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ABSTRACT

In the field of collaborative work, effectively forming teams is crucial for achieving

success. The challenge of constructing cohesive teams lies in selecting from a vast

array of potential candidates, each with distinct skills, experiences, and personal at-

tributes.Team recommender systems are designed to pinpoint the ideal combination

of experts who collectively meet the skill requirements necessary to achieve a com-

mon goal. Recently, researchers have started to examine this problem through neural

architectures that recommend the team of experts by learning a relationship between

the skills and experts space. However, these models often exhibit a popularity bias,

which refers to the tendency of the systems to recommend disproportionately more

popular teams. We have introduced a dual transfer strategy to enhance team recom-

mendation performance, which involves transferring knowledge from head instances

to tail instances at both the model and instance levels. At the model level, the strat-

egy creates a meta-mapping from few-shot to many-shot models, which indirectly

improves data quality and enhances learning representations for teams that are less

popular by implicitly augmenting data at the model level. The proposed dual knowl-

edge transfer method at the instance level employs curriculum learning to bridge

the gap between popular and not popular instances, ensuring a smooth transition of

meta-mapping head teams to the tail ones. Our evaluation criteria is that we expect

to improve team recommendation quality, particularly for teams that are in the tail

of the distribution. We demonstrate how our proposed platform effectively addresses

the issue of popularity bias prevalent in current team recommendation methodologies.

Further more, we validate its effectiveness by comparing it with leading approaches,

employing the DBLP dataset in our analysis.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 Concept of Collaborative Work

Collaborative work refers to the process where individuals or groups work together

to achieve shared goals. This concept is fundamental in various fields such as busi-

ness, education, technology, and research, where the collective effort of a group can

often produce outcomes that are superior to what could be achieved individually.

Collaboration is a strategic asset across different fields which enhances productivity,

innovation, and competitiveness.

The essence of collaborative work lies in harnessing diverse perspectives, expertise,

and resources to address complex challenges and drive progress. The power of col-

laborative work lies in its ability to amalgamate individual strengths to achieve a

common goal where synergy among team members can lead to innovative solutions

and enhanced productivity.

A collaborative network defines the connections and interactions among various indi-

viduals, groups, organizations, and communities, all focused on collective objectives

or complex problem-solving. Such interactions may stem from shared objectives, re-

sources, skills, and formal relationships, including those among business partners,

academic research groups, or interdisciplinary teams. Analyzing these networks helps

to uncover patterns and dynamics within a community, highlighting how these con-

1



1. INTRODUCTION

Fig. 1.1.1: DBLP Heterogeneous Collaborative Network

nections impact results, productivity, and creativity. This analysis proves valuable in

numerous areas, including project coordination, fostering innovation, forming strate-

gic partnerships, and beyond.

Collaborative network analysis and the Team Formation Problem are interconnected

disciplines focused on analyzing relationships and interactions among individuals,

groups, organizations, and communities. While collaborative network analysis delves

into the structural nuances and characteristics of these networks, the Team Formation

Problem focuses on the intricate task of curating the optimal mix of participants to

form effective teams.

To capture the structural and semantic complexities within the DBLP dataset , we

created a comprehensive collaboration network as Figure 1.1.1 illustrates. This net-

work serves as a dynamic framework that intricately interconnects various nodes,

including skills, experts, papers, and their corresponding venues. This network forms

the foundation for insightful analysis and effective team formation strategies, con-

tributing to our proposed team recommendation system. It represents a significant

step forward in our quest to develop a robust team recommendation system. By

leveraging the rich network of connections established within the DBLP dataset, our

2



1. INTRODUCTION

recommendation system aims to provide tailored suggestions for assembling high-

performing teams.

These concepts are crucial across various sectors such as sports, business, and edu-

cation, where constructing competent teams is pivotal to achieving success. In these

areas, collaborative network analysis offers critical insights into the interconnections

and dynamics among individuals, which is essential for the team formation process.

It helps in pinpointing potential team members who not only have robust connec-

tions within the network but also have the essential skills, abilities, and preferences

necessary for cohesive and effective teamwork.

The growing complexity of contemporary challenges across various sectors underscores

the critical importance of effective collaboration. As projects expand in scope and

ambition, the demand for diverse skills and perspectives intensifies. Consequently,

the success of these collaborative endeavors largely depends on the careful analysis

of the network’s composition. Understanding the structure and dynamics of collabo-

rative networks is essential for optimizing team performance, enhancing innovation,

and ensuring the efficient achievement of shared goals. This analysis of collabora-

tive networks becomes pivotal in orchestrating effective partnerships and strategic

alignments within diverse teams.

1.1.2 Importance of team composition in achieving success

in collaborative environments

The composition of a team plays a pivotal role in its success, particularly in collab-

orative environments. Teams that are well-composed, considering the right mix of

skills, experience levels, and personality traits, tend to perform more efficiently and

produce higher quality outcomes. Team composition plays a pivotal role in ensuring

that the collaborative unit is well-equipped to meet and exceed project objectives.

The right team composition enhances problem-solving capabilities, fosters creativity,

and improves decision-making, contributing significantly to the success of collabora-

tive projects.

3



1. INTRODUCTION

The importance of team composition extends beyond the mere assembly of skills. It

involves the integration of diverse cognitive abilities and emotional intelligences, which

enhances the team’s collective problem-solving capabilities. When team members

bring different perspectives and approaches to the table, they collectively create a

richer pool of resources to draw from in creativity and innovation. This diversity

leads to more robust discussions, more creative solutions, and more effective decision-

making.

Additionally, the right team composition significantly influences the motivation and

engagement of its members. When individuals feel that their skills are being used

effectively, and they are contributing to the success of the team, their satisfaction and

productivity rise. Moreover, teams that include a balance of roles—leaders, strate-

gists, facilitators, and executors—can navigate project challenges more smoothly and

efficiently. Each member plays a critical part in driving the project forward, ensuring

that all aspects of project management are covered.

Furthermore, team composition is crucial for the adaptive capacity of the team. In

today’s fast-paced and often unpredictable project environments, teams must be able

to adjust quickly to new information or changing circumstances. Teams that possess

a dynamic mix of adaptability, technical skills, and interpersonal abilities are better

prepared to respond to challenges and seize opportunities as they arise.

In essence, the right team composition is foundational to fostering a productive and

harmonious work environment. It underpins the team’s ability to innovate, solve

problems effectively, and achieve the goals set before them, thereby playing a pivotal

role in the success of collaborative projects.

The importance of team composition cannot be overstated, as it fundamentally shapes

the team’s ability to innovate, solve problems effectively, and achieve project goals.

A well-composed team is not only harmonious but also highly productive, benefiting

from a rich blend of skills, experiences, and perspectives that enhance creativity

and decision-making. However, achieving such an ideal composition is fraught with

challenges.

4



1. INTRODUCTION

1.1.3 Challenges in Team Formation

In the rapidly evolving realm of collaborative projects, the assembly of teams with a

harmonious blend of expertise, diverse backgrounds, and complementary personality

traits is crucial for project success. Effective team formation transcends mere group

assembly; it requires strategic alignment of skills and personalities to achieve synergy

and operational excellence. The challenge, however, lies in navigating the vast pool of

potential candidates to curate the optimal team composition, a process complicated

by the complexity and variability of human factors and professional skills.

As organizations and projects become more interdisciplinary and interconnected, the

importance of crafting such balanced teams becomes even more pronounced. The

diverse nature of modern projects, which often blend technical, creative, and strate-

gic elements, demands a team that is not only skilled in multiple domains but also

adept at communication and collaboration across these domains. Moreover, the dy-

namic nature of project requirements necessitates a flexible approach to team com-

position—one that can evolve as project objectives and environments change.

However, identifying the right mix of abilities and traits is only part of the challenge;

equally critical is understanding and managing the interpersonal dynamics that can

significantly impact team performance. Research indicates that teams with a strong

relational foundation tend to perform better, particularly when they face complex and

uncertain environments that require high levels of coordination and problem-solving.

This underlines the need for systems that can effectively analyze and predict team

success by considering the goals and required skills for a project.

1.1.4 Evolution of Team Formation Methods

Historically, team formation was predominantly a manual and intuitive process, heav-

ily reliant on the personal judgment and experience of team leaders or managers.

Before the advent of advanced computational tools, forming teams was often chal-

lenging, especially in large organizations with diverse talent pools. Leaders had to

consider various factors such as expertise, availability, and interpersonal dynamics,

5



1. INTRODUCTION

which made the process time-consuming and prone to bias.

The limitations of traditional graph-based methods have paved the way for more

sophisticated team recommender systems. Initially, researchers employed graph-based

search methods to tackle the problem of team formation by extracting a subgraph

from collaboration networks. These networks represent various experts, their skills,

and their past collaborative efforts. Techniques such as heuristics and meta-heuristics

were utilized to efficiently extract teams from the network [6, 7, 13, 14, 5].

Sozio et al. [16] further elaborate on this concept by describing how an optimal team

is represented as a subgraph that maximizes a monotonic function while adhering to

specific constraints. This underscores an analytical approach to team assembly that

strives for optimal functional performance while meeting predefined criteria.

Despite their practical effectiveness, graph-based methods are specifically tailored to

certain problems and often rely on strong assumptions about team dynamics. For

example, Lappas et al. [6] proposed a model assessing team effectiveness based on

communication costs within a social graph. They posited that lower communication

costs generally lead to more successful collaboration. However, this is not universally

true, as seen in the DBLP collaboration network where researchers with a record

of successful publications might incur higher communication costs compared to less

published individuals who still meet all task requirements. This observation indicates

that minimizing communication costs does not consistently translate into successful

outcomes. Furthermore, while graph-based methods might recommend teams with

the necessary skills for a task, there is no guarantee these teams will collaborate suc-

cessfully. This limitation primarily stems from the strong assumptions these methods

make about successful teams. Therefore, although such methods can assemble teams

with the appropriate skill mix, their foundational assumptions may not hold in prac-

tical scenarios, leading to less effective team performance.

Recent studies by Kargar et al. [17] and Bryson et al. [18] focus on strategies

to minimize the sum of the weights in the induced subgraphs, a key technique in

optimizing team structures within networks. However, a significant limitation of these

methods is their computational intensity. This complexity mainly stems from the fact

6



1. INTRODUCTION

that optimizing these subgraphs relates closely to solving the Steiner tree problem,

which is known to be NP-hard—a classification indicating that these problems are

computationally demanding and challenging to solve efficiently. This computational

complexity arises because the Steiner tree problem requires finding the smallest subset

of nodes that connects a given set of terminals, a task that becomes exponentially

more difficult as the size of the network increases.

Moreover, as networks grow and evolve, maintaining the efficiency of graph-based

algorithms becomes increasingly difficult. These methods must frequently recalculate

communication costs among individuals due to any changes in the network structure,

which can severely limit their scalability. This issue is particularly problematic in

dynamic environments where network changes are frequent, as highlighted by recent

findings from Kaw et al. [19]. Each alteration in the network necessitates a complete

reassessment of the optimal pathways and node connections, significantly increasing

the processing time and computational resources required. This scalability challenge

is a critical barrier to the practical deployment of these methods in large-scale, real-

time applications where network dynamics are constantly evolving.

Given the limitations of traditional graph-based methods, researchers have increas-

ingly turned to neural machine learning models that can learn the complex rela-

tionships between experts and their skills using advanced neural architectures. The

primary objective of these studies is to create an efficient mapping from the skill

set domain to the expert domain, thereby facilitating the swift formation of expert

teams. A notable advancement in this area was the introduction of an autoencoder

architecture by Sapienza et al.[20], which is designed to identify experts by learning

from the collaborative patterns and skill distributions of team members.

However, the application of traditional autoencoder architectures in this context faces

significant challenges, particularly due to the sparse distribution of skills across ex-

perts and teams. Sparsity can lead to models that do not generalize well beyond their

training data, resulting in overfitting. Overfitting occurs when a model captures noise

or random fluctuations in the training data instead of the underlying pattern, leading

to poor performance on new, unseen data. This is a critical concern as it can severely

7



1. INTRODUCTION

compromise the model’s ability to effectively recommend team compositions.

This problem primarily arises due to the sparse nature of input skills coupled with

the long-tailed distribution of output experts, where a small number of experts ac-

count for the majority of successful collaborations, while the vast majority have only

participated in a few, as illustrated in Figure 2.1.1. In response to the challenge of

sparse skill distributions, Rad et al. [21] built upon the initial work by Sapienza et

al., introducing a variational Bayesian neural framework. This approach was shown

to manage sparsity issues more effectively, leading to the formation of higher-quality

teams. While there are subtle differences across various models [22, 23], the overall

improvement in evaluation metrics across these models does not significantly reflect

the sophistication of their methodologies.

Furthermore, these models enhance their performance by incorporating contextual

information from the DBLP heterogeneous network through techniques like metap-

ath2vec [24], which captures the representations of nodes within the collaboration

network. However, since metapath2vec depends on random walks [25] to generate

node embeddings, it categorizes as a shallow graph embedding technique [26], which

operates as a self-supervised learning method. Shallow graph embedding approaches

face several challenges: the training complexity of these methods is directly propor-

tional to the network size, O(|V |), which can render them inefficient. Additionally,

they are unable to generate embeddings for new nodes without re-training, posing

challenges for dynamically evolving networks that exceed memory capacity. They

also tend to overlook the importance of node attributes, crucial for understanding

each node’s role within the network.

To address these shortcomings, Kaw et al. [19] proposed the LANT network, which

employs Graph Attention Networks (GAT) to learn graph structural features from the

heterogeneous network and recommend experts for teams. Although this approach

has enhanced the adaptability of network models post-training and reduced the time

complexity of the learning process, the issue of popularity bias remains a significant

challenge.

Popularity bias, largely driven by the long-tail distribution in data, tends to degrade

8



1. INTRODUCTION

model performance, especially when recommending experts from the less frequently

represented tail segment of the data distribution. To mitigate this and enhance the

quality of recommended teams, we propose a two-level knowledge transfer learning

framework specifically tailored for team recommendations. This framework is partic-

ularly aimed at improving recommendations for less popular teams, which are often

overlooked in typical recommendation systems.

Our two-level knowledge transfer learning framework is designed to predict the per-

formance of teams based on a specific set of skills, utilizing a synergistic combination

of model and skill level transfer learning. This approach is further augmented by

meta-learning and curriculum learning techniques to effectively tackle the long tail

distribution challenge. The architecture of the proposed team recommendation sys-

tem consists of two primary components: model-level knowledge transfer (including

the base learner and the meta-learner) and team-level knowledge transfer, which is

facilitated through curriculum learning. Training of the base learner incorporates

both many-shot and few-shot learning approaches, allowing the model to adapt and

generate meaningful team embeddings, as illustrated in Figure 1.1.2. These embed-

dings provide a sophisticated representation that captures both explicit data points

and the complex network of team relationships.

The contributions of this work are threefold:

• We introduce a two-level knowledge transfer learning framework that synergis-

tically integrates knowledge transfer at both the model and team levels. This

integration ensures that knowledge can be effectively utilized across teams, span-

ning from the most to the least popular in a long-tail distribution context.

• We develop a new curriculum designed to seamlessly transition the meta-mapping

learned from more frequent (head) data instances to those in the long-tail, en-

hancing model performance across the entire distribution.

• Extensive experimental results demonstrate that our proposed framework sig-

nificantly enhances recommendations for tail teams while also achieving robust

improvements in overall and head team performances, as evaluated by standard

9



1. INTRODUCTION

Fig. 1.1.2: It represents the model-level knowledge transfer that incorporates both
many-shot and few-shot learning approaches and team-level knowledge transfer that
facilitates through curriculum learning.

ranking metrics.

1.1.5 Role of Team Recommender Systems in Modern Team

Formation

The process of forming teams in today’s complex and dynamic environment necessi-

tates the use of sophisticated tools that can navigate these complexities effectively.

Team recommender systems have become indispensable in this context. These sys-

tems utilize a variety of strategies and algorithms, including graph-based methods,

mathematical optimization, and advanced machine learning techniques, to tackle the

Team Formation Problem. They are specifically designed to comb through large

datasets to identify potential team members who not only possess the necessary tech-

nical skills but are also likely to synergize well with one another, thereby fostering a

collaborative environment.

By leveraging data from previous collaborations, these recommender systems aim to

10



1. INTRODUCTION

minimize the uncertainties inherent in team formation and enhance the probability

of project success. This approach not only improves the efficiency of forming teams

but also contributes to more effective team dynamics and outcomes. Such systems

are particularly valuable in settings where the alignment of skills and interpersonal

compatibility are critical for the success of complex projects.

1.2 Thesis Motivation

The importance of team recommender systems in contemporary professional envi-

ronments cannot be overstated. These systems are crucial for harnessing the full

potential of an organization’s human capital by efficiently assembling teams that are

diverse, well-balanced, and highly effective. As projects across various sectors become

increasingly complex and interdisciplinary, the ability to dynamically form teams that

blend the right mix of skills, backgrounds, and personality traits becomes essential

for driving innovation and achieving strategic objectives.

In today’s rapidly evolving workplace, the success of projects often hinges on the

ability to quickly adapt to new challenges and integrate diverse expertise. Team

recommender systems play a pivotal role in this context by facilitating the swift

assembly of teams with complementary skills and compatible working styles. This

not only accelerates project initiation and execution but also enhances the quality of

outcomes by leveraging a broader range of ideas and approaches.

Moreover, in an era where collaboration is key to organizational success, team rec-

ommender systems help break down silos and promote a culture of collaboration and

knowledge sharing. By identifying the optimal groupings of individuals for specific

projects, these systems ensure that all team members are positioned to contribute

effectively, which maximizes productivity and fosters professional growth among em-

ployees.

The motivation for this research is driven by the pressing need to address the limita-

tions of current team recommender systems in such dynamic and complex professional

environments. As organizations increasingly undertake interdisciplinary projects that

11



1. INTRODUCTION

require a blend of diverse expertise, backgrounds, and personality traits, the capa-

bility to efficiently and fairly assemble effective teams becomes essential for success.

However, existing team formation methodologies often face challenges such as data

sparsity and popularity bias, where well-known experts are favored over potentially

more suitable but less visible colleagues. This not only undermines the fairness of the

recommendation process but also restricts the potential for discovering and leveraging

hidden talents within an organization.

The motivation for this research is driven by the pressing need to address the limita-

tions of current team recommender systems in such dynamic and complex professional

environments. As organizations increasingly undertake interdisciplinary projects that

require a blend of diverse expertise, backgrounds, and personality traits, the capa-

bility to efficiently and fairly assemble effective teams becomes essential for success.

However, existing team formation methodologies often face challenges such as data

sparsity and popularity bias, where popular team of experts are favored over poten-

tially more suitable but less visible one. This leads to suboptimal team configurations

that may not meet all project requirements effectively. This not only undermines the

fairness of the recommendation process but also restricts the potential for discovering

and leveraging hidden talents within an organization.

This research aims to overcome these challenges by developing a novel two-level knowl-

edge transfer learning framework that enhances fairness and accuracy by effectively

reducing popularity bias. Ultimately, this study seeks to imporve the way teams are

formed in professional settings, making the process more fair, and effective in meeting

the complex demands of modern projects.

1.3 Problem Statement

Consider a heterogeneous collaboration graph G = (V,E, T ), where V represents a

set of nodes connected by edges E ⊆ V ×V . In V ×V the product is used to describe

all possible pairs of nodes within the graph. It means the set of edges E in the graph

consists of these pairs of nodes. Each node v ∈ V is associated with a type Tv. In

12
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the context of the DBLP network, these node types include entities such as papers

(P ), experts (E), venues (L), and skills (S), which are collectively categorized under

T = P,E, L, S.

The core challenge addressed in this work is the recommendation of teams (s, e), where

e = e1, e2, ..., ep ⊆ E represents a set of p experts, and s = s1, s2, ..., sq ⊆ S denotes

a subset of q skills required for specific tasks. Our primary objective is to enhance

the quality of team recommendations, especially for those teams characterized by

having fewer skills that appear in the tail of the distribution. We aim to achieve

this improvement while maintaining or even enhancing the overall performance of the

system in recommending expert teams tailored to a given set of skills.

This problem is significant because it tackles the dual challenges of optimizing team

composition in a way that not only meets specific task requirements but also ad-

dresses the inherent sparsity and distributional biases of skills and expertise within

large-scale professional networks. By focusing on these less represented skills and

the corresponding teams, we strive to bring more balance and fairness to the recom-

mendation process, ensuring that all potential contributors are considered effectively,

regardless of their typical visibility in the network.

1.4 Research Objectives and Questions

The primary Objective of this research is to design and implement a pioneering two-

level knowledge transfer learning framework. This framework is engineered to facili-

tate the transfer of knowledge from popular to unpopular experts within professional

networks. The objective is to bridge the gap between the abundance of data for some

experts and the scarcity for others, enhancing the system’s ability to offer balanced

and fair recommendations across the board.

A crucial goal of this study is to enhance the quality of team recommendations by ad-

dressing key challenges inherent in existing recommender systems—specifically, data

sparsity and popularity bias. By integrating meta-learning and curriculum learning

techniques, this research seeks to refine the recommendation process, ensuring that

13
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it not only identifies the most skilled individuals for a given project but also fairly

represents less visible experts in the network.

To establish the efficacy of the proposed framework, it is essential to conduct empirical

validations against existing state-of-the-art methods using the DBLP dataset. This

research will employ a robust set of evaluation metrics, including Recall, Mean Re-

ciprocal Rank (MRR), Mean Average Precision (MAP), and Normalized Discounted

Cumulative Gain (NDCG), to compare the performance of the newly developed two-

level knowledge transfer learning framework with that of current leading approaches.

The validation will focus on assessing improvements in performance and reduction

of bias in team recommendations. We conducted a comprehensive evaluation by

comparing various methods for top-K recommendation, assessing both head and tail

recommendations, as well as overall performance on the DBLP dataset.

Three pivotal questions guide this research:

• First, how do current recommender systems handle the inherent challenges of

data sparsity and popularity bias?

• Second, what role can transfer learning play in mitigating these effects and

enhancing the fairness and accuracy of recommendations?

• Third, how do meta-learning and curriculum learning techniques contribute to

improving the efficacy of team recommender systems?

1.5 Thesis Contributions

The contributions of this thesis to the field of team recommender systems are signifi-

cant and multifaceted. This research addresses critical gaps in existing methodologies

and introduces innovative approaches to enhance not only the overall performance of

team recommender systems but also imporves the reocmmendation quality for experts

who are located in tail segment of the data. The key contributions are as follows:

• Development of a Two-Level Knowledge Transfer Learning Framework

This thesis introduces a novel two-level knowledge transfer learning framework

14



1. INTRODUCTION

that innovatively increasses the team recommender system performance by

leveraging knowledge transfer from head to tail data instances and accordingly

addressing the challenges of popularity bias caused by long tail distribution

in training dataset in team recommender systems. By facilitating knowledge

transfer from well-represented to poorly represented experts, the framework en-

hances the fairness and inclusivity of the recommendation process. This allows

organizations to better utilize their entire talent pool, promoting diversity and

innovation.

• Integration of Meta-Learning and Curriculum Learning Techniques

The research pioneers the integration of meta-learning and curriculum learning

techniques in the context of team recommender systems. Meta-learning is em-

ployed in model level knowledge transfer in order to capture the implicite change

in base learner parameters between many shot and few shot learning while data

augmentation is in process, while curriculum learning is used in instance level

knowledge transfer in order to facilitate a smooth transition between head and

tail data instances.

• Validation Using the DBLP Dataset

The effectiveness of the proposed framework is rigorously validated using the

DBLP dataset, a standard benchmark in the field of team recommender system

research. The comparative analysis with state-of-the-art methods—specifically

Paragraph Vectors’20, Metapath2Vec’21, and LANT’23—demonstrates signif-

icant improvements in recommendation accuracy, reduction of bias, and en-

hancement of team diversity. This validation provides concrete evidence of the

framework’s utility and effectiveness.

• Foundational Advances in Team Recommender Systems

By addressing some of the most pressing challenges in team recommender sys-

tems, this thesis lays the groundwork for future research in the field. The

methodologies and insights presented here can be further explored and expanded

upon, paving the way for more sophisticated and effective team formation tech-
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nologies.

1.6 Thesis Structure

The rest of the thesis/research work is organized in the following manner.

In chapter 2, We discuss the related works in the field of Team Formation Problem.

The literature review comprises classical rule-based approaches including heuristics,

meta-heuristics, etc., and the current state-of-the-art deep learning frameworks on

team formation probem.

In chapter 3, We introduce our proposed framework, to solve the team formation

problem. This chapter discusses step by step process of our approach and how it

optimizes the state-of-art deep learning framework for team formaiton problem.

In chapter 4, We provide our experimental setup and environment, which includes

the tools and libraries we used to implement our suggested framework, the system

configuration, the dataset information, the hyper-parameters for training, the specifics

of the evaluation metrics and the baselines we utilized to assess our model.

In chapter 5, We conducted experiments on the benchmark dataset DBLP. We com-

pared our framework to the existing state-of-the-art methods team formation problem.

learning in which our framework outperformed existing architecture in terms all the

evaluation metrics in overall, head and tail recommendation performance.

In Chapter 6, We conclude our research, explain the insights we gained during our

research work, and describe some of the opportunities for future work.
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CHAPTER 2

Related Works

2.1 Introduction

The concept of team formation in professional networks was initially explored by

Lappas et al. [6], who introduced a method using a minimum-cost spanning tree

tailored to satisfy specific constraints, such as encompassing all required skills for

a project. Their groundbreaking approach posited that minimizing communication

costs among team members within a social network would enhance collaboration

effectiveness. To navigate the complex expert collaboration graph, they developed

heuristic methods for identifying pertinent sub-trees that could represent optimal

team structures.

Building on this foundation, Lappas and colleagues identified communication costs

as key to formulating the Team Formation Problem in social networks. They defined

communication costs as the effort required for team members to interact and collab-

orate effectively. Recognizing the critical role of collaboration and communication

between team members, they emphasized that minimizing these costs could lead to

more efficient team configurations and, by extension, improve project success. Sub-

sequent researchers like Kargar et al. [7] and Selvarajah et al. [42] further refined

the optimization of communication costs. They employed advanced algorithms, en-

compassing sophisticated heuristics and meta-heuristics, treating the challenge as a

single-objective optimization problem. This line of research aimed to streamline team

assembly by reducing overheads associated with communication among team mem-
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bers. Example Objective Functions from [7] are indicated below. These objective

functions aim to optimize the distances both among team members themselves and

between the team members and the leader of the team, as represented by csi denoting

the skill of team member i and L presenting the leader.

sumDistance =

p∑
i=1

p∑
j=i+1

d(csi , csj) (1)

leaderDistance =

p∑
i=1

d(csi , L) (2)

Moreover, later studies by Ashnegar et al. [44], Han et al. [45], Chen et al. [14],

and Selvarajah et al. [13] broadened the scope by integrating additional dimensions

such as workload balance, personnel expenses, and geographical proximity into the

optimization process. These enhancements transformed the problem into a multi-

objective optimization dilemma, acknowledging that effective team formation is in-

fluenced by a variety of factors beyond simple communication efficiencies.

Despite these advances, most existing methodologies presuppose a static social net-

work structure, relying on stable and predictable interactions among network mem-

bers. The latest efforts by Kargar et al. [17], which focus on minimizing the sum

of the weights of the induced subgraph, address some of these limitations but also

reveal new challenges. These methods struggle with the inherent computational com-

plexity of subgraph optimizations, which are similar in nature to a simplified form

of the NP-hard Steiner tree problem [6]. Moreover, these strategies often fail to cap-

ture the dynamic and intricate relationships among experts, potentially leading to

teams that do not fully leverage the diverse capabilities within the network. Table

2.1.1 illustrates the summary of research contributions in the context of various cost

metrics.

To overcome the constraints of graph-based methods, recent research has shifted

towards leveraging machine learning techniques to assemble teams of experts. In-

novative neural machine learning models have been developed that discern relation-
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Authors
Communication

Cost
Workload

Personnel
Cost

Geo-
proximity

Lappas et
al.[6]

✓

Kargar et
al.[7], Li et
al.[11],

Selvarajah et
al.[42]

✓

Majumdar et
al.[43], Anag-
nostopoulos et

al.[12]

✓ ✓

Ashenagar et
al.[44]

✓

Han et al[45],
Chen at al[14]

✓

Selvarajah et
al.[13]

✓ ✓

Table 2.1.1: Summary of research contributions in the context of various cost metrics

ships among experts and their social attributes through advanced neural architectures

[20, 21]. These models utilize historical data on successful team compositions as train-

ing samples, aiming to predict optimal teams for specific skill requirements. This

approach enhances efficiency while preserving effectiveness, thanks to the iterative

and online learning capabilities inherent in neural architectures.

One pioneering effort by Sapienza et al. [20] utilized a traditional autoencoder to

formulate optimal teams within the context of the DOTA2 game dataset. However,

the model faced challenges with uncertainty in training data and was particularly

prone to overfitting when correlating specific skills with experts. The root of these

challenges was the sparsity of input skills coupled with the long-tailed distribution of

expert availability.

Addressing these issues, Rad et al. [21] introduced a Variational Bayesian Neural

Network (VBNN). This model adopts a probabilistic approach to network weights,

allowing it to represent and manage uncertainty more effectively. By employing vari-
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ational inference, the VBNN improves upon traditional methods by learning the dis-

tribution of skills in relation to the availability of experts, thus mitigating some effects

of the long-tail distribution problem. This approach demonstrated marked improve-

ments in team recommendation accuracy over non-variational autoencoder models, as

evidenced by various evaluation metrics. However, the research still overlooks other

potentially valuable data, such as expert venues, and tends to treat the correlation

between skills and experts in isolation.

Rad et al. [22] conducted a study in 2021 that delved into a diverse collaboration

network within the DBLP dataset, incorporating different types of nodes such as skills,

experts, papers, and venues. They utilized metapath2vec, a technique that employs

meta-path-based random walks along with a skip-gram model to explore both the

semantic and structural connections between various types of nodes. Initially, these

studies leveraged a Variational Bayesian Neural Network (VBNN) to effectively rank

experts for specific tasks.

Progressing further in 2022, Rad et al.[23] adopted subgraph representation learning

techniques combined with metapath2vec. They focused on subgraphs encompassing

both skills and groups of experts who had previously demonstrated successful col-

laboration. This approach was designed to provide a richer understanding of the

relationships and interactions within the data, thereby delivering more nuanced in-

sights into the connections between skills and experts. In this phase of research,

the team chose to utilize a maximum similarity index to identify the closest expert

subgraph representations to given skill subgraphs, moving away from using VBNN.

In a more recent initiative, Kaw et al.[19] unveiled LANT, a new model that marries

transfer learning with neural team recommendations. This innovative approach has

enhanced the flexibility of network modifications after training and has streamlined

the learning process, especially in terms of reducing time complexity. Yet, despite

these technological advancements, the challenge of popularity bias persists.
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Fig. 2.1.1: Distribution of teams and skills in DBLP.

2.2 Long-tail Distribution Problem

The issue of long-tail distribution prominently affects task performance across various

domains, including image classification [28], natural language processing [27], and

recommendation systems [29]. This distribution pattern impacts the availability and

performance of data in numerous real-world datasets.

Common strategies to tackle this issue include resampling techniques such as over-

sampling and under-sampling [30, 33]. Over-sampling, which involves duplicating

samples from minority classes, can lead to overfitting, while under-sampling, which

reduces examples from the majority class, might eliminate crucial data, potentially

degrading the model’s performance. An alternative approach is to refine the loss

function by incorporating different weights or regularization techniques for various

classes or items [34, 28]. For example, recent advancements such as logQ corrections

[37, 38] have been developed to introduce item frequency-aware regularization, aiming

to balance the representation in datasets.
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Moreover, some researchers explore innovative strategies like meta-learning [39] and

decoupling the learning process to adjust the classifier separately [40], which are

tailored to address the challenges of long-tail distributions more effectively. In the

context of team recommender systems, the impact of long-tail distribution is evident

from the varying distribution of teams across features such as the number of skills

and experts within teams [19]. DBLP dataset displays a long-tail pattern in the dis-

tribution of its features. Our analysis is focused on the number of skills for different

teams of experts. Figure 2.1.1 illustrates that a small fraction of teams, referred to

as the head of the distribution, possess the highest number of skills, while the ma-

jority of teams fall into the tail segment, characterized by fewer skills. This variation

significantly influences recommendation performance, particularly for teams that are

in tail section of the data distribution.

2.3 Meta Learning

Meta-learning, commonly known as ’learning to learn,’ has captured significant at-

tention due to its versatility across diverse applications [47]. The primary goal of

meta-learning is to develop models that can swiftly adapt to new tasks by acquiring

a broad base of applicable knowledge. Typically, meta-learning approaches are cate-

gorized into three main types: metric-based, model-based, and optimization-based.

1. Metric-Based Methods: These techniques, such as those described by Snell et al.

[48], focus on learning a standard prototype that can differentiate between tasks by

understanding their distinctive features.

2. Model-Based Strategies: Model-based strategies, highlighted by Santoro et al.

[49], design models capable of rapid learning from minimal data, enhancing their

adaptability with few examples.

3. Optimization-Based Approaches: The Model-Agnostic Meta-Learning (MAML)

framework, developed by Finn et al. [50], exemplifies optimization-based methods.

It involves learning a generalized strategy that can quickly adapt to various tasks

through iterative optimization.
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Given the success of meta-learning in few-shot learning scenarios, researchers like

Wang et al.[39] have begun applying these methodologies to tackle long-tail distribu-

tion challenges in fields such as image classification. However, our research identifies

a gap in the application of meta-learning to the team recommendation problem.

In this study, we introduce a novel meta-learning approach designed to transfer knowl-

edge from well-represented (head) instances to less-represented (tail) instances within

team datasets. Our model comprises two primary components:

• Base Learner: This component is a single-tower, two-layer neural network

tasked with generating meaningful team embeddings, capturing the essential

characteristics of effective teams.

• Meta-Learner: The meta-learner operates at a higher level, adjusting the

model parameters learned in few-shot scenarios to be applicable in many-shot

contexts. It effectively maps or regresses from the parameters of a few-shot

model to those of a more extensively trained many-shot model.

Additionally, we have integrated curriculum learning to refine the meta-mapping pro-

cess further, especially targeting tail teams. This enhancement facilitates learning the

intricate connections among teams, significantly improving the model’s effectiveness

in recommending tail teams in scenarios where they are substantially prevalent.

2.4 Curriculum Learning

Curriculum learning, initially proposed by Bengio et al. [54], has garnered attention

for its effectiveness in diverse fields [55]. Inspired by human learning processes, which

often benefit from structured progression, curriculum learning adapts this principle

to machine learning contexts by organizing training data into a carefully designed

sequence.

Recent innovations in curriculum learning have introduced various strategies, such as

the teacher-student approach [56] and dynamic curriculum methods [57]. Theoretical
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investigations by Weinshall and Cohen [58] have further emphasized the reliability

and adaptability of curriculum learning across different conditions.

Of particular interest is curriculum learning’s utility in scenarios marked by long-tail

distribution patterns. By strategically arranging training examples, we utilize this

approach to facilitate efficient knowledge transfer from head to tail instances, thereby

enhancing the model’s ability to generalize.
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CHAPTER 3

Proposed Approach

3.1 Dual knowledge transfer Learning framework

We present a novel framework, drawing inspiration from recent work by Zhang et

al. (2021), aimed at transferring knowledge from teams proficient in various skills

(referred to as ’head instances’) to teams composed of experts with a narrower skill

set (termed ’tail instances’). This transfer is intended to enhance the recommendation

of teams in scenarios characterized by a long-tail distribution. Our innovative two-

level knowledge transfer learning framework capitalizes on the inherent distribution

patterns in long-tail data, leveraging both meta-knowledge at the model level and

feature connections at the instance level to facilitate effective knowledge transfer

from head to tail.

To initiate the knowledge transfer process, our approach involves converting the

dataset into a graph structure, which captures both explicit and implicit relationships

among data points. Subsequently, we transform the node features of this graph into

vectors, preparing them for the subsequent phase of model-level knowledge transfer.

Here, these feature vectors are fed into a two-layer, fully connected neural network

(referred to as the ’base learner,’ denoted as g(.)), which generates embeddings for

each data point. To address the challenge posed by the long-tail distribution within

the dataset, we incorporate meta-learning during the embedding phase, ensuring that

the embeddings produced for both head and tail instances are unbiased and accurate.

Following this, we employ curriculum learning at the instance level, a technique that
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Fig. 3.1.1: Framework to Transfer Knowledge From Popular to Unpopular Experts:
collaboration graph tail instances feed through meta-learner F (θ, w) first to learn the
model parameter evolution from few-shot parameters θ to many-shot parameters θ∗,
and then the curriculum transfer learn the relations between head and tail teams to
transfer knowledge from head to tail.

involves reordering the output embeddings generated by the base learner. This step

aims to enhance the effectiveness of model-level knowledge transfer by optimizing the

performance of the neural network and refining the accuracy of team recommenda-

tions. The schematic depiction of this process is illustrated in Figure 3.1.1. Finally,

the curated embeddings are passed through another neural network (s(.)), which pre-

dicts team performance based on the required skills, facilitating the recommendation

of the top n teams.

3.2 Model Level Knowledge transfer

The challenge posed by the long-tail distribution in data significantly impacts the per-

formance of team recommender systems, as highlighted by recent research findings

(Kaw et al., 2023). An evident issue stemming from this distribution is popularity

bias, where algorithms tend to favor a small subset of well-known or ’popular’ ex-

perts. This bias often leads to an overrepresentation of recommendations for these

experts, while neglecting the majority, particularly teams with fewer skills located

at the distribution’s tail. Consequently, such bias can severely impact the system’s

effectiveness, particularly in recommending less visible teams. Neural networks, for
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example, may tend to overfit to popular experts and struggle to recommend diverse,

less common cases. Evaluating the effectiveness of these systems becomes challenging,

as traditional metrics may not sufficiently capture their performance on rare items.

Moreover, these models can inadvertently perpetuate existing biases by consistently

favoring well-known teams over less popular ones.

To address this critical issue, we propose exploring the relationship between models

trained on few data samples (few-shot) and those trained on a larger number of ex-

amples (many-shot), specifically through the use of a meta-learner. The underlying

assumption is that the meta-learner can effectively capture implicit data augmen-

tation. For instance, when considering a team with a diverse range of skills, the

meta-learner is designed to infer and incorporate teams that may possess similar skill

sets. Instead of directly including similar data points, the meta-learner assimilates the

effects on the model parameters, a concept known as meta-level knowledge. This ap-

proach involves two key learners: the base learner, s(.) and the meta-learner, denoted

as F (θ;w).

3.2.1 Base Learner

In pursuit of creating insightful team embeddings that encapsulate not only the raw

data points but also the intricate relationships encoded within the feature vectors,

the base learner, denoted as g(Xi; θ) processes the feature vector Xi for team i to

produce embeddings Ei for each team:

Ei = g(Xi; θ) (1)

By leveraging distinct training datasets, g(Xi; θ) is employed for both few-shot model

learning and many-shot model learning. In many-shot learning, the base learner is

trained on a dataset (Ω∗) consisting of teams with more than k skills. Concurrently,

for few-shot learning, g(·) is trained on a dataset (Ω(k)) focusing on teams with fewer

skills (less than k). Consequently, for embedding optimization, the loss function for

the base learner can be expressed as:
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L(g, S; Ω) =
1

|Ω|
∑

(xi,ri)∈Ω

(ri − S(g(Xi; θ);ϕ))
2 (2)

where ϕ denotes the parameters of the secondary neural network model S(·) responsi-

ble for interpreting embeddings, and ri represents a reward (in our context, it signifies

the number of citations).

Allowing the model to generate representations for learning spanning both the head

and tail of the distribution exposes it to the inherent biases present in the long-

tail distribution. To counteract this effect, the meta-learner assumes a pivotal role

by mitigating the impact of the long-tail distribution through facilitating knowledge

transfer between head and tail data instances.

3.2.2 Meta Learner

Once the base-learner g(·)has trained both the few-shot and many-shot models, we

employ the meta-learner F (·) to map these model parameters, capturing essential

meta-level knowledge. This mapping allows the model parameters to evolve as ad-

ditional training examples are incorporated. The meta-learner F (·) facilitates the

transfer of knowledge from many-shot learning models to few-shot ones, ensuring a

seamless integration of insights from data-rich (head) contexts into data-sparse (tail)

scenarios. The objective function for the meta-learning process is defined as:

L(W, θ|Ω,Ω(k)) = ∥F (θ;ω)− θ∗∥2 + λL(g(θ)|Ω(k)) (3)

In this loss function, L(W, θ|Ω∗,Ω(k)), the primary aim of the first term, ∥F (θ;ω)−

θ∗∥2, is to minimize the discrepancy between the meta-learner’s parameter adjust-

ments and the optimal parameter set θ∗. This minimization helps steer the base

learner toward parameter configurations that are both effective and generalizable.

The second term, λL(g(θ)||Ω(k)), integrates a regularization factor or additional ob-
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Algorithm 3.2.1 Meta Level Knowledge Transfer

Input: Feature matrix X
Feature matrix X derived from team, skill, and author information

Output: Optimized model parameters for team recommendations X
1: Initialize the neural network model parameters
2: Initialize base learner parameters θ
3: Initialize meta-learner parameters ω
4: Construct dataset Ω∗ for many-shot learning
5: Construct dataset Ω(k) for few-shot learning
6: for each training epoch do
7: for each batch in Ω∗ do
8: Update base learner using many-shot dataset.
9: Update θ by minimizing loss on many-shot learning data
10: end for
11: for each batch in Ω(k) do
12: Apply meta-learner transformation: θ ← F (θ;ω)
13: Update θ by minimizing loss on few-shot learning data
14: end for
15: Update ω by minimizing the meta-learning objective
16: end for
17: for each evaluation set (head, tail, overall) do
18: Calculate Recall@K, MRR, MAP, NDCG
19: end for
20: return Optimized parameters θ, ω

jective aimed at enhancing performance on the few-shot tasks represented by Ω(k).

The scalar λ serves as a balance between these two aims, ensuring that neither ob-

jective dominates the learning process unfairly.

Algorithm 3.2.1, Meta Level Knowledge Transfer, is designed to facilitate the trans-

fer model level knowledge between head and tail data instances. Initially, the feature

matrix X, derived from team, skill, and author information, serves as the primary

input. The algorithm begins by initializing essential parameters, including the neural

network model parameters, base learner parameters (θ), and meta-learner parame-

ters (ω). Following initialization, two distinct datasets are constructed: Ω∗, tailored

for many-shot learning tasks, and Ω(k), aimed at facilitating few-shot learning tasks.

Throughout the training process, which unfolds over multiple epochs, the base learner

undergoes updates using the many-shot dataset, refining (θ∗) to minimize loss. Sub-

sequently, for each batch within the few-shot dataset, a meta-learner transformation
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is applied to (θ) using parameters (ω), followed by further optimization to minimize

loss on the few-shot data. The algorithm also incorporates mechanisms for updating

the meta-learner parameters based on a predefined meta-learning objective, ensur-

ing equitable performance across various tasks. Additionally, the algorithm includes

provisions for evaluating model performance using metrics such as Recall@K, MRR,

MAP, and NDCG. Furthermore, to enhance the efficacy of training, curriculum learn-

ing techniques are integrated, sequentially introducing training examples based on

their complexity or relevance.

3.3 Curriculum Learning

Curriculum learning is employed as a strategic approach to sequentially introduce

training examples, which are organized based on their complexity or relevance. This

technique has been integrated into our proposed framework with the goal of enhancing

the system’s capacity to mitigate the impacts of the long-tail distribution and boost

the efficacy of the incorporated meta-learning techniques. To confront the issue of

popularity bias pervasive in our team recommendation system, we have devised a

curriculum that categorizes team skill sets by complexity.

In deploying curriculum learning within the team recommendation framework, a dis-

tinction is made between teams: those comprising a large number of skills (head of the

distribution) are less frequent yet often preferred by the recommender, whereas teams

with fewer skills (tail of the distribution) are more common but typically overlooked.

We assess the complexity of an embedding inversely proportional to the team’s skill

count. Consequently, teams with fewer skills are deemed ’simpler,’ while those with a

broader skill set are considered ’more complex.’ This inverse relationship strategically

targets bias by initially focusing on the less complex, often neglected teams in the

tail section of the data. This curriculum organizes the training data to first prioritize

teams with fewer skills, gradually integrating more complex scenarios as the training

progresses.

Scoring Function: A scoring function f(Ei) has been formulated to assign scores to
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each team based on the inverse of their skill count. This scoring is defined as follows:

f(Ei) =
1

number of skills in Ei + ε
(4)

where ε is a small constant included to prevent division by zero, accommodating

instances where teams may lack recorded skills.

Sorting Method: The team embeddings {E1, E2, . . . , En} are arranged based on

the scores computed using f , starting with embeddings representing ’simpler’ teams

and advancing towards those classified as ’more complex’. This structured approach

ensures that the training data is introduced in a manner that respects the inherent

complexity of each team’s skill set, promoting a more balanced and inclusive recom-

mendation process.

Sorted Embeddings = sort(E1, E2, . . . , En, key = f) (5)

3.3.1 Batch Processing and Internal Training

The methodically sorted embeddings were partitioned into practical batches and pre-

sented to the mode s(·) during the training phase. This organized approach to train-

ing begins with batches that primarily consist of teams characterized by fewer skills.

Such a progressive, sequential introduction of data ensures that the model initially

concentrates on delivering more accurate recommendations for teams that are often

overlooked, thereby mitigating bias effectively. Fig. 3.3.1 indicates the incremental

Training process.

This curriculum learning strategy significantly bolsters the model’s capability to pro-

vide fair and equitable representations and recommendations of teams across a broad

spectrum of skill distributions. By starting with simpler team configurations and pro-

gressively handling more complex ones, the system methodically reduces the prevalent

biases favoring teams with extensive skill sets. This technique is crucially implemented

in the later stages of our process, which strategically ensures a harmonious integration
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Fig. 3.3.1: Batch Processing and Incremental Training via Curriculum Learning: The
structured embeddings were divided into manageable batches and delivered to the
concluding stage of the neural network throughout the training phase. This method
ensures systematic processing and incremental learning, aligning closely with the
principles of curriculum learning for optimal effectiveness.

of both ’head’ and ’tail’ data embeddings.

Incorporating this approach into the training process profoundly enhances the fair-

ness and accuracy of the team recommendation system. It allows the model to adapt

gradually, improving its predictive performance and ensuring that all teams, partic-

ularly those in the tail segment that typically receive less attention, are represented

fairly. This structured method not only enhances the overall reliability of the rec-

ommendations but also supports a more inclusive approach by acknowledging and

addressing the disparities in visibility and preference that commonly afflict team for-

mation systems.

32



CHAPTER 4

Experiments

4.1 Dataset

We employed the DBLP benchmark dataset 1, an exhaustive online repository that

compiles bibliographic details of key publications within the computer science domain.

This dataset provides a wide array of information on scientific papers, including

the names of authors, titles of works, sources of publication (whether journals or

conference proceedings), years of publication, and, in some cases, hyperlinks to digital

libraries that host the complete texts. Although the DBLP dataset generally does

not include the full texts of the documents, it offers a rich collection of citations and

references to external resources.

The DBLP dataset is characterized by a long-tail distribution of features, making

it particularly relevant for our study, which aims to enhance the precision of team

recommendations, especially for groups located within the tail segment of the dis-

tribution. Our analysis focused on the distribution of skills among teams of experts

who collaborate on academic papers. We observed that a minor fraction of the teams

possesses a disproportionately large number of skills, representing the ’head’ of the

distribution, while the vast majority have fewer skills, categorized under the ’tail’

segment of the distribution.

To systematically address the challenge of improving team recommendations in sce-

narios featuring a long-tail distribution, we structured our dataset into three distinct

1https://originalstatic.aminer.cn/misc/dblp.v12.7z
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Table 4.1.1: DBLP Dataset Overview

Attribute Value

# of Papers 4,107,340

# of Experts 2,464,404

# of Venues 2,050

# of Skills 810,734

# of Edges 7,384,478

# of Nodes 28,992,390

sections: training, testing, and evaluation, employing a leave-one-out methodology

for each division. This approach ensured that the selection of data for each seg-

ment was random yet representative, maintaining the inherent long-tail nature of

the dataset across different experimental groups. This methodological rigor supports

our objective of developing a more nuanced understanding and capability in recom-

mending teams, particularly enhancing the visibility and consideration of teams that

traditionally fall into the overlooked ’tail’ portion of data distributions.

4.2 Experimental Setup

4.2.1 Data Reprocessing

Data Preprocessing: In the initial stage of data preprocessing, a graph G is con-

structed to comprehensively represent entities and their interconnections within the

dataset. This graph is populated with nodes corresponding to teams, authors, skills,

and venues. Edges are created among these nodes to signify authorship and skill

requirements, with edge weights reflecting the relevance of each skill to the team’s

objectives. Feature vectors for each team are then developed to encapsulate both

team attributes, like impact (akin to citation count), and relational attributes, such

as the weighted importance of skills and the interconnectedness of authors. To main-
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tain data uniformity, these vectors are padded to match the maximum count of skills

and authors recorded, incorporating elements such as citations, average skill weights,

skill IDs, and author IDs into an exhaustive vector for each team. The structure of

the feature vector for a team i is defined as:

Xi = [Ci,Wi]⊕ Si ⊕ Ai (1)

Here, ⊕ indicates vector concatenation. After establishing the maximum limits for

skills and authors to ensure consistent vector lengths, this prepared feature matrix

is then applied as input to the base learner. This procedural approach is critical

in ensuring that our model effectively utilizes both attribute and relational data,

significantly enhancing its potential for generating nuanced recommendations.

These methodological steps are instrumental in fostering a thorough comprehension

and utilization of the dataset, integrating both the basic data points and the com-

plex network of relationships into the machine learning framework. This in-depth and

meticulously detailed strategy equips our system to conduct advanced analyses, yield-

ing profound insights and predictive capabilities that accurately mirror the intricate

dynamics and interrelationships among teams, skills, and authors. Such a method-

ology significantly improves the production of meaningful team embeddings by the

base learner, ensuring that the recommendations and analyses are deeply informed

by the layered and multidimensional aspects of the data.

4.2.2 Evaluation Criteria

For the assessment of our model’s performance, we utilize four established evaluation

metrics: Recall, Mean Reciprocal Rank (MRR), Mean Average Precision (MAP),

and Normalized Discounted Cumulative Gain (NDCG) at top K rankings. These

metrics are instrumental in quantifying the effectiveness of the model in identifying

and ranking relevant experts within a larger pool of candidates.

Recall is a measure that determines how well the model can identify relevant experts

from the broader set of potential candidates within the dataset. It calculates the pro-
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portion of relevant experts that the model successfully identifies from all the experts

in the dataset at the top K rankings. To calculate recall, the model is evaluated on a

test set that includes examples of teams with known expert compositions. The model

predicts a set of experts for each team, and the predicted set is compared to the true

set of experts. True positives represent the number of correctly identified relevant

experts, while # of relevant experts represent the true set of experts.

Recall =
true positives

# of relevant experts
(2)

Mean Reciprocal Rank (MRR) evaluates the average of the reciprocal ranks of

the first relevant expert identified in the model’s predictions across all queries. It

reflects the average position at which the first relevant expert appears, with a higher

MRR indicating that relevant experts tend to appear earlier in the list generated by

the model.

MRR =
1

|n|

n∑
i=1

1

ranki
(3)

In formula above n represents the total number of teams in the test set and ranki is

the rank of the first relevant expert in the model’s predictions for the ith team and∑
is the sum of all reciprocal ranks.

Mean Average Precision (MAP) is an extension of precision that considers the

order of the predictions, giving more weight to relevant results that appear earlier.

MAP is particularly useful for evaluating situations where the order of the outputs is

significant.

P@K =
# of relevant experts in top k predictions

k
(4)

Where k is the current position in the ranking.
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APi =
1

m

l∑
i=1

(P@k ∗ rel(k)) (5)

m is the total number of relevant experts in the team, l is the position where the

last relevant expert appears, P@K is the precision at the kth position in the model’s

predictions, and rel(k) is an indicator function that is 1 if the expert at the kth

position is relevant, and 0 otherwise.

MAP =
1

n

n∑
i=1

APi (6)

n is the number of teams in the test set, APi is the average precision for the ith team,

and
∑

is the sum of all average precisions.

Finally, Normalized Discounted Cumulative Gain (NDCG) assesses the qual-

ity of the ranking by considering the relevance of the ranked experts, providing a

measure of model performance across the ranking positions.

DCG =
e∑

i=1

(
rel(i)

log2(i+ 1)

)
(7)

NDCG =
DCG

iDCG
(8)

where e represents the total number of experts in recommended teams, rel(i) is the

graded relevance of the result at position i, and iDCG is the ideal DCG, representing

the best possible DCG value given the relevance scores.

These metrics are applied separately for the ’head’ and ’tail’ of the recommendation

list, highlighting improvements specifically for teams segmented in the tail of the

distribution. They also provide insights into the overall performance of the recom-
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mender system, gauging how well it improves the general accuracy and fairness of the

recommendations.

4.2.3 Baselines

To thoroughly assess the efficacy of our two-level knowledge transfer learning frame-

work, we conducted a comparative analysis with the most recent and high-performing

models in team recommendation: Paragraph Vectors’20 [21], Metapath2Vec’22 [22],

and LANT’23 [19]. ParagraphVectors’20 [9] leverages Variational Bayesian Neural

Network to learn feature representations over a set of teams. Metapath2Vec’21 [11]

utilizes a heterogeneous graph representation learning technique called metapath2vec

for low-dimensional representation of one-hot encoded skill vectors, which are then

used as inputs in the downstream task by a Variational Bayesian Neural Network

model for ranking experts. Kaw et al.[19] introduced LANT, a novel model that

combines transfer learning with neural team recommendations. This experiment was

repeated five times to ensure reliability, and the results presented here are the averages

of these trials.

In our experimental setup, we utilized a tower architecture commonly employed in

deep learning, where each successive higher layer contains half the number of neu-

rons of its preceding layer. The ReLU activation function was selected for its ef-

fectiveness in non-linear transformations. For those approaches incorporating cur-

riculum learning, we conducted 100 training epochs per curriculum stage, with a

total of two stages, to maintain consistency across comparisons. The division of

data into ’head’ and ’tail’ segments influenced the configuration parameter k in

Ω(k). We optimized regularization parameters through a grid search, exploring

values from 0.3, 0.1, 0.01, 0.001, 0.0001, 0.00001. Similarly, dropout rates and learn-

ing rates were fine-tuned via grid search, testing ranges of 0.1, 0.3, 0.5, 0.7, 0.9 and

0.1, 0.01, 0.001, 0.0001, 0.00001, respectively. The batch size for the training process

was set at 1024 to balance computational efficiency with memory constraints. These

methodological choices were aimed at optimizing model performance and ensuring

that the comparison between the proposed framework and the benchmark models
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was as fair and informative as possible.

4.3 Results and Discussion

Our analysis undertook a detailed assessment of various top-K recommendation meth-

ods by systematically examining their performance on both the ’head’ and ’tail’ seg-

ments, as well as evaluating their overall effectiveness using the DBLP dataset. The

results of this extensive evaluation are detailed in Table 4.3.1. The aggregate data in-

dicate a remarkable progression, with our model registering an average improvement

of around 20% across all metrics when juxtaposed with existing baseline models. This

substantial enhancement underscores our model’s ability to significantly better repre-

sent equity in team recommendations, primarily by adeptly tackling issues associated

with the long-tail distribution of data. The baselines have not measured the per-

formance of team recommendation for the head and tail segments of the data. We

believe these methods are applicable to both the head and tail. ”NA” in Table 4.3.1

indicates ”not available.” However, we anticipate that after applying these methods

to the head and tail segments, our model will demonstrate improved performance

compared to the baseline team recommender systems.

This marked improvement was not only observable in the generalized performance

metrics but was also distinctly reflected in the precision of recommendations specif-

ically aimed at the tail segment of the dataset. Such targeted advancements have

contributed to a substantial mitigation of bias, ensuring a more balanced and fair

recommendation system. The success of our model in these areas highlights its ro-

bustness and effectiveness in navigating the complexities of diverse data distributions

and in rendering more accurate and equitable team recommendations across varied

segments of the dataset. This comprehensive evaluation underscores the significant

strides our approach has made towards improving the efficacy and fairness of recom-

mendation systems in scholarly and professional settings.

39



4. EXPERIMENTS

Overall Head Tail

Metrics Models Top@3 Top@5 Top@10 Top@3 Top@5 Top@10 Top@3 Top@5 Top@10

Paragraph
Vectors’20

2.20 3.29 5.46 NA NA NA NA NA NA

Metapath
2Vec’21

2.26 3.31 5.64 NA NA NA NA NA NA

LANT’23 2.25 3.31 5.72 NA NA NA NA NA NA
Recall(%)

Our
Method

4.16 5.26 7.92 5.26 5.32 7.32 3.08 3.23 3.25

Paragraph
Vectors’20

5.90 6.61 7.59 NA NA NA NA NA NA

Metapath
2Vec’21

6.17 6.81 7.70 NA NA NA NA NA NA

LANT’23 6.17 6.68 7.71 NA NA NA NA NA NA
MRR(%)

Our
Method

8.32 8.68 8.90 8.24 9.03 8.95 3.55 3.23 3.02

Paragraph
Vectors’20

1.64 1.90 2.28 NA NA NA NA NA NA

Metapath
2Vec’21

1.65 1.91 2.28 NA NA NA NA NA NA

LANT’23 1.66 1.91 2.29 NA NA NA NA NA NA
MAP(%)

Our
Method

3.24 3.54 4.48 3.10 4.24 5.68 3.44 3.92 4.70

Paragraph
Vectors’20

3.09 3.41 4.41 NA NA NA NA NA NA

Metapath
2Vec’21

3.17 3.42 4.47 NA NA NA NA NA NA

LANT’23 3.20 3.45 4.50 NA NA NA NA NA NA
NDCG(%)

Our
Method

5.29 5.66 6.29 5.10 5.90 7.90 2.03 3.71 4.05

Table 4.3.1: Comparison of evaluation metrics of our model against different models
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CHAPTER 5

Conclusion, and Future Work

5.1 Conclusion

In summary, this thesis presented in ”Unlocking Team Potential: Leveraging Transfer

Knowledge from Popular to Unpopular Experts,” tackles the prevalent issue of popu-

larity bias within team recommendation systems, a problem that is often intensified by

the long-tail distribution of data. the innovative two-level knowledge transfer learn-

ing framework, incorporating both model-level and instance-level knowledge transfers,

has significantly improved the quality of recommendations, especially for teams typi-

cally underrepresented in data distributions. This method not only reduces bias but

also enhances the model’s capacity to accurately assess and predict team effectiveness

across diverse scenarios. This thesis highlighted the effectiveness of proposed frame-

work in leveraging deep data relationships through the strategic use of meta-learning

and curriculum learning. The meta-learner in proposed framework plays a crucial role

in facilitating substantial knowledge transfer from well-represented to less represented

teams, enhancing equity and representation. Meanwhile, the implementation of cur-

riculum learning ensures that proposed model incrementally addresses increasingly

complex scenarios, thereby enhancing its predictive precision and reliability.
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5.2 Limitations and Future Work

Looking ahead, this thesis aims to broaden its scope by applying the framework to

other datasets and fields beyond the confines of the DBLP dataset, to further test

and verify the robustness and adaptability of the methods across various contexts.

Additionally, there is an interest in exploring the potential for real-time learning

capabilities within the system. This would allow the model to continuously update

and adjust to new data as it becomes available, thereby eliminating the need for

comprehensive retraining.

To further enhance the model’s performance and extend its adaptability, we propose

several strategic modifications. Currently, our approach applies curriculum learning

to the output embeddings from the base learner. To refine this process, we could ap-

ply curriculum learning directly to the constructed feature vectors derived from the

graph representation before they are inputted to the base learner. This adjustment

would allow for a more nuanced handling of data, potentially reducing the impact of

popularity bias and improving the quality of team formation. Additionally, consider-

ing the complexity of the DBLP dataset, including long-tail distributions such as the

number of team members and citations, the model could be expanded to address these

aspects more comprehensively. Implementing more complex configurations and spe-

cific types of neural networks, instead of the fully connected two-layer neural network

currently used by the base learner, could provide deeper insights and more precise

outcomes.

Such advancements would not only augment the efficacy of the existing model but also

expand its practical applicability and theoretical relevance across a broader spectrum

of industries and organizational settings. The ultimate ambition is to develop a

scalable, precise, and bias-conscious framework that is capable of facilitating the

formation of optimal teams. These teams would not only be diverse and inclusive

but also exceptionally functional, significantly boosting organizational and project

outcomes across diverse industries and sectors.
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