
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-1-2023

The Minimum Consistent Spanning Subset Problem on Trees The Minimum Consistent Spanning Subset Problem on Trees

Parham Khamsepour
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Khamsepour, Parham, "The Minimum Consistent Spanning Subset Problem on Trees" (2023). Electronic
Theses and Dissertations. 9348.
https://scholar.uwindsor.ca/etd/9348

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9348?utm_source=scholar.uwindsor.ca%2Fetd%2F9348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

The Minimum Consistent Spanning
Subset Problem on Trees

By

Parham Khamsepour

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2023

©2023 Parham Khamsepour

The Minimum Consistent Spanning Subset Problem on Trees

by

Parham Khamsepour

APPROVED BY:

M. Sangani Monfared

Department of Mathematics and Statistics

D. Wu

School of Computer Science

A. Biniaz, Advisor

School of Computer Science

April 20, 2023

DECLARATION OF CO-AUTHORSHIP AND PREVIOUS PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is the outcome of my

research under the supervision of Dr. Ahmad Biniaz.

In particular the new results presented in chapters 3 and 4 of this thesis were co-

authored by Ahmad Biniaz. All the co-authors contributed to finalizing the ideas and

follow-up discussions. A. Biniaz contributed to this research with his initial thoughts

and the main idea this research is based upon. Both P. Khamsepour and A. Biniaz

contributed to design and analysis of the algorithms and writing/editing the contents

of these chapters. All implementations, verifications, validations, and visualizations

were performed by P. Khamsepour under the supervision of A. Biniaz.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work under the supervision of A. Biniaz.

II. Previous Publication

This thesis includes 1 original paper that has been submitted for publication in peer

reviewed conference, as follows:

Thesis Chapter Publication title/full citation Publication Status

Chapter 3 Biniaz, A., and Khamsepour, P. (2023). The
Minimum Consistent Spanning Subset Prob-
lem on Trees. 49th International Workshop on
Graph-Theoretic Concepts in Computer Science.

Submitted

III

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as a graduate student at

the University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

IV

ABSTRACT

Given a vertex-colored edge-weighted graph, theminimum consistent subset (MCS)

problem asks for a minimum subset S of vertices such that every vertex v not in S

has the same color as its nearest neighbor in S. This problem has applications in

clustering and classification algorithms, specially in finding the optimal number of

clusters in k-clustering algorithms. This problem is NP-complete. A recent result

of Dey, Maheshwari, and Nandy (2021) gives a polynomial-time algorithm for the

MCS problem on trees. In thesis we study the MCS problem on different settings,

and discuss some of the shortcomings of the MCS problem for trees. We then intro-

duce a variant of the MCS problem, namely the minimum consistent spanning subset

(MCSS) problem, for which we require the set S to contain a vertex from every block

of the graph, where a block is a maximal connected vertices of the same color. We

observe that this problem is NP-hard on general graphs. We present an O(n4)-time

algorithm to find the MCSS on multi-colored weighted trees with n vertices. We also

improve the running time for simple classes of trees.

V

DEDICATION

I hereby dedicate this thesis to my esteemed parents, Sima and Amir, and my

brother, Peyman, with immense gratitude and respect. Their constant and unwa-

vering support, encouragement, love, and understanding throughout my academic

journey have been invaluable to me.

VI

ACKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my super-

visor Dr. Biniaz, whose input helped me immensely. With his input, I was able to

look at my research with a different perspective and a more critical eye.

Secondly, I would like to express my gratitude to my thesis committee members,

Dr. Wu and Dr. Sangani Monfared, for their valuable advice and suggestions.

I humbly extend my thanks to the School of Computer Science and all concerned

people who helped me in this regard.

VII

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP AND PREVIOUS PUBLI-
CATION III

ABSTRACT V

DEDICATION VI

ACKNOWLEDGEMENTS VII

LIST OF FIGURES X

1 Introduction 1
1.1 Basic definitions and terminologies . 1
1.2 The MCS problem . 4
1.3 The MCSS problem . 6

1.3.1 Problem definition . 6
1.3.2 Hardness of the MCSS problem on general graphs 7

1.4 Contributions and thesis organization 8

2 Related works 9
2.1 The MCS problem on graphs . 10

2.1.1 The MCS problem on simple unweighted trees 10
2.1.1.1 Paths . 11
2.1.1.2 Two-colored spiders . 12
2.1.1.3 Multi-colored spiders 14
2.1.1.4 Caterpillars . 15
2.1.1.5 Combs . 17

2.1.2 The MCS problem on two-colored unweighted trees 18
2.2 The Euclidean MCS problem . 21
2.3 Applications of the MCS problem . 26

3 Algorithm for the MCSS problem 28
3.1 Preliminaries for the algorithm . 28
3.2 The algorithm . 30

3.2.1 Defining subproblems . 30
3.2.2 Solving the subproblems . 31
3.2.3 Solving the original problem . 34
3.2.4 Running time analysis . 34
3.2.5 Extension to weighted trees . 35
3.2.6 Details of implementation . 35

VIII

4 The MCSS problem on simple trees 37
4.1 Paths . 37
4.2 Spiders . 38
4.3 Combs . 38
4.4 Caterpillars . 41

5 Conclusions and future works 43
5.1 Future works . 43

REFERENCES 44

VITA AUCTORIS 46

IX

LIST OF FIGURES

1.1.1 (a) Example of a path, (b) an acyclic connected graph (tree), and (c)

the graph K4. 2

1.1.2 (a) Example of a caterpillar, (b) spider, and (c) comb tree. 3

1.1.3 Voronoi diagram for a given point set. 3

1.2.1 (a) An example of a 2-colored graph G where all edges have the same

weight. The set S = {s1, s2, s3, s4} is an MCS for G. The vertex s1

is a nearest neighbor of a, b, c, and d in S. (b) The Euclidean MCS

where the circled points belong to S. 4

1.2.2 (a) An MCS for a two-colored unweighted tree. (b) Blocks in a tree.

(c) An MCS for an unweighted tree that has size 2, and (d) an MCSS

for the same tree. 6

1.3.1 (a) Example of the the graph G, and (b) its constructed graph for the

MCS problem. 7

2.1.1 (a) and (b) Example of a gate (p, q, v). (c) Example showing all

the vertices in the triangle connected to v are closer to either p or q

depending of their color, and are solved. (d) Example of a 3-colored

gate. 11

2.1.2 Example of a path and all of its blocks. 11

2.1.3 Example of the vertices of the new overlay graph T while solving a

path. 11

2.1.4 Example of the shortest path and the MCS of a path. 12

2.1.5 Example of a two-colored spider. 12

2.1.6 Example of the MCS for a two-colored spider where the center vertex

is colored differently than all the other adjacent vertices to it. 13

2.1.7 Example of the MCS for a two-colored spider where the center vertex

is colored the same as all the other adjacent vertices to it. 13

2.1.8 Example of the MCS for a two-colored spider using the gate (p, q, v). 14

X

2.1.9 (a) Example of the MCS of 4-colored spider where the center v and

p1,⋯, p4 form a gate. (b) Example of the MCS of 7-colored spider

where the center v and p1,⋯, p4 form a gate. 15

2.1.10 Example of the MCS for a caterpillar of size two. 16

2.1.11 Example of the MCS of a caterpillar containing only left gates. . . . 16

2.1.12 (a) Example when the left most left gate (pl, ql, vl) is to the left of

the right most right gate (pr, qr, vr). (b) Example of the MCS of a

caterpillar when the left most left gate (pl, ql, vl) is to the right of the

right most right gate (pr, qr, vr). 17

2.1.13 Example of the MCS for a two-colored comb base on the left most left

gate (p, q, v). 18

2.1.14 Example of a useful gate (p, q, v). All the vertices in the area S ′ will
be closer to either p or q′ base on their color in the solution, while the

vertices in S will be closer to either p or q. 19

2.1.15 Example of a useful gate (p, q, v). 20

2.1.16 Example of the MCS of a two-colored tree using the useful gate (p, q, v). 21

2.2.1 Example of the solution S along with the Voronoi diagram of S and

one of the balance curve separator for a set of points. 22

2.2.2 Example of MCS of size two for a set of two-colored points in the

Euclidean plane. 23

2.2.3 Example of the blocks on a collinear point set. 24

2.2.4 Example of valid pi for the point pk while computing T (k). 24

2.2.5 Example showing the closest pair (a, b) in the solution. The unsolved

portions to the the left and right of (a, b) are solved independently

and recursively. 25

2.2.6 Example showing the rightmost pair (r, b) in the solution. The un-

solved portion to the the left (r, b) is solved recursively. 26

3.1.1 (a) Example of a tree T together with its blocks. (b) The block tree

of T . 29

XI

3.2.1 (a) The tree T , and (b) the tree T ′. 31

3.2.2 Solving T (a, c) recursively in terms of T (a, v′) and T (z, v′) where z

is a valid pair for a. 33

3.2.3 If we increase d(a, z) then S(a, c) can increase (a) or decreases (b). . 35

4.2.1 Example of a consistent spanning subset for the spider, assuming v′

is the closest vertex to v in the solution. 38

4.3.1 Example of a comb T and a path δ(a, qi). 39

4.3.2 The tree T . 40

4.3.3 An overlay image of T , T and T (a, c, z). The sum of solution sizes for

all the paths colored blue and red is respectively stored in S[a][m]
and S[z][m + 1]. 40

4.4.1 The colored section shows δ(a, pi), and M[a][i] = 2. 41

XII

CHAPTER 1

Introduction

This thesis focuses on the Minimum Consistent Subset (MCS) and Minimum Consis-

tent Spanning Subset (MCSS) problems on graphs. To introduce these problems and

the corresponding algorithms, we first provide some basic definitions and terminolo-

gies.

1.1 Basic definitions and terminologies

A graph G = (V,E) consist of a set V of vertices, and a set E of edges, where each

edge connects two distinct vertices together. Now we introduce the different classes

of graphs, and some other terminologies:

• Undirected graph: is a graph where each edge is a set of two vertices. In

other words, each edge is an unordered pair of vertices. All graphs in this thesis

are undirected unless otherwise specified.

• Directed graph: is a graph where each edge of G has a direction from one

vertex to another. In other words, each edge is an ordered pair of vertices.

• Weighted graph: is a graph such that each edge has a weight assigned to it,

that shows the cost of going from one vertex to another. If all the edges have

the same weight, we consider it as an unweighted graph.

• Path: in a graph is an alternating sequence of vertices and edges connecting

a starting vertex to an ending vertex, without repeating any vertices, or edges

1

1. INTRODUCTION

such that each edge is incident to its succeeding and proceeding vertices, see

Fig. 1.1.1(a).

• Cycle: is a path that starts and ends at the same vertex. In other words, a

cycle is a closed path.

• Acyclic graph: is a graph with no cycles. In other word, in an acyclic graph,

its not possible to start at a vertex and follow a path along the edges that

eventually gets back to the starting vertex, see Fig. 1.1.1(a) and Fig. 1.1.1(b).

• Complete Graphs : are undirected graphs in which every pair of distinct

vertices is connected by exactly one edge. A complete graph with n vertices is

shown as Kn, Fig. 1.1.1(c) shows the graph K4.

• Connected graph: is a graph in which exists a path between any pair of

vertices. All the figures in Fig. 1.1.1 show examples of connected graphs.

• Tree: is a connected acyclic graph, see Fig. 1.1.1(a) and Fig. 1.1.1(b).

(a) (b) (c)

Fig. 1.1.1: (a) Example of a path, (b) an acyclic connected graph (tree), and (c) the
graph K4.

• Caterpillar: is a tree consist of a path, called skeleton, and a set of vertices

each of which, called a dangling vertex, is connected to a vertex of the skeleton

by an edge, as shown in Fig. 1.1.2(a).

• Spider: is a tree consist of multiple paths that share a single vertex, called the

center, and do not share any other vertices. In a spider tree only the center

vertex has more than two neighbors, see Fig. 1.1.2(b).

2

1. INTRODUCTION

• Comb: is a tree consist of a path called the skeleton, and a set of disjoint

paths each connected to a unique vertex on the skeleton. Fig. 1.1.2(c) shows an

example of a comb.

(a) (b) (c)

Fig. 1.1.2: (a) Example of a caterpillar, (b) spider, and (c) comb tree.

• Leaf: is a vertex of a graph that has only one edge connected to it.

• Voronoi Diagram: Consider a set P of points in the Euclidean plane. The

Voronoi diagram of P is a geometric structure that partitions the plane into ∣P ∣
cells, one for each point p, called the Voronoi cell of p, such that any point in

the Voronoi cell of p is closer (in terms of Euclidean distance) to p than any

other point in the point set, see Fig. 1.1.3.

Fig. 1.1.3: Voronoi diagram for a given point set.

• NP-hardness: A problem is considered NP-hard if it is at least as hard as the

hardest problems in the complexity class NP (Non-deterministic Polynomial

time). NP problems are those that can be solved in polynomial time by a non-

3

1. INTRODUCTION

deterministic Turing machine, or verified in polynomial time by a deterministic

Turing machine.

1.2 The MCS problem

LetG be a simple undirected edge-weighted graph where its vertex set V is partitioned

into V1, . . . , Vk. The distance between two vertices u, v ∈ V is defined as the weight

of the shortest path between u and v in G. The Minimum Consistent Subset (MCS)

problem asks for a minimum cardinality subset S of V such that for every i ∈ {1, . . . , k}
and for every v ∈ Vi a nearest neighbor of v in S belongs to Vi; see [4, 5, 6, 12]. The

set S is a representative for the structure of the entire graph G. We may assume that

the vertices of V are colored by k different colors such that the vertices in each Vi

have the same color and the vertices in Vi and Vj, with i ≠ j, have different colors.

Hence the MCS problem asks for a minimum cardinality subset S of V such that for

every v ∈ V a nearest neighbor of v in S has the same color as v. See Fig. 1.2.1(a) for

an example where all edges have the same weight.

s1

s2s3

s4
a

b
c

d

(a) (b)

Fig. 1.2.1: (a) An example of a 2-colored graph G where all edges have the same
weight. The set S = {s1, s2, s3, s4} is an MCS for G. The vertex s1 is a nearest
neighbor of a, b, c, and d in S. (b) The Euclidean MCS where the circled points
belong to S.

The MCS problem was first introduced by Hart [9] (in 1968) for points in the

Euclidean plane. In this version G is assumed to be a complete graph, and the vertices

are represented by points in the plane, and edge weights are Euclidean distances

4

1. INTRODUCTION

between the endpoints [2, 7, 8, 9]. As every vertex of V has the same color as its

nearest neighbor in S, in the Voronoi diagram of S all points in each Voronoi cell

have the same color as the center of the cell; see Fig. 1.2.1(b).

The MCS problem finds applications in solving nearest neighbor problems [3, 7,

8, 15], finding optimal number of clusters in k-clustering problems such k-means

and k-nearest neighbors [6], and finding optimal set of classifiers in classifying algo-

rithms [10]. The MCS problem is also useful in the field of pattern recognition, such

as speech and handwriting recognition [6, 11].

When all edges of G have the same unit weight, we say that G is unweighted.

In this case the distance between two vertices u and v is the number of edges in

the shortest path between u and v. The MCS problem is NP-complete even for

two-colored unweighted planar graphs [1, 5]; this is shown by a reduction from the

minimum dominating set problem. The Euclidean version of the MCS problem is also

NP-complete [14] even for two-colored points [11].

There has not been much progress on the MCS problem from the algorithmic

point of view. Recently, Dey et al. solved this problem in polynomial-time for some

simple two-colored (also known as bicolored and bichromatic) unweighted trees such

paths, spiders, caterpillars, and combs [4]. In a companion paper [5] they presented an

algorithm for general two-colored unweighted trees. See Fig. 1.2.2(a) and Fig. 1.2.2(c)

for examples of MCS on bicolored trees.

A minimum consistent subset for a bicolored tree may consist of only two vertices,

no matter how large the tree is; see for example the tree in Fig. 1.2.2(c). For the

purpose of clustering and classifications such a solution does not accurately reflect

the structure of the entire tree. To capture the entire structure of the tree we need a

stronger version of the MCS problem which we introduce below.

We define a block to be a maximal connected subset of vertices of the same color

in a tree. The tree in Fig. 1.2.2(b) consists of seven blocks denoted B1, . . . ,B7. The

solution of the MCS problem may not contain representatives (i.e. vertices) from all

blocks in the tree; see e.g. Fig. 1.2.2(a) and Fig. 1.2.2(c). Therefore, a minimum

consistent subset may not capture the structure of the entire tree. In order to have

5

1. INTRODUCTION

v

p q

B7

B6
B5

B4

B3

B2

B1

v

p q

(a) (b) (c) (d)

Fig. 1.2.2: (a) An MCS for a two-colored unweighted tree. (b) Blocks in a tree. (c)
An MCS for an unweighted tree that has size 2, and (d) an MCSS for the same tree.

a better representative for the tree we introduce a more constrained version of the

MCS problem.

1.3 The MCSS problem

The minimum consistent spanning subset (MCSS) is a more constrained version of

the MCS problem. In this version, which we call it the MCSS problem, the solution

S must contain at least one vertex (i.e. a representative) from each block of the tree.

A solution to the MCSS problem spans over all blocks in the tree. See Fig. 1.2.2(d)

for an example of an MCSS on a two-colored tree.

1.3.1 Problem definition

We formally define The MCSS problem on trees as follows. Given an undirected

vertex-colored edge-weighted graph G = (V,E), the MCSS problem asks for a subset

S ⊆ V of minimal size such that for a vertex v ∈ V the nearest neighbor of v in

S has the same color as v. Furthermore, each block of G must have at least one

representative in S. In the MCSS problem, we consider the distance between two

vertices, denoted by dist(a, b), as the weight of edges in the shortest path between a

and b in the tree.

6

1. INTRODUCTION

1.3.2 Hardness of the MCSS problem on general graphs

The MCSS problem on a vertex-colored edge-weighted general graph G can be defined

in a similar fashion where each block is a maximal connected subset of vertices of the

same color in G. We observe that this problem is NP-hard. This is implied from the

NP-hardness proof of the MCS problem for two-colored edge-weighted general graphs,

due to Banerjee, Bhore, and Chitnis [1]. They use a reduction from the dominating

set problem in connected graphs as follows. Given an instance of the dominating set

problem on a connected graph G, construct an instance of the MCS problem on a

graph consisting of two copies of G, namely G1 and G2, and a vertex v. The edges of

G1 and G2 have wight 1. Connect every vertex of G1 to all vertices of G2 by edges

of weight 2 − 3ϵ, and every vertex of G2 to v by edges of weight ϵ. Then color the

vertices of G1 red, and the vertices of G2 and v blue, see Fig. 1.3.1.

G1 G2

v

1

2− 3ε

ε

(a) (b)

Fig. 1.3.1: (a) Example of the the graph G, and (b) its constructed graph for the
MCS problem.

In the above construction the vertices of the same color form a block, and any

solution for the MCS problem must contain vertices from both blocks. This matches

with the requirements of our MCSS problem. Thus the same reduction implies that

the MCSS problem on general graphs is also NP-hard, even for graphs that consist

of two blocks.

Now that the formal problem definition for MCSS problem and its hardness are

known, we discuss the organization of this thesis in the next part.

7

1. INTRODUCTION

1.4 Contributions and thesis organization

The following theorem summarizes our main result and contribution of this thesis.

Theorem 1. A minimum consistent spanning subset on a vertex-colored weighted

tree with n vertices can be computed in O(n4) time.

Although our MCSS algorithm shares some similarity with the MCS algorithm of

[5] in terms of running time and the main approach which is dynamic programming,

there are major differences: (i) the two algorithms have different objectives, (ii) our

algorithm works for multicolored weighted trees while it is unclear how one could

generalize the algorithm of [5] to more than two colors or to weighted trees without

blowing the running time mainly due to the notion of gates, (iii) our algorithm is

based on a recursive formula and it does not transform the original problem to a

shortest path problem nor uses any gates.

We also show how to solve the MCSS problem faster on simple trees such as

paths, spiders, combs and caterpillars with the respective running time of O(n),
O(n2), O(n3), and O(n3).

The rest of this thesis is consist of the following four sections:

Chapter 2: In this chapter we discuss the previous work, and results regarding

the MCS problem for graphs, and points in the plane. This is followed by applications

of the MCS problem.

Chapter 3: In this chapter, we present our main algorithm, and prove Theorem 1.

Our algorithm uses a dynamic programming approach to find the MCSS on trees.

Chapter 4: In this chapter, we discuss the MCSS on simpler classes of trees,

such as paths, spiders, combs and caterpillars. For these trees we obtain the MCSS

in a better running time.

Chapter 5: This chapter concludes the thesis, and discusses some open problems,

and future research direction.

8

CHAPTER 2

Related works

In this chapter we first discuss some related works to solve the MCS for both general

graphs and geometric graphs. Then we discuss some applications of the MCS.

Let n be the number of vertices of the input graph. In a recent study, Dey,

Maheshwari, and Nandy [4] showed how to solve the MCS problem on some simple

two-colored unweighted trees such as paths, spiders, caterpillars, and combs with

respective running times O(n), O(n2), O(n), and O(n2). In a companion paper [5]

they showed how to solve the MCS problem on two-colored unweighted trees in O(n4)
using a dynamic programming algorithm. They reduce each instance of the problem

to a shortest path problem in a graph. Their algorithm is highly dependent on specific

structures called gates. Manna et al. [12] also proposes an algorithm to find the MCS

for k-colored spiders in O(nk+2) using the concept of gates. We will discuss gates in

detail in the Section 2.1.

The MCS problem was originally introduced for points in the Euclidean plane

by Hart [9]. The Euclidean version of this problem is also well studied [1, 2, 14].

Banerjee et al. [1] solved the MCS problem for collinear points in O(n2) time. In

another study, Wilfong et al. [14] proposed a complex algorithm to find the MCS

for a set of points where one point is colored red, and the rest are blue in O(n2)
time. Recently, Biniaz et al. [2] provided algorithms to find the MCS of colored point

sets in the plane. These include a sub-exponential algorithm for determining the

MCS of points on a plane, an algorithm to compute the Euclidean MCS for collinear

points in O(n) time, and two dynamic programming algorithms to find the MCS for

multi-colored and two-colored points lying on two parallel lines with the respective

9

2. RELATED WORKS

running times of O(n6) and O(n4). Furthermore, they proposed an algorithm with

time complexity of O(n logn) to determine whether the size of the MCS for a set of

two-colored points is two, and to find such a subset if it exists [2]. In the following

sections of this chapter, we discuss some of the above algorithms that solve the MCS

problem on different settings in more detail.

2.1 The MCS problem on graphs

As previously discussed some algorithms have been recently proposed to solve the

MCS problem on specific classes of unweighted trees. Before discussing these algo-

rithms, it is useful to understand the concept of gates.

In a two-colored unweighted tree a gate is defined as a tuple (p, q, v). Let v be

a vertex with two equidistant children p and q of opposite colors, such that all the

vertices on the path v ↝ p (and v ↝ q respectively) all have the same color (except v

itself), see Fig. 2.1.1(a) and Fig. 2.1.1(b). While computing the MCS for two-colored

unweighted trees by choosing a gate (p, q, v), assume that p and q are in the solution.

Now, all the vertices in the subtrees connected to the each child of v that does not

contain p or q, will be closer to either vertex p or q depending on their color, and are

considered solved [4, 5, 12], see Fig. 2.1.1(c). In general a gate with k colors can be

formed for a vertex v, if v has k different equidistant children p1,⋯, pk where each

vertex p1,⋯, pk has a unique color and all the vertices on each path v ↝ pi (except v)

all have the same color [12], see Fig. 2.1.1(d). Gates are widely used in [4, 5, 12] to

find the MCS of different unweighted trees.

2.1.1 The MCS problem on simple unweighted trees

In this section we discuss some previous work regarding finding the MCS for simple

classes of trees. We assume that any tree T considered in this section has n vertices.

10

2. RELATED WORKS

qp

v

p q

v

v

qp

v

p1 p2 p3

(a) (b) (c) (d)

Fig. 2.1.1: (a) and (b) Example of a gate (p, q, v). (c) Example showing all the
vertices in the triangle connected to v are closer to either p or q depending of their
color, and are solved. (d) Example of a 3-colored gate.

2.1.1.1 Paths

Dey et al. [4] first propose an algorithm to find the MCS for a simple unweighted

path, denoted by T , in O(n) time assuming that the blocks of T , say B1,⋯,Bk, are

given from left to right, see Fig. 2.1.2.

B5B1 B2 B3 B4

Fig. 2.1.2: Example of a path and all of its blocks.

They show that that only one vertex is enough from B1 and Bk to be in the MCS,

while all the other blocks require at most two vertices. Thus the MCS for T must

include at least one vertex from each block. This means that the MCS and the MCSS

problem on a path is identical.

The algorithm then transforms the MCS problem on a path T to a shortest path

problem, and solves it as such. Let T be a graph with all the vertices of T . To help

with selecting correct vertices for the MCS of T , a dummy vertex is added to T for

each block of T , denoted by d1,⋯, dk, see Fig. 2.1.3.

d1 d2 d3 d4 d5

Fig. 2.1.3: Example of the vertices of the new overlay graph T while solving a path.

For each vertex v there exists at most three vertices v′ in the next block such that

any vertex u between v and v′ is closer to one of v and v′ that has the same color

11

2. RELATED WORKS

as u. Such (v, v′) is called a valid pair. For each v a directed edge with the weight

of 0 is added to T from v to all the vertices of the next block that form a valid pair

with v. Furthermore, to help with selecting more than one vertex from each block to

be in the solution, a directed edge is added from each vertex v ∈ Bk to the dummy

vertex dk. It should be noted for each vertex v another edge is added in the opposite

direction from dk to v as well. These edges between each vertex and the dummy

vertices have the weight 1 for all the vertices in B2,⋯,Bk−1, and will have the weight

of 0 for B1 and Bk. To find the MCS for T , shortest path between d1 and dk such

that the vertices are selected from left to right for T is computed. By removing the

dummy vertices from the shortest path, a MCS of T is obtained, see Fig. 2.1.4.

d1 d2 d3 d4 d5

Fig. 2.1.4: Example of the shortest path and the MCS of a path.

2.1.1.2 Two-colored spiders

Here we discuss the algorithm of Dey et al. [4] to solve the MCS for a two-colored

unweighted spider tree T in O(n2) time.

v

Fig. 2.1.5: Example of a two-colored spider.

Let v denote to the center of T , see Fig. 2.1.5. The algorithm considers three

cases. Case(i): v’s color is different from all of its adjacent vertices. In this case,

the center vertex v is added to the solution as it forms a block of size 1, and all of

12

2. RELATED WORKS

the the paths connected to v are then solved using the algorithm for paths with the

assumption that v is already in the solution, see Fig. 2.1.6.

v

Fig. 2.1.6: Example of the MCS for a two-colored spider where the center vertex is
colored differently than all the other adjacent vertices to it.

Case(ii): v has the same color as all of its adjacent vertices. Let B be the block

containing v. The algorithm guesses the vertex v′ in the optimal solution that is

closest to v. To do so, the algorithm considers each vertex v′ in B to be the closest

vertex to v in the solution. Then the MCS for each path from v′ to any leaf is

computed with the assumption that v′ is the closest vertex to v in the solution. The

final solution is obtained by considering all vertices of B and choosing the vertex

resulting in the smallest consistent subset, see Fig. 2.1.7.

v

v′

Fig. 2.1.7: Example of the MCS for a two-colored spider where the center vertex is
colored the same as all the other adjacent vertices to it.

Case(iii): v has neighboring vertices of both colors. In this case, v and some its

neighbors form gates. The algorithm considers all the possible gates (p, q, v), and
chooses the gate resulting in the consistent subset of smallest size. For each gate, all

the vertices on the paths connected to v, except the paths containing p and q, are

closer to vertex p or q depending of their color. Let δ1 and δ2 be the respective paths

13

2. RELATED WORKS

from p and q to the end of the path that contains p and respectively q. The consistent

subset base on each gate (p, q, v) contains p and q, and the MCS for paths δ1 and

δ2 with the assumption that p and q are already in the solution. This algorithm

computes the consistent subset base on all gates, and finds the MCS for the spider in

O(n2) time, see Fig. 2.1.8.

v

q

p

q

δ1

δ2

Fig. 2.1.8: Example of the MCS for a two-colored spider using the gate (p, q, v).

2.1.1.3 Multi-colored spiders

Recently Manna et al. [12] solved the MCS problem for multi-colored unweighted spi-

ders. To find the MCS for a multi-colored unweighted spider, a very similar approach

to the two-colored spiders is taken. The algorithm works by first checking the center

vertex, and the corresponding block containing the center vertex. Here they also

consider 3 cases. Case(i) where v has different color from its neighbors, and case(ii)

where v has the same color as all of its neighbors are handled similarly to 2-colored

spiders [4]. The main difference between the algorithm in [12], and the algorithm

proposed in [4] for two-colored spiders, is the case where some gates can be formed

around the center vertex. In a k-colored spider where the neighboring vertices to

the center v are colored differently, two scenarios might happen (i) some gates with

all k colors can be formed around v, or (ii) no gate with all k colors can be formed

around v. For the first case, the algorithm considers all gates with all k colors, and

the solution for the paths connected to the vertices of the gate are computed. In this

case, the gate resulting in the smallest size consistent subset is the MCS of the spider,

see Fig. 2.1.9(a). For the second case, where not all k colors exist in the neighboring

blocks of v, the algorithm considers all combinations of different colored gates of all

14

2. RELATED WORKS

sizes. For each gate the consistent subset includes the vertices of the gate, the solution

for the paths connected to the vertices of the gates, and some other vertices obtained

as follows. For each path δ (δ does not contain a vertex of the gate) connected to v

that contain vertices of different color than the ones in the gate, let ϕ(δ) be the first

block of δ. The solution for δ is computed base on a vertex of the gate already in the

solution that has the same color as vertices of ϕ(δ). Let pi be such a vertex, and let δ′

be the union of δ and the path pi ↝ v. The solution for δ′ is computed as a path with

the assumption that pi is the closest to vertex to v in the solution. By adding the

solution for each path δ to the solution of the gate, the size of the consistent subset

base on that gate is obtained. By checking all gates, and choosing the one resulting

in smallest consistent subset the MCS for the spider is found, see Fig. 2.1.9(b). For

each of these cases, the algorithm requires O(nk+2) to find the MCS of the k-colored

spider.

v
p1

p2 p3

p4
p1

p2
p3

p4

δ′

v

(a) (b)

Fig. 2.1.9: (a) Example of the MCS of 4-colored spider where the center v and p1,⋯, p4
form a gate. (b) Example of the MCS of 7-colored spider where the center v and
p1,⋯, p4 form a gate.

2.1.1.4 Caterpillars

Let T be a two-colored unweighted caterpillar. An algorithm of Dey et al. [4] propose

to find a MCS of T in O(n) time using gates. The algorithm first finds a vertex v on

the skeleton such that it has two children of opposite color. In this case, he MCS for

the entire tree is {p, q}, see Fig. 2.1.10.

15

2. RELATED WORKS

v

p q

Fig. 2.1.10: Example of the MCS for a caterpillar of size two.

Now consider the case where none of the vertices on the skeleton have two children

of opposite color to form a gate. To find the MCS in this case, the algorithm traverses

the tree to find gates that are formed between a vertex on the skeleton, and a dangling

vertex. For a vertex v on the skeleton, a left gate is defined as a tuple (p, q, v) such
that p is the vertex to the left of v on the skeleton, and q is a dangling child of v of

opposite color than p. For a left gate (p, q, v) all the vertices to the right of v are

closer to either p or q of the same color. A right gate is defined in the similarly, where

p is to the right of v in the gate (p, q, v), and q is the dangling child of v with an

opposite color to p. Consider a caterpillar with only left gates in it, then by selecting

the leftmost left gate (p, q, v) and adding p and q to the solution, all the vertices to

the right of v will be closer to either p or q of the same color in the solution. The

MCS for the unsolved portion to the left of p is then solved in O(n) as a path, see

Fig. 2.1.11. A similar process happens if the tree only contains right gates by choosing

the rightmost right gate.

p

q

v

Fig. 2.1.11: Example of the MCS of a caterpillar containing only left gates.

Lastly, in case both left gates and right gates are present in a two-colored un-

weighted caterpillar two cases are considered. (i) In this case the leftmost left gate

(pl, ql, vl) is to the left of the rightmost right gate (pr, qr, vr). The algorithm finds a

consistent subset base on each gate, and chooses the smallest one as the MCS of the

caterpillar, see Fig. 2.1.12(a). (ii) The leftmost left gate (pl, vl, ql) is to the right of

the rightmost right gate (pr, vr, qr). The MCS in this case consists of all four ver-

tices {pl, ql, pr, qr}, and the MCS for the unsolved middle portion between pr and pl

is then solved with a similar approach to the path, as it does not contain anymore

16

2. RELATED WORKS

gates. Notice that in the algorithm if any of the vertices of the gates, have children

of different colors, all of those vertices need to be included in the solution as well,

see Fig. 2.1.12(b). This algorithm finds the MCS for a given two-colored unweighted

caterpillar with n vertices in O(n) time.

pl

ql

vl prvr

qr

prvr pl vl

qlqr

(a) (b)

Fig. 2.1.12: (a) Example when the left most left gate (pl, ql, vl) is to the left of the
right most right gate (pr, qr, vr). (b) Example of the MCS of a caterpillar when the
left most left gate (pl, ql, vl) is to the right of the right most right gate (pr, qr, vr).

2.1.1.5 Combs

The last algorithm discussed by Dey et al. [4] is to find the MCS for a two-colored

unweighted comb. To solve this problem, a similar approach to the caterpillar is

taken. Using the leftmost left gate, and rightmost right gate the problem is broken

down to smaller problems that need to be solved. Each unsolved portion, is solved

with a similar approach to a path, by transforming it to a shortest path problem.

Unlike the shortest path problem for the paths, in this problem the weight of the

edges added between two vertices in the overlay graph consists of the sizes of the

MCS for the unsolved paths connected to the vertices between the two end of the

edge. To help find the weight of these edges in the shortest path problem, the sizes

of the solutions for each path connected to the vertices of the skeleton is calculated

base on all the vertices in the same block and stored in the vertices, so they can be

accessed when needed. This algorithm can correctly compute the MCS for a comb

with n vertices in O(n2) time, see Fig. 2.1.13.

17

2. RELATED WORKS

vp

q

Fig. 2.1.13: Example of the MCS for a two-colored comb base on the left most left
gate (p, q, v).

2.1.2 The MCS problem on two-colored unweighted trees

In a another study Dey et al. [5] proposed an algorithm to find the MCS for two-

colored unweighted trees using a bottom-up dynamic programming approach in O(n4)
time. In this section we summarize their algorithm. This study uses the same ideas

discussed in the previous section to find the MCS of simple two-colored unweighted

trees. A useful gate in two-colored unweighted trees is defined as follows (see also [5]).

Assume T is rooted at a leaf. Let (p, q, v) be a gate in a given two-colored unweighted

tree T . The gate (p, q, v) is called useful if there are no other gates in the subtrees

connected to the vertices along the paths v ↝ p and v ↝ q in a deeper level. Let

(p, q′, v′) be a gate containing a useful gate (p, q, v). Let S ′ be the set of solved vertices

in the subtrees that will be closer to either p or q′ from the gate (p, q′, v′) assuming

that p and q′ are in the solution. Moreover, let S be the set of solved vertices in the

subtrees that will be closer to either p or q from the useful gate (p, q, v) assuming p

and q are added to the solution. Since v is a descendant of v′, S ′ is always a subset of

S. This implies checking the size of the consistent subset for the gate (p, q′, v′) would
be redundant as it would never be smaller than the size of the consistent subset for

the useful gate (p, q, v), see Fig. 2.1.14.

18

2. RELATED WORKS

q′qp

v

v′

S ′

S

Fig. 2.1.14: Example of a useful gate (p, q, v). All the vertices in the area S ′ will be
closer to either p or q′ base on their color in the solution, while the vertices in S will
be closer to either p or q.

Now, to find the MCS of a two-colored unweighted tree T Algorithm 1 in [5]

works by generating a new anchored tree base on each vertex and adding it to a set.

Moreover, for each edge in T , a fictitious vertex is added on the edge, and a new tree

anchored at the fictitious vertex is generated and added to the same set as well. Then

the algorithm checks all the trees in the resulting set and removes all the trees that

are not anchored at any useful gate. The algorithm then computes the size of the

consistent subset for all of the remaining anchored trees. For each anchored tree, it

might be the case that the tree is anchored at several useful gates of different sizes.

The algorithm finds the MCS base on each useful gate for all of the anchored trees,

and chooses the one with the smallest consistent subset as the MCS of the tree. Let

T be a two-colored unweighted tree anchored at useful gate (p, q, v). As previously

discussed due to (p, q, v) being a useful gate all of the vertices on subtrees connected

to v, except the subtrees including p and q, are closer to either p or q in the solution

with the same color. However, the subtrees connected to the vertices along the path

v ↝ p and v ↝ q are not solved, see Fig. 2.1.15.

19

2. RELATED WORKS

v

p q

Closer to p or q

needs to be solved
base on p or q

Fig. 2.1.15: Example of a useful gate (p, q, v).

The solution for the subtree connected to each vertex u along the path v ↝ p is

computed with the assumption that no vertex is closer to u than p in the solution for

that subtree. This is done to ensure the consistency of the subset in other branches.

The same approach is taken for the vertices along the path v ↝ q with respect to

vertex q in the solution. Consider Tu as the unsolved subtree connected to vertex u

along the path v ↝ p. Let T ′ be the union of Tu and the path from p↝ u. To find the

MCS for T ′ with the assumption that p is the closest vertex to u in the solution the

algorithm works as follows. Consider all the paths from p to a leaf in T ′, and compute

a consistent subset for T ′ base on each path. The solution for T ′ base on each path

is computed by transforming it to a shortest path problem. In the new shortest path

problem, similarly to the comb discussed in the previous section, the weight of an

edge between two vertices (regardless of whether its connecting two vertices of the

same or opposite colors) is considered as the summation of sizes of the solutions for

the unsolved subtrees connected the vertices between the two end of the edge. To

find the size of the solution for each unsolved subtree while computing the weight of

the edges in the shortest path problem further recursions happen that can be solved

with the same approach. The algorithm computes the size of the consistent subset

base on each path in T ′, and chooses the one with smallest one as the MCS of T ′.

The same process is done to find the MCS for all the unsolved subtrees connected to

the vertices on the path v ↝ p and v ↝ q. The size of consistent subset base on each

useful gate is computed by computing the MCS sizes for all of the unsolved subtrees,

and adding them together. To help with the computations that happen while solving

20

2. RELATED WORKS

the MCS base on each useful gate in an anchored tree, the solutions for all required

subtrees in an anchored tree is computed using a bottom-up dynamic programming

approach and stored in the vertices to be used when needed. The algorithm repeats

this process for all of the useful gates in all of the anchored trees, and chooses the

smallest consistent subset as the MCS of the given two-colored unweighted tree in

O(n4) time, see Fig. 2.1.16.

v

qp

Fig. 2.1.16: Example of the MCS of a two-colored tree using the useful gate (p, q, v).

2.2 The Euclidean MCS problem

In a recent study Biniaz et al. [2] proposed different algorithm to solve the MCS

problem for points in the Euclidean plane in different settings and formations.

The first algorithm discussed in [2] is to solve the decision version of the MCS

problem for points in the Euclidean plane. Consider P as a set of n colored points in

the Euclidean plane. To find the MCS of these points, the trivial approach is to check

all the possible subsets of P to find the smallest consistent subset. This approach has

an exponential running time. The decision version of this problem, trying to check

if a consistent subset of size k exist, can also be solved trivially by checking all the

possible subsets of size k with the time complexity of nO(k). The algorithm presented

in [2] runs in nO(
√
k). It uses dynamic programming to divide the problem into smaller

portions that can be solved recursively. Assume S is the a consistent subset for the

points P of size k. Let V be the Voronoi diagram for the points of S. Every point of

P in the plane is in the Voronoi cell of a point s ∈ S, and closer to s than any other

point of S. Notice as every point of P has the same color as its nearest neighbor in

S, in the Voronoi diagram of S all points in each Voronoi cell have the same color as

21

2. RELATED WORKS

the center of the cell, see Fig. 2.2.1.

A balanced curve separator for a triangulated planar graph is a cycle that splits the

graph to two portions, inside and outside of the cycle, where the number of vertices

in each portion is balanced in regards to the total number of vertices. A variation of

V has a balanced curve separator of size O(
√
k), such that it divides the problem to

two parts inside and outside of the curve. The vertices of a balanced curve separator

alternate between the points of P and the vertices of the Voronoi diagram that are

introduced by three points of P . For each balance curve separator the points from

P that the curve passes, and the three points that introduced each Voronoi vertex

that the curve passes are added to the consistent subset, see Fig. 2.2.1. The solutions

for the problems inside and outside of the separator are also computed similarly by

finding another balanced curve separator, and adding the points in the solution to

the consistent subset. This process continues until the consistent subset of size k is

found.

The issue is that S of size k is not known for the algorithm to compute V , and
the balanced curve separator. Each vertex of V is introduced by 3 points of P . This

means that in total there exist nO(
√
k) curve separators and Voronoi diagrams that

all need to be checked. This algorithm finds if a point set P has a consistent subset

of size k in sub-exponential time of nO(
√
k). To find the MCS for a set of points, the

algorithm starts from k = 1, and increases k until the smallest k with a solution is

found.

Fig. 2.2.1: Example of the solution S along with the Voronoi diagram of S and one
of the balance curve separator for a set of points.

22

2. RELATED WORKS

The next algorithm of Biniaz et al. [2] is a simple algorithm to find a MCS of size

two for a set of two colored points in the Euclidean plane (if such a MCS exists). Let

P be a set of two-colored points in the plane. Notice that if P has a MCS of size

two, that implies that one red point r and one blue point b are forming the MCS.

These two points are chosen such that all the red points in P are closer to r, and

all of the blue points of P are closer to b. Consider two points r and b in the plane,

notice that the perpendicular bisector of r and b denoted by ℓ separates the plane

to two regions. Every point on the same region as r is closer to r, while every point

on the region of b is closer to b. Using this approach the MCS of size two for a set

of two-colored points can be found trivially by checking each pair (r, b) of opposite
color, and computing the perpendicular bisector for them to check if the pair makes

a valid MCS. Notice that if the pair (r, b) does form a valid MCS, the perpendicular

bisector divides the red and blue points such that all the red points are in the same

region as r and closer to r, while all of the blue points are in the same region as b

and closer to b, see Fig. 2.2.2. This algorithm is able to find the MCS of size two by

checking all the pairs, and checking the validity of the solution in O(n2 logn) time for

n points. Biniaz et al. [2] propose a nontrivial algorithm that projects the points in

the three-dimensional environment, and uses a point cone incident approach to solve

this problem in O(n logn) time for a point set with n points.

`

b r

Fig. 2.2.2: Example of MCS of size two for a set of two-colored points in the Euclidean
plane.

Biniaz et al. [2] also studies the MCS problem for restricted Euclidean point sets

such as points on a line or on two parallel lines. For multi-colored points on a line

23

2. RELATED WORKS

they propose an algorithm that solves the MCS problem in O(n) time. This improves

the previous O(n2) running time of Banerjee et al. [1]. To find the MCS for a set of

collinear points P , the concepts of blocks for a set of collinear colored points on the

x-axis is defined similarly to the blocks defined for graphs. Let the points of P be

p1,⋯, pn from left to right, and let the blocks of P be B1,⋯,Bm from left to right,

see Fig. 2.2.3.

BmBm−1Bm−2

Fig. 2.2.3: Example of the blocks on a collinear point set.

This algorithm stores a table T (.) for all the points on the line. For a point pk the

value of T (k) shows the size of MCS for the portion of the line to the left pk. While

computing T (k) for each point pk in a block Bm, a point to left of pk from the block

Bm or Bm−1 must be in the solution. The algorithm checks all these possible points

as a pair for pk to find the valid points pi such that all the points between pi and pk

are closer to either pi or pk that has the same color as them. Then by choosing the

pi with the smallest T (i), the value for T (k) is obtained, see Fig. 2.2.4. Instead of

checking all the points in Bm and Bm−1 to compute T (k) in O(n) time, by storing

some additional information in each point, T (k) can be computed in constant time.

For each point pk by storing the index of the previous point in the same block as

pk with smaller T (.), the value T (k) can be correctly computed in constant time.

This implies in total it would take O(n) time to compute the table for all the points

starting from the left most point using a bottom-up dynamic programming approach.

pkpi

BmBm−1

Fig. 2.2.4: Example of valid pi for the point pk while computing T (k).

The last problem studied by Biniaz et al. [2] is to find the MCS for a set of points

in the Euclidean plane lying on two parallel lines. Two different variation of this

problem are studied for multi-colored and two-colored points. To find the MCS for

24

2. RELATED WORKS

a set of multi-colored points lying on two parallel line, the algorithm first assumes

that the points in the MCS are chosen only from the points of one line. Let P and

Q be the set of multi-colored point on each line. With the assumption that the MCS

for the points of P ∪ Q consists of only points from P , the algorithm projects the

points of Q to P . Then using a similar approach to the collinear points, the MCS

for the new line is found in O(n logn) time. In this new line the points of P are

the only ones considered to be in the MCS, while all points of P ∪Q are considered

for the validity of the solution. A similar process happens if the MCS only contains

the point from the line Q. Lastly, to find the MCS by selecting points from both

lines, a dynamic programming approach is used to break the problem into smaller

subproblems. The algorithm chooses one point from each line already in the solution

that have the smallest distance to each other. This pair will divide the problem to

two other similar instances, one to the right and one to the left of the chosen pair.

Each subproblem is then solved recursively. To find the pair of points that are closest

together in the solution, the algorithm checks all the pairs of points lying in different

lines, and chooses the closest pair resulting in the smallest solution. The recursions

continue until the MCS for the entire point set is found. This algorithm solves the

MCS problem for a set of multi-colored points lying on two parallel lines in O(n6)
time using dynamic programming where ∣P ∪Q∣ = n.

b

a

Fig. 2.2.5: Example showing the closest pair (a, b) in the solution. The unsolved
portions to the the left and right of (a, b) are solved independently and recursively.

To solve the two-colored variant of this problem the algorithm of Biniaz et al. [2]

works as follows. Let R be the set of all the red points lying in a single line in the

plane, and let B be the set of all the blue points in another line parallel to the line

passing through points of R. The algorithm works by choosing the pair (r, b) that are
the rightmost pair of opposite color points in the solution, the problem can be broken

down to a smaller subproblem to the left of the chosen pair. The new subproblem

25

2. RELATED WORKS

is solved similarly by finding the rightmost pair of points of opposite color in the

solution. To find each pair, the algorithm solves the MCS base on all the possible

pairs of different color, and chooses the rightmost pair resulting the smallest solution.

The recursions continue until the MCS for all the points is found. This algorithm

correctly computes the desired MCS using a dynamic programming approach in the

running time of O(n4) where ∣B ∪R∣ = n.

r

b

Fig. 2.2.6: Example showing the rightmost pair (r, b) in the solution. The unsolved
portion to the the left (r, b) is solved recursively.

2.3 Applications of the MCS problem

Recall that the MCS problem was introduced by Hart [9] with the motivation to

solve the nearest neighbour problem. Since then the MCS problem has shown to be

useful in problems that require solving the nearest neighbour problem [3, 7, 8, 15].

Moreover, Gao et al. [6] and He et al. [10] discuss that many clustering algorithms

that require finding the number of clusters before handling new test data, can benefit

from using the MCS problem as well. Using the MCS problem a set of representatives

for the training data can be obtained. The number of the samples obtained using

the MCS is the optimal number of clusters for the given data set. This approach has

been proven to be useful in k-clustering algorithms such as k-means and k-Nearest

Neighbors.

Gao et al. [6] and Khodamoradi et al. [11] have shown that the MCS problem is

useful in pattern recognition problems such as hand or speech recognition. The MCS

problem can be used to find the frequent patterns that exist in a set data. By passing

similar data to the MCS problem, the obtained MCS from each sample will also be

similar. This approach can be used to find the frequent patterns that exist in a set

of data.

26

2. RELATED WORKS

Lastly, He et al. [10] shows that the MCS problem is applicable in complex classify-

ing models such as Hyper Surface classification. Hyper Surface classification is mostly

used when the size of dataset is large, and the data are in two or three dimensional

space. The Hyper Surface classification algorithm requires a set of representatives

from the training data set, so it can classify the new incoming test samples base on

the labels of the existing representatives. They suggest an approach that uses the

MCS problem to find the needed set of representatives for the model. They show that

by passing the entire training data set to the MCS algorithm, the obtained MCS has

optimal number of representatives in it. They further test this approach by creating

a real life classifying model on a breast cancer dataset using Hyper Surface Classi-

fication, and the MCS problem. The MCS problem here is used to find the set of

representatives from the training set needed to classify the incoming test data. They

show as a result of the MCS having the smallest number of needed representatives,

adding or removing any other samples to the MCS to be used in the classification will

result in a lower overall accuracy for the predictions.

27

CHAPTER 3

Algorithm for the MCSS problem

In this chapter we present our algorithm to find the MCSS for any given tree, and

prove our main result mentioned in Theorem 1. Notice that by taking the two end-

point vertices of each bichromatic edge, a 2-approximation algorithm for the MCSS

problem on trees can be obtained. Our proposed exact algorithm uses dynamic pro-

gramming to break the MCSS problem to smaller subproblems, and solves it in O(n4)
time for a tree with n vertices. Before presenting our algorithm and its details, we

first need to discuss some preliminaries for the algorithm.

3.1 Preliminaries for the algorithm

For simplicity we present our algorithm for unweighted trees. In the end we show how

to extend the algorithm to weighted trees. It is easily seen that an algorithm for the

MCSS problem on bicolored trees would also work on multi-colored trees.1 Therefore,

in our figures (but not in the description of the algorithm) we only consider bicolored

trees. In this section we discover some properties that will be used to design our

algorithm in the subsequent section. Let T be a tree and let S be a consistent

spanning subset of T . We say that a vertex v ∈ T is covered by the vertex u ∈ S if u

is a vertex of S that is closest to v. Analogously, we say that u covers v.

Observation 1. If all vertices of T have the same color, i.e. T is monochromatic,

then every vertex of T is a minimum consistent spanning subset for T .

1Notice that this does not apply to the MCS problem.

28

3. ALGORITHM FOR THE MCSS PROBLEM

Recall the definition of block as a maximal subset of connected vertices of the

same color in T . In view of Observation 1 we may assume that T has more than one

block. Let k ≥ 2 be the number of blocks in T . We define the block tree of T , denoted

by B(T), as the tree with k vertices, each corresponding to a block of T , and there is

an edge between any two vertices if their corresponding blocks are neighbors in T . In

other words, B(T) is obtained by contracting all blocks of T . Notice that each vertex

of B(T) corresponds to a block of T , and vice versa. We refer to a block of T as a

leaf block if it’s corresponding vertex in B(T) is a leaf. A block of T that is not a leaf

block is called an internal block, see Fig. 3.1.1.

B7

B6
B5

B4

B3

B2

B1

internal block
leaf block

B1

B2

B3 B4

B6B5

B7

(a) (b)

Fig. 3.1.1: (a) Example of a tree T together with its blocks. (b) The block tree of T .

We denote the shortest-path distance distance between two vertices u and v in T

by dist(u, v).

Lemma 1. Any minimum consistent spanning subset of a tree T contains exactly one

vertex from each leaf block of T .

Proof. We use contradiction to prove this lemma. Consider a minimum consistent

spanning subset S∗ that contains more than one vertex from some leaf block, say B.

Let N be the neighboring block of B. Let a be a vertex of S∗ in B that is closest to

N . Let S′ be the set obtained from S∗ by removing all the vertices

B

N n

x

a

v

of B except for a. We claim that that S′ is a consistent spanning subset

for T ; this would contradict S∗ being minimum.

29

3. ALGORITHM FOR THE MCSS PROBLEM

To prove the above claim, it suffices to show that a is a vertex of S′

that is closest to every vertex of B. Let n be a vertex of S∗ in N that

is closest to B. Let v be the last vertex of B on the path from a to n,

as depicted in the figure to the right. As S∗ is a consistent spanning subset, we have

dist(v, a) ≤ dist(v, n). Now consider any vertex in x ∈ B. The path between x and n

passes through v. Therefore dist(x, a) ≤ dist(x,n), which proves the claim.

3.2 The algorithm

Lemma 1 suggests a more constrained version of the MCSS problem, in the sense that

we can fix a leaf block B and enforce exactly one vertex of B to be in the solution.

As we do not know in advance which vertex of B is in the optimal solution, we try

all of them and report the best answer.

Our algorithm employs a nontrivial dynamic programming approach. First we

introduce the subproblems that will be generated throughout the algorithm and then

we will show how to solve the subproblems recursively.

3.2.1 Defining subproblems

We denote each subproblem by T (a, c) where a and c are two given vertices of T .

Consider the path δ between a and c in T and let x be the neighbor of c in δ (it

might be the case that a = x). By removing the edge (x, c) from T we obtain two

subtrees. Let Tc be the subtree containing c, see Fig. 3.2.1(a). Let T ′ be the union of

δ and Tc as in Fig. 3.2.1(b). We define T (a, c) to be the MCSS problem on T ′ with

the following constraints:

• a must be in the solution, and

• all the vertices from a to x on δ must be covered by a.

These constraints imply that the vertices from a to x should have the same color.

30

3. ALGORITHM FOR THE MCSS PROBLEM

Tc

a

x

c

δ

T

T ′ a

x

c

(a) (b)

Fig. 3.2.1: (a) The tree T , and (b) the tree T ′.

3.2.2 Solving the subproblems

We denote the size of the (constrained) MCSS for T (a, c) by S(a, c). To solve T (a, c)
we proceed as follows.

If T ′ is monochromatic, then (by Observation 1) we return a as the solution. In

this case S(a, c) = 1. Assume that T ′ is not monochromatic. We root T ′ at a.

Lemma 2. If T (a, c) has a solution, then any solution of T (a, c) contains a vertex

z in the same block as a or in a neighboring block of a such that all vertices on the

path from a to z are covered by a or by z.

Proof. As T ′ is multicolored, any solution of T (a, c) should contain at least two

vertices. In particular it should contain at least one vertex from each neighboring

block of a. In any solution of T (a, c) a vertex that is closest to a satisfies the statement

of the lemma for z.

Let z be any vertex of T ′ that satisfies the constraints of Lemma 2, see Fig. 3.2.2

(It might be the case that z = c. Also z could be in a’s block or in a’s neighboring

block). If such a vertex z does not exist then T (a, c) has no solution and thus we set

S(a, c) = +∞.

Let a ↝ z denote the path from a to z. By Lemma 2 all vertices of a ↝ z are

covered by a or z. Since x must be covered by a (as imposed by the definition of

T (a, c)), we must have dist(x, a) ≤ dist(x, z), and thus dist(z, a) ≥ 2 ⋅ dist(x, a).

31

3. ALGORITHM FOR THE MCSS PROBLEM

Moreover if a ↝ z has 2k vertices (including a and z) then the first k vertices must

be covered by a and the second k vertices by z. If a ↝ z has 2k + 1 vertices then the

first k vertices must be covered by a, the last k vertices by z, and the middle vertex

say m must be covered by one of a and z that has the same color as m.

Now we are in a problem setting where both a and z must be in the solution, and

all vertices on a ↝ z must be covered by a and z. We denote this more constrained

version of T (a, c) by problem T (a, c, z) (we do not call this a subproblem for a reason

to be determined later). In other words T (a, c, z) is the MCSS problem on T ′ with

the following constraints:

• z is in the same block as a or in a neighboring block of a,

• a and z must be in the solution,

• dist(z, a) ≥ 2 ⋅ dist(x, a), and

• if a ↝ z has 2k or 2k + 1 vertices then the first k vertices must have the same

color as a and the last k vertices must have the same color as z.

We refer to any vertex z that satisfies the above constraints by a valid pair for a.

Now we show how to solve T (a, c, z). We denote the size of the solution for T (a, c, z)
by S(a, c, z). Let A be the set of all the vertices on the path c↝ z that are closer to

a than to z as in Fig. 3.2.2. Let Z be the set all the vertices on c↝ z that are closer

to z than to a. If a vertex m has the same distance to a and z, then we put it in a

set that has the same color as m.

To solve T (a, c, z) we define two sets A and Z as follows. For each vertex v in A,

we add to A all children of v that are not on the path c↝ z. For each vertex v in Z,

we add to Z all children of v that are not on the path c ↝ z. Then the solution of

T (a, c, z) is obtained by taking the union of {a, z} with the solutions of T (a, v′) for
all v′ ∈ A and the solutions of T (z, v′) for all v′ ∈ Z. Therefore

S(a, c, z) = 2 + ∑
v′∈A

S(a, v′) + ∑
v′∈Z

S(z, v′) − ∣A∣ − ∣Z∣,

32

3. ALGORITHM FOR THE MCSS PROBLEM

a

x

z

c

v′

v′
v′

v′

v′

a

x

c

T (a, v′)

v′

z
v′

z

v′

T (z, v′)

z
v′

T (z, v′)

z

v′

T (z, v′)

T (z, v′)

T (a, c, z)

Z

A

Fig. 3.2.2: Solving T (a, c) recursively in terms of T (a, v′) and T (z, v′) where z is a
valid pair for a.

where the subtractive terms ∣A∣ and ∣Z∣ come from the fact that a and z are counted

in each S(a, v′) and S(z, v′). Thus, we are able to solve T (a, c, z) in terms of T (a, v′)
and T (z, v′) which are smaller instances of T (a, c).

Now we turn our attention back to the original problem T (a, c). If we knew z

then the solution of T (a, c, z) would also be a solution for T (a, c). But we do not

know z in advance. Therefore we consider all valid pairs z for a and take one that

gives the smallest solution. Let P denote the set of all valid pairs for a. Then

S(a, c) =min{S(a, c, z) ∶ z ∈ P}.

If P is the empty set, i.e. a has no valid pairs, then we set S(a, c) = +∞. This is the

end of our solution for the subproblem T (a, c); the problem T (a, c, z) was introduced
to just simplify the description of our recursive solution.

33

3. ALGORITHM FOR THE MCSS PROBLEM

3.2.3 Solving the original problem

In this section we show how to solve the original MCSS problem on the tree T . Let S

denotes an optimal solution for this problem. If T is monochromatic then we return

an arbitrary vertex as a solution. Assume that T has more than one colors. Let L be

a leaf block of T , and let N be the (only) neighboring block of L. Let c be the vertex

of N adjacent to a vertex of L. By Lemma 1 any optimal solution has exactly one

vertex, say a, from L. Thus a is the closest vertex of S to all vertices in L. Hence the

original problem is an instance of the T (a, c) problem that was introduced earlier.

Since we do not know a, we try all vertices of L. Therefore,

∣S∣ =min{S(a, c) ∶ a ∈ L}.

The correctness of our algorithm is implied by Lemma 1, the fact that in any

optimal solution all the vertices of L are closer to a than to any other vertex of S,

and from the correctness of our solution for T (a, c).

3.2.4 Running time analysis

In this section we analyze the running time of our algorithm for the MCSS problem

on a tree T with n vertices. The algorithm follows a top-down dynamic programming

approach and consists of subproblems of the form T (a, c) where a and c are two

vertices of T . In total we have O(n2) subproblems of this form. To solve each

subproblem we examine O(n) valid pairs for a. For each valid pair z of a we look up

to solutions of O(n) smaller subproblems, namely T (a, v′) and T (z, v′). Thus each

subproblem T (a, c) can be solved in O(n2) time. Therefore the total running time of

the algorithm is O(n4).
One might wonder that for any fixed pair (a, c) if the size of solutions of T (a, c, z),

i.e. S(a, c, z), is monotonic (increasing or decreasing) with respect to dist(a, z) then
we could save an O(n) factor in the computation of T (a, c). However, this is not

always the case; Fig. 3.2.3 shows that if we increase dist(a, z) then S(a, c, z) could
increase (Fig. 3.2.3(a)) or decrease (Fig. 3.2.3(b)).

34

3. ALGORITHM FOR THE MCSS PROBLEM

a, x

c

z

a, x

c

z

a, x

c

z

a, x

c

z

S(a, c) = 3 S(a, c) = 4 S(a, c) = 5 S(a, c) = 4

(a) (b)

Fig. 3.2.3: If we increase d(a, z) then S(a, c) can increase (a) or decreases (b).

3.2.5 Extension to weighted trees

Our algorithm can simply be extended to solve the MCSS problem on weighted trees

within the same time complexity. The only parts that need to be adjusted are the

definitions of distances and valid pairs. The distance dist(x, y) between two vertices

a and y is now the the shortest distance in the weighted tree. The existence of a valid

pair z for a (Lemma 2) can be shown by taking a vertex in the solution whose weighted

distance to a is minimum. The validity of z is now verified by similar constraints,

except for the last constraint which we adjust as follows:

• all vertices on path a ↝ z that are closer to a (in terms of weighted distance)

must have the same color as a and all vertices that are closer to z must have

the same color as z.

3.2.6 Details of implementation

Let T be a tree with n vertices fixed at a leaf block. To find the MCSS of T in O(n4)
we need to access the solution sizes for the subproblems of type T (a, c) that happen
in constant time. In this section we abuse the notation so that a vertex v refers to

its index among all n points.

We store two different arrays A and B for each vertex. For each vertex x we

store ∣children(x)∣ arrays, each one Ax[c][a] showing the sizes of the solution for

35

3. ALGORITHM FOR THE MCSS PROBLEM

T (a, c). Furthermore, we define Bx[a] for a vertex x as the sum of all the answers

of all its children, recognizing a is already in the solution covering x. By subtracting

the values of Bx[a] and Ax[c][a] the size of the solution for all children of a vertex

x where a certain child c should not be present is obtained in constant time (Notice

that besides the summed solution size of the children, the number of subproblems

without a solution must also be kept in Bx[a] to correctly do the computations).

When computing the arrays for a vertex x in T we keep track of the MCSS sizes

base on all the vertices in the same block as x. Let k be the size of the block containing

x. We initialize each array Ax[c][.] and Bx[.] to have the size k one cell for each vertex

in the block, and compute the cells of the arrays accordingly during the execution

of the algorithm. This ensures that if a vertex a in the same block as x is in the

solution and is covering x, the sizes of the MCSS for each child of x based on vertex

a is accessible from the arrays in constant time.

At each level of T all the subtrees connected to the vertices of that level are

disjoint. As a result, we start from the deepest level of our rooted tree T , and solve

all the subproblems needed to fill the arrays for the vertices of that level, and use them

to compute the arrays for the vertices in the previous level. The proposed algorithm

computes the arrays, and finds the MCSS for T in O(n4) time.

An implementation for this algorithm has been done using p5.js framework [13].

36

CHAPTER 4

The MCSS problem on simple

trees

In this section we introduce some algorithms with faster running times to solve the

MCSS problem on simpler classes of trees. In the following sections, assume n is

the total number of vertices in each tree. In this chapter we present algorithms to

find the MCSS for weighted multi-colored paths, spiders, combs and caterpillars with

respective running time of O(n), O(n2), O(n3) and O(n3).

4.1 Paths

To find the MCSS for a path T first consider the case where T is unweighted. Recall

that the MCS and the MCSS for an unweighted path are identical as a result of one

vertex being in the solution from each block. Using the algorithm by Dey et al. [4]

for the MCS problem on paths, the MCSS for a multi-colored unweighted path is

computed in O(n) time.

Now consider the case where T is weighted, in this case we transform the path

vertices to points on a line where the Euclidean distance between two points is identi-

cal to the weight of the edge between the corresponding vertices. Now, by computing

the MCS for the set of multi-colored collinear points using the algorithm provided for

collinear points by Biniaz et al. [2], we are able to find the MCSS for a multi-colored

weighted path in O(n) time.

37

4. THE MCSS PROBLEM ON SIMPLE TREES

4.2 Spiders

Let T be a spider centred at vertex v, and let B be the block T that contains v. To

find the MCSS for T , we consider each vertex v′ ∈ B to be the closest vertex to v

in the solution (v′ can be v itself). Now, the size of the solution based on v′ can be

computed by finding the MCSS for all the paths from v′ to all the leaf vertices that

exist in T with the assumption that v′ is the closest vertex to v in the MCSS of each

path. It takes O(n) to find the size of the consistent spanning subset in each path.

This implies that we can compute the size of a consistent spanning subset for T in

∣B∣ ×O(n) time. Notice that if v is the only vertex in B, then we can find the MCSS

for T in O(n) time. However, we might have O(n) vertices in B which implies the

running times of O(n2) for this algorithm in the worst case, see Fig. 4.2.1.

v

v′

Fig. 4.2.1: Example of a consistent spanning subset for the spider, assuming v′ is the
closest vertex to v in the solution.

4.3 Combs

In this section we presenet an algorithm to find the MCSS of a comb. Let T be a

comb, and let p1,⋯, pk to be the k vertices of its skeleton from left to right. Our

algorithm solves instances of path problems (stores their solution values in a matrix

M), and computes the sum of the values (in a matrix S). Then it runs the algorithm

of Chapter 3 using the information stored in M and S. For each vertex pi, let δ(pi)
be dangling path of pi, and let qi be the leaf of δ(pi) (it might be that qi = pi). Let

ϕ(pi) be the block of δ(pi) which contains pi. Let a be any vertex in the block of

pi (it could be that a = pi), and let δ(a, qi) be the path from a to qi, see Fig. 4.3.1.

38

4. THE MCSS PROBLEM ON SIMPLE TREES

Moreover, let S(a, qi) be the size of a MCSS for δ(a, qi) with the constraint that a is

in the solution, and no vertex in the solution is closer to pi than a (i.e. a is covering

pi in the solution). We solve all the possible path problems δ(a, qi) for each a in

the block of each vertex pi, and store the sizes of the obtained solutions in a matrix

denoted by M with dimensions n × k, where M[a][i] (here we abuse the notation so

that a refers to its index among all n points) has the value S(a, qi). If δ(a, qi) does
not have a solution we set M[a][i] = +∞. To compute entries of M , we have to solve

O(kn) instances of path problem. This implies a running time of O(kn2) to compute

all entries of M .

a pi

δ(a, qi)
qi

Fig. 4.3.1: Example of a comb T and a path δ(a, qi).

Now that all the cells of M are computed, we create another matrix S with

dimensions n × k, whose entries are the sum of values in M . Take any pi. Let x be

any vertex in ϕ(pi). We define S[x][i] to be the sum of values M[x][j] where pj is

any skeleton vertex on the path from x to pi. To compute S[x][j] we have to lookup

the solution of O(k) paths from M . Since the dimension of our matrix S is O(nk),
we can compute all the cells of S in O(k2n) time.

Now we use S and M , and a modified version of our algorithm proposed in Chap-

ter 3 to solve the MCSS problem for T . Let T be a subtree of T consisting of

ϕ(p1) ∪ ⋯ ∪ ϕ(pk). T has only the blocks that contain a skeleton vertex. We also

add two vertices p0 and pk+1 to T with unique colors respectively as vertices on the

skeleton to the left of p1 and to the right of pk, see Fig. 4.3.2. Notice that any MCSS

of T contains {p0, pk+1}.

39

4. THE MCSS PROBLEM ON SIMPLE TREES

p0 pk+1

Fig. 4.3.2: The tree T .

Let tree T be fixed at the leaf block containing p0 . While executing the algorithm

of Chapter 3, we consider any vertex of ϕ(p1) to be a valid pair for p0, and pk+1 to

be a valid pair for any vertex in ϕ(pk). Now, let a and c be two vertices of T . Recall
to solve the subproblem T (a, c) we have to solve O(n) instances of T (a, c, z) for each
valid pair z of a. Notice that while executing our algorithm on T , for each T (a, c, z)
only one recursion of type T (z, v′) will happen. Let pm be the last vertex with same

color as a on the path between a↝ z. This implies that all the vertices from pm+1 ↝ z

have the same color as z in T (a, c, z). To account for the size of the MCSS for the

paths connected to vertices a↝ z, the sizes of S[a][m] and S[z][m+ 1] are added to

the size of the solution for T (a, c, z) in constant time, see Fig. 4.3.3.

a c pm

is an edge of T

is an edge of T

pm+1 z v′

Fig. 4.3.3: An overlay image of T , T and T (a, c, z). The sum of solution sizes for all
the paths colored blue and red is respectively stored in S[a][m] and S[z][m + 1].

By executing this modified algorithm on T , and removing {p0, pk+1} from any

MCSS of T the size of the MCSS for T is obtained. These modifications imply to

solve each subproblem of type T (a, c) we have to check O(n) valid pairs for a. Since

only one recursion of type T (z, v′) happens, the size of the MCSS for each subproblem

T (a, c, z) can be computed in constant time using S and M . This implies by checking

O(n2) subproblems of type T (a, c) we can find the size of the MCSS for the comb in

O(n3) time.

40

4. THE MCSS PROBLEM ON SIMPLE TREES

4.4 Caterpillars

In this section we present and algorithm to solve the MCSS problem on a caterpillar.

This algorithm is similar to the algorithm proposed for combs in section 4.3 with a

small modification in its the approach in computing the matrix M . This algorithm

computes two matrices M and S, and use them to run a modified version of the

algorithm from Chapter 3 to find the MCSS.

Let T be a caterpillar, and let the k vertices of its skeleton to be p1,⋯, pk from

left to right. Let a be any vertex in the block of pi (it might be the case that a = pi).
Let δ(a, pi) denote to the subtree containing all the dangling vertices of pi colored

differently than pi together with the path from a↝ pi. We define S(a, pi) as the size

of the constrained MCSS on δ(a, pi) with the assumption that a is in the solution,

and a is covering all vertices on the path a ↝ pi. Since dangling vertices colored

differently than the closest vertex to them on the skeleton form a block of size 1, they

must be present in any consistent spanning subset of T . Thus, to find S(a, pi) we
need to check all the dangling vertices of pi in δ(a, pi) to verify that by adding them

to the solution pi is still covered by a. We compute the size of MCSS for all δ(a, pi),
and store the values in a matrix M with dimensions n × k. If δ(a, pi) does not have
a solution with the above constrains we set M[a][i] = +∞. In the case that all the

dangling vertices of pi colored differently than pi are added to the solution, and all

vertices of a ↝ pi are still covered by a, then we consider the number of dangling

vertices for pi colored differently than pi as S(a, pi), and the value of M[a][i], see
Fig. 4.4.1.

pia

Fig. 4.4.1: The colored section shows δ(a, pi), and M[a][i] = 2.

This process requires finding the solution for O(kn) constrained MCSS for each

δ(a, pi) to compute all entries of the matrix M . In weighted caterpillars, the con-

strained MCSS problem on each δ(a, pi) is solved by checking the validity for all O(n)
dangling vertices of pi with different color than pi, which implies a total running time

41

4. THE MCSS PROBLEM ON SIMPLE TREES

of O(kn2) for this part. In unweighted caterpillars, the solution for the MCSS prob-

lem on each δ(a, pi) can be found in constant time by checking the validity of just

one of the dangling vertices of pi with different color than pi, which implies a running

time of O(kn) for this part. Now, we continue the rest of the algorithm as mentioned

in the section 4.3 for combs, and compute the matrix S using the matrix M , and find

the MCSS of T in O(n3) time.

42

CHAPTER 5

Conclusions and future works

This thesis provides a comprehensive study pn different aspects of the MCS problem.

In this problem, given a vertex-colored edge-weighted graph G the objective is to find

a minimal sized subset S of the vertices of G, such that the closest neighbor to each

vertex v ∈ G, in the chosen subset S is a vertex of same color.

We introduced the MCS problem on different settings such as general graphs

and geometric graphs, and discussed its applications in clustering and classification

algorithms. We also discussed some of the shortcomings of the MCS problem on trees,

and proposed a new variant of this problem for trees called the Minimum Consistent

Spanning Subset problem to get a better representative of the entire tree. We showed

that the MCSS problem is NP-hard for general graphs, and we presented an algorithm

that is able to find the MCSS for a multi-colored weighted tree with n vertices using

a dynamic programming approach in O(n4) time. Using our main algorithm we also

presented other algorithms to compute the MCSS for some simple trees such as path,

spider, comb and caterpillars with respective running time of O(n), O(n2), O(n3)
and O(n3).

5.1 Future works

Two natural open problems regarding the minimum consistent spanning subsets would

be to (i) improve the running time for trees, and (ii) present approximation algorithms

for the general case.

43

REFERENCES

[1] Banerjee, S., Bhore, S., and Chitnis, R. (2018). Algorithms and hardness results

for nearest neighbor problems in bicolored point sets. In Bender, M. A., Farach-

Colton, M., and Mosteiro, M. A., editors, LATIN 2018: Theoretical Informatics,

pages 80–93, Cham. Springer International Publishing.

[2] Biniaz, A., Cabello, S., Carmi, P., De Carufel, J.-L., Maheshwari, A., Mehrabi, S.,

and Smid, M. (2021). On the minimum consistent subset problem. Algorithmica,

83(7):2273–2302.

[3] Dasarathy, B. (1994). Minimal consistent set (mcs) identification for optimal

nearest neighbor decision systems design. IEEE Transactions on Systems, Man,

and Cybernetics, 24(3):511–517.

[4] Dey, S., Maheshwari, A., and Nandy, S. C. (2021). Minimum consistent subset of

simple graph classes. In Mudgal, A. and Subramanian, C. R., editors, Algorithms

and Discrete Applied Mathematics, pages 471–484, Cham. Springer International

Publishing.

[5] Dey, S., Maheshwari, A., and Nandy, S. C. (2021). Minimum consistent subset

problem for trees. In Bampis, E. and Pagourtzis, A., editors, Fundamentals of

Computation Theory, pages 204–216, Cham. Springer International Publishing.

[6] Gao, B. J., Ester, M., Cai, J.-Y., Schulte, O., and Xiong, H. (2007). The minimum

consistent subset cover problem and its applications in data mining. In Proceed-

ings of the 13th ACM SIGKDD International Conference on Knowledge Discovery

44

REFERENCES

and Data Mining, KDD ’07, page 310–319, New York, NY, USA. Association for

Computing Machinery.

[7] Gottlieb, L.-A., Kontorovich, A., and Nisnevitch, P. (2018). Near-optimal sample

compression for nearest neighbors. IEEE Transactions on Information Theory,

64(6):4120–4128.

[8] Gowda, K. and Krishna, G. (1979). The condensed nearest neighbor rule using

the concept of mutual nearest neighborhood (corresp.). IEEE Transactions on

Information Theory, 25(4):488–490.

[9] Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE Transac-

tions on Information Theory, 14(3):515–516.

[10] HE, Q., ZHAO, X.-R., and SHI, Z.-Z. (2008). Minimal consistent subset for

hyper surface classification method. International Journal of Pattern Recognition

and Artificial Intelligence, 22(01):95–108.

[11] Khodamoradi, K., Krishnamurti, R., and Roy, B. (2018). Consistent subset

problem with two labels. In Panda, B. and Goswami, P. P., editors, Algorithms

and Discrete Applied Mathematics, pages 131–142, Cham. Springer International

Publishing.

[12] Manna, B. and Roy, B. (2023). Some results on minimum consistent subsets of

trees. arXiv preprint arXiv:2303.02337.

[13] The implementation of the Minimum Consistent Spanning Subset problem

(2023). https://parhamkhamsepour.com/mcss.

[14] Wilfong, G. (1991). Nearest neighbor problems. In Proceedings of the Seventh

Annual Symposium on Computational Geometry, SCG ’91, page 224–233, New

York, NY, USA. Association for Computing Machinery.

[15] Yu, G., Tian, J., and Li, M. (2016). Nearest neighbor-based instance selection

for classification. In 2016 12th International Conference on Natural Computation,

Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pages 75–80.

45

https://parhamkhamsepour.com/mcss

VITA AUCTORIS

NAME: Parham Khamsepour

PLACE OF BIRTH: Qazvin, Iran

YEAR OF BIRTH: 1998

EDUCATION: IKIU, Qazvin, Iran, 2016-2020, Bachelor’s of Software
Engineering

University of Windsor, Windsor, Ontario, Canada,
2021-2023, M.Sc. in Computer Science

46

	The Minimum Consistent Spanning Subset Problem on Trees
	Recommended Citation

	DECLARATION OF CO-AUTHORSHIP AND PREVIOUS PUBLICATION
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Basic definitions and terminologies
	The MCS problem
	The MCSS problem
	Problem definition
	Hardness of the MCSS problem on general graphs

	Contributions and thesis organization

	Related works
	The MCS problem on graphs
	The MCS problem on simple unweighted trees
	Paths
	Two-colored spiders
	Multi-colored spiders
	Caterpillars
	Combs

	The MCS problem on two-colored unweighted trees

	The Euclidean MCS problem
	Applications of the MCS problem

	Algorithm for the MCSS problem
	Preliminaries for the algorithm
	The algorithm
	Defining subproblems
	Solving the subproblems
	Solving the original problem
	Running time analysis
	Extension to weighted trees
	Details of implementation

	The MCSS problem on simple trees
	Paths
	Spiders
	Combs
	Caterpillars

	Conclusions and future works
	Future works

	REFERENCES
	VITA AUCTORIS

