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ABSTRACT 

Deep learning (DL) has proven to be a significant solution for analyzing complex 

datasets such as images, videos, text, and speech. Convolutional neural networks 

(CNN) have proven to be one of the most popular and powerful deep neural 

networks to perform image classification. However, due to its high computational 

complexity, high speed and accuracy required in many real-world applications,  

CNN implementation presents a computational challenge for computing devices.  

The recent advances in hardware have led to the emergence of the graphical 

processing unit (GPU) as a solution for speeding up the process of executing 

complex deep learning algorithms. Although a central processing unit (CPU) is 

designed to handle a wide range of tasks quickly, it is limited in the concurrency of 

tasks that it can execute in parallel. This research presents a comparative analysis of 

CPU and GPU for image classification using the pre-trained Caffe vgg16 CNN 

model optimized by Intel OpenVINO's model optimizer feature. OpenVINO is an 

open-source toolkit for optimizing and deploying DL inference. It also boosts deep 

learning performance in computer vision, speech recognition, and other common 

tasks. Performance characteristics of the optimized model for image classification 

were studied by running it on the Intel Core i5-1035G1 CPU and Intel UHD 

Graphics G1 GPU. Moreover, the accuracy was tested by running the optimized 

models on the first 50,000 images of the ImageNet 2012 validation dataset. 

The research indicates that GPU implementation is on average 1.5x times faster than 

the CPU implementation for the single precision optimized model and on average 

2x times faster than the CPU implementation for the half-precision optimized model. 

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and 

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64% 

top-1 accuracy and 86.21% top-5 accuracy. On GPU, the difference between the 

single precision optimized model and the half-precision optimized model on top-1 

and top-5 accuracies are almost the same as CPU. The research also shows that there 

exists a significant latency-throughput trade-off.   
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CHAPTER 1 

Introduction 

1.1 Motivation  

Conventional neural network (CNN) is considered one of the most significant models 

which help in developing computer vision applications [1]. These models play an 

imperative role in performance optimization. Moreover, image categorization has 

applications in robotics, surveillance, search, transportation, and other areas. One of the 

most intricate tasks of computer vision research is classifying images [4]. It searches for 

regions in an image that potentially includes a specific object before extracting and 

classifying each region using an image classification model. Consequently, a good 

algorithm is necessary for a decent picture classification approach. According to the 

ImageNet competition, CNNs are the models that are most frequently utilized for these 

applications. CNNs are neural networks that perform well at image and video 

classification. In addition, CNNs have also been applied to a wide range of other tasks, 

including face and object identification, autonomous driving, and drone navigation.  

The initial section of a standard architecture CNN is made up of several convolutional and 

pooling layers for automatic feature extraction, while the second section is made up of fully 

connected (FC) layers for classification [5]. It has also been observed that CNNs operate 

by displaying a portion of an image, and then looking for objects, such as vertical lines, 

arcs, or circles, that the network can identify from these components. After that, the image 

is categorized utilizing several attributes. Each of the two types of layers is made up of 

feature maps. The input image's characteristics are recognized by the first convolutional 

layer. Typically, it is made up of several feature maps, each of which recognizes a particular 

feature. A second type of layer known as the pooling layer is typically added after the 

convolutional layer. Furthermore, each convolutional layer map feeds information into the 

corresponding feature map of the following pooling layer [5]. Until the final pooling layer 

is reached, the convolution and pooling layers are alternated in accordance with the 

network depth. The output layer is the last one before the FC layer. 
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The topology of the network is defined by the depth of the network and the number of 

neurons. Modern CNNs generally have millions of parameters and thousands of neurons 

grouped in five or more hidden layers. Designing a network with an optimum topology is 

one of the key difficulties in successfully deploying a CNN. In addition to this, the number 

of parameters and memory needed for a CNN model all depends on its topology [3]. The 

selection of topology is still primarily based on trial and error, though. The large amount 

of processing required by CNNs calls for dedicated and tailored software and hardware 

support methods. Usually, CNNs are executed on general-purpose processors, such as 

CPUs and GPUs. In addition, CPUs as well as GPUs have limitations like high power 

consumption and limited memory that limit their use and suitability for real-time and real-

world applications in drones, robots, and self-driving cars. As the CNN applications 

increase in number and complexity, so do the software and hardware architectures for their 

execution and training. 

The amount and diversity of research on CNN inference acceleration in recent years 

demonstrate tremendous industrial and academic interest. Many software toolkits and 

hardware designs have been devoted to accelerating CNN inference. Among those software 

toolkits, Open Visual Inference Neural Network Optimization (OpenVINO) is designed by 

Intel to provide facilitation as well as acceleration for the development of models based on 

deep learning in various frameworks [6]. In addition, the toolset enables deep learning on 

Intel-designed hardware accelerators as well as heterogeneous platforms (CPUs, GPUs as 

well as FPGAs). The toolkit is expected to optimize CNN models in computer vision as 

well as achieve higher performance than standalone deep learning frameworks. 

Accelerators like the CPUs GPUs and FPGAs can be used to match the desired 

performance metrics (latency, throughput, and execution time) by utilizing Intel 

OpenVINO’s optimization features [7]. The main motivation for conducting this research 

study is that it helps in getting better insights into the performance of a CNN model for 

classifying images on CPU and GPU using Intel OpenVINO toolkit.  

1.2 Objectives  

The main aim of this research study is to analyze the performance of a CNN model for 

image classification with Intel OpenVINO on CPU and GPU. This study also helps in 
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identifying the performance improvement of the CNN model inference on the CPU and 

GPU through the toolkit. In conclusion, this study contributes to the understanding of the 

inference performance of the CNN model by providing data and information.  

1.3 Organization  

The rest of the thesis is organized as follows: 

Chapter 2 provides background information about HPC tools, supervised machine learning, 

and related work on convolutional neural network implementation. First, a basic overview 

of Intel OpenVINO will be presented. Then a detailed description of the widely used neural 

network architecture: CNN is provided. Finally, the related research on CNN 

implementation on CPUs and GPUs will be briefly covered.  

In chapter 3, the design flow and performance optimization schemes for inference of the 

design toolkit will be discussed. It'll begin by introducing the design flow of Intel 

OpenVINO, followed by optimization strategies for latency and throughput.  

In chapter 4, test approaches and evaluation results will be illustrated for the proposed CNN 

model. It begins with the introduction of experimental setup including software and 

hardware information. Then the performance of the proposed model will be analyzed in 

terms of accuracy, throughput, execution time, and latency.  

Finally, chapter 5 presents conclusions and suggestions for further related research in 

future.  
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CHAPTER 2 

Background and Related Work 

Many recent developments in deep learning technology enable several sophisticated 

applications that have taken place at the edge, making prevailing edge devices like a 

speaker, mobile phones, television, and camera more functional. Such applications range 

from tasks related to computer vision like object detection, speech recognition, 

segmentation, Voice detection, and image classification typically leverage pre-trained deep 

learning models for inference on input data. However, executing model inference directly 

over edge devices has become more difficult for lesser latency and lower network 

bandwidth [8]. Typical edge devices are equipped with the system on a chip (SoC) that 

implements multiple compute units like the graphical processing unit (GPU), optional 

digital system processor, network processing unit, and central processing unit (CPU) [9]. 

In practice, most of the model inference at the edge is further executed on the CPU because 

of smooth programmability and more flexible portability among various systems on chips.  

There is significant research on optimizing deep learning model inference, notably CNN 

models, directly on edge devices. It is preferable to use additional computation units to 

address the DL model inference tasks. There are studies concentrated on using mobile 

GPUs to handle computationally demanding operations like convolution and matrix 

multiplication on mobile devices [10]. Their model coverage was typically limited since 

they did not pay much attention to optimizing the vision-specific operators on 

the integrated GPUs. Murthy et al [11] have suggested multiple methods for improving the 

performance of object detection and image classification models on standard integrated 

GPUs. Since DL and CNNs frequently need several layers and parameters to function 

correctly, such research and applications are best suited for mid-range to high-end GPUs. 

These GPUs require a lot of power, are expensive to create and produce, and are pricey for 

the ordinary customer.  

Deep learning workloads are being accelerated across a wide range of hardware, including 

CPUs, GPUs, FPGAs, and specialized accelerators, as deep learning shows increasing 

power in practical applications [8]. Contemporary deep learning frameworks typically use 

these optimized implementations to execute deep learning training as well as inference on 
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the respective hardware targets. There are additional works designed specifically for 

inference to satisfy its needs for low latency and minimal binary sizes on various hardware 

targets.  

2.1 Convolutional Neural Network 

Supervised machine learning is a type of machine learning that can be implemented using 

deep neural network algorithms. Supervised machine learning algorithms can learn with 

enough training using various data types. The algorithm's function depends on the neural 

network (NN). The NN works like a human brain which computes information using 

millions of neurons [12].   

A range of research has been conducted, and applications have been developed by applying 

supervised machine learning algorithms. Supervised learning is known to predict or 

categorize a specific result of interest. Supervised categorization is one of the functions 

that intelligent systems carry out most frequently. A number of Artificial Intelligence 

(Logical/Symbolic approaches), Perceptron-based methods, and Statistics-based methods 

have been developed, such as Bayesian Networks and Instance-based techniques [12].  

CNN is a supervised type of deep learning that is preferably used in image recognition and 

computer vision. With the help of its multiple layers, it processes and extracts important 

features from images [12]. 

2.1.1 Architecture  

In computer vision workloads, convolutional neural networks are frequently utilized. 

Typically, a CNN model is represented as a computation graph in which a node stands in 

for an operation and a directed edge pointing from node X to node Y indicates that the 

output of operation X serves as (part of) the inputs of operation Y, meaning that Y cannot 

be executed before X. To retrieve the result from a model inference, the input data must be 

sent through the graph [1].  
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Figure 1: Convolutional Neural Network [1] 

2.1.2 VGG16 CNN Model 

In the quest to make computers "see" the world, vgg16 proved to be a pivotal turning point. 

The discipline of computer vision (CV) has advanced significantly in this area several 

decades ago. vgg16 is among the important discoveries that paved the way for more 

developments in this field. vgg16 (also called OxfordNet) is a convolutional neural network 

architecture named after the Visual Geometry Group from Oxford, which developed it [14]. 

Andrew Zisserman and Karen Simonyan developed this convolutional neural network 

(CNN) model from the University of Oxford [14]. The concept for the model was released 

in 2013, but the actual model was shown as part of the ILSVRC ImageNet Challenge in 

2014 [15]. Each year, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

assessed methods for large-scale picture categorization (and object recognition) [16]. It is 

still considered to be an excellent vision model. 

vgg16 was demonstrated to be the model with the best performance out of all the settings 

on the ImageNet dataset [15]. It is a convolutional neural network that is 16 layers deep. 

The model loads a set of weights pre-trained on ImageNet. The model achieves 92.7% top-

5 test accuracy in ImageNet, which is a dataset of over 14 million images belonging to 

1000 classes. The model’s setup is considered to have a fixed 224 × 224 image with the 

three channels as its input. The picture is transmitted through the first stack of two 

convolution layers after ReLU activations, with a minuscule 3 × 3 receptive area. Each of 

these two layers has 64 filters. The convolution stride is fixed at 1 pixel, whereas the 

padding is 1 pixel. In this configuration, the spatial resolution is preserved, and the 
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dimensions of the output activation map coincide with those of the input image. Then, 

spatial max pooling is applied to the activation maps using a 2-pixel stride over a 2 x 2 

pixel frame. As a result, the activations' size is reduced by half. At the bottom of the first 

stack, some activations are 112 x 112 x 64 in size [14]. 

 

Figure 2: VGG16 CNN Model [14] 

The second stack, which is identical to the first but contains 128 filters as opposed to 64 in 

the first stack, is then applied to the activations. As a consequence, the size is 56 x 56 x 

128 after the second layer. The third stack is subsequently added, which comprises three 

convolutional layers and a max pool layer. Due to the 256 filters that were used in this 

instance, the output size of the stack is 28 x 28 x 256. Then, two stacks of three 

convolutional layers are built, each with 512 filters. An output of 7 x 7 x 512 will be given 

by both of these stacks. The three fully connected layers that come after the convolutional 

layer stacks are separated by a flattening layer. The 1,000 neurons of the last fully 

connected layer, which serves as the output layer and corresponds to the 1,000 possible 

classes in the ImageNet dataset, are equal to each of the prior two layers' 4,096 neurons. 

After the output layer comes the Softmax activation layer, which is used for category 

classification [14]. 

2.2 Intel OpenVINO Overview 

Open Visual Inference Neural Network Optimization (OpenVINO) is a set of tools 

designed by Intel to provide facilitation as well as acceleration for the development of 
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models based on deep learning in various frameworks. In addition, the toolset enables deep 

learning on Intel-designed hardware accelerators as well as heterogeneous platforms 

(CPUs, GPUs as well as FPGAs). The toolkit is expected to optimize CNN models in 

computer vision as well as achieve higher performance than standalone deep learning 

frameworks [7].  

 

 

Figure 3: Intel OpenVINO Supported Frameworks and Devices [6] 

As shown in Figure 4, OpenVINO consists of two main components: the model optimizer 

and the inference engine. The model optimizer converts the pre-trained models into two 

files (.xml and .bin). These are known as intermediate representation (IR) files. The 

inference engine is then utilized to execute the models on different hardware platforms. 

For different hardware, it uses different plugins [7].  
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Figure 4: General Workflow of OpenVINO [7] 

 

2.2.1 Workflow 

Some of the deep learning models had inference times that were slower than anticipated. 

Intel's OpenVINO framework is leveraged to speed up the underlying neural networks in 

order to address this. Model Optimizer and Inference Engine are the foundational elements 

of OpenVINO. The Model Optimizer is in charge of converting pre-trained models from 

our common neural network models, such as CNN, into a format that OpenVINO can use 

[7]. OpenVINO's Inference Engine feature is utilized to significantly reduce inference 

times once the model has been tweaked. This results in a significant performance 

improvement over the conventional models that were previously converted. 

 

Figure 5: Advanced Workflow of OpenVINO [6] 

Pre-trained models can be downloaded and modified for use with OpenVINO by following 

the toolkit's Model Downloader and Model Optimizer features. Model Optimizer is a cross-
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platform command-line utility that makes it easier to switch between the training and 

deployment settings, analyses static models, and modifies deep learning models for the 

best performance on end-point target devices. Models can be picked from the wide range 

offered in Intel's Open Model Zoo [7].  

A variety of post-training and training-stage optimization techniques help to improve a 

model to have higher inference performance. The Post-Training Optimization tool uses 

specialized techniques without model retraining or fine-tuning to speed up the inference of 

deep learning models, such as post-training quantization [7]. 

The toolkit is a collection of C++ libraries with bindings for C and Python that provide a 

standard API for delivering inference solutions on various Intel hardware platforms. It 

introduces the simplest type of deployment and the fastest method for doing it [7]. 

2.2.2 Supported Intel Devices 

OpenVINO can infer various DL models on different hardware devices. It contains several 

plugins that help to load models on several hardware devices. The plugins are maintained 

in open-source by the OpenVINO team. The list of compatible devices with additional 

details is given below [6]. 

Device Plugin Library Short Description 

CPU Intel 

CPU 

openvino_intel_cpu_plugin Intel Xeon with Intel Advanced 

Vector Extensions 2 (Intel AVX2). 

Intel Advanced Vector Extensions 

512 (Intel AVX-512), and 

AVXS12_BF16, Intel Core 

Processors with Intel AVX2, Intel 

Atom Processors with Intel 

Streaming SIMD Extensions (Intel 

SSE) 

GPU Intel 

GPU 

openvino_intel_gpu_plugin Intel Processor Graphics, including 

Intel HD Graphics and Intel Iris 

Graphics 

VPU Myriad 

Plugin 

openvino_intel_myriad_plugin Intel Neural Compute Stick 2 

powered by the Intel Movidius 

Myriad X 

 

Table 1: Intel OpenVINO Supported Intel Devices [6] 
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2.2.3 Performance Benchmarking App 

The benchmark app is a unique feature of Intel's OpenVINO. Models in the OpenVINO IR 

(model.xml and model.bin) and ONNX (model.onnx) formats can be used with the 

benchmarking application. The opening virtual environment should be activated before 

executing the benchmark app. A detailed command is used to conduct benchmarking on a 

model with the default settings. 

By default, the application will load the chosen model onto any hardware device and run 

inference. It publishes details about benchmark settings as it loads. When benchmarking is 

finished, it reports the average throughput and the lowest, average, and maximum 

inferencing delay.  

By adjusting a few of the user model's execution settings, the benchmark results can be 

enhanced beyond the default setting. To optimize the runtime for a higher FPS or a shorter 

inferencing time, the "throughput" or "latency" performance suggestions can be utilized. 

[17] 

2.2.4 Accuracy Checker App 

The Accuracy Checker is a deep learning accuracy validation system that is expandable, 

adaptable, and adjustable. The tool's modular design enables the replication of the 

validation process and the collection of aggregated quality indicators for well-known 

datasets supported by OpenVINO. Installing the necessary frameworks is necessary to 

evaluate some models. After installing all the prerequisites, the Accuracy Checker function 

can be used [18]. 

2.3 Related Works 

Modern CNN has proven their effectiveness in various applications. Much research is 

going on improving the optimization technique of CNN models. Andriyanov [19] ran the 

pre-trained SSD_MobileNet_V2_COCO CNN model on Intel ® Core ™ i5-4460 CPU for 

image classification using TensorFlow and OpenVINO Inference Engine. In this research, 

COCO dataset was used. This research showed that the use of OpenVINO had increased 

the performance of the SSD_MobileNet_V2_COCO CNN model by 130 times on average.   
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Zunin [20] provided a performance analysis of various neural networks using the plug-ins 

of multiple devices and heterogeneous plug-ins on multiple connected devices of the 

OpenVINO toolkit. DUC, SSD, RetinaNet, Tiny YOLOV2, and YOLOV2-COCO were 

selected for this research. Testing was carried out using the COCO Test2017 dataset. The 

targeting platforms were Intel Core i9-9900KF CPU, Intel Core i9-9900KF CPU, Intel 

Core i9-9900KF CPU, Intel HD Graphics 630, and Intel UHD Graphics 620. The research 

results showed that the multi-device and heterogeneous plugins do not increase 

performance compared to a single device. 

Guerrouj et al. [21] evaluated the inference performance of 10 classification models and 9 

object detection models using the OpenVINO toolkit. This research also analyzed the 

implementation of these models on the DE5a-Net DDR4 equipped with an Arria 10 GX 

FPGA. The research concluded that the heterogeneous FPGA/CPU architectures provided 

on average 3.5 times faster acceleration than a homogenous CPU architecture for 

classification models. 

Demidovskij et al. [22] provided a simple and effective neural network optimization 

strategy. The paper introduced three consequent steps: input reduction, quantization, and 

optimal inference configuration search. The paper represented a comprehensive solution 

with assisting users in deploying an optimized model to their application. The above 

research works show that the Intel OpenVINO toolkit necessitates application engineers 

with all the required functionality to optimize and deploy the CNN models.  

  



 

13 
 

CHAPTER 3 

Methodology and Optimization 

This chapter discusses the research methodology used to achieve performance optimization 

of the pre-trained vgg16 CNN model for image classification. Intel OpenVINO 

automatically optimizes deep learning pipelines by utilizing its optimization features and 

inferencing parallelism across CPU, GPU, FPGAs, and other Intel processors. The sections 

of this chapter describe the optimization process used in Intel OpenVINO.  

3.1 Design Methodology 

The methodology is designed with the help of Intel OpenVINO, which enables the user to 

optimize a deep learning model from various frameworks and deploy it on a range of Intel 

hardware platforms. To decrease end-to-end latency and increase throughput, users can 

integrate and offload extra activities for pre-and post-processing to accelerators. In a CNN 

model, a graph typically refres to the visual representation of the network architecture. It 

illustrates the different layers in the network and how they are connected to each other.  

The performance of model inference may be improved by optimizing the graph, for 

example, by pruning unneeded nodes and edges and pre-calculating values independent of 

input data [26]. 

Convolutions account for the majority of the computation in CNN model inference. 

Contemporary hardware platform’s parallelization and vectorization properties can be 

utilized to speed up performance. By arranging the data layout and, by extension, the 

computation in an architecture-friendly fashion, it is possible to obtain excellent 

performance of convolution operations on hardware platforms [24].  

Optimizing the convolution operation is difficult for overall performance for the workload 

of CNN as it requires most of the computation. Due to this, many studies have gone through 

works which mainly focus on code-level for higher performance [25]. 

3.2 Optimization Processes 

The prior works typically dig deep into the assembly code level for high performance. It is 

a well-studied subject. One of the types of research has demonstrated how to optimize a 
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single convolutional layer using the most recent CPU technologies (SIMD, FMA, 

parallelization) without using laborious assembly code or C++ intrinsic [26]. It is thus 

simple to expand our optimization by managing the implementation at a high level. The 

following section discusses the optimization process for the project. This section consists 

of input shape, quantization, and batching.  

3.2.1 Input Shape 

The most significant rule in higher-performance computing is to make the computationally 

intensive part faster. The model optimizer can make the model's performance more 

effective by providing a different shape. It can be acquired with two parameters: 

input_shape and static_shape. These are utilized for specific conditions. The new shape 

of the data will not change any further from one inference to the other. It is suggested to 

set up static_shape alongside input_shape for the inputs. However, it might not be 

beneficial from the performance and memory consumption perspective. The model 

optimizer will utilize the input shape parameter for this research. Similar functionality is 

present through the reshape method as well. Furthermore, the model optimizer cannot 

convert the shape of other layers of some models from various frameworks. These issues 

could relate to the models having inputs of the undefined ranks and the case of cutting off 

sections of the model [27]. Models with dynamic input shapes have unknown dimensions 

which are supported by the model optimizer during conversion. However, it is advised to 

set up shapes using the input_shape parameter. A similar function can be done through the 

reshaping method. OpenVINO API could have restrictions to infer models with undefined 

dimensions over some hardware. In such cases, the parameter of the input_shape and 

reshape method could help resolve the undefined dimensions [27]. In this way, the user 

must specify the input shapes explicitly by utilizing the input_shape parameter. Using the 

model optimizer feature, the input data shape of the pre-trained vgg16 CNN Caffe model 

is converted to 2, 3, 200, and 200. The format is B, C H, and W, where B is batch, C is 

channel, H is height, and W is width. 

3.2.2 Data Quantization 

The feature of the primary optimization of the toolkit is uniform quantization. Generally, 

this technique supports the arbitrary number of bits greater than two, representing the 
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activations and weights. By low precision, it is implied that the inference of DL models in 

the precision lower than 32 bits, such as FLOAT16. The lower precision models, known 

as quantized models, substantially speed up the inference [32]. The pre-trained models 

were trained in floating-point precision and then transformed to integer representation with 

floating quantization operation between the layers.    

Throughout the quantization procedures, the operations of FakeQuantized are inserted 

automatically into the model graph based on a pre-defined hardware target in case of 

producing the most optimized model, which is hardware friendly. Later on, different 

quantized algorithms could tune the parameters of FakeQuantize or remove some of the 

operations in case of meeting accuracy criteria. Finally, the final FakeQuantized models 

could be interpreted and transformed into the real lower precision model at the runtime of 

getting real improvement based on performance [29].  

 

 

 

Figure 6: FakeQuantize Diagram [29] 

The toolkit provides numerous auxiliary and quantization techniques, which aid in 

regaining accuracy after quantizing weights and activations. In addition, one can use 

independent optimization pipelines created by algorithms to quantize a model. For DNN 

model quantization, the only two quantization techniques for low precision that have been 

confirmed and approved are as follows: 
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DefaultQuantization: It has been utilized as the default method to get faster but, in 

most cases, very accurate outcomes for low-precision quantization. The algorithm has three 

methods which are applied sequentially to a model. The methods are 

ActivationChannelAlignment, MinMaxQuantization, and FastBiasCorrection. The 

ActivationChannelAlignment method allows the model to align ranges of the convolutional 

layer's output activations with limiting the quantization error. The MinMaxQuantization is 

the vanilla quantization method that spontaneously inlays FakeQuantize operations into 

the model graph based on the specified target hardware platform. Finally, the 

FastBiasCorrection adjusts biases of convolutional and fully-connected layers based on 

the quantization error of the layer to make the overall error unbiased [30].  

 

Figure 7: DefaultQuantization Algorithm [30] 

AccuracyAwareQuantization: This algorithm is meant to perform a low-precision 

quantization and renders a model to stay in the pre-defined range of accuracy drop. 

Compared to the DefaultQuantization algorithm, it causes a degradation in performance. 

The reason is that some layers can be reverted to the original precision. As this algorithm 

requires much time for quantization, it wasn't utilized [31]. 

The common workflow discussed below is assigned to the deep learning framework. It 

consists of three elements: Model Enabling, Post Training Quantization and Quantization 

Aware Training [32]. The Post Training Quantization is the easiest way to get the optimized 

models. The latter could be considered an addition or alternative when the first does not 

provide appropriate outcomes. All three steps are briefly discussed below.  

Model Enabling: For this step, the user must ensure that the trained model on the 

targeted dataset can be inferred successfully with the OpenVINO Inference Engine in the 

floating-point precision. This procedure includes utilizing the model optimizer tool to 
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convert the model from the source framework to OpenVINO intermediate representation 

(IR) format and then running it onto Intel hardware platforms with the inference engine 

[32].  

Post-Training Quantization (POT): As for the initial step. It has been suggested 

to utilize the low-precision quantization from the POT. In most cases, getting the accurate 

quantization model is possible as this stage does not require any model re-training. The 

sole thing required is to represent a dataset that is usually hundreds of images. It can also 

be utilized to gather statistics throughout the quantization procedure. Post-training 

quantization is fast, and it usually takes a few minutes. It depends on model size and HW 

[32]. The pre-trained vgg16 CNN Caffe model is optimized to a 16-bit floating-point 

representation for this research.  

Quantization-Aware Training (QAT): If the quantized model’s accuracy does 

not satisfy the accuracy criteria, a step implies the QAT by utilizing the Open VINO-based 

training frameworks. At this stage, it can be assumed that the user has the original pipeline 

training of the model, which is written on TensorFlow or PyTorch. After the step, the user 

could get the accurate, optimized model, which could be converted to intermediate 

representation files using the model optimizer feature and inferred using the inference 

engine feature of OpenVINO [32]. Unfortunately, the Caffe framework doesn't support this 

component, so it wasn't utilized.  

3.2.3 Batching and Streaming 

The hardware accelerators are optimized for the huge compute parallelism, and so batching 

assists in saturating the leads and device to huge throughput. However, the streams would 

already assist in helping to hide communication overheads as well as certain bubbles in 

running and scheduling multiple kernels simultaneously that are not hardware efficient as 

compared to the kernel on several inputs at once. Moreover, batching should be leveraged 

for the throughput on the CPU and GPU. There are multiple primary techniques for 

utilizing the application performance, such as collecting direct inputs on the application 

side and sending batch requests to OpenVINO. It provides flexibility, as the approach 

doesn’t need re-designing of logical application. In addition, it assists in sending individual 

inference requests with the batch size. In both of these cases, the size of the optimal batch 
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is particular to the device. As per the explanation, the optimal batch size also relies on the 

model, and other factors, such as inference precision [28]. 

Devices perform differently with different batch sizes. Along with the batch size, the 

stream number is another critical factor in improving performance. Multiple devices need 

different execution stream numbers to saturate. For some cases, stream combination and 

batching might be the requirement to enhance throughput. A single possible strategy of 

throughput optimization is the set upper bound for the latency and increase the batch size 

and the stream number until the tail latency has been met [28]. The optimal execution 

parameters and numbers can be found after running performance tests and ensuring overall 

performance validation 

Usually, using a moderate (2-8) batch size in addition to the maximum number of streams 

on high-end CPUs may improve the performance. Typically, the GPU runs two requests 

per stream, so two streams can serve four requests. Also, in the case of GPU, the batching 

delivers better throughput for four and more requests (each with a small batch size like 2) 

[28]. For the above reason, the batch size is chosen to be two in this research.   

It is imperative to keep these streams busy by running as many inference requests as 

possible. The number of streams should be less or equal to the number of requests to avoid 

wasting resources. It also helps to run the application simultaneously [28]. Therefore, four 

streams and inference requests are chosen to be four in this research.  
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CHAPTER 4 

Experimental Results and Analysis 

This chapter presents the results obtained from implementing the vgg16 Caffe CNN model 

on CPU and GPU using Intel OpenVINO. First, we describe the experimental setup used 

for hardware implementation. Then, the accuracy, latency, throughput, and execution time 

of the model are reported and analyzed in detail for both mentioned devices. Lastly, the 

performance comparison between CPU and GPU will be discussed.  

4.1 Experimental Setup 

The pre-trained vgg16 Caffe model was implemented on Intel Core i5-1035G1 CPU and 

Intel UHD graphics G1 GPU. Intel Core i5-1035G1 has four cores. It is part of the Core i5 

line-up that utilizes Sunny Cove-U's architecture with BGA 1526 socket. Moreover, Intel 

Core i5-1035G1 has 6 MB of the L3 caches. It operates at 1000MHz by default but boosts 

up to 3.6 GHZ, which depends on the workload. Its highest memory speed is 3200 MHZ, 

but with overclocking, it goes even higher [33]. Moreover, its processor features integrated 

UHD graphics. The Intel UHD Graphics G1 is the integrated graphics card in Ice Lake 

SoCs. It offers 32 of 64 Execution Units (EU). It has no dedicated graphics memory, and 

its clock rate depends on the processor model. The GPU can operate at a frequency of 300 

MHz, but it can boost up to 900 MHz [34]. 

4.2 Optimization Results 

In this section, firstly, the accuracy of the model with single precision floating point and 

half-precision floating point representation will be discussed. Then, the performance 

results (including execution time, latency, and throughput) of the model with both floating 

point representations will be evaluated. The model has been optimized and implemented 

on CPU and GPU using Intel OpenVINO. A single image and the ImageNet 2012 dataset 

were used for validation separately.  

4.2.1 Accuracy 

The accuracy of each floating-point representation was tested by running the model on 

initial 50 thousand images of the ImageNet validation dataset. The model was implemented 

on both CPU and GPU using the Intel OpenVINO toolkit. The Top-1 and Top-2 accuracies 
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of the vgg16 Cafee model on the ImageNet dataset are approximately 71.59% and 89.88%, 

respectively [40]. The vgg16 Caffe CNN model’s input height is 224 and input width is 

224. In this research, the model’s input height is changed to 200 and input width is changed 

to 200. The Top-1 and Top-5 accuracy measurements with the absolute and relative errors 

obtained after CPU and GPU implementation of both floating-point representations are 

given in Table 2 and Table 3, respectively.   

 Single-Precision Floating 

Point 

Half-Precision Floating Point 

Top-1 

Accuracy 

70.96% Absolute Error: 

0.006 

 

64.64% Absolute Error: 6.326 

 

Relative Error: 

8.455e-05 

Relative Error: 0.08914 

Top-5 

Accuracy 

89.88% Absolute Error: 

0.002 

 

86.21% Absolute Error: 3.664 

 

Relative Error: 

2.225e-05 

Relative Error: 0.04077 

 

Table 2: The Accuracy Comparison of vgg16 CNN with ImageNet Dataset Model Running on Intel Core 

i5-1035G1 CPU 

 Single-Precision Floating Point Half-Precision Floating Point 

Top-1 

Accuracy 

70.95 % Absolute Error: 0.022 

 

64.63 % Absolute Error: 6.34 

 

Relative Error: 

0.00031 

Relative Error: 

0.08934 

Top-5 

Accuracy 

89.86 % Absolute Error: 0.018 

 

86.19 % Absolute Error: 3.69 

 

Relative Error: 

0.0002003 

Relative Error: 

0.04106 
 

Table 3: The Accuracy Comparison of vgg16 CNN Model with ImageNet Dataset Running on Intel UHD 

Graphics G1 GPU 

 

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and 

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64% top-1 

accuracy and 86.21% top-5 accuracy, resulting in 6.32% and 3.67% accuracy loss. On 

GPU, the difference between the single precision optimized model and the half-precision 
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optimized model on top-1 and top-5 accuracies are almost the same as CPU. The optimized 

models accuarcies are close to the Caffe model’s (with original input size) accuarcies. 

Therefore, accuracies are satisfactory, and the models can be used for image classification 

applications. 

4.2.2 Latency 

The latency in image classification refers to the time delay between the input of an image 

and the output of the predicted class label by the model [41]. It is a measure of the response 

time of the model. The latency report of the model's single-point and half-point design 

implementation on CPU and GPU for a single image classification is shown in Figure 8, 

and the ImageNet dataset classification is shown in Figure 9. On CPU, for a single image, 

the latency of model's single-precision floating point design is 767.67 ms and the model's 

half-precision design is 592.58 ms. On GPU, the latency of model's single-precision 

floating point design is 472.56 ms and model's half-precision design is 303.72 ms.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The Latency of the vgg16 CNN Model with a Single Image Running on CPU and GPU 
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For the ImageNet dataset, on CPU, the average latency of the model's single-precision 

design is 721.2 ms, and the model's half-precision design is 689.9 ms. On GPU, the average 

latency of the model's single-precision design and the model's half-precision design is 

444.2 ms and 261.19 ms, respectively.  

From the illustrated figures, it can be said that the lower precision design shows less delay 

compared to the higher one. The GPU device also shows less latency measurement than 

the CPU device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The Average Latency of vgg16 CNN Model with the ImageNet Dataset Running on CPU and 

GPU 

4.2.3 Throughput 

The throughput in image classification refers to the number of images that can be 

processesed by a model in a given amount of time [42]. It is a measure of the model’s 

speed. The throughput measurement of the model's single-point and half-point design 
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implementation on CPU and GPU for a single image classification is illustrated in Figure 

10, and the ImageNet dataset classification is illustrated in Figure 11. On CPU, for a single 

image, the throughput of the model's single-precision floating point design is 5.21 frames 

per seconds (FPS), and the model's half-precision design is 6.73 FPS. On GPU, for a single 

image, the throughput of the model's single-precision floating point design is 8.46 FPS, 

and the model's half-precision design is 13.17 FPS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The Throughput Measurement of the vgg16 CNN Model with a Single Image Running on CPU 

and GPU 

For the ImageNet dataset, on CPU, the throughput of the model's single-precision design 

is 5.5 FPS, and the model's half-precision design is 5.7 FPS. On GPU, the throughput of 

the model's single-precision design and the model's half-precision design is 8.04 FPS and 

11.19 FPS, respectively.  
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From the illustrated figures, it can be said that the lower precision design is faster compared 

to the higher one. Also, the GPU device is 1.5x – 2x times faster compared to the CPU 

device. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The Throughput Measurement of the vgg16 CNN Model with the ImageNet Dataset Running on 

CPU and GPU 

4.2.4 Execution Time 

The execution time of the model for a single image depiction and the ImageNet 2012 

dataset is depicted in Figure 12 and Figure 13. On CPU, for a single image, the single 

precision floating point model takes only 61.47 seconds to identify and 220.52 minutes to 

classify the whole dataset. The half-precision model takes 61.6 seconds to classify and 

194.52 minutes to classify the whole dataset. The lower precision model is 1.4 – 11.8 

percentage faster than the higher one. On GPU, the single precision floating point model 

takes only 61.44 seconds to classify an image and 98.78 minutes to classify the whole 

dataset. The half-precision model takes 60.45 seconds to identify an image and 45.76 
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minutes to identify the whole dataset. Again, the lower precision model is 1.6 – 53.7 

percentage faster than the higher one. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The Execution Time of the vgg16 CNN Model with a Single Image Running on CPU and GPU 

 

 

 

 

 

  

 

 

 

 

Figure 13: The Execution Time of the vgg16 CNN Model with the ImageNet Dataset Running on CPU and 

GPU 



 

26 
 

4.3 Result Comparison 

The model's single-point and half-point representation design is tested for a single image 

and the ImageNet dataset on CPU and GPU separately, and various performance 

measurements were extracted. 

On CPU, the single precision optimized model achieves 70.96% top-1 accuracy and 

89.88% top-5 accuracy, and the half-precision optimized model achieves 64.64% top-1 

accuracy and 86.21% top-5 accuracy, resulting in 6.32% and 3.67% accuracy loss. The 

almost same thing can be said in the case of GPU implementation. Therefore, the accuracy 

performance for both CPU and GPU devices is practically identical. The latency report of 

CPU compared to GPU implementation of the model's both single precision and half-

precision design demonstrated in Figure 8 and Figure 9 demonstrates the better 

performance of GPU. The minimum latency measurement is 261.19 FPS for the model's 

half-precision design to classify a single image implemented on GPU. Again, the average 

throughput measurement of CPU compared to GPU implementation of the model's single-

precision and half-precision design demonstrated in Figure 10 and Figure 11 verify the 

better performance of GPU with at least 1.5x times faster execution of image classification 

algorithm. The execution time depicted in Figure 12 and Figure 13 also shows higher 

performance for GPU implementation of the model's lower-precious design.  

In every measurement, the lower precision model performs better than the higher one. Also, 

the GPU device is 1.5x – 2x times faster than the CPU device for implementing image 

classification algorithm.  
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CHAPTER 5 

Conclusion 

5.1 Summary  

Conventional neural networks are among the most popular artificial neural networks in 

image recognition and processing. However, a CNN model acceleration has attained 

massive importance in the deep learning community for real-time performance. Therefore, 

an appropriate accelerator is required to meet the various requirements of application 

engineers. In this work, the pre-trained vgg16 CNN Caffe model inference performance is 

evaluated on Intel Core i5-1035G1 CPU and Intel UHD Graphics G1 GPU using Intel 

OpenVINO toolkit.  

Intel OpenVINO toolkit facilitates the optimization of a deep learning model from a 

framework and deployment onto various Intel hardware platforms, including CPU, GPU, 

and FPGAs. The toolkit's Model Optimizer tool helps to accelerate inference by 

introducing data arrangement, quantization, batching, and other optimization features to 

the model. Furthermore, the toolkit's Benchmarking App aids in generating reports of the 

model's throughput and latency measurement running on Intel hardware, while the 

Accuracy Checker App validates the model's accuracy.  

The pre-trained Caffe model was run using Intel OpenVINO on Intel hardware platforms, 

and a single image and ImageNet 2012 dataset were used for validation purposes. In this 

research, the highest latency was 767.67 ms for the model with FP32 while running on 

CPU to classify a single image. On the other hand, the lowest average was 261.19 ms for 

the model with FP16 while running on GPU to classify the ImageNet dataset. The research 

result showed the model with FP32 and FP16 runs on the GPU 1.6x-1.9x times faster than 

on the CPU for a single image. In the case of the ImageNet dataset, the model with FP32 

and FP16 runs on the GPU average 1.5x-2x times faster than on the CPU. Moreover, from 

the figures, it seems that the execution time taken by the CPU is almost 2.2x-4.2x times 

higher than that of a GPU to classify the whole ImageNet dataset. Lastly, the top-1 and top-

5 accuracies of the model's FP32 and FP16 design are almost identical for CPU and GPU.  
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To conclude, between CPU and GPU, the performance of GPU always remains higher. 

That's because GPUs have more cores than CPUs and high memory bandwidth, enabling 

them to handle massive workloads and conduct multiple functions through high 

parallelization [23]. Moreover, the low-precision model's significant increase in 

performance makes them appropriate for various applications. By providing outstanding 

acceleration without performance loss, the Intel OpenVINO toolkit has proven to be an 

excellent choice for deep learning researchers to deploy neural network models to perform 

predictions-based applications.  

5.2 Future Work  

Many types of research have been carried out, and software has been developed to deploy 

deep learning inference models on various accelerators. The Intel OpenVINO toolkit offers 

implementation of neural networks without needing additional modification or 

development of additional software. Moreover, It allows the execution of the machine 

learning models on broad range of devices, such as CPUs, GPUs, VPUs, and FPGAs. 

Intel FPGA AI Suite is a deep learning Inference tool. The Intel FPGA AI Suite was a part 

of Intel OpenVINO as Intel FPGA DLA Suite. However, the DLA features were 

transitioned to Intel FPGA AI Suite. The tool supports Intel Agilex FPGA, Intel Cyclone 

10 GX FPGA, and Intel Arria 10 FPGA [35]. It would be interesting to see the performance 

of the optimized neural network models on the supported FPGA devices.  

The OpenVINO toolkit enables the heterogenous-platform deployment of compute vision 

problems based on image processing, machine learning, and deep learning. The model's 

performance can be accelerated through this process. Lastly, the model can be optimized 

using high-level synthesis techniques.    
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