
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-1-2023

Performance Analysis of CNN Model for Image Classification with Performance Analysis of CNN Model for Image Classification with

Intel OpenVINO on CPU and GPU Intel OpenVINO on CPU and GPU

Md Maksud-Ul-Kabir Rico
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Rico, Md Maksud-Ul-Kabir, "Performance Analysis of CNN Model for Image Classification with Intel
OpenVINO on CPU and GPU" (2023). Electronic Theses and Dissertations. 9360.
https://scholar.uwindsor.ca/etd/9360

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.uwindsor.ca%2Fetd%2F9360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9360?utm_source=scholar.uwindsor.ca%2Fetd%2F9360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Performance Analysis of CNN Model for Image Classification

with Intel OpenVINO on CPU and GPU

By

Md Maksud-Ul-Kabir Rico

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2023

© 2023 Md Maksud-Ul-Kabir Rico

Performance Analysis of CNN Model for Image Classification with Intel OpenVINO

on CPU and GPU

by

Md Maksud-Ul-Kabir Rico

APPROVED BY:

__

 D. Wu

 School of Computer Science

__

K. Tepe

Department of Electrical and Computer Engineering

__

M. A.S. Khalid, Advisor

Department of Electrical and Computer Engineering

 April 14, 2023

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the Work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iv

ABSTRACT

Deep learning (DL) has proven to be a significant solution for analyzing complex

datasets such as images, videos, text, and speech. Convolutional neural networks

(CNN) have proven to be one of the most popular and powerful deep neural

networks to perform image classification. However, due to its high computational

complexity, high speed and accuracy required in many real-world applications,

CNN implementation presents a computational challenge for computing devices.

The recent advances in hardware have led to the emergence of the graphical

processing unit (GPU) as a solution for speeding up the process of executing

complex deep learning algorithms. Although a central processing unit (CPU) is

designed to handle a wide range of tasks quickly, it is limited in the concurrency of

tasks that it can execute in parallel. This research presents a comparative analysis of

CPU and GPU for image classification using the pre-trained Caffe vgg16 CNN

model optimized by Intel OpenVINO's model optimizer feature. OpenVINO is an

open-source toolkit for optimizing and deploying DL inference. It also boosts deep

learning performance in computer vision, speech recognition, and other common

tasks. Performance characteristics of the optimized model for image classification

were studied by running it on the Intel Core i5-1035G1 CPU and Intel UHD

Graphics G1 GPU. Moreover, the accuracy was tested by running the optimized

models on the first 50,000 images of the ImageNet 2012 validation dataset.

The research indicates that GPU implementation is on average 1.5x times faster than

the CPU implementation for the single precision optimized model and on average

2x times faster than the CPU implementation for the half-precision optimized model.

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64%

top-1 accuracy and 86.21% top-5 accuracy. On GPU, the difference between the

single precision optimized model and the half-precision optimized model on top-1

and top-5 accuracies are almost the same as CPU. The research also shows that there

exists a significant latency-throughput trade-off.

v

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest appreciation to Dr. Khalid for his

guidance and encouragement during my study at the University of Windsor. This

endeavour would not have been possible without his time and support. I would also

like to thank my thesis committee members Dr. Tepe and Dr. Wu for offering their

valuable time and insightful comments. Finally, I am extremely grateful to my

parents for their love, belief, and support. Without them, this thesis would not be

completed.

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

ACKNOWLEDGEMENTS ... v

CHAPTER 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Objectives ... 2

1.3 Organization .. 3

CHAPTER 2 Background and Related Work ... 4

2.1 Convolutional Neural Network ... 5

2.1.1 Architecture .. 5

2.1.2 VGG16 CNN Model .. 6

2.2 Intel OpenVINO Overview ... 7

2.2.1 Workflow ... 9

2.2.2 Supported Intel Devices ... 10

2.2.3 Performance Benchmarking App ... 11

2.2.4 Accuracy Checker App .. 11

2.3 Related Works ... 11

CHAPTER 3 Methodology and Optimization ... 13

3.1 Design Methodology ... 13

3.2 Optimization Processes ... 13

3.2.1 Input Shape .. 14

3.2.2 Data Quantization .. 14

3.2.3 Batching and Streaming ... 17

CHAPTER 4 Experimental Results and Analysis ... 19

4.1 Experimental Setup ... 19

4.2 Optimization Results ... 19

vii

4.2.1 Accuracy .. 19

4.2.2 Latency ... 21

4.2.3 Throughput ... 22

4.2.4 Execution Time .. 24

4.3 Result Comparison .. 26

CHAPTER 5 Conclusion .. 27

5.1 Summary ... 27

5.2 Future Work .. 28

REFERENCES .. 29

VITA AUCTORIS .. 35

1

CHAPTER 1

Introduction

1.1 Motivation

Conventional neural network (CNN) is considered one of the most significant models

which help in developing computer vision applications [1]. These models play an

imperative role in performance optimization. Moreover, image categorization has

applications in robotics, surveillance, search, transportation, and other areas. One of the

most intricate tasks of computer vision research is classifying images [4]. It searches for

regions in an image that potentially includes a specific object before extracting and

classifying each region using an image classification model. Consequently, a good

algorithm is necessary for a decent picture classification approach. According to the

ImageNet competition, CNNs are the models that are most frequently utilized for these

applications. CNNs are neural networks that perform well at image and video

classification. In addition, CNNs have also been applied to a wide range of other tasks,

including face and object identification, autonomous driving, and drone navigation.

The initial section of a standard architecture CNN is made up of several convolutional and

pooling layers for automatic feature extraction, while the second section is made up of fully

connected (FC) layers for classification [5]. It has also been observed that CNNs operate

by displaying a portion of an image, and then looking for objects, such as vertical lines,

arcs, or circles, that the network can identify from these components. After that, the image

is categorized utilizing several attributes. Each of the two types of layers is made up of

feature maps. The input image's characteristics are recognized by the first convolutional

layer. Typically, it is made up of several feature maps, each of which recognizes a particular

feature. A second type of layer known as the pooling layer is typically added after the

convolutional layer. Furthermore, each convolutional layer map feeds information into the

corresponding feature map of the following pooling layer [5]. Until the final pooling layer

is reached, the convolution and pooling layers are alternated in accordance with the

network depth. The output layer is the last one before the FC layer.

2

The topology of the network is defined by the depth of the network and the number of

neurons. Modern CNNs generally have millions of parameters and thousands of neurons

grouped in five or more hidden layers. Designing a network with an optimum topology is

one of the key difficulties in successfully deploying a CNN. In addition to this, the number

of parameters and memory needed for a CNN model all depends on its topology [3]. The

selection of topology is still primarily based on trial and error, though. The large amount

of processing required by CNNs calls for dedicated and tailored software and hardware

support methods. Usually, CNNs are executed on general-purpose processors, such as

CPUs and GPUs. In addition, CPUs as well as GPUs have limitations like high power

consumption and limited memory that limit their use and suitability for real-time and real-

world applications in drones, robots, and self-driving cars. As the CNN applications

increase in number and complexity, so do the software and hardware architectures for their

execution and training.

The amount and diversity of research on CNN inference acceleration in recent years

demonstrate tremendous industrial and academic interest. Many software toolkits and

hardware designs have been devoted to accelerating CNN inference. Among those software

toolkits, Open Visual Inference Neural Network Optimization (OpenVINO) is designed by

Intel to provide facilitation as well as acceleration for the development of models based on

deep learning in various frameworks [6]. In addition, the toolset enables deep learning on

Intel-designed hardware accelerators as well as heterogeneous platforms (CPUs, GPUs as

well as FPGAs). The toolkit is expected to optimize CNN models in computer vision as

well as achieve higher performance than standalone deep learning frameworks.

Accelerators like the CPUs GPUs and FPGAs can be used to match the desired

performance metrics (latency, throughput, and execution time) by utilizing Intel

OpenVINO’s optimization features [7]. The main motivation for conducting this research

study is that it helps in getting better insights into the performance of a CNN model for

classifying images on CPU and GPU using Intel OpenVINO toolkit.

1.2 Objectives

The main aim of this research study is to analyze the performance of a CNN model for

image classification with Intel OpenVINO on CPU and GPU. This study also helps in

3

identifying the performance improvement of the CNN model inference on the CPU and

GPU through the toolkit. In conclusion, this study contributes to the understanding of the

inference performance of the CNN model by providing data and information.

1.3 Organization

The rest of the thesis is organized as follows:

Chapter 2 provides background information about HPC tools, supervised machine learning,

and related work on convolutional neural network implementation. First, a basic overview

of Intel OpenVINO will be presented. Then a detailed description of the widely used neural

network architecture: CNN is provided. Finally, the related research on CNN

implementation on CPUs and GPUs will be briefly covered.

In chapter 3, the design flow and performance optimization schemes for inference of the

design toolkit will be discussed. It'll begin by introducing the design flow of Intel

OpenVINO, followed by optimization strategies for latency and throughput.

In chapter 4, test approaches and evaluation results will be illustrated for the proposed CNN

model. It begins with the introduction of experimental setup including software and

hardware information. Then the performance of the proposed model will be analyzed in

terms of accuracy, throughput, execution time, and latency.

Finally, chapter 5 presents conclusions and suggestions for further related research in

future.

4

CHAPTER 2

Background and Related Work

Many recent developments in deep learning technology enable several sophisticated

applications that have taken place at the edge, making prevailing edge devices like a

speaker, mobile phones, television, and camera more functional. Such applications range

from tasks related to computer vision like object detection, speech recognition,

segmentation, Voice detection, and image classification typically leverage pre-trained deep

learning models for inference on input data. However, executing model inference directly

over edge devices has become more difficult for lesser latency and lower network

bandwidth [8]. Typical edge devices are equipped with the system on a chip (SoC) that

implements multiple compute units like the graphical processing unit (GPU), optional

digital system processor, network processing unit, and central processing unit (CPU) [9].

In practice, most of the model inference at the edge is further executed on the CPU because

of smooth programmability and more flexible portability among various systems on chips.

There is significant research on optimizing deep learning model inference, notably CNN

models, directly on edge devices. It is preferable to use additional computation units to

address the DL model inference tasks. There are studies concentrated on using mobile

GPUs to handle computationally demanding operations like convolution and matrix

multiplication on mobile devices [10]. Their model coverage was typically limited since

they did not pay much attention to optimizing the vision-specific operators on

the integrated GPUs. Murthy et al [11] have suggested multiple methods for improving the

performance of object detection and image classification models on standard integrated

GPUs. Since DL and CNNs frequently need several layers and parameters to function

correctly, such research and applications are best suited for mid-range to high-end GPUs.

These GPUs require a lot of power, are expensive to create and produce, and are pricey for

the ordinary customer.

Deep learning workloads are being accelerated across a wide range of hardware, including

CPUs, GPUs, FPGAs, and specialized accelerators, as deep learning shows increasing

power in practical applications [8]. Contemporary deep learning frameworks typically use

these optimized implementations to execute deep learning training as well as inference on

5

the respective hardware targets. There are additional works designed specifically for

inference to satisfy its needs for low latency and minimal binary sizes on various hardware

targets.

2.1 Convolutional Neural Network

Supervised machine learning is a type of machine learning that can be implemented using

deep neural network algorithms. Supervised machine learning algorithms can learn with

enough training using various data types. The algorithm's function depends on the neural

network (NN). The NN works like a human brain which computes information using

millions of neurons [12].

A range of research has been conducted, and applications have been developed by applying

supervised machine learning algorithms. Supervised learning is known to predict or

categorize a specific result of interest. Supervised categorization is one of the functions

that intelligent systems carry out most frequently. A number of Artificial Intelligence

(Logical/Symbolic approaches), Perceptron-based methods, and Statistics-based methods

have been developed, such as Bayesian Networks and Instance-based techniques [12].

CNN is a supervised type of deep learning that is preferably used in image recognition and

computer vision. With the help of its multiple layers, it processes and extracts important

features from images [12].

2.1.1 Architecture

In computer vision workloads, convolutional neural networks are frequently utilized.

Typically, a CNN model is represented as a computation graph in which a node stands in

for an operation and a directed edge pointing from node X to node Y indicates that the

output of operation X serves as (part of) the inputs of operation Y, meaning that Y cannot

be executed before X. To retrieve the result from a model inference, the input data must be

sent through the graph [1].

6

Figure 1: Convolutional Neural Network [1]

2.1.2 VGG16 CNN Model

In the quest to make computers "see" the world, vgg16 proved to be a pivotal turning point.

The discipline of computer vision (CV) has advanced significantly in this area several

decades ago. vgg16 is among the important discoveries that paved the way for more

developments in this field. vgg16 (also called OxfordNet) is a convolutional neural network

architecture named after the Visual Geometry Group from Oxford, which developed it [14].

Andrew Zisserman and Karen Simonyan developed this convolutional neural network

(CNN) model from the University of Oxford [14]. The concept for the model was released

in 2013, but the actual model was shown as part of the ILSVRC ImageNet Challenge in

2014 [15]. Each year, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

assessed methods for large-scale picture categorization (and object recognition) [16]. It is

still considered to be an excellent vision model.

vgg16 was demonstrated to be the model with the best performance out of all the settings

on the ImageNet dataset [15]. It is a convolutional neural network that is 16 layers deep.

The model loads a set of weights pre-trained on ImageNet. The model achieves 92.7% top-

5 test accuracy in ImageNet, which is a dataset of over 14 million images belonging to

1000 classes. The model’s setup is considered to have a fixed 224 × 224 image with the

three channels as its input. The picture is transmitted through the first stack of two

convolution layers after ReLU activations, with a minuscule 3 × 3 receptive area. Each of

these two layers has 64 filters. The convolution stride is fixed at 1 pixel, whereas the

padding is 1 pixel. In this configuration, the spatial resolution is preserved, and the

7

dimensions of the output activation map coincide with those of the input image. Then,

spatial max pooling is applied to the activation maps using a 2-pixel stride over a 2 x 2

pixel frame. As a result, the activations' size is reduced by half. At the bottom of the first

stack, some activations are 112 x 112 x 64 in size [14].

Figure 2: VGG16 CNN Model [14]

The second stack, which is identical to the first but contains 128 filters as opposed to 64 in

the first stack, is then applied to the activations. As a consequence, the size is 56 x 56 x

128 after the second layer. The third stack is subsequently added, which comprises three

convolutional layers and a max pool layer. Due to the 256 filters that were used in this

instance, the output size of the stack is 28 x 28 x 256. Then, two stacks of three

convolutional layers are built, each with 512 filters. An output of 7 x 7 x 512 will be given

by both of these stacks. The three fully connected layers that come after the convolutional

layer stacks are separated by a flattening layer. The 1,000 neurons of the last fully

connected layer, which serves as the output layer and corresponds to the 1,000 possible

classes in the ImageNet dataset, are equal to each of the prior two layers' 4,096 neurons.

After the output layer comes the Softmax activation layer, which is used for category

classification [14].

2.2 Intel OpenVINO Overview

Open Visual Inference Neural Network Optimization (OpenVINO) is a set of tools

designed by Intel to provide facilitation as well as acceleration for the development of

8

models based on deep learning in various frameworks. In addition, the toolset enables deep

learning on Intel-designed hardware accelerators as well as heterogeneous platforms

(CPUs, GPUs as well as FPGAs). The toolkit is expected to optimize CNN models in

computer vision as well as achieve higher performance than standalone deep learning

frameworks [7].

Figure 3: Intel OpenVINO Supported Frameworks and Devices [6]

As shown in Figure 4, OpenVINO consists of two main components: the model optimizer

and the inference engine. The model optimizer converts the pre-trained models into two

files (.xml and .bin). These are known as intermediate representation (IR) files. The

inference engine is then utilized to execute the models on different hardware platforms.

For different hardware, it uses different plugins [7].

9

Figure 4: General Workflow of OpenVINO [7]

2.2.1 Workflow

Some of the deep learning models had inference times that were slower than anticipated.

Intel's OpenVINO framework is leveraged to speed up the underlying neural networks in

order to address this. Model Optimizer and Inference Engine are the foundational elements

of OpenVINO. The Model Optimizer is in charge of converting pre-trained models from

our common neural network models, such as CNN, into a format that OpenVINO can use

[7]. OpenVINO's Inference Engine feature is utilized to significantly reduce inference

times once the model has been tweaked. This results in a significant performance

improvement over the conventional models that were previously converted.

Figure 5: Advanced Workflow of OpenVINO [6]

Pre-trained models can be downloaded and modified for use with OpenVINO by following

the toolkit's Model Downloader and Model Optimizer features. Model Optimizer is a cross-

10

platform command-line utility that makes it easier to switch between the training and

deployment settings, analyses static models, and modifies deep learning models for the

best performance on end-point target devices. Models can be picked from the wide range

offered in Intel's Open Model Zoo [7].

A variety of post-training and training-stage optimization techniques help to improve a

model to have higher inference performance. The Post-Training Optimization tool uses

specialized techniques without model retraining or fine-tuning to speed up the inference of

deep learning models, such as post-training quantization [7].

The toolkit is a collection of C++ libraries with bindings for C and Python that provide a

standard API for delivering inference solutions on various Intel hardware platforms. It

introduces the simplest type of deployment and the fastest method for doing it [7].

2.2.2 Supported Intel Devices

OpenVINO can infer various DL models on different hardware devices. It contains several

plugins that help to load models on several hardware devices. The plugins are maintained

in open-source by the OpenVINO team. The list of compatible devices with additional

details is given below [6].

Device Plugin Library Short Description

CPU Intel

CPU

openvino_intel_cpu_plugin Intel Xeon with Intel Advanced

Vector Extensions 2 (Intel AVX2).

Intel Advanced Vector Extensions

512 (Intel AVX-512), and

AVXS12_BF16, Intel Core

Processors with Intel AVX2, Intel

Atom Processors with Intel

Streaming SIMD Extensions (Intel

SSE)

GPU Intel

GPU

openvino_intel_gpu_plugin Intel Processor Graphics, including

Intel HD Graphics and Intel Iris

Graphics

VPU Myriad

Plugin

openvino_intel_myriad_plugin Intel Neural Compute Stick 2

powered by the Intel Movidius

Myriad X

Table 1: Intel OpenVINO Supported Intel Devices [6]

11

2.2.3 Performance Benchmarking App

The benchmark app is a unique feature of Intel's OpenVINO. Models in the OpenVINO IR

(model.xml and model.bin) and ONNX (model.onnx) formats can be used with the

benchmarking application. The opening virtual environment should be activated before

executing the benchmark app. A detailed command is used to conduct benchmarking on a

model with the default settings.

By default, the application will load the chosen model onto any hardware device and run

inference. It publishes details about benchmark settings as it loads. When benchmarking is

finished, it reports the average throughput and the lowest, average, and maximum

inferencing delay.

By adjusting a few of the user model's execution settings, the benchmark results can be

enhanced beyond the default setting. To optimize the runtime for a higher FPS or a shorter

inferencing time, the "throughput" or "latency" performance suggestions can be utilized.

[17]

2.2.4 Accuracy Checker App

The Accuracy Checker is a deep learning accuracy validation system that is expandable,

adaptable, and adjustable. The tool's modular design enables the replication of the

validation process and the collection of aggregated quality indicators for well-known

datasets supported by OpenVINO. Installing the necessary frameworks is necessary to

evaluate some models. After installing all the prerequisites, the Accuracy Checker function

can be used [18].

2.3 Related Works

Modern CNN has proven their effectiveness in various applications. Much research is

going on improving the optimization technique of CNN models. Andriyanov [19] ran the

pre-trained SSD_MobileNet_V2_COCO CNN model on Intel ® Core ™ i5-4460 CPU for

image classification using TensorFlow and OpenVINO Inference Engine. In this research,

COCO dataset was used. This research showed that the use of OpenVINO had increased

the performance of the SSD_MobileNet_V2_COCO CNN model by 130 times on average.

12

Zunin [20] provided a performance analysis of various neural networks using the plug-ins

of multiple devices and heterogeneous plug-ins on multiple connected devices of the

OpenVINO toolkit. DUC, SSD, RetinaNet, Tiny YOLOV2, and YOLOV2-COCO were

selected for this research. Testing was carried out using the COCO Test2017 dataset. The

targeting platforms were Intel Core i9-9900KF CPU, Intel Core i9-9900KF CPU, Intel

Core i9-9900KF CPU, Intel HD Graphics 630, and Intel UHD Graphics 620. The research

results showed that the multi-device and heterogeneous plugins do not increase

performance compared to a single device.

Guerrouj et al. [21] evaluated the inference performance of 10 classification models and 9

object detection models using the OpenVINO toolkit. This research also analyzed the

implementation of these models on the DE5a-Net DDR4 equipped with an Arria 10 GX

FPGA. The research concluded that the heterogeneous FPGA/CPU architectures provided

on average 3.5 times faster acceleration than a homogenous CPU architecture for

classification models.

Demidovskij et al. [22] provided a simple and effective neural network optimization

strategy. The paper introduced three consequent steps: input reduction, quantization, and

optimal inference configuration search. The paper represented a comprehensive solution

with assisting users in deploying an optimized model to their application. The above

research works show that the Intel OpenVINO toolkit necessitates application engineers

with all the required functionality to optimize and deploy the CNN models.

13

CHAPTER 3

Methodology and Optimization

This chapter discusses the research methodology used to achieve performance optimization

of the pre-trained vgg16 CNN model for image classification. Intel OpenVINO

automatically optimizes deep learning pipelines by utilizing its optimization features and

inferencing parallelism across CPU, GPU, FPGAs, and other Intel processors. The sections

of this chapter describe the optimization process used in Intel OpenVINO.

3.1 Design Methodology

The methodology is designed with the help of Intel OpenVINO, which enables the user to

optimize a deep learning model from various frameworks and deploy it on a range of Intel

hardware platforms. To decrease end-to-end latency and increase throughput, users can

integrate and offload extra activities for pre-and post-processing to accelerators. In a CNN

model, a graph typically refres to the visual representation of the network architecture. It

illustrates the different layers in the network and how they are connected to each other.

The performance of model inference may be improved by optimizing the graph, for

example, by pruning unneeded nodes and edges and pre-calculating values independent of

input data [26].

Convolutions account for the majority of the computation in CNN model inference.

Contemporary hardware platform’s parallelization and vectorization properties can be

utilized to speed up performance. By arranging the data layout and, by extension, the

computation in an architecture-friendly fashion, it is possible to obtain excellent

performance of convolution operations on hardware platforms [24].

Optimizing the convolution operation is difficult for overall performance for the workload

of CNN as it requires most of the computation. Due to this, many studies have gone through

works which mainly focus on code-level for higher performance [25].

3.2 Optimization Processes

The prior works typically dig deep into the assembly code level for high performance. It is

a well-studied subject. One of the types of research has demonstrated how to optimize a

14

single convolutional layer using the most recent CPU technologies (SIMD, FMA,

parallelization) without using laborious assembly code or C++ intrinsic [26]. It is thus

simple to expand our optimization by managing the implementation at a high level. The

following section discusses the optimization process for the project. This section consists

of input shape, quantization, and batching.

3.2.1 Input Shape

The most significant rule in higher-performance computing is to make the computationally

intensive part faster. The model optimizer can make the model's performance more

effective by providing a different shape. It can be acquired with two parameters:

input_shape and static_shape. These are utilized for specific conditions. The new shape

of the data will not change any further from one inference to the other. It is suggested to

set up static_shape alongside input_shape for the inputs. However, it might not be

beneficial from the performance and memory consumption perspective. The model

optimizer will utilize the input shape parameter for this research. Similar functionality is

present through the reshape method as well. Furthermore, the model optimizer cannot

convert the shape of other layers of some models from various frameworks. These issues

could relate to the models having inputs of the undefined ranks and the case of cutting off

sections of the model [27]. Models with dynamic input shapes have unknown dimensions

which are supported by the model optimizer during conversion. However, it is advised to

set up shapes using the input_shape parameter. A similar function can be done through the

reshaping method. OpenVINO API could have restrictions to infer models with undefined

dimensions over some hardware. In such cases, the parameter of the input_shape and

reshape method could help resolve the undefined dimensions [27]. In this way, the user

must specify the input shapes explicitly by utilizing the input_shape parameter. Using the

model optimizer feature, the input data shape of the pre-trained vgg16 CNN Caffe model

is converted to 2, 3, 200, and 200. The format is B, C H, and W, where B is batch, C is

channel, H is height, and W is width.

3.2.2 Data Quantization

The feature of the primary optimization of the toolkit is uniform quantization. Generally,

this technique supports the arbitrary number of bits greater than two, representing the

15

activations and weights. By low precision, it is implied that the inference of DL models in

the precision lower than 32 bits, such as FLOAT16. The lower precision models, known

as quantized models, substantially speed up the inference [32]. The pre-trained models

were trained in floating-point precision and then transformed to integer representation with

floating quantization operation between the layers.

Throughout the quantization procedures, the operations of FakeQuantized are inserted

automatically into the model graph based on a pre-defined hardware target in case of

producing the most optimized model, which is hardware friendly. Later on, different

quantized algorithms could tune the parameters of FakeQuantize or remove some of the

operations in case of meeting accuracy criteria. Finally, the final FakeQuantized models

could be interpreted and transformed into the real lower precision model at the runtime of

getting real improvement based on performance [29].

Figure 6: FakeQuantize Diagram [29]

The toolkit provides numerous auxiliary and quantization techniques, which aid in

regaining accuracy after quantizing weights and activations. In addition, one can use

independent optimization pipelines created by algorithms to quantize a model. For DNN

model quantization, the only two quantization techniques for low precision that have been

confirmed and approved are as follows:

16

DefaultQuantization: It has been utilized as the default method to get faster but, in

most cases, very accurate outcomes for low-precision quantization. The algorithm has three

methods which are applied sequentially to a model. The methods are

ActivationChannelAlignment, MinMaxQuantization, and FastBiasCorrection. The

ActivationChannelAlignment method allows the model to align ranges of the convolutional

layer's output activations with limiting the quantization error. The MinMaxQuantization is

the vanilla quantization method that spontaneously inlays FakeQuantize operations into

the model graph based on the specified target hardware platform. Finally, the

FastBiasCorrection adjusts biases of convolutional and fully-connected layers based on

the quantization error of the layer to make the overall error unbiased [30].

Figure 7: DefaultQuantization Algorithm [30]

AccuracyAwareQuantization: This algorithm is meant to perform a low-precision

quantization and renders a model to stay in the pre-defined range of accuracy drop.

Compared to the DefaultQuantization algorithm, it causes a degradation in performance.

The reason is that some layers can be reverted to the original precision. As this algorithm

requires much time for quantization, it wasn't utilized [31].

The common workflow discussed below is assigned to the deep learning framework. It

consists of three elements: Model Enabling, Post Training Quantization and Quantization

Aware Training [32]. The Post Training Quantization is the easiest way to get the optimized

models. The latter could be considered an addition or alternative when the first does not

provide appropriate outcomes. All three steps are briefly discussed below.

Model Enabling: For this step, the user must ensure that the trained model on the

targeted dataset can be inferred successfully with the OpenVINO Inference Engine in the

floating-point precision. This procedure includes utilizing the model optimizer tool to

17

convert the model from the source framework to OpenVINO intermediate representation

(IR) format and then running it onto Intel hardware platforms with the inference engine

[32].

Post-Training Quantization (POT): As for the initial step. It has been suggested

to utilize the low-precision quantization from the POT. In most cases, getting the accurate

quantization model is possible as this stage does not require any model re-training. The

sole thing required is to represent a dataset that is usually hundreds of images. It can also

be utilized to gather statistics throughout the quantization procedure. Post-training

quantization is fast, and it usually takes a few minutes. It depends on model size and HW

[32]. The pre-trained vgg16 CNN Caffe model is optimized to a 16-bit floating-point

representation for this research.

Quantization-Aware Training (QAT): If the quantized model’s accuracy does

not satisfy the accuracy criteria, a step implies the QAT by utilizing the Open VINO-based

training frameworks. At this stage, it can be assumed that the user has the original pipeline

training of the model, which is written on TensorFlow or PyTorch. After the step, the user

could get the accurate, optimized model, which could be converted to intermediate

representation files using the model optimizer feature and inferred using the inference

engine feature of OpenVINO [32]. Unfortunately, the Caffe framework doesn't support this

component, so it wasn't utilized.

3.2.3 Batching and Streaming

The hardware accelerators are optimized for the huge compute parallelism, and so batching

assists in saturating the leads and device to huge throughput. However, the streams would

already assist in helping to hide communication overheads as well as certain bubbles in

running and scheduling multiple kernels simultaneously that are not hardware efficient as

compared to the kernel on several inputs at once. Moreover, batching should be leveraged

for the throughput on the CPU and GPU. There are multiple primary techniques for

utilizing the application performance, such as collecting direct inputs on the application

side and sending batch requests to OpenVINO. It provides flexibility, as the approach

doesn’t need re-designing of logical application. In addition, it assists in sending individual

inference requests with the batch size. In both of these cases, the size of the optimal batch

18

is particular to the device. As per the explanation, the optimal batch size also relies on the

model, and other factors, such as inference precision [28].

Devices perform differently with different batch sizes. Along with the batch size, the

stream number is another critical factor in improving performance. Multiple devices need

different execution stream numbers to saturate. For some cases, stream combination and

batching might be the requirement to enhance throughput. A single possible strategy of

throughput optimization is the set upper bound for the latency and increase the batch size

and the stream number until the tail latency has been met [28]. The optimal execution

parameters and numbers can be found after running performance tests and ensuring overall

performance validation

Usually, using a moderate (2-8) batch size in addition to the maximum number of streams

on high-end CPUs may improve the performance. Typically, the GPU runs two requests

per stream, so two streams can serve four requests. Also, in the case of GPU, the batching

delivers better throughput for four and more requests (each with a small batch size like 2)

[28]. For the above reason, the batch size is chosen to be two in this research.

It is imperative to keep these streams busy by running as many inference requests as

possible. The number of streams should be less or equal to the number of requests to avoid

wasting resources. It also helps to run the application simultaneously [28]. Therefore, four

streams and inference requests are chosen to be four in this research.

19

CHAPTER 4

Experimental Results and Analysis

This chapter presents the results obtained from implementing the vgg16 Caffe CNN model

on CPU and GPU using Intel OpenVINO. First, we describe the experimental setup used

for hardware implementation. Then, the accuracy, latency, throughput, and execution time

of the model are reported and analyzed in detail for both mentioned devices. Lastly, the

performance comparison between CPU and GPU will be discussed.

4.1 Experimental Setup

The pre-trained vgg16 Caffe model was implemented on Intel Core i5-1035G1 CPU and

Intel UHD graphics G1 GPU. Intel Core i5-1035G1 has four cores. It is part of the Core i5

line-up that utilizes Sunny Cove-U's architecture with BGA 1526 socket. Moreover, Intel

Core i5-1035G1 has 6 MB of the L3 caches. It operates at 1000MHz by default but boosts

up to 3.6 GHZ, which depends on the workload. Its highest memory speed is 3200 MHZ,

but with overclocking, it goes even higher [33]. Moreover, its processor features integrated

UHD graphics. The Intel UHD Graphics G1 is the integrated graphics card in Ice Lake

SoCs. It offers 32 of 64 Execution Units (EU). It has no dedicated graphics memory, and

its clock rate depends on the processor model. The GPU can operate at a frequency of 300

MHz, but it can boost up to 900 MHz [34].

4.2 Optimization Results

In this section, firstly, the accuracy of the model with single precision floating point and

half-precision floating point representation will be discussed. Then, the performance

results (including execution time, latency, and throughput) of the model with both floating

point representations will be evaluated. The model has been optimized and implemented

on CPU and GPU using Intel OpenVINO. A single image and the ImageNet 2012 dataset

were used for validation separately.

4.2.1 Accuracy

The accuracy of each floating-point representation was tested by running the model on

initial 50 thousand images of the ImageNet validation dataset. The model was implemented

on both CPU and GPU using the Intel OpenVINO toolkit. The Top-1 and Top-2 accuracies

20

of the vgg16 Cafee model on the ImageNet dataset are approximately 71.59% and 89.88%,

respectively [40]. The vgg16 Caffe CNN model’s input height is 224 and input width is

224. In this research, the model’s input height is changed to 200 and input width is changed

to 200. The Top-1 and Top-5 accuracy measurements with the absolute and relative errors

obtained after CPU and GPU implementation of both floating-point representations are

given in Table 2 and Table 3, respectively.

 Single-Precision Floating

Point

Half-Precision Floating Point

Top-1

Accuracy

70.96% Absolute Error:

0.006

64.64% Absolute Error: 6.326

Relative Error:

8.455e-05

Relative Error: 0.08914

Top-5

Accuracy

89.88% Absolute Error:

0.002

86.21% Absolute Error: 3.664

Relative Error:

2.225e-05

Relative Error: 0.04077

Table 2: The Accuracy Comparison of vgg16 CNN with ImageNet Dataset Model Running on Intel Core

i5-1035G1 CPU

 Single-Precision Floating Point Half-Precision Floating Point

Top-1

Accuracy

70.95 % Absolute Error: 0.022

64.63 % Absolute Error: 6.34

Relative Error:

0.00031

Relative Error:

0.08934

Top-5

Accuracy

89.86 % Absolute Error: 0.018

86.19 % Absolute Error: 3.69

Relative Error:

0.0002003

Relative Error:

0.04106

Table 3: The Accuracy Comparison of vgg16 CNN Model with ImageNet Dataset Running on Intel UHD

Graphics G1 GPU

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64% top-1

accuracy and 86.21% top-5 accuracy, resulting in 6.32% and 3.67% accuracy loss. On

GPU, the difference between the single precision optimized model and the half-precision

21

767.67

472.56

592.58

303.72

0

100

200

300

400

500

600

700

800

900

Intel Core i5-1035G1 CPU Intel UHD Graphics G1

Ti
m

e
(m

ili
se

co
n

d
s)

VGG16 CNN Model

Latency for Single Image
Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

optimized model on top-1 and top-5 accuracies are almost the same as CPU. The optimized

models accuarcies are close to the Caffe model’s (with original input size) accuarcies.

Therefore, accuracies are satisfactory, and the models can be used for image classification

applications.

4.2.2 Latency

The latency in image classification refers to the time delay between the input of an image

and the output of the predicted class label by the model [41]. It is a measure of the response

time of the model. The latency report of the model's single-point and half-point design

implementation on CPU and GPU for a single image classification is shown in Figure 8,

and the ImageNet dataset classification is shown in Figure 9. On CPU, for a single image,

the latency of model's single-precision floating point design is 767.67 ms and the model's

half-precision design is 592.58 ms. On GPU, the latency of model's single-precision

floating point design is 472.56 ms and model's half-precision design is 303.72 ms.

Figure 8: The Latency of the vgg16 CNN Model with a Single Image Running on CPU and GPU

22

721.2

444.2

689.9

261.19

0

100

200

300

400

500

600

700

800

Intel Core i5-1035G1 CPU Intel UHD Graphics G1

Ti
m

e
(m

ili
se

co
n

d
s)

VGG16 CNN Model

Latency (Average) for ImageNet Dataset
Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

For the ImageNet dataset, on CPU, the average latency of the model's single-precision

design is 721.2 ms, and the model's half-precision design is 689.9 ms. On GPU, the average

latency of the model's single-precision design and the model's half-precision design is

444.2 ms and 261.19 ms, respectively.

From the illustrated figures, it can be said that the lower precision design shows less delay

compared to the higher one. The GPU device also shows less latency measurement than

the CPU device.

Figure 9: The Average Latency of vgg16 CNN Model with the ImageNet Dataset Running on CPU and

GPU

4.2.3 Throughput

The throughput in image classification refers to the number of images that can be

processesed by a model in a given amount of time [42]. It is a measure of the model’s

speed. The throughput measurement of the model's single-point and half-point design

23

5.21

8.46

6.73

13.17

0

2

4

6

8

10

12

14

Intel Code i5-1035G1 CPU Intel UHD Graphics G1

Fr
am

es
 P

er
 S

ec
o

n
d

s
(F

P
S)

VGG16 CNN Model

Throughput for Single Image

Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

implementation on CPU and GPU for a single image classification is illustrated in Figure

10, and the ImageNet dataset classification is illustrated in Figure 11. On CPU, for a single

image, the throughput of the model's single-precision floating point design is 5.21 frames

per seconds (FPS), and the model's half-precision design is 6.73 FPS. On GPU, for a single

image, the throughput of the model's single-precision floating point design is 8.46 FPS,

and the model's half-precision design is 13.17 FPS.

Figure 10: The Throughput Measurement of the vgg16 CNN Model with a Single Image Running on CPU

and GPU

For the ImageNet dataset, on CPU, the throughput of the model's single-precision design

is 5.5 FPS, and the model's half-precision design is 5.7 FPS. On GPU, the throughput of

the model's single-precision design and the model's half-precision design is 8.04 FPS and

11.19 FPS, respectively.

24

5.5

8.04

5.7

11.19

0

2

4

6

8

10

12

Intel Code i5-1035G1 CPU Intel UHD Graphics G1

Fr
am

e
P

er
 S

ec
o

n
d

s
(F

P
S)

VGG16 CNN Model

Throughput (Average) for ImageNet Dataset

Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

From the illustrated figures, it can be said that the lower precision design is faster compared

to the higher one. Also, the GPU device is 1.5x – 2x times faster compared to the CPU

device.

Figure 11: The Throughput Measurement of the vgg16 CNN Model with the ImageNet Dataset Running on

CPU and GPU

4.2.4 Execution Time

The execution time of the model for a single image depiction and the ImageNet 2012

dataset is depicted in Figure 12 and Figure 13. On CPU, for a single image, the single

precision floating point model takes only 61.47 seconds to identify and 220.52 minutes to

classify the whole dataset. The half-precision model takes 61.6 seconds to classify and

194.52 minutes to classify the whole dataset. The lower precision model is 1.4 – 11.8

percentage faster than the higher one. On GPU, the single precision floating point model

takes only 61.44 seconds to classify an image and 98.78 minutes to classify the whole

dataset. The half-precision model takes 60.45 seconds to identify an image and 45.76

25

61.47 61.44

60.6
60.45

59.8

60

60.2

60.4

60.6

60.8

61

61.2

61.4

61.6

Intel Core i5-1035G1 CPU Intel UHD Graphics G1

Ti
m

e
(s

ec
o

n
d

s)

VGG16 CNN Model

Execution Time for Single Image

Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

220.52

98.78

194.52

45.76
0

50

100

150

200

250

Intel Core i5-1035G1 CPU Intel UHD Graphics G1

Ti
m

e
(m

in
u

te
s)

VGG16 CNN Model

Execution Time (Overall) for ImageNet Dataset

Image Classification Algorithm

Single-Precision Floating Point Half-Precision Floating Point

minutes to identify the whole dataset. Again, the lower precision model is 1.6 – 53.7

percentage faster than the higher one.

Figure 12: The Execution Time of the vgg16 CNN Model with a Single Image Running on CPU and GPU

Figure 13: The Execution Time of the vgg16 CNN Model with the ImageNet Dataset Running on CPU and

GPU

26

4.3 Result Comparison

The model's single-point and half-point representation design is tested for a single image

and the ImageNet dataset on CPU and GPU separately, and various performance

measurements were extracted.

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64% top-1

accuracy and 86.21% top-5 accuracy, resulting in 6.32% and 3.67% accuracy loss. The

almost same thing can be said in the case of GPU implementation. Therefore, the accuracy

performance for both CPU and GPU devices is practically identical. The latency report of

CPU compared to GPU implementation of the model's both single precision and half-

precision design demonstrated in Figure 8 and Figure 9 demonstrates the better

performance of GPU. The minimum latency measurement is 261.19 FPS for the model's

half-precision design to classify a single image implemented on GPU. Again, the average

throughput measurement of CPU compared to GPU implementation of the model's single-

precision and half-precision design demonstrated in Figure 10 and Figure 11 verify the

better performance of GPU with at least 1.5x times faster execution of image classification

algorithm. The execution time depicted in Figure 12 and Figure 13 also shows higher

performance for GPU implementation of the model's lower-precious design.

In every measurement, the lower precision model performs better than the higher one. Also,

the GPU device is 1.5x – 2x times faster than the CPU device for implementing image

classification algorithm.

27

CHAPTER 5

Conclusion

5.1 Summary

Conventional neural networks are among the most popular artificial neural networks in

image recognition and processing. However, a CNN model acceleration has attained

massive importance in the deep learning community for real-time performance. Therefore,

an appropriate accelerator is required to meet the various requirements of application

engineers. In this work, the pre-trained vgg16 CNN Caffe model inference performance is

evaluated on Intel Core i5-1035G1 CPU and Intel UHD Graphics G1 GPU using Intel

OpenVINO toolkit.

Intel OpenVINO toolkit facilitates the optimization of a deep learning model from a

framework and deployment onto various Intel hardware platforms, including CPU, GPU,

and FPGAs. The toolkit's Model Optimizer tool helps to accelerate inference by

introducing data arrangement, quantization, batching, and other optimization features to

the model. Furthermore, the toolkit's Benchmarking App aids in generating reports of the

model's throughput and latency measurement running on Intel hardware, while the

Accuracy Checker App validates the model's accuracy.

The pre-trained Caffe model was run using Intel OpenVINO on Intel hardware platforms,

and a single image and ImageNet 2012 dataset were used for validation purposes. In this

research, the highest latency was 767.67 ms for the model with FP32 while running on

CPU to classify a single image. On the other hand, the lowest average was 261.19 ms for

the model with FP16 while running on GPU to classify the ImageNet dataset. The research

result showed the model with FP32 and FP16 runs on the GPU 1.6x-1.9x times faster than

on the CPU for a single image. In the case of the ImageNet dataset, the model with FP32

and FP16 runs on the GPU average 1.5x-2x times faster than on the CPU. Moreover, from

the figures, it seems that the execution time taken by the CPU is almost 2.2x-4.2x times

higher than that of a GPU to classify the whole ImageNet dataset. Lastly, the top-1 and top-

5 accuracies of the model's FP32 and FP16 design are almost identical for CPU and GPU.

28

To conclude, between CPU and GPU, the performance of GPU always remains higher.

That's because GPUs have more cores than CPUs and high memory bandwidth, enabling

them to handle massive workloads and conduct multiple functions through high

parallelization [23]. Moreover, the low-precision model's significant increase in

performance makes them appropriate for various applications. By providing outstanding

acceleration without performance loss, the Intel OpenVINO toolkit has proven to be an

excellent choice for deep learning researchers to deploy neural network models to perform

predictions-based applications.

5.2 Future Work

Many types of research have been carried out, and software has been developed to deploy

deep learning inference models on various accelerators. The Intel OpenVINO toolkit offers

implementation of neural networks without needing additional modification or

development of additional software. Moreover, It allows the execution of the machine

learning models on broad range of devices, such as CPUs, GPUs, VPUs, and FPGAs.

Intel FPGA AI Suite is a deep learning Inference tool. The Intel FPGA AI Suite was a part

of Intel OpenVINO as Intel FPGA DLA Suite. However, the DLA features were

transitioned to Intel FPGA AI Suite. The tool supports Intel Agilex FPGA, Intel Cyclone

10 GX FPGA, and Intel Arria 10 FPGA [35]. It would be interesting to see the performance

of the optimized neural network models on the supported FPGA devices.

The OpenVINO toolkit enables the heterogenous-platform deployment of compute vision

problems based on image processing, machine learning, and deep learning. The model's

performance can be accelerated through this process. Lastly, the model can be optimized

using high-level synthesis techniques.

29

REFERENCES

[1] "Convolutional Neural Network." [Online]. Available:

https://cezannec.github.io/Convolutional_Neural_Networks/ [Accessed: March 12, 2022].

[2] Toshi Sinha, Brijesh Verma, and Ali Haidar, "Optimization of Convolutional Neural

Network Parameters for Image Classification," 2017 IEEE Symposium Series on

Computational Intelligence (SSCI), IEEE, 2017. [Online]. Available:

https://ieeexplore.ieee.org/document/8285338.

[3] Y. Chen, K. Zhu, L. Zhu, X. He, P. Ghamisi, and Jon Atli Benediktsson, "Automatic

Design of Convolutional Neural Network for Hyperspectral Image Classification," IEEE

Transactions on Geoscience and Remote Sensing, IEEE, 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8703410.

[4] X. Lei, H. Pan, and X. Huang, "A Dilated CNN Model for Image Classification," IEEE

Access, IEEE, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8756165.

[5] M. Dhouibi, A. K. B. Salem, and S. B. Saoud, "Optimization of CNN Model for Image

Classification," 2021 IEEE International Conference on Design & Test of Integrated Micro

& Nano-Systems (DTS), IEEE, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9497988.

[6] "Intel Distribution of OpenVINO Toolkit." [Online]. Available:

https://www.intel.com/content/www/us/en/developer/tools/openvino-

toolkit/overview.html [Accessed: June 01, 2022].

[7] "What is OpenVINO? - The Ultimate Overview in 2022." [Online]. Available:

https://viso.ai/computer-vision/intel-openvino-toolkit-overview/ [Accessed: June 01,

2022].

[8] Albert Reuther, et al., "Survey of Machine Learning Accelerators," MIT Lincoln

Laboratory Supercomputing Center, Lexington, MA, USA

https://cezannec.github.io/Convolutional_Neural_Networks/
https://ieeexplore.ieee.org/author/37086261720
https://ieeexplore.ieee.org/author/37330093200
https://ieeexplore.ieee.org/author/37086191527
https://ieeexplore.ieee.org/document/8285338
https://ieeexplore.ieee.org/document/8703410
https://ieeexplore.ieee.org/document/8756165
https://ieeexplore.ieee.org/document/9497988
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://viso.ai/computer-vision/intel-openvino-toolkit-overview/

30

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, "A Survey of FPGA-based Neural

Network Accelerators," ACM Transactions on Reconfigurable Technology and Systems,

ACM, 2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3289185.

[10] L. N. Huynh, R. K. Balan, and Y. Lee, "DeepSense: A GPU-based Deep

Convolutional Neural Network Framework on Commodity Mobile Devices," Proceedings

of the 2016 Workshop on Wearable Systems and Applications, ACM, 2016. [Online].

Available: https://dl.acm.org/doi/10.1145/2935643.2935650.

[11] C. B. Murthy, M. F. Hashmi, N. D. Bokde, and Z. W. Geem, "Investigations of Object

Detection in Images/Videos using Various Deep Learning Techniques and Embedded

Platforms—A Comprehensive Review," Applied Sciences, MDPI AG, 2020. [Online].

Available: https://www.mdpi.com/2076-3417/10/9/3280.

[12] "Introduction to Supervised Deep Learning Algorithms!" [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/05/introduction-to-supervised-deep-

learning-algorithms/ [Accessed: May 29, 2022].

[13] "Different types of CNN models." [Online]. Available:

https://iq.opengenus.org/different-types-of-cnn-models/ [Accessed: May 29, 2022].

[14] "VGG Very Deep Convolutional Networks (VGGNet)-What you need to know."

[Online]. Available: https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

[Accessed: May 29, 2022].

[15] "ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)."

[Online]. Available: https://www.image-net.org/challenges/LSVRC/2014/ [Accessed:

May 29, 2022].

[16] A. Elhassouny and F. Smarandache, "Trends in Deep Convolutional Neural Networks

Architectures: A Review," 2019 International Conference of Computer Science and

Renewable Energies (ICCSRE), IEEE, 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8807741.

https://dl.acm.org/doi/10.1145/3289185
https://dl.acm.org/doi/10.1145/2935643.2935650
https://www.mdpi.com/2076-3417/10/9/3280
https://iq.opengenus.org/different-types-of-cnn-models/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://ieeexplore.ieee.org/document/8807741

31

[17] "Benchmark C++ Tool." [Online]. Available:

https://docs.openvino.ai/2021.1/openvino_inference_engine_samples_benchmark_app_R

EADME.html [Accessed: June 01, 2022].

[18] "Deep learning accuracy validation framework." [Online]. Available:

https://docs.openvino.ai/2020.1/_tools_accuracy_checker_README.html [Accessed:

June 01, 2022].

[19] N. A. Andriyanov, "Analysis of the Acceleration of Neural Networks Inference on

Intel Processors Based on OpenVINO Toolkit," 2020 Systems of Signal Synchronization,

Generating and Processing in Telecommunications (SYNCHROINFO), IEEE, 2020.

[Online]. Available: https://ieeexplore.ieee.org/document/9166067.

[20] V. V. Zunin, "Intel OpenVINO Toolkit for Computer Vision: Object Detection and

Semantic Segmentation," 2021 International Russian Automation Conference

(RusAutoCon), IEEE, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9537452.

[21] F. Z. Guerrouj, M. Abouzahir, M. Ramzi, and E. M. Abdali, "Analysis of the

Acceleration of Deep Learning Inference Models on a Heterogeneous Architecture based

on OpenVINO," 2021 4th International Symposium on Advanced Electrical and

Communication Technologies (ISAECT), IEEE, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9668607.

[22] A. Demidovskij et al., "Accelerating Object Detection Models Inference within Deep

Learning Workbench," 2021 International Conference on Engineering and Emerging

Technologies (ICEET), IEEE, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9659634.

[22] N. Andriyanov and G. Papakostas, "Optimization and Benchmarking of Convolutional

Networks with Quantization and OpenVINO in Baggage Image Recognition," 2022 VIII

International Conference on Information Technology and Nanotechnology (ITNT), IEEE,

2022. [Online]. Available: https://ieeexplore.ieee.org/document/9848757.

https://docs.openvino.ai/2021.1/openvino_inference_engine_samples_benchmark_app_README.html
https://docs.openvino.ai/2021.1/openvino_inference_engine_samples_benchmark_app_README.html
https://docs.openvino.ai/2020.1/_tools_accuracy_checker_README.html
https://ieeexplore.ieee.org/xpl/conhome/9158403/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9158403/proceeding
https://ieeexplore.ieee.org/document/9166067
https://ieeexplore.ieee.org/document/9537452
https://ieeexplore.ieee.org/document/9668607
https://ieeexplore.ieee.org/document/9659634
https://ieeexplore.ieee.org/document/9848757

32

[23] A. Jayasimhan and P. Pabitha, "A comparison between CPU and GPU for image

classification using Convolutional Neural Networks," 2022 International Conference on

Communication, Computing, and Internet of Things (IC3IoT), IEEE, 2022. [Online].

Available: https://ieeexplore.ieee.org/document/9767990.

[24] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, "Optimizing CNN Model

Inference on CPUs," 2019 USENIX Annual Technical Conference, arXiv, 2019. [Online].

Available: https://arxiv.org/abs/1809.02697.

[25] M. Li et al., "The Deep Learning Compiler: A Comprehensive Survey," IEEE

Transactions on Parallel and Distributed Systems, IEEE, 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/9222299.

[26] S. Mittal, P. Rajput, and S. Subramoney, "A Survey of Deep Learning on CPUs:

Opportunities and Co-Optimizations," IEEE Transactions on Neural Networks and

Learning Systems, IEEE, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9410437.

[27] "Setting Input Shapes." [Online]. Available:

https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_convert_model

_Converting_Model.html#doxid-openvino-docs-m-o-d-g-prepare-model-convert-model-

converting-model-1when-to-specify-input-shapes [Accessed: December 01, 2022].

[28] "Using Advanced Throughput Options: Streams and Batching." [Online]. Available:

https://docs.openvino.ai/2022.2/openvino_docs_deployment_optimization_guide_tput_ad

vanced.html#doxid-openvino-docs-deployment-optimization-guide-tput-advanced

[Accessed: December 01, 2022].

[29] "Quantization." [Online]. Available:

https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_README.ht

ml [Accessed: December 01, 2022].

[30] "DefaultQuantization Algorithm." [Online]. Available:

https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_default_REA

https://ieeexplore.ieee.org/document/9767990
https://arxiv.org/abs/1809.02697
https://ieeexplore.ieee.org/document/9222299
https://ieeexplore.ieee.org/document/9410437
https://docs.openvino.ai/2022.2/openvino_docs_deployment_optimization_guide_tput_advanced.html#doxid-openvino-docs-deployment-optimization-guide-tput-advanced
https://docs.openvino.ai/2022.2/openvino_docs_deployment_optimization_guide_tput_advanced.html#doxid-openvino-docs-deployment-optimization-guide-tput-advanced
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_README.html
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_README.html
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_default_README.html#doxid-pot-compression-algorithms-quantization-default-r-e-a-d-m-e

33

DME.html#doxid-pot-compression-algorithms-quantization-default-r-e-a-d-m-e

[Accessed: December 01, 2022].

[31] "AccuracyAwareQunatization Algorithm." [Online]. Available:

https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_accuracy_aw

are_README.html#doxid-pot-compression-algorithms-quantization-accuracy-aware-r-

e-a-d-m-e [Accessed: December 01, 2022].

[32] "Low Precision Optimization Guide." [Online]. Available:

https://docs.openvino.ai/2021.1/pot_docs_LowPrecisionOptimizationGuide.html#model_

optimization_workflow [Accessed: December 01, 2022].

[33] "Intel Core i5-1035G1 Processors." [Online]. Available:

https://ark.intel.com/content/www/us/en/ark/products/196603/intel-core-i51035g1-

processor-6m-cache-up-to-3-60-ghz.html [Accessed: December 01, 2022].

[34] "Intel UHD G1 Graphics of 10th Gen Intel Core G1 Processors." [Online]. Available:

https://laptoping.com/gpus/product/intel-uhd-g1/ [Accessed: December 01, 2022].

[35] "Intel FPGA AI Suite." [Online]. Available:

https://www.intel.ca/content/www/ca/en/software/programmable/fpga-ai-

suite/overview.html [Accessed: December 01, 2022].

[36] Huyuan Li, "Acceleration of Deep Learning on FPGA", MASc Thesis, University of

Windsor, ON, Canada.

[37] F. Sultana, A. Sufian, and P. Dutta, "Advancements in Image Classification using

Convolutional Neural Network," 2018 Fourth International Conference on Research in

Computational Intelligence and Communication Networks (ICRCICN), arXiv, 2018.

[Online]. Available: https://arxiv.org/abs/1905.03288.

[38] N. C. Thompson, K. Greenwald, K. Lee, and G. F. Manso, "The Computational Limits

of Deep Learning," arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2007.05558.

[39] M. Sharma and M. Khalid, "FPGA-based Hardware Acceleration of Machine

Learning Algorithms" (Unpublished).

https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_default_README.html#doxid-pot-compression-algorithms-quantization-default-r-e-a-d-m-e
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_accuracy_aware_README.html#doxid-pot-compression-algorithms-quantization-accuracy-aware-r-e-a-d-m-e
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_accuracy_aware_README.html#doxid-pot-compression-algorithms-quantization-accuracy-aware-r-e-a-d-m-e
https://docs.openvino.ai/2021.4/pot_compression_algorithms_quantization_accuracy_aware_README.html#doxid-pot-compression-algorithms-quantization-accuracy-aware-r-e-a-d-m-e
https://docs.openvino.ai/2021.1/pot_docs_LowPrecisionOptimizationGuide.html#model_optimization_workflow
https://docs.openvino.ai/2021.1/pot_docs_LowPrecisionOptimizationGuide.html#model_optimization_workflow
https://ark.intel.com/content/www/us/en/ark/products/196603/intel-core-i51035g1-processor-6m-cache-up-to-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/196603/intel-core-i51035g1-processor-6m-cache-up-to-3-60-ghz.html
https://laptoping.com/gpus/product/intel-uhd-g1/
https://www.intel.ca/content/www/ca/en/software/programmable/fpga-ai-suite/overview.html
https://www.intel.ca/content/www/ca/en/software/programmable/fpga-ai-suite/overview.html
https://arxiv.org/abs/1905.03288
https://arxiv.org/abs/2007.05558

34

[40] "vgg16." [Online]. Available:

https://docs.openvino.ai/2022.1/omz_models_model_vgg16.html [Accessed: July 01,

2022].

[41] "What is Latency in Machine Learning (ML)?" [Online]. Available:

https://iq.opengenus.org/latency-ml/ [Accessed: August 01, 2022].

[42] "What is Throughput in Machine Learning (ML)?" [Online]. Available:

https://iq.opengenus.org/throughput-ml/ [Accessed: August 01, 2022].

35

VITA AUCTORIS

NAME: Md Maksud-Ul-Kabir Rico

PLACE OF BIRTH:

Dhaka, Bangladesh

EDUCATION:

American International University-Bangladesh, BSc,

Dhaka, Bangladesh, 2015

University of Windsor, MASc, Windsor, ON, Canada,

2023

	Performance Analysis of CNN Model for Image Classification with Intel OpenVINO on CPU and GPU
	Recommended Citation

	tmp.1708454883.pdf.7vQsE

