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ABSTRACT

In the domain of Natural Language Processing (NLP) the representation of words

according to their distribution in the vector form is a crucial task. In the represen-

tation space, when words that are similar to each other according to human inter-

pretation are placed closer to each other, a notable increase can be observed in the

performance and accuracy of NLP tasks. Previous word embedding methods put em-

phasis on passing the word tokens in an iterative manner through a Neural Language

model to capture the context of the words. These methods can capture word related-

ness, but only within the given context length. In this thesis, we introduce a method

to represent the words in the form of a graph so that their first-order and second-order

proximity are preserved and the relatedness of a word can be captured in a better

manner. This graph is then subjected to a vertex (node) embedding method to gener-

ate their embedding. After experimenting with the proposed method on multiple text

corpora, our findings indicate that this method of word representation outperforms

the traditional word-embedding methods by more than 4% in multiple intrinsic tasks

and extrinsic tasks.
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CHAPTER 1

Introduction

1.1 Distributional Representation of Words

In Linguistics, the context of a word is mainly responsible for generating its meaning.

Consequently, words that frequently occur near each other in a similar semantic space

tend to have similar meanings. This leads to the conclusion that the resemblance of

words is comparable to how these words are distributed. This hypothesis is known

as Distributional Hypothesis[29]. Representing words based on their contextual

features then became one of the prime focuses of linguistics. Later, with the advent

of Machine Learning techniques and the increase in NLP research, more focus was

placed on the research of Vector Semantics.

1.2 Vector Semantics and Embedding

Vector Semantics build on the previously introduced Distributional Hypothesis. They

learn the representation of words in the form of multi-dimensional vectors based on

the distribution of words in texts. These embeddings give computers the ability to

understand and process human language in the form of text. For an NLP task, the

words must be represented numerically for the computers to understand and process

them [55]. Initial methods like [63] and [35] used indexing methods for the word

representation where a number would represent a word. While these were the first

steps for Computational Linguistics, they could not achieve good results due to their

inability to capture context and similarity in the text. These would prove to be

1



1. INTRODUCTION

inefficient with the increase in vocabulary size.

Fig. 1.2.1: An example of how word embeddings work and how they can quantify
similarities between words. In this example, we take a look at words within the
(computer, pie) axes. The words digital and information are more relevant to com-
puter so their vectors are more inclined towards it. While the vector for cherry is
farther away from computer and closer to pie.[36]

Representing words just by a single number (indexing method) would not yield

good answers in problems like text classification [40] or text generation [34]; the reason

being that the correct syntactic meaning of the word cannot be justified as a single

index number. To alleviate this, they are represented as vectors, putting them in a

syntactic space where each word is defined by its syntactic features.

1.3 Thesis Motivation

1.3.1 The Problem with Conventional Word Vectors

In NLP, two words are deemed to be similar if they often appear near each other.

The problem with this notion of similarity is that some words might appear near each

other very frequently, but they still won’t be similar. For example, take the words

’coffee’ and ’cup’ in the following examples:

1. Can I have a cup of coffee?

2. I am going to have a cup of coffee.

2



1. INTRODUCTION

These phrases often occur in a text corpus, especially in a dialogue corpus. These

words appear near each other frequently because they co-participate in the event

that happens every day, but that does not directly translate to their similarity. Even

though these words belong to the same semantic scope, they cannot be considered

similar. Words can be associated with each other in more ways than one way, and

this kind of association between words is known as ”relatedness”[6]. On the other

hand, word similarity aims to associate words with similar semantic meanings

together.[32]

Further, in a lot of cases, it occurs that only domain-specific words are used in a

corpus. For example, the word Sodium Chloride (NaCl) is the scientific word for

table salt[70]. In many scientific journals and texts, only Sodium Chloride or NaCl

might be used instead of the common utterance of salt/table salt. This would mean

that even though there is a similarity in these two terms because they do not occur

near to each other in a particular text, these words would be deemed non-similar to

each other. Conventional word embedding methods only take into consideration the

words that are in the corpus and do not have a way to scale across multiple datasets

unless all the datasets are aggregated into one and then the embedding methods are

trained on.

There are two types of Word Embedding methods[72]. (i) Static Word Em-

beddings and (ii) Contextual Word Embeddings. The static methods (for example

Word2Vec[52], GloVe[56], etc.) generally build a huge global corpus and produce

continuous embeddings based on them. While on the other hand, contextual meth-

ods like BERT[14], XLNet[78], etc. learn the semantics of the words based on the

previous context. In this paper, we introduce a Static Vector Embedding method

that aims to overcome the shortcomings of previous static embedding methods.

Vector-based word models, including both, neural models[52, 56] and traditional

word and document indexing methods[13, 43] can capture the context of the words,

and that leads to capturing word relatedness; but they are limited by their corpus

and cannot scale unless trained further on a bigger dataset.

3



1. INTRODUCTION

1.4 Thesis Statement

1.4.1 Graphs and their Usefulness

Graphs are mathematical data structures that contain a set of nodes/vertexes V and

a set of edges E. We can denote the graph as G(V,E). The V contains a number of

nodes in the graph, i.e.

V = {n1, n2, ...ni} (1.1)

While in the edge set, each edge eij denotes a connection between node ni and nj.

These edges can have various properties such as weight and direction to signify some

specific characteristic of the graph.

Using graphs as a data structure increases the scope of understanding the data

points in many problems. They provide a comprehensive understanding of how each

data point is interconnected with other data points which leads to a better quanti-

tative understanding of the problem and less complex solutions can be developed for

unconventional problems.

In the context of our research, each word in a Text Corpus can be represented as

a node. Depending on their usage and similarity, edges can be created between the

words with each edge having some weight. This weight of the edge can determine

how similar two words are. Thus, the textual data can be converted into a graph

representation that signifies the connections (or similarities) between the words.

1.4.2 Enhancement using Graph Embeddings

A graph data structure provides two key characteristics of the neighbors of each node.

The first-order and the second-order proximity. [6.2.1]

Thus, graphs allow us to represent relational data in a structured way. With

their ability to capture multi-level proximity, they are known to capture relations

and associations [59]. This reason leads us to the following hypothesis:

Hypothesis: Since Graphs are known to perform better in representing entities

4



1. INTRODUCTION

with contextual relations, using Graph Embedding methods on a relational graph

with every word represented as a node and each node connected to the words in its

context would yield better results for the tasks in NLP involving relations between

words.

1.4.3 Objectives

The mathematical problem formulation of the problem statement is as follows:

Task 1: Given a Text Corpus C containing n words, find a graphical represen-

tation G where each word is structured as a node and each node is connected to the

words in its context buffer of size Cn.

Vi = di1, d
i
1, d

i
1, d

i
1...d

i
m (1.2)

where m is the size of vector representation, di is the vector dimension of ith word

Task 2: For each pair of Word Vectors {Vi, Vi+1}, justify a reasoning factor Ri+1
i

(Edge between the two nodes) to explain the positioning of the word vectors and their

relations to the neighboring words.

1.5 Thesis Organization

The first section of this thesis motivates why a new method of vector embedding is

required. It lays out an apparent problem and introduces a new method that can

potentially overcome the shortcomings of all previously mentioned methods.

The second section of the thesis gives the literature review of the selected problem.

It begins with an explanation of how the idea of word embedding was introduced and

how it was improved over the years and eventually moves on to introduce current

state-of-the-art methods which are widely used. This section also covers the selected

baselines in detail.

The following section covers all the underlying machine-learning methods used in

this thesis. As a part of the proposed method, we use SDNE[27], Node2Vec[28], and

5



1. INTRODUCTION

GGSNN [47] methods to test out different natures of Graph Embedding methods to

get the best results.

The fourth section is the proposed method. It introduces a three-phased approach

that we propose in this thesis. It involved graph creation from text, its enhancement,

and embedding generation based on the nodes of the graph.

The fifth section elaborates on the experiments performed on the proposed method

for its evaluation. It also gives details about the hardware that was used to perform

the tests and the results obtained. Based on the results, this section also explains the

behavior of the method on different tests across multiple datasets.

Finally, the last section concludes the discussion and also gives some ideas on how

this thesis can be taken forward. It establishes an idea of a global pre-trained dataset

that can be prepared using the proposed method.

6



CHAPTER 2

Related Works

The idea of an NLP system being able to capture the meaning of words is dependent on

the hypothesis proposed by L. Wittgenstein [75] and Z. Harris [29]. Their hypothesis

states that words are distributed in multiple environments which are composed of an

existing cluster of other co-occurring words. They strengthen their hypothesis further

by stating that a language element’s meaning can be related to its distribution.

There are a number of factors on which the words embeddings are dependent

upon[36]:

Wordforms/Lemmas: To eliminate the repetition of different forms of the same

word, the words need to be converted to their lemmas or citation forms. A lemma

is a shortened parent-form of a word. For example, sing is the lemma for the words

sing, sang, and sung.

Synonymy: A word can be considered as a synonym to another word if the two

words can be used in place of each other. Even after the substitution, the sense of

the overall text does not change.

But it might happen that words sometimes are not synonyms but they do carry

the same sense. For example the words cup and mug. They cannot be considered syn-

onyms, but they carry the same sense of a container. This is known as the principle of

contrast [8]. This gives rise to the concept of Word Similarity. This understanding

of the similarity between words is very important in semantic and various NLP tasks

as well.

In 2003, Bengio et al. [4] introduced the first neural language model. In their

paper, they mapped each unique word with a number (indexes). These indexes are

7



2. RELATED WORKS

then passed to a feed-forward network with a hidden layer to predict the next word.

2.1 Early Vector Representations of Words

For a word representation to produce good results in NLP tasks, it should be able

to capture both the semantic and syntactic aspects of the words [66]. Before the

introduction of Neural word embedding models, the words were simply represented

by their strings. This meant that each word had its own identity and that gave rise

to the indexing method. While it was the simplest approach to represent words as

quantifiable numbers, it did not prove to be a very good way to represent words.

2.1.1 Indexing Methods for Word Embedding

One of the early mathematical models that generated features of words was the La-

tent Semantic Analysis (LSA) model[41]. This method followed the Distributional

Hypothesis where a matrix is formed by calculating the frequency of each word in

different documents. This matrix is then reduced by Singular Valued Decomposition

(SVD) method. These matrices are then used against matrices of other documents

to find similarities between them.

Other models involved words being represented in the Vector Space according to

their frequencies in documents. These methods involved forming a term-document

matrix or considering global co-occurrences of words in a word-context matrix [13, 43].

These initial methods performed well in capturing the syntactic aspect of the words

but failed to capture the semantic meanings of the word given their context.

2.2 Unsupervised and Semi-Supervised Embedding

Methods

The task of generating an embedding does not have a target variable in the dataset.

I.e. we cannot hand-craft the embeddings of vast dimensions for each word in mul-

8



2. RELATED WORKS

tiple documents for a machine-learning model to learn. Hence, this task cannot be

supervised.

Methods proposed by Collobert and Weston in [10] and [11] are one of the first

semi-supervised vector representation models. In their paper, they used methods

like Part-of-Speech (POS) tagging, Named Entity Recognition (NER) and semantic

labeling to generate some features which were then passed to a Convolutional Neural

Network (CNN) to generate their embedding.

2.2.1 Word2Vec

Neural Word Embedding models are the unsupervised methods of efficiently and

accurately calculating the vector representation of words along with capturing their

semantic and syntactic assets. Word2Vec, an architecture proposed by Mikolov et

al. [52] is the first neural embedding model that was able to achieve this goal. The

Word2Vec has two variants: Continuous Bag-of-Words (CBOW) model and the Skip-

gram model.

They function on the same principle where the neural network performs a fake

task. In the CBOW model, the fake task is to predict the word in the center given the

words in its context, while the Skip-Gram model tries to predict the context words

given the word in the center. In both models, the weights of the hidden layer are

then saved as the vector representation for the subject word.

9



2. RELATED WORKS

Fig. 2.2.1: The CBOW architecture as proposed in the Word2Vec model. Here, the
goal is to predict a target word based on its context words of the desired window size.
In this case, the window size is 2.

10



2. RELATED WORKS

Fig. 2.2.2: The Skip-Gram architecture as shown in the picture takes in the subject
word as an argument. Based on the subject word, its context words get predicted in
the window size (2 in the figure).

2.2.2 GloVe: Global Vectors for Word Representation

GloVe is one of the state-of-the-art methods proposed by the researchers at Stanford[56].

This algorithm constructs a global co-occurrence matrix that has the probabilities of

different pairs of words appearing near to each other. Based on these probabilities,

the embedding of each word in the Corpus gets generated. But the downside of this

approach is that it takes a lot of time to calculate the vectors and hence, mostly

re-used as a pre-trained word embedding.

11
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2.2.3 Other Approaches

A lot of improvements have also been proposed later down the line, such as Dict2Vec

[68], where the authors used dictionary information to enhance the word embeddings

by forming strong pairs and weak pairs between words. The approach put forward by

Ling et al. [49] aims to better the Word2Vec model [52] by using an attention model

to solve the problem of the importance of context words in the original model.

2.3 Use of Graphs in Word Embeddings

While extensive work has been done over the years to improve Word Embedding, the

use of Graphs in this area has been very limited. To improve Word Embedding ma-

trices, M. Faruqui et al. [19] in their paper introduces a method known as retrofitting

where they represented each word as a node and each relation between the words as

an edge. These nodes and edge information were then used with the pre-calculated

Word Embedding to bring the related words closer to each other in the Vector Space.

Their paper was able to preserve similarity in the pre-calculated/pre-trained word

embeddings like Skip-Gram, CBOW [52] and GloVe [56].

The very first widely known usage of Graph Neural Networks based Word Embed-

dings was given by L. Fang et al. [18]. They used an Ensemble Method to combine

the information gained through a Word-Graph like Wordnet synsets [54] along with

the traditional Neural Word Embedding models to leverage the merits of both ap-

proaches.

2.3.1 SynGCN

In the same year, S. Vashishth et al. [69] proposed the SynGCN and SemGCN

frameworks. Their approach involves the transformation of the text corpus to graphs

by using dependency parsing to preserve the contextual and positional information.

The nodes of the graph are then initialized according to the pre-trained vectors from

Word2Vec[52] or GloVe[56]. This graph is then subjected to a Graph Convolutional

12
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Neural Network (GCN) which it generates embedding for each node.

Fig. 2.3.1: The architecture of SynGCN

In the above figure, the pre-trained embeddings of words are converted to a graph-

structured based on its dependency tree. This graph structure is then subjected to

a GCN to encode and decode (and generate) the new embeddings. The downside to

this algorithm is that we need to have pre-trained embeddings to further enhance the

embeddings using the GCN. This means more expenses in terms of computation and

time.

This approach converts the one-dimensional text data to a graph and uses GCNs

to generate embeddings of the words; thus, is along the lines of the scope of our

research.
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CHAPTER 3

Machine Learning Techniques

This section summarizes all the machine learning methods we use in this research.

3.1 Node Embedding in Graphs

We define graphs as G(V,E) where V is the set of vertices and E is the set of edges

that connect two vertices or nodes. In a lot of problems that involve representing the

data in the form of a graph, analysis of the graph is one of the most important things

to gain insights about the data and give probable solutions to the problem[76].

Graph analysis can prove to be very helpful but at the same time, their computa-

tion cost can also become very high when the size of the graph becomes too high[67].

Thus, the need arises to convert the graph from a high-dimensional space into a low-

dimensional space. For this purpose, Graph embedding is used. Graph embeddings

are much similar to the vector embeddings of words in the NLP domain; they are

dense and continuous vector spaces that preserve the properties of the structure of

the graph.

14
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Fig. 3.1.1: An intuition on Graph Embeddings. In the figure, the nodes from the
high-level graph are converted to low-level vectors.[76]

Typically, graph embedding methods belong to one of the three major categories[12]:

• Matrix Factorization Based Methods

• Random-Walk based Methods

• Neural-Network based Methods

In this research, we experiment with all three types of methods. We start with

node2vec as an underlying method for the algorithm and then move forward with

testing SDNE and GGSNN.

3.2 Node2Vec

Node2Vec is a random-walk-based algorithm that aims to produce embeddings of

each vertex of the graph by generating probabilistic random walks[27]. This method

has two major phases.

3.2.1 Phase 1: Random Walk Generation

In this phase, based on the nodes and the weights of the edges between the nodes,

probabilities of the next step are generated. Intuitively, this means that in each

15



3. MACHINE LEARNING TECHNIQUES

unit of time, the algorithm moves one step forward in the probabilistic direction.

It quantifies the relationship with each next step that it would take along with the

distance of it from the starting point.

The probability function is as follows:

P (ci = x|ci−1 = v) =


πvx

z
, if (v, x) ∈ E

0, otherwise

(3.2.1)

Here, πvx is the transition probability between the nodes of v and x. This probability

is then normalized by z. This is only true if there is an edge between the nodes.

If there is no edge, then the probability goes down to zero. This process happens

iteratively. We start with a node where the probabilities of all the neighbors are

calculated and the neighboring node with the most probability is then selected; this

process happens continuously till we reach the desired length of the random walk.

Fig. 3.2.1: Architecture of Node2Vec[27].

3.2.2 Phase 2: Embedding Generation

After a number of random walks have been generated. These walks are then treated

as text. I.e. each node in the sequence is treated like a word and each sequence of

a walk is treated as a sentence. These sentences are then subjected to the underly-

ing embedding method, Word2Vec[52]. In detail, the Skip-Gram model is used for

training the embeddings of the graph where the data from the random walks acts as

16
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the training data. Thus, in this case, the graph is represented as text. On the other

hand, our research focuses on representing text in the form of graphs.

The very first random-walk-based methods was the Deep-Walk [57] method. It

generated the walks without taking the probabilities of each step between two nodes.

Thus, it was a truly random algorithm. There have been many improvements in

this domain like NBNE [58] which samples direct neighbors of the subject node.

Metapath2vec [15] is a follow-up method over node2vec that uses meta paths to

generate the paths. While the path generation methods differ in each algorithm, their

underlying neural network remains the same i.e. the Skip-Gram Model. However,

there are a few methods like HSNL [17] and RMNL[80] that use Recurrent Neural

Networks (RNNs) as the underlying method to generate embeddings.

For this research, Node2vec was chosen as one of the underlying methods because

it provides simplicity in terms of time and space complexity while getting good results

at the same time.

3.3 Structural Deep Network Embedding (SDNE)

SDNE[28] falls under the second type of graph embedding models, i.e. the algorithms

that use Matrix Factorization to produce embeddings. It is one of the algorithms that

preserve both, first-order and second-order proximity. Because of this, the algorithm

is capable of preserving embeddings in a local and a global view. Unlike walk-based

methods, it does not have multiple phases but the loss function of the neural network

model in this algorithm incorporates multiple inputs. SDNE is a semi-supervised

graph embedding architecture with two phases, each focusing on first-order proximity

and second-order proximity, respectively. Thus, two different loss functions add up

to produce a comprehensive loss function.
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Fig. 3.3.1: The architecture of SDNE[28].

3.3.1 First-order proximity using Laplacian Eigenmaps

To incorporate the global structure of the graph, the entire adjacency matrix of the

graph has to be worked upon. For this, the authors of SDNE introduced a super-

vised component that utilized the entire structure of the graph. The first phase of

SDNE uses Laplacian-Eigenmaps to preserve the global node similarities. Laplacian-

Eigenmaps impart a higher penalty if two similar nodes are embedded farther apart.

So, the first loss function is defined as follows:

L1st =
n∑

i,j=1

(si,j|yi − yj|2) (3.3.1)

Here, si,j is the adjacency matrix and yi is the subject node and yj are the neighbor

nodes of yi.

3.3.2 Second-order proximity using Auto-Encoders

For the second phase, the SDNE[71] architecture utilizes an autoencoder[62]. It is

the unsupervised component of the algorithm. An autoencoder contains two neural
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networks that work in synchronization with each other. The input of the encoder is an

adjacency matrix of the graph which is mapped to a representation space with fewer

dimensions and then the decoder takes in the encoded representation and reconstructs

it to a reconstruction space. During the reconstruction, the nodes with a similar

neighborhood will have similar embedding. Thus, the local proximity (First-order

proximity) is preserved in this architecture. The loss function of the autoencoder is

as follows:

L2nd =
n∑

i=1

|(x̂i − xi)⊙ bi|2 (3.3.2)

Finally, the SDNE combines the two above-described loss functions and the re-

sultant loss function is a semi-supervised algorithm that needs to be minimized. The

resultant loss function is as follows:

Lmix = L1st + αL2nd + µLreg (3.3.3)

Where, Lreg is just a regularization parameter to prevent overfitting, µ is a pa-

rameter to control the regularization and α is used to control the influence of the first

loss function on the overall loss function.

Unlike [31, 33, 77] which only make use of Matrix Factorization methods, this

method proposes a method that works on both principles of supervised and unsuper-

vised learning and that makes this method achieve better results than the ones prior

to it at the expense of computational cost.

3.4 Gated Graph Sequence Neural Networks

This algorithm falls under the neural network-based methods for graph embedding.

Before understanding GGSNNs, we need to understand the functioning of a Graph

Neural Network (GNN)[25, 65].

In simple words, a GNN is a simple transformation that happens over the graph

structure which optimizes the graph while preserving the attributes of the graph
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at the same time. Intuitively, a graph is taken as an input for the GNN where it

is transformed progressively layer by layer with more and more information being

learned (about the nodes, edges, and sub-graphs) each time. The resultant output is

the embedding for each of the components of the graph, preserving all the connections

of the graph.

Fig. 3.4.1: The architecture of a simple GNN[25].

A simple GNN can be constructed by using a separate MLP for each of the com-

ponents of the graph. Meaning that each node, edge, and global-context vector of the

graph will have an MLP associated with it that generates its embeddings. Since all

the components are treated separately in this method, the connectivity of the graph

is not considered.

Fig. 3.4.2: Message Passing in a GNN[24].

To incorporate the connectivity of the graph, a method known as message pass-

ing[24] is used on top of the simple GNN architecture. Message passing simply means
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to transfer information between the connected components of the graph (for instance:

neighboring nodes and edges of a node).

The message-passing occurs by gathering information about all the neighboring

components of a node and using an aggregate function on that information. This

aggregate information is then updated using an update function which is usually

learned through the learning process of the GNN.

For a task that deals with an input that is sequence-based and is in the form of

a graph the Gated Graph Sequence Neural Network (GGSNN)[47] was introduced.

Instead of a simple MLP, it uses a Gated Recurrent Unit (GRUs)[7] and its optimiza-

tion techniques. As GRUs handle sequence-based output along with an attention

mechanism, this algorithm has an inductive bias towards the problems that have

sequence-based inputs.

Mathematically:

Say, a lot of messages are passed to node nj. To quantify them along a simple

MLP, we use the following equation.

F (xj) =
∑
j∈Ni

Wjxj (3.4.1)

To aggregate all the messages coming to the node ni, suppose we use the function

G.

aggi = G(Wjxj : j ∈ Ni) (3.4.2)

After that, the node is updated by the GNN layer after gaining information about

its neighbors. The update function is as follows:

hi = θ(K(H(xi) + aggi)) (3.4.3)

Here, K and H are the MLP functions or GRUs, depending on the architecture.

H is the initial transform that happens over the information gain, while K acts as a

projection of vectors into another dimension.
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Other neural network-based approaches include the Graph Convolutional Neural

Networks (GCNs)[38] that function on pooling the information of the neighbors along

with a Convolution layer to generate the embedding.
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CHAPTER 4

Methodology

The task of generating vector embedding for words according to our method is a

semi-supervised task because it involves a step where the graph needs to be created

from a text corpus, which is essentially assigning relations to non-relational data.

This solution involves 3 key tasks: (1) Graph creation, (2) Graph Enhancement and

(3) Vertex Embedding.

4.1 Task 1: Graph Creation:

Fig. 4.1.1: A working example of the forward-pass algorithm on 5 words w1 to w5

with context size = 2
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The objective of this method is to model the text corpus as a graph where every node

corresponds to a word and the edges between the nodes signify the relations between

the nodes. To convert the text corpus into a graph, we follow a simple forward-pass

algorithm.

Figure 1 shows the nature of the forward-pass algorithm. In this example, there are

5 words (w1 to w5) that occur one after the other in the corpus. Here, we introduce

a user-defined variable: Context Size. According to the context size, with every

iteration, the algorithm will construct an edge between the subject word and the

neighboring words in its context length. In the above example, the context size is 2,

hence, it will associate the next two words of the corpus with the subject word. This

is highly similar to how Word2Vec [52] captures context.

Whenever we add an edge to the adjacent matrix, its weight value depends on

the decreasing function of 1
X

as we go away in the context. Where X is the distance

between the subject word and the neighbor word. The intuition behind this is that the

closer the word is from the subject word, the stronger the association. This intuition

for Context Size is similar to the Context Size in the Word2Vec algorithm [52].

Assumption: In our case, the distance between the subject word and the neigh-

bor words always has to either zero or positive. As distance is a non-negative quantity,

it cannot be less than zero. [6.2.1]

Penaltyfunction =
1

x
, x ≥ 0 (4.1.1)

This step takes care of maximizing the first-order proximity of the matrix. [6.2.1]

4.2 Task 2: Graph Enhancement:

The Adjacency Matrix for the graph we get from Task 1 is a spare matrix with not

many associations between words. This is true for most word embedding models as

well. So, in this task, our goal is to enhance this adjacency matrix so that the output

is a denser, much more comprehensive adjacency matrix. To achieve this goal, we try

to maximize the second-order proximity. [6.2.1]
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Fig. 4.2.1: An illustration that shows the co-occurrence between w1 and w4 is high.
Thus, we create invisible edges between (w1,w2).

For this purpose, we compare the neighbors of the subject node and the neigh-

boring node. The idea is that if the neighbors of two nodes are highly similar (co-

occurring), then the nodes might be similar and the subject node can have some

implicit connection with the neighbors of the neighboring node. This intuition is

in line with the Second Order Proximity of a Graph mentioned above. Thus, this

algorithm enhances the second order proximity of the adjacency matrix.

In Figure 2, the subject node w1 is the subject node, and w4 is the neighbor node

that is under consideration. Here, out of all three neighbors of the w1, two are also

the neighbors of w4, meaning that 66.67% of the neighbor nodes of w1 co-occur as

the neighbor nodes of w4. This concludes that other neighbors of w4 might also have

some association with the subject node w1. We define co-occurrence as follows:

Definition 1 Co-occurrence Co-occurrence between two nodes n1 and n2 can be

defined here as the ratio of familiar neighbors of n1 and n2 to the first-order of nodes

of the graph.

Co− occurence =
Neighborsn1 ∩Neighborsn2
Neighborsn1 ∪Neighborsn2

(4.2.1)

In the above paragraph, if an edge is added between the subject node and the
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Algorithm 4.2.1 The Graph Enhancement Algorithm

Input: Adjacency Matrix (Adj Matrix)
Input: THRESHOLD > 0
for i in range(0, length(Adj Matrix)) do

Primary ← Adj Matrix[i]
for j in range(0, length(Primary) do

Secondary ← Adj Matrix[j]
I = Primary ∩ Secondary
U = Primary ∪ Secondary
C = I

U

if C > THRESHOLD then
for j in range(0, length(Secondary) do

Adj Matrix[i][k]← Adj Matrix[i][k] + 1
Context Size+1

end for
end if

end for
end for

new node, the weight of the new edge is 1
ContextSize+1

. This is because this new edge

is added with the understanding that there might be an association between the two

words(or nodes). Thus, its weight has to be less than the edges that already exist.

4.3 Task 3: Node Embedding:

This step involves using an underlying method that uses the aforementioned node

embedding algorithms. Up until this step, we successfully represent the textual data

in a graphical format. This allows for the use of conventional embedding methods to

generate vector representations of each node (i.e. each word). It is known that there

are three categories of embedding methods that can be used[76]:

• Matrix Factorization Methods

• Walk-Based Methods

• Neural Network Based Models

We use the state-of-the-art method of each kind for the scope of this research.
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4.3.1 Walk-Based Method: Node2Vec

As talked before3, Node2Vec[28] takes in a graph as an input, generates random-walks

based on the probability function, and generates the embeddings using the underlying

Word2Vec algorithm. This would mean that initially, the text data is converted to a

graphical representation, and after generating the walks, the nodes are again used as

words on which the embeddings are generated.

Due to the nature of the algorithm, its performance of it would potentially be

comparable to just the Word2Vec method. As this algorithm generates walks based

on the probability, the immediate neighbors are almost always selected; thus the first-

order proximity is preserved with Node2Vec. On the other hand, there is a possibility

that not all the nodes in the global context vector get selected; thus the second-order

proximity cannot be preserved in all cases.

4.3.2 Matrix-Factorization Method: Structural Deep Net-

work Embedding (SDNE)

To win over the shortcomings of Node2Vec, Structural Deep Network Embedding

(SDNE) [71] can be chosen. The SDNE architecture3 can be considered as a hybrid

method that includes a matrix factorization method to preserve the global occurrence

matrix (second-order proximity) and an auto-encoder architecture that preserves the

connectivity of the local neighborhood (first-order proximity).

In our research, using this semi-supervised algorithm would mean that the posi-

tioning of the vectors of each word would be generated based on not only considering

the context but also how that word acts with all other words in the vocabulary of the

dataset. This would potentially result in gaining hidden connections between some

words that do not exist in the context of the subject word.

4.3.3 Neural Network Based Model: GGSNN

A Gated Graph Sequence Neural Network[47] model is able to capture the semantics

of the nodes from all the neighbors surrounding the subject node. Looking at it
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intuitively, each connected node transfers its information to every one of its neighbors

resulting in every node in the graph having a global context of the graph along with

a complete understanding of the neighborhood of the nodes.

Thus, this method preserves the first-order and second-order proximity of the

graph. Additionally, because the GGSNN uses the GRU as its computation unit

instead of a simple MLP from a GNN, this is best suited for sequence-based input.

In our case, since the textual data is connected and it is proven that using LSTM[79]

units or GRU[7] units on data that is sequence-based (i.e. texts), better embeddings

can be generated [47], it would be best suited for our case.

Since this method does not involve training of node vectors in multiple steps,

while preserving the same first-order and second-order proximity of the graph, this

method can serve the same purpose as SDNE while potentially being better in terms

of computational cost and time complexity.
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CHAPTER 5

Experiments and Results

5.1 Experimental Setup

To evaluate our method, we subjected all the algorithms to the following intrinsic and

extrinsic evaluation tasks. The training was done on the 20 News Groups Dataset[42],

containing over 18,000 news articles from 20 different topics. Because the dataset is

very diverse in terms of news coverage, the vocabulary is a lot varied.

The details of the test bench are as follows:

• CPU: Ryzen 7 5700x, 8 cores 16 threads

• GPU: NVIDIA Geforce RTX 3070, 8GB VRAM, 5888 CUDA Cores (CUDA

enabled)

• RAM: Corsair Vengeance 32 GB @ 3600 MHZ, CL18 Timing

• Motherboard: ASUS Prime Gaming Motherboard, AMD B550 chipset

• Storage: WD Black PCIe Gen 4 SSD, 1 TB

To evaluate the algorithm, we construct a case study involving a lot of tests to

evaluate the embedding method with different angles. The intrinsic tasks and the

extrinsic tasks are as follows:

5.1.1 Intrinsic Tasks

• Word Similarity: This task involves investigating the relatedness of two words

depending on the algorithm and comparing it with the human golden truth.
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In this test, a similarity score using the cosine similarity 6.2.1 is calculated

between two words. This pair of words would already exist in another dataset

that has been assigned a similarity score created using human intuition. The

similarity values between the two words would then be compared using a metric

correlation function and that correlation would then give us an exact idea of

how good our algorithm is. The datasets used as golden truths for this were

the Simlex-999 dataset[30] and the WS353 dataset[1]. The Metric used for this

test was Spearman Correlation.

• Concept Categorization (Coref): The task is to group similar words into

similar categories. This test is analogous to a clustering problem [50]. In a

conventional clustering problem, data points, based on their features are clas-

sified into groups. In our case, the data point is the word and its features are

the vector embedding of that word. For example, computer and phone would

belong to the same category. We evaluate this on the BLESS dataset[3] and

the ESSLI dataset[2] as the golden truth datasets. The metric used for this test

was Cluster purity.

• Word Analogy: The task is to determine the degree to which the semantic

relations between word A and word B are similar to those between word C and

word D, given the relations of A:B and C:D. For example, if we have to fill in

the black in the sentence ’man is to woman as king is to ’ ; a human brain

can probably guess queen for the blank, as it is analogous in this sentence.

For an NLP model to recognize this analogy, the vectors must be generated in

such a way that the words queen and woman are close and opposite to king

and man respectively. This is the task of word analogy. We use the SemEval-

2012-Task2[37] dataset and the MSR dataset[53] on the metric of Spearman

Correlation.
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5.1.2 Extrinsic Tasks

• Question Answering(QA): The task in this test is to select an answer given

a question. The answer would be chosen as a segment from the given passage

in some cases, while in other datasets the answer can be a boolean (yes or no).

QA has become increasingly popular in recent times with the advancement in

IR systems and chat-based voice assistants[20]. In this test, a model is trained

based on the embeddings generated by the selected algorithm. The input of

the model would be a question and the output would be the answer. In an

extraction-based QA test like this one, the output would be the starting word

index and the ending word index of the answer. The dataset used for this test

was the SQUAD datset[61] and the model that was used for training was the

Retrieval-Augmented Generation (RAG) model[46].

• Co-reference Resolution: In normal English texts, we often use linguistic

expressions in place of the actual name of the entity to reference it. For example

I love for Ironman because he is fearless. In this statement, the expression he

refers to Ironman entity. For higher-level NLP tasks, this is a very important

task. It involves grouping all the words that refer to the same entity in the

corpus. We used the CONLL-2012 shared task[60] as the dataset, this dataset

was trained on the model proposed by AllenNLP[22] with using embeddings

generated by all the baselines.

• Part-of-speech(POS) Tagging: Any sentence in any language is made up

of parts of speech (like verbs, nouns, etc.). In linguistics, these parts of speech

of a word signify its definition and context. It is not as simple as making a

list of words that correspond to a part of speech as there are many words that

might be used in different parts of speech. Along with the understanding of

word similarity from the embeddings, any word embedding model should also

have good cognition about the context to get accurate POS tagging results.

This task deals with tagging each word in a sentence with its syntactic role. We

use the Penn-treebank dataset for this task[51] which is trained on the model

31



5. EXPERIMENTS AND RESULTS

proposed in [44]

• Named Entity Recognition (NER): It is the task of identifying the men-

tions of entities in the dataset into different categories like people, country,

organization, etc. The NER is a very important step in data preprocessing for

any NLP application. Most NER applications work based on a pre-existing

graph database like DBPedia where the information is stored in triples just

like a Knowledge Graph (KG). The CoNLL-2003[64] dataset was selected for

this test. It has more than 250,000 tokens amassing over 25000 entities in the

dataset. This was trained on the same [44] model.

5.1.3 Metrics

We chose the following metrics to evaluate the algorithms on,

• Spearman Rank Correlation: When the need arises to measure the similar-

ity between two entities that are ranked, the Spearman Rank Correlation[74]

can be used. It is an extension of the Pearson Correlation [9] metric. For two

entities that are either ordinal, interval, or ratio and the relationship between

them is monotonic 6.2.1, the Spearman correlation will be able to identify the

strength and direction between the two entities/variables. Mathematically:

θ =
6
∑

d2i
n(n2 + 1)

(5.1)

Intuition: Suppose we have 2 lists of variables that need to be compared. The

elements in the list would first need to be ranked (they are usually in ascending

or descending order), and then the two lists of variables can then be compared

based on the Spearman Correlation. In the formula, di is the difference between

the values of the element that is ranked at ith position. And n is the sample

size of the dataset. In our case, this metric would be useful in conducting Word

Similarity and Word Analogy tasks. In both of these cases, there would be a

golden truth data that already has similarity values and analogy values between
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two words. These values are then compared to the similarity/analogy values

that are predicted by the embedding algorithms. Based on these results, we

would obtain the average values of Spearman Correlation for the tests.

• Cluster Purity: In a clustering problem 6.2.1, the metric of purity is a met-

ric that is used for external evaluation of the clusters that are formed by the

algorithm. It works on the principle of how many pure clusters are formed (i.e.

clusters having only one class of data points). It is also one of the simpler

evaluation metrics for clustering tasks. Mathematically:

purity =
1

N
]
∑

max(m ∩ d) (5.2)

Intuition: The problem of clustering is an unsupervised learning problem. In

this case, there is no target variable that an algorithm has to predict, instead

it has to group all the similar kinds of data points into a cluster together based

on their features. In this case, the simplest measurement would be to compare

all the categorized data points with the ground truth and see how many data

points have been categorized correctly. Suppose we have N data points that

have d clusters and d classes, then with the intersection between all the classes

and clusters, we would get all the data points that have been classified correctly.

Normalizing this by N gives us the proportion of data points that have been

clustered correctly. In our case, we use this metric for Concept Categorization.

This problem is very similar to clustering as we are grouping similar words into

clusters of a particular category. While the methodology differs from conven-

tional clustering algorithms [50], the evaluation strategy is the same. After the

words have been categorized by all the methods, they all would then be com-

pared with the golden truth datasets which would give us the Cluster Purity

score.
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5.1.4 Baselines

We selected the following baselines to evaluate GraphWords:

• Tf-iDF [35]: This is the only statistical model in the selected baselines. It gen-

erates embeddings based on how relevant is a word compared to the document

it is in. It is calculated by multiplying the frequency of a word in the document

with the inverse document frequency of the word across multiple documents.

• Word2Vec [52]: We use the CBOW approach of the model where the embed-

dings are generated based on a task of a neural network. The task is to predict

the subject word given its subject words in a context window. After the desired

output is achieved, the model is frozen and the weights of the layers are the

embeddings of the model.

• GloVe [56]: This approach makes use of a global co-occurrence matrix of words

to generate embeddings. The co-occurrence matrix contains the probabilities of

different pairs of words based on which the embeddings are generated.

• SynGCN [69]: It is a multi-phased word embedding approach that utilizes

knowledge graphs. It uses the dependency parsing method to generate connec-

tivity between the words. And then, pre-trained word embeddings are used and

passed through a GCN to enhance the embeddings.

5.1.5 Models to be tested

Based on the underlying embedding methods, we select the following the models that

are to be evaluated for the scope of the research:

• GraphWords + Node2Vec

• GraphWords + SDNE

• GraphWords + GGSNN
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5.2 Results

This research aims to answer the following Research Question(RQ):

RQ: Can a graph-infused word embedding method incorporate not only the relat-

edness of words but also surpass conventional methods in that aspect (given similar

semantic space)?

Word Similarity Concept Cat. Word Analogy

Simlex-999 WS353 BLESS ESSLI SemEval MSR

Word2Vec 21.0 43.5 64.3 53.2 14.2 32.4

TF-iDF 13.7 24.3 48.7 39.7 8.2 21.8

GloVe 31.1 4.8 73.9 51.4 14.0 35.9

SynGCN 34.9 41.2 79.2 60.9 18.6 41.2

GW+Node2Vec 37.2 45.7 78.5 59.4 19.3 43.9

GW+SDNE 38.9 47.1 82.2 59.4 18.1 44.6

GW+GGSNN 39.0 48.3 81.0 60.2 19.9 44.9

Table 5.2.1: Comparison of the Intrinsic tests on GraphWords with other baselines
(Spearmann Correlation Coefficient for Word Similarity and Cluster Purity for Con-
cept Categorization)

5.2.1 Evaluation of Intrinsic Tests

Table 5.2.1 shows the results obtained after conducting the intrinsic tests on the pro-

posed algorithms and the baselines after training on the 20 Newsgroups dataset[42].

The results show that on the Word Similarity task, our proposed graph representation

method along with the GGSNN[47] architecture gets the best result over the previ-

ous best baseline (SynGCN[69]) by an average of 4%. Apart from that, the results
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Question Answering Coref POS Tagging NER

Word2Vec 73.5±0.3 60.1±0.1 93.0±0.1 59.3±0.1

Tf-Idf 61.2±0.1 52.3±0.2 89.3±0.1 47.1±.2

GloVe 74.2±0.1 62.7±0.1 94.6±0.2 59.8±.1

SynGCN 74.6±0.2 63.4±0.3 95.4±0.1 61.7±.1

GW+Node2Vec 75.2±0.1 64.1±0.1 93.8±0.2 59.6±.3

GW+SDNE 76.7±0.1 65.0±0.1 94.2.3±0.2 60.4±.3

GW+GGSNN 77.1±0.1 65.4±0.1 95.0±0.2 62.6±.3

Table 5.2.2: Comparison of F1 Scores/accuracies6.2.1 of the Extrinsic tests on Graph-
Words with other baselines

obtained by our method with SDNE[28] are also on par with SynGCN. This shows

that neural network-based models and matrix factorization methods prove better re-

sults. The better results for this task can be attributed to the fact that representing

words based on their occurrences in a graph format would result in exploring some

relationships that conventional algorithms would not be able to.

For the task of Concept Categorization, our representation method with SDNE as

an underlying algorithm performs better (by 4.5%) than the previous baseline on the

BLESS dataset. While on the ESSLI dataset, the results are comparable (within the

margin of error) to the best-performing baseline. An explanation for a comparable

performance can be given by the nature of the dataset that was used for training and

the nature of golden truths in the ESSLI dataset. This dataset has only a limited

number of words that are divided into 9 categories, out of which a lot of them do not

occur in the training dataset. Due to this scarcity of data, the cluster purity score

suffers for this test.

For the Word Analogy task, our algorithm outperforms previous baselines on

both SemEval[37] and MSR[53] datasets by an average of 4.6%. This proves that

representing text as graphs also embeds similar words together while also preserving

other relationships between the words.
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5.2.2 Evaluation of Extrinsic Tests

The extrinsic tests show real-life application-based tests of all the algorithms. Table

5.2.2 tells us how our models perform compared to the baselines in all the extrinsic

tests performed.

For the QA task, the proposed methods with all the underlying methods perform

better as compared to the baselines. Comparing this to the intrinsic tests, it can

be found that the graph representation method along with any of the selected node

embedding methods proves to be better by more than 4%.

Co-reference Resolution is a task that is useful for distinguishing the references to

the entities. For this test, a method has to rely on how well the embeddings recognize

the entities and how close the speech(nouns, adjectives, etc.) tags are to that entity.

With an improvement of more than 2.5% over the baselines with SDNE[28], the

proposed method outperforms other methods.

In the POS tagging task, the results are based on how better the model is able

to recognize which word is used and what kind of part of speech. As SynGCN

architecture uses dependency parsing as a mode to generate edges between nodes, its

performance is better than all the models in consideration. Even then, the proposed

method along with GGSNN performs comparably to it.

The GraphWords architecture also provides a minor improvement (of about 1.5%)

departing from SynGCN for the Named Entity Recognition task. But this is only true

for the architecture with GGSNN as the underlying method.

Overall, if we compare both methods, we see that representing text as a graph

and then using node embedding methods provides a valuable increase from other

conventional methods. However, when all the proposed methods are scrutinized,

it is found that using recent methods that involve graph neural networks (in this

case, GGSNN) gives much better results as opposed to matrix factorization (SDNE)

methods and walk-based methods (Node2Vec).
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5.2.3 Statistical Significance Testing on the Results

To support the hypothesis that using graphs for Word Embedding Methods can be

potentially better, we conduct a hypothesis test. For this, a default Hypothesis is

defined as:

H0 = No better results are obtained by GraphWords as compared to SynGCN[69].

The alternative hypothesis on this was taken to be:

Ha = Results obtained by GraphWords are efficient and more as compared to

SynGCN[69].

The significance level (α) was selected to be 0.3.

Thus, to test the above-defined hypotheses, we take the p-value to be:

p(Undertaking Graph Enhancement Process — No better results are obtained)

p =
tests on which graphwords fail

total tests conducted
(5.3)

By these calculations, the p-value comes out to be 0.2. Thus, we can ignore

the default hypothesis as p-value < α. And hence, we can say that the alternate

hypothesis is true and the obtained results are statistically significant.

5.2.4 Time and Space Complexity Analysis of the Proposed

Methods

In this section, we discuss the time efficiency of the proposed methods and how many

resources they use on a system. To test the efficiency of the methods, we measure the

time to train the embeddings using the methods in consideration. Keeping the CPU

and the RAM size and speed the same for all the tests, we measure the time and the

usage of RAM while the models are being trained.
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Time to Train (minutes) RAM Usage (GB)

Word2Vec 11.5 1.7

Tf-Idf 7.4 0.9

GloVe (pre-trained) (pre-trained)

SynGCN 18.7 4.3

GW+Node2Vec 22.2 13.1

GW+SDNE 43.6 22.2

GW+GGSNN 39.0 16.4

Table 5.2.3: Time-Space Analysis of GraphWords compared with other baselines

5.2.4.1 Limitations:

From Table 5.2.3, we see that the most efficient method in terms of time-to-train is

the Tf-iDF method. While it takes the least time to train, it also performs the lowest

as well. On the other hand, the proposed methods take the highest time to train.

Among the graph representation architectures, the method with Node2Vec takes the

least amount of time to train, while the method with SDNE takes the most amount

of time to train. While other conventional models like GloVe and SynGCN produce

better results with time taken more than indexing methods but less than the proposed

method.

On the aspect of Resource/RAM Usage, the GW method with SDNE architecture

takes the most amount of resources. This can be attributed to the matrix factorization

method followed by an auto-encoder architecture. Both of these methods take up

more space and time to execute, hence, they take the most amount of time. On the

other hand, the index method (Tf-iDF) accomplishes the task in the least amount of

time but at the same time, it achieves the worst results.

In general, we see a trend of all the GraphWords methods taking a long time. The

reason behind this is that in the Graph Enhancement Algorithm (Algorithm 4.2.1),

there are two nested loops. Thus, making the complexity of the initial stage of the
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algorithm O(n3). As the number of words increases in the corpus, the algorithm

would take more and more time. The overall high space usage of this algorithm can

be explained by the fact that we need to store each word as a node in the graph and

along with it, the edge information between the nodes as well. Since the order of

edges increases exponentially as the number of nodes in the graph increase, it takes

up a high amount of space.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

The tests of Word Similarity, Concept Categorization, Word Analogy, Question An-

swering, and Co-reference Resolution are all dependent on how well the algorithm

captures the relatedness between the words. While the POS tagging task also takes

into consideration some grammatical characteristics. This observation leads to the

conclusion that our algorithm is able to capture context and relatedness between

words in a better manner as compared to other methods.

So, to answer the RQ, we can say that a Graph-based word embedding algorithm

can incorporate relatedness between words given sufficient context and can also sur-

pass a lot of conventional embedding methods according to the conducted intrinsic

and extrinsic tests. One advantage of using Graphs is that the vectors and words can

be visualized as nodes in the graph, which can help towards the explainability of the

methods.

But, the representation of words as nodes has some downsides as well that hand-

icap the efficiency of the proposed method. As graphical databases either use an

adjacency matrix or other storage-heavy methods, the GraphWords method takes

significantly more resources to store.

Further, as the graph enhancement method in its current state is un-optimized,

resulting in a high time complexity of the algorithm, the proposed method is also

very inefficient in terms of time as well.

Even then, the tests conducted on the proposed method tell us that representing
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words as nodes in a graph paves way for better context capturing and similarity as

graph-based methods explore neighborhoods in a much more efficient way.

Apart from this, this also leads way for a stackable word vectoring framework as

multiple trained word-vector graphs can then be stacked on top of one another by

using link propagation algorithms to improve pre-trained global vectors, much like

GloVe[56].

6.2 Future Work

In the future, consequent research can be encouraged in order to improve the effi-

ciency of the graph enhancement step of the algorithm. Methods such as dynamic

programming can be implemented to counter multiple nested loops as they exist right

now in a non-optimized state.

Alternatives for the storage of node and edge information can be used to improve

the resource efficiency of the algorithm. Instead of an adjacency matrix, hashmaps

can potentially be a quicker option. Further, for bigger datasets, graph databases

such as Neo4j can also be helpful and quicker instead of the conventional methods.

For embeddings graphs and sub-graphs, there are a lot more methods that are

energy-based (like TransE[5], TransR[48], TransH[73]). While these methods cannot

embed a single node into vectors, they can convert the embedding of a group of nodes

and the relationships between them to a vector. Such kinds of embeddings can be

extremely useful in tasks such as coreference resolution and word similarity and other

tasks where grouping multiple words in a singular category is of importance.

6.2.1 A Stackable Pre-trained Word Embedding Framework

The main advantage of using a graph database is that new nodes and new edges can

be added to it at any time. Once a corpus has been used to train the embeddings on

it, the embeddings can be stored as node information in the database.

After the creation of a graph database based on one corpus, suppose we create

another database that is based on other corpora. There would be a lot of words that
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Fig. 6.2.1: Ideation of the stackable pre-trained word vector database based on Graph-
Words

would be duplicated in both Corpora. These databases can then be easily merged

into one graph by using the message passing architecture [23].

Thus, the more corpora we use to train the embeddings using the proposed meth-

ods, the bigger the pre-trained architecture of the words would get.

43



APPENDIX

First-order Proximity

The first-order proximity describes the pairwise proximity between vertexes. For any

pair of vertexes, if S(i, j), there exists positive first-order proximity between Vi and

Vj. Otherwise, the first-order proximity between Vi and Vj is 0. [71]

Second-order Proximity

The second-order proximity between a pair of vertexes describes the proximity of the

pair’s neighborhood structure.

Let Nu = {Su,1, Su,2, Su,3...Su,v} denote the first-order proximity between Vu and

other vertexes. Then, second-order proximity is determined by the similarity of Nu

and Nv. [71]

Clustering

Clustering in Machine Learning means grouping unlabeled data points together. The

clustering problem is an unsupervised problem as it does not have target variables

pre-set. Instead, the data points are categorized based on their data points[50].

The 1
x function

The figure .0.2 shows the plot of the 1
x
function. As the x variable increases, the

corresponding y variable decreases to 0 progressively. Thus, we can say that this

function is biased towards the values of x that are closer to 0 and imparts a penalty

when the value of x increases.
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Fig. .0.2: The 1
x
function.

Fig. .0.3: Visual Representation of Cosine Similarity between two vectors.

Cosine Similarity

Cosine Similarity helps to tell how similar two vectors are. Suppose we have two

vectors A and B in a given non-zero space. It is represented by θ. To measure the

similarity between them, the mathematical formula would be:

θ =
A ·B
||A||||B||

(B.1)
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Monotonic Functions

A function can be called monotonic if they are increasing or decreasing in their entire

domain.

For example,

f(x) = x2, x > 0 (B.2)

g(x) = x2, x < 0 (B.3)

The function f(x) can be considered monotonically increasing as it increases with

the increase in the value of x. While the function g(x) can be considered monotonically

decreasing as it decreases with the decrease in the value of x.

Accuracy

Accuracy is a metric that is used for evaluating machine learning models on classi-

fication tasks. In a case where a model has to categorize data points in two classes,

there are four possible cases; True Positive (TP), False Positive (FP), True Negative

(TN), and False Negative (FN).

Based on this, the accuracy can be defined as:

Acc =
TP + TN

TP + FP + FN + TN
(B.4)
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