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Abstract

The advent of high-throughput scRNA-seq technologies has enabled the study of individ-

ual cells and their biological mechanisms. Traditional clustering methods, commonly em-

ployed in scRNA-seq data analysis for identifying cell types, face challenges due to the

sparsity and high-dimensionality of the data. To overcome these limitations, we propose

an integrated approach that combines non-linear dimensionality reduction techniques with

clustering algorithms.

Our method involves the use of modified locally linear embedding in conjunction with

independent component analysis to identify representative clusters of different cell types.

We evaluate the performance of this approach across thirteen publicly available scRNA-seq

datasets, encompassing various tissues, sizes, and technologies. Gene set enrichment anal-

ysis further confirms the effectiveness of our method, demonstrating superior performance

compared to existing unsupervised methods across diverse datasets.

Also, we investigate Neural Network-based methods combined with self-organizing

maps, feature selection approaches for informative marker gene selection in sparse datasets,

as well as supervised techniques, to overcome the high-dimensionality and sparsity of

scRNA-seq datasets in cell type identification.

Building on the foundation of identifying cell types, we extend our investigation to

intercellular signaling networks. Recognizing the limitations of existing link prediction

vii
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approaches based on graph-structured data, we introduce a novel method named Sub-

graph Embedding of Gene expression matrix for prediction of CEll-cell COmmunication

(SEGCECO). SEGCECO utilizes an attributed graph convolutional neural network to pre-

dict cell-cell communication from scRNA-seq data.

Overcoming challenges associated with high-dimensional and sparse scRNA-seq data,

we employ SoptSC, a similarity-based optimization method, to construct a cell-cell commu-

nication network. Our experiments on six datasets from human and mouse pancreas tissue

reveal that SEGCECO outperforms latent feature-based approaches and the state-of-the-art

link prediction method, WLNM, achieving a remarkable 0.99 ROC and 99% prediction

accuracy.

In summary, our approach, spanning the identification of cell types and the prediction of

cell-cell communication, leverages advanced techniques to enhance the analysis of scRNA-

seq data. This research contributes to the comprehensive understanding of disease modules

and intercellular signaling networks, paving the way for more accurate and insightful in-

vestigations in the field of single-cell genomics.
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Chapter 1

Introduction

Single-cell sequencing has emerged as a powerful technology, allowing researchers to cap-

ture cell information at a single-nucleotide resolution and analyze individual cells sepa-

rately. With the generation of high-dimensional and sparse scRNA-seq datasets for various

purposes, the field faces analytical challenges, particularly in addressing the sparsity and

curse of dimensionality inherent in scRNA-seq data. While computational methods have

been proposed to analyze scRNA-seq data, open problems persist, including the identifica-

tion of cell sub-types and tissue-specific gene sets as well as interaction prediction among

cells.

In a typical scRNA-seq data analysis workflow 1.1, the process begins with data pre-

processing, involving quality control, cell filtering, normalization, and gene filtering. After

the pre-processing stage, downstream analysis is employed to extract biological insights

and understand the underlying biological system using interpretable models. In downstream

analysis, dimensionality reduction techniques such as principal component analysis (PCA)

and visualization methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) or

Uniform Manifold Approximation and Projection (UMAP) are then applied to identify ma-

1
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jor sources of variation and visualize the high-dimensional data. Also, clustering to group

cells with similar expression profiles, and trajectory inference to reveal the developmental

paths within dynamic datasets ae another forms of downstream analysis. Differential ex-

pression analysis also identifies genes with significant expression changes between clusters

or along trajectories, and compositional analysis includes cell type annotation and func-

tional enrichment analysis. Visualization tools aid in exploring gene expression patterns,

and interactive platforms facilitate in-depth exploration.

Downstream analysis is categorized into cell- and gene-level approaches, Fig. 1.2, with

cell-level analysis concentrating on cell-type clusters and trajectories. Cluster analysis aims

to categorize cells into groups, explaining data heterogeneity, while trajectory analysis

treats the data as a snapshot of a dynamic process, investigating the underlying process.

These cellular structures can in turn be analysed on the cell and the gene level leading to

cluster analysis and trajectory analysis methods. On the other hand, in gene-level analysis,

we have gene set enrichment analysis (GSEA), gene regulatory network (GRN) analysis,

and gene differential expression (DE) analysis.

1.1 Single-Cell RNA Sequencing

scRNA-seq is a powerful tool that allows for the detection and quantitative analysis of

messenger RNA molecules in individual cells [66]. This technique has revolutionized our

understanding of biological phenomena at the cellular scale [81].

An RNA-sequencing (RNA-seq) protocol involves several key experimental steps, from

sample preparation to computational analysis; see Fig.1.3. The process begins with the

collection of biological samples, such as tissues or isolated cells. Subsequently, tissues are

dissociated into individual cells. The cells are then tagged or identified before sequencing
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Figure 1.1: Schematic of a typical single-cell RNA-seq analysis workflow. [67]



CHAPTER 1. 4

Figure 1.2: Overview of downstream analysis methods [68].

Figure 1.3: An overview of the experimental steps in an RNA sequencing protocol. [105]
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takes place.

After isolation, total RNA is extracted from the cells using methods such as TRIzol or

commercial kits. The quality and quantity of the extracted RNA are then assessed through

techniques such as agarose gel electrophoresis or spectrophotometry. High-quality RNA is

essential for reliable downstream analysis.

The next step involves library preparation, where extracted RNA is converted into a

cDNA (complementary DNA) library suitable for sequencing. The resulting cDNA li-

brary is then amplified using polymerase chain reaction (PCR), and its quality is rigorously

checked before sequencing.

Sequencing is performed on platforms such as Illumina Hiseq 2000, generating millions

of short sequence reads from the cDNA fragments. These reads are mapped to a reference

genome or transcriptome, and gene expression levels are quantified by counting the mapped

reads. Various normalization methods are applied to account for differences in library size

and sequencing depth.

Finally, functional analysis highlights the biological significance of these genes using

analysis tools.

scRNA-seq has shifted the focus from measuring the average expression of tissue to

measuring the specific gene expression of individual cells within those tissues. Instead of

comparing tissue against tissue, the comparison is now cell against cell. This shift allows

for the recognition of cell types and the identification of cells transitioning between states,

providing a much clearer view of the dynamics of tissue and organism development [98].

With the increasing availability of scRNA-seq platforms and the rapid maturation of

bioinformatics approaches, biomedical researchers or clinicians can use scRNA-seq to

make significant discoveries [73]. scRNA-seq data has been widely used in various research
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fields such as neuroscience, immunology, and oncology. One of the purposes of scRNA-

seq data analysis is to recognize cell types, which is commonly achieved through clustering

analysis. However, due to the existance of high noise, high dimensions, and increasing data

scale of scRNA-seq data, clustering remains a significant challenge [111]. Moreover, it is

important to note that while scRNA-seq provides a wealth of data, interpreting this data

can be challenging. Therefore, a variety of computational tools and methods have been

developed to assist researchers with tasks such as dimensionality reduction, clustering, and

statistical analysis [75].

1.2 Cell Type Identification

Identification of cell types is crucial for interpreting scRNA-seq data and making connec-

tions between the transcriptome and phenotype [81]. For instance, scRNA-seq has been

used to investigate the altered transcriptome of drug-resistant cells in triple-negative breast

cancer [81]. It has also been used to identify potential targets for therapy by clarifying the

cell type composition in tumors [81].

Cell type identification is a critical step in interpreting scRNA-seq data. With the ac-

cumulation of public scRNA-seq data, supervised cell type identification methods have

gained increasing popularity due to their better accuracy, robustness, and computational

performance [74].

These methods rely heavily on several key factors: feature selection, prediction method,

and, most importantly, the choice of the reference dataset [74]. Accurate cell type identi-

fication is crucial for deciphering the mechanism behind numerous biological processes,

such as the development of an embryo, the differentiation of stem cells, and the metasta-

sis/recurrence/drug resistance of tumors [117]
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The main challenges of clustering scRNA-seq data include the “curse” of dimensional-

ity and the computationally intensive nature of geodesic computations in high-dimensional

spaces. In addition, sparsity and noise in the data can affect the performance of algo-

rithms [49]. These drawbacks, collectively regarded as nonbiological technical noise, pose

a key challenge in scRNA-seq data analysis and interpretation [49].

To circumvent these drawbacks, pre-processing of scRNA-seq data, such as dimension

reduction and normalization, is widely used. A noise reduction method, RECODE (reso-

lution of the curse of dimensionality), has been proposed for high-dimensional data with

random sampling noise. RECODE consistently resolves COD in relevant scRNA-seq data

with unique molecular identifiers [49].

1.3 Computational Approaches for Cell Type Identifica-

tion

1.3.1 Unsupervised Approaches

Unsupervised methods are often the first step in scRNA-seq data analysis. These methods

aim to reduce the dimensionality of the data and identify clusters of cells without any prior

knowledge [61]. A typical scRNA-seq data analysis workflow includes steps for reducing

the number of gene features, creating a manifold representation for visualization, and un-

supervised clustering to define discrete cell types [61]. Differential expression analysis is

then performed to identify expression signatures of cell populations [61].

The primary goal of scRNA-seq is to identify cell types within a sample [61]. This

is typically achieved through a process that involves unsupervised clustering, the identifi-

cation of signature genes in each cluster, and then a manual lookup of these genes in the
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literature and databases to assign cell types [61].

1.3.2 Supervised Approaches

With the accumulation of public scRNA-seq data, supervised cell type identification meth-

ods have gained increasing popularity due to better accuracy, robustness, and computational

performance [73]. These methods rely on several key factors: feature selection, prediction

method, and, most importantly, the choice of the reference dataset [73]. For instance, one

study suggests combining all individuals from available datasets to construct the reference

dataset and use a multi-layer perceptron (MLP) as the classifier, along with F-test as the

feature selection method [73].

In recent years, machine learning models have been benchmarked for automatic cell

identity assignment, evaluated based on classification accuracy and computation time [1].

Artificial intelligence techniques, including neural networks, have provided faster, more

accurate, and user-friendly approaches for cell-type identification [75].

It is important to note that both unsupervised and supervised methods have their strengths

and weaknesses, and the choice of method often depends on the specific research question

and the nature of the data [81].

1.4 Dimensionality Reduction and Visualization

Dimensionality reduction and clustering are fundamental techniques in machine learning

and data mining. Dimensionality reduction methods typically concern themselves with a

reduction in the variable space through either selection of variables or the construction of

new variables as combinations of the original ones [58]. Popular dimensionality reduction
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techniques include Principal Component Analysis (PCA), t-Distributed Stochastic Neigh-

bor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and

Laplacian graph embedding, which are closely related to k-means clustering and spectral

clustering, respectively [58].

1.4.1 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised nonlinear di-

mensionality reduction technique that is widely used for the visualization of scRNA-seq

data [133]. It constructs a high-dimensional graph representation of the data, then builds

a low-dimensional graph that is as structurally similar as possible [81]. The goal of t-SNE

in single-cell studies is to place similar cells together and different cells further apart on

a 2D or 3D plot [133]. However, when the results are shared as a report or published in

a paper format (a static 2D image), it is only possible to see a snapshot of the analysis

corresponding to a single gene and a single set of cell metadata [18].

1.4.2 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is another algorithm that takes

a high-dimensional dataset (such as a single-cell RNA dataset) and reduces it to a low-

dimensional plot that retains much of the original information. Similar to t-SNE, UMAP

constructs a high-dimensional graph representation of the data, then builds a low-dimensional

graph that is as structurally similar as possible. The goal of UMAP in single-cell studies is

to place similar cells together and different cells further apart on a 2D or 3D plot. UMAP

has rapidly become the most-used method by single-cell data analysts, mainly due to its

computational speed and scalability to large datasets.
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Figure 1.4: Cellular interaction among cells [4].

1.5 Prediction of Cell-Cell Interactions

Cell-cell interactions are fundamental for information exchange between different cells,

which forms the basis of many biological processes [66]. Recent advances in single-cell

RNA sequencing (scRNA-seq) enable the characterization of cell-cell interactions using

computational methods [66]. However, evaluating these methods can be challenging since

no ground truth is provided [66]. As shown in Fig. 1.4, cellular interaction can be deduced

using scRNA-seq at either the individual cell or cell cluster level.

At the individual cell level, cells communicate through various mechanisms such as

direct cell-cell contact, paracrine signaling, and the release of signaling molecules. Cell

surface receptors and ligands play a key role in mediating these interactions, influencing

cellular behavior, differentiation, and response to external stimuli. The communication be-

tween individual cells is vital for processes such as immune response, tissue development,

and homeostasis.

On a broader scale, cells often organize into functional groups or clusters, each exhibit-

ing distinct gene expression profiles and behaviors. These clusters represent specific cell

types or states within a heterogeneous population. Interactions among these cell clusters

contribute to tissue-level functions and responses. These interactions may involve coor-
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dinated gene expression and physical interactions, influencing the overall behavior of the

tissue or organ. Understanding the interplay between individual cells and the communica-

tion among cell clusters is fundamental to unraveling complex biological phenomena, rang-

ing from embryonic development to disease progression. Advances in technologies such

as single-cell RNA sequencing enable researchers to explore these interactions, providing

insights into the cellular dynamics that underlie physiological and pathological processes.

1.6 Computational Methods for Cell-cell Interaction Pre-

diction

1.6.1 Heuristic Methods

There are a variety of computational tools and resources to predict cell-cell communication

using gene expression profiles obtained from scRNA-seq data. Traditional approaches in-

clude heuristic methods which use network structure, i.e. network topology information, in

the prediction process. Existing algorithms can be classified based on the maximum hop of

neighbours required to calculate the probability score of interaction. Also, some supervised

approaches are used for connection prediction, including support vector machine (SVM),

baggings, and naive Bayes. These are used to model the problem as a binary classifica-

tion in which edge feature extraction is fundamental. Moreover, recent methods are mostly

built on top of node embedding methods, with the edge representation constructed from the

interaction between corresponding node embeddings. However, the performance of these

methods is dependent on some assumptions according to the type of network and the inher-

ent features of that specific link prediction problem. On the other hand, some graph-based

approaches have been introduced to overcome this limitation. These approaches are based
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on the local enclosing subgraph for a node pair (u, v) induced from the network by the

union of u and v’s neighbours up to h hops or steps. The hop is the maximum distance that

nodes can propagate features to their neighbours. These approaches give higher accuracy

than heuristic and latent methods but require additional computation time and memory.

1.6.2 Graph-Based Methods

Link prediction is a field within network analysis that focuses on predicting missing or

potential edges between nodes in a graph. Graph-based methods have emerged as power-

ful tools for predicting cell-cell interactions from scRNA-seq data. These methods typically

involve constructing a graph where nodes represent cells and edges represent potential inter-

actions between cells. The strength of an interaction can be inferred based on the expression

levels of known interactions [76].

Some of such methods such as WLNM (Weisfeiler-Lehman Neural Machine), GAE

(Graph Autoencoder), and VGAE (Variational Graph Autoencoder) contribute to this task

by capturing structural information. WLNM integrates the Weisfeiler-Lehman graph iso-

morphism test into graph neural networks, refining node representations iteratively. GAE

and VGAE leverage autoencoder architectures to learn node representations, with GAE

focusing on reconstructing the adjacency matrix and VGAE introducing a variational ap-

proach for handling uncertainty in the learned representations. On the other hand, graph

embedding methods such as Node2Vec, DeepWalk, and LINE aim to map nodes into con-

tinuous vector spaces, capturing local and global structures. These methods employ strate-

gies such as random walks and spectral decomposition to create embeddings that reflect

the structural similarities of nodes in the graph. Additionally, graph labeling methods such

as Spectral Clustering and GraphSAGE provide an alternative approach by assigning la-
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bels to nodes based on their structural properties, offering a richer representation of the

graph. Overall, these techniques play a vital role in deciphering complex relationships

within large-scale graphs and contribute to effective link prediction, particularly in scenar-

ios where traditional methods may be limited.

An example of the graph-based methods in cell-cell interactions prediction is GNNLink

which leverages known gene regulatory networks to deduce potential regulatory interde-

pendencies between genes [76]. It uses a graph convolutional network-based interaction

graph encoder to refine gene features by capturing interdependencies between nodes in the

network [76].

Another method, DeepLinc, uses a deep generative model of variational graph autoen-

coder (VGAE) for the de novo reconstruction of cell interaction networks from single-cell

spatial transcriptomic data [60].

Moreover, another group of graph-based methods in link prediction are based on the

concepts of Graph Convolutional Networks (GCNs). GCNs are a type of neural network

designed to work directly on graphs, which are a common form of data structure in many

fields, including healthcare, social networks, transportation systems, and biology. GCNs

operate by performing a series of graph convolutions, which apply a linear transformation

to the feature vectors of each node and its neighbors. The output of each convolution is fed

into a non-linear activation function and passed to the next layer [120]. One of such methods

is SEAL (Learning from Subgraphs, Embeddings, and Attributes for Link Prediction) [129].

SEAL is also a subgraph method that addresses a number of weaknesses that WLNM has.

To begin with, it enables learning not only from subgraph structures but also from latent and

explicit node attributes, allowing it to incorporate a variety of information. Secondly, the

fully-connected neural network in WLNM is replaced by a GNN that enables graph feature
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learning improvement. SEAL derived γ decaying theory and proved that a small number of

hops is enough to extract high-order heuristics and outperform WLNM.

These graph-based methods provide a robust and scalable framework for predicting cell-

cell interactions from scRNA-seq data, thereby enabling a deeper understanding of cellular

interaction.

1.7 Motivation and Objective

For a precise cell-cell interaction prediction, we need precise cell type identification. The

identification of cell types provides the necessary context for understanding cell-cell inter-

action. By knowing the types of cells involved in interaction, we can gain insights into

the roles these cells play in various biological processes. On the other hand, cell-cell in-

teraction can provide valuable clues for identifying cell types. The patterns of interaction

between cells can help distinguish different cell types based on their interaction partners

and the signals they exchange. Therefore, cell type identification and cell-cell interaction

prediction are two intertwined topics, each enriching and informing the other. As shown in

Fig. 1.5, clustering cells and identifying the correct groups of cells or cell types, is a crucial

step in cell-cell interaction prediction frameworks.

1.8 Contributions

Identifying cell sub-types and clustering cells based on gene expression patterns are crucial

steps, though traditional dimensionality reduction and clustering algorithms face inefficien-

cies in high-dimensional spaces. To overcome this problem, hybrid models combining

dimensionality reduction and clustering techniques have shown promise. The first part of
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Figure 1.5: Cell-cell interaction analysis framework [28].

this research addresses the challenges of cell-type identification using the integration of un-

supervised dimensionality reduction and conventional clustering in large-scale scRNA-seq

data. Moving beyond cell clustering, the second part of this study delves into the realm of

cell-cell interaction prediction. With the increasing importance of understanding intercel-

lular signalling, graph convolutional neural networks for link prediction in scRNA-seq data

are explored in this research. The key contributions of this thesis are as follows:

1. A novel pipeline for identification of cell types based on manifold learning and inde-

pendent component analysis

The proposed two-step representation learning approach, combining k-means clus-

tering with Modified Locally Linear Embedding (MLLE), proved effective in untan-

gling complex, hidden relationships in high-dimensional scRNA-seq data. MLLE

demonstrated superiority over UMAP for dimensionality reduction when combined

with clustering techniques, improving the visualization of cell clusters.

2. Leveraging sparsity-aware feature selection in automating cell-type annotation
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By contrasting blind feature selection (pure information gain) with sparsity-aware

inherent feature selection (GXBoost feature splitting algorithm), the research reveals

that considering the data’s latent sparsity pattern significantly boosts predictive model

accuracy. Particularly impactful in the context of scRNA-seq data, where sparsity

arises from technical and biological zeros, this approach enhances precision, speed,

and meaningful biomarker selection.

3. A deep learning fusion of Self-Organizing Maps and convolutional neural networks

for cell type identification

Introduction of a deep learning approach using a combination of self-organizing map

(SOM) and convolutional neural network (CNN) for simultaneous dimensionality

reduction, feature selection, and classification. The proposed approach showcased

potential as an unsupervised clustering algorithm, accommodating a large number of

unlabeled samples alongside a small number of labeled scRNA-seq data for cell type

identification on a larger scale.

4. Identification of SARS-CoV-2 target cell groups via nonlinear dimensionality reduc-

tion on single-cell RNA-Seq data

The proposed two-step clustering method successfully identified SARS-CoV-2 target

cell groups with over 90% accuracy, showcasing the potential application of manifold

learning and clustering techniques beyond traditional cell type identification.

5. Prediction of cell-cell interaction using Graph Convolutional Networks (GCN)

Introduction of a pipeline for cell-cell interaction prediction using Graph Convolu-

tional Networks (GCN) demonstrated superior performance compared to previous
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state-of-the-art techniques, opening new avenues for research in network-based anal-

yses.

These key findings collectively contribute to a comprehensive understanding of scRNA-

seq data analysis, offering methodologies for improved cell type identification, classifica-

tion, and interaction prediction. The implications of this research extend beyond individual

studies, providing a foundation for future investigations in diverse biological contexts.

1.9 Thesis Organization

This thesis presents a comprehensive study on cell type identification and cell-cell inter-

action prediction using scRNA-seq data. In the subsequent chapters, we delve into the

methodologies used for cell type identification using clustering techniques and dimension-

ality reduction techniques, as well as cell-cell interaction prediction using graph neural net-

works. We also present the results of applying these methodologies to real-world scRNA-

seq datasets, demonstrating their effectiveness in uncovering the complex landscape of cell

types and interactions in biological systems.
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Discovering cell types using manifold

learning and enhanced visualization of

single-cell RNA-Seq data

2.1 Introduction

Single-cell sequencing is an emerging technology used to capture cell information at a

single-nucleotide resolution and by which individual cells can be analyzed separately [41].

As of now, single-cell RNA-seq (scRNA-seq) datasets have been generated for different

purposes [44]. However, these high-dimensional and sparse data lead to some analytical

challenges. While many computational methods have been successfully proposed for ana-

lyzing scRNA-seq data, there are still some open problems in this research area. One of the

main challenges is sparsity of data and the curse of dimensionality presented in scRNA-seq

data. Also, performing well-defined pre-processing steps leads to enhance the quality of

data and new biological insights. Analyzing scRNA-seq data can be divided into two main

18
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categories: at the cell level and gene level. Finding cell sub-types or highly differentially

expressed tissue-specific gene set is one of the common challenges at the cell level [91].

Arranging cells into clusters to find the data’s heterogeneity is arguably the most significant

step of any scRNA-seq data downstream analysis. This step could be used to distinguish

tissue-specific sub-types based on identified gene sets. Indeed, cell clustering aims to iden-

tify cell types based on the patterns embedded in gene expression without prior knowledge

at the cell level. Since the number of genes that are profiled in scRNA-seq data is typi-

cally large, cells tend to be located close to each other via non-metric distances, but rather

complex relationships in high-dimensional spaces [55]. Therefore, traditional dimension-

ality reduction and clustering algorithms are unsuitable for these scenarios, and hence, they

cannot efficiently separate individual cell types. Several algorithms have been proposed to

lower the dimension of the data and cluster cells from scRNA-seq profiles to alleviate the

problem of curse of dimensionality.

Dimensionality reduction techniques have been widely used in several studies of large-

scale scRNA-seq data processing [29]. Most of the previous studies use principal compo-

nent analysis (PCA). However, one of the main drawbacks of PCA is that it cannot deal with

sparse matrices and non-metric relationships among high-dimensional data points. Also,

there was no advantage in keeping the clustering performance after the changes in the data

in lower dimensions [36]. Other works have also employed PCA as a pre-processing step to

remove cell outliers for performing dimensionality reduction and visualization. Other meth-

ods proposed nonlinear dimensionality reduction methods such as t- distributed Stochastic

Neighborhood Embedding (t-SNE) [106] and UMAP [77]. However, UMAP and t-SNE

is not useful for high-dimensional cytometry. Moreover, several studies have used unsu-

pervised clustering models to identify rare novel cell types. For instance, the hierarchical
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clustering algorithm divides large clusters into smaller ones or merge each data points into

larger clusters progressively. This algorithm has been employed to analyze scRNA-seq data

by BackSPIN [125] and pcaReduce [124], through dimension reduction after each division

or combination in an iterative manner. k-means, which is one of the most common cluster-

ing algorithms has been employed in the Monocle, specifically for analyzing scRNA-seq

data [86]. Also, the authors of [118] used the Louvain algorithm, which is based on com-

munity detection techniques to analyze complex networks [42].

However, to achieve acceptable clustering performance on scRNA-seq data, other com-

prehensive studies indicated that hybrid models, designed as a combination of clustering

and dimensionality reduction techniques, tend to improve the clustering results [36]. They

learned 20 different models using four dimensionality reduction methods, including PCA,

non-negative matrix factorization (NMF), filter-based feature selection (FBFS), and Inde-

pendent Component Analysis (ICA). They also used five clustering algorithms as k-means,

density-based spatial clustering of applications with noise (DBSCAN), fuzzy c-means, Lou-

vain, and hierarchical clustering. Their experiments highlighted the positive effect of hybrid

models and showed that using feature-extraction methods could be a decent way to improve

clustering performance. Their experimental results indicate that Louvain combined with

ICA performed well in small feature spaces.

In this paper, we proposed a model to obtain efficient and meaningful clusters of cells

from large-scale scRNA-seq data. We focus on the combination of unsupervised dimen-

sionality reduction followed by conventional clustering. We discovered a hybrid model

of non-linear dimensionality reduction technique (MLLE) and linear combination method

(ICA) for visualization and compared it to PCA, t-SNE, Isomap, regular Locally Linear

Embedding (LLE), and Laplacian eigenmaps. ICA is employed to enhance visualization
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and clustering of the data. Parameter tuning or choosing the best parameters for dimension-

ality reduction and clustering has been one of the main challenges in the field that is well

addressed in our work. Experimental results on thirteen different benchmark scRNA-seq

datasets show the power of modified LLE and ICA on clustering data and representation

quality, providing very high accuracy and enhanced visualization. Confirmatory biological

annotations were observed in the clusters using corresponding marker genes found by our

method.

2.2 Materials and Methods

2.2.1 Datasets

To evaluate the performance of the proposed method, a total of thirteen benchmark scRNA-

seq datasets were used, which include single-cell gene expression profiles. The details of

all datasets used in this work are given in Table 5.1. They vary across size, tissue (pancreas,

lung, peripheral blood), sequencing protocol (three different protocols), and species (Hu-

man and Mouse). Datasets Xin [122], H1299 scRNAseq [121], and Calu3 scRNAseq [121]

datasets are unlabeled and do not have any background knowledge of the data. In this case,

we analyzed the data and provided useful information about the unknown data. On the other

hand, pancreas datasets including Baron [9] , Muraro [78], Segerstolpe [95], Xin [122], and

Wang [116]. Moreover, peripheral blood dataset, 3k PBMC from a healthy donor, were

downloaded from the 10XGenomics portal [37]. H1299 scRNAseq and Calu3 scRNAseq

datasets (GSE148729) were extracted from NCBI’s Gene Expression Omnibus [102].
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Table 2.1: Datasets used in this work.
Dataset # cells # genes Accession

#
Description Sequencing tech-

nology
Baron human1 16,381 1,937 GSE84133 Human

pancreas
llumina HiSeq 2500
(inDrop)

Baron human2 16,381 1,724 GSE84133 Human
pancreas

llumina HiSeq
2500(inDrop)

Baron human3 16,381 3,605 GSE84133 Human
pancreas

llumina HiSeq
2500(inDrop)

Baron human4 16,381 1,303 GSE84133 Human
pancreas

llumina HiSeq
2500(inDrop)

Baron mouse1 14,878 822 GSE84133 Mouse
pancreas

llumina HiSeq
2500(inDrop)

Baron mouse2 14,878 1,064 GSE84133 Mouse
pancreas

llumina HiSeq
2500(inDrop)

Muraro 17,140 3,071 GSE85241 Human
Pancreas

Illumina NextSeq
500 (CEL-Seq2)

Segerstolpe 26,271 7,028 E MTAB 5061Human
Pancreas

Smart-Seq2

Xin 39,851 1,601 GSE81608 Human
Pancreas

Illumina HiSeq
2500(SMARTer)

Wang 19,950 635 GSE83139 Human
Pancreas

Illumina HiSeq
2000(SMARTer)

H1299 scRNAseq 48,890 27,072 GSE148729 Human
lung
(SARS-
CoV-2)

Illumina NextSeq
500

Calu3 scRNAseq 24,754 27,072 GSE148729 Human
lung
(SARS-
CoV-2)

Illumina NextSeq
500

PBMC 32,738 2,700 10X Ge-
nomics
(pbmc3k)

3k
PBMCs
from a
Healthy
Donor

Cell Ranger
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Figure 2.1: Block diagram of the proposed approach for discovering cell types in scRNA-
seq data.

2.2.2 Data Pre-processing and Quality Control

A common practice for generating RNA-seq raw data is to use next-generation sequencing

technologies to create read count matrices. The read count data matrix contains gene names

and their expression levels across individual cells. Before analyzing scRNA-seq data, one

needs to ensure that gene expressions and cells are of standard quality. We follow a typical

scRNA-seq analysis workflow including quality control, as described in [69] [48]. Based

on the expression levels, we filtered out weakly expressed genes and low-quality cells in

which fewer reads are mapped, as shown in Fig. 6.1, the first step of pre-processing. Low-

quality cells that are dyed, degraded, or damaged during sequencing are represented by a

low number of expressed genes. Genes expressed in less than three cells and cells with less

than 200 expressed genes are removed. This step is performed to remove low quality cells

and poorly expressed genes.

We also investigated the distribution of the data (Fig.6.2) as a data-specific quality-

control step and filtered out low-quality cells and genes. Also, we remove a percentage

of mitochondrial genes that do not contribute significant information to the downstream
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Figure 2.2: Investigating the distribution of the data to filtered out weakly expressed genes
and low-quality cells from dataset; (a) number of expressed genes, (b) total counts per cell,
and (c) the percentage of mitochondrial genes for H1299 scRNAseq.

analysis [50], [48].

Figure 2.3: Top 20 highly-variable genes before normalization.

Since the scRNA-seq data expressed at different levels, normalization is a must. Nor-

malization is the method of translating numeric columns’ values in a dataset to a standard
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Figure 2.4: Top 20 highly-variable genes after normalization.

scale without distorting the ranges of values. Visualization of top genes in the dataset are

shown in Figures 2.3 and 2.4 before and after normalization, respectively. We normalize the

data using the Counts Per Million (CPM) normalization combined with logarithmic scaling

on the data:

CPM = readsMappedToGene× 1
totalReads

×106 (2.1)

where totalReads is the total number of mapped reads of a sample, and readsMappedToGene

is the number of reads mapped to a selected gene.

At this point, we extracted highly variable genes (HVGs) as a part of the feature selection
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step, aiming at minimizing the search space, and only these genes are examined in further

evaluation. We then removed any random noise and held genes that highlight relevant bi-

ological information. HVGs are those genes that are expressed significantly more or less

in some cells compared to other ones. This step in quality control makes sure that the

differences occur because of biological differences and not technical noise. The simplest

approach to compute such a variation is to quantify the variance of the expression values

for each gene across all samples. A good trade-off between mean and variance would help

select the subset of genes that keep useful biological knowledge, while removing noise. We

use log-normalized data because we want to ensure having the same log-values in the clus-

tering and dimensionality reduction follow a consistent analysis through all steps. There

are several widely-used approaches to find the best threshold. The normalized dispersion

is obtained by scaling the mean and standard deviation of the dispersion for genes falling

into a given bin for the mean expression of genes (Fig. 2.7). This means that for each bin

of mean expression, HVGs are selected. A Python package, Scanpy, is used to perform

pre-processing and quality control steps.

2.2.3 Dimensionality Reduction

The majority of real-life data is multidimensional. Furthermore, the majority of the high-

dimensional data is complex and sparse. Most importantly, understanding the data in such

dimensions is tricky, and visualization is not possible. Dimensionality reduction is the pro-

cess of transforming data from a high-dimensional space to a low-dimensional space while

retaining some of the original data’s meaningful properties, preferably close to its intrinsic

dimension. Working in high-dimensional spaces may be inconvenient for various reasons:

raw data is often sparse as a result of the curse of dimensionality, and data analysis is
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Figure 2.5: Dispersion of genes before normalization.

Figure 2.6: Dispersion of genes after normalization.

Figure 2.7: Comparison of dispersion of normalized and not normalized genes to extract
highly variable genes.
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typically computationally intractable. On the other hand, high-dimensional gene expres-

sion data is complex and should be well-explored. Each gene is characterized as a data

dimension in a single-cell expression profile in a single-cell expression profile. As such,

dimensionality reduction is very productive in summarizing biological attributes in fewer

dimensions. Dimensionality reduction is divided into linear and non-linear techniques.

Modified Locally Linear Embedding

MLLE is the enhanced version of LLE and hence the authors named it as Modified LLE.

To understand the working of MLLE, we need to understand LLE. LLE tries to reveal the

manifold’s underlying structure based on simple geometric intuitions when used for di-

mensionality reduction. LLE preserves the data’s locality in lower dimensions because it

reconstructs each sample point from its neighbors. In the simplest formulation of LLE, one

identifies nearest neighbors per data point, as measured by Euclidean distance [94]. One

can choose number of neighbors based on some rules or using some metrics or some ran-

dom number. Consider the sample points X = {x1,x2, ...,xn} in high dimensional space,

where {x j, j ∈ N} and W ={wi j} is the weight matrix. A directed graph G = (X,E,W) is

constructed considering the neighborhood relations of the sample points X, in high dimen-

sional space, and E = {ei j} represents the edges of the graph. Later, weights are assigned

to the edge of the graph. To compute the weights Wkn, minimize the cost function with

respect to two constraints: 1) each data points xi, is reconstructed only from its neighbors

imposing Wkn = 0 if xi does not belong to that set, 2) sum of the weights matrix rows equal

to one, that is Wkn = 1. Optimal weights are calculated by solving (2.2) the constrained

squared distances problem shown below [94].
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min xi − ∑
k∈Kn

wknxk s.t. ∑
k∈Kn

wkn = 1 . (2.2)

The computed weights are then allocated to each edge of the graph, with each data point

viewed as a small linear patch of the sub-manifold.

Finally, each high-dimensional input sample xi mapped to a low dimensional point set Y =

{y1,y2, ...,yn} representing the manifold’s global internal coordinates. The reconstruction

weights for each data point are calculated independently of the weights for other data points

from its local neighborhood. The embedding coordinates are computed by an NXN eigen

solver, a global operation that combines all data points in connected components of the

graph identified by the weight matrix. While reconstructing the structure from the higher

dimension to the lower dimension, some information could be lost. This lost information is

noted as a reconstruction error and computed using (2.3).

εr =
n

∑
i=1

|yi − ∑
k∈Ki

wikyk|2 (2.3)

The regularization problem is a well-known issue with LLE. The matrix representing each

local neighborhood is rank-deficient when the number of neighbors exceeds the number

of input dimensions. To deal with this, standard LLE uses an arbitrary regularisation pa-

rameter in relation to the weight matrix’s local trace [132]. This problem manifests itself

in embedding which distort the underlying geometry of the manifold. MLLE is one such

technique, which overcomes this regularization problem using multiple weights in each

neighborhood. MLLE modifies or adjusts the reconstruction weights [34] shown in (2.2)
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and this modifies the objective function (2.3).

εr =
n

∑
i=1

si

∑
l=1

|yi −
w

∑
k∈Ki

ikyk|2

where, si = smallest right singular vectors of G .

(2.4)

MLLE aims to take advantage of the dense relations that exist in the embedding space. It

is closely related to the other version of the LLE, that is Local Tangent Space Alignment

(LTSA) [112].

Independent Component Analysis

ICA is an independent and linear dimensionality reduction method. By using simple statis-

tical properties assumptions, ICA learns an efficient linear transformation of the data and

attempts to find the underlying components and sources present in the data [46]. Unlike

other approaches, the transformation’s underlying vectors are presumed to be independent

of one another. It employs a non-Gaussian data structure, which is crucial for retrieving the

transformed underlying data components. Consider, r is a random vector whose elements

are {r1,r2, ...,rn}, and similarly, random vector s with its elements {s1,s2, ...,sn}, and A is

the matrix with elements ai j. The ICA model is a generative model, and it explains how

the observed data are generated (2.5) by mixing the components si. The independent com-

ponents are latent variables, which means they are unknown. Also, the mixing matrix is

assumed to be unknown.

r = As

Y = AX
(2.5)
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Rows of these vectors and the matrix are orthogonal to each other. As such, it leads to more

informative components than PCA. ICA does not require knowing the system’s output to

break the data into some measurements. Hence it is referred to as blind source separa-

tion [47]. Here, a source means the original data, independent components. Blind means

that it knows nothing but very little, if anything, on the mixing matrix and makes modest

assumptions on the source data.

Other Dimensionality Reduction Methods

We used other dimensionality reduction techniques to compare our proposed method such

as Standard LLE, Isomap, Laplacian eigenmap, PCA, and t-SNE. Isomap stands for isomet-

ric mapping. Isomap is a non-linear dimensionality reduction method based on the spectral

theory that tries to preserve the lower dimension’s geodesic distances. Isomap starts by

creating a neighborhood network. After that, it uses graph distance to estimate the geodesic

distance between all pairs of points. The eigenvalue decomposition of the geodesic distance

matrix finds the low-dimensional embedding of the data [38]. The Laplacian eigenmaps is

a computationally effective and map nearby input patterns to nearby outputs by comput-

ing the low-dimensional representation of a high-dimensional data set that most faithfully

preserves proximity relations and it has a natural connection with clustering [13]. PCA is

a popular linear technique used for feature extraction or dimensionality reduction. Given

a set of data with n dimensions, PCA maps the data linearly to find a subspace in lower-

dimensional space so that variance of the data is maximized. It does so by calculating the

eigenvectors from the covariance matrix. The principal components (eigenvectors that cor-

respond to the largest eigenvalues) are used to recreate a substantial portion of the original

data’s variance [39]. t-SNE is a non-linear dimensionality reduction technique. t-SNE is not
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used for cluster analysis or outlier detection since it does not preserve the data’s distances

or densities. But, it is particularly well suited for the visualization of high-dimensional

datasets and extensively applied in image processing, Natural language processing, ge-

nomic data, and speech processing [106].

2.2.4 Clustering

Performing clustering is one of the critical tasks in single-cell analysis. Clusters are formed

by grouping cells based on their similarity of the gene expression profiles. Distance metrics

are used to describe expression profile similarity, which employs dimensionality-reduced

representations as data as input. We used popular clustering technique k-means. k-means

is iterative clustering algorithm groups the data into n separate groups by minimizing the

phenomenon within-cluster dispersion. The number of clusters C = {c1,c2, ...,cn} to be

formed from the data needs to be specified as an input to the algorithm.

SSE =
k

∑
i=1

min
µ∈C

(|xi −x j|)2 (2.6)

k-means algorithm works in three key steps. The first step is to choose the initial cen-

troids and the simple method is to choose k samples from the dataset X = {x1,x2, ...,xn}.

Then, each point in the dataset is allocated to its nearest centroid. The next step involves

taking the mean value of all of the samples allocated to each previous centroid and creating

new centroids. The algorithm calculates the difference between the old and new centroids,

then repeats the last two steps until the value falls below a certain threshold. In other words,

it keeps repeating until the centroids are converged. The points in the data choose centroids

with a high degree of cluster compactness or a minimum sum of squared error (SSE) as

shown in (2.6) where n is the number of samples in the data, C is the cluster, µ is the mean
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of the samples, and x is the corresponding sample.

2.2.5 Cluster Annotation

Gene Set Enrichment Analysis (GSEA) [99] is a computational tool that determines whether

a predefined set of genes shows a statistically significant level of expression in a specific

cell type, biological process, cellular component, molecular function, or biological path-

way. The GSEA uses MSigDB, the Molecular Signature Database, to provides different

gene sets for the analysis with the gene set enrichment analysis. To annotate the cell clus-

ters, we first extracted the top 20 differentially expressed genes as markers in each cluster

per dataset. Then, we found the corresponding cell types of each group of marker genes in

each cluster. Gene ontology (GO) analysis is also used as part of enrichment analysis.

2.2.6 Parameter Optimization

With the aim of preserving locality, the number of nearest neighbors (t-NN) to construct

the neighborhood graph is a crucial parameter in manifold learning techniques. Another

critical step in any clustering algorithm is determining the number of clusters, k. We used

the nearest neighbor check and validity indices check, which runs through different t and

a distinct number of clusters to find the best dimensionality reduction and clustering pa-

rameters. We further systematically evaluated more appropriate parameters for MLLE after

finding the best t. The nearest neighbors are examined between the range of 8 and 26. The

number of clusters k for each value of t is also assessed, where k ranges from 4 to 15, and

the validity of indices are calculated for each cluster. We select a combination of t and the

number of clusters with the highest number of clustering scores considering all the three

validity of indices explained in the performance evaluation section.
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2.2.7 Performance Evaluation

Generally speaking, the best clustering is the one that maintains high intra-cluster distance

and gives the most compact clusters. In this work, we use the Silhouette coefficient [89],

an evaluation metric that measures either the mean distance between a sample point and

all other points in the same cluster or all other points in the next nearest neighbor cluster.

Consider a set of clusters C = {C1,C2, . . . ,Ck}, output by a clustering algorithm, k-means

in our case. The Silhouette coefficient, SH, for the ith sample point in cluster C j, where

j = 1, ...,k, can be defined as follows:

SH(xi) =
b(xi)−a(xi)

max(a(xi),b(xi))
, (2.7)

where a is the mean distance between point xi and all other points inside the cluster (intra-

cluster distance) and b is the minimum mean value of the distance between a sample point

xi and the nearest neighbor cluster, and are calculated as:

a(xi) =
1

|Ck|−1 ∑
x j∈Ck,i̸= j

d(xi,x j)

b(xi) = min
k ̸=i

1
|Ck|

k

∑
j=1

d(xi,x j) .

(2.8)

We also used Calinski-Harabasz (CH) and Davies-Bouldin (DB) validity of indices to

assess the clustering performance. Calinski-Harabasz score [19], is a score used to evaluate

the model where a higher score tells better-defined clusters. CH score is the ratio of the

sum of between-clusters dispersion and of inter-cluster dispersion for all clusters that is as
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follows:

CH =
tr(SB)

tr(SW )
× n− k

k−1
(2.9)

in which n is size of input samples, tr(SB) is the trace of the between-group dispersion

matrix and tr(SW ) is the within-cluster dispersion.

Davies-Bouldin (DB) index [24] is another validity index defined as the average of the

similarity measure of each cluster. DB is computed as follows:

DB =
1
k

k

∑
i=1

maxi ̸= jsi j , (2.10)

where si j is the ratio between within-cluster distances and between cluster distances, and is

calculated as si j =
wi+w j

di j
. The smaller DB value the better clustering, and as such, we aim

to minimize Equation (6.9). Here, di j is the Euclidean distance between cluster centroids µi

and µ j, and wi is the within-cluster distance of cluster Ck.

Overall, we used the Silhouette score to evaluate the clustering performance, whereas

CH and DB indices were used to verify and find the optimal parameters, namely the best

number of clusters.

2.3 Results and Discussion

We developed a well-constructed pipeline that can be applied to single-cell data to discover

individual cell types. Considering dimensionality reduction and clustering as two signif-

icant steps in the pipeline, we conducted many experiments on different dimensionality

reduction techniques and explored many ways of untangling the data in two and three di-

mensions. We found optimum parameters for both dimensionality reduction and clustering

to achieve the best clustering results. To demonstrate the applicability of our pipeline, we
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tested it on thirteen datasets of different sizes. We evaluated our method in terms of both

computationally and biologically perspectives to achieve the meaningful separation of cell

types.

2.3.1 Clustering and Cell Type Discovery

To achieve the best results, we experimented with all possible combinations of parameters

as discussed in the Material and Methods section. As a result, the best parameters chosen

for each dataset are depicted in Table 2.2. In a few datasets, to achieve the best clustering

score in the proposed approach, the data is reduced to lower dimensions such as 5, 6, and 7.

Then, the data is reduced to three dimensions to visualize and obtain better results. When

applying MLLE, a neighborhood graph is created by connecting points that are close to each

other. Different measures are used for this purpose, including number of neighbors, distance

from each point to its neighbors, and others. A common measure to determine the sparsity

of the neighbor graph is the tolerance factor, which makes the graph sparser or denser. In

this regard, we tested different tolerance values on each dataset and selected those values

that yielded the best validity index scores. The results of k-means clustering combined with

each dimensionality reduction method using the best parameters are listed in Table 6.1. The

last column shows the result after applying ICA on the result of clustering combined with

MLLE. The clustering score ranges from 0 to 1. A score close to 1 represents good quality

clustering, with 1 being the best, while a score near zero indicates that the clusters are not

well defined.

When trying widely-used techniques such as t-SNE and PCA, we noticed that both

methods were not as efficient in separating the data into well-defined clusters. To show the

clustering results graphically, we visualize the result of PCA and t-SNE for Wang and Mu-



CHAPTER 2. 37

Table 2.2: Parameters used for experiments. These are generated considering both dimen-
sionality reduction and clustering together.
Dataset name # Neighbors # Dimensions Tolerance # Clusters

Baron human1
10 6 1e-12 14
23 3 1e-10

Baron human2 8 3 1e-12 14

Baron human3
16 7 1e-12 14
8 3 1e-8

Baron human4
9 6 1e-12 14
22 3 1e-12

Baron mouse1 17 3 1e-12 13

Baron mouse2
11 6 1e-12 13
20 3 1e-8

Muraro
10 5 1e-3 6
11 3 1e-7

Segerstolpe
10 5 1e-3 6
9 3 1e-8

Xin
15 6 1e-12 6
25 3 1e-3

Wang 8 3 1e-12 6
H1299 scRNAseq 11 3 1e-8 7

Calu3 scRNAseq
12 7 1e-3 7
11 3 1e-5

PBMC
8 5 1e-12 8
25 3 1e-12
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Table 2.3: Silhoutte scores comparison of proposed method with other dimensionality re-
duction techniques.
Dataset name t-SNE PCA Isomap SLLE Eigenmap MLLE MLLE+ICA
Baron human1 0.244 0.364 0.498 0.524 0.839 0.908 0.904
Baron human2 0.231 0.428 0.543 0.614 0.823 0.906 0.905
Baron human3 0.243 0.377 0.522 0.467 0.826 0.990 0.976
Baron human4 0.239 0.424 0.614 0.538 0.896 0.910 0.912
Baron mouse1 0.231 0.400 0.422 0.448 0.472 0.881 0.917
Baron mouse2 0.221 0.414 0.530 0.684 0.779 0.941 0.943
Muraro 0.258 0.494 0.532 0.738 0.913 0.933 0.944
Segerstolpe 0.231 0.410 0.399 0.400 0.537 0.960 0.956
Xin 0.242 0.445 0.481 0.494 0.751 0.899 0.888
Wang 0.230 0484 0.442 0.745 0.608 0.993 0.996
H1299 scRNAseq 0.245 0.269 0.701 0.683 0.782 0.938 0.943
Calu3 scRNAseq 0.361 0.232 0.494 0.452 0.798 0.889 0.924
PBMC 0.244 0.401 0.622 0.621 0.632 0.867 0.876

Figure 2.8: Visualization of t-SNE on Muraro dataset
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Figure 2.9: Visualization of PCA on Wang dataset

Figure 2.10: Visualization of Laplacian eigenmaps on H1299 scRNAseq; outliers have
been removed to enhance visualization.
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Figure 2.11: Two-dimensional ICA projection of cells colored by k-means clustering ap-
plied on high-dimensional original data (H1299 scRNAseq).

Figure 2.12: Two-dimensional ICA projection of cells colored by k-means clustering ap-
plied to the three-dimensional points output by MLLE on the H1299 scRNAseq dataset.
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Figure 2.13: Cluster annotation for H1299 scRNAseq.

raro datasets, respectively, in Figures 2.8 and 2.9. On the other hand, the results of Isomap

and Standard LLE show slightly better performance comparatively. Moreover, Laplacian

Eigenmaps performed better than these two methods, though they could not accomplish

competitive clustering. As a good example, we visualize samples from H1299 scRNAseq

using Laplacian Eigenmaps (Fig.2.10) in which different clusters are overlapping. Finally,

we investigated MLLE and found the most insightful cluster separation in most of the

datasets. This outcome demonstrates the power of MLLE in exploring the data’s dense

and complex relations, creating better lower embeddings. We performed an additional di-

mensionality reduction step that uses ICA to enhance the visualization of clusters. The

last column of Table 6.1 represent that MLLE combined with ICA improves the overall

results except for some datasets that we can not see much difference; very negligible dif-

ference of 0.004 (Baron human1), 0.001 (Baron human2), 0.014 (Baron human3), 0.004

(Segerstolpe), and 0.011 (Xin) can ignore them. To achieve a better view of the impact of
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ICA on the MLLE transformation, we show a visual comparison of clusters in Figures 2.11

and 2.12. Two-dimensional ICA projection of the cells applied to the three-dimensional

MLLE data shows the best visualization and clustering scores (Fig. 2.12). When applied

alone, ICA performed very poorly with significantly inseparable clusters (Fig. 2.11). This

is because ICA is limited to linear transformations.

On the other hand, manifold learning techniques consider data locally. As such, it can

reveal complex relationships among the data points in higher-dimensional spaces. We in-

stead applied ICA on the lower-dimensional data because we observed well-marked ”lines”

or ”axes” in the three-dimensional data, which led us to think that we could apply ICA

to learn the linearly independent components, not necessarily orthogonal. Applying ICA

reveals some hidden, complex relationships among the cells in the clusters, which are not

noticeable in three dimensions.

2.3.2 Biological Assessment

To validate the obtained clusters, we first identified the top 20 genes in each cluster based

on the Wilcoxon test. Starting from these top 20 genes, we retrieved a subset of genes

from the largest number of overlapping genes across the different clusters. Marker genes

are up- or down-regulated in different individual cells, pathways or GO terms. We used

GSEA and ToppCluster multi-gene list functional enrichment analysis online tools to iden-

tify GO terms and pathways associated with the top 20 gene lists extracted from each clus-

ter. Pathways were extracted from the MSigDB C2 BIOCARTA (V7.3) database [63].

Cytoscape [97] was used to visualize the networks.We decreased the minimum number of

genes present in annotations to achieve a better visualization.

As presented in Table 2.6, some of the pancreatic cell types are found for pancreas
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Table 2.4: Identified cell types for H1299 scRNAseq.
Cell Types Cluster Number
H1299 cells 0
T cells 1
A549 cells 2
Jurkat cells 3
CL1-5 cells 4
Influenza-specific CD8+ 5
NCI-H2170 cells 6

datasets such as the Baron human dataset within well-defined gene sets in MSigDB namely

’MURARO PANCREAS ALPHA CELL’, ’MURARO PANCREAS ENDOTHELIAL CELL’,

’MURARO PANCREAS MESENCHYMAL STROMAL CELL’, ’MURARO PANCREAS

DUCTAL CELL’, and ’MURARO PANCREAS ACINAR CELL’. Other cell types includ-

ing CD34, Jurkat, and macrophage are cell subtypes of T-Cells. HB2 is also a cell line

originated by epithelial cells. Regarding H1299 scRNAseq and Calu3 scRNAseq datasets,

Tables 2.4 and 2.5 list associated cell types mostly involved in the immune system. It is

well-known that one of the main SARS-CoV-2 targets is the immune system function. We

observed co-expressed gene sets down- or up-regulated in the lung and immune systems

specific cell (sub)types. T-cell is a type of immune cell that is found in blood. Jurkat cells

are a line of human T cells that are used to study the expression of various chemokine re-

ceptors susceptible to viral entry, particularly HIV. CD8+ T cells are found on the surface of

immune cells and are key cells in response to viral infection [21]. Moreover, H1299 cells,

NCI-H2170 cells, A549 cells, and CL1-5 cells are human lung associated cell lines. These

findings show the effectiveness of the proposed method to identify associated cell types us-

ing cell type specific marker genes. A projection of the identified cells in H1299 scRNAseq

colored by clusters is shown in Fig. 2.13.

Additionally, visualization of GO terms and pathways associated with the correspond-
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Table 2.5: Identified cell types for Calu3 scRNAseq.
Cell Types Cluster
H1299 cells 0
293 cells (embryonic kid-
ney)

1

MCF7 cells 2
ANBL-6 cell 3
T-ALL 4
H460 cells 5
H1975 cells 6

Table 2.6: Identified cell types for Baron human1 dataset.
Cell Types Cluster
Alpha 0
CD34 1
Mesenchyme stem cells 2
Jurkat cells (T lymphocyte) 3
Endothelial 4
Mesenchyme stromal cells 5
Ductal 6
Endothelial 7
Acinar 8
Myeloid cells 9
Intestine cells 10
Macrophage 11
HB2 cells 12
T-cells 13
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Figure 2.14: A set of biological process that are enriched by marker genes in
H1299 scRNAseq dataset. The numbers show the clusters and edges shows the link be-
tween a cluster and a biological process term.

ing marker genes are depicted in Figs. 2.14 and 2.15, respectively. For each cluster, we

identified a set of biological process or pathway terms. Each edge in the plot shows a link

between a cluster and a term that is significantly associated with the 20 top gene list in

that cluster.By observing Fig. 2.15, some significant pathways are found to be enriched

in immunity functions, and signaling identified, including SARS-CoV-2 innate Immunity

Evasion, Host-pathogen interaction of human corona viruses, SARS coronavirus and innate

immunity, Type II interferon signaling (IFNG), and the human immune response to tuber-

culosis. Also, the gene set enrichment of Fig. 2.14 shows that most biological processes

are associated with immunity functions, including response to interferon-alpha, protection

from a natural killer cell, type III interferon production, regulation by virus of viral protein

levels in a host cell, and detection of virus, among others. In addition, we obtained a list
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Figure 2.15: Pathway that are enriched by marker genes in H1299 scRNAseq dataset. The
numbers show the clusters and edges shows the link between a cluster and a pathway.
Node that is highlighted yellow show the SARS-CoV-2 cell-specific pathway. Most of the
other green nodes reveal the shared and cluster-specific functional pathways in the immune
system.

of overlapping marker genes that are involved in Herpes simplex virus 1 (HSV-1) infec-

tion and the Influenza A pathway. These findings suggest potential markers for subsequent

medical treatment or drug discovery by comparing to similar diseases in terms of function-

ality. Moreover, although numerous findings suggest potential links between HSV-1 and

Alzheimer’s disease, a causal relationship has not been demonstrated yet [26].

2.4 Conclusion and Future Work

This work focuses on the identification of different cell types using manifold learning

combined with clustering techniques on scRNA-seq data. Identifying similarities that re-
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sult from structural, functional, or evolutionary relationships among the genes is the pri-

mary goal of clustering the cells. Our proposed two-step representation learning approach

demonstrated that k-means clustering technique combined with Modified LLE leads to im-

proved clustering output and meaningful organization of cell clusters by ”untangling” the

complex, hidden relationship in a higher-dimensional space.

Non-linear dimensionality reduction methods have been shown to be very powerful as they

preserve the locality of the data from higher to lower dimensions. UMAP is one of the

most commonly-used non-linear dimensionality reduction technique, and has been shown

to perform well on large-scale scRNA-seq data. However, for dimensionality reduction,

UMAP is not as efficient as MLLE on high-dimensional cytometry, especially when com-

bined with clustering to enhancing the visualization of the clustering results. This behavior

of MLLE has been observed in our experiments. A comparative analysis with UMAP in

the Supplementary Material, Figure S4, confirms this observation.

Moreover, performing ICA on transformed data after applying manifold learning tech-

niques provides enhanced view of the data in a reduced space. Evaluating the incidence

of ICA as a visualization scheme and further reduction step, after applying MLLE, shows

better clustering and enhanced visualization simultaneously. This trend leads to a research

avenue that involves a combination of non-linear manifold learning techniques followed by

linear methods, which has shown to be more powerful than conventional methods such as

PCA or ICA applied alone.

Using multiple benchmark datasets shows the effectiveness of our proposed method.

Performing gene set enrichment analysis to annotate a set of HVGs obtained from each

cluster reveals biomarker genes involved in different gene ontology terms.



CHAPTER 2. 48

There are some other potential applications for investigating scRNA-seq data, even be-

yond cell type identification. Using an extension of the proposed method by employing

other manifold or deep learning techniques on the other epigenetic challenges in scRNA-

seq data analysis, such as trajectory analysis, is our next step.



Chapter 3

Cell Type Annotation Model Selection:

General-Purpose vs. Pattern-Aware

Feature Gene Selection in Single-Cell

RNA-Seq Data

3.1 Introduction

In living organisms, there are a great variety of cells that can be distinguished with the

help of single-cell RNA sequencing (sc-RNA sequencing) technology. Single-cell RNA

sequencing (scRNA-seq) is a novel sequencing technology that involves individual cell in-

formation and can be used in cell heterogeneity studies. Studying different types of cancer,

detecting unknown tumours and tumour heterogeneity, drug discovery, diagnosis, and prog-

nosis are a few numbers of the new opportunities for research in this scope.

49
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Identifying cell type heterogeneity is one of the first fundamental steps in an in-depth

analysis of single-cell RNA sequencing data. Hidden diversity and characteristics of a

particular cell type can be found via deferentially expressed genes (DEGs). Machine learn-

ing approaches can be effectively used to identify hidden differentiation in the expression

profiles of the genes with high probability. scRNA-seq data comes with a variety of limita-

tions. The highlighted one is the lack of annotation for most of the data which are publicly

available. In a general single-cell RNA-seq downstream analysis, clustering techniques

are widely used to reveal groups of cells and cell types. However, setting up the parame-

ters, including the number of clusters, is a challenging point [108]. For instance, several

methods are compared in [31]. Among them, SC3 [56], CIDR [65], Ascend [96], SAFE-

clustering [123], TSCAN [51], and [107] all possess built-in methods for estimating the

optimal number of clusters. Although Ascend and CIDR underestimated the number of

clusters, SC3 and TSCAN tend to overestimate. In addition, the group of cells identified

by the clustering methods requires an additional annotation step with the corresponding

cell types using canonical marker genes and reference databases. Hence, the conventional

workflow based on clustering and marker genes is not scalable due to manual annotation.

The lack of ground-truth information and tool benchmarking makes it more complex to

evaluate the model. Therefore, manually annotating the output is a time-consuming and

non-reproducible procedure in clustering methods. The other limitation of scRNA-seq data

is caused by biological effects during sequencing. This leads to a zero-inflated read counts

matrix with thousands of zeros in expression values, which may mislead downstream anal-

yses. Cell types are often distinguished by calculating the differentiation of expression

levels of only the most informative genes. Hence, finding known marker genes among

thousands of genes with almost zero information is essential in scRNA-seq data analyses.
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This is either called dimensionality reduction or feature selection and affects the final result

directly. Although the current unsupervised methods show superiority in the performance

when combined with feature selection methods, the biological significance of the results is

still important for the understanding of the underlying biological information and requires

further manual gene set enrichment analysis [15, 108]. Since feature selection plays a sig-

nificant role in domain-dependent problems, a wide range of supervised techniques shows

superiority in the performance utilizing feature selection methods. Supervised techniques

have increasingly developed for the automatic identification and annotation of cell types.

Moreover, using annotated data, we can evaluate and compare the model by systematically

estimating the performance metrics. A comparative study in [1] reviewed 22 supervised

techniques, including random forest (RF), which is based on decision tree rules. To as-

sess the probability of a correct label, decision trees inherently select informative features

and estimate the minimum number of features needed to create a model. Among the other

choices in decision tree categories, XGBoost shows its capability in all scenarios [22]. Ac-

cording to this, CaSTLe [64] was proposed based on an XGBoost model under transfer

learning workflow and showed satisfactory classification accuracy compared to two linear

models. The idea behind CaSTLE is to use a robust univariate feature engineering work-

flow followed by the application of a pre-tunedXGBoost model. In the feature selection

workflow first, genes with the top mean level of expressions and mutual information were

selected, and correlated genes were removed; then, considering pre-defined ranges, genes

were categorized. Transfer learning uses information from one scRNA-seq dataset to anno-

tate another one.

Additionally, the ensemble learning schema combines weak learners’ voting for an ac-

curate final vote on similarity search space. For instance, EDGE [100] has utilized this
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approach on simulated data and learned an ensemble version of similarity matrices into a

single embedding space of data, as well as optimizing through stochastic gradient descent.

In EDGE, dimensionality reduction and feature gene extraction were used in an ensemble

approach in such a way that the problem of finding similarity among features, was broken

down into small weak learners. The final similarity matrix achieved shows a common sim-

ilarity space among all learners. SMaSH [79], on the other hand, is designed explicitly for

gene ranking and calculating the significance score of marker genes from scRNA-seq data.

Focuses on marker genes ranking, SMaSH compares tree-based and neural network-based

approaches. It uses predefined cell types (labels) to categorize cell-specific genes before

feeding them into several weak classifiers. In a benchmarking experiment, SMaSH com-

pared the ensemble mode with the network mode. Its performance was evaluated using

tree-based models, including XGBoost. Compared to the other two ensemble models and

deep neural networks, XGBoost shows excellent performance in most scenarios. Although

according to the observations in [72], XGboost failed to detect small changes in expres-

sion levels and consequently distinguish cell sub-types. It is a much faster and simpler

approach compared to the neural network model. XGBoost is well-suited to large datasets

by performing in parallel. Moreover, in our recent comparative study, it has been shown

that the support vector machine (SVM), with the help of information gain (IG), as a fea-

ture selection method, outperformed the other approaches [109]. The study was performed

on nine different experiments composed of three different state-of-the-art popular classi-

fiers combined with three general-purpose feature selection methods. Classifiers, including

random forest, K-NN, and SVM and feature selection methods, including Analysis of Vari-

ance (ANOVA) F-value, Information Gain, and Chi-squared considered complementary of

the classifiers. One of the challenges covered in this study was selecting cell-specific genes
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in the feature selection step. A benchmark study was performed based on the number

of selected features. However, it remains for a exploration of general-purpose feature engi-

neering techniques against domain-specific ones, and in particular pattern-aware techniques

to be done. When reviewing different approaches, including supervised and unsupervised,

for cell type annotation based on scRNA-seq data, there is no comparison with the XG-

Boost method. Precisely, the power of XGBoost and SVM was proven in the previous

studies and XGBoost performs in a faster and simpler way. Moreover, SVM together with

a general-purpose feature selection had been shown as a high-performance method in the

supervised cell-type annotation. In this study, inspired by the recent works completed in

cell-type classification, we compared two forefront approaches; the general-purpose model,

a SVM classifier with information gain feature selection method and XGBoost tree with its

inherent feature selection strategy. This paper guides users and practitioners to select the

most proper model based on the inherent features of their datasets.

3.2 Materials and Methods

3.2.1 Framework

The schematic view of Figure 3.1 depicts the pipeline in a cell-type annotation process.

First, the raw read count matrix is generated using high-throughput sequencing technolo-

gies (Figure 3.1, step 1). These raw data includes expression profiles of thousands of cells

separately (Figure 3.1, step 2). Performing pre-processing, including filtering, normaliza-

tion, and scaling, gives us ready-to-use data for the computational step (Figure 3.1, step 3).

Then, the most informative features are extracted in the feature selection (Figure 3.1, step

4) to be used by classification models. Finally, cell types are predicted and annotated by
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the method with higher accuracy (Figure 3.1, step 5). As a demonstration of the high per-

formance, a gene set enrichment analysis on the selected features was performed, and the

results highlight the power of the model in annotating cell types (Figure 3.1, step 6). The

last step is not necessary for supervised approaches. However, it could play a verification

phase in the biological context.

To validate our models, we considered the most commonly used evaluation metrics,

namely accuracy, precision, and recall, to systematically estimate and compare the per-

formance of our models. To this end, we used 10-fold cross-validation to test and train

the model. Additionally, we tuned XGBoost parameters as follows: (1) the regularization

parameter value to create a new split in trees, gamma is set to 0.2, 0.1, and 0 for Data1 to

Data3, respectively. (2) (Max−depth and min−child−weight) of the tree, which typically

control overfitting, were fine-tuned to (10, 3), (5, 3), and (10, 1) for Data1 to Data3, respec-

tively.

(3) colsample− bytree, which determines what portion of features will be used, was set

to 0.5, 0.4, and 0.3 for Data1 to Data3, respectively.

We used Scikit-learn [83] in Python version 3.7 to perform computational algorithms,

and GSEA [99] for biological validation.

3.2.2 Dataset

To evaluate the performance of the model, we used public, annotated scRNA-seq datasets

with accession numbers GSM2230757, GSM2230758, and GSM2230762 under series GSE84133

[10] extracted from NCBI’s Gene Expression Omnibus [32]. These datasets include tran-

scripts of pancreatic from human and mouse donors. Pancreatic cells are divided into 14

groups of previously characterized cell types, mainly including alpha, beta, acinar, delta,
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quiescent, activated pancreatic stellate, endothelial, and ductal cells. The existence of these

cell types is validated with immuno-histochemistry stains [10] so that it can be a good re-

source for discovering cell types. The details of the datasets used in this study are listed in

Table 3.1.

Figure 3.1: Pipeline overview of the experiments.

Table 3.1: Details of the datasets analyzed in this study.
Dataset Accession # # Cell Types # Cells # Genes
Human Pancreatic Islets,
Sample 1 (Data1)

GSM2230757 8 1937 20,125

Human Pancreatic Islets,
Sample 2 (Data2)

GSM2230758 8 1724 20,125

Mouse Pancreatic Islets,
Sample 2 (Data3)

GSM2230762 8 1064 14,878

3.2.3 Data Pre-Processing

Raw read count matrices contain low-quality RNA sequencing information based on differ-

ential expression levels. Data pre-processing is performed to ensure removing any weakly
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expressed genes or low-quality cells, including damaged, dead, or degraded during se-

quencing, and are represented by a low number of expressed genes in the read count ma-

trices. We followed the standard pre-processing pipeline in scRNA-seq data analysis [68].

Based on this pipeline, cells with less than 200 expressed genes and genes expressed in

less than three cells are filtered out. In Data1, for example, we first filtered out 5387 low-

expression genes that were detected in less than three cells and kept 14,739 genes. Further

analysis of the data distribution showed low-quality cells and led to removing seven cells.

After per-gene quantification, we selected a subset of highly variable genes to use in down-

stream analyses. To this end, we defined the set of highly variable genes given a normalized

dispersion higher than 0.5 after normalization and obtained 2546 genes at the end. We used

Scanpy [118], a specifically designed package to work with scRNA-seq datasets, for pre-

processing steps.

3.2.4 Hyperparameter Tuning

Hyperparameter tuning, also known as hyperparameter optimization or model selection,

is the process of systematically searching for the best combination of hyperparameters to

optimize the performance of a machine learning model. Hyperparameters are parameters

that are not learned from data but are set before training. Examples of hyperparameters

for XGBoost include the learning rate, max depth, gamma, minimum child weight, and

column sample by the tree. In this research, the process of tuning these parameters has been

completed automatically using Bayesian optimization. Bayesian optimization is a method

for efficiently searching for the best set of hyperparameters of a model. The basic idea is

to use a probabilistic model, such as a Gaussian process, to model the function that maps

from hyperparameters to the performance of the model on a given task. Mathematically,
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Bayesian optimization can be formulated as an optimization problem in which we want

to find a set of hyperparameters that maximize the expected performance of the model,

given the current state of the probabilistic model. The expected performance is given by

the mean of the model, and the uncertainty in the model is represented by the variance. The

acquisition function, such as the expected improvement, is used to balance the exploration

and exploitation of the search space. To optimize the acquisition function, we optimize

the hyperparameters of the probabilistic model to maximize the expected improvement.

This is done by using gradient-based optimization algorithms, such as L-BFGS, or using

more sophisticated methods, such as Hamiltonian Monte Carlo. In summary, Bayesian

Optimization is a powerful method for tuning a machine learning model’s hyperparameters

by using a probabilistic model to guide the search for the best set of hyperparameters and

balancing exploration and exploitation using an acquisition function.

3.2.5 Feature Selection

Feature selection is a non-separable part of any algorithms that work with large-scale data

due to the curse of dimensionality. The existing thousand genes expressed in each indi-

vidual cell in the scRNA-seq dataset make it high-dimensional, which required a reduction

in the number of genes. The idea behind gene selection in cell type identification is mo-

tivated by the fact that cell types are often distinguished by only a few essential genes

known as biomarkers. The effectiveness of three general-purpose feature selection methods

was explored in cell-type classification problems in [109], including Analysis of Variance

(ANOVA) F-value, Chi-squared, and information gain. The findings show that information

gain yields the best biomarkers among all other models. Information gain is defined based

on impurity and entropy. The group with the higher information gain possesses less uncer-
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tainty. The importance of a feature is estimated by considering the information gained from

each feature. It is defined as the difference between before and after considering feature X

in the classification process, as shown in Equation (7.2) [88].

IG(X) = ∑iU(P(Ci))−E
[
∑iU(P(Ci|X))

]
(3.1)

where IG(X) represents the information gain from feature X . U represents uncertainty

function, P(Ci) represents the probability of class Ci before considering feature X , and

P(Ci|X) represents the posterior probability of class Ci after considering feature X .

On the other hand, the feature selection algorithm in the XGBoost considers sparsity

in the data and defines a default direction for missing values. Hence, it simplifies the clas-

sification process by utilizing inherent sparsity patterns in the data. Therefore, it divides

data into two supergroup samples with missing and present values. XGBoost exploits the

sparsity to make the computational complexity linear proportional to the number of existing

values in the input matrix [22].

3.2.6 XGBoost

Extreme Gradient Boosting, XGBoost, is a scalable and widely-used decision tree gradient-

boosted algorithm that offers state-of-the-art results on many machine learning problems.

It provides a statistical model that captures the dependency of large datasets considering

the sparsity of the data and has been shown in a wide range of standard classification appli-

cations [59]. XGBoost is reported as the top first-ranked method among the most popular

ones outperforming the other popular solutions. The second-ranked method, deep neural

nets, also obtains better results when combined with XGBoost [22]. Similar to the random
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forest, a Gradient boosting decision tree follows an ensemble learning algorithm and is un-

der a gradient tree-boosting framework. Ensemble learning algorithms combine multiple

models to obtain an average of all models.

The idea follows from the existing Gradient boosting algorithms with minor improve-

ments in the regularized objective. Unlike decision trees, regression trees include a contin-

uous weight on each leaf. For a given data, the regression tree uses the decision rules to

classify it into different groups in the leaves. It calculates the overall prediction score by

summing up the score weights in the leaves. The regularization objective function has to be

minimized as follows:

ι(φ) = ∑
i

l(ŷi,yi)+∑
k

Ω( fk) (3.2)

where Ω( f ) = γT +
1
2

λω
2

Here, ι is the loss function to calculate the difference between the predicted and actual

class, ŷi and yi, respectively. The term Ω controls the complexity of the model, i.e., the

regression tree functions. The term γ helps avoid over-fitting utilizing the final weights.

The regularized greedy forest (RGF) model [53] uses a similar regularization method, but

it is more complex. Parallelization is another positive point of XGBoost.

3.3 Results and Discussion

The first objective of this work was to evaluate the accuracy of the main classifiers (i.e.,

SVM, kNN, and RF) with a group of genes extracted from a pioneer general-purpose fea-

ture selection method, information gain. The second scenario was defined with genes ob-

tained using the inherent approach in the XGBoost tree, which uses the latent pattern in
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scRNA-seq data. We calculated the average of all measurements when comparing the

results. The number of features is determined based on the one with the highest final

predictive accuracy. Results are presented in Tables 3.6, 3.2 and 3.3. Overall, our find-

ings indicate that XGboost obtained the first rank among other methods in terms of ac-

curacy and recall. On the other hand, when looking at precision, SVM with informa-

tion gain feature selection is a top-ranked method. These results highlight three facts:

(1) XGboost is the best model when it comes to finding cell types in general (higher aver-

age accuracy). Since accuracy represents the overall correctness of the model and precision

shows how good a model is at predicting a specific cell type, it is more probable to fail

in finding specific cell types (less precision). More precisely, finding rare cell types with

a few number of cell-specific genes is more effective in exploiting SVM and information

gain.

(2) Our observations confirm that XGBoost is faster and more scalable in the case of large-

scale datasets, mainly because it uses its inherent feature selection simultaneously with the

classification and optimization phase. (3) Compared to a tree-based model without an en-

semble approach, i.e. random forest, XGBoost highlights the power of boosting strategy,

either in the classification phase or feature selection phase of cell-type annotation.

In addition, an extra validation step was performed to confirm the achievements in the

training phase in a more biologically meaningful scheme. The following subsections de-

scribe more details of our findings.

3.3.1 Classification Results

To explore the effect of the selected feature genes as a form of prior knowledge, we evalu-

ated the classifiers’ performance based on the different numbers of selected features. The
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Table 3.2: Comparison of classification results for Data2.
Method # Features Accuracy % Precision % Recall %
SVM + IG 400 98.09 79.04 98.08
RF + IG 400 96.06 65.86 94.76
kNN + IG 200 94.66 65.68 96.63
XGBoost + IG 400 99.67 75.63 96.62
XGBoost 400 99.78 76.83 99.22

optimal value of features, k, where k = 100,200,300, and 400 was determined by exploit-

ing a greedy approach. Observing the results of the classification methods for Data1 shown

in Table 3.6, all models reveal less misclassification rate with 400 features. In particular,

SVM combined with IG gives an accuracy of 98.08%, and Precision and Recall of 87.98%

and 96.76%, respectively. Additionally, k-NN presents a high accuracy of 96.11% when

using the IG feature selection method. Moreover, random forest combined with IG delivers

a high accuracy of 97.05%. XGBoost with and without IG obtains an average accuracy of

99.51% and 99.63%, respectively, which outperformed other methods. However, regarding

precision, XGBoost, with only its inherent feature splitting algorithm, is the best one in

the list and shows lower precision compared to the SVM with its external general-purpose

feature selection method. These two methods achieved recall values with a low difference

of close to zero. Additionally, the results of Data2 show almost an equivalent accuracy for

SVM and XGboost methods (Table 3.2). k-NN classification method achieves high accu-

racy (94.66%) with 200 features selected from IG, RF, and IG combined, achieving high

accuracy (96.06%) with 400 features. Lastly, SVM achieves high accuracy with 400 fea-

tures (98.09%) selected from the IG feature selection method. XGBoost coupled with IG

provides the best performance, with 99.67% accuracy.
For Data3, SVM outperformed the other two classification methods and achieved the

highest precision of 84.91% with 300 features selected from the IG feature selection method.

Regarding misclassification rate and recall, the results are very close to XGBoost. In gen-

eral, Data3 has fewer features, comparatively speaking. Hence, as mentioned earlier, XG-
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Table 3.3: Comparison of classification results for Data3.
Method # Features Accuracy % Precision % Recall %
SVM + IG 300 99.23 91.95 93.29
RF + IG 400 99.03 67.26 88.68
kNN + IG 400 98.60 73.63 88.01
XGBoost + IG 400 99.42 80.72 90.58
XGBoost 400 99.18 78.91 93.17

Boost is less effective when it comes to small-scale datasets.

3.3.2 Biological Validation

We performed an extra step of biological evaluation for detecting cell types using highly-

ranked features identified in the feature selection phase. Among a wide range of gene set

enrichment analysis (GSEA) databases, we chose the C8 collection of MSigDB, which

includes cell type signature’s gene sets [99]. We separated each class’s top 20 differentially

expressed genes for enrichment analysis. Table 3.7 shows the list of six pancreatic cell type-

specific gene sets identified by the list of marker genes extracted from the feature selection

phase on Data1. Additionally, as shown in Table 3.8, a maximum of 9 out of 20 overlapped

genes between our top 20 ranked genes and pancreas gene sets were highlighted in the list.

The enrichment analysis results of two other datasets are shown in Tables 3.4 and 3.5.

3.4 Conclusions

This study compares two recently reported pioneer classification models, XGBoost and

SVM, for discovering cell types using a list of marker genes. One with a blind feature

selection method, pure information gain, and the other one with data sparsity-aware in-

herent feature selection, GXBoost feature splitting algorithm. It is shown that considering
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Table 3.4: List of 17 out of 20 overlapped genes between our top 20 ranked genes and
pancreas gene sets (Data2).
Gene Symbol Description of Functionality
PMEPA1 prostate transmembrane protein, androgen induced 1

[Source:HGNC Symbol;Acc:HGNC:14107]
TACSTD2 tumor associated calcium signal transducer 2 [Source:HGNC

Symbol;Acc:HGNC:11530]
KRT7 keratin 7 [Source:HGNC Symbol;Acc:HGNC:6445]
SDC4 syndecan 4 [Source:HGNC Symbol;Acc:HGNC:10661]
SOX4 SRY-box transcription factor 4 [Source:HGNC Sym-

bol;Acc:HGNC:11200]
KRT19 keratin 19 [Source:HGNC Symbol;Acc:HGNC:6436]
FLNA filamin A [Source:HGNC Symbol;Acc:HGNC:3754]
FXYD3 FXYD domain containing ion transport regulator 3

[Source:HGNC Symbol;Acc:HGNC:4027]
IFITM3 interferon induced transmembrane protein 3 [Source:HGNC

Symbol;Acc:HGNC:5414]
SERPING1 serpin family G member 1 [Source:HGNC Sym-

bol;Acc:HGNC:1228]
COL18A1 collagen type XVIII alpha 1 chain [Source:HGNC Sym-

bol;Acc:HGNC:2195]
PCSK1 proprotein convertase subtilisin/kexin type 1 [Source:HGNC

Symbol;Acc:HGNC:8743]
HADH hydroxyacyl-CoA dehydrogenase [Source:HGNC Sym-

bol;Acc:HGNC:4799]
MAFA MAF bZIP transcription factor A [Source:HGNC Sym-

bol;Acc:HGNC:23145]
ARX aristaless related homeobox [Source:HGNC Sym-

bol;Acc:HGNC:18060]
IRX2 iroquois homeobox 2 [Source:HGNC Sym-

bol;Acc:HGNC:14359]
GC GC vitamin D binding protein [Source:HGNC Sym-

bol;Acc:HGNC:4187]
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Table 3.5: List of 15 out of 20 overlapped genes between our top 20 ranked genes and
pancreas gene sets (Data3).
Gene Symbol Description of Functionality
SPARC secreted protein acidic and cysteine rich [Source:HGNC Sym-

bol;Acc:HGNC:11219]
COL4A1 collagen type IV alpha 1 chain [Source:HGNC Sym-

bol;Acc:HGNC:2202]
FLT1 fms related receptor tyrosine kinase 1 [Source:HGNC Sym-

bol;Acc:HGNC:3763]
PECAM1 platelet and endothelial cell adhesion molecule 1

[Source:HGNC Symbol;Acc:HGNC:8823]
SERPINH1 serpin family H member 1 [Source:HGNC Sym-

bol;Acc:HGNC:1546]
COL4A2 collagen type IV alpha 2 chain [Source:HGNC Sym-

bol;Acc:HGNC:2203]
IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC

Symbol;Acc:HGNC:5476]
CDH5 cadherin 5 [Source:HGNC Symbol;Acc:HGNC:1764]
VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]
PMEPA1 prostate transmembrane protein, androgen induced 1

[Source:HGNC Symbol;Acc:HGNC:14107]
MSN moesin [Source:HGNC Symbol;Acc:HGNC:7373]
S100A16 S100 calcium binding protein A16 [Source:HGNC Sym-

bol;Acc:HGNC:20441]
ANXA2 annexin A2 [Source:HGNC Symbol;Acc:HGNC:537]
CD24 CD24 molecule [Source:HGNC Symbol;Acc:HGNC:1645]
NFIB nuclear factor I B [Source:HGNC Symbol;Acc:HGNC:7785]

Table 3.6: Comparison of classification results for Data1.
Method # Features Accuracy % Precision % Recall %
SVM + IG 400 98.08 87.98 96.76
RF + IG 400 97.05 77.48 96.52
kNN + IG 400 96.11 77.53 96.51
XGBoost + IG 400 99.51 80.45 91.68
XGBoost 400 99.63 88.41 96.38
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Table 3.7: List of eight gene sets correlated to the Pancreatic cell types of Data1 resulting
from the GSEA analysis.
Pancreas Gene Set Name Dataset
Muraro pancreas endothelial cell [362] Data1, Data2, Data3
Muraro pancreas mesenchymal stromal ce cell [681] Data1, Data2, Data3
Muraro pancreas acinar cell [732] Data1, Data2, Data3
Muraro pancreas ductal cell [1276] Data1, Data2, Data3
Muraro pancreas alpha cell [568] Data1, Data2
Descartes fetal pancreas islet endocricrine cells [170] Data1, Data2
Muraro Pancreas Epsilon Cell [44] Data2
Muraro Pancreas Delta Cell [250] Data2

Table 3.8: List of 9 out of 20 overlapped genes between our top 20 ranked genes and
pancreas gene sets (Data1).

Gene Symbol Description of Functionality
IFITM3 interferon induced transmembrane protein 3 [Source:HGNC

Symbol;Acc:HGNC:5414]
IGFBP4 insulin like growth factor binding protein 4 [Source:HGNC

Symbol;Acc:HGNC:5473]
IFITM2 interferon induced transmembrane protein 2 [Source:HGNC

Symbol;Acc:HGNC:5413]
COL4A1 collagen type IV alpha 1 chain [Source:HGNC Sym-

bol;Acc:HGNC:2202]
SPARC secreted protein acidic and cysteine rich [Source:HGNC Sym-

bol;Acc:HGNC:11219]
IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC

Symbol;Acc:HGNC:5476]
VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]
TM4SF1 transmembrane 4 L six family member 1 [Source:HGNC Sym-

bol;Acc:HGNC:11853]
HLA-B ”major histocompatibility complex, class I, B [Source:HGNC

Symbol;Acc:HGNC:4932]”
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the data with its latent sparsity pattern significantly enhances the overall accuracy of the

predictive models. Since the high degree of sparsity in scRNA-seq data arises from false

technical zeros and true biological zeros, exploiting the patterns of existing and non-existing

values for selecting biomarkers makes it more precise, faster, and more meaningful. Our

study particularly demonstrates the effectiveness of ensemble tree models with an inherent

sparsity-awareness feature selection approach in the cell-type automatic annotation prob-

lem. Biological validation of the results confirmed the overall accuracy of the prediction.

Moreover, the lack of canonical biomarkers for certain cell types makes it more com-

plicated to find rare cell types using the existing genes in the list of top-ranked ones. In this

case, following a manual lookup in the gene set repositories of related genes in gene sets

could support the study and the results. Biologically speaking, the relation among genes is

defined by structural, functional or evolutionary information. This work provides a guide-

line for researchers to select and apply the well-suited tool in annotating cell types using

associated genes or uncovering homogeneous markers.



Chapter 4

Cell type identification via convolutional

neural networks and self-organizing

maps on single-cell RNA-seq data

4.1 Introduction

Single-cell RNA-seq (scRNA-seq) profiles the unique gene expression of individual cells.

Differentially expressed genes lead to cell heterogeneity in different tissues, and as such,

tumour heterogeneity is a common phenomenon [30]. In this regard, scRNA-seq can be

helpful in detecting unknown tumours, and consequently, improving therapies and drug

discovery. One of the main steps to perform an in-depth analysis of scRNA-seq data is cell-

type classification and identification. Employing supervised learning techniques on scRNA-

seq data is an effective approach to this end. First, by incorporating cell types in annotated

datasets, manual annotation of cell groups is not required and identifying cell types can be

done automatically. Secondly, supervised learning techniques can take advantage of feature

67
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selection in a grid search approach to select the most relevant features with high accuracy.

Finally, previous studies revealed that handling the batch effect problem is less challenging

in supervised methods.

In this study, we propose a deep learning approach that combines representation learn-

ing via self-organizing maps and deep learning classification using a convolutional neural

network to identify human pancreas cell types on annotated scRNA-seq datasets. These

techniques have been successfully applied to multi-omics cancer data ( [35]). In this work,

they have been found suitable and very efficient for sc-RNA-seq data analysis as well.

Fig. 4.1 represents the block diagram of the main components of the proposed method. Af-

ter performing standard pre-processing steps, discussed in [68], including basic filtering,

normalization, log transformation, and scaling, we followed the feature selection step to

find the most informative genes. In this study, we used the Correlation-based Feature Se-

lection (CFS) method, and thirteen most relevant genes were selected by maintaining high

accuracy. Then, using the selected genes and Self-Organizing Maps (SOMs) algorithm, we

create a ”template” to generate gene similarity networks (GSNs) of input cells. A SOM

is a data structure that allows us to investigate the intrinsic relationships among samples

of a dataset. As such, the relationships among data points can be visualized in a way that

similar points be placed in the same group in the resulting graph (Fig. 4.1 step 1, ”Create

SOM template”). We then create GSN for each cell by coloring template using correspond-

ing gene expression values. Ideally, the GSN reveals the closeness of the most informative

genes in terms of biological pathways or functionality. Therefore, the ”colored template”

shows a representation of each cell based on the relationship among their marker genes.

This step is shown in Fig. 4.1, step 2, ”Create images”. Finally, we detected cell types in

the classification step using created images (the final step in Fig. 4.1).
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Figure 4.1: Block diagram with the main components of proposed method. Step (1). The
relationships among data points can be visualized in a way that similar points be placed in
the same group in the resulting graph via Self-Organizing Maps. Step (2). The ”colored
template” shows a representation of each cell based on the relationship among their marker
genes. In this figure, two sample images are presented. We follow the standard color
scheme of images in which the three color channels include red, green, and blue, where
each channel is represented via 256 distinct values. In this work, we used gene expression
values as color channels to color ”templates”. It is worth mentioning that due to varying
gene expression values in different cells, the marker genes are not equally informative for all
cells. Step (3). Detecting cell types in the classification step. The CNN uses the transformed
images as inputs to classify cells into different cell types.

4.2 Materials and Methods

4.2.1 Dataset

A public annotated scRNA-seq dataset of the human pancreas extracted from NCBI’s Gene

Expression Omnibus [32] (GSE84133) [11], is used to evaluate the classification perfor-

mance. The data was obtained by sequencing RNA in cells from the pancreas organ of

different individuals and generated using inDrop protocols under the Illumina HiSeq 2500

platform. This dataset has been widely used in the publications of many scRNA-seq stud-
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Table 4.1: Summary of the Pancreas dataset.
No. of Cell Types No. of Cells No. of Genes
14 8,569 20,125

ies [31], [57], [7], and [93]. The data including the transcriptomes of over 12K single

pancreatic cells from four human donors and two mice. Cells in these six sub-populations

are composed of a uniform distribution of fifteen distinct cell types including rare ghrelin-

expressing epsilon-cells, vascular cells, activated pancreatic stellate cells, exocrine cell

types, quiescent, Schwann cells, and four types of immune cells. As such, we used the

data taken from one human donor with accession number GSM2230757 as a resource with

fourteen distinct cell types to model the case wherein a new data point projected onto an

annotated data set from the same tissue. The dataset includes gene expression profiles of

20,125 genes in 1,937 pancreatic cells. The statistics of dataset are listed in Table 5.1.

4.2.2 Data Pre-processing

This step includes basic filtering, normalization, log transformation, and scaling. To per-

form pre-processing, we followed the standard pre-processing pipeline [68] and [45] in

the Python package, Scanpy [118]. First, we filtered out 5,387 low-expressed genes are

detected in less than three cells, obtaining 14,739 genes. Investigating the distribution of

the data shows low-quality cells. Based on Fig. 4.2, the number of genes expressed in the

count matrix is mainly between 500 and 4,000 genes, and the distribution of several ex-

pressed genes over total count per cell is dense for less than 4,000 genes. As such, we

filtered seven genes, i.e. the points above 4,000, in Fig. 4.2 y-axis, to remove those low-

quality cells. Since the scRNA-seq data are expressed at different levels, normalization is

desirable. The normalization applied in this study consists of translating numeric columns’
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values in a dataset to a standard scale without distorting the ranges of values. We normal-

ized the data using the Counts Per Million (CPM) normalization (Equation 4.1) combined

with logarithmic scaling on the data:

CPM = readsMappedToGene× 1
totalReads

×106 (4.1)

where totalReads is the total number of mapped reads of a sample, and readsMappedToGene

is the number of reads mapped to a selected gene. After per-gene quantification, we selected

a subset of highly-variable genes to use in downstream analyses. To this end, we chose a

routinely used strategy mentioned in [5], and defined the set of highly-variable genes given

a normalized dispersion amount greater than 0.5 to obtain 2,546 genes.

Figure 4.2: Distribution of genes in a read count matrix per total counts of reads. The
number of genes expressed in the count matrix is mainly between 500 and 4,000 genes, and
the distribution of several expressed genes over total count per cell is dense for less than
4,000 genes. As such, we filtered seven genes, i.e. the points above 4,000, to remove those
low-quality cells.



CHAPTER 4. 72

4.2.3 Feature Selection

An essential step in machine learning methods is to identify a representative set of features

that can largely affect the performance of a classifier and its computational complexity. It

focuses on selecting the most informative features from a given dataset. In scRNA-seq data

analysis, feature selection or gene extraction becomes an essential component due to the

curse of dimensionality. This step is essential to avoid the problem of curse of dimension-

ality, and is achieved by dropping noise such as Mitochondrial genes, housekeeping genes,

and other uninformative genes in the underlying feature vectors. The core motivation be-

hind gene selection in cell type identification is that cell types are often distinguished from

each other by only a few significant genes known as marker genes.

In this study, we used the Correlation-based Feature Selection (CFS) evaluation method

for feature selection and then, found the list of marker genes using the reduced number of

genes.

Correlation-based Feature Selection

Correlation-based feature selection (CFS) consists of ranking feature subsets in a search

space including all possible feature subsets, an appropriate correlation measure, and a

heuristic search strategy, GreedyStepwise. The CFS method selects those subsets of fea-

tures that are strongly correlated with one of the classes, yet uncorrelated with each other.

In this study, we consider genes as feature sets and cell types as classes. Irrelevant features

are disregarded because of their low correlation with the classes. Redundant features are

strongly correlated with one or more of the resting features, and so they are removed. The

approval of a feature relies on the latitude to which it predicts only those classes that are

not predicted by other features.
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The heuristic ”merit” of a feature subset S, MS, is given based on Equation 4.2:

Ms =
krc f

k+ k(k−1)r f f
(4.2)

where S is a feature subset that encompassing k features. Also, rc f is the mean correlation

between feature ( f ∈ S) and classes, and r f f is the average of inter-correlation between two

features.

We found 2,000 genes as the most informative genes on normalized data using CFS

method.

4.2.4 Creating a Gene Similarity Network via Self-Organizing Maps

To find marker genes, the method starts with the feature selection method discussed in the

previous section. In this step, the number of features is initially set to 1,000. Finally, the

thirteen marker genes were selected by maintaining high accuracy to create a gene similarity

network via Self-Organizing Maps (SOM).

The SOM algorithm is mainly used for the visualization of the intrinsic relationships

among data points. The input nodes in a SOM represent dimensions in the dataset and the

output nodes are typically two-dimensional. Consider dataset S1 = s1 j
(i)(n,m)

i, j=1, which con-

tains genes j = 1,2,3, ...,m and cells i = 1,2,3, ...n. A SOM is learned via an unsupervised

clustering algorithm, which takes input cell vectors, and groups them based on similarities

among their features (genes). The resulting graph is considered as a GSN on which similar

points are placed in the same group and the distances among points representing the simi-

larities in terms of biological pathways or functionality. In this study, we use the concept of

”template” instead of GSN. As such, the ”template” shows a representation per cell based
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on the relationship among the most relevant genes. This step is shown in Fig. 4.1, step 1,

”Create SOM template”.

4.2.5 Cell Type Classification

The original idea of CNN is to map the image data to output the corresponding class. Al-

though from a machine learning point of view scRNA-seq datasets are not presented in

image format, we transform the high-dimensional sample points onto a low-dimensional

map. Afterwards, to create an image per cell, the SOM ”templates” are colored using the

corresponding gene expression values of selected marker genes for every single-cell in the

input data (step 2, Create images, in 4.1). We follow the standard color scheme of im-

ages in which the three color channels include red, green, and blue, where each channel

is represented via 256 distinct values. In this work, we used gene expression values as

color channels to color ”templates”. It is worth mentioning that due to varying gene expres-

sion values in different cells, the marker genes are not equally informative for all cells. In

the end, we have ”colored templates” as output images revealing the relationships among

marker genes for each cell separately. Afterwards, the CNN uses these transformed images

as inputs to classify cells into different cell types (Final step in 4.1).

We use somNet, a Python package that contains a SOM implementation, to create the

templates. We update the SOM network neurons based on the Euclidean distance between

gene gi j and the feature center c j, as in Equation 4.3:

d j =

√
n

∑
i=1

(gi j − ci j) (4.3)

where n is the number of samples, j is the current gene feature in the feature vector V =

{v1,v2, ...,v j,vm}, and m is the number of features. In somNet, neurons with smaller d j
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values are declared the winners of the competition to be the representatives of the data. In

other words, that neuron is known as ”best matching unit” (BMU).

In addition, to avoid overfitting, we employed regularization and optimization methods

in our trained model. To this end, we applied the dropout ratio of 0.2 in the first and second

convolution layers, and 0.5 in the third convolution layer. Due to the sparsity of scRNA-seq

data, the ADAM optimizer was applied during the training phase for faster convergence.

We used Keras 2.4.3 on TensorFlow 1.15.2 to learn this model. We ran the code on

Google Colab utilizing TPU with 8 cores. Also, we used WEKA to apply the feature

selection step to the dataset.

4.3 Results and Discussion

4.3.1 Experimental Results

Thirteen marker genes of the ”template” which found by the SOM are the following: ENG,

PAX6, FKBP1A, PCSK2, GPX3, RBP4, HLA-B, S100A11, IFITM3, TM4SF1, IL32,

TM4SF4, and IRX2. For example, Fig. 4.3 shows how the genes are arranged in the GSN

template for a sample from Class 2 after coloring.

We trained our model on the created images per cell through the structure depicted in

Fig. 4.1. The model was run 300 times inside 10-fold cross-validation, where the model

learns from 90% of the samples and is tested on the remaining 10%. We evaluated our

experimental results by four commonly used classification performance metrics, namely

accuracy, precision, recall and F1-score. We calculated the performance of each class sepa-

rately and then reported the average performance. Findings revealed stable and high predic-

tion results with an average of 98-99.8% accuracy in a two-CONV layer CNN architecture.
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Figure 4.3: Image created for one single sample from Class 2. Thirteen marker genes
which found by the SOM are arranged in the GSN template after coloring. We follwo the
standard color scheme of images in which the three color channels include red, green, and
blue, where each channel is represented via 256 distinct values. In this work, we used
gene expression values as color channels to color ”templates”. It is worth mentioning that
due to varying gene expression values in different cells, the marker genes are not equally
informative for all cells.

Table 4.2: Performance metrics of proposed method.
Precision Recall F1-score
0.97 0.96 0.97

Also, other performance metrics, including precision, recall and F1-Score were in a high

range, presented in Table 4.2. High prediction metrics ranging from 94%-100% for preci-

sion, 89%-100% for recall, and 94%-100% for F1-score can be seen across various classes.

However, the average accuracy of our model is 98%.

The detailed structure of the CNN network that we used for our experiments is as fol-

lows:

• 32 windows of size 3 × 3 pixels in the first convolution layer followed by a rectified

linear operator, ReLU, take the input samples.

• A max-pooling layer takes the maximal value of 2 × 2 regions with two-pixel strides

and a local response normalization layer.
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Figure 4.4: The plot of decreasing loss score by increasing the number of epochs ranging
from 0 to 300. It can be observed that the model reaches its highest accuracy after 150
epochs.

• The output of the previous layer is then passed by another convolution layer contain-

ing 32 windows of size 3 × 3 pixels followed by ReLU, a max-pooling layer, and a

normalization layer in which hyperparameters are the same as before.

• Two fully connected layers, FC, composed the next layer. The first FC layer contains

128 neurons, followed by ReLU with a dropout regularization technique. The second

FC layer receives the output of the former FC layer and the output is six neurons,

followed by ReLU with dropout.

• Finally, six output of the second FC is fed to a Softmax layer that assigns a probability

to each cell type, where the Softmax selects the class with the maximum probability.

In each CNN, the initial learning rate was set to 0.05. Fig. 4.4 depicts the plot of

decreasing loss score by increasing the number of epochs ranging from 0 to 300. It can be

observed that the model reaches its highest accuracy after 150 epochs.

The findings show that only 13 marker genes are enough to obtain very accurate predic-

tions. As such, the proposed method shows a lot of potential to apply it to predict various



CHAPTER 4. 78

Table 4.3: Muraro Pancreas Acinar Cell gene set along with gene description.
Gene Description
IFITM3 interferon induced transmembrane protein 3 Source:HGNC

Symbol;Acc:HGNC:5414
FKBP1A FKBP prolyl isomerase 1A Source:HGNC Sym-

bol;Acc:HGNC:3711
HLA-B major histocompatibility complex, class I, B Source:HGNC

Symbol;Acc:HGNC:4932
IL32 interleukin 32 Source:HGNC Symbol;Acc:HGNC:16830
TM4SF1 transmembrane 4 L six family member 1 Source:HGNC Sym-

bol;Acc:HGNC:11853
S100A11 S100 calcium binding protein A11 Source:HGNC Sym-

bol;Acc:HGNC:10488

cell types on a larger scale. The results are confirmed and validated by investigating the lit-

erature for the target cell types. Besides, the other significant results of using the proposed

method on cell type identification are the power of finding marker genes automatically with

high accuracy without searching in the literature. The results can be confirmed and vali-

dated by examining biological literature for the target cell types. Biological validation and

interpretation of our results are discussed in the next section.

4.3.2 Biological validation

Investigating GSEA [99], we found six and five genes (overall 11 genes) related to Pancreas

cell types with our thirteen highly-variable genes found in the reduced space (template) on

two different gene sets, namely ’Muraro Pancreas Acinar Cell’ and ’Muraro Pancreas Alpha

Cell’, respectively. These findings highlight the power and effectiveness of the proposed

method to identify marker genes in scRNA-seq datasets. The genes related to two different

cell types contained in our dataset, Acinar and Alpha, along with the description of their

functionality are presented in Tables 4.3 and 4.4, respectively.
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Table 4.4: Muraro Pancreas Alpha Cell gene set along with gene description.
Gene Description
GPX3 glutathione peroxidase 3 [Source: HGNC Symbol; Acc:

HGNC: 4555]
TM4SF4 transmembrane 4 L six family member 4 [Source: HGNC Sym-

bol; Acc:HGNC: 11856]
PAX6 paired box 6 [Source: HGNC Symbol; Acc: HGNC: 8620]
IRX2 iroquois homeobox 2 [Source:HGNC Sym-

bol;Acc:HGNC:14359]
PCSK2 proprotein convertase subtilisin/kexin type 2 [Source:HGNC

Symbol;Acc:HGNC:8744]

Thus, our method provides a new tool for discovering novel cell types as well as relevant

genes.

4.4 Conclusion and Future Work

We have proposed a deep learning approach to identify cell types from single-cell RNA-seq

data. Our proposed method uses a combination of a self-organizing map and a convolutional

neural network to perform dimensionality reduction, feature selection, and classification,

concurrently. By creating a template using the SOM learning algorithm, which contains the

most informative genes in the gene similarity network template, we found the transformed

representation of cells using only 13 genes on a two-dimensional space. Next, using a

CNN, we detected populations of cell types in the human pancreas on the test dataset with

an accuracy rate of 98%.

As a future extension, scRNA-seq data can be integrated with other data such as cell

location, which is usually missed during the single-cell sequencing process, to obtain more

reliable results in large-scale experiments. Indeed, to find all cell types in the body, both

currently known and novel unknown cell types, it is required to provide multi-omics in
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the input layer. Moreover, the proposed approach can be considered as an unsupervised

clustering algorithm, because of the competitive and incremental learning nature of SOMs.

Therefore, a large number of unlabeled samples can be used in conjunction with a small

number of labelled scRNA-seq data to cell type identification on larger scale data.



Chapter 5

Comparative Analysis of Supervised Cell

Type Detection in Single-Cell RNA-seq

Data

5.1 Introduction

Tumor heterogeneity is a common phenomenon in studying different types of cancer. In

this regard, novel techniques such as single-cell RNA sequencing (sc-RNA sequencing)

can be used to detect unknown tumors and consequently drug discovery, better treatment,

diagnosis, and prognosis. Thus, one of the first fundamental steps to perform an in-depth

analysis of single-cell sequencing data consists of identifying cell types. Hidden diversity

and characteristics of a particular cell type can be found via deferentially expressed genes

or marker genes.

Supervised or unsupervised learning approaches can effectively be used to identify vari-

ous cell types depending on the dataset, annotated or unannotated, respectively. Typically,
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in single-cell RNA-seq downstream analysis, clustering techniques are used to reveal well-

separated clusters of cells and annotate them manually with different cell types using canon-

ical markers and reference databases. Different clustering methods try multiple parameters

to achieve higher performance. Setting up the clustering parameters, such as the number

of clusters, is a challenging point [108]. For example, several clustering methods are com-

pared in [31]. Among them, SC3 [56], CIDR [65], Ascend [96], SAFE-clustering [123],

and TSCAN [51] all posses built-in methods for estimating the optimal number of clus-

ters. However, Ascend and CIDR underestimated the number of clusters, whereas SC3

and TSCAN tend to overestimate. Moreover, manually annotating the obtained clusters us-

ing differential expression analysis is time-consuming and non-reproducible in clustering

methods.

On the other hand, classification techniques have increasingly developed to identify cell

types automatically instead of manually annotating clusters of cells. In addition to this,

different feature selection techniques can be used to avoid the “curse of dimensionality”

and select a reduced number of the significant marker genes. A comparative study in abde-

laal2019comparison discussed 22 supervised techniques, including random forest classifier

(RF), k-nearest neighbor (k-NN), support vector machine (SVM). One of the challenges

covered in this study is feature selection. Three different cell-specific purpose feature se-

lection techniques have been used, including random gene selection, highly variable genes

(HVG) selection, and selecting genes based on the number of dropouts (zero expression).

They benchmarked their experiments based on the number of features. The findings show

that the performance of the classifiers highly depends on the number of cells and genes,

selected marker genes, and dataset complexity. In this study, we used general-purpose

techniques, instead of cell-specific ones, to compare three state-of-the-art feature selection
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techniques combined with three popular classifiers to complement the feature selection step.

We also biologically validate cell type marker genes identified by the best feature selection

method.

5.2 Materials and Methods

5.2.1 Framework

Three general-purpose feature selection methods, namely ANOVA F-value, Chi-squared,

and information gain (IG), along with three state-of-the art classification methods, includ-

ing SVM, k-NN, and RF, are used in our experiments to identify cell types automatically.

A comparative study on scRNA-seq data is done in this work. To this end, we followed the

pipeline depicted in Fig. 5.1. First, we performed pre-processing steps, including filtering,

normalization, and scaling. Then, to find the best parameters for the classification methods,

hyperparameter tuning and optimization were done on pre-processed data. The most in-

formative features were extracted in the feature selection step. Three classifiers combined

with three feature selection algorithms were evaluated to find the best model. Finally, cell

types are predicted by the method with higher accuracy.

It is worth mentioning that although there a other state-of-the-art classification methods

including deep learning ones, feeding this group of methods require rich labeled datasets

which is the main limitation of sc-RNA seq datasets. We used the Scikit-learn in Python

version 3.7 to perform the feature selection and classification methods [83].
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Figure 5.1: Pipeline overview of the experiments.
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Table 5.1: Details of the datasets studied in this work.
Dataset Tissue Accession # Cell

Types
#

Cells # Genes
#

Baron-human1
(Data1)

Human-
Pancreas

GSM2230757 8 1,937 20,125

Baron-human2
(Data2)

Human-
Pancreas

GSM2230758 8 1,724 20,125

PBMC (Data3) Prepheral Blood 10X V2 9 23,154 22,280

5.2.2 Dataset

Public, annotated scRNA-seq data sets with the accession number of GSM2230757 and

GSM2230758 under series GSE84133 [10], and PBMC 10X V2 were extracted from NCBI’s

Gene Expression Omnibus [32] and used in this article to evaluate the classification perfor-

mance. These datasets include transcripts of pancreatic and peripheral blood cells from hu-

man donors. Pancreatic cells are divided into eight groups of previously characterized cell

types: alpha, beta, acinar, delta, quiescent, activated pancreatic stellate cells, endothelial,

and ductal cells. The existence of these cell types is validated with immuno-histochemistry

stains [10] so that it can be a good resource for the discovery of cell types. Also, the PBMC

dataset includes nine different cell types. The details of datasets are listed in Table 5.1.

5.2.3 Data Pre-processing

Raw read count matrices generated using next-generation sequencing technologies contain

low-quality sequencing information based on the expression levels. Pre-processing step

(Fig. 5.1) is to ensure removing any weakly expressed genes or low-quality cells, includ-

ing damaged, dead, or degraded during sequencing, and are represented by a low number

of expressed genes in the read count matrices. To perform pre-processing, we followed
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the standard pre-processing pipeline in scRNA-seq data analysis [68]. According to this

pipeline, cells with less than 200 expressed genes, and genes expressed in less than three

cells are filtered out. In Data1, for example, we first filtered out 5,387 low-expression genes

that were detected in less than three cells and kept 14,739 genes. Further analysis of the

data distribution showed low-quality cells and led to removing seven cells. After per-gene

quantification, we selected a subset of highly variable genes to use in downstream analyses.

To this end, we chose a common strategy routinely used [5] and defined the set of highly

variable genes given a normalized dispersion higher than 0.5 after normalization and ob-

tained 2,546 genes at the end. We used Scanpy [118], a specifically designed package to

work with scRNA-seq datasets, for pre-processing steps.

5.2.4 Feature Selection

In scRNA-seq data analysis, feature selection or gene selection can be an essential compo-

nent due to the curse of dimensionality. The primary motivation behind feature selection

or gene selection in cell type identification is that cell types are often distinguished by

only a few essential genes known as biomarkers. This study investigated three general-

purpose feature selection approaches, including Analysis of Variance (ANOVA) F-value,

Chi-squared, and information gain (IG) to select a sorted list of genes. The best number

of genes for the training model is chosen by calculating the model’s performance for top

k genes where k = 100,200,300, and 400. We evaluated the accuracy of the methods by

varying the number of marker genes based on different computational approaches.
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Analysis of Variance (Anova) F-value

ANOVA F-value assumes that there is a linear relationship between variables and target,

and also the variables are normally distributed. It uses F-tests to statistically measure the

ratio of two variances, i.e. how far the data points are dispersed from the mean. The results

show the statistical significance of the test. F-value is a very important part of ANOVA and

is calculated by the Equation 5.1.

F =
σ2

1

σ2
2

(5.1)

where F is the F-value, σ1 is the larger sample variance and σ2 is the smaller sample

variance.

Chi-squared

Pearson’s Chi-squared test or just Chisquared test is a statistical test applied to the categor-

ical features to test the relationships among them. It is suited for non-negative variables

and mostly boolean, frequencies, or counts. It uses frequency distribution of the features

to determine the correlation or association among them. The test calculates chi-squared

statistics i.e. the expected frequencies of the observations and then determines whether the

observed frequencies match the expected frequencies. The Equation 5.2 shows how this

method calculates the correlation among features.

χ
2 = Σ

(ObservedFrequency−ExpectedFrequency)2

Expected
(5.2)

where χ2 is Chi-squared.
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Information Gain

Information Gain is defined in terms of uncertainty. The lesser the information gain, the

higher the uncertainty. If IG(X) > IG(Y ), it means feature X will be better and preferred

where IG(X) represents the information gain from feature X . The relevance of feature is

estimated by considering the information gain for each feature and choosing the one with

maximum value. It is defined as the difference between prior uncertainty and uncertainty

after considering feature X as shown in Equation 7.2 [88].

IG(X) = ∑iU(P(Ci))−E
[
∑iU(P(Ci|X))

]
(5.3)

where U represents uncertainty function, P(Ci) represents probability of class Ci before

considering feature X and P(Ci|X) represents posterior probability of class Ci after consid-

ering feature X .

5.2.5 Evaluation Metrics

We applied the most commonly used evaluation metrics, namely accuracy, precision, recall,

and F-score to systematically estimate and compare the performance of different methods.

To this end, we used 10-fold cross-validation to test and train the model.

5.3 Results and Discussion

5.3.1 Parameter Optimization

To select the best parameters of the classifiers (K-NN, RF, and SVM), we used a Bayesian

model-based optimization approach with Gaussian as an adaptive hyperparameter search.
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It is a fast approach compared to grid search and random search. We employed Bayesian

search to tune hyperparameters, which rather than scanning the hyperparameter space mind-

lessly (as in the grid or random search), this strategy emphasizes the use of knowledge ob-

tained in one step to discover the next set of hyperparameters that would improve model

performance. This method, in an iterative manner, continues until the optimal result is

obtained. Since it prioritizes hyperparameters that appear more promising from previous

steps, the Bayesian technique is able to find the best hyperparameters in less time (fewer

iterations) than grid search and random search.

The best parameter based on the optimization results for each classification method for

Data1, Data2 and Data3 are presented in Table 5.2.

Table 5.2: The best parameters for each method obtained using Bayesian Optimization for
the datasets.

Method Best Parameters Found
Data1

K-NN k= 5
RF n estimators = 359 max depth = 41 criterion = ’gini’ max f eatures

= ’sqrt’
SVM C = 0.5 gamma = 0.2 kernel = ’linear’

Data2
K-NN k = 4
RF n estimators = 100 max depth = 1 criterion = ’gini’ max f eatures

= ’sqrt’
SVM C = 0.5 gamma = 0.2 kernel = ’linear’

Data3
K-NN k = 6
RF n estimators = 495 max depth = 54 criterion = ’gini’ max f eatures

= ’sqrt’
SVM C = 0.1 gamma = 0.2 kernel = ’poly’ degree = 2

For selecting the best value of k for the k-NN classifier, the following values of the k =

(4,5,6) in the search space are inspected. The quality of the result is determined by k with
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the highest average accuracy of the three feature selection methods.

For RF, the following values for the search space are investigated: n estimators = (100,

500), max f eatures = (sqrt, log2), max depth = (1, 60) and criterion = (gini, entropy).

The n estimators parameter are the number of trees to be considered. The parameter

max f eatures are the maximum number of features to be considered for individual tree.

max depth parameter is the maximum depth of the tree where maximum depth is defined

as the longest path from root node to the leaf node and the parameter criterion is the func-

tion which is used to evaluate the quality of split.

RF, by default, uses built-in feature selection methods, including ’Ginni’ and ’entropy’.

To ensure that each method uses its approach for classification, we allowed RF to use this

ability during the training process with a list of selected features using the feature selection

methods.

For SVM, the following values for the search space are inspected: C = (0.1,0.5,1),

gamma = (0.1, 0.2, 0.3), degree = (1,8) and kernel = (rb f , poly, linear). The regularization

parameter, aka the cost of misclassification, C, is a degree of importance that is given to the

misclassifications error. SVM seeks a trade-off to maximize the margin among the classes

and minimize the number of misclassifications. The larger the value of C, the larger is the

miss-classification cost. Kernels are functions used to solve non-linear problems by making

a curvative hyperplane to separate classes. The parameter gamma decides the curvature in

the decision boundary in non-linear kernels, where a large value of gamma means more

curvature, i.e., softer and tends to overfit the data.
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5.3.2 Classification Results

To investigate the effect of the selected features (genes) as a form of prior knowledge, we

evaluated the performance of the classifiers based on the different number of selected fea-

tures using three different approaches. We examined k features where k = 100,200,300,

and 400 to determine the best number of features to optimize the performance of the classi-

fier. The best value of k with the highest accuracy of a combination of each feature selection

and classification method for Data1 is shown in Table 5.3.

For Data1, the k-NN classification method results reveal a high accuracy of 96.11%

with 400 features when using the Information Gain feature selection method. The RF clas-

sification method for Data1 indicates high accuracy with 400 features for all three feature

selection methods. A combination of this classifier with IG gives the best accuracy of

97.05%. Observing the results of the SVM classification method for Data1, all three fea-

ture selection methods reveal high accuracy with 400 features. Again, SVM combined with

IG gives the highest accuracy of 98.08%. Among all the combinations, SVM combined

with IG shows highest performance with 98.08% accuracy for Data1.

For Data2 among all the combination, k-NN classification method achieves high ac-

curacy (94.66%) with 200 features selected from IG feature selection method, RF and IG

combination achieves high accuracy (96.06%) with 400 features, and lastly, SVM achieves

high accuracy with 400 features (98.09%) selected from IG feature selection method. For

Data2, SVM coupled with IG provides the best performance, with 98.09% accuracy.

For Data3, SVM achieves highest performance (84.91% accuracy) with 200 features

selected from Anova feature selection method. In general, SVM outperformed the other
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Table 5.3: Classification accuracy obtained by three classification methods combined with
feature selection methods through selected features for Data1.

Method Features Accuracy %
k-NN

ANOVA F-value 400 95.65
Chi-squared 400 93.99
Information Gain 400 96.11

Random Forest (RF)
ANOVA F-value 400 96.74
Chi-squared 400 96.84
Information Gain 400 97.05

SVM
ANOVA F-value 400 97.72
Chi-squared 400 96.79
Information Gain 400 98.08

two classification methods for all three datasets.

To generalize our experiments, we used two datasets with the same number of genes

and the different number of cells (i.e., Data1 and Data2), and another dataset with the

higher number of cells and genes (i.e., Data3) comparatively. Other metrics are presented

in Figures 5.3.2, 5.3, and 5.4.

Among all combinations of classification and feature selection methods, SVM com-

bined with IG significantly outperformed other approaches. High accuracy of 98.08% for

Data1 means that the features that have been selected are highly correlated and significantly

help fulfill our primary objective.

Our results highlight the power of the SVM classifier combined with the IG as the best

approach. Also, it shows that the performance of classifiers highly depends on the selected

marker genes using different techniques.
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Figure 5.2: Average performance of the SVM classifier combined with three feature selec-
tion methods.
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Figure 5.3: Average performance of the k-NN classifier combined with three feature selec-
tion methods.
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Figure 5.4: Average performance of the RF classifier combined with three feature selection
methods.

5.3.3 Biological Validation

We evaluated the performance of our method for detecting cell types using the high-ranked

features or deferentially expressed genes through investigating the current literature and

reference databases. By investigating GSEA [99] on the result of Data1, we found 9 out of

20 overlapped genes between Pancreas gene sets, ”Muraro Pancreas Endothelial Cell”, and
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Table 5.4: Muraro Pancreas Endothelial Cell gene set.
Gene
Symbol

Description

IFITM3 interferon induced transmembrane protein 3 [Source:HGNC Sym-
bol;Acc:HGNC:5414]

IGFBP4 insulin like growth factor binding protein 4 [Source:HGNC Sym-
bol;Acc:HGNC:5473]

IFITM2 interferon induced transmembrane protein 2 [Source:HGNC Sym-
bol;Acc:HGNC:5413]

COL4A1 collagen type IV alpha 1 chain [Source:HGNC Sym-
bol;Acc:HGNC:2202]

SPARC secreted protein acidic and cysteine rich [Source:HGNC Sym-
bol;Acc:HGNC:11219]

IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC Sym-
bol;Acc:HGNC:5476]

VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]
TM4SF1 transmembrane 4 L six family member 1 [Source:HGNC Sym-

bol;Acc:HGNC:11853]
HLA-B ”major histocompatibility complex, class I, B [Source:HGNC Sym-

bol;Acc:HGNC:4932]”

top genes found by our method. The list of 9 overlapped genes, along with the description of

their functionality, is depicted in Table 5.4. Moreover, we conducted a biological validation

on the other datasets, Baron Human2 (Data2) and PBMC(Data3). The results are depicted

on Tables 5.5 and 5.6. Overall, our results show the power of our method to identify the

cell types using a list of marker genes in scRNA-seq datasets.

5.4 Conclusion and Future Work

This work focuses on the supervised identification of cell types using feature selection

methods combined with classification techniques on an annotated dataset. Investigating

similarities among features using three state-of-the-art feature selection methods to reduce
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Table 5.5: Muraro Pancreas Ductal Cell gene set.
Gene Symbol Description
CDC42EP1 CDC42 effector protein 1 [Source:HGNC Sym-

bol;Acc:HGNC:17014]
PMEPA1 ”prostate transmembrane protein, androgen induced 1

[Source:HGNC Symbol;Acc:HGNC:14107]”
TACSTD2 tumor associated calcium signal transducer 2 [Source:HGNC

Symbol;Acc:HGNC:11530]
KRT7 keratin 7 [Source:HGNC Symbol;Acc:HGNC:6445]
SDC4 syndecan 4 [Source:HGNC Symbol;Acc:HGNC:10661]
KRT19 keratin 19 [Source:HGNC Symbol;Acc:HGNC:6436]
FLNA filamin A [Source:HGNC Symbol;Acc:HGNC:3754]
IFITM3 interferon induced transmembrane protein 3 [Source:HGNC

Symbol;Acc:HGNC:5414]
SERPING1 serpin family G member 1 [Source:HGNC Sym-

bol;Acc:HGNC:1228]
COL18A1 collagen type XVIII alpha 1 chain [Source:HGNC Sym-

bol;Acc:HGNC:2195]

the dimension of the feature space helps enhance the classification task and overcome its

inherent computational complexity. Finding similarities can result from linear or non-linear

relationships among the features, data distribution, or data entropy. Biologically speaking,

the similarity is defined by structural, functional, or evolutionary relationships among the

genes that lead to finding the most accurate class for a new test sample. In our experi-

ments, we have demonstrated that genes in our dataset that have similar expression patterns

were grouped in highly-scored classes. Identifying biomarker genes that are differentially

expressed among different cell types is done in the feature selection step. This work high-

lights the power of using only a sub-group of highly effective genes to find cell types. Thus,

we can take advantage of disregarding a considerable number of uninformative genes for

identifying the corresponding cell types. Moreover, there are some potential future avenues

to find cell types automatically using scRNA-seq data. For example, conducting a com-
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Table 5.6: Travaglini Lung Ereg Dendritic Cell gene set.
Gene
Symbol

Description

HLA-
DPB1

”major histocompatibility complex, class II, DP beta 1 [Source:HGNC
Symbol;Acc:HGNC:4940]”

TYROBP transmembrane immune signaling adaptor TYROBP [Source:HGNC
Symbol;Acc:HGNC:12449]

HLA-
DPA1

”major histocompatibility complex, class II, DP alpha 1 [Source:HGNC
Symbol;Acc:HGNC:4938]”

AIF1 allograft inflammatory factor 1 [Source:HGNC Symbol;Acc:HGNC:352]
LST1 leukocyte specific transcript 1 [Source:HGNC Sym-

bol;Acc:HGNC:14189]
FCER1G Fc fragment of IgE receptor Ig [Source:HGNC Sym-

bol;Acc:HGNC:3611]
HLA-
DQB1

”major histocompatibility complex, class II, DQ beta 1 [Source:HGNC
Symbol;Acc:HGNC:4944]”

CST3 cystatin C [Source:HGNC Symbol;Acc:HGNC:2475]
FCN1 ficolin 1 [Source:HGNC Symbol;Acc:HGNC:3623]
VCAN versican [Source:HGNC Symbol;Acc:HGNC:2464]
HLA-
DRB1

”major histocompatibility complex, class II, DR beta 1 [Source:HGNC
Symbol;Acc:HGNC:4948]”

GPX1 glutathione peroxidase 1 [Source:HGNC Symbol;Acc:HGNC:4553]
GZMB granzyme B [Source:HGNC Symbol;Acc:HGNC:4709]
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prehensive experiment using a more significant number of samples obtained from different

tissues shows potential in enhancing the results on a larger scale.



Chapter 6

Unsupervised Identification of

SARS-CoV-2 Target Cell Groups via

Nonlinear Dimensionality Reduction on

Single-cell RNA-Seq Data

6.1 Introduction

Single-cell sequencing is an emerging technology used to capture cell information at a

single-nucleotide resolution and by which individual cell can be analyzed separately [41].

As of now, all available single-cell RNA-seq (scRNA-seq) data have been generated for

different purposes [44]. However, these high-dimensional and sparse data lead to some

analytical challenges. Analyzing scRNA-seq data can be divided into two main categories:

at the cell level and gene level. Finding cell sub-networks or highly deferentially expressed

98
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tissue-specific gene lists is one of the common challenges at the cell level [91]. Arranging

cells into clusters to find the heterogeneity in the data is arguably the most significant step

of any scRNA-seq data downstream analysis. This step could be used to distinguish tissue-

specific sub-networks based on identified gene sets. Indeed, cell clustering aims to identify

cell sub-types based on the patterns embedded in gene expression without prior knowledge

at the cell level. Since the number of genes that are profiled in scRNA-seq data is typically

large, cells tend to be located close to each other following nonEuclidean, but a complex

relationship in high-dimensional spaces [55]. Therefore, traditional clustering algorithms

are unsuitable for this challenge, and hence, are not able to efficiently separate individual

cell types. To alleviate this problem of the curse of dimensionality, several algorithms have

been proposed to accurately cluster cells from scRNA-seq profiles.

Dimensionality reduction techniques have been widely used in several studies of large-

scale scRNA-seq data processing [29]. Most of the previous studies use principal com-

ponent analysis (PCA). However, there was no advantage in keeping the clustering per-

formance after the changes in the data in lower dimensions [36]. Other works have also

employed PCA as a pre-processing step to remove cell outliers for performing dimen-

sionality reduction and visualization. Moreover, several studies have used unsupervised

clustering models to identify rare novel cell types. For instance, the hierarchical cluster-

ing algorithm divides large clusters into smaller ones or merge each data points into larger

clusters progressively. This algorithm has been employed to analyze scRNA-seq data by

BackSPIN [126] and pcaReduce [136], through dimension reduction after each division or

combination in an iterative manner. k-Means which is one of the most common cluster-

ing algorithms, has been employed in the Monocle, specifically for analyzing scRNA-seq

data [87]. Also, the authors of [119] used the Louvain algorithm, which is based on com-
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munity detection techniques to analyze complex networks [43]. However, to achieve ac-
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Figure 6.1: Block diagram of the proposed approach.

ceptable clustering performance on scRNA-seq data, other comprehensive studies indicated

that hybrid models, designed as a combination of clustering and dimensionality reduction

techniques, tend to improve the clustering results [36]. They learned 20 different models

using four dimensionality reduction method including PCA, non-negative matrix factoriza-

tion (NMF), filter-based feature selection (FBFS), and Independent Component Analysis

(ICA). They also used five clustering algorithms such as k-means, density-based spatial

clustering of applications with noise (DBSCAN), fuzzy c-means, Louvain, and hierarchical

clustering. Their experiments highlight the positive effect of hybrid models and showed

that using feature-extraction methods could be a good way to improve clustering perfor-

mance. Their experimental results indicate that Louvain combined with ICA performed

well in small feature spaces.

In this paper, we proposed a model to obtain efficient and meaningful clusters of cells
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from large-scale COVID-19 scRNA-seq data. We focus on the combination of unsuper-

vised dimensionality reduction followed by conventional clustering methods. We inves-

tigated different non-linear dimensionality reduction and manifold learning methods such

as standard Locally Linear Embedding (LLE), modified LLE, and Laplacian eigenmaps.

Also, ICA is employed to enhance visualization and clustering of the data, and combined

with k-means clustering. Experimental results on a well-known scRNA-seq dataset show

the power of modified LLE and ICA on clustering data in very low dimensions, providing

very high accuracy and enhanced visualization.

6.2 Materials and Methods

The block diagram of our proposed approach is depicted in Fig. 6.1. Based on the main

pipeline, the scRNA-seq data is pre-processed based on the number of cells and the number

of genes. Filtered data is then normalized and scaled. Highly variable genes are extracted as

part of the feature selection step, and linear regression is one of the most widely-used meth-

ods to correct technical artifacts present in the data based on the total counts per cell and

mitochondrial percentage as discussed in [119] [70]. The data obtained at this point is then

processed to reduce the dimensions of the feature space into two or three dimensions; after-

wards, k-means clustering is applied. Besides, We performed ICA on the lower-dimensional

data followed by k-means clustering to achieve meaningful clusters and enhanced visual-

ization.
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6.2.1 Dataset

The data used in this study is a gene expression profile dataset extracted from NCBI’s

Gene Expression Omnibus [103], accession number GSE148729 [121]. The data contains

27,072 gene expression profiles of 48,890 human lung cell lines, which were sequenced

using Illumina NextSeq 500. In this dataset, different cell lines from lung tissue, which

is one of the main cellular components in the immune system, were contaminated with

SARS-CoV-1 and SARS-CoV-2 and sequenced at different time slots to study the impact

of infection on immune system over time.

Figure 6.2: (a) The number of expressed genes, (b) the total counts per cell, and (c) the
percentage of mitochondrial genes.

6.2.2 Data Pre-processing and Quality Control

This step includes filtering out genes and cells based on quality metrics, normalization and

scaling, feature selection, and quality control. The Python package, Scanpy, is used to per-

form pre-processing and quality control. To this end, we follow the typical scRNA-seq anal-

ysis workflow, as described in [70]. As shown in Fig. 6.1, the first step of pre-processing

is to filter poorly expressed genes. Low-quality cells that are dyed, degraded, or damaged

during sequencing are represented by a low or large number of expressed genes. As such,

we filtered out 6,066 genes expressed in less than three cells and cells with less than 200
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Figure 6.3: Top 20 highly-variable genes before normalization.

Figure 6.4: Top 20 highly-variable genes after normalization.

expressed genes. Moreover, we removed a large number of mitochondrial genes, which

are the result of damaged cells [50], [48]. To remove low-quality cells, we investigated the

distribution of data to estimate quality control metrics. Based on Fig. 6.2, the number of

expressed genes, i.e., the left plot (Fig. 2a) of the figure are mainly between 500 and 2,500

genes. Also, the distribution of the proportions of mitochondrial genes, i.e., the right plot

(Fig. 2c) of the figure, contains very extreme values, above 0.05. We extracted the number

of genes that are less than 2,500 and mitochondrial genes less than 5%. Plot in the middle

(Fig. 2b) represents total number of samples per cell.
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Figure 6.5: Dispersion of genes before normalization.

Figure 6.6: Dispersion of genes after normalization.

Then, we normalized the data using the Counts Per Million (CPM) normalization com-

bined with logarithmic scaling on the data:

CPM = readsMappedToGene× 1
totalReads

×106 (6.1)

where totalReads is the total number of mapped reads of a sample, and readsMappedToGene

is the number of reads mapped to a selected gene.

At this point, we extracted highly variable genes (HVGs) as a part of the feature selec-

tion step, aiming at minimizing the search space. We then removed any random noise and

held genes that highlight relevant biological information. Highly-variable genes are those
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genes that are expressed more or less in some cells compared to other ones. Quality control

makes sure that the differences occur because of biological differences and not technical

noise. The simplest approach to compute such a variation is to quantify the variance of

the expression values for each gene across all samples. Here, we use log-normalized data

because we want to ensure having the same log-values in the clustering and dimensionality

reduction follow a consistent analysis through all steps. To perform feature selection, a

good mean-variance relationship is desired. Also, a good trade-off value would help select

the subset of genes that keep useful biological knowledge, while removing noise. There are

several widely-used approaches to find the best threshold. Based on Figs. 6.6 and 6.5, we

used a minimum of 0.5 for normalized dispersion, a maximum mean of 3, and a minimum

mean of 0.0125 to select relevant genes. Finally, we obtained 2,194 genes with 3,791 cells

for downstream analysis. The normalized dispersion is obtained by scaling the mean and

standard deviation of the dispersion for genes falling into a given bin for the mean expres-

sion of genes. This means that for each bin of mean expression, highly-variable genes are

selected. The 20 top genes extracted before and after normalization are shown in Figs. 6.4

and 6.3.

6.2.3 Dimensionality Reduction

High-dimensional gene expression data is unprecedentedly rich and should be well-explored.

In a single-cell expression profile, each gene appears as a dimension of the data. As such,

dimensionality reduction techniques tend to summarize biological features in fewer dimen-

sions. With two genes, we can obtain two-dimensional points, each representing a cell. To

reduce the number of individual dimensions, we aim to perform dimensionality reduction

to obtain the most informative genes compressed into a smaller number of dimensions. As
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a result, we are able to perform the downstream analysis with less computational effort.

In this regard, we used some of the dimensionality reduction and manifold learning tech-

niques such as LLE, Laplacian eigenmaps, and ICA on this dataset. Here, high-dimensional

data is reduced to two and three dimensions. As a result, we obtain the most informative

components, which are further used for clustering.

Locally Linear Embedding

LLE succeeds in discovering the underlying structure of the manifold when used for dimen-

sionality reduction. This technique is empowered by preserving “locality” of the data, when

reduced to lower dimensions. In addition, LLE is capable of generating highly nonlinear

embeddings. Consider the sample points in a high-dimensional space, X = {x1,x2, ...,xn},

where {x j, j ∈ N} and the weight matrix is represented by W ={wi j}. First, a directed

graph G = (X,E,W) is constructed, where the edges of the graph, E = {ei j}, represent the

neighbourhood relations among sample points, X, in the high-dimensional space. Next, the

weights W = {wi j} are assigned to the edges of the graph. The optimal weights W = {wi j}

are computed by solving the following constrained least-squared problem [131]:

min xi − ∑
k∈Kn

wknxk s.t. ∑
k∈Kn

wkn = 1 . (6.2)

In the second step, the weights are assigned to each edge of the graph, and each sample

is considered as a small linear patch of the sub-manifold. Finally, the weights are com-

puted locally and linearly in the data by reconstructing each input pattern from its k-nearest

neighbours, where the reconstruction error, εr, is calculated in terms of the mean squared

error (MSE) as follows:
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εr =
n

∑
i=1

xi − ∑
k∈Ki

wkixk
2 (6.3)

Modified LLE (MLLE), is an enhanced version of standard LLE and has been shown

to be closely related to Local Tangent Space Alignment (LTSA) [112]. MLLE attempts to

exploit the dense relations that exist in the embedding space.

Other Dimensionality Reduction Methods

The Laplacian eigenmaps is a computationally effective approach to nonlinear dimen-

sionality reduction that possesses locality-preserving properties and a natural connection

to clustering [14]. Laplacian eigenmaps are similar to LLE. Given the input samples

X = {x1,x2, ...,xn}, the k nearest neighbours are computed as the first step of the algo-

rithm.

Typically, the weights are constant, such as wi j = 1/k or wi j = e−(
||xi−x j ||2

s ) where s is the

scalable parameter. Let D = {di j} be the diagonal matrix of elements dii = ∑
n
j=1 wi j. The

final step is to minimize the reconstruction loss, εr, of the outputs, Y = {y1,y2, . . . ,yn,}.

εr = ∑
i j

wi jyi −y j
2√

diid j j
(6.4)

With this function, nearby points are mapped to their nearest outputs by considering

the weights W. The minimum loss is computed from m+ 1 eigenvectors of the matrix

L = I−D−1/2WD−1/2 corresponding to the smallest eigenvalues of L. The matrix L is

a symmetrical, normalized form of the Laplacian, given by L = D−W. As in LLE, the

eigenvectors corresponding to zero eigenvalues are discarded and the remaining n vectors

are included to obtain the outputs yi in Rn
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ICA is a dimensionality reduction method used to analyze multivariate data [46]. ICA

learns an efficient linear transformation of the data and attempts to find the underlying

components and sources present in the data by its simple statistical properties assumptions.

Unlike other methods, the underlying vectors of the transformation are assumed to be inde-

pendent of each other, and it uses a non-Gaussian structure of the data, which is important

to retrieve the underlying components of the transformed data as follows:

r = As

Y = AX
(6.5)

where r and s are vectors and A is the matrix whose rows are orthogonal to each other.

However, ICA assumes that the rows are linearly independent, and not necessarily orthog-

onal. As such, it leads to more informative components than PCA.

Moreover, ICA does not require to know the output of the system to break the data into

some measurements. The transformed data can then be used for cluster analysis to find a

group of genes with similar expression patterns.

6.2.4 Cell Clustering

Clustering is done via k-means, which is the most popular clustering technique. This algo-

rithm progressively finds a pre-determined number of k cluster centers by minimizing the

sum of the squared Euclidean distances between each center and its closest neighbour. The

clusters can be denoted as C = {C1,C2, ...,Ck}. This work includes a methodology that

cooperatively considers ICA and k-means for clustering the cells.
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6.2.5 Cluster Annotation

To annotate the cell clusters we obtained, we first extracted the top 25 differentially ex-

pressed genes as markers in each cluster using the Wilcoxon rank sum test. Then, we found

the corresponding cell types of each group of marker genes in each cluster. CellKb is a

search tool that collects curated cell types manually from the literature. Its knowledge base

includes 403 manually curated publications from over 7,000 studies published between

2013 and 2020 to extract 1,802 different cell types. Specific marker genes of cell types

in CellKb wer extracted directly from gene signature from the Human Protein Altas and

MSig-db.

6.2.6 Parameter Optimization

With the aim of preserving locality, the number of neighbours used to construct the neigh-

bourhood graph is a very important parameter in manifold learning techniques. In this

work, this parameter has been learned by running the algorithm several times on the data,

in a range from 4 to 16, and found 11 is the best number nearest neighbours for our exper-

iments. Also, we use the Euclidean distance metric as the weights of the edges. Another

critical step in any clustering algorithm is determining the number of clusters, k. Validity

indices help measure how good the clustering is. For our dataset, we ran the validity of

indices and the Silhouette score for a range of 4 to 14 and found 7 as the optimal number

of clusters for this data [90].

6.2.7 Performance Evaluation

Generally speaking, the best clustering is the one that maintains high intra-cluster distance

and gives the most compact clusters. In this work, we use the Silhouette coefficient, which
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is an evaluation metric that measures either the mean distance between a sample point and

all other points in the same cluster or all other points in the next nearest neighbour cluster.

Consider a set of clusters C = {C1,C2, . . . ,Ck}, output by a clustering algorithm, k-means

in our case. The Silhouette coefficient, SH, for the ith sample point in cluster C j, where

j = 1, ...,k, can be defined as follows:

SH(xi) =
b(xi)−a(xi)

max(a(xi),b(xi))
, (6.6)

where a is the mean distance between point xi and all other points inside the cluster (intra-

cluster distance), and b is the minimum mean value of the distance between a sample point

xi and the nearest neighbour cluster, and are calculated as:

a(xi) =
1

|Ck|−1 ∑
x j∈Ck,i̸= j

d(xi,x j)

b(xi) = min
k ̸=i

1
|Ck|

k

∑
j=1

d(xi,x j) .

(6.7)

We also used Calinski-Harabasz (CH) and Davies-Bouldin (DB) validity of indices to

assess the clustering performance. Calinski-Harabasz score [20], is a score used to evaluate

the model where a higher score tells better-defined clusters. CH score is the ratio of the

sum of between-clusters dispersion and of inter-cluster dispersion for all clusters that is as

follows:

CH =
tr(SB)

tr(SW )
× n− k

k−1
(6.8)

in which n is size of input samples, tr(SB) is the trace of the between-group dispersion
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matrix and tr(SW ) is the within-cluster dispersion.

Davies-Bouldin index [25] is another validity index defined as the average of the simi-

larity measure of each cluster. DB is computed as follows:

DB =
1
k

k

∑
i=1

maxi ̸= jsi j , (6.9)

where si j is the ratio between within-cluster distances and between cluster distances, and is

calculated as si j =
wi+w j

di j
. The smaller DB value the better clustering, and as such, we aim

to minimize Equation (6.9). Here, di j is the Euclidean distance between cluster centroids µi

and µ j, and wi is the within-cluster distance of cluster Ck.

Overall, we used the Silhouette score to evaluate the clustering performance whereas

CH and DB indices used to verify and find the optimal parameters, namely the best number

of clusters.

6.3 Results and Discussion

6.3.1 Clustering Results

After applying manifold learning techniques on the data for dimensionality reduction, we

performed k-means. The results are depicted in Table 6.1, where the clustering score ranges

from 0 to 1. A score close to 1 represents good quality clustering, with 1 being the best,

while a score near zero indicates that the clusters are not well defined. We observe that using

MLLE the clusters are obtained with a score of 0.94 and that is the best clustering obtained

from our experiments. As we can see in Fig.6.10, the cells are compactly bounded in their

clusters and decent separation between the clusters. Also, two-dimensional ICA on three-

dimensional MLLE data has been shown to provide the best visualization and clustering
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score of 0.943 because the three-dimensional representation is carried to two-dimensional

and the clusters are well characterized as shown in Fig. 6.12.

Table 6.1: Comparison of k-means clustering score using different dimensionality reduction
techniques.

DR Technique 2D k-means 3D k-means
Standard LLE 0.623 0.683
Modified LLE 0.938 0.937
Laplacian eigenmap 0.700 0.782

Figure 6.7: k-means applied on two-dimensional Laplacian eigenmaps; outliers have been
removed to enhance visualization.

More precisely, two- and three-dimensional Laplacian eigenmaps, which are depicted

in Fig. 6.7 and 6.9, show good cluster separation and enhanced visualization of the data,

with clustering scores of 0.70, and 0.782, respectively. We can see in Fig. 6.7 that cells

are more scattered between the clusters using two-dimensional Laplacian eigenmaps and

it is hard to capture cells to form compact clusters, whereas three-dimensional Laplacian

eigenmaps give better clustering result. Also, when we applied only ICA with k-means,

we obtained below-average results compared to other techniques as shown in Fig. 6.8 with

clustering score 0.357. This is because ICA is limited to linear transformations, whereas
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manifold learning techniques consider data locality. As such, the latter can reveal complex

relationships among the data points in higher-dimensional spaces. Therefore, we applied

ICA on the dimensionally-reduced data because we observed interesting ”lines” or ”axes”

in the three-dimensional data, and that led us to think that we could apply ICA to learn the

linearly-independent, not necessarily orthogonal, components of the distribution of the data,

and we witnessed slight improvement with clustering scores in MLLE and Standard LLE

as it is displayed in Table 6.2. Applying ICA revealed some hidden, complex relationships

among the cells in the clusters which are not noticeable in three dimensions. As such, we

observed a significant improvement of the clustering score using Laplacian eigenmaps since

there is more dispersion of the clustering of cells in Fig. 6.11. We also note more compact

clusters than those of the two and three-dimensional clustering whose scores are depicted

in Table 6.1.

Figure 6.8: k-means applied on two-dimensional ICA.

Table 6.2: Results of manifold learning techniques followed by ICA and k-means cluster-
ing.

DR Technique 2D ICA-k-means 2D ICA-k-means
on 2D DR data on 3D DR data.

Standard LLE 0.628 0.690
Modified LLE 0.930 0.943
Laplacian eigenmap 0.700 0.826
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Figure 6.9: k-means clustering on three-dimensional Laplacian eigenmaps.

Table 6.3: Cell types identified by our proposed method.

Cell Type
Proneural glioma stem-like cell
Th17/iTreg-stimulated CD4+ central memory T cell
Stem/Club/Hillock epithelial cell
Club cell

6.3.2 Biological Assessment of the Results

The results obtained by CellKb [82] through finding overlapped genes in the literature are

listed in Table 6.3. The results show several cell types involved in immune system path-

ways. It is well-known that one of the main SARS-CoV2 targets is the immune system

function. For example, CD4+ T cells are found on the surface of immune cells and are

key cells in response to the viral infection [21]. Also, the results show that Club cells that

are found in the small airways of the lungs are involved in the TAP2 binding pathway at a

molecular level. TAP2 is a gene that encodes the protein antigen peptide transporter 2. In

immunology, the presence of antigens in the body normally triggers an immune response.

Moreover, the epithelial cells show enzyme inhibitor activity in the molecular function re-
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Figure 6.10: k-means clustering on three-dimensional MLLE.

sults. In addition, we obtained a list of overlapped marker genes that are involved in Herpes

simplex virus 1 (HSV-1) infection and Influenza A pathway (Table 6.4). These results can

be used for subsequent medical treatment or drug discovery through finding similar diseases

in terms of functionality. Moreover, although numerous findings suggested potential links

between HSV-1 and Alzheimer’s disease (AD), a causal relation has not been demonstrated

yet [26].

To summarize the results, performing ICA on transformed data after applying mani-

fold learning techniques provides improved clustering results. Moreover, modified LLE

combined with k-means leads to a more untangled view of the data and the corresponding

clusters. Such non-linear dimensionality reduction methods have shown to be very power-

ful as they preserve the locality of the data from higher dimensions to lower dimensions.

Evaluating the incidence of ICA as visualization and further reduction step shows even bet-
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Figure 6.11: Two-dimensional ICA + k-means clustering is performed on three-dimensional
Laplacian eigenmaps data; outliers have been removed to enhance visualization.

Figure 6.12: Two-Dimensional ICA + k-means clustering performed on three-dimensional
MLLE data; outlliers have been removed to enhance visualization.

Table 6.4: Marker genes found in similar diseases.
Disease Marker genes
Influenza A {RSAD2, IFIH1, MX1, STAT1}

{MX2, IRF7, TNFSF10, OAS1}
{DDX58,NFKBIA,OAS2}
{CXCL10,EIF2AK2,PML}
{ICAM1,CXCL8,OAS3,STAT2}

Herpes simplex virus 1 infection {IFIH1,HLA-B,STAT1,IRF7}
{TAP1,OAS1,DDX58,NFKBIA}
{OAS2,STAT2,EIF2AK2,SP100}
{PML,HLA-E,B2M,OAS3,HLA-F}

ter results and the best possible clustering scores. As such, this trend leads to a research

avenue that involves a combination of enhanced nonlinear manifold learning techniques
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such as MLLE, followed by linear methods such as ICA, which has shown to be more

powerful than conventional, statistics-based methods such as PCA.

6.4 Conclusion and Future Work

This work focuses on the identification of SARS-CoV-2 target cell groups using mani-

fold learning and clustering techniques on unlabeled data. The use of clustering validity

and performance measures helps to find the best clusters that are the result of combin-

ing dimensionality reduction and clustering techniques. Identifying similarities that may

be a result of structural, functional, or evolutionary relationships among the genes is the

main goal of clustering the cells. In our proposed two-step clustering method, we have

demonstrated that genes in our dataset that have similar expression patterns were grouped

in highly-scored clusters in lung tissue cell data, achieving more than 90% accuracy. Ef-

ficient nonlinear dimensionality reduction and manifold learning techniques help improve

the clustering results significantly and enhance visualization in a reduced space. There are

some potential applications for investigating scRNA-seq data, even beyond COVID-19. As

a further analysis in the future, we aim to identify biomarker genes that are differentially

expressed among different clusters of cells. Using multiple datasets with batch effect cor-

rection can improve the results as well. As such, this can lead to enhance the accuracy of

classification of the cells, as a supervised learning technique, using gene expression patterns

of each sub-network. Using sub-networks, we can take advantage of avoiding employing

a considerable number of uninformative genes to classify the underlying cells. Moreover,

performing gene set enrichment analysis to annotate a set of highly-variable genes obtaining

from each cluster can reveal biomarker genes that are involved in different gene ontology

terms related to COVID-19. This work attempts to highlight the power of combining linear
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methods such as ICA and manifold learning techniques such as MLLE for clustering to

pave the way for further research in the future.



Chapter 7

SEGCECO: Subgraph Embedding of

Gene expression matrix for prediction of

CEll-cell COmmunication

7.1 Introduction

In the graph domain, link prediction is the problem of predicting the existence of a connec-

tion between two entities in a network. Given a network with various nodes connected to

one another, we want to predict if two nodes are connected or are likely to connect in the

future. With graph neural networks (GNN), we use not only network structural informa-

tion, such as connections between nodes, but also individual node characteristics including

the feature set of the node. Predicting friendship links among users in a social network,

predicting co-authorship links in a citation network, and predicting interactions between

genes and proteins in a biological network are some examples of link prediction.

119
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On the other hand, cell-cell interactions regulate organism development by cell func-

tions. A disease may occur when cells do not interact properly or decode molecular mes-

sages improperly. Thus, identifying and quantifying inter-cellular signaling pathways has

become a common analysis carried out across a variety of fields [8].

With the rapid advancement of single-cell RNA sequencing technologies, researchers

are becoming more interested in inferring cell-cell communication from single-cell (scRNA-

seq) data. There are a variety of computational tools and resources including ProximID

[16], CellChat [52], CellTalker [23], iTalk [115], SingleCellSignalR [17], CellPhoneDB

[33], SpotSC [113], and scTensor [104], among others, which are available to predict cell-

cell communication (CCC) using gene expression profile obtained from scRNA-seq data.

Generally, in scRNA-seq data analysis, cells are clustered based on their gene expres-

sion profiles, and cell types are determined and assigned to clusters based on the known

marker genes. CCC tools mostly predict the inter-cellular communications, on the other

hand, based on ligand-receptor interactions between pairs of clusters, i.e., cell types, in

which one cluster is the source and the other is the target. The majority of the tools are

made up of two main components: 1) a prior knowledge resource of intercellular inter-

actions and 2) a method for estimating CCC based on known interactions and the present

dataset. Each tool uses different methods, such as permutation of cluster labels, differ-

ential combinations, regularizations, and scaling, depending on the input datasets. These

approaches result in a varied scoring system which makes it difficult to compare and eval-

uate the performance of CCC methods. Thus, selecting the appropriate tool to produce the

best results is challenging [27]. A recent review study [8] discusses several existing tools
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for measuring cell-cell communication.

In this work, to predict cell-cell communication, we resort to various approaches that

have been successfully used for other existing link prediction problems, such as prediction

of social connections between users in social networks [62]. Traditional approaches in-

clude heuristic methods such as common neighbors (CN) [80], Adamic Adar (AA) [2], and

Resource Allocation (RA) [134]. Heuristic link prediction methods use network structure,

i.e. network topology information, in the prediction process. Existing algorithms can be

classified based on the maximum hop of neighbors required to calculate the score [129].

Common neighbors (CN), for example, are first-order heuristics that involve the target

nodes’ one-hop neighbors. Also, some supervised approaches are used for connection pre-

diction, including support vector machine (SVM), baggings, and naives bayes, which are

used to model the problem as a binary classification in which extraction of edge features is

fundamental.

Moreover, recent methods are mostly built on top of node embedding methods (e.g.,

DeepWalk [84], node2vec [40], and structural deep network embedding [110]), with the

edge representation constructed from the interaction between corresponding node embed-

dings.

We discovered that some methods perform well on certain types of networks. For in-

stance, every heuristic technique is based on some assumptions and works based on the ex-

tracted pattern from the network topology, which is why there is no single heuristic method

that works well for all types of networks. Thus, this is a significant drawback in heuristic
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approaches. The same can be said about latent approaches, which achieve high accuracy in

some types of networks but low accuracy in others. Thus, deciding on the best link predic-

tion approach is usually a trial-and-error process.

On the other hand, Weisfeiler-Lehman Neural Machine (WLNM) [128] is considered

as a state-of-the-art among link prediction methods based on its performance. It is a new

approach based on the subgraph extraction around both target nodes u and v. The local

enclosing subgraph for a node pair (u, v) is the subgraph induced from the network by the

union of u and v’s neighbors up to h hops. The hop is the maximum distance that node

features can travel. This approach gives higher accuracy than heuristic and latent methods

but requires additional computation time and memory.

In addition, SEAL (Learning from Subgraphs, Embeddings, and Attributes for Link

Prediction) [129] is also a subgraphing method that addresses a number of weaknesses that

WLNM has. To begin with, it enables learning not only from subgraph structures but also

from latent and explicit node attributes, allowing it to incorporate a variety of information.

Secondly, the fully-connected neural network in WLNM is replaced by a GNN that enables

graph feature learning improvement. SEAL derived γ decaying theory and proved that a

small number of hops is enough to extract high-order heuristics and outperform WLNM.

As a result, we choose SEAL as the baseline for predicting links between cells in our pro-

posed framework, SEGCECO. It is a novel method that predicts cell-cell communication

in scRNA-seq data via a gene expression attributed graph convolutional network. To our

knowledge, this is the first time that graph-based methods are used for prediction of cell-

cell communication prediction.
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Also, to obtain more precise results, nodes in cell-cell communicating networks (CCN)

represent the cells instead of groups of cells, i.e., cell types in our pipeline. Thus, the edges

denote the connections (ligand-receptor interactions) between individual cells.

Our study aims to discover cell interactions, with nodes representing cells in the CCN

and edges representing cell-cell interactions. Thus, we use similarity matrix-based opti-

mization for scRNA-seq data analysis tool (SpotSC) [113] to perform such a task. Once the

CCN network is constructed, our main goal is to predict links among the cells.

7.2 Materials and Methods

7.2.1 Datasets

The datasets used in this study are publicly available annotated scRNA-seq data from hu-

man and mouse pancreas tissue, drawn from the NCBI’s Gene Expression Omnibus with

the accession number GSE84133 [12]. The datasets were generated by following inDrop

method under Illumina HiSeq 2500 to determine the transcriptomes of over 12,000 individ-

ual pancreatic cells from four human donors and two mice strains.

Table 7.1 depicts the details of datasets including tissue, the accession number, the

number of cells, and the number of genes.

7.2.2 Proposed Method

Given complex, high-dimensional scRNA-seq data, we aim to predict cell-cell interactions

by creating a pipeline that analyzes single-cell data and converts it to a graph format, per-
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Table 7.1: Details of the datasets used in this work including tissue, the accession number,
the number of cell types, the number of cells, and the number of genes.
Dataset Tissue Accession # # Cells # Genes
Baron-human1 (BHuman1) Human-Pancreas GSM2230757 1,937 20,125
Baron-human2 (BHuman2) Human-Pancreas GSM2230758 1,724 20,125
Baron-human3 (BHuman3) Human-Pancreas GSM2230759 3,605 20,125
Baron-human4 (BHuman4) Human-Pancreas GSM2230760 1,303 20,125
Baron-Mouse1 (BMouse1) Mouse-Pancreas GSM2230761 822 14,878
Baron-Mouse2 (BMouse2) Mouse-Pancreas GSM2230762 1,064 14,878

forming the prediction using GNNs. We consider the gene expression profile from scRNA-

seq data and convert it to an undirected attributed graph, G, in which cells and cell-cell

interactions are represented by nodes and edges respectively. More formally, given an undi-

rected attributed graph G= (V,E,X) where V is a finite set of nodes (cells), E is a finite set

of edges (cell-cell interactions), in which ei j = (vi,v j) ∈ E and xvi is the attribute vector

associated with the node vi ∈ V . Also, A = (ai j)N×N represents the adjacency matrix of

graph G, where ai j = 1 if ei j ∈ E and ai j = 0 otherwise, and N is the number of nodes. We

aim to predict the likelihood of a connection between vi and v j.

Our proposed method consists of three main steps: 1) Preprocessing step (Figure S1.a),

2) Cell-cell network (CCN) construction (Figure S1.b), and 3) Applying the GCN (Figure

S1.c). Before applying the GCN, the primary step is to preprocess the data (Section 7.2.2).

Once the data is preprocessed, a CCN is constructed using SoptSC (Section 7.2.2) in Step 2

(Figure S1.b). The last module of the pipeline is using GCN for prediction. This is the main

step of our framework which consists of four main phases before feeding a GCN: 1) Feature

(gene) selection in the pooling layer, 2) Subgraph extraction, 3) Node information matrix

construction, and 4) Deep Graph Convolutional Neural Network (DGCNN) learning. All

these phases along with are explained in the next few sections.
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Step1: Data Preprocessing

Prior to scRNA-seq data analysis, a critical step is to preprocess the data to reduce the

effects of noise in the samples. To this end, we followed a standard preprocessing pipeline

in scRNA-seq data analysis [71]. This step includes basic filtering, normalization, log

transformation and scaling, as shown in the first step of the pipeline depicted in Figure

S1.a. Low-quality cells would hamper downstream analysis. These cells may have been

damaged or dead during the sequencing process, and are represented by the low number of

expressed genes. Based on the pipeline [71], cells with less than 200 expressed genes, and

genes expressed in less than three cells should be filtered out. For example, in BHuman1,

we filtered out 5,387 low-expressed genes that are detected in less than three cells and kept

14,739 genes. We further investigated the distribution of the data, (Figure S3), as a data-

specific quality-control step to filter low-quality cells. The number of genes expressed in

the count matrix is typically between 500 and 4,000 genes, with a dense distribution of the

number of expressed genes over the total count per cell for less than 4,000 genes. As such,

we filtered out seven cells to remove low-quality ones. This step is performed to remove

low-quality cells and poorly expressed genes.

Normalization is performed to balance the data by bringing it to a common scale with-

out changing any values or losing any information. The top genes in the dataset are visual-

ized before and after normalization in Figure S4.a and S4.b, respectively. The Counts Per

Million (CPM) normalization method is used to normalize the data. Once normalization

is performed, data matrices are log(x+ 1) transformed. After per-gene quantification, we

selected a subset of highly variable genes to use in downstream analyses as they are infor-

mative of the variability in the data. To achieve this, we chose a commonly used technique

in [6] and defined the set of highly variable genes given a normalized dispersion higher than
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0.5 after normalization, yielding 2,546 genes. For preprocessing. We used Scanpy [118], a

specifically designed package to analyze scRNA-seq datasets.

Step2: Cell-cell Network (CCN) Construction

SoptSC (Similarity-matrix based optimization for single-cell data analysis) successfully

performs multiple inference tasks such as unsupervised clustering, pseudo-temporal order-

ing, lineage inference, and marker gene identification based on a cell–cell similarity matrix.

The cell-cell similarity matrix S is learned from the original scRNA-seq data matrix, i.e.,

gene expression matrix X of size m× n with m genes and n cells, using a low-rank repre-

sentation model [135]. The element Si j (=S ji) of similarity matrix S measures the degree of

similarity between cell i and cell j [113]. Also, a cell-cell communication graph G is con-

structed using adjacency matrix A, which is derived from similarity matrix S, where Ai j = 1

if Si j > 0, or Ai j = 0 otherwise. In this work, we constructed the cell-cell communication

network using this method.

Step 3:1: Gene Selection in Pooling Layer

Downsampling is crucial in graph analysis, which is included in the pooling layer of our

method framework. The pooling layer consists of selecting genes (with a threshold τ) by

Information Gain (IG) feature selection. This step provides the node attribute information

(side information) of each individual node, i.e., explicit features. Information gain (IG), as

a feature selection method, computes the reduction in entropy by splitting the dataset based

on a given value of a random variable and measures how important or relevant the feature

is. This is done by estimating the information gained from each variable and choosing the

one with the maximum value. Based on Equation (7.1), the largest information gain is equal
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to the smallest entropy. IG is calculated by subtracting the weighted entropy values from

the original entropy values by the following Equation (7.2). In other words, IG measures

how changes to the dataset affect the distribution of the classes or target variables.

H(X) =−∑ p(X) log p(X) , (7.1)

where for dataset X ={xi}, H(X) is the probability of randomly picking an element of the

class.

I(X ,a) = H(X)−H(X |a) , (7.2)

where I(X,a) represents the information gain in dataset X ={xi} for variable a, H(X) is the

original entropy of X and H(X |a) is the conditional entropy for the given variable a.

Step 3:2: Enclosing Subgraph Extraction

The subgraph induced from the network by the union of u and v’s neighbours up to k− hops

is called the enclosing subgraph for a node pair (u, v). The hop is the distance that node

features can traverse in one hop. Enclosing subgraph extraction involves extracting the local

enclosing subgraphs around the target nodes u and v. The enclosing subgraph is extracted

from the training data, which contains both positive (existent) and negative (non-existent)

sets of sampled links, based on h-hop neighbours for the target nodes u and v. Figure S5

depicts an example of the 1-hop enclosing subgraphs for target nodes (A,B) and (C,D).

Step 3:3: Node Information Matrix Construction

In the node information matrix, each row corresponds to the node’s feature vector, which

is represented as X . In the SEAL [129] approach, there are three components in the node

information matrix:
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Structural Information: Node Labeling Nodes are labelled based on their structural

roles using a graph labelling method, the Double-Radius Node Labeling (DRNL) algorithm

(explained in [129]). The main purpose of this step is to label every node in the enclosing

subgraph in order to distinguish the target nodes between which a link should be expected.

Later, in the DGCNN learning step, nodes will be sorted in a sort pooling layer, based

on their structural roles, indicated by node labels. Labels are assigned to nodes in such a

way that the target nodes u and v are labelled 1. Also, the radius of node i with respect

to target nodes, namely (d(i,u),d(i,v), can be used to define its position. Thus, nodes on

the same orbit are given the same label. In other words, larger labels are assigned to nodes

that have a larger radius (farther nodes) with respect to target nodes. This algorithm can

be better understood by following the diagram of Figure S6, which satisfies the following

conditions:

1. if d(i,x)+d(i,y) ̸= d( j,x)+d( j,y), then d(i,x)+d(i,y)< d( j,x)+d( j,y)⇔ fl(i)<

fl( j);

2. if d(i,x) + d(i,y) = d( j,x) + d( j,y), then d(i,x)d(i,y) < d( j,x)d( j,y) ⇔ fl(i) <

fl( j).

where fl(i) is the label assigned to node i and (d(i,x),d(i,y)) is the double radius.

Latent Information: Node Embedding The node embedding methods, i.e., Node2Vec

[40], LINE [101] and Spectral Clustering (SC) (explained in Section 7.3.1), give the feature

representation of nodes in a graph. Thus, an additional step is required to learn the fea-

tures of the edges from node embedding in order to predict links as a binary classification

problem.
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Negative injection trick, as explained in [129], is used to help to generate the node

embeddings. This consists of adding the negative (non-existent) set of sampled links, En,

to the positive (existent) set of sampled links, E, and generating the embeddings on G′ =

(V,E ∪En). The node embedding method used in our method is Node2vec [40].

Explicit Information: Node Attributes Both latent and explicit features of each node are

included in the node information matrix X for its corresponding row in X . Latent feature

learning methods learn low-dimensional latent representation or embedding for each node

using matrix factorization [127]. The adjacency or Laplacian matrix derived from the graph

can be used for matrix factorization. On the other hand, the explicit features contain side

information about the individual nodes, available in the form of Node Attributes. The SEAL

method [129] shows significant improvement in performance when combining both latent

and explicit features.

Step 3:4: Learning Deep Graph Convolutional Neural Network

Deep Graph Convolutional Neural Network (DGCNN) [130] is a deep learning architecture

which is designed to operate on graph data. DGCNN is divided into three main parts:

1) Graph Convolution layers: Localized graph convolutions are used to extract the hid-

den feature information of nodes from the graph. DGCNN consists of multiple convo-

lutional layers in which the output of each convolutional layer is passed to a hyperbolic

tangent (tanh) non-activation function. A GCN with four convolutional layers is shown in

Figure S7.

2) SortPooling Layer: In the SortPooling layer, the unordered node attributes of the

graph from the spatial graph convolutions layer are fed as the input. The main purpose

of this layer is to sort the feature descriptors, each of which represents a node. Rather



CHAPTER 7. 130

than summing up these node features, the SortPooling layer arranges them in a consistent

order and outputs a sorted graph representation with a given size. Then, it can be read and

trained by standard convolutional neural networks. Nodes are sorted using graph labelling

methods, based on their structural roles, in descending order using the last layer’s output,

Zh. Once the nodes are sorted, the next step is to unify the sizes of the output tensor. The

main intention behind it is to unify the graph sizes to k by deleting the last n− k rows if

n > k, or adding k−n zero rows otherwise. The output of the SortPooling Layer is shown

in Figure S8.

3) Traditional Convolutional and Dense Layers: These layers are used to make a pre-

diction based on the sorted graph representations generated by the SortPooling layer. The

architecture of DGCNN is shown in Figure S9. Given the adjacency matrix A ∈ {1,0}nXn

of graph G with n number of nodes and each node containing the c dimensional feature

vector as well as the node information matrix X ∈ RnXc of an enclosing subgraph with each

row representing the node, DGCNN employs the following convolution layer:

Z = f ( ˜D−1ÃXW ) , (7.3)

where Ã = A+ I, I is the identity matrix, D̃ is the diagonal degree matrix with D̃i,i = ∑ j ˜Ai, j,

W is a trainable graph convolutional parameters, f is a non-linear activation function, and

Z ∈ RnXc′ is the output activation matrix.

The graph convolution incorporates each node’s hidden representation by aggregating

attribute information from its neighbours. The graph convolution can be split into four

different steps:

1. Linear feature transformation is applied to the node information matrix X , by multi-

plying it by W .
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2. Node information is propagated to neighbouring nodes as well as the node itself by

ÃXW .

3. Each row is normalized by multiplying it by D−1.

4. Non-linear activation function is applied to obtain the output.

7.3 Performance Evaluation

We conduct extensive experiments to evaluate the performance of our proposed method.

We included seven methods for comparison: four state-of-the-art latent feature learning

methods (Section 7.3.1) including Node2Vec [40], LINE [101], Deepwalk [84] and SC, as

well as WLNM [128], GAE [114] and VGAE [54] (Section 7.3.2).

We use the binary operators (proposed in Node2Vec) in our evaluation process. These

operators over the corresponding feature vectors of nodes u and v, i.e., f (u) and f (v), are

utilized to generate the edge/link embedding g(u,v) for edge e = (u,v).

• Average:

f x(u)⊞ f (v) =
f (u)+ f (v)

2
. (7.4)

• Hadamard:

f (u)⊡ f (v) = f (u)∗ f (v) . (7.5)

• Weighted-L1:

|| f (u) · f (v)||1 = | f (u)− f (v)| . (7.6)

• Weighted-L2:

|| f (u) · f (v)||2 = | f (u)− f (v)|2 . (7.7)
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The original code for Node2vec, Deepwalk, and LINE is used in our comparison study.

The node embeddings generated from these methods are used to generate the link embed-

dings (as explained in Section 7.3.1). Then, we used logistic regression as the classifier

to predict the links. To evaluate the performance with the other methods including GAE,

VGAE, WLNM, we used the default settings. We used different hyperparameters for each

method as described in Table S2. To implement the core of our method, we used the base

implementation of the SEAL method. Then, to evaluate the performance of the results,

we used 90%-10% of data as training and testing sets respectively. To generate FPR/TPR

distribution of the datasets, we have taken the mean of the corresponding values.

We used Area Under Curve (AUC), accuracy, precision, recall, F1-score and receiver

operating characteristic curve (ROC curve) as evaluation metrics. To calculate the evalu-

ation metrics, we used training and testing data which consists of both positive (existent)

and negative (non-existent) links. As a negative set, we randomly chose an equal number

of unconnected pairs of nodes from the network with no edge connection between them.

We arbitrarily remove 10% of links as testing data and the remaining 90% are used as train-

ing data. The statistical information of the network extracted from datasets (discussed in

Section 7.2.1) is shown in Table S1.

7.3.1 Latent Feature Methods

Given a network G with a finite set of nodes (or vertices) V and a finite set of edges E,

latent features are the features in the low dimensional representations of nodes V computed

using matrix factorization [127]. The matrix can be the adjacency matrix or the Laplacian

matrix derived from the network G. Node2vec [40], LINE [101], and DeepWalk [84] are

examples of network/node embedding algorithms which we use as latent feature methods
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to learn latent features. In [85], these network embedding methods were found to implicitly

factorize some network matrix representation. These methods are summarized as follows:

1) Node2Vec: The Node2vec [40] model for latent feature learning is an application

of the Word2vec paradigm. The latter is a framework for word embedding used to learn

continuous feature representations of nodes in networks using the skip-gram model. The

goal is to optimize a neighbourhood-preserving likelihood objective in order to learn these

representations. As an extension of the skip-gram architecture of networks, Node2vec is

an embedding approach that works on neighbour nodes and generates low-dimensional

embedding by converting graph/network into numerical representations. A second-order

random walk approach is used to generate the numerical representation of the nodes in the

graph. The idea behind Node2Vec is to use flexible, biased random walks that can trade-off

between local and global network views. This approach returns feature representations that

maximize the likelihood of preserving network neighbourhoods of nodes in a d-dimensional

feature space [40].

2) DeepWalk: DeepWalk [84] learns d- dimensional latent feature representations using

local information obtained from uniform random walks. To capture network topology in-

formation, Deepwalk introduced an unsupervised strategy that learns features that capture

the graph structure independently of the labels’ distribution, rather than mixing the label

space as part of the feature space [84].

3) LINE: LINE [101] is a network embedding model designed for embedding very

large-scale information networks, which contain millions of nodes and billions of edges.

This method generates low-level embeddings by preserving both the first-order and second-

order proximity of nodes. Furthermore, this method incorporates a novel edge-sampling

technique that improves the efficiency of the model [101].
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4) Spectral Clustering (SC): Spectral Clustering, SC, is a matrix factorization [127]

technique that performs an eigendecomposition of a graph G, more specifically, the nor-

malized Laplacian matrix L, and takes top k eigenvectors as the feature representation of

nodes, i.e., node embedding vectors, Z. The edge score is calculated as the sigmoid func-

tion, Z ×ZT .

7.3.2 Graph-based Methods

1) WLNM (Weisfeiler-Lehman Neural Machine): WLNM is a subgraph-based link predic-

tion method that extracts the enclosing subgraphs around the target nodes to learn graph

structure features for link prediction. The number of nodes in the subgraph is denoted by

the user-defined integer K. The Palette-WL algorithm, a variant of WL that is fast and

order-preserving, is used to label nodes. The enclosing subgraph is then represented as an

adjacency matrix by WLNM. A fully-connected neural network is trained on these adja-

cency matrices, together with their labels, to learn the existence of links. WLNM has three

steps: a) enclosing subgraph extraction, b) subgraph pattern encoding and c) neural network

training.

2) SEAL (Learning from Subgraphs, Embeddings and Attributes for Link Prediction:

SEAL framework for link prediction learns general graph structure features from local sub-

graphs rather than complete networks. The method takes as input the enclosing subgraphs

around the links and returns the likelihood that the links exist. SEAL consists of three

steps: a) enclosing subgraph extraction, b) node information matrix creation, and c) GNN

learning. The default GNN used in SEAL is DGCNN (Deep Graph Convolutional Neural

Network) [Section 7.2.2] [129].
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Table 7.2: Comparison of our method with latent methods.

Operator Method BHuman1 BHuman2 BHuman3 BHuman4 BMouse1 BMouse2

Average

Node2vec 0.4999 0.5162 0.5035 0.5177 0.5049 0.5127
LINE 0.5061 0.5034 0.5053 0.4968 0.5142 0.5093

DeepWalk 0.5029 0.5052 0.5 0.5148 0.5099 0.513
SC 0.4728 0.5464 0.5361 0.531 0.5043 0.5312

Hadamard

Node2vec 0.9748 0.9766 0.9833 0.9711 0.9564 0.9726
LINE 0.7077 0.7908 0.5696 0.8279 0.8474 0.8494

DeepWalk 0.956 0.9634 0.9514 0.9615 0.9558 0.9635
SC 0.9392 0.9625 0.9501 0.9623 0.9589 0.9648

Weighted L1

Node2vec 0.9887 0.9885 0.9917 0.9851 0.9798 0.9846
LINE 0.7204 0.7474 0.5528 0.8421 0.894 0.8848

DeepWalk 0.9867 0.9857 0.9859 0.982 0.9813 0.9812
SC 0.9743 0.9757 0.9696 0.9716 0.969 0.9694

Weighted L2

Node2vec 0.9896 0.9895 0.9919 0.9862 0.9802 0.9846
LINE 0.7243 0.7474 0.5603 0.8487 0.8989 0.8865

DeepWalk 0.9869 0.9866 0.9857 0.9825 0.9823 0.9822
SC 0.9748 0.9752 0.9687 0.9736 0.9752 0.9729

SEGCECO 0.9985 0.9980 0.9989 0.9982 0.9975 0.9972

7.4 Results and Discussion

Overall, compared to other methods, our method achieves improvement in performance in

terms of AUC. Table 7.2 shows the performance (AUC) of our method and latent methods.

For all the datasets, Node2vec outperformed all other approaches for three of the four op-

erators. It means Node2vec excels in generating low-dimensional embeddings of nodes in

networks and achieving a neighbourhood-preserving objective. Thus, we chose Node2vec

as the node embedding method in our framework.

Table 7.3 depicts the performance (AUC) of our method with other GNN-based meth-

ods, such as GAE, VGAE, WLNM. Among them, our method performs best with approxi-

mately 99% AUC. We anticipate that the improved performance of our method is due to the
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proposed pooling layer in the framework, which uses IG as the feature selection method to

select the top τ attributes (i.e., genes) as explicit features in the node information matrix, X ,

resulting in better prediction.

Table 7.3: Comparison of our method with other methods.
Datset GAE VGAE WLNM Our method
BHuman1 0.9835 0.9852 0.9832 0.9985
BHuman2 0.9859 0.9805 0.9839 0.9980
BHuman3 0.9876 0.9869 0.9889 0.9989
BHuman4 0.9838 0.9764 0.9773 0.9982
BMouse1 0.9841 0.9764 0.9673 0.9975
BMouse2 0.9838 0.9829 0.9744 0.9972

Moreover, Figure S10 plots the ROC curve for DeepWalk, Node2vec, LINE, SC, GAE,

VGAE, WLNM, and our method on the BHuman1 dataset. It is noticeable that our method

surpasses other approaches since the curve is closer to the top-left corner, indicating better

performance.

Robust inferences are essential to minimize false discoveries and help reduce the num-

ber of validations to perform, which is especially useful when experiments are expensive.

Here, positive means interacting cells and negative means non-interacting cells. Ob-

serving Figure S11 reveals that our method obtained the lowest FPR of 0.0135 among all

the approaches, implying that there is a very lower probability that our method will predict

non-interacting cells as interacting cells. This, in other words, means when the cells do

not have interactions, the chances of inaccurate predictions, i.e., the cells interact, are mini-

mal. Furthermore, our method performs best in predicting actual interactions, that is, when

there exist interactions between cells, the method predicts the same. The same behaviour

is detected in other datasets as well. The ROC curves, FPR and TPR distribution on other
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Table 7.4: Performance metrics of our method for the datasets.
Dataset AUC Accuracy Precision Recall F1-score
BHuman1 0.9985 0.9928 0.9872 0.9987 0.9929
BHuman2 0.9980 0.9903 0.9915 0.9891 0.9903
BHuman3 0.9989 0.9923 0.9925 0.9921 0.9923
BHuman4 0.9982 0.9886 0.9862 0.9913 0.9887
BMouse1 0.9975 0.9854 0.9800 0.9908 0.9854
BMouse2 0.9972 0.9878 0.9800 0.9954 0.9876

datasets can be found in the Supplementary Material (Figure S1 - S10). Thus, it can be con-

cluded that our method yields the best results for all datasets when it regards distinguishing

between interacting and non-interacting cells and making predictions.

Moreover, Accuracy, Precision, Recall, and F1-score are the commonly used evaluation

metrics to illustrate the performance of the model. Recall evaluates the model for cor-

rectly identifying cell-cell communication. Precision shows the percentage of predictions

accurately made by the model. Table 7.4 shows the AUC, accuracy, precision, recall, and

F1-score of link prediction using our method framework on different datasets. Our method

shows a performance of around 99% for all measures, indicating that our model can accu-

rately predict cell-cell interactions and discriminate interacting cells from non-interacting

cells. Based on the findings of the above-mentioned comparison, we conclude that our

method surpassed all other approaches with 99% AUC, accuracy, and other performance

measures across all datasets.

7.5 Biological Assessment

To interpret the network inferred, information such as gene ontology or pathway and other

metadata associated with the cells in the dataset gain insight into functional relationships

between cells. For example, a set of genes involved in a particular pathway are highly co-
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expressed across different cells in the network. This could indicate a functional relationship

between those cells related to that particular pathway. There are several network analysis

toolboxes and resources that can be used to validate the predicted cell-cell interactions.

Also, these tools can identify highly connected nodes or subnetworks, which may represent

key regulators or effectors of the functional relationships between cells.

GeneMANIA Cytoscape’s plugin has been used in this assessment since it provides

an interactive network visualization of the predicted functional relationships between the

query genes (genes of interest) and other genes based on co-expression, co-localization,

and other data sources.

Also, the ReactomeFIViz app helps to find pathways and network patterns related to dis-

eases by accessing Reactome pathways and the Functional Interaction network. Functional

Interaction (FI) network is a highly reliable, manually curated pathway-based protein func-

tional interaction network covering over 60% human proteins, and allows the construction

of an FI sub-network based on a set of genes.

We ran the ReactomeFIViz to find underlying sub-networks in the query list. The re-

sults represent and validate some examples of interactions that GeneMANIA found based

on the input. The visualization of the networks is presented in the Supplementary file, fig-

ure S22. As shown in Fig. S22, there are four sub-network related to the BHuman1 dataset.

Query genes which are indicated with purple, are grouped in four separate clusters. Genes

involved in the first cluster were analyzed using Reactome and six out of seven identifiers

in the sample were found, where 64 pathways were hit by at least one of them. We listed

the important ones in Table S1. For example, in the ”Other interleukin signalling” pathway,

interleukins are low molecular weight proteins that bind to cell surface receptors and act

in an autocrine and/or paracrine fashion. They were first identified as factors produced by
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leukocytes but are now known to be produced by many other cells throughout the body.

They have pleiotropic effects on cells which bind them, impacting processes such as tis-

sue growth and repair, hematopoietic homeostasis, and multiple levels of the host defence

against pathogens where they are an essential part of the immune system [3]. Also, in the

”Cytokine Signaling in Immune system” pathway, cytokines are small proteins that regulate

and mediate immunity, inflammation, and hematopoiesis. They are secreted in response to

immune stimuli, and usually act briefly, locally, at very low concentrations. Cytokines bind

to specific membrane receptors, which then signal the cell via second messengers, to reg-

ulate cellular activity [92]. Additionally, we ran GeneMANIA on the input list of the top

20 genes, extracted from the pooling layer which indicates the most effective genes in the

predicted interactions among cells. Figure S23 represents the key regulators or effectors of

the functional relationships between cells in separate network types, such as co-expression,

predicted, shared protein domain, and other factors.

7.6 Conclusion

In this paper, we propose a pipeline for performing cell-cell interaction prediction in scRNA-

seq data using GCN. This article demonstrates how scRNA-seq data in the form of a gene

expression matrix is transformed into a graph representation, i.e., a cell-cell communication

network (CCN), in order to predict cell-cell interactions in scRNA-seq datasets.

Our proposed method works with undirected, attributed graphs created from the gene

expression profiles of the individual cells. The architecture of our method includes a pool-

ing layer that coarsens the graph attributes from the scRNA-seq data while preserving the

global structure of the input graph. The pooling layer is followed by the enclosing sub-

graph extraction, node information matrix construction, and finally GCN that convolves
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over the graph to encode the representation of both local and global attributes. The experi-

mental results have shown that our proposed method outperforms previous state-of-the-art

techniques. We evaluated our method using AUC, accuracy, precision, recall, and F1-score

evaluation metrics. Findings show a performance of approximately 99% for all perfor-

mance measures across all the datasets. We empirically proved that our method yields bet-

ter results in terms of AUC relative to the previously proposed latent and subgraph-based

methods. Thus, we conclude that our method outperforms other approaches in predicting

cell-cell predictions and distinguishing interacting from non-interacting cells.

Our proposed method also opens up new research opportunities to work with networks

in which there is a special structure such as heterogeneous CCN, networks with explicit

domain features for nodes and edges, and directed or multi-modal graphs. In addition to

the application of cell-cell link prediction, the proposed method could be applied to node

classification, node clustering, graph partitioning, and graph classification. We would also

foresee applying our method to domains such as disease-gene or drug-target associations,

knowledge graph completion, and recommendation systems, among others.
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Conclusion and Future Work

8.1 Conclusion and Future Work

This comprehensive research addresses various aspects of scRNA-seq data analysis with a

focus on cell type identification, classification, and interaction prediction. The following

synthesized conclusion encapsulates the main contributions from each study:

Our work has delved into diverse methodologies for unravelling the complexity of

scRNA-seq data, emphasizing the identification of cell types through manifold learning and

clustering techniques. The proposed two-step representation learning approach, employing

k-means clustering and Modified Locally Linear Embedding (MLLE), demonstrated en-

hanced clustering outputs and meaningful organization of cell clusters. Notably, MLLE

outperformed UMAP in high-dimensional cytometry, showcasing its efficacy in preserving

data locality and improving the visualization of clustering results.

Expanding the scope, we applied manifold learning and clustering techniques to un-

labeled data to identify SARS-CoV-2 target cell groups. The proposed two-step cluster-

ing method demonstrated high accuracy, paving the way for potential applications beyond

141
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COVID-19, including cancer research, developmental biology, neurobiology, biomarker

discovery, and gene set enrichment analysis, among others.

In a parallel investigation, we explored classification models, specifically XGBoost and

SVM, for cell type discovery using marker genes. Leveraging sparsity-aware feature selec-

tion in XGBoost, we observed a significant boost in predictive accuracy. This study not only

validated the effectiveness of ensemble tree models but also emphasized the importance of

considering sparsity patterns in scRNA-seq data for precise and meaningful results. How-

ever, due to the sparsity or imbalanced nature of scRNA-seq data, there is a possibility that

machine learning methods may lead to biased predictions. Considering these limitations as

a separate, preprocessing step, for other main problems in scRNA-seq analysis is crucial.

Although we did perform a preprocessing step in all studies, it is crucial to consider the

fact that we could be missing biological interactions because we filter out these types of

cells such as neutrophils and eosinophils, which express less than our filtering threshold.

It is important to capture, for example, immune interactions with pancreatic cells, or any

cases where immune infiltration matters. Here, lowering the filtering threshold might be a

non-feasible solution since it will include more non-viable cells and noise than we would

ideally like. Moreover, the technologies themselves also have a major drawback. In almost

all omics technologies, we can only see the system as a snapshot because in NGS or any

other technique, we have to lyse the cells and produce DNA or RNA from them, and it is

not possible to observe dynamic changes; except by examining the cells at different times,

which is only possible in cases of cell culture, case by case. Even within identical cells,

their expression levels vary based on factors such as environmental conditions, spatial and

temporal considerations (such as proximity to the organ’s surface or blood supply arteries),

and interactions with immune cells. This process is not a simple on/off switch with a fixed
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percentage chance of occurrence; rather, certain interactions may not occur consistently due

to the influence of homeostasis. The cells engage in interactions for the necessary duration

and cease when the optimal level is attained. Therefore, as mentioned above, while we

follow a general standard best practice preprocessing pipeline in scRNA-seq data analysis,

which includes basic filtering as a general approach, we do need a separate, preprocessing

step.

Our exploration extended to the realm of deep learning, proposing a novel approach

that combines a self-organizing map (SOM) and convolutional neural network (CNN) for

simultaneous dimensionality reduction, feature selection, and classification. The synergy

of SOM and CNN showcased remarkable accuracy in identifying cell types, offering a

potential unsupervised clustering algorithm for large-scale datasets.

Additionally, we delved into the supervised identification of cell types, employing fea-

ture selection methods coupled with classification techniques on annotated datasets. Our

findings underscored the power of feature selection in enhancing classification accuracy by

identifying informative biomarker genes and disregarding uninformative ones.

However, using only RNA-seq data might not capture the full complexity of cellular

heterogeneity or interactability, as it predominantly provides information about gene ex-

pression levels. This approach may overlook other critical factors influencing cell identity,

such as epigenetic modifications, protein expression, or spatial context. Therefore, along-

side the investigation of computational approaches, it is important to consider as much

information as possible, which is involved in cellular heterogeneity.

In a novel contribution, we presented a pipeline for predicting cell-cell interactions

in scRNA-seq data using Graph Convolutional Networks (GCN). Our proposed method

outperformed previous state-of-the-art techniques, achieving approximately 99% accuracy
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across various datasets. This work not only advances the understanding of cell-cell inter-

actions but also opens avenues for broader applications, such as disease-gene associations

and recommendation systems. While employing GCNN allows for the prediction of higher-

order relationships beyond the first-order, it is crucial to interpret these relationships in a

biological context and selectively report only those that align with meaningful biological

insight revealed in the existing literature. Moreover, GNNs may not fully capture the spatial

aspects of cell-cell interactions in tissues using only scRNA-seq data. Integrating spatial

information into the graph structure is crucial for a more accurate representation of the

physical proximity of cells, which is often essential in understanding their interactions. In

addition, the performance of GNNs heavily depends on the quality of the graph representa-

tion. Constructing an accurate and biologically relevant graph from experimental or spatial

transcriptomic data is a non-trivial task, and inaccuracies or lack of relevant information in

the graph may impact the predictive performance of the GNN.

As a whole, this research provides a multifaceted approach to scRNA-seq data anal-

ysis, offering insights into cell type identification, classification, and cellular interaction

prediction. The findings lay a foundation for future research, suggesting avenues for future

works, and applying the proposed methodologies to various domains beyond single-cell

sequencing.

To overcome the above-mentioned limitations and enhance the meaning and accuracy

of the proposed approaches we are proposing some potential avenues for future research:

1. Integration of Multi-Omics Data:

A promising avenue for future work involves the integration of multi-omics data. Al-

though the model can be used to infer cell-cell interactions or cell type identification,

the generated predictions are still hypotheses to be validated experimentally. Tran-
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scriptomics may not fully represent a biologically accurate view of cell-cell commu-

nication, as mRNA and protein abundance may be uncoupled by post-transcriptional

and post-translational processes. To improve the model, one possible approach is

through multi-omics data integration. Borrowing information from other omics data

can improve confidence in the results. Novel techniques and methods such as Mass

Cytometry and spatial transcriptomics (ST), for example, allow researchers to an-

alyze the transcriptome of tissues in a more real context, with the addition of in-

formation about proteins. Also, the limited scale of experiments that focus on the

examination of ligand and receptor pairs within specific cell lines or tissues has been

addressed by the emergence of advanced techniques in spatial transcriptomics (ST).

This valuable information facilitates broader analyses of extracellular interactions on

a larger scale. By incorporating additional layers of information, such as ST, DNA

methylation, gene mutations, copy number variations or aberrations, chromatin ac-

cessibility, protein abundance, or spatial transcriptomics, researchers can obtain a

more comprehensive and nuanced understanding of cellular heterogeneity or cellu-

lar interactions. A multi-omics approach allows for a more holistic characteriza-

tion of cellular states and phenotypes, considering both genetic and epigenetic fac-

tors. Moreover, integrating diverse data types enables the construction of more ro-

bust models, providing a richer context for cell type identification and prediction of

cell-cell interaction prediction. By fusing information from multiple “omics” layers,

researchers can gain deeper insights into the regulatory mechanisms and functional

dynamics underlying cell heterogeneity. This integrative approach could hold the

potential to refine the accuracy of the proposed methods and enhance the biologi-

cal interpretability of the results, paving the way for a more thorough exploration of
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complex biological systems. Specifically, in the pipeline proposed for the prediction

of cell-cell interactions, there is a possibility to include as many features as possible

to the structure of the attributed graph as the input to the GCNN.

2. Leveraging Different Ways of Graph Construction

Within the realm of predicting cell-cell interactions, there exist numerous avenues

for constructing cellular networks. One potential approach is the utilization of self-

organizing maps, particularly in incorporating spatial transcriptomic data, leveraging

their spatial information to create a more contextually significant graph. This step is

crucial as it serves as a pre-processing stage for the proposed method, and the ultimate

outcome heavily relies on the quality and relevance of this constructed graph.

3. Large-Scale Experiments and Cross-Tissue Analysis:

To further amplify the robustness and applicability of the proposed methodologies,

it is recommended to undertake more extensive experiments involving a larger and

more diverse set of samples obtained from various tissues. Scaling up the scope of

the experiments by increasing the number of samples and incorporating a broader

tissue may contribute to a more comprehensive understanding of the methodologies’

performance across different biological contexts. In parallel, engaging in cross-tissue

analysis becomes pivotal, as it allows for the exploration of both shared patterns and

distinctive features in cell types and their interactions across diverse tissues. This

comparative analysis can unveil commonalities, highlighting conserved cellular be-

haviors, as well as differences, offering insights into tissue-specific variations. By

embracing large-scale experiments and cross-tissue analyses, the methodologies not

only gain in scalability and generalizability but also stand better poised to capture the
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intricacies of cell types and interactions in a more biologically relevant manner.

4. Handling Dynamic Nature of Cellular Interactions

GNNs may struggle to adapt to dynamic changes in cellular interactions over time.

The inherent static nature of many GNN architectures may not effectively capture the

temporal dynamics involved in cell-cell interactions. Therefore, the need to explore

other approaches is crucial to deal with dynamic interaction prediction problems;

for example, developing GNN architectures explicitly designed to capture temporal

dynamics in cellular interactions. This may involve the incorporation of recurrent

neural networks (RNNs) or attention mechanisms to model sequential changes in in-

teractions over time. In addition, exploring ensemble methods that combine predic-

tions from multiple GNNs trained on different temporal snapshots could be another

possible approach. This can help mitigate the challenges associated with capturing

dynamic changes by leveraging complementary information from multiple models.

Moreover, developing GNN models that dynamically evolve the underlying graph

structure to accommodate changes in cell-cell interactions over time is another po-

tential variant. This could involve mechanisms for edge addition, removal, or weight

adjustments based on evolving biological conditions.

5. Model Optimization Techniques to Deal with Computational Resource Limitation

Training large-scale models on extensive scRNA-seq datasets can be computation-

ally intensive, requiring significant computational resources. This can be a limitation,

particularly for research groups with limited access to high-performance computing

resources. Exploring model optimization techniques, such as model pruning, quan-

tization, and compression, to reduce the size of GNN models, for example, without
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compromising predictive performance could be a possible approach. This can re-

sult in faster inference times and decreased resource requirements. Or, exploring

transfer learning techniques where pre-trained models on related tasks or datasets

are fine-tuned can be considered as well. This can leverage existing knowledge, re-

quiring fewer computational resources for training. While large-scale experiments

are crucial somehow to achieve a general and stable model, the processing time for

small- or average-scale experiments remains acceptable in light of the costly nature

of biological experiments. Ultimately, computational approaches enhance and expe-

dite biological experiments irrespective of scale. They enable researchers to conduct

experiments on a selective set of genes or cells rather than a broad range, thereby

reducing time and cost.

6. Dealing with the Sparsity Nature of scRNA-seq data

scRNA-seq data exhibit inherent sparsity and noise. Given the zero-inflated nature of

this data, a necessary pre-processing step is essential to prepare it for input into the

main model. The effectiveness of classification, clustering, dimensionality reduction,

graph neural networks (GNNs), and several other methods is greatly contingent on the

quality of their input data. Various imputation approaches can play a crucial role in

enhancing the data quality and subsequent performance of these analytical methods.

7. Application to other Disease Contexts:

In addition to COVID-19, we can apply the developed hybrid methodologies of cell

type identification to other diseases such as immune system-related diseases and dif-

ferent types of cancers. In the realm of cellular interactions, predicting the effect of

treatment on tumour-immune interaction in small-cell lung cancer could be a great
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example of real applications. Since interactions between tumour cells and immune

cells can have many effects including tumour-promoting, tumour-suppressive, and

metastasis, it is crucial to study healthy and cancerous cell interactions. It may help

to unravel the therapeutic targeting of tumour-immune interactions such as immune

checkpoint inhibitors. This could lead to a complementary study of cellular hetero-

geneity in various diseases, uncover potential therapeutic targets, and new diagnostic

and personalized treatments.

8. Exploration of Additional Biological Networks:

Our proposed method in cell-cell interaction prediction also opens up new research

opportunities to extend the application of GCN-based approaches to other biological

networks in which there is a special structure like heterogeneous networks, for ex-

ample, disease-gene networks,drug-target networks, or other biological network con-

texts. In addition to the application of cell-cell link prediction, the proposed method

could be applied to node classification, node clustering, graph partitioning, and graph

classification.

9. Validation and Reproducibility of the Result to Ensure Meaningful Results:

Finally, we emphasize the importance of experimental validation, or biological vali-

dation to a larger extent, for the proposed methodologies. Typically, the validation of

outcomes derived from the proposed computational methods involves a manual pro-

cess, which is both time-intensive and lacks reproducibility. Implementing an auto-

matic validation through open-access biological contexts ensures the reproducibility

of the proposed methods.

10. Identifying Rare Cell Types Our proposed two-step approach to cell type identifica-
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tion could help efficiently identify and categorize various cell types within a larger-

scale biological sample. This method can particularly benefit the identification of

rare cell types, which may be challenging to detect using traditional techniques. Fur-

thermore, by enhancing the visualization of cell groups, it is possible to provide re-

searchers with clearer and more informative representations of cellular populations

within the samples. This improved visualization can assist in distinguishing between

different cell types and their spatial relationships, thereby aiding in the accurate iden-

tification and characterization of rare cell populations. Overall, our approach not only

streamlines the process of cell type identification but also enhances the precision and

reliability of the results obtained on a larger scale.
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