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Abstract 

This paper presents a multi-level, multi-item, multi-period capacitated lot-sizing problem. The lot-sizing problem studies can obtain production 
quantities, setup decisions and inventory levels in each period fulfilling the demand requirements with limited capacity resources, considering 
the Bill of Material (BOM) structure while simultaneously minimizing the production, inventory, and machine setup costs.  The paper proposes 
an exact solution to Chowdhury et al. (2018)'s[1] developed model, which considers the backlogging cost, setup carryover & greenhouse gas 
emission control to its model complexity. The problem contemplates the Dantzig-Wolfe (D.W.) decomposition to decompose the multi-level 
capacitated problem into a single-item uncapacitated lot-sizing sub-problem. To avoid the infeasibilities of the weighted problem (WP), an 
artificial variable is introduced, and the Big-M method is employed in the D.W. decomposition to produce an always feasible master problem. In 
addition, Wagner & Whitin's[2] forward recursion algorithm is also incorporated in the solution approach for both end and component items to 
provide the minimum cost production plan. Introducing artificial variables in the D.W. decomposition method is a novel approach to solving the 
MLCLSP model. A better performance was achieved regarding reduced computational time (reduced by 50%)  and optimality gap (reduced by 
97.3%) in comparison to Chowdhury et al. (2018)'s[1] developed model. 
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1. Introduction 

1.1. Research background:  

Nowadays, most industries have multi-level, multi-item 
product structures, where simultaneously, all the items need to 
be planned in a predetermined time horizon. For such a 
production schedule, multiple complexities can arise from the 
capacity of a resource (Such as man, machine, and material), 
material/inventory shortages, setup decisions (such as line 
setup, machine breakdown, and maintenance), 
legal/environmental costs (Such as excess stack air emission, 
sewage water discharge, noise pollution control). Lot sizing 
decision needs to consider the earlier mentioned complexity 
while fulfilling the demand of an internal and external item at 

minimum cost. A simplified classical lot sizing problem was 
explored by many researchers considering single-item 
capacitated lot sizing items. Later, different complexities were 
considered by adding variable setup time & cost, overtime cost, 
backlogging cost, and emission control. 

The multi-level lot-sizing problem (MLCLSP) is an 
extension of the capacitated lot-sizing problem, which deals 
with the issue of determining time-phased production 
quantities. This problem was introduced by Billington et al. [3], 
which is considered the theoretical basis for material 
requirements planning by Sahling et al. [4]. During any 
manufacturing operations, one of the critical decisions is 
making setup decisions (Such as pre-heat machine, tool setup 
& change, machine parameter change, and material change). 
Setup decisions can be of two types 1) carryover an existing 
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setup and 2) Opt-in a new setup. Setup carryover means 
maintaining the same setup between consecutive periods.                                                                 
Haase et al. [5] identified that solutions change considerably if 
setup carryover is considered.  

Many countries are now applying various laws and 
regulations for manufacturing industries to measure and reduce 
the overall carbon footprint to tackle the effect of climate 
change. The government provides incentives to companies for 
lowering stack air emissions and enforces penalties if industries 
are unable to fulfil them. In manufacturing industries, increased 
production causes an increase in greenhouse gas GHG) 
emissions (Such as CO2, CO, SOx, and NOx). Warehouse 
storage, setup, and other processes also play a role in increasing 
gas emissions. An optimum production lot or batch size with 
the right amount of inventory storage and minimum setup is 
required fulfilling the emission cap. As a result, Benjaafar et al. 
[6] introduced an emission control constraint for lot-sizing 
problems where different practical scenarios were considered. 
For example, a firm either can control their Carbon emission 
(ETS system developed by E.U., followed by 11,000 facilities 
all over Europe) or pay a tax/penalty for carbon emissions 
(U.S., a cap-and-trade system of U.S. climate bill). 

This paper adapts an existing Mixed Integer Linear 
Programming (MILP) model for a Multi-level Capacitated Lot-
Sizing Problem. The proposed model considers setup 
carryover, product backlogging, and emission control 
constraints. The Dantzig-Wolfe decomposition method has 
been used by adding artificial variables and Big M to the 
model's objective function. We followed a similar route as 
Chowdhury et al. [1] by solving an Integer linear programming 
for the setup decision problem. The Wagner-Whitin model is 
employed to calculate demand. 

1.2. Contribution: 

This paper aims to provide optimal solutions for classical 
multi-level, multi-item capacitated lot-sizing problems 
considering setup carryover, Backlogging, and emission 
control using a computationally efficient decomposition 
technique. Decomposing the problem is required for two 
reasons; dimensionality and complexity. As will be seen in the 
literature review section, optimal solutions to the problem 
under study are not existing in the literature. 

Chowdhury et al. [7] developed a solution algorithm to 
solve a SIULSP (Single item uncapacitated lot sizing problem). 
The algorithm provides an optimum production schedule plan 
that meets the demand and generates a quicker solution. Later, 
as an extension, Chowdhury et al.[1] generated a heuristic 
approach to solve a Classical MLCLSP model that deals with 
Setup carryover, Backlogging, and emission control 
constraints. The author used a novel capacity allocation 
heuristic to overcome the infeasibility caused by the 
complicated constraints of the model. The Dantzig Wolfe using 
capacity allocation heuristic (DW-CA) uses the data of demand 
gained from the Wagner-Whitin method and then allocates that 
demand over periods without violating the capacity constraint. 
We aim to create a solution method to reach optimality, quickly 
avoiding all heuristics. The Dantzig Wolfe using Big M (DW-
M) has been implemented to remove recurring infeasibilities of 
the Weighted Problem (WP) level to reach the optimal solution.   

The study contributes toward achieving a substantially lower 
optimality gap and faster processing of the solution method to 
reduce computational time. 

2. Literature review 

Lot-sizing problem is a very well-known problem. Many 
studies regarding lot-sizing have been considered by 
researchers depending on the different problem structures 
(production level, item quantity, resource level, supply chain 
level), problem complexity (Setup time, Overtime, Setup 
carryover, Backlogging, Inventory constraint), solution 
approach (Exact method, Heuristic method, Meta-heuristic 
method).  

The Multi-Level capacitated lot sizing problem (MLCLSP) 
is considered by many researchers for its complexity and 
practical use. The production system can be described as either 
single-level or multi-level based on the presence of a 
predecessor/successor relationship. The multi-level production 
system has one or more end items (Finished goods) and 
component items with a parent-child structure. Sahling et al. 
[8] solve an MLCLSP problem using a fixed and optimized 
heuristic with several end products. Buschkühl et al. [10] 
provided a meaningful summary of all solution approaches 
used to solve all variants of MLCLSP & CLSP. The solution 
approach consisted of mathematical programming heuristics, 
decomposition heuristics, meta-heuristics, and problem-
specific heuristics. Maes et al. [11] presented a new heuristic 
model to solve the MLCLSP since these problems fall under 
the class of NP-hard problems. Lagrangean Relaxation (L.R.) 
was used by Tempelmeier & Derstroff [4] to solve MLCLSP 
by breaking down the problem into single-level uncapacitated 
lot sizing problems. Berreta et al. [14] continued the research, 
comprised a non-zero lead time to the MLCLSP problem, and 
found a solution by introducing a hybrid Simulated Annealing-
based tabu search Method. Population-based heuristic was 
initially used by Pitakaso et al . [15]. In this paper, multi-item 
and multi-level lot sizing are where each machine can produce 
multiple items.   
    Backlogging is considered in many MLCLSP problems to 
overcome overtime costs Kimms,[16]. Wu et al. [17] 
introduced two MIP formulations capable of generating tight 
lower bounds when solving the MLCLSP-B problem. Toledo 
et al. [18] proposed a new hybrid method combining a multi-
population genetic algorithm with F.O. heuristic and 
mathematical programming for the MLCLSP-B problem. Zhao 
et al. [19] consider a combination of accurate MIP & Variable 
Neighbourhood Decomposition Search (VNDS). Seeanner et 
al. [20] hybridized the VNDS and the MIP-based FO approach 
as another method for solving the MLCLSP. Duda & Stawowy 
[21] considered a VNS approach to solving the MLCLSP with 
backlogging. A similar problem was solved by Toledo et al. 
[22], where the author used the relax and fix to build the initial 
solution and then improved by using a fix and optimize 
heuristic.  

Setup carryover is often considered a part of the lot-sizing 
problem that requires minimization, and a proper setup 
carryover assignment can reduce setup time. Wu et al. [23] 
propose a MIP formulation considering backlogging and setup 
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carryover. A progressive time-oriented heuristic framework 
was proposed in this paper.  Later, Chen [24] proposed a new 
F.O. approach to solving two dynamic MLCLSP problems, one 
considering setup carryover and another without setup 
carryover. Almeder et al. [15] Propose two methods for 
MLCLSP with a setup carryover problem. The first method 
considers batch production, which assumes the whole amount 
of predecessor must be available to start final product 
production. The second method is lot-streaming production 
(non-batching), where the earlier assumption is relaxed. In 
2009, Tempelmeier & Buschkühl [10] addressed a lagrangean 
heuristic solution approach for a linked lot-size dynamic 
capacitated lot sizing problem. Sahling et al. [9] advanced the 
research on the dynamic capacitated lot sizing problems. The 
author used an iterative F.O. approach to solve the problem.  
Identical setup costs and times for all items were first addressed 
by Schimdt et al.[26] while solving the single-level CLSP with 
setup carryover. Later, Gopal [27] considered item-dependent 
setup times and costs. Haase [5] proposed the CLSP problem 
with linked lot sizes of adjacent periods, where the scheduling 
procedure is backwards-oriented. Sox & Gao [28] considered 
the CLSP problem in terms of the big-time bucket without 
limiting the number of products produced in each period and 
generated an efficient lagrangean decomposition heuristic. 
Briskorn [29] later adjusted the dynamic programming 
approach of Sox & Gao [28] so that the subproblem could be 
solved optimally. Tabu search was employed by Karimi et al. 
[30] to solve a CLSP with setup carryover and backlogging. 
Oztürk & Ornek [31] formulate an MLCLSP problem with 
setup carryover and backlogging in a job shop environment and 
add two more constraints to penalize and obtain a feasible 
production plan. In case of a lot sizing problem, setup carryover 
decision can reduce cost significantly by reducing setup time 
and resources. 

In recent times, all production facilities have been working 
on reducing their carbon footprint. This capping on carbon 
emissions can also be linked with lot-sizing decisions to reduce 
carbon emissions. Benjaafar et al. [6] introduced emission 
control as lot sizing problem constraints. Later, Retel Helmrich 
et al. [32] proves that lot-sizing with emission constraints is 
NP-hard. Masmoudi et al. [33] considered an MLCLSP 
problem with new objective energy optimization Iijima [34]. 
Ghosh [35] identified the two most adopted carbon policies are 
(i) Carbon tax/cost policy and (ii) Carbon cap-and-trade policy 
and solved the MINLP problem for both policies. Ahmadini et 
al. [36], In their paper, solved a multi-objective inventory 
model with back-ordered quantity incorporating green 
investment to save the environment. Reddy et al. [37] 
considered Mixed-integer linear programming to minimize 
total cost, comprising the carbon emission cost due to 
transportation and production in the facilities using "Improved 
bender's decomposition." The paper reviews a carbon emission 
constraint for holding, production and setup processes while 
solving the lot sizing problem. 

From the literature review, it is observable that researchers 
gain advantages by decomposing MLCLSP to SIULSP. The 
Dantzig-Wolfe decomposition heuristic is another example of 
the decomposition technique used by researchers. This 

technique helps to obtain a better lower bound Duarte et al. 
[38]; Jans et al. [39]. Manne[40] was the first researcher to use 
the D.W. decomposition technique for CLSP. The goal is to 
find a convex combination of a given single-item production 
plan, which keeps the capacity constraints of the original 
master problem and leads to minimal cost. Later, Jans et al. [39] 
propositioned a new D.W. reformulation and a Branch-and-
Price (B&P) algorithm. Pimentel et al., [41] compare item and 
period DW decompositions of a multi-item CLSP. Hamadi & 
Schoenauer [42] propose D.W. decomposition for the multi-
item, multiperiod CLSP with setup times in a meta-heuristic 
framework. According to Duarte & de Carvalho [38], a discrete 
Lot-Sizing and Scheduling Problem (DSLP) with setup costs 
and inventory holding is decomposed using D.W. They 
develop a B&P and C.G. procedure to solve the problem 
optimality. The CLSP with setup time was studied by De 
Araujo et al. [42], and a period of D.W. decomposition was 
proposed. A hybrid scheme combining L.R. and C.G. is 
developed to find promising lower bounds. The hybrid 
algorithms developed by Fiorotto et al. [43] apply L.R. and 
D.W. decomposition together to obtain lower bounds on 
CLSPs with multiple items, setup time, and unrelated parallel 
machines. Zhang et al. [44] studied a capacitated lot sizing 
problem that considers a scheduling problem based on the 
machine. The setup time is considered sequence dependent on 
the option of setup carryover. They used reformulated D.W. 
decomposition and the branching and selection method to 
obtain the solution to the problem.  

D.W. decomposition is used in various other problem-
solving methods. Iijima[34] studied practical airline crew 
scheduling problems and reformulated them as a set 
partitioning problem by Dantzig-Wolfe decomposition. Leao et 
al. [45] Investigated the one-dimensional cutting-stock 
problem integrated with the lot-sizing problem and Dantzig–
Wolfe decompositions while developing column generation 
techniques to obtain upper and lower bounds for the integrated 
problem in the context of paper industries. In research from 
Chowdhury et al. [1], it can be seen that multi-level capacitated 
lot sizing problems with setup carryover and backlogging cost 
can be divided into single-item uncapacitated lot sizing 
problem (SIULSP) by using Dantzig-Wolfe (D.W.) 
decomposition method. The author has used the Capacity 
allocation heuristic to obtain a feasible solution for the 
capacitated lot sizing problem. And compared the result with 
earlier studies and found improvement in optimality gap & 
computation time. Shahvari et al. considered a bi-criteria 
objective to simultaneously minimize the total weighted 
completion time and, at the same time, minimize the total 
weighted tardiness of jobs by decomposing the mathematical 
model with the help of the Dantzig-Wolfe-Decomposition 
technique and, Branch-and-Price algorithm. Oskorbin & 
Khvalynskiy [46] consider the applicability of the Dantzig-
Wolfe method for Large-Scale Nonlinear Programming with a 
composite (block) structure of the function and constraints. 
Jaumard et al. [47] revisit the latter linear program model 
proposed for the AMD problem and introduce a new one with 
a polynomial number of variables. Dupin et al. [48] solved a 
variant for the vehicle routing problem with time windows, site 
dependencies, multiple depots, and outsourcing goals. 



 Hasan et. al. / Manufacturing Letters 35 (2023) 28–39  31 

Karateke et al. [49] applied D.W. decomposition to find the 
exact solution of the network flow model. Karateke et al. [49] 
applied the D.W. decomposition technique to solve Multi floor 
facility layout problem. Borgwardt & Patterson [44] is used for 
the minimum-cost mass transport problem.  

Gupta et al. [50]presented the optimum time coordination of 
overcurrent relays solved in a distribution network. Toloo et al. 
[51] considered using the Big M method to solve Data 
envelopment analysis (DEA) with an application on Bank. 
Putcha [52] introduces a new and uniform method of linear 
programming. Soleimani-damaneh [53] introduces a modified 
Big M method that reduces the number of iterations for this 
method when it is used to identify the presence of infeasibility 
in linear systems. Arsham [54] used a three-phase simplex-type 
solution algorithm to solve general linear programs instead of 
using artificial variables and constraints.  

An alternate method was explained by Conejo (2006) [55], 
where the author showed an example of solving a problem with 
complicated constraints using Dantzig Wolfe with the M 
method and artificial variable. As the M method and artificial 
variable remove any infeasibility from the problem and 
calculate the minimum production cost planning schedule, 
there is an advantage to solving the multi-level capacitated lot 
sizing problem using this technique which hasn't been 
exploited in the literature.  

To summarize the overall study, The complexity of the 
developed model MLCLSP with Setup carryover, Backlogging 
and Emission control is novel in the literature and solved with 
the heuristic method. And there is an opportunity in the 
literature for solving such a complex model with an exact 
method using the Big M method and artificial variables.  

Many researchers applied different meta-heuristic and 
evolutionary algorithms (Genetic Algorithm, Memetic 
Algorithm, Ant colony-based algorithm, Bee's fix and optimize 
algorithm) to solve the Lot sizing problems quickly and 
efficiently. Some researchers applied unique algorithms not 
typically used in general lot sizing studies. Such as, In the 
research of Berretta & Rodrigues [14], a memetic algorithm 
(Similar to a genetic algorithm) was used for a multi-stage 
capacitated lot sizing problem. Another example of a 
population-based heuristic was used by Boonmee & Sethanan 
[56], Where the author introduced a particle swarm 
optimization (PSO) variant in the poultry industry. Furlan & 
Santos [57] developed a heuristic bees-and-fix-and-optimize 
(BFO) to solve multi-level lot sizing problems that start with 
an initial solution and then search for a random solution with a 
bee's algorithm from a subproblem and use fix and optimize the 
method to get the solution. Behnamian et al. [58] used a model 
of a multi-level, multi-item, multi-period capacitated lot sizing 
problem with uncertainty in levels. They used the Markov 
chain concept on it. Witt [59] proposed a silver meal heuristic 
for the MLCLSP, where the heuristic starts calculating 
solutions for an uncapacitated problem and performs 
backwards and forward moves of the lot sizes. Wei et al. [60] 
studied MLCLSP with a focus on replaceability.  

Table 1 chronologically presents relevant studies conducted 
based on the complexity of the problem, the proposed solution 
approach, and the properties of the lot-sizing problem. 

Table 1: Synthesis Matrix (Classical lot-sizing problem) 
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Manne 
(1958) 

√ - - - - - - √ DW 

Billington, 
McClain, 
and Thomas 
(1986) 

- √ √ - - - - - LR and 
B&B 

Tempelmeier 
and 
Derstroff 
(1996) 

- √ √ - - - - - LDH 

Sox & Gao 
(1999) 

√ - √ √ - - - - LDH 

Jans and 
Degraeve 
(2004) 

√ - √ - √ - - - DW,CG , 
B&B 

Tempelmeier 
and 
Buschkühl 
(2009) 

- √ √ √ √ - - - LDH 

Pimentel et. 
al. (2010) 

√ - √ - √ - - - DW , 
B&P 

Caserta & 
Voß (2012) 

√ - √ - - - - - D.W., CG 

Wu et al. 
(2013) 

- √ √ - - √ - - R&F 

Toledo et al. 
(2013) 

- √ √ - - √ - - GA , F&O 

Gören & 
Tunalı 
(2015) 

√ - √ √ - - - - G.A., 
F&O 

Fiorotto et 
al. (2015) 

√ - √ - √ - - - L.R., DW 

Araujo et al. 
(2015) 

√ - √ - √ - - - L.R., 
D.W.,CG 

Chowdhury, 
Baki, Azab 
(2016) 

- √ √ √ √ √ √ - C.A., 
D.W.,CG 

Witt A. 
(2019) 

- √ √ - - - - - SMH 

Wei M., Qi 
M., Wu T., 
Zhang C. 
(2019) 

- √ √ - - - - - R&F, BS 

Duda J., 
Stawowy A. 
(2019) 

- √ √ - - √ - - VNS 

Claudio 
Toledo·  
(2017) 

- √ √ - - √ - - R&F, 
F&O 

Furlan 
M.M., 
Santos 
M.O.(2017) 

- √ √ - - - - - BFO 

Zhang C. et 
al. (2021) 

√ - √ √ - - - - D.W., 
B&S 

Abbreviation: Solution Approach: B&B = Branch and Bound, L.R. = 
Lagrangian Relaxation, LDH = Lagrangian Decomposition Heuristic, DW= 
Dantzig–Wolfe, C.G. = Column Generation, B&P = Branch and Price, GA = 
Genetic Algorithm, R.F. = Relax and Fix, F.O. = Fix and Optimize, CA = 
Capacity Allocation heuristic, Bees & Fix & Optimize =BFO, Silver Meal 
Heuristic=SMH, Branch & Price = B&P, Branch & Selection= B&S. 
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3. Methodology  

3.1. Introduction to the Dantzig-Wolfe Decomposition 
technique  

The decomposition method allows some problems to be 
solved in a distributed manner. Dantzig–Wolfe (D.W.) 
decomposition was initially developed for linear programs with 
a block-angular structure of the constraint matrix and later 
generalized to the mixed integer case (Vanderbeck & 
Savelsbergh, (2006) [61]. For example, research from 
Chowdhury et al. (2018)[1] has shown that a multi-level item 
capacitated lot sizing problem can be divided into two or more 
single-item uncapacitated lot sizing sub-problems.  

D.W. decomposition with Complicated Constraint: Any 
linear programming problem with appropriate structure can be 
divided into subproblems, but the complicating constraints 
involving two or multiple variables from different blocks 
drastically complicate the problem's solution. Complicating 
constraints prevent a straightforward solution from being 
considered. [55]. Decomposition procedures are computational 
techniques that indirectly consider the complicating 
constraints. The penalty for such a simplification is repetition. 
Instead of solving the original problem with complicating 
constraints, two problems are solved iteratively (i.e., 
repetitively): a simple so-called master problem/weighted 
problem and a problem similar to the original one but without 
complicating constraints (relaxed problem/sub-problem). [55] 

3.2. D.W. method by using Big M  

In some problems, the relaxed/sub-problem is unable to 
formulate a feasible master problem. In that case, an always 
feasible master problem can be formulated with artificial 
variables [55]. The artificial variable helps to attain the 
minimum amount needed to reach feasibility.  

The weighted problem with artificial variables takes the 
following form: 

 
Minimize ∑ 𝑧𝑖௉

௜ୀଵ 𝑢௜ + ቄ(𝑀 ቀ෌ 𝑣௝
௡

௝ୀଵ
+ 𝜔ቁ}  (3.1)   

                                    𝑢1, … . , 𝑢𝑝 ;  𝑣1, . . . , 𝑣𝑚, 𝑤 
Subject to, 

                  ෌ 𝑟௝𝑢௜
௉

௜ୀଵ
+ 𝜈௃ − 𝜔 = bj                                                     (3.2) 

 
                      ∑ 𝑢௜

௉
௜ୀଵ = 1                                                                (3.3) 

 
                      𝑢௜ ≥ 0                                                                        (3.4) 

 
Here,  𝑣௝ & 𝜔 is the artificial variable. M is a large number. 

The difference between 𝑣௝ & 𝜔 is the amount required to attain 
the minimum feasibility. 
 
3.2. Employing artificial variables in the application of 
Dantzig-Wolfe Decomposition:   
 

The following steps can be pursued to solve an L.P. problem 
with the D.W. decomposition technique: 

Step 1: Find a basic feasible solution for the relaxed Master 
problem (Disregarding complicated constraints) by using p 
(any) number of arbitrary master problem solutions. 

Step 2: If possible, Create a non-relaxed weighted problem 
with the basic feasible solution of the relaxed problem. Identify 
a solution for the non-relaxed weighted problem (Satisfy the 
complicated constraint & convexity constraint). Also, calculate 
the dual variable value of the complicated constraint λ and 
convexity constraint σ.     

Step 3: Else, find any one (1) arbitrary objective function 
and add an artificial variable to the non-relaxed weighted 
problem to initialize the iteration. Calculate the dual value of 
the complicated constraint λ and convexity constraint σ.   
Let's assume C, A, and E is the coefficient of the Objective 
function, Complicated constraint & Easy constraint. "x" is the 
variable, and "ba" and "be' is the right-hand sides of the 
complicated and easy constraint. The steps are: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
 
 

    Fig 1 Flowchart of the steps followed to decompose a problem using D.W. 
and Big-M methods. 

Step 4: Once the new solution for the non-relaxed weighted 
problem is found, check whether the new solution of the non-
relaxed problem is optimum or not by checking convergence 
with a dual variable value. If the termination is not met, add 
one more solution to the relaxed problem to create a new non-
relaxed weighted problem and move to step 2. 

Step 5: If the termination condition is met, use the weighted 
variable to calculate the final objective function solution of the 
master problem and the value of the variables. 

START 

Read: {C}  [A] {b
a
}  [E]{

 
b

e
} 

Step 1: Max/Min {C} {x} 
S.T. [E] {x} 

calculate the value of objective function(Z) and 
R.H.S of the Complicated constraint (r) with 
obtained x value. 

Step 2 &3: Solve the weighted problem with Big-M: 
Max/Min ZU + M* (Vj-w) 

S.T. r*U+Vj-w = R.H. S of the CC (calculate associated Dual variable λ) 
U

i 
  = 1 (Convexity Constraint, (calculate associated Dual variable ∂) 

U
i
    ≥0 (non-negativity constraint) 

 
Step 4: Solve Pricing problem to check the convergence with 
sigma, and check if the termination conditions are met or not.  

 

Step 5:  Calculate the value of the objective function and 
variables.  

END 
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4. Proposed model 
 

4.1. D.W. Decomposition method for MLCLSP with Setup 
Carryover, Backlogging, and Emission control (MLCLSP with 
SCBE):  

 
Chowdhury et al. [1] derived a multi-level multi-period lot-

sizing problem model while considering the cost of setup times, 
setup carryover, Backlogging, and emission control. The 
production plan has a finite planning horizon. All items are 
produced with a single resource (Machine) with a 
predetermined capacity. A setup cost can be incurred through 
setup time or cost of setup. The objective is identifying the 
optimum production quantity required to meet demand with a 
given capacity restriction. The model considers the Bill of 
material (BOM) structure to calculate the internal demand. The 
assumption of the model is set to be identical to Chowdhury et 
al. [1] model to compare and obtain an exact solution. The 
assumptions are given below:  
 There is a fixed number of machines (resources) with 

period-specific capacities.  
 The planning timeline has a limit which is divided into T 

periods (Shift/Day/Week). 
 The external demands are arranged in a general 

product/process structure which contains assemblies and 
sub-assemblies. And resource (machine) needs to be 
eligible to produce certain assemblies and sub-assemblies, 
and the eligibility information is known. Also, the item is 
assigned to a single machine. 

 Production cost can vary with time, and setup cost is fixed 
over time. 

 The setup is sequence-independent. 
 Full demand is known at the beginning of each production 

period. 
 No inventory shortage is allowed for the component item. 

The inventory shortage is allowed only for end items. 
 Multiple items can be processed in a single resource. 
 Inventory at the beginning and end is zero. 

    The model used by Chowdhury et al. [1] is given below; 
in the model, T is the number of periods available, n is the 
number of items, and m is the total number of the machine. The 
decision variables are as follows: 

 
𝐼௝௧  Inventory level of item 𝑗 ∈ {1, 𝑛}  at the end of period 𝑡 ∈ {1, 𝑇}  

𝑋௝௧ Production quantity of item 𝑗 ∈ {1, 𝑛} in period 𝑡 ∈ {1, 𝑇}  

𝑌௝௧ = ቄ
1
0

    if there is a setup for item 𝑗 ∈ {1, 𝑛}  on machine 𝑖 ∈ {1, 𝑚} 
in period 𝑡 ∈ {1, 𝑇}  

otherwise

 

 

𝛼௝௧ୀ 

1 if the setup state of machine 𝑖| 𝑗 ∈ 𝜑(𝑖) at the end of 

period 𝑡 ∈ {1, 𝑇}  and at the beginning of period(need) 

(𝒕 + 𝟏) is item 𝑗 ∈ {1, 𝑛} 

0 Otherwise 

𝑏௝௧ Quantity back ordered for item 𝑗 ∈ {1, 𝑛} in period 𝑡 ∈ {1, 𝑇} 
𝐸௧ Emission due to production, inventory, and setup in period 𝑡 ∈

{1, 𝑇} 
 

The parameters used are as follows: 
𝑎௝௞  Quantity of item (parts) 𝑗 ∈ {1, 𝑛} required to produce one unit of 

item 𝑘 ∈ {1, 𝑛} 

𝐷௝௧  External demand of item 𝑗 ∈ {1, 𝑛}  in period 𝑡 ∈ {1, 𝑇}  

ℎ௝ Holding cost of item 𝑗 ∈ {1, 𝑛} 

𝑐௝ Setup cost for item 𝑗 ∈ {1, 𝑛}   

𝑠௝ Setup time for item 𝑗 ∈ {1, 𝑛}  

𝑀 A large number 

𝐼௝଴ Initial inventory level of item 𝑗 ∈ {1, 𝑛} 

𝑅௜௧ Available capacity of machine 𝑖 ∈ {1, 𝑚} in period 𝑡 ∈ {1, 𝑇}  (in 

time units) 

Γ(𝑗) Set of immediate successors of item 𝑗 ∈ {1, 𝑛}   

𝑃௝௧  Production cost per unit of finished item 𝑗 ∈ {1, 𝑛}  at period 𝑡 ∈

{1, 𝑇}  

𝜑(𝑖)   Set of items that can be assigned to machine 𝑖 ∈ {1, 𝑚}  

𝜔       Set of end items (items with external demand only)  

𝜇(𝑗)   Set of immediate predecessors of item 𝑗 ∈ {1, 𝑛}  

𝜌(𝑗)   Set of machines eligible to process item 𝑗 ∈ {1, 𝑛}  

𝑝௝  Processing time required to produce one unit of item 𝑗 ∈ {1, 𝑛}  

𝛽௝  Backlogging cost for one unit of item 𝑗 ∈ {1, 𝑛} per period.  

𝑠̂௝  Carbon emission related to the setup of item 𝑗 ∈ {1, 𝑛} 

𝑝̂௝      Carbon emission related to per unit production of item 𝑗 ∈ {1, 𝑛}  

ℎ෠௝  Carbon emission related to per unit holding inventory of item 𝑗 ∈

{1, 𝑛} 

𝐶௖௔௣ Total allowable carbon emission cap  

 
Model MLCLSP_SCBE:  

The objective function minimizes the entire cost of 
production, holding, setup & backlogging cost.   

 
     𝑀𝑖𝑛 ∑ ∑ (𝑃௝௧𝑋௝௧ + ℎ௝𝐼௝௧ + 𝑐௝𝑌௝௧ + 𝛽௝𝑏௝௧)      ்

௧ୀଵ
௡
௝ୀଵ                                 (4.1) 

Subject to, 
𝐼௝଴ =  𝑏 ௝଴ = 𝛼௝଴ = 0    ∀𝑗 ∈ {1, 𝑛}              (4.2) 

 
𝐼௝௧ = 𝐼௝(௧ିଵ) + 𝑋௝௧ + 𝑏 ௝௧ − 𝑏 ௝(௧ିଵ) − 𝐷௝௧∀𝑗 ∈ {1, 𝑛}, 𝑡 ∈ {1, 𝑇}  |𝑗 ∈ 𝜔      (4.3) 

 
𝐼௝௧ = 𝐼௝(௧ିଵ) + 𝑋௝௧ − ∑ 𝑎௝௞𝑋௞௧      ∀𝑗 ∈ {1, 𝑛}, 𝑡 ∈ {1, 𝑇} ௞∈௰(௝) |𝑗 ∉ 𝜔      (4.4)   
  
𝑋௝௧ ≤ M൫𝑌௝௧ + 𝛼௝(௧ିଵ)൯ ∀ 𝑖 ∈ {1, 𝑚}, 𝑗 ∈ 𝜑(𝑖), 𝑡 ∈ {1, 𝑇}                            (4.5) 
 
∑ 𝑝௝𝑋௝௧ + ∑ 𝑠௝𝑌௝௧௝∈ఝ(௜)௝∈ఝ(௜) ≤ 𝑅௜௧ ∀ 𝑖 ∈ {1, 𝑚},  𝑡 ∈ {1, 𝑇}          (4.6) 
 
𝛼௝௧  ≤ 𝑌௝௧ + 𝛼௝(௧ିଵ)   ∀ 𝑖 ∈ {1, 𝑚}, 𝑗 ∈ 𝜑(𝑖), 𝑡 ∈ {1, 𝑇}                            (4.7) 
 
∑ 𝛼௝௧ ≤ 1  ∀ 𝑖 ∈ {1, 𝑚},  𝑡 ∈ {1, 𝑇} ௝∈ఝ(௜)                                               (4.8)                              

 
𝐸௧ = ∑ ൫𝑝̂௝𝑋௝௧ + ℎ෠௝𝐼௝௧+𝑠̂௝𝑌௝௧൯௡

௝ୀଵ   ∀ 𝑡 ∈ {1, 𝑇}                                             (4.9) 
 
∑ 𝐸௧

்
௧ୀଵ ≤ 𝐶௖௔௣                                              (4.10) 

 
𝐼௝௧ ≥ 0,  𝑋௝௧ ≥ 0,  𝑏 ௝௧ ≥ 0, ∀ 𝑗 ∈ {1, 𝑛}, 𝑡 ∈ {1, 𝑇}                                 (4.11)
  
𝑏 ௝் = 0 ∀ 𝑗 ∈ {1, 𝑛}           (4.12) 

 
𝑌௝௧, 𝛼௝௧ ∈ {0,1}   ∀ 𝑖 ∈ {1, 𝑚}, 𝑗 ∈ 𝜑(𝑖), 𝑡 ∈ {1, 𝑇}                           (4.13)   
      

Constraint (4.2) states that the initial inventory, backlogging, 
and setup condition is zero. Constraints (4.3) and (4.4) describe 
the inventory balance for items that are required to fulfil 
external and internal demands, respectively. Constraint (4.5) 
ensures correct setup state decision or setup carryover decision. 
Constraint (4.6) is the capacity constraint. This constraint is the 
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complicated constraint in the model. Constraint (4.7) provides 
a trade-off between setup carryover decisions to make sure that 
a setup can be carried over from the period 𝑡 to period (𝑡 + 1) 
only if either item 𝑗 is setup in period 𝑡,  or the setup state 
previously has been passed over from period (𝑡 − 1) to period 
𝑡 . Constraint (4.8) restricts a setup from being carried over 
more than one period, and the constraint is also a complicated 
constraint. Constraint (4.9) calculates the amount of carbon 
emission due to production, inventory, and setup for each 
period. Constraint (4.10) provides a limit on carbon emission, 
and as it is related to production, inventory, and setup cost, it is 
a complicated constraint. Constraints (4.11) declare the 
nonnegativity of the variables, Constraint (4.12) ensures the 
ending backlogging quantity is zero, and Constraints (4.13) 
provide information for the binary constraints. 

4.2. Relaxed problem for Component & End item from the 
Original Master Problem: 

The relaxed (also known as subproblems) are generated into 
two decomposable problems for Single item uncapacitated lot 
sizing problem. The relaxed problem does not contain any 
capacity restriction as the complicated constraints are not 
considered in the sub-problem/relaxed problem. The first Sub-
problem is for the final/end item (known external demand, no 
successors), and the second equation is generated for the 
component item. Relaxed problems are solved competently 
using a dynamic programming algorithm proposed by 
Chowdhury et al. (2018). The Dynamic Programming 
algorithm will generate an optimal solution for all relaxed 
problems because each uncapacitated single-item relaxed 
problem has a W.W. cost structure. Both equations for the end 
and component item have been given below: 

 
Relaxed problem for end item:  

𝑀𝑖𝑛 ∑ ∑ ൣ(𝑃௝௧−𝑤௜௧𝑝௝ − 𝛾𝑝̂௝)𝑋௝௧ + (𝑐௝ − 𝑤௜௧𝑠௝−𝛾𝑠̂௝)𝑌௝௧ − 𝛼௝௧𝑦௜௧൧்
௧ୀଵ

௠
௜ୀଵ +

∑ ൣ(ℎ௝ − 𝛾ℎ෠௝)𝐼௝௧ + 𝛽௝𝑏௝௧൧்
௧ୀଵ − 𝑣௝     ∀𝑗      (4.14) 

 
Subject to, 
 

𝐼௝଴ =  𝑏 ௝଴ = 𝛼௝଴ = 0      (4.15) 

 

𝐼௝௧ = 𝐼௝(௧ିଵ) + 𝑋௝௧ + 𝑏 ௝௧ − 𝑏 ௝(௧ିଵ) − 𝐷௝௧  ∀𝑡   

 

𝐼௞௧ = 𝐼௞(௧ିଵ) + 𝑋௞௧ − ∑ 𝒂𝒌𝒌ᇲ𝑋௞ᇲ௧    ∀𝑡௞ᇲ∈௰(௞)                                (4.16)                                                        

 

𝑋௝௧ ≤ 𝑀(𝑌௝௧ + 𝛼௝(௧ିଵ)) ∀ 𝑖 ∈ 𝜌(𝑗), 𝑡   (4.17) 

 

𝑌௝௧ + 𝛼௝(௧ିଵ)  ≤ 1 ∀ 𝑖 ∈ 𝜌(𝑗), 𝑡   (4.18) 

 

𝐼௝௧ , 𝑋௝௧ , 𝑏 ௝௧ ≥ 0   ∀ 𝑖 ∈ 𝜌(𝑗), 𝑡 ≥ 1   (4.19) 

 

𝑌௝௧, 𝛼௝௧ ∈{0,1} ∀ 𝑖 ∈ 𝜌(𝑗), 𝑡 ≥ 1   (4.20) 

 
After all end items are scheduled, the next item, 𝑘|𝑘 ∈ 𝜇(𝑗), 

is scheduled. The decomposed subproblems for all 𝑘|𝑘 ∈ 𝜇(𝑗)  
are as follows: 

Relaxed problem for the component item: 

𝑀𝑖𝑛 ∑ ∑ [(𝑃௞௧−𝑤௜௧𝑝௞ − 𝛾𝑝̂௞)𝑋௞௧ + (𝑐௞ − 𝑤௜௧𝑠௞−𝛾𝑠̂௞)𝑌௞௧ − 𝛼௞௧𝑦௜௧]்
௧ୀଵ

௠
௜ୀଵ +

∑ ൣ(ℎ௞ − 𝛾ℎ෠௞)𝐼௞௧൧்
௧ୀଵ − 𝑣௞    ∀𝑘 ∈ 𝜇(𝑗)   (4.21) 

 
Subject to, 
 

𝐼௞௧ = 𝐼௞(௧ିଵ) + 𝑋௞௧ − ∑ 𝒂𝒌𝒌ᇲ𝑋௞ᇲ௧      ∀𝑡௞ᇲ∈௰(௞)                    (4.28) 

and (4.15), (4.17)– (4.21) for 𝑗 = 𝑘. 

4.3. Weighted problem: 

A weighted problem is formed with the original master 
problem multiplied by the weighted variable (𝝀𝒋𝒖), because if 
the problem has one or more basic feasible solutions of the 
relaxed/Sub-problem, those solutions can be used to produce a 
feasible solution to the non-relaxed (restricted) master problem 
as a linear convex combination of those basic feasible 
solutions. If the master problem has constraints that can lead to 
an infeasible solution, a big value, M, and an artificial variable 
are added to the master problem to remove the infeasibility.  
 
Weighted Problem ((𝑊𝑃):  
 
𝑀𝑖𝑛 ∑ ∑ ∑ (𝑃௝௧𝑋௝௧

௨ + ℎ௝𝐼௝௧
௨ + 𝑐௝𝑌௝௧

௨ + 𝛽௝𝑏௝௧
௨)்

௧ୀଵ
௡
௝ୀଵ௨∈௎ೕ

𝝀𝒋𝒖 +  M ∗ {(V1 +

V2 + V3)  +  W}                      (4.29) 

Subject to: 

∑ ∑ (𝑝௝𝑋௝௧
௨ + 𝑠௝𝑌௝௧

௨)𝜆௝௨௝∈ఝ(௜) + (V1 − W)௨∈௎ೕ
= 𝑅௜௧: 𝒘𝒊𝒕 ∀ 𝑖,  𝑡         (4.30) 

∑ ∑ ∑ ൫𝑝̂௝𝑋௝௧
௨ + ℎ෠௝𝐼௝௧

௨ + 𝑠ఫෝ𝑌௝௧
௨൯௡

௝ୀଵ
்
௧ୀଵ௨∈௎ೕ

𝜆௝௨ + 𝑉2 − 𝑊 =  𝐶௖௔௣  ∶: 𝜸 (4.31)    

∑ ∑ 𝛼௝௧
௨ 𝜆௝௨௝∈ఝ(௜)௨∈௎ೕ

+ 𝑉3 − 𝑊 = 1: 𝒚𝒊𝒕 ∀ 𝑡 ≥ 0, 𝑖   (4.32) 

∑ 𝜆௝௨ = 1:௨∈௎ೕ
𝒗𝒋 ∀ 𝑗 (Convexity Constraint)  (4.33) 

𝜆௝௨௭ ≥ 0 ∀ 𝑗, 𝑢 ∈ 𝑈௝ (Non-negativity Constraint)  (4.34) 

4.4. Framework of the solution procedure: 

The following steps are applied to solve the model:   

 Step 1: Fix the dual variables 𝑤௜௧ , 𝑦௜௧ , 𝛾, and 𝑣௝ a value of 
zero for the end items 𝑗 |𝑗 ∈ 𝜔.Where, 𝑤௜௧ , 𝛾  , 𝑦௜௧  are the 
dual variable of the complicated constraint & , 𝑣௝ It is the 
dual variable of the convexity constraint. 

 Step 2: Solve the single-item uncapacitated lot sizing 
problem using dynamic programming per Chowdhury et al. 
(2018) 's algorithm. And calculate the variable value of 𝑋௝௧ 
and setup decision 𝑌௝௧  for item 𝑗 in period 𝑡. 

 Step 3: Derive demand for the component items 𝑘|𝑘 ∈ 𝜆 by 
using the W.W. algorithm. And repeat steps 1 & 2 for the 
component item.  

 Step 3: Derive demand for the component items 𝑘|𝑘 ∈ 𝜆 by 
using the W.W. algorithm. And repeat steps 1 & 2 for the 
component item.  

 Step 4: Solve the ILP for maximizing setup cost savings 
procedure from Chowdhury et al. [1] and obtain the value 
of the setup carryover decision variable 𝛼௝௧∀𝑗, 𝑡 . 
Step 5: Use the 𝑌௝௧  values from step 2 and 𝛼௝௧ From step 4, 
As parameters and solve the model's Original Master 
Problem to obtain an optimal value for 𝑋௝௧ , 𝐼௝௧ and 𝐵௝௧ . 
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 Step 6: Solve the reformulated WP with Big M and artificial 
variables, and print the dual variable value.  

 Step 7: Use the dual variable value for convergence 
checking using the relationship between reduced cost & 
dual variable. If a non-negative reduced cost is found, the 
iteration shall stop; otherwise, use the updated dual variable 
and continue from Step 2.  
 

Table 5.1 
Computational study analysis (Average Optimality Gap) 

5. Computational Study 

5.1. Dataset used: 

The proposed exact method result has been compared with 
Chowdhury et al. [1]'s computational result. Tempelmeier and 
Derstroff [12] first introduced the five sets of problem 
instances. The dataset used here to compare both methods is 
the class B dataset. 

Utilization rate  

TBO 
Profile 

CV 
90% 70% 50% 90/70/50 50/70/90 Mean 

DW-
M 

DW-CA DW-M DW-CA DW-M DW-CA DW-M DW-CA DW-M DW-CA DW-M DW-CA 

1 

0.1 0.00 0.01 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.02 

0.4 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.15 

0.7 0.01 0.01 0.00 0.06 0.00 0.07 0.00 0.06 0.00 0.06 0.00 0.05 

mean 0.00 0.21 0.00 0.04 0.00 0.02 0.00 0.04 0.00 0.06 0.00 0.08 

2 

0.1 0.00 0.01 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.04 0.00 0.05 

0.4 0.00 0.00 0.00 0.00 0.00 0.01 0.00 * 0.00 0.06 0.00 0.02 

0.7 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02 

mean 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.04 0.00 0.04 0.00 0.03 

4 

0.1 0.00 0.01 0.00 0.06 0.00 0.06 0.00 * 0.00 0.00 0.00 0.03 

0.4 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.03 

0.7 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 

mean 0.00 0.02 0.00 0.04 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.03 

1/2/4 

0.1 0.00 0.01 0.00 0.06 0.00 * 0.00 0.00 0.00 0.01 0.00 0.02 

0.4 0.00 0.00 0.00 0.06 0.00 0.01 0.00 * 0.00 0.00 0.00 0.02 

0.7 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.00 0.00 0.04 

mean 0.00 0.00 0.00 0.06 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.03 

4/2/1 

0.1 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.02 

0.4 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00 0.04 

0.7 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.03 

mean 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.03 

  0.001 0.037 

 

Fig. 2 General Product Structure 

Class B dataset contains a capacity of three (3) machines with 
ten periods to produce ten different items.  
 General product structure is considered. General product 

structures, which represent multiple assemblies, are the 
most complex since there is no limit on the number of 
predecessors or successors. (See Fig 2). The structure has 

three different levels of production.  
 Three demand structures with varying coefficients of 

variance (CV = 0.1, 0.4, 0.7) with a predetermined mean 
demand are considered for generating demand.  

 The capacity utilization profile is determined as 
90%,70%,50%,90%/70%/50%, and 50%/70%/90%. 
Available capacity per period is computed by dividing the 
mean demand by the target capacity utilization. 
90%/70%/50% means three utilization profiles for three 
levels. 

 Five Setup cost profiles are determined with the following 
equation: Time between Order (TBO) Profiles are 1, 2, 4, 
4/2/1, 1/2/4. The time between orders is the production 
cycle's average length [1]. The profile with slashes means 
(Example, 4/2/1) different TBO profiles for different 
hierarchy levels. Setup cost =

ଵ

ଶ
∗ (𝑇𝐵𝑂)ଶ ∗ ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 ∗

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑  

5 6 7 8 109

2 3 4

1

L=0 

L=1 

L=2 
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Table 5.2  

Computational study (Computational time) 

5.2. Results: 

A total of 75 instances were generated for both DW-CA & 
DW-M algorithms. Among all the cases, four instances were 
found infeasible for the DW-CA algorithm, highlighted with 
(*) sign. DW-M algorithm provides a 0% optimality gap for 73 
out of 75 instances. (See Table 5.1)  

Each model is coded using Fico's Mosel (Xpress IVE 
version:8.13 – 64-bit) algebraic modelling language. All the 
test instances are run on a P.C. with an Intel(R) Core (T.M.) i7-
3770 CPU with a 3.40GHz processor and 16 G.B. of RAM. 

To further investigate the computational study in terms of 
computational time, another 15 instances are generated. The 
instances were generated considering the emission control 
constraint as a variant [1] (1500,2000 and 2500 t/MWh), 
similar to the consideration of Chowdhury et al.,; [1]. The 
instances had a fixed 90% utilization rate, with a demand 
structure with a mean of 100 and 0.1 co-efficient of variance. 
(See Table 5.2) 

The average time for code completion status update for the 
DW-M algorithm is 2.2s, and for DW-CA is 4.4 seconds. A 
graphical presentation for all TBO profiles at 1500 t/MWh 
carbon emission cap limit is presented on the chart (Fig 5.2). 

5.3. Discussion & Limitation: 

The Multi-level capacitated lot sizing problem (MLCLSP) 
belongs to the class of NP-hard problems [11]. The problem 
solved here is an extension of Classical MLCLSP and an NP-
hard problem. 

The presented solution combines the Dantzig Wolfe 
decomposition and Big M methods to solve a lot-sizing 
problem scenario. The Dantzig formulation can be used only 
with a special angular block structure [55]. As per Bergner et 
al. (2006)[62], Dantzig Wolfe's reformulation needs tailoring 
for all applications, and the user must know that the problem 
has an exploitable structure to solve the model algorithmically. 
So, the Dantzig-Wolfe Decomposition technique cannot solve 
any model without such a structure. Also, for a larger problem, 
one might be unable to solve the decomposed model optimally; 
hence, we might not wait for the model to converge before we 
terminate the solution procedure fully. Therefore, the quality of 
the produced optimized solution could be compromised, i.e. we 
may end with an optimality gap.  

Now, a few drawbacks require attention while solving the 

problem for the Big M method. The value of the Big M while 
solving the problem needs to be set carefully to guarantee the 
optimization process's correctness. A lower value could lead to 
infeasible solutions even if they exist, and a higher value could 
lead to numerical instabilities. So, the requirement of re-tuning 
of the M value while solving the real-world scenario may limit 
its application [63]. 

 

 

Fig. 3: Computational time study.  

6. Conclusion 

This chapter summarizes the approach to solving an existing 
multi-level capacitated lot sizing problem by removing the 
heuristic model to reach optimality by improvising Big M and 
artificial variables to the model. A better performance was 
achieved from the existing heuristic method (DW-CA) 
compared to the proposed method (DW-M) while solving the 
MLCLSP with SCBE. The computational study in Table 5.1 
shows that, practically DW-M method arrives at a zero-
optimality gap. The improvement of the computational time is 
remarkable as it takes 50% less computational time with the 
DW-M method compared to the existing heuristic method. (See 
Table 5.2). 

 Overall, the performance of the new approach provides a 
satisfactory result with all feasible solutions and a 0.001% 
average optimal gap, which allows us to avoid the heuristic 
model and achieve the goal of the study. 

As a part of improvement, in the future, introducing more 
complexity to the existing model, such as a hybrid 
manufacturing concept and GHG gas emission reduction from 
operational vehicle constraints, can be considered. The lot-
sizing model can consider the assumption of using hybrid 
machinery to replicate the present manufacturing world 
scenario and reduce the time for setup costs. Platform 
production concept can be adapted in the model to meet mass 
customization; this advanced concept will allow more savings 
for classical lot sizing problems. Also, Meta-heuristics can be 
developed for the model to tackle future complexities. This 
advanced concept will allow more savings for classical lot 
sizing problems. Also, Meta-Heuristics are known to produce 
a quicker result.  A solution approach considering meta-
heuristics can be developed for the model to tackle future 
complexities and improve computational time. 
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DW-M DW-CA Mean 
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DW-

M 
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Computational Time (Sec) 

1 2.0 2.3 1.8 3.1 5.4 3.7 2.0 4.1 

2 2.1 1.8 1.8 2.6 4.5 3.0 2.6 3.4 

4 2.2 2.3 2.0 3.4 5.1 3.2 2.2 3.9 

1/2/4 1.5 1.6 1.6 9.7 6.4 3.2 1.6 6.4 

4/2/1 2.7 2.3 2.3 3.4 5.3 3.5 2.4 4.1 

Average 2.1 2.1 1.9 4.4 5.3 3.3 2.2 4.4 
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