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ABSTRACT

Motivated by the problem of orienting directional antennas in wireless communi-

cation networks, we study average bounded-angle minimum spanning trees. Let P be

a set of points in the plane and let α be an angle. An α-spanning tree (α-ST) of P

is a spanning tree of the complete Euclidean graph induced by P with the restriction

that all edges incident to each point p ∈ P lie in a wedge of angle α with apex p. An

α-minimum spanning tree (α-MST) of P is an α-ST with minimum total edge length.

An average-α-spanning tree (denoted by α-ST) is a spanning tree with the relaxed

condition that incident edges to all points lie in wedges with average angle α. An

average-α-minimum spanning tree (α-MST) is an α-ST with minimum total edge

length. We first focus on α = 2π
3
. Let A (α) be the smallest ratio of the length of the

α-MST to the length of the standard MST, over all sets of points in the plane. Biniaz,

Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that 4
3
≤ A

(
2π
3

)
≤ 3

2
. We

improve the upper bound and show that A
(
2π
3

)
≤ 13

9
.

We then generalize the lower bound argument of Biniaz et al. (Algorithmica 2022)

for A
(
2π
3

)
to a formula giving a lower bound on A (α) for any α ≤ π. We further show

how to modify the algorithm of Biniaz et al. (Algorithmica 2022) for the 2π
3
-MST to

compute the π-MST, and show that A (π) = 1. Finally, we present an algorithm to

compute the π
2
-MST, and show that 3

2
≤ A

(
π
2

)
≤ 4.
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CHAPTER 1

Introduction

1.1 Basic Definitions

A graph G = (V,E) is a pair consisting of a set V of vertices and a collection E of

edges between pairs of vertices.

Edges can be assigned a numeric value called a weight.

In a geometric graph, the weight is the distance between the corresponding vertices.

A tree is a connected, acyclic graph.

A minimum spanning tree (MST) of a graph G = (V,E) is a tree T = (V,E ′ ⊆ E)

with minimum total edge weight such that all vertices in V are connected. (e.g.

Figure 1.1.1)

Fig. 1.1.1: A set of points (left), the complete geometric graph induced by the points
(center), and an MST of this graph (right)

1.2 Background

A wireless communication network can be represented as a geometric graph in the

plane. Each antenna is represented by a point p, its transmission range is represented

1



1. INTRODUCTION

by a disk with radius r centered at p, and there is an edge between two points if

they are within each other’s transmission ranges (see Figure 1.2.1). The problems

of assigning transmission ranges to antennas to achieve networks possessing certain

properties has been widely studied [3, 6, 10, 13, 15, 16, 17, 18].

Fig. 1.2.1: Two points representing antennas, and disks representing their respective
transmission ranges.

In recent years, there has been considerable research on the problem of replacing

omni-directional antennas with directional antennas [1, 2, 5, 7, 9, 11, 12, 14, 15,

19]. Here, the transmission range of each point p is an oriented wedge with apex p

and angle α (see Figure 1.2.2). Directional antennas provide several advantages over

omni-directional antennas, including less potential for interference, lower power con-

sumption, and reduced area where communications could be maliciously intercepted

[3, 19].

Motivated by this problem, Aschner and Katz [2] introduced the α-Spanning Tree

(α-ST): a spanning tree of the complete Euclidean graph in the plane where all

incident edges of each point p lie in a wedge of angle α with apex p (e.g. Figure

1.2.4). They also presented approximation algorithms for the cases where α = π
2
, 2π

3
,

and π, with approximation factors of 16, 6, and 2, respectively, with respect to the

MST. They further observed lower bounds on the approximation ratio of 2 when

α ∈
[
π
3
, π

)
(e.g. points on a line) and 2+

√
3

3
when α ∈

[
π, 4π

3

)
(e.g. 3 points forming

an equilateral triangle with a fourth point in the center).

For the case where α = π
2
, the original algorithm of [2] approximates the TSP

2



1. INTRODUCTION

Fig. 1.2.2: Two points representing directional antennas, and wedges representing
their respective transmission ranges.

tour from the underlying MST, and then arranges the points into consecutive groups

of 8. Using a gadget described by Aschner et al. [4], it then arranges the leftmost

and rightmost 4 points such that they are connected, and the combination of the two

arrangements covers the entire plane. This gives a 16-approximation of the π
2
-MST.

Biniaz et al. [8] improved this to a 10-approximation by showing that an arrangement

of groups of 5 points on the TSP tour could be oriented to cover the plane.

Fig. 1.2.3: A set of points in groups of 3 along the TSP tour. All points within a
group are connected, and each group is connected. [2]

For the α = 2π
3
case, the algorithm of [2] again begins by approximating the TSP

tour, then arranges the points into consecutive groups of 3 and orients them in a

way that covers the entire plane (see Figure 1.2.3), giving a 6-approximation of the

2π
3
-MST. Biniaz et al. [7] improved this approximation ratio to 16

3
using a similar

configuration that takes advantage of the fact that a Hamiltonian path can be made

to be non-crossing. Ashur and Katz [5] further improved this to a 4-approximation by

showing that any path can be rearranged to a 2π
3
-ST with at most twice the weight of

3



1. INTRODUCTION

the original path. They also showed that 2 is a lower bound for their rearrangement

procedure (and thus this approach cannot be improved any further), but note that

other approaches might still yield a lower approximation factor.

For the α = π case, Aschner and Katz [2] showed that the vertices of the TSP tour

can be oriented to cover both their incident edges, giving a simple 2-approximation.

Aschner and Katz [2] further proved the NP-hardness of the problem of computing

the α-MST for the α = 2π
3
and α = π cases by showing reductions to the problem of

finding Hamiltonian paths in hexagonal graphs and square grid graphs of degree at

most 3, respectively.

Fig. 1.2.4: Left: Euclidean MST, Right: Corresponding π
2
-MST

Most previous research in this context has been done on the case where α is one

fixed value for all antennas [7]. Biniaz et al. [7] extended this concept to an average-

α-minimum spanning tree (α-MST): an α-MST with the relaxed restriction that the

average angle of all the wedges is at most α (e.g. Figure 1.2.5). More formally, a total

angle of αn must be allocated among n points p so that each point has a sufficient

allowed angle to cover all incident edges. In the case where α = 2π
3
, they presented

an algorithm that achieves an α-ST of length at most 3
2
times the length of the MST.

They also proved a lower bound of 4
3
on the approximation factor with respect to the

MST.

In this thesis, we improve the upper bound on A
(
2π
3

)
from 3

2
to 13

9
. In fact we

modify the algorithm of [7] and obtain an α-ST of length at most 13
9
times the length of

the MST. Our algorithm involves a stronger exploitation of the Euclidean metric than

the previous work. Our improved upper bound immediately gives an approximation

4



1. INTRODUCTION

Fig. 1.2.5: Left: Euclidean MST, Right: Corresponding π
2
-MST

Angle π
2

2π
3

π avg-2π
3

Approx. Ratio 10 [8] 4 [5] 2 [2] 1.5 [7]

Lower Bound 2 [2] 2 [2] 2+
√
3

3
[2] 4

3
[7]

NP-Hard ? ✓[2] ✓[2] ?

Table 1.2.1: Summary of previous bounded-angle MST results. Approximation ratios
and lower bounds are w.r.t the underlying MST

algorithm with ratio 13
9

(with respect to the MST) for the α-MST problem for any

α ≥ 2π
3
.

We further show bounds on A (α) for the other two values of α studied in [2],

α = π
2
and α = π. We begin by generalizing the lower bound argument of [7] to get

a lower bound formula for any A (α) with α ≤ π. We then show that the approach

of [7] can easily be modified to exactly compute the exact π-MST, and present a

new approximation algorithm for the π
2
-MST. Combining these results shows that

3
2
≤ A

(
π
2

)
≤ 4 and A (π) = 1.

Similar to that of [7], our algorithms run in linear time after computing the MST.

1.3 Notation

We use the terms point and vertex interchangeably depending on the context.

To facilitate comparison, we borrow the following notation from [7]. A maximal

path in a tree is a path with at least two edges where all internal vertex degrees are

5



1. INTRODUCTION

2, and the end vertex degrees are not 2. To contract a maximal path is to remove

all vertices of degree 2 on the path and the edges between them, and add an edge

connecting the end vertices. The angle that the incident edges of a vertex in an

α-MST are allowed to fall within is called its charge. Charges can be redistributed

between vertices. We denote the total length of edges of a geometric graph G by

w(G).

As the length of the optimal solution is often not known, we use the underlying

MST of the points as a lower bound in our analysis. We denote the smallest ratio

of the length of the α-MST to the length of the standard MST over all points in the

plane as A (α). In [7], it was shown that 4
3
≤ A

(
2π
3

)
≤ 3

2
.

1.4 Outline

The approximation algorithm of [7] for the 2π
3
-MST starts with a standard MST that

has maximum degree 5 (which always exists). Then it re-assigns angle charges from

leaves to inner vertices. Their approach first considers the MST with all maximal

paths contracted, and then introduces edge shortcuts in each contracted path.

In Chapter 2, we improve upon this algorithm. By exploiting additional geometric

properties we ensure the connectivity of path vertices with less total charge. This

enables us to save some charges. The saved charges allow us to introduce fewer

shortcuts than the original algorithm, resulting in a shorter 2π
3
-ST.

In Chapter 3, we first observe that the lower bound argument used for A
(
2π
3

)
in [7]

can easily be generalized to give a lower bound formula for all A (α) with α ≤ π. We

then apply this formula to obtain lower bounds on A (π) and A
(
π
2

)
. We then show

how the algorithm of [7] for the 2π
3
-MST can easily be modified to exactly compute

the π-MST. Finally, we present a new algorithm to approximate the π
2
-MST.

6
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CHAPTER 2

A 13
9 -approximation of the

average-2π3 -MST
Ahmad Biniaz, Prosenjit Bose, Patrick Devaney

In Proceedings of the 34th Canadian Conference on Computational Geometry (CCCG),
pages 55–59, 2022

In this chapter we focus on the case where α = 2π
3
. We first briefly describe the

algorithm of Biniaz et al. [1], which operates in two phases by first contracting all

maximal paths and then reintroducing them using new “shortcut” edges. By more

carefully considering the geometry of the contracted paths, we then show how to

improve the algorithm by reversing some shortcuts in the second phase to obtain a

better approximation ratio.

2.1 The Algorithm of Biniaz et al.

We begin by briefly describing the algorithm of Biniaz et al. [1], which we refer to by

“Algorithm 1”.

The algorithm starts by computing a minimum spanning tree T of the point set

with maximum degree 5, where each vertex holds a charge of 2π
3
. Then the algorithm

goes through two phases that redistribute the charges and also modify the tree. In

the first phase, all maximal paths of T are contracted (to edges), resulting in a tree

with no vertices of degree 2, and all other vertices having the same degree as in T (see

Figure 2.1.2). The charge from the leaves are then redistributed among the internal

vertices so that each vertex of degree 3, 4, and 5 has a charge of 4π
3
, 2π, and 8π

3
,

10
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p1

p2

p3 pm

pm−1

p1

p2

p3 pm

pm−1

p1

p2

p3

pm+1

pm

p1

p2

p3

pm+1

pm

π/3
π/3

w(M1) ≥ w(M2)

w(M1) < w(M2)

w(M1) ≥ w(M2)

w(M1) < w(M2)

M1 M1 M1M2 M2 M2

pm−1

pm−1

pm−2

Fig. 2.1.1: (borrowed from [1]) The contracted path is shown by black segments. The
dashed-black edges belong to M2 and the red edges belong to S.

respectively (see Figure 2.1.3). Since the charge of each internal vertex with degree

n is at least
(
1− 1

n

)
2π, which covers any set of n edges, all vertices can cover their

incident edges. After redistribution, degree-1 vertices have 0 charge and each degree-2

vertex holds its original 2π
3

charge. This redistribution retains a pool of 4π
3

charge

that can be split among all leaves in the tree at the end of the algorithm.

Fig. 2.1.2: The original MST (left) and MST with contracted maximal paths shown
as red lines (right)

In the second phase, the edges of each path p1, p2, . . . , pm that was contracted in

phase 1 are split into two matchings, M1 and M2 with equal number of edges. If the

path has odd number of edges then the last edge is not in either matching (see Figure

2.1.4). The edges of the matching with the larger weight are removed, and a set

S = {(p1, p3), (p3, p5), ...} of new edges called shortcuts are introduced (see Figure 15

11
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Fig. 2.1.3: The MST with contracted maximal paths (red edges). Leaves are blue,
and internal vertices are black.

of [1], which we include here as Figure 2.1.1). By this process, the charge of every new

degree-1 vertex is redistributed among other vertices so that each new degree-2 and

degree-3 vertex along the path has a charge of π and 4π
3
, respectively; this is handled

in four cases based on which matching is heavier and whether the path length is even

or odd, as shown in Figure 2.1.1. Note that the charge given to vertices assigned

degree 2 and 3 allows them to cover any set of 2 and 3 edges, respectively.

Fig. 2.1.4: A path is split into two matchings (shown as red and blue edges). The
last edge in a path of odd length (shown in black) is not part of either matching.

We also note that both phases can be performed without using the assumption

that the underlying MST has maximum degree 5, as each vertex of degree 4 or greater

receives at least 2π charge from the leaves it introduces, which covers any number of

incident edges.

Let M ′
1 and M ′

2 be the union of the edges in the smaller and larger-weight match-

ings of all contracted paths, respectively. Let T ′ be the final tree obtained by the

above algorithm, and let E be the set of edges of T not in M ′
1 ∪M ′

2. Then w(T ) =

w(E) + w(M ′
1) + w(M ′

2). By the triangle equality we have w(S) ≤ w(M ′
1) + w(M ′

2).

Since w(M ′
2) ≥ w(M ′

1) we get

12



2. A 13
9 -APPROXIMATION OF THE AVERAGE- 2π3 -MST

w(T ′) = w(E) + w(M ′
1) + w(S)

≤ w(E) + w(M ′
1) + w(M ′

1) + w(M ′
2)

= w(T ) + w(M ′
1) ≤

3

2
w(T ).

2.2 The Improved Algorithm

We begin by modifying the charge-redistribution of phase 2 of Algorithm 1 with a

more careful charge redistribution. In particular we show that the 3 edges, that are

incident to new degree-3 vertices, can be covered by 4π
3
− π

12
charge (meaning that

we can save the π
12

charge). We then use the saved charge of π
12

to achieve a better

approximation with respect to the original MST. The following lemma, although very

simple, plays an important role in the design of the modified algorithm.

Lemma 1. It is possible to save at least π
12

charge from every shortcut performed by

phase 2 of Algorithm 1.

Proof. Consider a shortcut ac between two consecutive edges ab and bc of a contracted

path as depicted in Figure 2.2.1. Up to symmetry we may assume that ab is in M2

and thus it has been removed in phase 2 of Algorithm 1. Denote the angle ∠bca by

β. Since the path (a, b, c) is part of the MST, ac is the largest edge of the triangle

△abc, and thus ∠abc is its largest angle. Therefore β ≤ π
2
.

a

b

c
β

Fig. 2.2.1: Illustration of a shortcut between the points a and c.

The replacement of ab by the shortcut ac has not changed the degree of a, has

decreased the degree of b by 1, and has increased the degree of c by 1. Thus the charge

13
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assigned to a by Algorithm 1 remains enough to cover its incident edges. Since b has

degree 1, its 2π
3

charge is free. Algorithm 1 transfers this free charge to c to cover

its new edge (see Figure 2.2.2). We show how to cover all edges incident to c while

saving π
12

charge. If c’s original degree (i.e. after phase 1 and before phase 2) was 4

or 5 then it carries at least 2π charge which is sufficient to cover its edges. We may

assume that the original degree of c is 1, 2, or 3, in which case it holds a charge of 0,

2π
3
, or 4π

3
, respectively. Thus the new degree of c (after phase 2) is 2, 3, or 4. Based

on this we distinguish three cases.

a

b

c
β

2π
3

Fig. 2.2.2: Algorithm 1 transfers charge from b to c

• If deg(c) = 2 then the two incident edges of c are ac and bc. We can cover these

edges by a charge of β (≤ π
2
). Thus we transfer π

2
charge from b to c (as shown

in Figure 2.2.3) and we save π
6
.

a

b

c
β

π
22π

3

Fig. 2.2.3: Lemma 1: degree 2 case

• If deg(c) = 3 then we cover β and the smaller of the other two angles at c. Thus

the three incident edges to c can be covered by charge of

β +

(
2π − β

2

)
=

2π + β

2
≤

2π + π
2

2
=

5π

4
.
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Thus by transferring 7π
12

from b to c it will have charge of 5π
4

(including its

original 2π
3
charge – see Figure 2.2.4). Thus we save charge of 2π

3
− 7π

12
= π

12
from

b.

a

b

c
β

β1

β2

7π
12

Fig. 2.2.4: Lemma 1: degree 3 case

• If deg(c) = 4 then we transfer π
6
charge from b to c and save the remaining π

2

charge of b. The vertex c now holds 3π
2

charge (including its charge 4π
3

after

phase 1) which covers its four incident edges (see Figure 2.2.5).

a

b

c
β

π
6

Fig. 2.2.5: Lemma 1: degree 4 case

The following is a direct implication of Lemma 1.

Corollary 2. It is possible to save π
3
charge from every four shortcuts that are per-

formed by Algorithm 1.
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2.3 Reversing Shortcuts

In this section, we present an approximation algorithm that uses fewer shortcuts than

Algorithm 1. In fact the new algorithm reverses a constant fraction of the shortcuts

performed by Algorithm 1.

Theorem 3. Given a set of n points in the plane and an angle α ⩾ 2π
3
, there is an

α-spanning tree of length at most 13
9
times the length of the MST. Furthermore, there

is an algorithm to find such an α-ST that runs in linear time after computing the

MST.

Proof. Let T be a degree-5 minimum spanning tree of the point set, and T ′ be the

2π
3
-spanning tree obtained from T by Algorithm 1.

Consider the sequence of shortcuts introduced by Algorithm 1 along each con-

tracted path. Let s1, s2, ..., sm be the concatenation of the sequences for all contracted

paths. We split these shortcuts into nine sets S0, . . . , S8 such that si ∈ S(i mod 9) for

each i ∈ {1, . . . ,m}. Note that no two adjacent shortcuts in the same contracted path

will be in the same set Si. Moreover the number of shortcuts in any two sets Si and

Sj differ by at most 1. Recall that the edges of each contracted path in Algorithm 1

are split into two matchings M1 and M2. Let M
′
1 be the set of edges that are kept in

the tree (i.e. M ′
1 is the union of the smaller-weight matchings from each contracted

path), and let the set of edges in the heavier matchings be M ′
2. Among S0, . . . , S8,

let S8 be the one whose corresponding edges in M ′
1 have the largest total weight.

Our plan now is to reverse the shortcuts in S8, i.e., to replace them by their

corresponding edges in M ′
2. Let S ′ be the union of S0, . . . , S7. Notice that |S ′| ≥

8 · (|S8| − 1). Let C denote the pool of charges that is obtained after phase 1 of

Algorithm 1, and recall that it contains 4π
3
charge. For each shortcut in S ′ we reassign

the charges between its corresponding points to save at least π
12

charge (as shown in

Lemma 1), and add this charge to C. Thus the total charge of C is at least

4π

3
+ 8 · (|S8| − 1) · π

12
= (|S8|+ 1) · 2π

3
.
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We will show that to reverse each shortcut from S8 it suffices to take 2π
3
charge from

C.

Consider any shortcut ac from S8 between two consecutive edges ab and bc of a

contracted path as depicted in Figure 2.3.1. We reverse this shortcut by replacing

ac with the removed edge ab. We also reclaim any portion of b’s charge that was

transferred to c. Thus the reverse operation brings the charges of b and c back to

what it was after phase 1 and before phase 2; in particular it brings the charge of b

back to 2π
3
. There is one exceptional case where w(M1) < w(M2) and the path has

odd number of edges (the last case in Figure 2.1.1 where p3, p2, p1 play the roles of

a, b, c, respectively). In this case the charge of b (i.e. p2) would be π
3
as pm holds the

other π
3
portion. (Since no two shortcuts in S8 are adjacent in the same contracted

path, we can analyze a reverse operation independently of others. Notice, however,

that it is possible that two or more shortcuts of S8 are adjacent at a vertex that has

degree at least 3 after phase 1. In this case, the charge of such a vertex suffices to

cover its edges after reversing the shortcuts since it will have at least π
6
charge added

for each new edge introduced by the process described in Lemma 1.) The reverse

operation does not change the degree of a and thus its charge remains sufficient to

cover its edges. The reverse operation makes b of degree 2 and decreases the degree

of c by 1.

We take π
3
charge from C for b to bring it to a charge of π, which covers its two

incident edges. If deg(c) = 1 or deg(c) ≥ 3, its charge is sufficient to cover its edges.

If deg(c) = 2 then we take an additional charge of π
3
from C for c to cover its two

incident edges. In the exceptional where w(M1) < w(M2) and the path has odd

number of edges (the last case in Figure 2.1.1), p2 = b holds π
3
charge, so we take 2π

3

from C for p2 to cover its two incident edges. Since p1 = c is of degree 1 or at least 3

(as the contracted path is maximal), its charge (acquired after phase 1) is sufficient to

cover its edges. Thus, in the worst case we take 2π
3
from C to reverse every shortcut.

After reversing all shortcuts in S8, the pool C is left with at least 2π
3
charge which

can be distributed among the leaves of the resulting tree.

Let T ′′ be the 2π
3
-ST tree obtained from T ′ after reversing all shortcuts in S8. Let
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p1

p2

p3 p1 p3

p2

Fig. 2.3.1: Left: The tree T ′ before reversing shortcut ac. Right: The tree T ′′ after
reversing ac.

E be the set of edges of T ′′ not in M ′
1∪M ′

2. Let E
′ be the set of all edges of M ′

1∪M ′
2

that correspond to the shortcuts in S8. Let M ′′
1 = M ′

1 \ E ′ and M ′
2 = M ′

2 \ E ′ (i.e.

all edges in M ′
1 and M ′

2, respectively, with a shortcut between their endpoints in T ′′).

Then,

w(T ′′) = w(E) + w(E ′) + w(S ′) + w(M ′′
1 )

≤ w(E) + w(E ′) + w(M ′′
1 ) + w(M ′′

2 ) + w(M ′′
1 )

= w(T ) + w(M ′′
1 ).

Since S8 has the largest corresponding M ′
1 weight, w(M ′′

1 ) ≤ 8
9
w(M ′

1) ≤ 8
9
· 1
2
w(T ) =

4
9
w(T ). Thus,

w(T ′′) ≤ w(T ) +
4

9
w(T ) =

13

9
w(T ).

With Theorem 3 in hand, we report the following bound for A
(
2π
3

)
.

Corollary 4. 4
3
≤ A

(
2π
3

)
≤ 13

9
.
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CHAPTER 3

Approximating the α-MST for

Other Angles
Ahmad Biniaz, Prosenjit Bose, Patrick Devaney

In this chapter, we first observe that an argument by Biniaz et al. [2] for the lower

bound of A
(
2π
3

)
can be generalized to obtain a formula that gives a lower bound on

A (α) for any α ≤ π. We further use this formula to obtain lower bounds of 1 and 3
2

for A (π) and A
(
π
2

)
, respectively. We then show how Algorithm 1 of Biniaz et al. [2]

(described in Section 2.1) can be modified to exactly compute the π-MST, implying

that A (π) = 1. Finally, we present an algorithm to compute a 4-approximation of

the π
2
-MST, and conclude that 3

2
≤ A

(
π
2

)
≤ 4.

3.1 A General Lower Bound Formula

In [2], Biniaz et al. gave a proof that A
(
2π
3

)
≥ 4

3
, based on an argument that, for

every point on the 2π
3
-MST, there is a corresponding unique interval covered by one

of the edges of the tree. We observe that this argument can easily be generalized to

obtain a formula giving a lower bound on A (α), for any α ≤ π.

Theorem 5. For any angle α ≤ π, there exists a set X of points in the plane such

that the length of the corresponding α-MST is at least (2π−α)n
π
− 3 times the length of

MST.

Proof. Consider any α-minimum spanning tree T on X, where α ≤ π. We show that

w(T ) ≥ (2π−α)n
π
− 3. Partition the vertices of T into X1 and X2, where X1 is the set

20
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x1 −→x6−→x3x2 x4 x5

Fig. 3.1.1: (borrowed from [2]) α-ST of length (2π−α)n
π
− 3.

of vertices with wedges of angle strictly less than π and X2 is the set of vertices with

wedges of angle at least π. Since the total available charge is αn, |X2| ≤ αn
π
. Thus

|X1| = n−|X2| ≥ (π−α)n
π

. Observe that every interval (between consecutive vertices of

X) is covered by an edge of T . Every vertex xi ∈ X1 sees the vertices that are either

to its left or to its right. We denote xi by
←−xi if it sees the vertices to its left, and by −→xi

otherwise (see Figure 3.1.1(b)). For every←−xi the interval [i−1, i] is covered by at least

two edges otherwise connectivity is lost: one edge is incident to ←−xi and another edge

connects a point to the left of←−xi with a point to the right (assuming i ̸= n). Similarly

for every −→xi the interval [i, i+1] is covered by an edge that is incident to −→xi and by an

edge that connects a point to the right of −→xi with a point to the left (assuming i ̸= 1),

as in Figure 3.1.1(b). Thus, for every ←−xi (except possibly ←−xn) there exists a unique

interval that is covered by two edges of T . Similarly, for every −→xi (except possibly
−→x1)

there exists a unique interval that is covered by two edges of T . (If xi is oriented to the

left and xi+1 is oriented to the right then—by the minimality of the tree—(xi, xi+1)

is an edge of T and the interval [i, i + 1] is covered by three edges.) Therefore the

length of T is at least (n− 1) + (|X1| − 2) ≥ n+ (π−α)n
π
− 3 = (2π−α)n

π
− 3.

We now use this formula to compute lower bounds on the values of α that we

present algorithms for in the following sections.

Corollary 6. A (π) ≥ 2π−π
π

= 1.

Corollary 7. A
(
π
2

)
≥ 2π−π

2

π
= 3

2
.

3.2 Approximating the π-MST

In this section, we show how to modify Algorithm 1 of Biniaz et al. [2] for the 2π
3
-MST

to compute the π-MST. We further show that A (π) = 1.
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Theorem 8. Given a set of n points in the plane and an angle α ⩾ π, the charge

of the minimum spanning tree can be redistributed to make it an α-spanning tree.

Furthermore, there is an algorithm to find such an α-ST that runs in linear time

after computing the MST.

Proof. Recall that Algorithm 1 works in two phases, as described in Section 2.1. Let

X be a set of n points in the plane, and T be a degree-5 minimum spanning tree of

the complete Euclidean graph induced by X. In the first phase, all maximal paths of

T are contracted, giving a tree T ′ with no vertices of degree 2. Every tree has at least

2 leaves, and every vertex of degree 3, 4, or 5 introduces 1, 2, and 3 additional leaves,

respectively. We put the charge from all leaves into a pool C, and then redistribute

π, 2π, and 3π from this pool to each vertex of degree 3, 4, and 5, respectively. Note

that C still contains 2π charge that can be distributed among the leaves if desired.

Now every vertex with degree at least 3 has charge of at least 2π, which covers any

set of incident edges.

Now the second phase consists only of reintroducing each contracted path, as

each degree-2 vertex already has a charge of π, which covers its 2 incident edges. The

result is the original tree T with the charge redistributed so each vertex can cover

its incident edges. In particular, the weight of T has not changed from that of the

original MST.

Corollary 9. A (π) = 1

3.3 Approximating the π
2-MST

In this section we present an algorithm to compute the π
2
-MST.

Theorem 10. Given a set of n points in the plane and an angle α ⩾ π
2
, there is an

α-spanning tree of length at most 4 times the length of the MST. Furthermore, there

is an algorithm to find such an α-ST that runs in linear time after computing the

MST.
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p1

p2

p3

E1 E2

E3

p4

p5

p6

p7

E1 E2

E3

Fig. 3.3.1: Groups of 3 points on the TSP path circled – original edges in black,
removed edges dashed, and shortcut edges in blue.

p1

p2

p3

p4

E1

E2

E3

Fig. 3.3.2: A group of points p1, p2, p3 with shortcuts (blue). Charge is redistributed
to p1.

Proof. Given a set of n points X in the plane, let T be the minimum spanning tree of

the complete Euclidean graph induced by X. As with algorithms that approximate

the π
2
-MST [1, 3], we begin by computing the metric TSP approximation of T , giving a

path P with w(P ) ≤ 2w(T ). We then split the vertices of this path into disjoint groups

of three consecutive points. Let E1, E2, and E3 be the sets of all first, second, and

third (outgoing) edges of each group, respectively (see Figure 3.3.1). After suitable

relabeling, let E1 be the matching with minimum total edge weight and E3 be the

matching with maximum total edge weight. Among the points p1, p2, and p3 of

each group, redistribute all charge to the first point incident to E1 (without loss of

generality, say this is p1). Then p1 now has total charge 3π
2
, which allows it to cover

any set of four edges. Let p4 be the vertex incident to the outgoing edge of the group

(if applicable). We remove the edges from E2 and E3, and introduce shortcut edges

to connect each corresponding point directly to p1 (see Figure 3.3.2). The shortcut
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corresponding to E2 has weight at most E1 + E2, and the shortcut corresponding to

E3 has weight at most E1+E2+E3. So the total weight of these edges (and thus the

resulting tree T ′) is at most 3w(E1) + 2w(E2) + w(E3). So

w(T ′) ≤ 3w(E1) + 2w(E2) + w(E3)

= (w(E1) + w(E2) + w(E3)) + (w(E1) + w(E2)) + w(E1)

Since w(E1) + w(E2) + w(E3) = w(P ),

w(T ′) ≤ w(P ) + (w(E1) + w(E2)) + w(E1)

Since E3 is the set of edges with largest weight, w(E3) ≥ 1
3
w(P ), so

w(E1) + w(E2) ≤
2

3
w(P )

Similarly, since E1 has smallest total edge weight, w(E1) ≤ 1
3
P . Thus,

w(T ′) ≤ w(P ) +
2

3
w(P ) +

1

3
w(P )

= 2w(P )

≤ 4w(T )

Corollary 11. 3
2
≤ A

(
π
2

)
≤ 4.
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CHAPTER 4

Conclusion

In this thesis, we have presented approximation algorithms for the α-MST in the cases

where α = π
2
, 2π

3
, and π, and shown a generalized lower bound formula for A (α) for

any α ≤ π. We have further used these to show that 3
2
≤ A

(
π
2

)
≤ 4, 4

3
≤ A

(
2π
3

)
≤ 13

9
,

and A (π) = 1.

4.1 Open Problems

The obvious open problems are that the bounds on A
(
π
2

)
and A

(
2π
3

)
are not tight.

These could be improved by developing new algorithms with better approximation

factors, or finding new sets of points whose α-MST must have a larger minimum

weight with respect to the underlying MST. In particular, we believe that the upper

bound on A
(
2π
3

)
and the upper bound on A

(
π
2

)
can be further improved.
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