 15mm side of part 8 to fit snugly in. Drill the

pieces out and attach them permanently with an epoxy sealant that works with both

metal and plastic. Let sit before installation following the chosen epoxy’s instructions.

5) For the pressure transducer upstream of the proportional valve, a pressure tap

is needed in part 2 directly upstream of the proportional valve. The outer diameter of

the tubulation is 1.59mm and the tubulation must sit flush with the internal diameter

of the part. Drill the hole, place the tubulation flush with the ID, seal the tubulation

with epoxy. Allow for the epoxy to set before pressurization.

6) Connect the remaining ventilator components together.

7) Following the wiring diagram in Figure A-2 below, make all of the necessary

connections with caution. Note that breadboard’s were used in assistance to assembly.

8) With all of the connections in place, set up the Raspberry Pi and install all of

the necessary programs.

9) Using the Arduino IDE and the ESP32 code provided in A.3.2, flash the Huz-

zah32 with the new program.

10) In the command console, the python script, in A.3.1, will now be able to be

executed.

89

24V 5A Power
Supply

+

-
Solenoid

Valve

- +

Raspberry Pi 4 8GB B+

Ground Pin GPIO 11

USB_1

USB_2 Power
15W 5V USB

Type C Charger

SFM 3300-AW Digital
Spirometer

Huzzah32

GPIO 12 GPIO 32 GPIO 33

USB_ DAC 25

ProporƟonal
Valve

ProporƟonal Valve Control
Board

Ground Power Current Control

+ out - out

Crydom Solid
State Relay

+1 2

+3 4

3000 Ω

1000 Ω

Voltage
Regulator

- +

+ -

3000 Ω

1000 Ω

3000 Ω

2000 Ω

Mask Pressure
Transducer

Ground Power

Output

Supply Pressure
Transducer

Ground Power

Output

Ground

Figure A-2: Ventilator wiring diagram

A.2 Bill of Materials

The ventilator built consists of mainly of commercial-off-the-shelf components. Five

pieces needed to undergo minor modifications in order for the ventilator to be com-

pletely assembled and reading to start testing. Four of the pieces are a piece of piping

where the internal threads were drilled out so that a piece of plastic mating tubing

could connect the metal parts of the ventilator with the plastic parts. The fifth piece

that was altered was the metal connection pipe directly upstream of the proportional

valve. A tiny hole was drilled in this piece for the pressure tap to be glued into place,

flush with the internal diameter of the pipe. In Table A-1 below, all of the compo-

nents used in the ventilator as well as components used in the manufacturing process

90

are included.

Table A-1: Ventilator Bill of Materials (BOM)

Part

No.

Item Name Quantity Vendor Part

No.

Vendor Cost/

1 Item

1 Right-Angle Tee

Adapter 1/4 NPTF

x 1/4 NPTM

1 48805K571 McMaster-

Carr

37.45

2 Adapter, 1/8 BSPP

MX 1/4 NPT F, SST

2 4822T337 McMaster-

Carr

39.81

3 Fitting, 3/4 NPTM

X 1/4 NPTM, SST

2 48805K828 McMaster-

Carr

16.83

4 Elbow, 3/4 NPTF X

3/4 NPTF, SST

1 4452K415 McMaster-

Carr

12.80

5 Fitting, 3/4 NPTM

X 3/4 NPTM X 3 in

Long

4 4830K195 McMaster-

Carr

5.82

6 T-Junction, 3/4

NPTF X 3/4 NPTF

X 3/4 NPTF

2 4464K52 McMaster-

Carr

15.80

7 Bushing, 3/4 NPTM

X 1/4 NPTF

2 4452K168 McMaster-

Carr

6.62

8 ISO 5356 Equal

M22/F15 - M22/F15

5 CA001824 Medical

e-Shop

0.4

91

9 Tubing, 22mm OD,

15mm IDX 40mm

Long, Blue

1 N/A Medical

e-Shop

1.35

10 Cap, 1/4 NPTM 1 5232T229 McMaster-

Carr

7.13

11 Fitting, 1/4 NPTM

X 1/4 NPTM

3 4830K132 McMaster-

Carr

3.00

12 Fitting, 1/8 NPTM

X 1/4 NPTM

1 48805K86 McMaster-

Carr

9.99

13 Fitting, 3/4 NPTF X

1/4 NPTF

4 48805K816 McMaster-

Carr

27.07

14 Swivel Adapter, 1/4

Barbed ID X 1/4

NPTM

1 91465K91 McMaster-

Carr

9.32

15 Swivel Adapter, 1/4

Barbed ID X 1/8

NPTM

1 91465K11 McMaster-

Carr

15.66

16 Tubing, 1/4 ID 1 52375K12 McMaster-

Carr

7.90

17 Silicone Tubing 1/8

ID x 3/16 OD 16ft

1 N/A Amazon 8.49

18 PEEP Valve 1 00-118 Medical

e-Shop

7.88

19 Airway Pressure

Limiting Valve

1 99045K11 McMaster-

Carr

36.88

92

20 Negative Pressure

Relief Valve

1 00-1800 Medical

e-Shop

1.04

21 Solenoid Valve 1 2565N15 McMaster-

Carr

133.15

22 Proportional Valve 1 AP-7211-

QW2-U711-

OX2

Cowper Inc. 190.24

23 Pneumatically Actu-

ated Valve

1 6124K401 McMaster-

Carr

76.11

24 Flow Meter 1 SFM3300-AW Mouser 263.37

Mask Pressure

Transducer

1 SSCDRRN

001PDAA5

Digikey 95.86

Supply Pressure

Transducer

1 SSCDANN

100PAAA5

Mouser 56.39

25 Pressure Regulator 1 6763K13 McMaster-

Carr

48.11

Proportional Valve

Control Board

1 130-222 Cowper Inc. 152.00

Huzzah32 1 N/A Adafruit 21.95

Raspberry Pi 4 B+

8GB

1 N/A Adafruit 104.95

Solid State Relay 1 DC60S3 Mouser 38.49

Voltage Step-down 1 LM2596 Amazon 7.16

Main Power Supply 1 1470-3098-ND Digikey 35.42

Jumper Cables M/M 1 1956 Adafruit 1.95

Jumper Cables F/M 1 1953 Adafruit 1.95

93

Jumper Cables F/F 1 1951 Adafruit 1.95

Bread Board 2 EL-CP-003 Amazon 5.00

Waterproof DC

Power Cable Set -

5.5/2.1mm

1 743 Adafruit 2.50

Micro-USB to Regu-

lar USB

1 592 Adafruit 2.95

DIN Connector for

PV

1 122-800EX Cowper Inc. 10.97

Connector for Flow

Meter

1 EK-F3x-CAP Mouser 132.27

Pipe Joint Tape 1 5495-85 Home Hard-

ware

2.00

Pipe Joint Com-

pound

1 3210-016 Home Hard-

ware

23.99

Bulged Stainless

Steel Tubulation

1 TUBN-063-2” Scanivalve 0.00

1/8 NPTM Plug with

Hex Head

1 5232T449 McMaster-

Carr

4.90

26 Inspiratory and Ex-

piratory tubing with

check valves

1 N/A St. Clair

College

0.00

27 Tubing quick connect

into 1/4 NPTM

1 52115K203 McMaster-

Carr

17.65

94

A.3 Software

Since most projects reviewed in the literature review did not include the software

to go along with the hardware, in the below sections are the programming scripts

used in the operation of the ventilator testing. There is a main python script that

includes the main functionalities of the ventilator, there is the main C++ script for

the Huzzah32, and there is an emergency python script that closes PV in the case

the main script failed. The packages used in the main python script are displayed in

Table A-2 below, and the programming scripts are in the sections below.

Table A-2: Python packages used

Name Version Use

pyserial 3.5 Serial communication

numpy 1.21.2 Array handling

time N/A General use

pandas 1.4.1 Reading .csv data

math N/A General use

matplotlib.pyplot 3.5.0 Generating plots

csv N/A Saving data to csv

RPi.GPIO 0.7.1 Raspberry Pi GPIO control

scipy.signal 1.7.3 Mask pressure filtering

A.3.1 Main Python Script

1 #

##--

Name: Final_Ventilator_Scipt.py # Purpose: Main script

to operate the ventilator on the raspberry pi # # Author:

Ryan Wardell # Created: 2022 -12 -01

95

#--

Imported packages import serial import numpy as np

import time import pandas as pd import math import

matplotlib.pyplot as plt import csv import RPi.GPIO as GPIO

from scipy import signal

2 # Global variables for the two serial connections global ser #

For SP -1 global ser2 # For Huzzah32

3 #

--

Ventilator Settings BPM = 20 iTime = 1 itime_step =

0.025 etime_step = 0.025 numBreaths = 5 yref = 12 # [L/min]

BAP = 5.5 # 5 cmH2O to psi

4 eTime = (60/ BPM) - iTime iIter = math.floor(iTime/itime_step)

eIter = math.floor(eTime/etime_step)

5 # For calculating flow during expiratory cycle rho = 1.225 #

gas density mu = 1.83e-5 # kinematic viscosity L_exp = 1.27

expiratory piping length D_exp = 0.03 # expiratory

piping diameter 10mm tubing from mask exp_area = (math.pi*(

D_exp **2))/4 # expiratory flow area used in flow rate

calculation

6 # ESC parameters phase = 0 # zero K = 1 # integration gain k_a

= 0.1; k_b = 0.001; amp = 0.1 omega = 40

7 # Low -pass filter for ESC samplingFreq = (1/ itime_step)/(2*np.

pi) # 1/ inspiratory time step /2 pi to convert to Hz w0 =

2*np.pi*0.2 # pole frequency (rad/s) AKA cutoff frequency

num = w0 # transfer function numerator coefficients den =

[1,w0] # transfer function denominator coefficients lowPass

= signal.TransferFunction(num ,den) # Transfer function dt

= 1.0/ samplingFreq discreteLowPass = lowPass.to_discrete(dt

96

,method=’gbt ’,alpha =0.5) b = discreteLowPass.num a = -

discreteLowPass.den

8 # WMA for pressure signal wmin = 0.1 nw = 5 Z = -np.log(wmin)

/(nw -1) w = np.zeros(nw) for i in range (0,5): w[i] = np.exp

(i*np.log(wmin)/(nw -1)) w = w / np.sum(w)

#--

Initialize Serial Ports

9 # Open Serial Port for SP -1 ser = serial.Serial(port = ’/dev/

ttyUSB1 ’, #Device name baudrate =115200 , #baudrate bytesize=

serial.EIGHTBITS , #number of databits parity=serial.

PARITY_NONE , #enable parity checking stopbits=serial.

STOPBITS_ONE , #number of stopbits timeout=1, #set a timeout

value (example only because reset #takes longer) xonxoff

=0, #disable software flow control rtscts=0, #disable RTS/

CTS flow control)

10 # Specify the address of the RS485 adapter cable ADDRESS = 0

11 # Set up the serial port to the ESP32 ser2 = serial.Serial(

port = ’/dev/ttyUSB0 ’, #Device name baudrate =9600, #

baudrate bytesize=serial.EIGHTBITS , #number of databits

parity=serial.PARITY_NONE , #enable parity checking stopbits

=serial.STOPBITS_ONE , #number of stopbits timeout=1, #set a

timeout value (example only because reset #takes longer)

xonxoff=False , #disable software flow control rtscts=False ,

#disable RTS/CTS flow control)

12 #

--

GPIO Setup GPIO.setmode(GPIO.BOARD) # Use the board

numbering system for GPIO pinNum = 11 # What GPIO pin are

we using GPIO.setup(pinNum ,GPIO.OUT) # Initialize the pin

97

to be an output

13 #

--

SP -1 Functions

14 def compute_SHDLC_checksum(listofbytes): # sum up all bytes

tmpchecksum = sum(listofbytes) # take least significant

byte tmpchecksum = tmpchecksum & 0xff # invert (bit -wise

XOR with 0xff) tmpchecksum = 0xff ^ tmpchecksum return

tmpchecksum

15 def byte_stuff(listofbytes): i=0 while i<len(listofbytes): if

listofbytes[i]==0 x7e: listofbytes[i]=0 x7d listofbytes.

insert(i+1,0x5e) i+=1 elif listofbytes[i]==0 x7d:

listofbytes[i]=0 x7d listofbytes.insert(i+1,0x5d) i+=1 elif

listofbytes[i]==0 x11: listofbytes[i]=0 x7d listofbytes.

insert(i+1,0x31) i+=1 elif listofbytes[i]==0 x13:

listofbytes[i]=0 x7d listofbytes.insert(i+1,0x33) i+=1 i+=1

return listofbytes

16 def make_and_send_SHDLC_command(address , commandID , data):

datalength = len(data) # compose command command = [address

, commandID , datalength] + data # compute checksum command.

append(compute_SHDLC_checksum(command)) # do byte stuffing

command = byte_stuff(command) # add start byte and stop

byte command = [0x7e] + command + [0x7e] # convert list of

numbers to bytearray command = bytearray(command) # send

command to the device ser.write(command) def

read_SHDLC_response (): response = np.zeros (15) res = ’’

count = 0 # Iterate read until res is empty or stop byte

received firstbyte=True while True: res = ser.read (1) if

not res: break elif firstbyte or (ord(res) != 0x7e):

98

firstbyte = False response[count] = ord(res) count +=1 else:

response[count] = ord(res) count +=1 break # remove first

element (the start byte) from the response response [0] = 0

remove the last element (the stop byte) form the response

response [-1] = 0 # Check for bytes that are stuffed i=0 #

loop through response list while i<len(response): if

response[i] == 0x7D: # 0x7d marks stuffed bytes. see SHDLC

documentation if response[i+1] == 0x5E: response[i] = 0x7E

elif response[i+1] == 0x5D: response[i] = 0x7D elif

response[i+1] == 0x31: response[i] = 0x11 elif response[i

+1] == 0x33: response[i] = 0x13 i+=1 # return only the ’

data’ portion of the response return response [4:7]

17 #

--

Reading Flow Meter def read_spiro (): while True: data =

[] while len(data) <2: make_and_send_SHDLC_command(ADDRESS ,

0x35 , []) data = read_SHDLC_response () if data [0] > 0:

break # Combine the first two data bytes into one 16bit

data value value_from_sensor = data [1]*256 + data [2]

18 # Compute two’s complement (handle negative numbers !) if

value_from_sensor >= 2**15: # 2**15 = 32768

value_from_sensor = value_from_sensor -2**16 # 2**16 = 65536

actual_value = (value_from_sensor +32768) /120 # Note this

value is in sl/min return actual_value

#--

Reading Pressure Transducer Functions def read_esp32 ():

esp_in = ’0000’ # Read data from the ESP32 twice while True

: if len(esp_in) <17 and len(esp_in) >13: if esp_in [0] == ’!’

and esp_in [-1] == ’!’: break else: esp_in = ’0000’ # end

99

of nested -if else: esp_in = ser2.readline ().decode(’ascii ’)

.rstrip () # get rid of start and stop byte size = len(

esp_in) esp_in = esp_in [1:size -1] # intialize local

variables ps1_str = ’’ ps0_str = ’’ psup_str = ’’ character

= ’’ place = 1 count = 0 while count < len(esp_in):

character = esp_in[count] if (character == ":"): place =

place + 1 count = count + 1 else: if place ==1: ps1_str =

ps1_str + character count = count + 1 elif place ==2:

ps0_str = ps0_str + character count = count + 1 else:

psup_str = psup_str + character count = count + 1 # end of

nested if -elif -else # end of if -else # end of while loop

ps1_in = int(ps1_str) ps0_in = int(ps0_str) psup_in = int(

psup_str) # Format 0 -4095 to 0-3.3V ps1_pin = (ps1_in /4095)

*3.3 ps0_pin = (ps0_in /4095) *3.3 psup_pin = (psup_in /4095)

*3.3 #Correct voltages for esp32 pin offsets ps1_pinCorr =

0.8878* ps1_pin + 0.321 # Pin 12 ps0_pinCorr = 0.8955*

ps0_pin + 0.39 # Pin 32 psup_pinCorr = 0.8948* psup_pin +

0.22 # Pin 33 # Correct for the voltage division used

ps1_sensor = ps1_pinCorr /0.7538 ps0_sensor = ps0_pinCorr

/0.7292 psup = psup_pinCorr /0.6059 #print(psup) # Convert

the voltage to pressure in psi -- equation from pressure

transducer manual ps1_psi = (ps1_sensor - 0.1* psup) *

((2.0) /(0.8* psup)) - 1.0 ps0_psi = ((ps0_sensor -(0.1* psup))

((100.0) /(0.8 psup))) - 0.0 # Convert ps1 from psi to

cmH20 ps1_cmh20 = 70.31* ps1_psi return [ps1_cmh20 ,ps0_psi]

19 #

--

Convert unew to esp32in def createInput(input_wanted):

terminate_term = ’\n’ # Termination byte for serial

100

handling board_resistance = 185.3 current_wanted = ((20 -4)*

input_wanted) + 4 voltage_wanted = (current_wanted /1000)*

board_resistance voltage_percent = voltage_wanted /3.3

input_to_esp32 = round(voltage_percent *255)

20 # Saturate the input to be between 0 and 255 if input_to_esp32

< 0: input_to_esp32 = 0 elif input_to_esp32 > 255:

input_to_esp32 = 255

21 to_esp32 = str(input_to_esp32) + terminate_term return

to_esp32

22 #

--

Find the initial guess for ESC using the valve

characteristic ’s and supply pressure

23 # READ OUT 20 VALUES AND AVERAGE THEM FOR PRESSURE READING z =

0 z_count = 50 sup_p_measurements = np.zeros(z_count)

while z < z_count: esp32_data = read_esp32 ()

sup_p_measurements[z] = esp32_data [1] # in units of psi z

+=1

24 sup_p_mean = np.mean(sup_p_measurements) print(’mean␣supply␣

pressure␣=␣’,sup_p_mean) supply_pressure_barg = (sup_p_mean

-14.69595) /14.503773773

25 # Y axis is Flow rate in [Normal Litres per minute] # X axis

is %FS of valve opening 0-100 = 4-20mA slope = -0.1105*(

supply_pressure_barg **2) + 0.8058*(supply_pressure_barg) +

0.5309 x_intercept = -14.176*(supply_pressure_barg) +

91.638 y_intercept = -slope*x_intercept

26 just_closed = (x_intercept - 0)/100 # this will need adjusting

27 initial_guess_x = (yref -y_intercept)/slope +12 # This gives us

the intial %FS from 0-100 or 4-20mA print(’initial valve

101

guess ’,initial_guess_x)

28 # Initial guessing stuff #just_closed = 0.42 unew =

initial_guess_x /100 # intial k input yout = 0 # initial

flow rate output (zero since initial input k is zero) ycost

= abs(yout - yref) # Initial cost function output uhat =

unew

29 #

Start -up Commands for Flow Meter

30 # Set resolution make_and_send_SHDLC_command(ADDRESS , 0x41 ,

[14]) read_SHDLC_response ()

31 # Clear measurement buffer make_and_send_SHDLC_command(ADDRESS

, 0x36 , [2]) read_SHDLC_response ()

32 # Start continuous measurement make_and_send_SHDLC_command(

ADDRESS , 0x33 , [0,0]) read_SHDLC_response ()

33 #

--

Initialize For Main Loop and LPFs i = 0 volume = 0 xi =

0 LPF = 0 p_mask_read = 0 # current p_mask_1 = 0 # n-1

p_mask_2 = 0 # n-2 p_mask_3 = 0 # n-3 p_mask_4 = 0 # n-4

tidal_vol = np.zeros(numBreaths) minute_vol = np.zeros(

numBreaths) PEEP = BAP

34 #

--

Send command to the valve just so the valve is closed

to_esp32 = createInput(just_closed) ser2.write(to_esp32.

encode ()) time.sleep (2) # sleep for 2 seconds

35 #

--

102

Open the valve to the initial guess to_esp32 =

createInput(unew) ser2.write(to_esp32.encode ())

36 #

--

37 slow_ESC = False # Main Loop with open(’ISO_TEST_8.csv ’,’w’,

newline=’’) as csvfile: fieldnames = [’Time ’,’Flow Rate ’,’

unew ’,’Mask Pressure ’,’Time Difference ’,’Volume ’,’Raw Mask

Pressure ’,’PEEP ’] writer = csv.DictWriter(csvfile ,

fieldnames = fieldnames) writer.writeheader () while i<

numBreaths: # Run for a specific number of breaths ser2.

reset_input_buffer () ser2.reset_output_buffer () j = 0 #

inspiratory counter time_diff = 0 GPIO.output(pinNum ,0) #

Close expiratory line time.sleep (0.001) is_filter = False

vol_max = -100 # reset max insp volume to large negative

number yout = 0 # Starting inspiratory Volume

start_insp_vol = volume while j<iIter: # Run loop for

specific number of iterations #Start timer start = time.

time_ns ()

#--

Read Huzzah32 outputs p_mask_4 = p_mask_3 p_mask_3 =

p_mask_2 p_mask_2 = p_mask_1 p_mask_1 = p_mask_read [

p_mask_read ,p_sup] = read_esp32 () if j>4: p_mask_5MA = (

p_mask_read + p_mask_1 + p_mask_2 + p_mask_3 + p_mask_4)/5

Moving average p_mask_5WMA = (p_mask_read*w[0] + p_mask_1

*w[1] + p_mask_2*w[2] + p_mask_3*w[3] + p_mask_4*w[4]) #

Weighted moving average else: p_mask_5MA = p_mask_read

p_mask_5WMA = p_mask_read # end of if-else yout_old = yout

Read flow rate y_read = read_spiro () # unit is in sl/min

103

if y_read >100: yout = yout else: yout = y_read print(’Flow

rate (sl/min)’,yout) # Create cost function ycost = abs(

yout - yref) # Create cost function that uses [L/min] #print

(’y cost ’,ycost)

38 # Time t = time.time() # Assign old values of LPF and xi for

the Low Pass Filtering xiOLD = xi LPFOLD = LPF # ESC Dither

Multiplication xi = ycost*k_a*amp*math.sin(omega*t + phase

) # Apply LPF LPF = a[1]* LPFOLD + b[0]*xi + b[1]* xiOLD #

Initial value for integration if j == 0: uhat = uhat else:

uhat = uhat + LPF*K*itime_step # Add Dither Signal unew =

uhat + k_b*amp*math.sin(omega*t + phase) #unew = 0.70 #

Send new input to valve to_esp32 = createInput(unew) ser2.

write(to_esp32.encode ()) # Tracking first and last values

if j==0: print(’First value ’,unew) elif j==(iIter -1): print

(’Last value ’,unew) # end of if # Calculate volume using

trapezoidal rule del_vol = itime_step *0.5*(yout -yout_old)

volume = volume + del_vol if volume >vol_max: # keeps the

highest volume achieved as the tidal volume vol_max =

volume # end of if # Write to CSV file writer.writerow({’

Time ’:t,’Flow Rate ’:yout ,’unew ’:unew ,’Mask Pressure ’:

p_mask_5WMA ,’Time Difference ’:time_diff ,’Volume ’:volume ,’

Raw Mask Pressure ’:p_mask_read ,’PEEP ’:PEEP})

#--

End timer and sleep finish = time.time_ns () time_diff =

(1e-9*(finish - start)) if (itime_step -time_diff) < 0:

time_diff = itime_step time.sleep(itime_step -time_diff) j

+=1 # End of inspiratory while loop # Close the inspiratory

valve to_esp32 = createInput(just_closed) ser2.write(

to_esp32.encode ()) time.sleep (0.005) tidal_vol[i] = vol_max

104

- start_insp_vol # Calculate Tidal Volume minute_vol[i] =

tidal_vol[i]*BPM k = 0 # expiratory counter time_diff = 0

peep_1 = 0 flow = 0 GPIO.output(pinNum ,1) # Open expiratory

line while k<eIter: # Run loop for specific number of

iterations start = time.time_ns ()

#--

Read Huzzah32 outputs p_mask_4 = p_mask_3 p_mask_3 =

p_mask_2 p_mask_2 = p_mask_1 p_mask_1 = p_mask_read [

p_mask_read ,p_sup] = read_esp32 () if j>4: p_mask_5WMA = (

p_mask_read*w[0] + p_mask_1*w[1] + p_mask_2*w[2] + p_mask_3

*w[3] + p_mask_4*w[4]) # Weighted moving average else:

p_mask_5WMA = p_mask_read # end of if-else if k>(eIter -3):

peep_2 = peep_1 peep_1 = p_mask_5WMA # Calculate flow and

volume from pressure difference flow_old = flow temp =

((32*mu*L_exp)/(D_exp **2)) temp2 = ((-temp + math.sqrt((

temp **2) +(2* rho *((p_mask_5WMA -PEEP)/70.307))))/rho) flow =

-exp_area*temp2 flow = 60000* flow # units from m^3/s to L/

min print(’flow rate [sl/min]’,flow) t = time.time() #

Calculate volume using trapezoidal rule del_vol =

etime_step *0.5*(flow -flow_old) volume = volume + del_vol if

volume <0: volume = 0 # Write to CSV file writer.writerow

({’Time ’:t,’Flow Rate ’:flow ,’unew ’:just_closed ,’Mask

Pressure ’:p_mask_5WMA ,’Time Difference ’:time_diff ,’Volume ’:

volume ,’Raw Mask Pressure ’:p_mask_read ,’PEEP ’:PEEP})

#--

finish = time.time_ns () time_diff = (1e-9*(finish - start)

) if (etime_step -time_diff) < 0: time_diff = etime_step

time.sleep(etime_step -time_diff) k+=1 # End of expiratory

while loop PEEP = (peep_1+peep_2)/2 i+=1 # Increase breath

105

counter by 1 # End of number of breaths while loop

#--

Closing Commands for Flow Meter and Huzzah32

39 # stop continuous measurement make_and_send_SHDLC_command(

ADDRESS , 0x34 , []) read_SHDLC_response ()

40 closestr = ’0\n’ ser2.write(closestr.encode ()) # close the

valve

#--

Post Processing Attached

#--

Read using Pandas data = pd.read_csv(’/home/pi/Downloads

/ISO_TEST_8.csv ’, sep = ’,’)

41 data_array = data.to_numpy ()

42 Time = data_array [:,0] Flow_Rate = data_array [:,1] unew =

data_array [:,2] Mask_Pressure = data_array [:,3]

Time_Difference = data_array [:,4] lung_volume = data_array

[:,5] Raw_Mask_Pressure = data_array [:,6]

43 #

--

Post Processing

44 # Create an array that has the actual time size = np.shape(

Time)[0] actual_time = np.zeros(size ,float) time_step = np.

zeros(size ,float) for i in range(size): if i == 0:

actual_time[i] = 0.0 time_step[i] = 0.0 else: time_step[i]

= (Time[i]-Time[i-1]) actual_time[i] = actual_time[i-1] +

time_step[i]

45 # What is the maximum time difference? print(’Slowest time

step is: ’,Time_Difference.max())

106

46 # What is the tidal volume and minute volume for each breath?

print(’The theoretical tidal volume of each breath was:’,(

yref /60)*iTime ,’L’) print(’The theoretical minute volume of

each breath was:’,(yref /60)*iTime*BPM ,’L/min ’) for i in

range(numBreaths): print(’Tidal volume of breath #’,i+1,’

was ’,round(tidal_vol[i],4),’L’) print(’Minute volume of

breath #’,i+1,’ was ’,round(minute_vol[i],4),’L/min ’)

47 # Plot unew with respect to actual time plt.figure (1) plt.plot

(actual_time ,unew) plt.xlabel(’Time [s]’) plt.ylabel(’unew

[0 to 1]’) plt.title(’unew versus time ’)

48 # Plot Flow rate with respect to actual time plt.figure (2) plt

.plot(actual_time ,Flow_Rate) plt.xlabel(’Time [s]’) plt.

ylabel(’Flow rate [sL/min]’) plt.title(’Flow rate versus

Time ’)

49 # Plot Volume with respect to actual time plt.figure (3) plt.

plot(actual_time ,lung_volume) plt.xlabel(’Time [s]’) plt.

ylabel(’Lung Volume [L]’) plt.title(’Lung Volume Waveform ’)

50 # Plot Mask Pressure with respect to actual time plt.figure (4)

plt.plot(actual_time ,Raw_Mask_Pressure ,label=’Raw ’,color =

’k ’) plt.plot(actual_time ,Mask_Pressure ,label=’Filtered ’,

color = ’r ’) plt.xlabel(’Time [s]’) plt.ylabel(’Pressure [

cmH2O]’) plt.title(’Lung Pressure Waveform ’) plt.legend ()

A.3.2 Huzzah32 Script

1 /* Arduino IDE Code for ESP32 esp32_conmplete.cpp Ventilator

Project Ryan Wardell */

2 #define DAC1 25 #include <string >

3 int voltVal = 0; // 0-255 corresponding to 0-3.3V const

107

unsigned int MAX_MESSAGE_LENGTH = 12; // Maximum length

able to be read of a single message

4 const int ps1Pin = 12; // PS -1 ADC input pin const int ps0Pin

= 32; // PS -0 ADC input pin const int powerPin = 33; //

Power Supply ADC input pin

5 int ps1Val = 0; int ps0Val = 0; int pSupVal = 0; String

out_string = "0";

6 // Setup code void setup() { Serial.begin (9600); // // Opens

the serial port and sets data rate to 9600 bps

7 }

8 // Main code void loop() { // Read PV -1 Input Command from Pi

while (Serial.available () > 0) { // Create a place to hold

the incoming message static char message[MAX_MESSAGE_LENGTH

]; static unsigned int message_pos = 0;

9 //Read the next available byte in the serial receive buffer

char inByte = Serial.read();

10 // Message coming in (check not terminating character) and

guard for over message size if (inByte != ’\n’ && (

message_pos < MAX_MESSAGE_LENGTH - 1)) { //Add the

incoming byte to our message message[message_pos] = inByte;

message_pos ++; } //Full message received ... else { //Add

null character to string message[message_pos] = ’\0’;

11 // Convert to integer int voltVal = atoi(message);

12 dacWrite(DAC1 ,voltVal); // Output a voltage to channel 1

13 //Reset for the next message message_pos = 0;

14 } } // Read PS0 , PS1 , and pressure transducer ’s power supply

voltage ps1Val = analogRead(ps1Pin); // Read patient mask

pressure ps0Val = analogRead(ps0Pin); // Read upstream

supply pressure pSupVal = analogRead(powerPin); // Read

108

transducer power supply voltage out_string = ’!’ + String(

ps1Val) + ’:’ + String(ps0Val) + ’:’ + String(pSupVal) +

’!’; // Format output to Pi Serial.println(out_string); //

Print out whole pressure value as a line to the Pi }

A.3.3 Emergency Valve Close Script

1 #!/usr/bin/env python3 # -*- coding: utf -8 -*- """ Created on

Tue Oct 25 23:17:12 2022

2 @author: pi """ import serial global ser2 # For Huzzah32 # Set

up the serial port to the ESP32 ser2 = serial.Serial(port

= ’/dev/ttyUSB1 ’, #Device name baudrate =9600 , #baudrate

bytesize=serial.EIGHTBITS , #number of databits parity=

serial.PARITY_NONE , #enable parity checking stopbits=serial

.STOPBITS_ONE , #number of stopbits timeout=1, #set a

timeout value (example only because reset #takes longer)

xonxoff=0, #disable software flow control rtscts=0, #

disable RTS/CTS flow control)

3 closestr = ’0\n’ ser2.write(closestr.encode ()) # close the

valve print(’valve is closed ’) ser2.close ()

109

Appendix B

Complete Amesim model

The complete Amesim model with a break-down of components and their location

within the model is displayed. There are only 32 individual Amesim components

needed to create the entire ventilator, control scheme, and lung model. A list of these

components can be found in Table B-1 where each part is listed with their respective

submodels and the quantity of that part used in the model.

As explained in Section 3.3.1, for the piping sections and piping joints there are

multiple submodels used due to complilation issues in Amesim. All of the pneumatic

component submodels account for compressibility and frictional effects. In the table

each part has a given part number from 1 to 32 such that their location in the model

can be illustrated in an image of the entire Amesim model as depicted in Figure B-1.

Using the information from within this thesis, one could easily recreate this model

in Amesim.

110

Table B-1: All Amesim components

Part No. Part description Amesim part name(s) Quantity

1 Pipe section PNPC0, PNPC1, PNPC2, PNPC4 7, 2 ,9 ,3
2 Pipe elbow PNBP001 1
3 Pipe t-joint PN3P000, TPTE001 3, 3
4 2-port proportional valve PNTV01 4
5 3-port proportional valve PNPV001 1
6 Pressure regulator PNPR12 2
7 Pressure relief valve PNRV00 2
8 Supply pressure PNCS001 1
9 Flow sensor PNQS02 2
10 Pressure sensor PNPS001 1
11 Lung model feedback PNVS001 1
12 Solenoid valve PNSV231 04 1
13 Atmosphere PNAS001 4
14 Plug PNPL01 1
15 Sampler ZOH00 2
16 Switch SWITCH01 8
17 Gain GA00 16
18 Discrete state-space SIGDISCSSP 1
19 Demux DYNDMUX2 1
20 Sink SSINK 6
21 Summation JUN3P 3
22 Constant CONS00 14
23 2-way signal split SPLT0 7
24 Clock CLOC 1
25 Square wave SQW00 4
26 Subtraction JUN3M 4
27 4-way signal split SPLT1 2
28 Mulitplication MUL00 1
29 Discrete integration DTI02 1
30 Sin wave SIN0 1
31 Saturation SAT0 1
32 Signal comparator SIGCOMP0 1

111

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18
19

20

21

22

23

24

25
26

27

2829

30

31

32

Figure B-1: Complete Amesim model

112

Vita Auctoris

Name: Ryan K. Wardell

Place of Birth: Windsor, Ontario, Canada

Year of Birth: 1998

Education: M.A.Sc. in Mechanical Engineering

University of Windsor, 2021-2023

B.A.Sc. in Mechanical Engineering with

Aerospace Option

University of Windsor, 2016-2020

113

	MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR MECHANICAL VENTILATORS
	Recommended Citation

	Declaration of Co-Authorship / Previous Publication
	Co-Authorship
	Previous Publication
	General

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	INTRODUCTION
	Objective and High-Level Approach
	Major Findings and Conclusions
	Thesis Outline
	Bibliography

	MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR MECHANICAL VENTILATORS PART 1: MEASURED PERFORMANCE
	Introduction
	MVM Hardware Implementation
	Sensors
	Actuators
	Power and Signal Management

	Model-Free and Model-Guided ESC
	System Model
	Our ESC Parameters

	Software
	Testing Requirements
	Test Lung
	ISO Standard

	Uncertainty Quantification
	Results and Discussion
	Assessment of Ventilator Measurement Capability
	Model-Guided ESC
	Comparison of Open-Loop Control and Model-Guided ESC
	Comparison of Model-Free and Model-Guided ESC
	Varying Supply Pressure for ISO Test 2
	Quantifying the Controller Robustness

	Conclusions
	Bibliography

	MODEL-GUIDED EXTREMUM SEEKING CONTROL FOR MECHANICAL VENTILATORS PART 2: NUMERICAL IMPACTS OF GEOMETRY CHANGES ON PERFORMANCE
	Introduction
	Model-Guided Extremum Seeking Control for the MVM
	Complete Model of the Ventilation System
	Ventilator Model
	Proportional Valve
	Control System
	Lung Model

	Model Verification
	Changing Parameters
	Results and Discussion
	Conclusion
	Bibliography

	SUMMARY, CONTRIBUTIONS, AND FUTURE WORK
	Summary
	Contributions
	Future Recommendations

	Appendices
	Appendix Ventilator Hardware
	Assembly Instructions
	Bill of Materials
	Software
	Main Python Script
	Huzzah32 Script
	Emergency Valve Close Script

	Appendix Complete Amesim model
	Vita Auctoris

