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ABSTRACT 

This dissertation addresses cybersecurity and privacy risks in ITS, focusing 

on the escalating cyberattacks on AVs and data breaches in areas like smart cards. 

We explore novel malware threats to AVs and hacker strategies impacting physical 

infrastructure, underscoring the need for enhanced security in the evolving AV 

sector. This dissertation also emphasizes the importance of researching privacy 

risks, especially with the rise in privacy breaches and extortion attempts involving 

sensitive personal information. Understanding the implications of publicly shared 

data is crucial in this context.  

Chapter 1 raises research questions regarding the two main pillars, 

cybersecurity and privacy issues in ITS. Based on the questions, Chapters 2, 3 and 

4 deal with these questions, presenting key insights this research found. Chapter 2 

focuses on a case of vehicle hacking, specifically examining the implications of 

Stuxnet-style malware. Stuxnet attack methodology provides a critical context for 

understanding potential threats to AV systems. This chapter introduces a 

mathematical model to analyze how similar malware could spread both temporally 

and spatially in the context of AVs. Inspired by epidemiology and ecology, this 

approach conceptualizes malware as an infectious disease to study its propagation 

dynamics. This is the first attempt to apply such a model to the spread of Stuxnet-

style malware in AV environments, paving the way for future research on the 

temporal and geographic spread of infectious malware in AV networks. 

Chapter 3 delves into the privacy risks associated with the public sharing of 

COVID-19 patients' travel records during the pandemic. This measure, intended 
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for public health safety, inadvertently risked exposing sensitive personal travel 

details. The chapter examines how combining these records with other open-data 

sources might allow for the re-identification of individuals' private information. 

We quantify these re-identification risks, focusing on the volume and accuracy of 

the shared records, along with the variety of locations that the patients visited. This 

analysis is crucial for understanding the privacy implications of such data-sharing 

practices in public health contexts. 

Chapter 4 introduces a method to quantify privacy risks using information 

theory, measuring information as entropy units. We use synthetic data to model 

individual travel patterns, combining these into a unit termed a cube that 

encapsulates both time and space elements. The study focuses on how adding these 

cubes affects privacy risk, particularly by assessing the novel information each 

cube contributes. This allows us to quantify the distinct information within various 

data sequences, using joint and conditional entropy to understand uncertainty 

fluctuations as more cubes are added. 

Lastly, Chapter 5 concludes this dissertation’s insights that potential 

malware attacks can bring about magnificent physical destructions by 

manipulating infected AVs, privacy risks may emerge with the combination of 

external observations data, and information theory-based methodologies can 

quantify the risks in individual pieces of information. These insights can 

emphasize the necessity of our research.  
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CHAPTER 1 

INTRODUCTION 

1.1 Preface 

1.1.1 Background 

Since the first introduction of the concept of Intelligent Transportation Systems 

(ITS) emerged in the 20th century, the scope of ITS has significantly broadened. ITS is 

comprised of four key components: Smart Vehicles, Public Transportation, Internet of 

Things (IoT) Devices, and Controllers [1]. ITS leverages cutting-edge advancements in 

Information and Communication Technologies (ICT) to enhance efficiency, 

sustainability, safety and security in the transportation sector [2]. The advent of the IoT 

has expedited many ITS technologies, such as communicating with vehicles and 

infrastructures (V2X), analyzing big data, counting real-time traffic volumes and 

pedestrians, etc. The data collected from IoT contain numerous individuals’ travel 

patterns, confidential vehicle information, and real-time road conditions.  

While ITS has significantly enhanced vehicle safety and convenience, the 

increased computerization and connectivity pose serious cybersecurity concerns. ITS 

plays a crucial role in enhancing road safety by enabling the rapid sharing of traffic 

information. This is achieved by deploying advanced systems such as vehicular 

communication, navigation, and driver-assistance systems (ADAS). In addition to safety, 

ITS also contributes to convenience and entertainment in vehicles with features like 

Bluetooth connectivity [1]. This advancement has led to modern vehicles becoming more 

computerized and internally connected, primarily through Engine Control Units (ECUs) 

connected via the controller area network (CAN bus) communication protocol [3]. 
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Access to a vehicle’s internal network, including its CAN bus system, is often possible 

through the onboard diagnostic (OBD) port. This port supports various communication 

protocols, including the CAN protocol ISO 15765 [4], making the OBD port a crucial 

interface for vehicle diagnostics and system checks. However, computerized vehicles 

with outdated security systems can make vehicles susceptible to malware attacks. 

Numerous studies have highlighted the risks of malware attacks on CAVs and 

autonomous vehicles (AVs) through OBD ports [3], [5], [6]. The infected vehicles by 

malware can be exploited to destroy physical infrastructures and damage individuals’ 

lives. Consequently, addressing this vulnerability to cyber-attacks has become a rapidly 

growing concern and is now considered a national priority.  

On the other hand, cybersecurity and privacy risks in ITS are closely intertwined. 

Recently, we have seen cyberattacks targeting critical infrastructures, such as hospitals in 

southwest Ontario, Canada [7]. Adversaries can also target AVs and databases containing 

sensitive personal data. These massive attacks can lead to destruction and data breaches, 

with potential demands for ransom or selling of leaked data [8]. Such incidents highlight 

not only the vulnerabilities in our systems but also raise broader concerns about how 

personal information is collected, stored, and potentially exploited. 

In today’s era of abundant information, there is often a lack of awareness about 

how personal information is being collected and utilized. There is a saying that 

Google/Apple knows everything about me to reflect how our everyday devices, such as 

smartphones, continuously gather data about our activities. When people use their phones 

for activities like searching online or making purchases, information providers collect 

data on individual preferences and behaviours, often utilizing it for business purposes. 
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Beyond smartphones, a wide array of other information sources, such as smart cards and 

personal vehicles, including connected and autonomous vehicles (CAVs), contain 

substantial and sensitive personal data, like location-based service (LBS) data. 

Consequently, personal information within ITS is attracting considerable interest because 

these devices and technologies have the capacity to store sensitive information, creating 

potential risks of privacy breaches. 

Considering the evolving challenges in cybersecurity and privacy, it is crucial to 

thoroughly examine the research that lays the groundwork for the discussions in this 

dissertation. Privacy issues in transportation data and cybersecurity attacks in AVs are 

not a topic for the distant future but close threats in ITS. This dissertation explores two 

critical issues in ITS: the malware propagation model among AVs and privacy risks in 

transportation databases.  

 

1.1.2 Preliminaries 

This section aims to lay the groundwork for understanding the dual focus of this 

study: cybersecurity risks, especially concerning malware attacks on AVs, and privacy 

concerns in transportation data systems. 

 

1) Cybersecurity research 

The threat of malware attacks on cybersecurity systems poses significant risks to 

user protection. Hackers can exploit personal information through malware, which 

nowadays not only aims to steal data but also to cause physical damage to systems and 

devices surrounding us. A notable case is the Stuxnet malware attack on Iran’s nuclear 

facilities in 2010, which caused physical destruction while concealing its actual activities 
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[9]. Reportedly, the malware falsified the monitoring systems in the nuclear facilities by 

showing the normal status messages of the uranium centrifuges on the monitoring 

system. However, the malware changed the electrical current that powers the centrifuge 

and the speed of the machine until it exploded, disguising its actual situation by showing 

regular messages on the monitor. This type of cyberattack represents a potential threat to 

the transportation engineering sector, especially AVs. These vehicles are particularly 

vulnerable because they are part of cyber-physical systems (CPS), which combine 

computer and physical functions. Therefore, research on malware targeting CPS 

components like AVs is vital to safeguard personal privacy and prevent physical damage. 

 

2) Privacy research 

Early research primarily addressed privacy threats in Location-Based Services 

(LBS). Privacy in LBS can be categorized into three distinct dimensions: identity, 

location, and query privacy [10]. Identity privacy concerns breaches of personal 

information. The service provider, such as the credit card operator, shall not know the 

identity of users who employ the card service. Location privacy involves the user’s 

spatial and temporal information issues. Query privacy relates to inferences about 

individuals based on data combination.  

On the other hand, privacy protection methods fall into two major categories. One 

is to make data indistinguishable using generalization, substituting information attributes 

with a broader one, and suppression, removing sensitive data. Another method is to make 

data uninformative with differential privacy [11]. However, as we protect personal 

information, the value of data for research and business decreases. Hence, the researchers 

have tried to balance the use of personal information data and privacy protection.  
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Privacy research has also dealt with smart card data. Mayes’ team defined several 

features of the smart card: it has a unique identifier, participates in an automated 

electronic transaction, can store data securely, and hosts/runs various security algorithms 

and functions [12]. Smart card data also contains large-scale individual LBS data, having 

a unique card ID and information on boarding/alighting stations. These days, many 

officials have tried to open the data for research purposes publicly. Even though 

techniques to protect privacy have been developed, the possibility of a breach of personal 

information from card data is still a high potential risk. If transit users have used the 

transit regularly, their routine travel itineraries will be stored in the smart card database. 

Adversaries could re-identify the users’ identities from card data with additional 

information, such as the personal stories posted on social media in accordance with 

transit usage. When adversaries identify specific transit users, they can plan to commit a 

crime against the users. The aftermath of a breach of privacy in the real world would be 

detrimental to the user’s life. Thus, further research on smart card data privacy issues 

should be undertaken. 

 

 

 

1.2 Research Questions and Objectives 

Cybersecurity and privacy have been considered indispensable in networked and 

computerized environments in the fields of ITS for many years. While existing 

researchers have studied the topics, there is little systematic study of the epidemic of 

autonomous vehicles and privacy breaches using smart card data. Thoroughly 

understanding the extent of the threat from malware and privacy breaches is crucial. This 
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dissertation studies the severity of cybersecurity and privacy issues. A mathematical 

model was formulated to predict the spread of malware among AVs, and a simulation 

was conducted to identify an individual from the datasets. To this end, many research 

questions and objectives are outlined in the following subsections. 

 

1.2.1 Malware Propagation in Autonomous Vehicles  

We first need to understand the types of malware and propagation speed to cope 

with malware invasion. This dissertation posed a question regarding AVs' vulnerability 

moments, propagation method and speed. More specifically, the research questions can 

be specified as follows: 

1. What is the most vulnerable moment for AVs in terms of cybersecurity 

threats?  

2. What types of malware can infiltrate AVs during these vulnerable moments?  

3. Once inside an AV, how does the malware spread to other AVs within a city?  

4. How quickly can this malware propagation occur among AVs? 

 

To address these enquiries, this research concentrated on a specific type of 

environment: CPS, which is based on integrated computational and physical capabilities 

to interact with humans [13]. While CPS offers numerous advantages, its blend of cyber 

systems and physical facilities also opens up vulnerabilities that hackers can exploit for 

malicious purposes. With the context of CPS, this dissertation analyzed the malware 

propagation among AVs based on an epidemic model to measure the threats to AVs. This 

approach is employed to assess and quantify the cybersecurity threats facing AVs. 
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1.2.2 Privacy Issues in Mobility Data 

In recent years, open-data initiatives have enabled researchers to access and 

extensively utilize individual mobility data. However, this increased accessibility also 

poses significant privacy risks, as adversaries could potentially access this data and 

compromise individual privacy by re-identifying people from it. This dissertation 

specifically focuses on measuring the re-identification risks associated with matching 

quasi-identifiers (QIDs) to externally observed travel records, hereafter referred to as 

external observation data. The research investigates privacy concerns related to smart 

card data, particularly examining scenarios where individuals’ travel logs, functioning as 

external observation records, are exposed or leaked. This research seeks to answer the 

following questions: 

1. How does the number of travel observations impact the risks?  

2. How do variations in the resolution of travel observations impact the risks?  

3. How do the diverse visited locations impact the risks? 

 

In order to answer the above questions, this dissertation adopts a method to 

measure the re-identification risks. The k-anonymity method was utilized [14]. It is a kind 

of anonymization in the scope of generalization by adding at least k-1 other tuples to 

make it challenging to re-identify the target [11]. This study considers different QIDs' 

quantity and quality to measure the risks from real-world privacy breach cases: COVID-

19 patients’ travel logs data. 
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1.2.3 Quantification of Amounts of Information Regarding Privacy Issues 

The last research subsection is related to quantifying the amounts of pieces of 

information regarding privacy risks. Other researchers, including our previous subsection, 

tend to concentrate on measuring privacy risks in accordance with given external 

information. This given information resulted from a specific individual’s exposed 

external information. Accordingly, the observation data would not fit others who have 

different travel records compared to the specific individual. The researchers filtered out 

the subset of travel data that originated from others who had different travel logs 

compared to the external observation. While the filtering method can re-identify 

individuals effectively, this approach might be suitable only for identifying individuals 

with specific circumstances. With the filtered subset data, quantifying amounts of 

information would be challenging to gauge privacy risks in the entire dataset. With this 

regard, we shed light on the following research questions.  

1. What is the relationship between privacy risk and quantification of 

information amount? 

2. What methods can be utilized to quantify privacy risks, considering the entire 

dataset? 

3. How can we quantify the amount of information regarding newly added 

information pieces? 

In order to address the above questions, this dissertation utilized an information 

theory-based methodology to quantify a piece of information, which is external 

observation data. In particular, the concepts of joint entropy and conditional entropy were 

adapted to this research to quantify the amount of information in a piece. 
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1.3 Dissertation Outline 

The remainder of this dissertation is organized as follows: 

Chapter 2 introduces a mathematical malware propagation model among AVs. As 

discussed in the preliminary section, Stuxnet is a well-known malware that does not just 

snatch confidential information but destroys physical facilities [9], [15]. In autonomous 

vehicle cybersecurity research, many researchers have warned of hackers’ attacks 

through a Controller Area Network (CAN bus), especially OBD scanners [3], [16]. If 

OBD scanners are infected by malware, the direct contact between OBD scanners and 

AVs will be the main entrance of the malware attacks. There is a conceptual similarity of 

virus/malware propagation between the malaria disease and Stuxnet-style malware. The 

infected mosquitoes and OBD scanners can take a role as a vector to transmit the 

virus/malware between hosts: humans and AVs. This is why this dissertation adopts an 

epidemic model, such as the susceptible-infected (SI) model. With the conceptual 

similarity, the research adopts the malaria model to formulate a mathematical malware 

propagation model. Also, the research formulates a transportation operator model, 

demonstrating AVs' visiting mechanic shops patterns. For the operator model, the 

average annual mileage records per vehicle and property tax information are considered 

to formulate the transportation gravity model.  

Chapter 3 explores the re-identification risks from smart card data. This section 

analyzes real-world privacy leaked cases of COVID-19 patient travel logs in South 

Korea. The travel logs are examined as external observation data to measure the risks 

from the card data. According to the South Korean government, officials investigated 

travel logs from patient statements and shared them publicly to make people avoid 

visiting the places [17], [18]. The travel logs were collected mainly by interviews, and 
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there were resolution differences in pinpointing the locations. Language-based travel 

observations can vary spatial and temporal resolutions regarding patients' visiting times 

and locations. This dissertation considers the differences in information resolutions to 

understand the impact of language-based travel observation data on re-identifying the 

patients from dataset. As a measurement to gauge the risks, the well-known method, k-

anonymity, is adopted [14]. A series of re-identification analyses are undertaken to output 

the different risks to understand the impact of the language-based external observations. 

In particular, this research explores the significance of differences in the risks, 

considering the spatial and temporal resolutions of the observations.  

Chapter 4 develops metrics for quantifying a piece of information in terms of 

privacy risk. Based on the aforementioned research questions, this section focuses on 

quantifying amounts of information in the dataset. To this end, we created synthetic data 

to show individual travel records and quantify the fluctuations of privacy risks, 

considering the entire dataset. We adapted Claude Shannon’s information theory 

methodologies. In Shannon’s research, entropy can estimate a dataset's uncertainty or 

unpredictability level [19]. When estimating entropy, the probabilities are input variables 

calculated from every distribution given conditions. Thus, the information theory-based 

method to measure privacy risks is not biased like filtered methods from existing studies. 

In particular, this dissertation focuses on joint entropy and conditional entropy to 

recognize the amount of a piece of information. Based on the basic concept of conditional 

and joint entropy, joint entropy can be estimated by accumulating conditional entropies 

as increasing the number of conditions. Chapter 4 delves into the impact of adding pieces 

of information, which can exacerbate privacy risks.   
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Lastly, Chapter 5 provides concluding comments and future plans.  
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CHAPTER 2 

A MATHEMATICAL MODELLING OF STUXNET-STYLE AUTONOMOUS 

VEHICLE MALWARE 

2.1 Introduction 

2.1.1 Background 

In mid-May 2017, powerful computer malware invaded networked computer 

systems around the globe. It triggered a wave of aftershocks, holding data for ransom on 

more than 200,000 computers in 150 countries. In September 2020, ransomware hit 

Universal Health Services, one of the largest healthcare providers in the United States. 

The attack forced a network shutdown throughout its facilities, impacting patient data and 

laboratory systems. It resulted in the cancellation of surgeries and attributed most of the 

unfavourable impact to facilities [1]. Such events become highly probable because a 

combination of widespread software homogeneity and unprecedented levels of 

connectivity creates an ideal climate for infectious malicious software (malware, for 

short) [2]. This evolving cyber-attack landscape leads to the sobering conclusion that 

malware and its self-propagating programs will be a new and growing threat to 

autonomous vehicle (AV) systems. Many cybersecurity experts [3-5] identified critical 

potential risks and challenges posed by epidemic-style AV malware, namely AV 

epidemic. 

AVs are also susceptible to the same cybersecurity risks as networked computers. 

Vehicles are becoming computerized to control airbags, engines, brakes, ventilation, and 

advanced driver assistance systems (ADAS). Internally networked electronic systems 

with outdated security systems could offer hackers shortcuts to transmit malware through 
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the infotainment system or diagnostic tool, and they can access the whole or subsection 

of controls related to the vehicle's security [6-7]. Further, vehicles will increasingly be 

connected by vehicle-to-everything (V2X) technologies for traffic efficiency, safety, and 

cooperative driving. Many researchers have identified vulnerabilities where the malware 

can control vehicles [8-9]. 

 

2.1.2 Features of Stuxnet-style Attack  

Stuxnet is a well-known malware in the computer security community because it 

was first aimed at physical destruction. It is a convoluted program to invade and snatch 

the controlling system through semi-autonomous means [10]. Farwell and Rohozinski 

insist that over 60,000 computers were already infected in 2010. Stuxnet is believed to 

have been conceived to cripple Iran’s uranium centrifuges, and it infected the industrial 

control systems through Windows computers. Its attack on Iran’s centrifuges sped up or 

slowed down the centrifuges until they destroyed themselves, while the operators’ 

computer screens showed everything was working as normal [11]. There was another 

attack with a modified Stuxnet. The U.S. National Security Agency tried to attack North 

Korean centrifuges using upgraded Stuxnet, but it failed [12]. Both cases demonstrate the 

threat of cyber-attacks to the physical system. Chen and Abu-Nimeh [13] highlighted the 

features and threats of Stuxnet. Stuxnet targets Windows PCs, which program the specific 

logic controllers that control automated physical processes in a standard industrial control 

system. They argued that Stuxnet is not restricted to computers but can affect critical 

physical infrastructure and threaten real lives. Hence, Stuxnet can attack cyber-physical 

systems more than other types of malware, which mainly focus on damaging and stealing 

intellectual properties and information. 
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Stuxnet targeted highly specialized industrial systems in critical high-security 

infrastructure in 2010. Karnouskos [14] argued that Stuxnet could be transmitted by 

plugging a USB flash drive into Windows computers. The infected computers and 

monitors fake industrial process control sensor signals; accordingly, there were no alarms 

or shutdowns due to abnormal working until the facilities were destroyed. Another study 

[7] pointed out the possibility of vehicle infection by first-infected diagnostic equipment. 

At the annual DerbyCon hacker convention in 2015, the security expert team [15] 

demonstrated an experiment attacking vehicles by simply infecting the mechanic’s 

computer that runs the diagnostic software with Stuxnet-style malware. They turned off 

the vehicle’s airbag system without the diagnostic software noticing the misdeed as proof 

of concept. Thus, hackers can easily infiltrate Stuxnet-style malware into AVs through 

infected diagnostic devices. 

Therefore, it is noticeable that Stuxnet has lethal features that can devastatingly 

damage physical facilities, readily travel on USB sticks, spread through Windows 

computers stealthily and be a real threat to the security of AVs.  

 

2.1.3 Reasons for a Growing Interest in Stuxnet-style Attacks in Targeting AVs  

There are particular reasons that cyber security experts have focused on this 

specific malware. First, AVs are complex cyber-physical systems with many functions 

integrated by collaborative interactions between cyber (i.e., electronic control units, 

sensors) and physical systems (i.e., ADAS, steering, braking). Further, Stuxnet is 

malware targeting physical access to a vehicle, causing physical damage [15]. Therefore, 

the AV epidemic can cause severe physical consequences like vehicle accidents. 

Terrorists may exploit the infected vehicles to create a blast and massive collisions with 
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all the vehicles filled up with fuel [16]. These are clear implications that the AV epidemic 

represents a significant threat to entire transport systems. 

Second, a Stuxnet-style attack on AVs is plausible. Managing many computers at 

mechanics’ shops with an up-to-date security upgrade would be challenging. Computers 

are used for various purposes, not only for diagnostics but also for the Internet, which 

could be a gateway to malware transmission [15]. Also, the on-board diagnostic (OBD-II) 

scanner randomly connects the computers with vehicles, and the hackers can spread the 

Stuxnet worm by connections. Stuxnet can be a scalable, similar way of spreading 

disease. Due to its sophistication, many experts [7], [15], [17] have warned that Stuxnet 

provides a blueprint for carrying out similar attacks on AVs.  

Third, it can become more compatible with any vehicle brand and more scalable. 

Szijj et al. [15], who presented a Stuxnet attack on Audi brand vehicles, asserted that any 

brands using vulnerable diagnostic applications could easily be exposed to the malware. 

It can repeatedly replicate, hide, and cause an epidemic. 

 

2.1.4 Contributions 

Despite significant inroads into AV technology in recent years, a systematic study 

of the AV epidemic is lacking. Traditional analysis tools are insufficient to cope with the 

emerging security challenges of AVs or adequately predict their behaviours. This study 

aims to analyze the behaviour of the AV epidemic to bridge the methodological gaps 

between traditional tools and new challenges. Well-developed mathematical models in 

epidemiology [18-20] provide a conceptual platform that can be adapted to describe the 

AV epidemic. Therefore, this study seeks to understand and enhance the security of AV 

systems. 
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 The primary contribution of this study is to develop the AV malware propagation 

model that provides a clear understanding of the replication methods. We believe there is 

a similarity regarding the propagation between malaria and Stuxnet as a vector-host 

model. Malaria cannot spread from person to person directly, but mosquitoes can spread 

malaria as a disease vector. The OBD-II scanners and computers at mechanic shops could 

take the role of malaria mosquitoes in spreading malware between AVs. Thus, adopting a 

vector model of epidemic propagation to express malware spreading could be a novel 

approach. Also, we incorporate a transportation operator model to present individual 

vehicles visiting mechanic shops. The model formulates the frequency and intensity of 

the mechanic shop visits. The novelty and pertinence of the model lie in its adaptation 

and modification from epidemiology to AV epidemic and its combination of the 

complementary strengths of network science to develop new methods. Therefore, the 

proposed model describes the characteristics of the AV epidemic built on the contact 

between mechanic shops and vehicles. Robust epidemic control techniques can be 

developed and integrated to eradicate the malware in a simulation environment. It also 

can be implemented in the real world with the proposed model in future studies. This 

study is the first attempt to recognize the significant threats of AV malware and defend 

against the AV epidemic. 

The remainder of the chapter is organized as follows. Section 2 discusses related 

works, especially for AVs or connected and autonomous vehicles (CAVs) vulnerabilities 

and malware propagation models. Sections 3 and 4 present the conceptual framework of 

the proposed model and mathematical explanation. Section 5 consists of numerical 
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experiments and the associated results. Section 6 summarizes the main findings and 

future research directions. 

 

 

2.2 Related Work 

2.2.1 Connected and Autonomous Vehicle Vulnerabilities  

Modern vehicles consist of more than 100 electronic control units (ECUs); about 

100 million lines of code are used to operate the vehicles [21]. They are tightly 

interconnected via internal networks based on the Controller Area Network (CAN) bus 

standard, which is an international standardized serial communications bus [22]. Corrigan 

described how information is conveyed between devices on a network, and the CAN 

transceiver connects physical subsections in the vehicle through the CAN communication 

protocols [22].  

Many researchers have aroused attention regarding the vulnerability of the highly 

developed CAN network in AVs [23], [25], [26]. Amoozadeh et al. [28] analyzed AVs' 

security vulnerabilities in cooperative driving. They explained the physical types of 

attacks: falsification and eavesdropping of beacon information, inducing collision in 

congested areas with false distance information between vehicles. Also, Parkinson 

warned that access control within the OBD protocol could allow hackers to control the 

vehicles easily [24]. Hong [27] emphasized that security challenges could emerge due to 

automotive architecture design, insisting that OBD security should be developed to detect 

malware. Hackers can manipulate AVs physically by distributing malware. 

Ethernet is attracting widespread interest with several advantages: higher 

throughput rates, smaller wiring than CAN, etc. [36]. Both CAN bus and Ethernet 
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networking would be susceptible to infection during the direct connection to vehicles for 

diagnosis. Therefore, the interconnection between AVs and diagnostic devices via CAN 

bus and Ethernet can exacerbate the risk of invasion by hackers. However, there has been 

little discussion on malware propagation through physical contact. 

On the other hand, according to Upstream Security’s report, the shares of physical 

access attacks have decreased in the last decade [29]. They argued that remote contact-

based attacks are more feasible. Even though the shares of physical contact-styled attacks 

have a decreasing tendency these years, we still need to study the physical malware 

propagation. Both remote and physical contact-based attacks related to hackers can bring 

devastating risks threatening people’s lives. 

 

2.2.2 Risks of Stuxnet-style Malware  

Among several attacks on automotive control systems, Stuxnet-style malware 

may utilize vulnerabilities in equipment or computers at mechanic shops. Stuxnet mainly 

consists of  .dll files that let hackers monitor and intercept data between the diagnostic 

application and the cable [13], [15], [17]. The detailed process of encroaching and 

manipulating vehicles is beyond the scope of this research, so we briefly explain the 

malware's propagation process. Stuxnet would be uploaded first to the mechanic shop’s 

computer network, possibly using USB. Then, it infects the entire vehicle’s computer 

system [11]. This is realistic because the mechanic’s computer commonly accesses 

vehicles during routine maintenance for diagnosis. Thus, if an infected vehicle connects 

to the OBD scanners during the inspection, it could spread to any vehicle subsequently 

plugged into the same diagnostic device in the mechanic shop.  
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In addition, regional spreading of the malware could also be possible when the 

infected vehicles visit other shops. This is how hackers may dominate most vehicles 

without noticing any suspicious symptoms before their zero-day, which is the moment 

the hackers create massive and devastating attacks. As discussed, Stuxnet could spread 

via USB (OBD-II) in air-gapped facilities and deceive the self-monitoring system until it 

is detected [11], [13], [17]. The malware will encroach on the entire system or every 

registered vehicle confidentially but expeditiously. At last, the malware reaches 

devastating physical explosions or massive and severe collisions under hackers’ 

deliberate terror plans.  

 

2.2.3 Malware Propagation Based on Epidemic 

Many studies have been published on the mathematical modelling of malware 

propagation based on the epidemic [32-33]. Meisel’s team reviewed many computer 

networking studies inspired by biology. In particular, they found that the studies applied 

mathematical modelling of epidemics to spread computer viruses through computer 

networks [31]. Del Rey [30] reviewed several mathematical models that simulate 

propagation in network computers or mobile devices. In his review, he claims that the 

similarity between the behaviour of epidemic viruses and computer malware is the 

groundwork for creating mathematical models of malware propagation. Also, Peng et al. 

focused on similarities between mobile malware and biological viruses in their research 

[34]. They, especially, reviewed papers that leverage mathematical models and simulator-

based approaches to understand mobile malware propagation.  

Trullols-Cruces et al. conducted a simulation-based analysis to depict worm 

propagation in CAVs via V2V communication [35]. Their approach highlighted the 
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vulnerability of CAVs with a numerical model, considering vehicle inter-arrival patterns 

and road network-wide in simulation circumstances. A simulation-based approach would 

be generally limited in obtaining universal results, and a well-developed mathematical 

method could be applied in various circumstances. 

 

2.2.4 Lessons from Related Works  

As discussed in the above studies, AVs could confront malware attacks through 

physical contacts, such as CAN bus and Ethernet. Understanding malware propagation is 

a fundamental prerequisite for protecting vehicles. The lessons from the prior studies 

indicated that similarities between malware and epidemic viruses could provide robust 

theoretical groundwork for the mathematical modelling of malware propagation. We 

considered a unique feature of Stuxnet propagation that transmits through OBD scanners 

similar to the transmission of malaria disease, a vector-host disease. We summarized the 

lessons from existing studies in Table 2-1. We manifested that AVs are susceptible to 

direct connection malware attacks, and well-organized epidemic mathematical modelling 

could prepare us for potential attacks on AVs.  
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Table 2-1 Summary of related works 

Topic 

category 
Reference Attack gateways  Approach and experiment 

CAVs/AVs 

vulnerability 

& protection 

[23] 
OBD, OTA, Internet, 

Aftermarket equipment 

Reviewing possible attacks on the 

CAVs and introducing a Cloud-based 

malware defense service 

[24-27] 

OBD, Media (USB), 

Short-range 

communication 

(Bluetooth), Radio, etc. 

Reviewing published papers to 

categorize vulnerabilities of AVs or 

CAVs from a variety of attack gateways 

[28] 
Wireless 

communication 

Analyzing security attacks in the car-

following model using a simulator 

[29] 
Remotely 80 %, 

physically 20 % 

Analyzing the reported automotive 

attack incidents since 2010 and 

classified attack type 

Risk of 

Stuxnet 

malware 

[11], [13], 

[15], [17] 
USB 

Introducing an overview of the Stuxnet 

worm, especially for its ability to 

propagate by installing a malicious .dll 

file through a USB  

Malware 

propagation 

model based 

on epidemic 

[30-33] Computers 

Reviewing published papers to analyze 

proposed mathematical models in 

computers 

[34] Smartphones 

Reviewing published papers handling 

malware propagation in smartphones 

with mathematical models and 

simulators 

Simulation-

based worm 

propagation 

[35] V2V communication 

Analyzing worm propagation in CAVs 

through V2V communication by using 

simulation 
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2.3 The Conceptual Framework for The Malware Propagation Model 

2.3.1 Conceptual Similarities Between Malaria and Stuxnet  

When a mosquito bites a malaria-infected human, the microscopic malaria 

parasites mix with the mosquito’s saliva. Then, the virus can be delivered to other people 

in the mosquito’s next bite [37]. Conceptual similarities exist since the spreads share 

similar mathematical underpinnings [38]. Biological diseases and AV malware spread 

rely on contacts between entities, and the Stuxnet-style attack is achieved by an indirect 

transmission involving an intermediate host. In this respect, the spread of Stuxnet (from 

vehicle to vehicle via infected mechanic’s computers) is similar to the spread of malaria 

(from human to human via mosquitoes). Inspired by an indirect transmission mechanism 

through a mosquito carrying malaria, the model captures malware propagation in AVs 

(humans) and mechanics/dealerships (mosquitos).  

The model adapted and modified the Susceptible-Infected (SI) epidemic model 

[19] to describe the malware infection process. Fig. 2-1 (a) describes how malaria spreads 

to humans through infected mosquito bites, and the similarity of transmission of Stuxnet 

was depicted in Fig. 2-1 (b).  

 
(a) Malaria spreading via mosquitos                        (b) Malware spreading via OBD & computers 

Fig. 2-1. Similarity between malaria and Stuxnet AVs epidemic  
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2.3.2 Model of Visiting Mechanic Shops  

Unlike the anonymous and remote world of computer malware over the Internet, 

Stuxnet can spread only when they have physical contact with AVs. Thus, it is important 

to include a realistic visiting mechanic shop model. 

Fig. 2-2 illustrates malware propagation from an initial hacker’s attack to the 

overall propagation in a city over time. Hacker’s house is on the bottom left of the figure. 

When the hacker visits a mechanic shop, the OBD scanners and computers in the shop 

will be infected by malware, and whoever visits the shop will continue to be infected. If 

the infected vehicles visit other susceptible mechanic shops in different areas, regional 

malware propagation will be implemented over time. The speed of malware propagation 

depends on the frequency and combination of visiting mechanic shops. Thus, another 

critical factor of this study is to model human behaviour, such as visiting mechanic shops, 

which will be discussed in Section 4. 
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Fig. 2-2. Contacts network between vehicles and mechanic shops  

 

2.3.3 Malware Propagation Model Assumptions  

For our model, we used several assumptions. First, the OBD scanner would take 

the role of checking vehicles as a universal device in the future. Stuxnet can transport via 

OBD scanners and infect mechanic shops’ computers with the removable drive 

propagation method: a way of copying itself to inserted removable drives like USB and 

be executed by the auto-execution while scanning the vehicles [17]. 

Second, the security software updates would not detect Stuxnet before its zero-

day. As we mentioned in the previous section, the main feature of Stuxnet is to lurk 

before zero-day, which could hinder detection even if the vehicles are updated [23]. Thus, 

the updates would not be able to detect Stuxnet until zero-day. 

Third, we adopted the SI epidemic model instead of the SIR or SIRS epidemic 

model due to the features of Stuxnet-style malware that will not be recognized until the 
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zero-day and will not heal spontaneously. The stealth ability of the malware can also 

preclude recovery from the infection, which is why we considered the SI epidemic 

model. 

Fourth, hackers can spread Stuxnet through physical contact instead of wireless 

communication. Remote and physical contact attacks could bring devastating results 

equally. 

Lastly, Stuxnet can spread to different car brands and models. Also, hackers 

would not create variants to enhance malware's ability to lurk. 

 

 

2.4 Mathematical Modelling of the Spatiotemporal Propagation of Malware  

Based on the review of related works and conceptual framework in the previous 

sections, we created a mathematical malware propagation model among AVs adopting 

the malaria propagation model. The primary reason for the adoption is the conceptual 

similarities between malaria and AV Stuxnet-style malware. Stuxnet-style malware can 

transmit malicious codes to susceptible objects through direct contact via OBD scanners 

like malaria mosquitoes. Also, the malaria model consists of a well-developed theoretical 

and mathematical model that brings about universal results compared to simulation-based 

approaches [39]. 

For the reasons mentioned above, our proposed model is a coupled system of 

differential equations in the discrete space (residential zones and mechanic shops) and 

discrete-time (weeks) domains. The model consists of a malaria model and a 

transportation operator model.  



 

28 
 

2.4.1 Notation  

As we adapt and modify the malaria model (Vector-host), we compare the 

notation to the traditional malaria model. 

 

Table 2-2. Notation  

(Conceptual Analogy Between AVs Epidemic and Vector-host Model) 

Notation AVs Epidemic Malaria (Vector-host) model 

𝑁𝑖 
total number of AV population in zone 𝑖, 
(𝑋𝑖 + 𝑌𝑖) 

total number of the human population 

(host) in community 𝑖, (𝑋𝑖 + 𝑌𝑖) 

𝑋𝑖(𝑡) 
number of susceptible vehicles at time 𝑡, 

in zone 𝑖  
number of susceptible humans at time 𝑡, 

in community 𝑖  

𝑌𝑖(𝑡) 
number of infected vehicles at time 𝑡, in 

zone 𝑖  
number of infectious humans at time 𝑡, 

in community 𝑖  

𝑅𝑗 
total number of OBD scanners population 

in mechanic shop 𝑗, (𝑃𝑗 + 𝑄𝑗) 

total number of mosquitoes (vectors 

population) in community 𝑗, (𝑃𝑗 + 𝑄𝑗) 

𝑃𝑗(𝑡) 
number of susceptible OBD scanners at 

time 𝑡, in mechanic shop 𝑗 

number of susceptible mosquitos at time 

t, in community 𝑗 

𝑄𝑗(𝑡) 
number of infected OBD scanners at time 

𝑡, in mechanic shop 𝑗 

number of infectious mosquitos at time 

t, in community 𝑗 

𝛼 

probability that an infectious mechanic 

shop’s OBD scanner transmits the 

malware to susceptible AV or vice versa 

probability that an infectious mosquito 

transmits the infection to susceptible 

humans or vice versa 

𝛿𝑖𝑗 
number of visiting vehicles from zone 𝑖 to 

mechanic shop 𝑗 
(No similar variables) 
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A city has E resident zones and M mechanic shops (i = 1, 2, …, E,  j = 1, 2, …, 

M). The population of AVs in zone i, 𝑁𝑖 are partitioned into two explicit and disjoint 

infection groups at time t. The number of susceptible and infected vehicles at time t, in 

zone i is denoted 𝑋𝑖(𝑡) and 𝑌𝑖(𝑡), respectively. It is noted that 𝑋𝑖(𝑡) + 𝑌𝑖(𝑡) = 𝑁𝑖 . The 

total number of OBD scanners in mechanic shops, denoted 𝑅𝑗(𝑡) is subdivided into 

mutually exclusive compartments of susceptible OBD scanners 𝑃𝑗(𝑡) and infected ones 

𝑄𝑗(𝑡) so that 𝑃𝑗(𝑡) + 𝑄𝑗(𝑡) = 𝑅𝑗 . Susceptible (if previously unexposed to the malware) 

passes into an infectious group. The population of vehicles (𝑁𝑖) and OBD scanners (𝑅𝑗) 

are constant values.  

 

2.4.2 Transportation Operator Model  

If we had applied real-world data: records of visiting mechanic shops from 

residential areas, we could have measured malware propagation speed directly and more 

concisely. However, it is challenging to get the data in most cases, so we modelled the 

transportation operator model to capture the patterns of visiting mechanic shops. The 

transportation operator model consists of two essential factors. One is estimating the 

demand for visiting mechanic shops per residential zone i, similar to trip production in 

the traditional four-step transportation modelling. The amount of production can be 

estimated using statistical data, and we elaborate on this in the next section. 

Another factor relates to trip distribution to capture malware propagation in a city. 

The trip distribution can be estimated by a gravity model [40]. Longini utilized the 

transportation gravity model to deal with the issue of the absence of real-world data for 

estimating the propagation of Hong Kong influenza [41].  
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We defined 𝛿𝑖𝑗 as a transportation operator model representing the number of 

weekly vehicle visits from zone i to mechanic shops j. The E ×  M matrix 𝛿𝑖𝑗 is assumed 

to be symmetrical, i.e., 𝛿𝑖𝑗 = 𝛿𝑗𝑖. In (1), 𝛿𝑖 accounts for the number of departing vehicles 

from zone i to M mechanic shops, and 𝛿𝑗 indicates the number of arriving vehicles from 

E resident zones to mechanic shop j. D is the distance between zone i and mechanic shop 

j that restrains the trip between origin and destination as an impedance factor. Lastly, the 

𝐾𝑖𝑗 is a calibration parameter. This parameter is applied to calibrate the gap between the 

result of  
𝛿𝑖 × 𝛿𝑗

𝐷2    and the summation of the number of vehicles visiting from i to j. 

𝛿𝑖𝑗 = 𝐾𝑖𝑗 ×
𝛿𝑖  ×  𝛿𝑗

𝐷2
                                 (1) 

 

2.4.3 SI Epidemic Model  

The mathematical equations could present the infection progress from X to Y and 

P to Q groups [20]. Susceptible vehicles at time t, which is 𝑋𝑖(𝑡) in the notation, are 

infected by infected OBD scanners, 𝑄j(𝑡).  Also, the susceptible OBD scanners at time t, 

𝑃𝑗(𝑡) are infected by the malware from the infected vehicles 𝑌𝑖(𝑡). The initial condition 

of the malware transmission is that a mechanic shop h is exposed to the malware at time 

0. The initial conditions are for (i = 1, 2, ..., E,  j = 1, 2, …, M, t = 0, 1, 2, …, 100) are 

following: 

𝑋𝑖(0) = 𝑁𝑖 , ∀𝑖            (2)      

𝑃𝑗(0) = 𝑅𝑗 , ∀𝑗             (3) 

𝑌𝑖(0) = 0,  𝑄𝑗(0) = 0,    ∀𝑗 but h         (4)        

 𝑄ℎ(0) = 1               (5) 
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It is noted that the malware can be transmitted only through the connection 

between vehicles and OBD scanners. Equations (6) and (7) represent the changing 

number of susceptible and infected vehicles in zone i at time t, respectively. In the 

equations, the term A, 𝛿𝑖𝑗 ∙
𝑋𝑖(𝑡)

𝑁𝑖
, represents the number of susceptible vehicles from zone 

i to mechanic shop j. The term B, 𝛼 ∙
𝑄𝑗(𝑡)

𝑅𝑗(𝑡)
, is a probability of infection of a vehicle that 

visits mechanic shop j at time t. 𝛼 is a probability that an infectious mechanic shop 

computer transmits the malware to a susceptible AV. The result of multiplying the 

number of susceptible vehicles visiting the mechanic shop and the infection probability is 

a newly infected number of vehicles at the mechanic shop j at time t (term C). When we 

estimate the number of susceptible vehicles in zone i at time 𝑡+1, term C is subtracted 

from 𝑋𝑖(𝑡) in (6). Term C also can be added to 𝑌𝑖(𝑡) when we calculate the number of 

infected vehicles in (7).  Fig. 2-3 details the process of vehicle infection at the mechanic 

shop j from the terms A to C. 

 

 

  

 

Term BTerm A

Term C

Term C
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Fig. 2-3. Process of vehicle infection at mechanic shop j  

 

Equations (8), (9) and Fig. 2-4 represent a process of OBD scanner infection at 

mechanic shops. 

 

 

(8)  
Term D

Term E

Term F

Term G

Term H
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The term D, 𝛿𝑖𝑗 ∙
𝑌𝑖(𝑡)

𝑁𝑖
, represents the number of infected vehicles visiting from 

zone i to the mechanic shop j. Term E indicates how many infected vehicles are scanned 

by one susceptible OBD scanner at mechanic shop j at time t that could infer the infection 

risk of the susceptible scanner. Term F shows a case of the probability of no infection of 

the susceptible OBD scanner even with many contacts with infected vehicles. We 

subtract the 𝛼 from the entire probability one, which is 100%, and the 1 − 𝛼 to the 

exponent of term E to calculate the probability of no infection. Lastly, we take term F 

from one to get the probability of infection of susceptible OBD scanner at mechanic ship 

j at time t. Therefore, term H represents the number of infected OBD scanners after 

connecting with the infected vehicles that visited the mechanic ship j from zone i at time 

t. By adding or subtracting the term H from the number of susceptible 𝑃𝑗(𝑡), or infected 

OBD scanners 𝑄𝑗(𝑡), we can obtain the numbers of susceptible or infected OBD scanners 

at time 𝑡+1 in (8) and (9).  

(9)

Term H
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Fig. 2-4. Process of OBD scanners infection at mechanic shop j  
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2.4.4 The Framework of Mathematical Equations  

The modelling framework in Fig. 2-5 summarizes the whole process of the two 

integrated models to depict malware propagation over time. After the initial attack by the 

hacker at time t = 0, the malware can propagate from one mechanic shop to the entire city 

by the two models. The transportation operator model can model visiting patterns from 

residential areas to mechanic shops, and vehicles regularly go to the mechanic shops. In 

Step 1, the transportation operator model selects the number of susceptible and infected 

AVs to visit mechanic shops. In the next step, the infection process between susceptible 

AVs and OBD scanners is modelled with the SI epidemic model. After visiting mechanic 

shops at time t, the newly infected AVs and OBD scanners will increase the proportion of 

infection. Then, the new proportion of susceptible and infected vehicles will be applied to 

choose the number of vehicles for the visits at t + 1. The new proportion of infected OBD 

scanners will be used in Step 2 at t +1. 

 



 

36 
 

 
(a) from time t to t + 1 

 
(b) from time t + 1 to t + 2 

Fig. 2-5 Framework of the integrating SI epidemic model and transportation operator 

model  
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2.5 Experimental Design 

This section explains a numerical experiment based on the mathematical 

modelling of malware propagation. We utilized network and geostatistics data from 

Windsor, Ontario, Canada, as a study area. Windsor has a population of about 233,000 

and 112,000 registered vehicles. We assumed that all 112,000 registered vehicles in our 

study area were AVs. This assumption is based on the premise that AVs are extensively 

computerized, posing a greater risk of hacker manipulation than traditional vehicles. 

Traditional vehicles largely depend on human control for critical functions like steering 

and braking. If a hacker successfully attacks AVs, we anticipate that the societal damages 

would be significantly more severe than those involving traditional vehicles. This 

potential for a more severe impact is why we modelled all vehicles in the experimental 

area as AVs. Then, we created 104 residential and 116 mechanic shop zones to simulate 

Stuxnet propagation. Fig. 2-6 shows the locations of mechanic shops and the residential 

zone centroids in Windsor. 

 

Fig. 2-6. Study area  
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2.5.1 Estimation of Transportation Operator Model ( 𝜹𝒊𝒋 ) 

This study estimated the annual frequency of visiting mechanic shops for 

maintenance using the number of registered vehicles and the annual vehicle kilometres 

from Statistics Canada [42-43]. We estimated the average annual mileage per vehicle in 

Ontario for ten years (’00-’09) at 17,569 km/year.  

Also, we investigated the maintenance items for vehicles per a specific mileage 

and considered the visiting mechanic shop cycles [44]. Table 2-3 shows the lists of 

maintenance by mileage. In our view, most vehicles would be diagnosed by the OBD 

scanners every 5,000 km mileage for a regular check-up with the maintenance items. 

Thus, the annual average number of visiting mechanic shops for maintenance using the 

OBD scanners was estimated at 3.5 visits/year. 

As discussed in the previous section, it was challenging to investigate real-world 

data regarding records of visiting mechanic shops (𝛿𝑖𝑗). To address the absence of real-

world data, we adopted the transportation gravity model with alternative data: property 

tax records to consider the magnitude of the destination. The higher the property tax, the 

more operating income is needed to maintain the shops. Hence, we believe that property 

tax could represent the operating profits inferring the number of mechanic shops visiting. 

We investigated the tax records of the 116 mechanic shops from the City of Windsor data 

[45]. Table 2-4 indicates the tax and the number of OBD scanners in accordance with the 

size of the tax. 

Based on the tax information, we estimated the transportation operator model 𝛿𝑖𝑗 

by using (1). The matrix 𝛿𝑖𝑗 was estimated using the doubly constrained gravity model 

equation. As a result, the total weekly production was estimated at 7,580 vehicles/week. 
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The final 𝛿𝑖𝑗 matrix is the symmetrical table consisting of zone centroids and mechanic 

shops. 

 

Table 2-3. Lists of Maintenance by Mileage 

Mileage (km) Maintenance items 

Every less than 5,000 km 

- Engine oil and filter 

- Belts, Power steering fluid 

- Tire inflation and condition 

Every 5,000 - 10,000 km 

- Brake inspection 

- Tire rotation and wheel balancing 

- Automatic transmission fluid 

- Battery and cables 

Every 10,000 - 20,000 km 

- Brake, chassis lubrication 

- Coolant (Antifreeze), Wiper blades 

- Steering and suspension 

- Power steering fluid 

Every greater than 20,000 km 

- Replace fuel filter 

- Cooling system flush and refill 

- Cabin air filter, Fuel tank air filter 

 

 

Table 2-4. Result of Distribution by The Gravity Model 

Property Tax Number of mechanic shops Percentage Number of OBDs 

$30000 Over 11 9.0% 4 

$15,000 - $30,000 27 23.0% 3 

$10,000 - $15,000 38 33.0% 2 

$0 - $10,000 40 34.0% 1 

Total 116 100.0% 241 
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2.6 Results 

2.6.1 The Speed of Infectious Malware Spreading 

We analyzed the pattern and speed of the AV epidemic spread in detail with a 

combination of different variables. The first analysis is the base condition with a constant 

probability of transmitting the malware from infected OBD scanners (or AVs) to 

susceptible AVs (or OBD scanners) (𝛼 = 0.7 per week).    

In this base condition, we can analyze the speed of infection with the proportion 

of infected vehicles (
𝑌𝑖(𝑡)

𝑁𝑖
) and OBD scanners (

𝑄𝑗(𝑡)

𝑅𝑗
 ) over time. The proportion of 

infected vehicles in zone i, 𝑋𝑖(𝑡), and OBD scanners in mechanic shop j, 𝑄j(𝑡), over time 

(week) are shown in Fig. 2-7 (a) and (b), respectively. Each coloured line indicates 

residential zones or mechanic shops. The transmission probability of malware, 𝛼, has a 

constant value of 0.7, and the infected vehicles showed an S-shape curved increasing 

pattern. Considering that the infection started at a single mechanic shop, it only took 21 

weeks to infect about half of the vehicles in Windsor.  

The infection rate of OBD scanners is much faster than that of vehicles, and it 

only took 20 weeks to transmit the malware to all OBD scanners. This is because each 

OBD scanner connects to anonymous vehicles several times daily. This routine usage 

pattern can result in vulnerability to exposure to deliberate attacks that could spur the 

soaring infection speed. Also, fewer OBD scanners than the registered vehicles are 

another reason for the different infection speeds. 
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(a) Proportion of infected vehicles by zone i                

 
(b) Proportion of infected OBDs by mechanic shop j 

Fig. 2-7. Infection rate of vehicles and scanners with 𝜶 = 0.7 

 

2.6.2 The Impact of Variable Probability of Malware Transmission (α)  

We considered the variable probability of transmission (𝛼) of the malware from 

10 % to 100 %. The transmission speed could lag behind due to the regular security 

update. Thus, through the changing probability, we can understand the fluctuation of the 

speed at which malware spreads. 
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We compared the speed of the transmission with various probabilities of 𝛼 (from 

0.1 to 1). In particular, we focused on situations when the proportion of infected vehicles 

and OBD scanners reached 50 % and 70 % by 𝛼. The impact of different 𝛼 is illustrated 

in Fig. 2-8 and Table 2-5. The infection speed with 𝛼 = 1.0, which we shall call complete 

transmissibility, increases rapidly. It took only 17 weeks to infect half of the city’s 

vehicles, which is about 56 thousand vehicles, and it also only needed 24 weeks to spread 

the malware to 70 % of vehicles. For both cases, the speed was about 8 weeks and 11 

weeks faster than the speed of 𝛼 = 0.7, respectively. The speed of spreading malware 

among OBD scanners is more noticeable than in AVs. With the smaller number of OBD 

scanners than vehicles, the speed of infection showed an abrupt increase. In the case of 𝛼 

= 1.0, only 7 or 8 weeks were needed to exceed 50 % or 70 % of infection, showing about 

4 or 5 weeks faster than base case 𝛼 = 0.7. Even though the transmissibility (𝛼) was 

reduced to 0.5, less than 17 weeks were needed to reach the percentage. Hence, cyber 

security experts need to prepare for the tremendous speed of spreading malware.  

Table 2-5. Comparison of Infection Pace by Alpha 

Classification 𝛼 = 0.1 𝛼 = 0.5 𝜶 = 0.7 𝛼 = 1.0 

A 

V 

s 

𝑌𝑖(𝑡)

𝑁𝑖
> 50 % 

When 
After 100 

weeks 

After 33 

weeks 

After 25 

weeks 

After 17 

weeks 

Compare Inestimable 
8 weeks 

slower 
Criteria 

8 weeks  

faster 

𝑌𝑖(𝑡)

𝑁𝑖
> 70 % 

When 
After 100 

weeks 

After 48 

weeks 

After 35 

weeks 

After 24 

weeks 

Compare Inestimable 
13 weeks 

slower 
Criteria 

11 weeks 

faster 

O 

B 

D 

s 

𝑄𝑗(𝑡)

𝑅𝑗
> 50 % 

When 
After 55 

weeks 

After 14 

weeks 

After 11 

weeks 

After 7  

weeks 

Compare 
43 weeks 

slower 

3 weeks 

slower 
Criteria 

4 weeks  

faster 

𝑄𝑗(𝑡)

𝑅𝑗
> 70 % 

When 
After 67 

weeks 

After 17 

weeks 

After 13 

weeks 

After 8  

weeks 

Compare 
54 weeks 

slower 

4 weeks 

slower 
Criteria 

5 weeks  

faster 
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(a) Number of infected vehicles                

 

 

 
(b) Number of infected OBD scanners 

Fig. 2-8. Number of infected vehicles and scanners by alpha 𝜶 = 0.7 

 

2.6.3 The Impact of Different Connectivity  

This subsection analyzes the impact of rank-based visiting mechanic shops for 

each residential zone. The degree of connectivity (ρ) accounts for the rank-based number 

of mechanic shops to visit per residential zone. 
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From subsections (A) and (B), we considered the propagation rate with the entire 

number of mechanic shops (116 shops) under the gravity model. In the general gravity 

model, the visiting patterns could be fully mixed in proportion to the mechanic shops’ 

magnitude or reduced inversely proportional to the distance. This method could be 

appropriate to figure out the overall trends of malware transmission, assuming that 

susceptible and infected AVs and OBD scanners will be connected to each other in a 

fully mixed circumstance across the city. However, the fully mixed circumstance is not 

realistic because people are prone to visit their favourite shops. The people in the same 

zone would have a similar propensity to visit the shops because they could recommend 

specific shops considering the distance from the zone and service rating. Due to people's 

propensity, the malware would be hindered from propagating its malicious codes rapidly.  

In subsection (C), we intended to capture the propensity by changing the number 

of visiting mechanic shops. The top rankings per residential zone were estimated using 

the gravity model from subsections (A) and (B). More specifically, if we consider only 

the top 10 mechanic shops for each zone, the AVs will visit the top 10 shops in 

accordance with the ranking of their residential zones. This new condition for choosing 

the number of shops could create a more realistic propagation model. In this dissertation, 

we shall call the selected number of top shops a degree of connectivity (ρ). We simulated 

the propagation speed with the different connectivity degrees (ρ) from 10 to 50 shops. 

Fig. 2-9 and Table 2-6 show the malware transmission speed by the connectivity 

degree (ρ). As highlighted in Fig. 2-9 (a), some graphs having a low connectivity degree 

(ρ) of less than 35 showed that the proportion of infected vehicles did not reach 100 % 

even near 100 weeks. The increasing speed of infected vehicles shows stagnant 
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transmission after 73 weeks; the stagnant transmission of OBD scanners starts at 21 

weeks and has a more considerable duration than vehicles. As the connectivity degree 

decreases, the infection speed will be more stagnant.   

 
(a) Number of infected vehicles                 

 
(b) Number of infected OBD scanners 

Fig. 2-9. Number of infected vehicles and scanners by connectivity (ρ) 
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Table 2-6. Comparison of Infection Pace by Connectivity 

Classification 
𝜶 = 0.7 

(Base case) 
𝜌 = 10 𝜌 = 50 

A 

V 

s 

𝑌𝑖(𝑡)

𝑁𝑖
> 50 % 

When After 25 weeks After 28 weeks After 20 weeks 

Compare Criteria 3 weeks slower 5 weeks faster 

𝑌𝑖(𝑡)

𝑁𝑖
> 70 % 

When After 35 weeks After 51 weeks After 31 weeks 

Compare Criteria 16 weeks slower 4 weeks faster 

O 

B 

D 

s 

𝑄𝑗(𝑡)

𝑅𝑗
> 50 % 

When After 11 weeks After 14 weeks After 6 weeks 

Compare Criteria 3 weeks slower 5 weeks faster 

𝑄𝑗(𝑡)

𝑅𝑗
> 70 % 

When After 13 weeks Stagnant After 7 weeks 

Compare Criteria Inestimable 6 weeks faster 

 

Table 2-6 compares the infection speed of the base condition (𝛼 = 0.7) with the 

various connectivity (ρ). As we discussed, the lower connectivity had a slower infection 

speed. With the low connectivity (ρ =10), it was not able to reach the 70 % of infection 

proportion (𝑄𝑗(𝑡)

𝑅𝑗
) of OBD scanners. This finding indicated that some OBD scanners could 

avoid malware threats even for a long time without infection. Notably, the low 

connectivity degree could bring about less contact between susceptible and infected 

vehicles and OBD scanners.   

 

 

2.7 Conclusion 

Today's AVs are susceptible to the same cybersecurity risks as networked 

computers. In particular, when AVs are connected with infected OBD scanners for a 

regular check-up or repair in the mechanic shops, the risk of malware transmission could 
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soar. Stuxnet is a vector-host malware, similar to the malaria model, which is an 

exemplary vector-host epidemic. This study adopted the methodologies of epidemiology 

to understand and address the AV epidemic. We developed the mathematical model to 

embody malware transmission in various conditions: analysis of a fixed probability of 

malware transmission, with variable probability, and consideration of vehicle owners’ 

visiting mechanic shop patterns. A primary contribution of this study could enhance 

understanding regarding the novel malware propagation and help make alternative plans 

to protect AVs. 

While this model describes the dynamics of AV epidemics, it is worth noting that 

the proposed model can also help design optimal control strategies. The use of the 

transportation gravity model in our study revealed trends in malware propagation both 

within and between regions. In practical terms, if cybersecurity experts can identify the 

initial sites of malware infections, they could then estimate the potential speed of its 

spread. This allows for inferring the initial areas of attack and implementing quarantine 

measures for vehicles travelling from infected areas to mechanic shops in other regions. 

Consequently, our proposed models can be effectively integrated with network science 

and control theory methodologies. This integration will enable cybersecurity experts to 

develop efficient strategies, significantly reducing the spread of malware infections 

among vehicles. 

This dissertation offers the possibility of developing more sophisticated AV 

epidemic models by leveraging well-developed mathematics theories in epidemiology 

and ecology. Although this study is the first step in understanding the novel AV malware, 

it has several limitations. We focused on malware propagation through physical contact 
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between OBD scanners and vehicles. We assumed that OBD scanners would be a 

universal device for checking vehicles in the future and that studying physical contact-

styled attacks could be rewarding for AV security.  

Also, we did not consider the effect of different AV brands, models and malware 

variants. The differences in brands, models and variants could impact the speed of 

malware propagation. We assumed that Stuxnet malware could transmit any brand and 

model. Also, hackers would not need to create variants to enhance the malware’s ability 

to lurk. 

On top of that, we did not compare our results with other models. To the best of 

our knowledge, this dissertation is the first attempt at applying the malaria propagation 

model to malware propagation through OBD scanners as a vector. Even though some 

studies considered the malware propagation models in computers or smartphones based 

on the epidemic, the unique circumstances of AVs were not considered. Accordingly, it 

was not able to compare the speed with different epidemic-based models. Also, if the 

real-world mechanic shop visiting data had been included, the results would have been 

more persuasive. For instance, the frequency of visiting mechanic shops and the types of 

maintenance and repair would be impacted by the age of vehicles and vehicle owners’ 

decision-making process. Considering the life cycle of vehicles and individual owner’s 

preferences would be a significant topic in follow-up studies. It characterizes the 

topology of complex connectivity and develops models to mimic a network's growth and 

reproduce its structural properties. Consequently, we hope that further analysis 

considering malware transmission inter cities or provinces will confirm our findings: the 

risk of Stuxnet. Lastly, research regarding individual and specific automotive 
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requirements for Stuxnet-style attacks can be a crucial and potential topic to prepare for 

malware attacks.  
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CHAPTER 3 

QUANTIFYING PRIVACY RISKS IN PANDEMIC CONTACT TRACING 

THROUGH SMART CARD DATA 

3.1 Introduction 

Our daily lives are continually monitored and recorded through various means, 

including CCTV, credit cards, and mobility data from taxi and transit smart cards. Due to 

rapid advancements in data handling and storage technology, the collected data – which 

covers almost the entire population – can be stored in a database with numerous sensitive 

personal data attributes [1]. The collected data attributes can be categorized into explicit 

identifiers and quasi-identifiers (QIDs) [2]. The explicit identifiers, such as social 

security numbers, addresses, and names, can directly identify the users, as there may be 

only one unique person with identical information to these identifiers. Accordingly, the 

explicit identifiers have been anonymized thoroughly for privacy protection. Meanwhile, 

using QIDs, like zip code, birth date, gender, and mobility data, to identify an individual 

does not pose the same privacy risk levels as explicit identifiers. This is because a 

number of individuals may share similar QID information, limiting the potential for 

unique identification based solely on QIDs. However, unique and publicly known 

individuals, such as politicians or celebrities can be re-identified using their several QIDs 

and public information [3]. 

Sweeney demonstrated such re-identification risks with an example that involved 

identifying the medical diagnosis and medications of a governor of Massachusetts. The 

study linked QIDs – ZIP code, birth date, and gender – derived from voter registration 

lists and health insurance databases [4]. In that case, Sweeney already had access to the 
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governor’s 5-digit ZIP code, gender, and birth date, which are publicly available 

information. Sweeney filtered out irrelevant IDs in the two databases by comparing the 

QIDs: ZIP code, birth date, and gender with the governor’s public information. 

Ultimately, Sweeney identified one person with identical information to the governor’s 

and revealed the governor’s sensitive medical information. In Sweeny's example, the 

publisher of the two databases might have deemed the databases safe to publish since 

they did not contain explicit identifiers. The researchers, however, identified a unique ID 

and found the governor's medical sensitive information. Therefore, matching some QIDs 

from different sources with public information can significantly increase re-identification 

risks. 

After Sweeney’s research, many studies have demonstrated that re-identification 

attacks are possible using several QIDs in databases and public information because of 

the uniqueness of individual travel records [5-7]. Re-identification risks can also be found 

in smart card data. The QIDs in smart card data (hereafter referred to as card QIDs) 

consist of travel records, including boarding/alighting times and stations, fares, and 

approximate age information such as student, adult, and senior card classification. The 

card QIDs can be exploited to re-identify users’ card IDs when combined with external 

observations by adversaries.  

Such public sharing of external observations consequently raised significant 

privacy concerns, especially during the COVID-19 pandemic. Several countries 

thoroughly traced COVID-19 patients’ travel records and released them publicly after 

excluding explicit identifiers, such as names, to encourage people to avoid the locations 

visited by the patients [8-10]. However, these travel records can be considered as external 
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observation data, provoking privacy risks to patients. Adversaries could extract unique 

attributes such as a patient's smart card ID. Once adversaries identify the card ID, they 

can trace the user’s every itinerary in the card database, resulting in significant privacy 

risks. Therefore, understanding the re-identification risks of COVID-19 patients 

stemming from the linkage between the card QIDs and travel observations is pivotal for 

protecting individual privacy in potential future pandemics. 

However, unexplored aspects exist regarding quantifying re-identification attacks 

using card QIDs and travel observations. Many researchers have investigated security and 

privacy issues stemming from government policies, particularly contact tracing [11-14]. 

These studies have reviewed potential privacy risks from the policies and employed 

ordinal scales or rubrics as categorized analysis approaches to measure the relative extent 

of privacy risks. Despite previous researchers’ efforts, quantitatively assessing the 

severity of these risks remains unaddressed.  

Also, existing studies have not delved deeply into the accuracy of language-based 

external observations. COVID-19 travel observations, primarily derived from patients' 

verbal reports, may contain discrepancies, thereby affecting re-identification risks. The 

issue of data accuracy extends beyond COVID-19 travel observations to include social 

media posts about visits to popular locations. These posts are also subject to potential 

inaccuracies inherent in language-based observations. For example, the actual date of a 

visit might not always correspond to the date of the post; there can be a discrepancy of a 

few days. Furthermore, posts that do not specify an exact location name may only offer a 

rough estimate of the actual location. Consequently, when analyzing re-identification 
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risks, it is essential to take into account these unique characteristics of language-based 

travel observations. 

Lastly, other researchers have tended to focus mainly on the number of 

observations rather than the diversity [15-17]. Even though the number of observations 

may be identical, the combinations of visited locations can vary. For example, some 

people might visit only one place with four observations, while others may visit four 

different places. Re-identification risks can fluctuate significantly according to the 

combination of diverse visited locations. Therefore, exploring the impact of diverse 

visited locations on re-identification risks can enhance our understanding of real-world 

privacy breach case studies. 

Given the above knowledge gaps, our study aims to address three primary 

objectives. First, we seek to quantify the privacy risks in smart card data associated with 

patient travel observations induced by contact-tracing policies. Second, we aim to 

elucidate the impact of language-based travel observations on the extent of privacy risk. 

Given their inherent variability in spatial and temporal accuracy, we contend that 

language-based travel observations can significantly affect the risk spectrum. Lastly, we 

explore the varied combinations of locations in patients’ itineraries to quantify the re-

identification risks stemming from these diversities. 

This study provides three primary contributions. First, we uniquely quantify 

patients’ re-identification risks within a smart card database, leveraging real-world 

privacy breach cases from language-based travel observations. Second, we elucidate the 

influence of spatial and temporal accuracy variations in language-based travel 
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observations on re-identification risks. Finally, we explore the fluctuations in the risks 

associated with the diversity of visited locations.  

The remainder of this chapter is structured as follows. Section 2 reviews the 

existing research regarding COVID-19 privacy breaches and re-identification risks. 

Section 3 describes smart card and COVID-19 patient travel record data and presents a 

preliminary analysis. The methods of quantifying re-identification risks under diverse 

circumstances are presented in Section 4. Sections 5 and 6 present the results and 

conclusion. 

 

 

3.2 Related Work 

This section provides a comprehensive overview of various studies on COVID-19 

privacy and re-identification risks, aiming to bridge the knowledge gap. We particularly 

focused on existing methodologies aimed at quantifying the risks and studied how QIDs 

and external observations' characteristics affected the extent of the risks. 

The COVID-19 contact tracing measures have provoked significant interest and 

concerns about privacy risks. Jung et al. assessed relative privacy risk levels using an 

ordinal scale in five categories: demographics, significant places (homes and 

workplaces), sensitive information (hobbies and religions), and routine behaviour, aiming 

to compare the risks across different cities [11]. They quantified the privacy risk levels on 

a scale from 0 to 3 based on contact tracing data. Similarly, Krehling and Essex applied 

consensus principles to compare the relative privacy risks of 55 digital contact tracing 

apps worldwide [14]. Lastly, Ahn et al. proposed the COVID index, which balances 

personal privacy and public health safety by adjusting policy magnitude. They proposed 
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that governments should modulate the intensity of contact tracing based on the severity of 

virus outbreaks [12]. Many researchers have made substantial efforts to assess the 

relative risk levels using categorized measures. However, the extent of re-identification 

risks remains unresolved. To the best of our knowledge, research is lacking, considering 

quantifying the risks using real-world privacy breach data.  

Additionally, we explored other privacy studies that quantified the risks using 

external observations and other open data sources: mobile phone usage data, credit card 

transactions, and smart card data. De Montjoye et al. quantified the re-identification risks 

by filtering out irrelevant data based on the observed points and mobile phone user 

datasets or credit card data [15-16]. They randomly chose the observed points from 

datasets and concluded that about 90% of individuals could be re-identified with four 

observations. They also highlighted the importance of spatial and temporal resolutions of 

observations for privacy risk levels. In general, trajectory data resolution signifies the 

degree of data precision in terms of spatial and temporal attributes. In our study, 

resolution can be associated with the accuracy levels of the spatial and temporal 

observation data. De Montjoye found that reducing data resolution decreased the 

likelihood of re-identification risk. Conversely, they asserted that increasing the number 

of exposed locations could increase the risk. 

In transportation mobility data, Gao et al. quantified the risks with a license plate 

recognition (LRP) data set collected from 516 stationary detectors [17]. They randomly 

changed temporal resolutions of external observations and the traffic volume in the 

surveyed locations of the original LRP data set to quantify the risks. They concluded that 

five external observations can identify 90% of individuals. Additionally, Li et al. 
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reviewed the risks in transit smart card data. They asserted that if adversaries know two 

observations of a passenger, including departure and arrival station names and bus 

transfer information, about 30% of the transit users can be re-identified [18].  

Existing studies quantified the levels of re-identification risks from open data 

sources based on external observations. These studies, however, manipulated the 

resolutions of observations within controlled experimental circumstances. Their findings 

could have been more applicable if they had considered real-world privacy breach cases. 

COVID-19 patient travel observation data has language-based varying data resolutions. 

Patients reported their travel records mainly based on their memories because the data 

was collected verbally and not recorded automatically during their visits. Human memory 

is unreliable; false memories can often be indistinguishable from true ones [19-20]. Thus, 

travel observations based on such memories could entail errors, and the levels of 

resolution in terms of visited locations and times could vary. With language-based travel 

observations, researchers do not need to manipulate the resolutions for analysis. This 

aspect is crucial for a more realistic quantification of privacy risks. 

On the other hand, in the introduction, we emphasized the significance of diverse 

combinations of visited locations. While existing studies have provided invaluable 

insights into the context of privacy risks, to the best of our knowledge, they have not fully 

explored the role of diverse combinations of exposed locations. We believe the quantified 

risks could be overestimated or underestimated without considering the visited location 

diversity. Therefore, we trace travel observations consecutively, and this approach 

allowed us to consider location diversity and understand the associated risks more 

accurately.  
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3.3 Preliminary 

3.3.1 Data Description 

1) Smart Card Dataset 

This study employed the Seoul smart card dataset, which consists of 

approximately 131.1 million public transit trip records per week from 16.6 million 

anonymized smart card IDs. Seoul has an extensive public transportation network 

encompassing 301 subway stations and 19,540 bus stops to cover an area of 605.2 km2. 

The smart card data attributes contain essential trip information such as modes and 

routes, origins and destinations, and boarding/alighting time. Additionally, the data 

provides transaction information, including anonymized card IDs, the number of 

transfers, and the fare [21]. To calculate fares proportional to distance and provide 

subsidies, the government encourages users to tag their cards while boarding and 

alighting [22]. Thus, smart card data contain individual users’ detailed itineraries, which 

can exacerbate privacy risks when combined with other sensitive records like 

adversaries’ observations or COVID-19 patient travel records. 

2) COVID-19 Patient Travel-records 

This study analyzed the travel records of COVID-19 patients in South Korea, 

specifically reviewing data released by the Seoul government from March to June 2020 

[23]. We extracted public transit-related information from the language-based travel 

records, including travel mode, approximate or exact departure/arrival times, and visited 

places. These places are categorized into two groups: those with station information and 

those without. We referred to this extracted transit-related information as the external 

observations and linked it with smart card data to re-identify the patients’ card IDs. As a 
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result, this study identified 236 patients who utilized the subway, accounting for 927 

travel observations. 

From the travel records, we found that 72% of subway-using patients had a travel 

record of four or fewer trips before being diagnosed with COVID-19. Also, the trip 

purposes and the nearest stations to their homes and workplaces – considered sensitive 

personal information – were publicly disclosed without adequate protection. More 

specifically, regular trips, such as home-based work and school trips, constituted 61% of 

the records. Approximately 56% of the travel records revealed both the nearest subway 

stations to patients’ homes and workplaces simultaneously. Robust protective measures 

should have been implemented to shield this highly sensitive data against privacy 

breaches before its public release. 

 

3.3.2 Resolutions in Travel Observations and Re-identification  

As discussed in the related work, language-based travel observations can vary 

spatial and temporal resolutions, significantly impacting the re-identification risks. In this 

regard, we have examined how the spatial and temporal resolutions were generated from 

the patient travel records. 

As shown in Fig. 3-1, if a patient reports travelling to destination 1 via station A, 

an adversary could potentially re-identify the patient’s card ID using only the smart card 

transaction records from station A. However, suppose the patient reports visiting 

destination 2 without providing station information. In that case, the adversary would 

need to consider all subway stations within the surrounding area of destination 2. This is 

because, without exact station information, adversaries would consider how far people 
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walk from the final transit stations to reach their destinations. In our research, we 

assumed a walkable distance radius of about 500 meters from the final destinations, 

which are the circle's centers with the radius based on existing research [24]. Fig. 3-1 

highlighted the walkable distance from destination 2 in shaded blue, containing three 

subway stations (B, C, and D). 

Similarly, if a patient provided only administrative units like ward information, 

adversaries would need to broaden their search to all stations within that administrative 

boundary. As illustrated in Fig. 3-1, a patient who visited destination 3 via station G, 

might report being in ward B without specifying the station. In such cases, due to the lack 

of precise station details, adversaries would examine the transaction records of the 

stations from E to H within Ward B rather than focusing on G. 

On top of that, people generally remember the time in an approximate manner, 

not pinpointing the exact moment. For instance, a patient who visited a place at 4:21 pm 

may report the time as 4:21 pm exactly, approximately 4:30 pm, or even roughly 4 pm. 

Given the potential errors resulting from people’s imperfect memory for the moment, 

temporal resolutions also can impact quantifying the re-identification risks. 

In conclusion, the discrepancies in spatial and temporal resolutions of language-

based travel observations can increase the difficulty of re-identifying COVID-19 patients’ 

smart card IDs. Thus, it is crucial to research re-identification risks across varying 

resolutions of travel observations to enhance our understanding of the related privacy 

concerns. 
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Fig. 3-1. Conceptual diagram of re-identification from travel records with spatial 

resolutions  

 

 

3.4 Methods 

Our approach aimed to quantify re-identification risks using real-world privacy 

breach cases. We focused on addressing the following research questions: 1) How does 

the number of travel observations impact the risks? 2) How do variations in the resolution 

of travel observations impact the risks? 3) How do the diverse visited locations impact 

the risks? 

 

3.4.1 Impact of the Number of Travel Observations  

To address the first research question, we quantified re-identification risks across 

varying numbers of exposed travel records, employing an approach similar to previous 

research [15-16]. We introduced an anonymity value, which represents the number of IDs 

that possess travel records identical to a patient’s travel observations.  
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The notations for the anonymity value are as follows. 𝑈 stands for the population 

of individual smart card ID databases, and 𝐸 denotes the entire set of smart card 

transaction records. We focused on COVID-19 patients who took the subway. These 

patients are represented by the variable 𝑖, (𝑖 = 1, 2, … , 𝑃), and their card IDs are included 

in the card databases, denoted by (𝑖 ∈ 𝑈). The travel observations of the patient 𝑖 are 

described with 𝑂𝑖, and these observations are included in the transaction records, denoted 

by (𝑂𝑖 ∈ 𝐸). We traced the trajectories of the patients using travel observations, 

considering the number of observations. We denoted observation numbers by 𝑗 (where 

𝑗 = 1, 2, … , 𝑁), with 1 indicating the most recent travel record. These observation 

numbers are represented in the subscript of the symbol (𝑂𝑗
𝑖). 

Our approach then identified other transit users who have identical travel records 

to the patients’ observations (𝑂𝑗
𝑖). We grouped these users into a subset 𝑆(𝑂𝑗

𝑖); and 

counted the cardinality of the subset 𝑆(𝑂𝑗
𝑖) to indicate the anonymity value, denoted by 

|𝑆(𝑂𝑗
𝑖)|. Thus, the anonymity value can be an indicator of re-identification risks. The 

magnitude of these risks changes with the number of travel observations. Theoretically, 

|𝑆(𝑂𝑗
𝑖)| can be from 1, the patient him/herself, to 𝑈, the total IDs. 

Lastly, we estimated the uniqueness value, denoted by 𝜀, a concept introduced by 

de Montjoye in 2013 for quantifying the re-identified individuals given 𝑗 exposed 

observations [15]. The uniqueness value aggregates the individual anonymity value and 

considers the number of travel observations, 𝑗; we express our uniqueness value as 𝜀𝑗. 

The uniqueness value represents a proportion of re-identified patients compared to the 
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total cardinality of COVID-19 patient subsets, 𝑃, according to 𝑗. The uniqueness value is 

calculated using the following equation and notations are summarized in Table 1. 

 

𝜀𝑗 = ∑
|𝑆(𝑂𝑗

𝑖)|

𝑃

𝑃

𝑖=1

,     (𝑗 = 1, 2, . . . , 𝑁)                   (1) 

 

Table 3-1 Notation 

Notation Description 

𝑈 Population of smart card IDs 

𝑖 COVID-19 patient, a subset of 𝑈. (𝑖 ∈ 𝑈) 

𝑃 Total cardinality of COVID-19 patient subsets  

𝐸 Entire smart card transactions 

𝑂𝑖 Travel observations of patient 𝑖 

𝑗 Number of travel observations 

𝑂𝑗
𝑖 Travel observation of patient 𝑖 considering 𝑗  

𝑆(𝑂𝑗
𝑖) Subset of individual card IDs from 𝑈 having identical travel records to 𝑂𝑗

𝑖 

|𝑆(𝑂𝑗
𝑖)| 

Anonymity value of 𝑆(𝑂𝑗
𝑖).  

(i.e., the cardinality of 𝑆(𝑂𝑗
𝑖)) 

𝜀𝑗 Uniqueness value, according to the number of observations 
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3.4.2 Impact of Spatial and Temporal Resolutions  

To address the 2nd research question, we divided the locations visited by patients 

into two categories based on the spatial resolution of observations. Locations with precise 

station names were classified as high-resolution. In contrast, the locations categorized as 

low-resolution included information about destinations and administrative units instead 

of exact station names. Subsequently, we attempted to re-identify smart card IDs whose 

travel records according to the high and low spatial resolution levels. This categorization 

allowed us to estimate anonymity and uniqueness values in accordance with the 

respective resolution levels. 

As previously discussed, the imperfect memory and recognition of time among 

people create variations in temporal resolutions. To explore the impact of temporal 

resolutions on privacy risks, we classified the recorded visiting times into several 

categories based on the granularity of the data: exact time, within 30 minutes, within an 

hour, within three hours (morning, afternoon, evening), and a day. We then applied 

corresponding time buffers to these categories – 15 minutes, 30 minutes, 1 hour, 3 hours, 

and a day. Similarly to spatial resolution, we estimated the anonymity and uniqueness 

values according to the temporal resolutions. 

 

3.4.3 Impact of Diverse Visited Locations  

Lastly, to address the final question, this study examined the impact of the variety 

of visited locations on re-identification risks while keeping the number of observations 

constant. We categorized the combinations of travel observations into three types: 1) 

observations where a single location was visited multiple times, 2) observations where 

two distinct locations were visited, and 3) observations where three different locations 
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were visited. We used box plots to visualize the distribution of re-identification risks and 

understand the variability of risks according to these combinations. From this, we 

deduced that the variety of visited locations within a given number of observations could 

significantly impact the anonymity values.  

 

 

3.5 Results 

3.5.1 Privacy Risks Based on the Number of Observations  

We focused on three specific exposed travel observation numbers, 2, 3, and 4, to 

analyze the anonymity value, |𝑆(𝑂𝑗
𝑖)|. With only one travel observation, it was 

challenging to re-identify the IDs. Numerous IDs display the same travel records, often 

limited to a single travel observation. For example, if 1000 individuals use the subway 

from Station A to Station B simultaneously on a specific day, it results in 1000 identical 

card IDs. In this example, the risk of re-identifying individual transit users might be 

negligible. Hence, we excluded the case of one observation and considered only the three 

specific numbers of observations. Considering that people’s memory can fade over time, 

we analyzed patients' most recent four travel records to ensure high data accuracy. This 

approach resulted in a sample of 168 patients. We also assumed anonymity values less 

than 10 would pose a significant risk for re-identification attacks. Thus, our analysis was 

centred on these cases with anonymity values of less than 10.  

Fig. 3-2 presents the detailed results and findings from the analysis. The x-axis 

represents the grouped number of exposed observations, while the y-axis indicates the 

cumulative uniqueness value. The legend shows the anonymity value, which is classified 

into three categories: 1, less than or equal to 2, and less than or equal to 10. We traced 
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smart card IDs using 2, 3, and 4 exposed numbers and found that the risks increased 

correspondingly with the number of exposed travel observations. Considering 4 exposed 

travel observations, the uniqueness value with an anonymity value of 1 was 0.18. The 

anonymity value was lower than the corresponding value of 0.3 reported in a previous 

smart card study [18]. We attribute this difference to the imperfect accuracy of language-

based travel observations compared to other studies. 

 
Fig. 3-2 Re-identification risks by the number of observations 

 

3.5.2 Privacy Risks Based on Spatial and Temporal Resolutions  

This subsection explores the impact of spatial and temporal resolutions derived 

from language-based observations on re-identification risks. The 168 patients were 

divided into 81 patients for high spatial resolution and 87 patients for low spatial 

resolution. 
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1) Spatial Resolutions 

Fig. 3-3 illustrates how the re-identification risks fluctuated based on the number 

and spatial resolutions of exposed travel observations. Fig. 3-3 (a) and (b) indicate the 

high and low spatial resolutions, respectively. In both figures, the x-axis stands for the 

anonymity value in the logarithmic unit from 100 to 104. For instance, the anonymity of 

100 indicates that adversaries can re-identify a unique individual from card data. As 

introduced in subsection 5.1, the y-axis indicates the cumulative uniqueness value, and 

the legend shows the number of exposed observations from 1(black line) to 4 (red line).  

More specifically, Fig. 3-3 (a) showed a sharp rise in the uniqueness value to 0.26 

at an anonymity value of 100 for 4 exposed travel observations (red line). This is 

significantly larger than 2 travel observations (blue line) with just 0.03. Similarly, Fig. 3-

3 (b) highlighted the risk fluctuation of the low spatial resolutions. At an anonymity value 

of 100, the cumulative uniqueness value of the 4 travel observations was about 0.12, 

nearly half what is shown at high resolutions. The cumulative uniqueness values of other 

numbers of observations at 100 were significantly smaller than high-resolution 

observations. Our results, consistent with previous findings [15-16], indicated that the 

uniqueness values increased with higher spatial resolution observation data.  

On the other hand, we observed fluctuations within the same spatial resolutions 

across the four lines (from black to red). For example, when considering 4 travel 

observations, 0.26 of patients could be re-identified at an anonymity level of 1. However, 

in the same red line, the uniqueness value increased by around 0.1 (from 0.4 to 0.5) at an 

anonymity level of 10. This led us to question what characteristics of the observations 

could account for such a discrepancy given the same number of exposed travel 

observations and spatial resolutions. We assumed that this variation stemmed from the 
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diverse visited locations of individuals. While some people have repetitive travel records 

with the same stations and times, others may have heterogeneous patterns. We analyzed 

this in the following subsection, 5.3. 

 
(a) By station 

 
(b) by ward/town or destination 

Fig. 3-3 Re-identification risks by spatial resolutions  
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2) Temporal Resolutions 

We analyzed the variation in re-identification risks based on different temporal 

resolutions using the 4 exposed observations of the 81 patients in the high-spatial-

resolution group. Fig. 3-4 is similar to Fig. 3-2, indicating re-identification risks 

associated with various temporal resolutions. It might be intuitive to expect higher 

temporal resolutions to result in a greater chance of re-identification. However, our 

experiments found a distinct characteristic concerning temporal resolutions. Surprisingly, 

the 1-hour temporal resolution exhibited the highest re-identification risk, with a value of 

0.26 when the anonymity was 1 and 0.52 when the anonymity was 10. These values even 

surpassed those of the highest resolution, which was 15 minutes. 

This discrepancy between our results and prior studies [17] could be attributed to 

the unique characteristics of language-based travel observations. People tend to recognize 

time in hourly units, which can unexpectedly influence re-identification risks. This is 

because many patients reported their travel times approximately; therefore, attempts to 

track them using higher temporal resolutions may result in lower uniqueness values. 

 
Fig. 3-4 Re-identification risks by temporal resolution  
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We further explored the impact of imperfect memory on time recognition, 

particularly focusing on the rate of missing data from tracing IDs. Fig. 3-5 shows the 

cumulative uniqueness value corresponding to temporal resolutions, represented by two 

legends: an anonymity value of 1 and an anonymity value of at least 1. The dark-shaded 

bar graphs represent instances where the anonymity value equals 1, signifying that only 

one person’s card ID matched the patients’ travel itineraries after the re-identification 

attack. The light-shaded bar graphs indicate instances where at least 1 ID was re-

identified, displaying itineraries identical to the patients. Thus, the anonymity values can 

range from 1 ID to the total number of patients, 𝑃. Given that the sum of the cumulative 

uniqueness value is 1.0, the missing rate can be estimated by subtracting the uniqueness 

value of at least 1 anonymity from the total. At the top of Fig. 3-5, the missing data rate is 

represented with arrows. 

Intuitively, a day range of trace has zero missing rates since there should be at 

least one person who has identical travel records to the patients. In contrast, a temporal 

resolution of 15 minutes showed a high missing rate of about 55%. This high missing rate 

is attributed to the disparity between a high temporal resolution of data and people’s 

imperfect memory. We believe these missing data rates resulted from the language-based 

travel observations. 
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Fig. 3-5. Missing rate by temporal resolution  

 

 

3.5.3 Privacy Risks Based on Diverse Visited Locations  

Fig. 3-3 (a) showed that the cumulative uniqueness value fluctuated, even with a 

consistent number of exposed travel records. To explore the cause of these fluctuations, 

we examined how the re-identification risks would vary when the number of observations 

remained constant, but the combinations of visited stations changed. As discussed in the 

methods section, the diversity of visited locations can significantly impact the re-

identification risks.  

In Fig. 3-6, the grey box plots indicate the anonymity value with 3 observations, 

which did not consider diverse combinations of exposed locations. Like existing studies, 
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the grey box plot considered the risks solely associated with the number of observations. 

Consequently, researchers using this approach could estimate the risks, but not exactly 

because they overlooked the potential impact of different visited locations. 

In contrast to the previous researchers’ methods, we classified the exposed travel 

observations in a grey box plot into three location categories based on the variety of 

visited locations: single location (visited repeatedly), 2 different locations, and 3 different 

locations. We illustrated these categories with three box plots in green, brown, and red, 

each representing various visited locations. Subsequently, we estimated the risks 

associated with the varying diversity of visited locations.  

More specifically, Fig. 3-6 illustrates the quantified risks using the median value 

in the box plots. The existing method, a grey box plot, identified 7 IDs with identical 

travel records within a 1-hour data range. However, we discovered that the anonymity 

value varied depending on the number of visited locations: 80 IDs for 1 location, 6 IDs 

for 2 locations, and 1 ID for 3 locations. This indicated a decrease in anonymity value as 

location diversity increased and privacy protection was lowered.  

Also, we evaluated the dispersion of anonymity values by comparing the 

interquartile ranges represented by the length of box plots. For the grey box, the upper 

and lower quartiles were 70 and 1, respectively, resulting in a quartile range of 69. The 

interquartile range of green, yellow, and red box plots were approximately 490, 19, and 0, 

respectively. Our analysis showed that as location diversity increased, the range of 

anonymity value became denser, implying a greater potential for re-identification.  

This analysis demonstrated that a diverse combination of visited locations could 

amplify re-identification risks. We believe the differences in the risks between traditional 
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methods and our approach can offer valuable insight into the impact of diverse visited 

locations on re-identification risks. Consequently, when the disclosure of patients' travel 

records is required in future pandemics, governments should be mindful of these real-

world data features to ensure patient privacy. 

 

 
Fig. 3-6. Privacy risks by combinations of visited locations  
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3.6 Conclusion 

During the COVID-19 pandemic, substantial amounts of sensitive personal 

information of the patients were shared publicly without sufficient precautions. The 

disclosed patient travel records contained distinct characteristics such as language-based 

varying data accuracy and diversity of the visited locations. Given the absence of 

research quantifying re-identification risks stemming from language-based travel records, 

this study brought a new perspective on the implication of these data characteristics. 

This study thoroughly explored privacy risks associated with patient travel 

observations. First, we quantified the re-identification risks of smart card data based on 

travel records, a byproduct of government-led personal information breaches. Our 

findings indicated that the re-identification risks associated with data derived from 

language-based travel observations were not as severe as those suggested by existing 

studies. Secondly, we found that higher spatial data resolution can intensify the re-

identification risks. Interestingly, a temporal data resolution of 1 hour showed a higher 

risk than a 15-minute resolution due to people’s preferences for approximate time 

recognition. Lastly, the impact of various combinations of diverse visited locations can 

deteriorate the risks. Our findings highlighted the varying likelihood of re-identification 

risks based on the number, resolutions, and combinations of patient travel observations.  

The vast amount of data derived from language-based sources, including Google 

Maps reviews and social networking stories, can weaken privacy protection. Our analysis 

of these language-based travel observations has yielded important insights into the 

associated re-identification risks. The inherent heterogeneity of observation numbers, 

spatial and temporal resolutions, and diverse combinations of visited locations provide a 
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more comprehensive understanding of the real-world scenario. This knowledge will be a 

fundamental basis for devising future privacy protection measures.  

Our research, though significant, does come with certain limitations. The travel 

record data samples were primarily insufficient to capture comprehensive and diverse 

individual travel patterns. South Korea's effective contact tracing policy made it 

challenging to obtain a large dataset of patient samples during the early stages of 

COVID-19 [25]. Additionally, the government has omitted detailed content from patient 

travel records from the pandemic’s mid-stages, further complicating data collection 

during the peak of virus propagation. Broadening the data collection scope to include 

other countries could enhance our understanding of the risks of publishing individual 

patients' travel records. 

Second, this study did not explore protection methods for the publication of travel 

records. Our work represents a pioneering effort to consider real-world exposed data, 

including individual travel records, in quantifying re-identification risks. Our primary 

focus was understanding the aspects of travel observations that can amplify risks when 

dealing with other open data sources. Therefore, comparing protection methods could be 

an essential area of research for future studies. 

Future work could aim to quantify a more comprehensive range of re-

identification risks with larger data samples. This would facilitate a deeper understanding 

of privacy concerns associated with language-based individual information breaches. 
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CHAPTER 4 

INFORMATION THEORY-BASED QUANTIFYING PRIVACY RISKS IN DATA 

4.1 Introduction 

We live in an era of excess information with the development of high-speed 

Internet, information and communications technology, and massive data handling and 

storage technologies [1-2]. In such environments, where information overload is 

common, people have questioned which information has more value and importance. 

Information value, however, can vary depending on the situation or individual 

perspectives. For instance, access to confidential news about mergers and acquisitions 

(M&A) or company profit data can significantly influence the return on investment (ROI) 

in the stock market. This type of news might be highly valuable to individuals aiming for 

substantial ROI. On the contrary, the same information might not appeal to someone who 

has never engaged in stock market investments. Therefore, the value of information can 

vary widely, influenced by people’s individual interests and unique circumstances. 

Similarly, there is a diverse range of sensitivities regarding privacy breaches in 

the realm of information privacy. Some individuals readily share personal details on 

social media, such as airline tickets, containing temporal and spatial information about 

their travel destinations. This information could potentially be used by adversaries to 

infer the individual’s travel itinerary [3]. Conversely, others are much more cautious 

about revealing their whereabouts. For example, the installation of CCTVs by 

municipalities for security enhancement has often been met with complaints from 

residents, necessitating officials to engage in persuasive efforts. These examples illustrate 

the varying degrees of privacy risk awareness among individuals. It is challenging to 
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determine which is more hazardous: personal travel itineraries exposed through social 

media or those captured by CCTV. This difficulty arises from the challenge of 

quantifying the risk level associated with individual exposures. Developing 

comprehensive mechanisms to quantify the amount of information and its associated 

risks can provide a solid foundation for protecting individual data.  

Numerous researchers have focused on measuring privacy risks associated with 

open data, including medical records, license plate recognition (LPR), mobile phone data, 

and credit card transactions [4-6]. Various methodologies have been developed to assess 

the privacy risk in publicly opened data. Their methods typically assume that adversaries 

can access additional external information, like an individual’s daily commuting times, 

which could be observed through surveillance. By integrating this external information 

with open data, there is a potential for adversaries to reidentify individuals within the 

datasets. While this approach is useful for indicating privacy risks under certain 

conditions where external information aligns with the dataset, it may not fully capture the 

comprehensive risks present in the dataset. More specifically, existing methods tend to 

focus on measuring the privacy risks of the remaining datasets by filtering out data 

irrelevant to external information. In our view, their findings may offer a limited 

perspective on the overall privacy risks due to the lack of filtered-out data. The findings 

could be suitable for only the specific external observation circumstances. Also, to 

measure the amount of information in the dataset, considering the whole dataset with all 

possible circumstances is crucial. Therefore, adopting an alternative approach that 

accounts for every possible situation within the dataset could improve our understanding 

of associated privacy risks.  
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Entropy can be the alternative approach in privacy risk research. Claude Shannon 

laid the foundation for understanding how information is processed and transmitted [7]. 

Shannon introduced a concept regarding entropy in the context of information theory, 

measuring a data set's unpredictability or randomness. Based on Shannon’s research, 

entropy can also be used to assess a dataset's uncertainty or unpredictability level. For 

example, let’s consider the scenario of rolling a die. If the frequency of rolling a 4 is 

extremely low, occurring only once in 100 attempts, the event of rolling a 4 becomes a 

significant surprise. This low probability of rolling a 4 implies that seeing it chosen 

would be unexpected, and this element of surprise can be regarded as information due to 

the rareness of occurring [8]. We can say that as the probability of an event occurring 

decreases, the uncertainty about the event increases. Measuring privacy risks and the 

amount of information also needs the probability of data. Suppose we are playing with a 

friend to guess the number of dice in the friend’s hands. There will be no surprise or 

uncertainty when the friend says it is a 3. However, if the friend says the number is less 

than 4, we still need to guess the answer from 1, 2 and 3. There is still uncertainty to 

guess, and if we need to guess it with only one attempt, we should consider the 

probability of the remaining numbers occurring compared to the entire dice rolling [8]. 

Entropy can be a measurement to guess the correct answer. If we adopt it to identify 

people in datasets, we could measure the privacy risk level by reducing the uncertainties 

of guessing.  

This dissertation introduces a methodology for quantifying the amount of 

information and the level of privacy risk in a dataset. For this purpose, the research 

constructs a synthetic dataset that captures every individual visit, encompassing all 
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possible spatial and temporal combinations of visited information. The research identified 

combinations where every person is uniquely distributed or classified into the smallest 

number of people, which cannot be identified individually. We regard these unique 

distribution combinations as resolved uncertainty situations. The conditional and joint 

entropy have been utilized to represent specific combinations, considering the fluctuation 

of uncertainty and privacy risk by adding a piece of visit information. This chapter's 

primary contribution is exploring information theory methods to quantify the resolved 

uncertainty and establish a connection between this resolved uncertainty and privacy 

risks in the dataset. A sensitivity analysis was conducted to identify the characteristics of 

travel information combinations. This is crucial as certain combinations of travel records 

may lead to earlier identification of individuals than other combinations. The results 

could provide significant insights into enhancing data privacy when it is published. 

The remainder of the chapter is organized as follows. Section 2 explores the 

significance and concepts of information theory. Section 3 discusses related works, 

especially for the existing privacy research and information theory-based uncertainty 

studies. Section 4 introduces the methodologies to quantify the dataset's information 

amount and privacy risks; Section 5 consists of results and findings. Section 6 

summarizes the main findings and future research directions. 

  



 

85 
 

4.2 Preliminary: Information Theory 

This section explores the fundamental concepts of information theory, which form 

the cornerstone of this chapter. 

 

4.2.1 Introduction to Information Theory 

In information theory, Shannon Entropy mainly represents the uncertainty of a 

single random variable and indicates the amount of information. This concept has been 

introduced by many researchers using familiar examples, such as a game depicted in Fig. 

4-1 [8-10]. Consider a game where the objective is to find a coin hidden in one of the 

eight boxes. In this game, the information we need is “where the coin is.” To find the 

coin, we are allowed to ask only binary questions. One approach is to ask about each box 

individual: “Is it in box 1?”, “Is it in box 2?”, and so on, up to “Is it in box 8?” as shown 

in Fig. 4-1 (a). If the coin were in the 1st box, we could find it with just one question, 

though the probability of this happening is very low. Conversely, if the coin were in the 

8th box, we would need to ask eight questions. On average, this method would require 4.5 

questions to find the coin. This average is calculated by summing the number of 

questions needed to find the coin in each scenario (from 1 to 8), and then dividing by 8.  

Alternatively, we can optimize the process by asking more strategic binary 

questions. For instance, we can begin by asking, “Is the coin in the right half of the eight 

boxes?” as depicted in Fig. 4-1 (b). Depending on the answer, we then focus on either the 

right or left half, successively halving the search area with each question. This method 

allows us to locate the coin using just three questions: first by reducing the eight boxes to 

four, then to two, and finally identifying the specific box. While this method invariably 

requires three questions, it may initially seem less efficient than the one or two questions 
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needed in the individual box inquiry method. However, given the low probability of 

finding the coin with fewer questions in the individual method, the binary halving inquiry 

method offers a more reliable and often more efficient solution.  

 

 
(a) Individual box inquiry method 

 

 
(b) Binary halving inquiry method  

Fig. 4-1 Comparative illustration of two methods for the coin-finding game 

 

We can estimate the probability of finding the coin in any box by diving the total 

number of boxes (𝑛), as 𝑝 =
1

𝑛
 . The equation to determine the number of questions (𝑛𝑄) 

required in this game can be derived as follows [8]:  

𝑛𝑄 = log2 𝑛 = log2(
1

𝑝
) =  − log2 𝑝 ≡ ℎ                    (1) 

Now, we can calculate the number of questions needed to resolve our uncertainty 

about the outcome of the game. In this context, ℎ represents the amount of uncertainty, 
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which is also known as Shannon Entropy or simply Entropy [8]. This approach remains 

efficient even when the number of boxes is doubled. For instance, if the number of boxes 

increases to 16, the required number of questions ‒ or the amount of uncertainty ‒ can be 

calculated as log2(1/16) = 4; this is just one additional question compared to the eight-

box scenario. In contrast, the individual box inquiry method would require 16 questions, 

doubling the number of questions with the doubled number of boxes. This illustrates why 

information theory is so powerful: it provides a method to quantify uncertainty in a 

scalable and efficient manner, regardless of the size of the database. 

In the coin-finding game example, we explored how entropy serves as a measure 

of uncertainty in a simplified scenario, illustrating a fundamental concept in information 

theory. The principle of uncertainty reduction is pivotal for understanding the basics of 

information theory and plays a significant role in our research. Measuring uncertainty 

through this lens is vital for analyzing the amount of information that can be derived from 

individual travel records, such as assessing the likelihood of someone visiting a specific 

place. However, the coin-finding game is just an introduction to the broader applications 

of information theory. We will delve into more complex aspects, with a particular focus 

on probability distributions. These distributions offer a more detailed perspective on 

uncertainty and information theory, which is essential for our research. 

 

4.2.2 Measuring the Uncertainty in Probability Distribution  

In contrast to the straightforward scenario of the coin-finding game, which 

revolves around a single event, probability distributions represent a sophisticated and 
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multifaceted application of information theory. This section delves into how information 

theory quantifies the inherent uncertainty in these distributions.  

Consider 𝑋 as a discrete random variable representing outcomes ranging from 1 

to 𝑛. The probability distribution of 𝑋, denoted as 𝑃𝑖, can be expressed as 𝑃1, 𝑃2, … , 𝑃𝑛. 

Using the coin-finding game as an analogy, let us say 𝑋 represents which box contains 

the coin. With each of the eight boxes having an equal probability of 1/8 of containing 

the coin, we can apply the uncertainty equation (1) for a single outcome of 𝑋. In a 

scenario where each of the eight boxes contains the coin exactly once across multiple 

trials, each probability would be identical, such as 𝑃1 = 𝑃2 = ⋯ = 𝑃8 = 1/8. To 

calculate the average uncertainty associated with the probability of finding the coin 

across all eight outcomes (from 𝑃1 to 𝑃8), we use the following equation (2) for the 

random variable 𝑋:  

𝐻(𝑋) = 𝐸[ℎ(𝑋)] = − ∑ 𝑃𝑖  log2 𝑃𝑖

𝑛

𝑖=1

                           (2) 

Equation (2) represents the sum of the expected value of the uncertainty for all 

outcomes, as defined by Shannon Entropy [7]. For each outcome, the uncertainty is 

quantified by log2 𝑃𝑖, and when this is multiplied by the probability, 𝑃𝑖, it gives the 

expected value of uncertainty for that particular outcome (𝑃𝑖). Summing these values for 

all possible outcomes of 𝑋, we obtain a measure of the average uncertainty (or entropy) 

associated with the probability distribution of finding the coin in one of the eight boxes. 

This sum is essentially an average because it combines the uncertainties of all outcomes, 

taking into account how likely each outcome is. In other words, the more likely an 

outcome is, the more it contributes to the overall uncertainty calculation. This method of 
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combining uncertainties, where the likelihood of each outcome influences its contribution 

to the total, exemplifies what Shannon Entropy measures. For instance, in the coin-

finding game, where each of the eight boxes has an equal probability (1/8) of containing 

the coin, the Shannon Entropy calculation considers the probability of the coin being in 

each box. The uncertainty for each box is calculated as − log2(
1

8
). Since each outcome 

(box) has the same probability, the entropy is the sum of these individual uncertainties 

multiplied by their probability, as follows,  

𝐻(𝑋) = −8 ×
1

8
× log2 (

1

8
) = 3 𝑏𝑖𝑡𝑠 

When the base is 2 of the logarithms, we deemed the entropies to be measured in 

bits [10]. If the probability of containing the coin is not equal to 1/8, such as 1/16, 1/16, 

1/16, 1/16, 1/8, 1/8, 1/4, 1/4, the calculation of the uncertainties will be as follows, 

𝐻(𝑋) = −
1

16
× log2 (

1

16
) −

1

16
× log2 (

1

16
) −

1

16
× log2 (

1

16
) −

1

16
× log2 (

1

16
)

−
1

8
× log2 (

1

8
) −

1

8
× log2 (

1

8
) −

1

4
× log2 (

1

4
) −

1

4
× log2 (

1

4
)

= 2.75 𝑏𝑖𝑡𝑠 

This reflects the average amount of information or surprise typically associated 

with learning which specific box contains the coin. Hence, it is often described as the 

average uncertainty of the probability distribution. This calculation quantifies the 

expected level of uncertainty across all possible outcomes. Table 4-1 shows the notation 

of equation (2). 
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Table 4-1. Notation  

Notation Description 

𝑋 
Discrete random variable representing possible outcomes (e.g., which box 

contains the coin) 

𝐻(𝑋) 
Average uncertainty or a measure of the expected uncertainty across all 

possible outcomes of 𝑋  

ℎ(𝑋) Uncertainty of a single outcome of 𝑋, quantified using equation (1) 

𝑃𝑖 Probability of the 𝑖𝑡ℎ outcome of 𝑋, where 𝑖 ranges from 1 to 𝑛 

 

 

4.2.3 Joint Entropy and Conditional Entropy  

1) Understanding Joint and Conditional Entropy 

Joint entropy and conditional entropy are important metrics for quantifying the 

amount of information for multiple variables. This chapter adopts conditional and joint 

entropy equations as established in previous studies [8], [10]. Suppose we have two 

discrete random variables 𝑋 and 𝑌, with 𝑛 and 𝑚 possible outcomes, respectively. Their 

joint probability distribution is denoted as 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗), and the individual 

distribution of variables 𝑋 and 𝑌 are 𝑃𝑖 𝑎𝑛𝑑 𝑃𝑗, respectively. The joint entropy, which 

measures the total uncertainty in both 𝑋 and 𝑌 together, can be expressed as:  

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) ∙ log2( 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗))

𝑚

𝑗=1

𝑛

𝑖=1

                 (3) 

                = − ∑ ∑ 𝑃𝑖,𝑗 ∙ log2( 𝑃𝑖,𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

                                            simplified (3) 

This equation sums the product of the joint probability and the logarithm of the 

joint probability over all possible states of the variables 𝑋 and 𝑌 to measure the total 

uncertainty.   
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Following joint entropy, we also consider conditional entropy. Conditional 

entropy quantifies the average amount of information or uncertainty of one variable, 𝑋, 

given the knowledge of another variable, 𝑌. More specifically, when the value of variable 

𝑌 is known, conditional entropy measures the remaining uncertainty or information in 𝑋, 

considering the conditional probability distributions. This remaining information 

represents the unique information content of 𝑋 that is not shared with 𝑌. If the variables 

𝑋 and 𝑌 have joint probability denoted as 𝑃𝑖,𝑗, where 𝑃𝑖 𝑎𝑛𝑑 𝑃𝑗 are their respective 

individual probabilities, the conditional entropy of 𝑋 given 𝑌 can be defined by the 

following equations: 

𝐻(𝑋|𝑌) = − ∑ 𝑃(𝑌 = 𝑗) ∙ 𝐻(𝑋|𝑌 = 𝑗)

𝑚

𝑗=1

                                                                (4) 

=  − ∑ 𝑃𝑗 ∙ 𝐻(𝑋|𝑌)

𝑚

𝑗=1

                                                                   simplified (4) 

= − ∑ 𝑃(𝑌 = 𝑗) ∙

𝑚

𝑗=1

∑ 𝑃(𝑋 = 𝑖|𝑌 = 𝑗) ∙ log2(𝑃(𝑋 = 𝑖|𝑌 = 𝑗))

𝑛

𝑖=1

   (5) 

= − ∑ 𝑃𝑗 ∙ ∑(𝑃𝑖|𝑃𝑗) ∙ log2(𝑃𝑖|𝑃𝑗

𝑛

𝑖=1

)

𝑚

𝑗=1

                                  simplified (5) 

= − ∑ ∑ 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) ∙ log2

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗)

𝑃(𝑌 = 𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

                        (6) 

= − ∑ ∑ 𝑃𝑖,𝑗 ∙ log2

𝑃𝑖,𝑗

𝑃𝑗

𝑚

𝑗=1

𝑛

𝑖=1

                                                    simplified (6) 

More specifically, equation (4) calculates the conditional entropy of 𝑋 given 𝑌. 

𝑃(𝑌 = 𝑗) is the probability of 𝑌 being in state 𝑗. 𝐻(𝑋|𝑌 = 𝑗) is the entropy of 𝑋 when 𝑌 
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is known to be in state 𝑗. Thus, multiplying 𝑃(𝑌 = 𝑗) by 𝐻(𝑋|𝑌 = 𝑗) is a process to 

calculate the average or expected uncertainty in 𝑋 when the value of 𝑌 is known. 

Equation (5) is an expanded form of equation (4). It gives us the breakdown of the 

conditional entropy equation 𝐻(𝑋|𝑌 = 𝑗) by dividing it by multiplying the conditional 

probability of 𝑋 given 𝑌, 𝑃(𝑋 = 𝑖|𝑌 = 𝑗), by the surprise or information content 

associated with 𝑋 in 𝑌, log2(𝑃(𝑋 = 𝑖|𝑌 = 𝑗)). Lastly, equation (6) is another expanded 

form of the conditional entropy. Equation (6) provides a direct calculation method using 

the joint probability distribution 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) and marginal probability distribution 

𝑃(𝑌 = 𝑗). The logarithmic term log2(
𝑃(𝑋=𝑖,𝑌=𝑗)

𝑃(𝑌=𝑗)
) calculates the surprise or information 

associated with the occurrence of 𝑋 given 𝑌. This means that the logarithm process 

quantifies the additional information provided by 𝑋 when 𝑌 is known. 

Therefore, these equations from (4) to (6) effectively capture the average 

uncertainty in 𝑋 that remains after observing 𝑌, providing insights into the 

interdependence of these variables. 

 

2) Applying the Chain Rule  

This subsection delves into the relationship between joint entropy and conditional 

entropy within the framework of information theory. The chain rule for entropy is a key 

concept that illustrates how joint entropy is fundamentally the cumulative sum of 

conditional entropies [10]. This principle is particularly insightful for measuring the 

uncertainty in travel information by aggregating various information pieces.  

As previously discussed, conditional entropy captures the unique information of a 

variable in the context of a given variable. The following equations (7) and (8) 
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demonstrate the relationship between joint entropy and conditional entropy for two and 

three variables [10]. 

𝐻(𝑋1, 𝑋2) = 𝐻(𝑋1) + 𝐻(𝑋2|𝑋1)       (7) 

𝐻(𝑋1, 𝑋2, 𝑋3) = 𝐻(𝑋1) + 𝐻(𝑋2, 𝑋3|𝑋1)      (8-1) 

   = 𝐻(𝑋1) + 𝐻(𝑋2|𝑋1) + 𝐻(𝑋3|𝑋2, 𝑋1)   (8-2) 

In equation (7), 𝐻(𝑋1) represents the total information of the variable 𝑋1, and 

𝐻(𝑋2|𝑋1) signifies the unique information of the variable 𝑋2 given 𝑋1. The sum of the 

two parts of the equation (7) can be equivalent to the joint entropy, 𝐻(𝑋1, 𝑋2), of the two 

variables. For three variables, 𝑋1, 𝑋2, 𝑎𝑛𝑑 𝑋3, equation (8) can be divided into two parts, 

as shown in equations (8-1) and (8-2). Equation (8-1) consists of the total information of 

𝑋1 and the conditional entropy of 𝑋2 and 𝑋3 given 𝑋1. The term 𝐻(𝑋2, 𝑋3|𝑋1) in equation 

(8-1) represents joint entropy of 𝑋2 𝑎𝑛𝑑 𝑋3, excluding the information shared with 

variable 𝑋1. Thus, the joint entropy of three variables is the sum of the complete 

information of 𝑋1 and remaining joint entropy of 𝑋2 𝑎𝑛𝑑 𝑋3, excluding 𝑋1.  

Equation (8-2) further dissects 𝐻(𝑋2, 𝑋3|𝑋1), into two parts: 𝐻(𝑋2|𝑋1) and 

𝐻(𝑋3|𝑋2, 𝑋1). This breakdown implies the new information obtained from variables 𝑋2 

and 𝑋3 is incremental, excluding the previously accounted information. More 

specifically, 𝐻(𝑋1) encompasses the total information of 𝑋1, being the initial information 

source. Adding 𝐻(𝑋2|𝑋1) introduces new information from 𝑋2, independent of 𝑋1. 

Subsequently, 𝐻(𝑋3|𝑋2, 𝑋1) derives information from 𝑋3 that is not contained in 

𝑋2 𝑎𝑛𝑑 𝑋1.  

This approach is vital for our study as it allows us to quantify the total uncertainty 

in travel records by sequentially adding information from specific times or locations. The 
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following equation (9) is the sum of the conditional entropies using the chain rule for 

multivariates from 1 to n [10]. 

𝐻(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝐻(𝑋1) + 𝐻(𝑋2|𝑋1) … + 𝐻(𝑋𝑛|𝑋𝑛−1, … , 𝑋1)                (9) 

                                 = ∑ 𝐻(𝑋𝑖|𝑋𝑖−1, … , 𝑋1)

𝑛

𝑖=1

 

 

 

4.3 Related Work 

Over the past few decades, privacy risk research has received significant 

attention. This section delves into existing studies on privacy risk, with a particular focus 

on risk measurement methodologies, including re-identification risk research and 

approaches for uncertainty utilizing information theory.  

 

4.3.1 Privacy Risk Measurement Research with External Observations 

Numerous researchers have focused on privacy risks associated with anonymized 

and publicly shared data, especially when analyzed through external observation. 

Anonymized datasets contain attributes known as quasi-identifiers (QIDs), which may 

include details like ZIP code, birth date, gender, prices of purchased items, visited 

locations and times [11]. Dalenius pointed out that QIDs in anonymized datasets can be 

utilized to reidentify individuals, especially those with unique attributes or who are 

publicly known [12]. Sweeney exemplified a notable case of reidentifying a public figure 

using QIDs and external observation. Sweeney successfully reidentified the governor of 

Massachusetts's records using anonymized data from voter registration and health 
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insurance records [4]. This was achieved by matching the governor’s publicly known 

information, in other words, external observations, such as ZIP code, birth date and 

gender. Consequently, Sweeney found the governor’s sensitive medical records. 

Therefore, using QIDs and external observations has posed significant privacy risks and 

attracted the interest of many researchers. 

Researchers have utilized QIDs to demonstrate the vulnerability of shared data. 

By reidentifying individuals and narrowing down the number of candidates with identical 

travel records, they have effectively demonstrated the inherent privacy risks. This process 

highlights the vulnerability of shared data and underscores the need for robust privacy-

preserving techniques in data anonymization.  

However, existing research has focused on cases where QIDs directly match 

external observation data, leading to a narrowed perspective. By concentrating on 

matching data, researchers might overlook non-matching data. This selective approach 

can result in an analysis that emphasizes specific subsets of data, potentially missing out 

on the complete picture. Consequently, such methods may not fully capture the overall 

privacy risks as they do not consider the entire dataset. An alternative approach, which 

encompasses a comprehensive analysis of all data, including both matching and non-

matching subsets, is necessary for a more accurate quantification of privacy risks. 

 

4.3.2 Information Theory-based Research Regarding Uncertainty  

As introduced in the preliminary section, information theory offers a framework 

to measure the amount of uncertainty in information. A key aspect of this approach is its 

ability to aggregate all probabilities, including those from both exactly matched and non-
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matching data. This inclusive nature of information theory allows for the consideration of 

every possible case, irrespective of whether there is a match or not.  

In particular, the use of conditional entropy and joint entropy in information 

theory enables the quantification of the incremental amounts of information added up to 

the total uncertainty level achieved by aggregating various information pieces of 

information. Some studies have been based on information theory to understand the 

amount of uncertainty. For instance, Wellmann and Regenauer-Lieb applied information 

theory to visualize uncertainties in a structural geological model [13]. Geological models 

are used to understand and predict the distribution of rocks and fluids in the subsurface of 

the Earth [14]. Given the significant uncertainties below ground, structural geological 

models serve as vital tools for providing essential information about underground 

circumstances, thereby helping minimize investigation costs. Furthermore, Wellmann 

also examined how additional information could reduce uncertainty regarding potential 

drilling locations [15]. The research team explored the overall reduction of uncertainty by 

incorporating information from multiple drilling sites, employing conditional entropy and 

joint entropy methods and treating the multiple drilling locations as multivariate input 

data. 

This method can be effectively adapted to the field of transportation engineering, 

where travel data are collected from multiple locations, and the value of information 

derived is often uncertain. In particular, research that measures the fluctuation of 

uncertainty related to privacy risks in transportation data is essential for understanding 

privacy implications. The subsequent section delves into methods based on information 
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theory for quantifying the amount of uncertainty derived from multiple information 

sources.  

 

 

4.4 Methods of Analysis 

Our study focused on quantifying the amount of information inherent in data. To 

achieve this main goal, we hypothesized that privacy risks can be quantified by 

measuring the amount of resolved uncertainty in units of entropy. In addition, we 

explored how the resolved uncertainty regarding the re-identification of individuals 

changes with the addition of more information pieces. On top of that, this chapter 

considered how different amounts of resolved uncertainty emerge based on various 

combinations of information acquisition. With this regard, the following three 

fundamental questions guided our research:  

1) What is the relationship between privacy risk and resolved uncertainty, and 

what methods can be utilized to quantify this uncertainty? 

2) How does the amount of resolved uncertainty increase with the addition of 

more information pieces? 

3) How does the uncertainty vary with different combinations of information 

acquisition? 

The subsequent subsections explore the methods and provide examples of 

approaches to the above questions. 
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4.4.1 Concepts of Rareness and Commonness in Datasets 

Suppose a dataset containing the travel records of 8 individuals across 6 different 

locations. These records specify whether each person visited a particular location, 

resulting in a binary outcome: ‘visited’ or ‘not visited’. These binary outcomes can be 

numerically represented for analytical convenience with ‘visited’ coded as 1 and ‘not 

visited’ as 0. Table 4-2 illustrates these travel records, organized by person and location. 

In the context of privacy, information about location D is particularly sensitive, as 

it uniquely identifies a person with ID 5 as the only person who visited the location. As 

discussed in the preliminary section, this information contains a high level of surprise due 

to its rareness, with the probability of occurrence being 
1

8
. Conversely, for the other seven 

individuals who did not visit this location, the probability is 
7

8
. Applying the entropy 

equation, the average entropy for this information is calculated as −
1

8
∙ log2(

1

8
) −

7

8
∙

log2(
7

8
) = 0.544 𝑏𝑖𝑡𝑠. Also, we can calculate the entropy of each location with the 

equation. As indicated by the entropy values in Table 4-2, 0.544 bits is the lowest entropy 

value compared to other locations. Thus, while the information about visiting location D 

uniquely identifies ID 5, it does not resolve uncertainty sufficiently to identify all eight 

individuals in the dataset. It would be challenging to understand privacy risks accurately, 

focusing on specific uniquely identified cases only. This illustrates that the significance 

of information about visiting a location should be evaluated comprehensively, 

considering both its rareness and commonness.  
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Table 4-2. Sample data  

ID Location A Loc. B Loc. C Loc. D Loc. E Loc. F 

1 1 0 0 0 0 0 

2 0 1 0 0 0 1 

3 0 0 1 0 0 0 

4 1 1 0 0 0 0 

5 0 0 0 1 1 0 

6 0 0 0 0 1 0 

7 0 1 1 0 0 1 

8 0 0 1 0 1 0 

# of 

visited 
2 3 3 1 3 2 

# of not 

visited  
6 5 5 7 5 6 

Entropy 0.811 0.954 0.954 0.544 0.954 0.811 

 

 

4.4.2 Amount of Uncertainty and Privacy Risk 

1) Identification Process 

In the preliminary section, we discussed how Shannon entropy can estimate the 

amount of uncertainty to identify a coin among eight boxes. Applying this concept to 

privacy risks, we can quantify the amount of the resolved uncertainty when all eight 

individuals from Table 4-2 are identified, which is the most critical privacy risk situation. 

When all eight individuals in a dataset are uniquely identifiable, each individual can be 

distinctly separated based on the available information. In such a case, the resolved 

uncertainty of identifying these eight individuals can be calculated as 𝐻(𝑋) =
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−8 ×
1

8
× log2 (

1

8
) = 3 𝑏𝑖𝑡𝑠. This value represents the total resolved uncertainty involved 

in uniquely identifying each individual. However, as indicated by the data in Table 4-2, 

uniquely identifying all eight individuals is not feasible based solely on the information 

from one location. Therefore, it is necessary to accumulate information from multiple 

locations to assess whether the individuals can be uniquely identified.  

Table 4-3 demonstrates the process of identifying individuals as we accumulate 

and analyze more location information, applying binary visit conditions: visited (denoted 

as ‘1’) or not visited (denoted as ‘0’). In this table, ‘A(1)’ signifies a visit to location A, 

while ‘A(0)’ indicates that location A was not visited. Each condition has its own 

condition number, which consists of the number of information pieces (i) and the order 

number (j) of combinations in the same pieces (i). Initially, we cannot uniquely identify 

any individual with information from location A alone. However, incorporating data from 

additional locations enables distinguishing individuals. For instance, with the first set of 

information about location A, we categorize IDs 1 and 4 as having visited (coded as 

A(1)) and the other individuals as not having visited (coded as A(0)). At this stage, no 

individual has been uniquely identified.  

The identification process becomes more refined by adding information from the 

second location B. Now, we have two pieces of information: one from location A and 

another from location B. This dual information allows for a more detailed division of 

individuals based on their visit conditions at both locations. More specifically, ID 1, who 

visited location A but not B,  is represented as B(0) | A(1), and ID 4, who visited both 

locations, is shown as B(1) | A(1). As we continue to integrate information from 

additional locations C, D, and E, our ability to distinguish between individuals becomes 
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even more precise. With five pieces of information ‒ encompassing locations A, B, C, D, 

and E ‒ we reach a point where each of the eight individuals can be uniquely identified 

based on their specific combinations of visit conditions. This scenario represents the most 

significant privacy risk, where individuals are identifiable solely through their visit 

records. 

Table 4-3. Identification results by varying information pieces and visit conditions 

# of 

info. 
Con. Visit conditions IDs 

# of 

info. 
Con. Visit conditions IDs 

1 

piece 

C1-1 A(0) 
ID 2, 3, 5, 

6, 7, 8 

4 

pieces 

C4-2 D(1) | C(0), B(0), A(0) ID 5 

C1-2 A(1) ID 1, 4 C4-3 D(0) | C(1), B(0), A(0) ID 3, 8 

2 

pieces 

C2-1 B(0) | A(0) 
ID 3, 5, 6, 

8 
C4-4 D(1) | C(1), B(0), A(0) - 

C2-2 B(1) | A(0) ID 2, 7 C4-5 D(0) | C(0), B(1), A(0) ID 2 

C2-3 B(0) | A(1) ID 1 C4-6 D(1) | C(0), B(1), A(0) - 

C2-4 B(1) | A(1) ID 4 C4-7 D(0) | C(1), B(1), A(0) ID 7 

3 

pieces 

C3-1 C(0) | B(0), A(0) ID 5, 6 C4-8 D(1) | C(1), B(1), A(0) - 

C3-2 C(1) | B(0), A(0) ID 3, 8 C4-9 D(0) | C(0), B(0), A(1) ID 1 

C3-3 C(0) | B(1), A(0) ID 2 C4-10 D(1) | C(0), B(0), A(1) - 

C3-4 C(1) | B(1), A(0) ID 7 C4-11 D(0) | C(1), B(0), A(1) - 

C3-5 C(0) | B(0), A(1) ID 1 C4-12 D(1) | C(1), B(0), A(1) - 

C3-6 C(1) | B(0), A(1) - C4-13 D(0) | C(0), B(1), A(1) ID 4 

C3-7 C(0) | B(1), A(1) ID 4 C4-14 D(1) | C(0), B(1), A(1) - 

C3-8 C(1) | B(1), A(1) - C4-15 D(0) | C(1), B(1), A(1) - 

4 

pieces 
C4-1 D(0) | C(0), B(0), A(0) ID 6 C4-16 D(1) | C(1), B(1), A(1) - 

  



 

102 
 

# of 

info. 
Con. Visit conditions IDs 

# of 

info. 
Con. Visit conditions IDs 

5 

pieces 

C5-1 E(0) | D(0), C(0), B(0), A(0) - 

5 

pieces 

C5-17 E(0) | D(0), C(0), B(0), A(1) ID 1 

C5-2 E(1) | D(0), C(0), B(0), A(0) ID 6 C5-18 E(1) | D(0), C(0), B(0), A(1) - 

C5-3 E(0) | D(1), C(0), B(0), A(0) - C5-19 E(0) | D(1), C(0), B(0), A(1) - 

C5-4 E(1) | D(1), C(0), B(0), A(0) ID 5 C5-20 E(1) | D(1), C(0), B(0), A(1) - 

C5-5 E(0) | D(0), C(1), B(0), A(0) ID 3 C5-21 E(0) | D(0), C(1), B(0), A(1) - 

C5-6 E(1) | D(0), C(1), B(0), A(0) ID 8 C5-22 E(1) | D(0), C(1), B(0), A(1) - 

C5-7 E(0) | D(1), C(1), B(0), A(0) - C5-23 E(0) | D(1), C(1), B(0), A(1) - 

C5-8 E(1) | D(1), C(1), B(0), A(0) - C5-24 E(1) | D(1), C(1), B(0), A(1) - 

C5-9 E(0) | D(0), C(0), B(1), A(0) ID 2 C5-25 E(0) | D(0), C(0), B(1), A(1) ID 4 

C5-10 E(1) | D(0), C(0), B(1), A(0) - C5-26 E(1) | D(0), C(0), B(1), A(1) - 

C5-11 E(0) | D(1), C(0), B(1), A(0) - C5-27 E(0) | D(1), C(0), B(1), A(1) - 

C5-12 E(1) | D(1), C(0), B(1), A(0) - C5-28 E(1) | D(1), C(0), B(1), A(1) - 

C5-13 E(0) | D(0), C(1), B(1), A(0) ID 7 C5-29 E(0) | D(0), C(1), B(1), A(1) - 

C5-14 E(1) | D(0), C(1), B(1), A(0) - C5-30 E(1) | D(0), C(1), B(1), A(1) - 

C5-15 E(0) | D(1), C(1), B(1), A(0) - C5-31 E(0) | D(1), C(1), B(1), A(1) - 

C5-16 E(1) | D(1), C(1), B(1), A(0) - C5-32 E(1) | D(1), C(1), B(1), A(1) - 

 

2) Quantifying Uncertainty by Process 

This subsection builds upon the methods outlined in the previous subsection, 

where we identified individuals by accumulating location information. In this section, our 

focus shifts to quantifying the amount of uncertainty based on information theory, 

particularly on joint entropy and conditional entropy [10]. This requires estimating the 

probability under each visit combination in terms of joint entropy and conditional 

entropy.  

As calculated, the total uncertainty of identifying every eight individuals was 3 

bits, representing the highest level of uncertainty. Fig. 4-2 illustrates the identification 

process, along with the corresponding probabilities used to quantify the amount of 
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uncertainty at each process. Initially, individuals are categorized into two groups based 

on their visit information for location A: those who did not visit (A(0)) and those who did 

(A(1)), referred to as condition C1-1 (six people) and C1-2 for (two people), respectively. 

The probabilities for these categories are thus 
6

8
 and 

2

8
. Using these probabilities, we 

calculated the amount of uncertainty for this information, 𝐻(𝐴), using the equation 

𝐻(𝐴) = −
6

8
∙ log2(

6

8
) −

2

8
∙ log2(

2

8
), which equals 0.811 bits. With only one location’s 

information at this stage, there is no need to differentiate conditional entropy and joint 

entropy separately. 

In the second process, we analyzed data from both locations A and B. This 

addition allowed us to calculate the joint entropy of locations A and B, as well as the 

conditional entropy of B, given A. As depicted in Fig. 4-2, the six individuals from the 

C1-1 visit condition were further classified into C2-1 (four individuals) and C2-2 (two 

individuals), resulting in probabilities of 
4

6
 and 

2

6
, respectively. Conversely, the two 

individuals in the C1-2 condition were divided into C2-3 and C2-4 conditions, each with 

one individual, leading to a probability of 
1

2
 for each division. This division indicates 

unique identification for these two individuals. 

With the probabilities: 
4

6
, 

2

6
, 

1

2
, and 

1

2
, we applied predefined equations for joint 

entropy and conditional entropy. Specifically, the conditional entropy of B given A is 

quantified using the simplified equation (5) as follows,  

𝐻(𝑋|𝑌) = − ∑ 𝑃𝑗 ∙ ∑(𝑃𝑖|𝑃𝑗) ∙ log2(𝑃𝑖|𝑃𝑗

𝑛

𝑖=1

)

𝑚

𝑗=1

                       simplified (5) 
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We changed the variables 𝑋 and 𝑌 to B and A to adopt the above equation to our 

example. Accordingly, we converted 𝑃𝑗 into 𝑃𝐴(𝑗) and 𝑃𝑖 into 𝑃𝐵(𝑖), where 𝑖 𝑎𝑛𝑑 𝑗 are 

from 0 to 1, respectively. From Fig. 4-2, we had the following probabilities for locations 

A and B:  

𝑃𝐴(0) =
6

8
, 𝑃𝐴(1) =

2

8
, 

𝑃(𝐵(0)|𝐴(0)) =
4

6
, 𝑃(𝐵(1)|𝐴(0)) =

2

6
, 𝑃(𝐵(0)|𝐴(1)) =

1

2
, 𝑎𝑛𝑑 , 𝑃(𝐵(1)|𝐴(1)) =

1

2
 

The simplified equation (5) can be converted into the following equation (10), and 

the conditional entropy of B given A can be calculated with the above probabilities. 

𝐻(𝐵|𝐴) = − ∑ 𝑃𝐴(𝑗) ∙ ∑(𝑃𝐵(𝑖)|𝑃𝐴(𝑗)) ∙ log2(𝑃𝐵(𝑖)|𝑃𝐴(𝑗)

1

𝑖=0

)

1

𝑗=0

                (10) 

               =
6

8
 𝐻 (

4

6
,
2

6
) +

2

8
 𝐻 (

1

2
,
1

2
) 

= −
6

8
∙ (

4

6
∙ log2

4

6
+

2

6
∙ log2

2

6
) −

2

8
∙ (

1

2
∙ log2

1

2
+

1

2
∙ log2

1

2
)                   

= 0.939 𝑏𝑖𝑡𝑠 

This value indicated that we gained 0.939 bits of uncertainty by adding 

information for location B. As discussed in the previous subsection, our goal is to reach 

the total uncertainty of 3 bits, the value when all eight individuals are uniquely identified. 

Therefore, the 0.939 bits represented the unique amount of new information contributed 

by location B, excluding the influence of location A. This method enables us to quantify 

the unique amount of new information. By integrating the information from location A 

with that from location B, we can calculate the overall uncertainty of both locations 

combined. The subtotal of uncertainty from locations A and B is calculated as follows: 
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𝐻(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵|𝐴) = 0.811 + 0.939 = 1.75 𝑏𝑖𝑡𝑠 

This equation sums the uncertainty from each location, yielding a comprehensive 

measure of the total uncertainty for the identification process based on the combined 

information from both locations. 

 

 
Fig. 4-2 Classification of IDs over incremental location information 

 

3) More Efficient Way to Quantify Uncertainty 

We can simplify the calculation of both joint entropy and conditional entropy by 

using probabilities based on the total populations of eight individuals categorized by visit 

conditions. In equation (10), we applied the probabilities of location A, (
6

8
 and 

2

8
), the 

marginal distribution of 𝑃𝐴(𝑗), as multipliers for the uncertainty values of location B, 

represented by 𝐻 (
4

6
,

2

6
) and 𝐻 (

1

2
,

1

2
), in the subsequent process.  

However, there is a more direct method for this calculation. This method involves 

directly multiplying the probabilities from the previous process with those of the current 
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process. For example, multiplying 
6

8
 (the probability of A(0)) with 

4

6
 (the probability of 

B(0)) results in 
4

8
. Applying this method to the other visit conditions allows us to use the 

total population of 8 as the common denominator. Table 4-4 shows the outcomes of 

probability calculations for the various visit conditions of locations A and B. In this table, 

the values 
4

8
,

2

8
,

1

8
 and 

1

8
 represent the outcomes obtained by multiplying the marginal 

distribution of the previous process (location A) with those of the current process 

(location B). 

 

Table 4-4. Distribution of individuals with location information A and B  

B 

A 
B(0) B(1) 

Marginal 

distribution of 

𝑃𝐴(𝑗) 

A(0) 
6

8
×

4

6
=

4

8
 

6

8
×

2

6
=

2

8
 

6

8
 

A(1) 
2

8
×

1

2
=

1

8
 

2

8
×

1

2
=

1

8
 

2

8
 

Marginal  

distribution of 𝑃𝐵(𝑗) 

5

8
 

3

8
 

8

8
 

 

We can estimate the joint entropy 𝐻(𝐴, 𝐵) and conditional entropy of B given A, 

𝐻(𝐵|𝐴), with the values as follows, 

𝐻(𝐴, 𝐵) = − (
4

8
∙ log2

4

8
+

2

8
∙ log2

2

8
+

1

8
∙ log2

1

8
+

1

8
∙ log2

1

8
) = 1.75 𝑏𝑖𝑡𝑠 

𝐻(𝐵|𝐴) = 𝐻(𝐴, 𝐵) − 𝐻(𝐴) = 1.75 − 0.811 = 0.939 𝑏𝑖𝑡𝑠 

With this method, we can quantify the uncertainty in a more efficient manner. By 

simplifying Table 4-3, we focused only on visit conditions where at least one ID has been 

identified, along with their corresponding probabilities, as shown in Table 4-5. Utilizing 

Table 4-5, we can estimate the joint entropy and conditional entropy for conditions that 
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incorporate subsequent pieces of information about locations A, B, C, D and E. The 

calculations proceeded as follows, 

Table 4-5. Identification results by varying information pieces and visit conditions 

# of info. Con. 
Visit 

conditions 
Probability # of info. Con. 

Visit 

conditions 
Probability 

3 pieces 

(Locations A, 

B, and C) 

C3-1 ID 5, 6 2/8 
4 pieces 

C4-9 ID 1 1/8 

C3-2 ID 3, 8 2/8 C4-13 ID 4 1/8 

C3-3 ID 2 1/8 

5 pieces 

(Locations A, B, 

C, D and E) 

C5-2 ID 6 1/8 

C3-4 ID 7 1/8 C5-4 ID 5 1/8 

C3-5 ID 1 1/8 C5-5 ID 3 1/8 

C3-7 ID 4 1/8 C5-6 ID 8 1/8 

4 pieces 

(Locations A, 

B, C and D) 

C4-1 ID 6 1/8 C5-9 ID 2 1/8 

C4-2 ID 5 1/8 C5-13 ID 7 1/8 

C4-3 ID 3, 8 2/8 C5-17 ID 1 1/8 

C4-5 ID 2 1/8 
C5-25 ID 4 1/8 

C4-7 ID 7 1/8 

 

• For three pieces of information 

                   𝐻(𝐴, 𝐵, 𝐶) = − (2 ∙
2

8
∙ log2

2

8
+ 4 ∙

1

8
∙ log2

1

8
) = 2.5 𝑏𝑖𝑡𝑠 

                   𝐻(𝐶|𝐵, 𝐴) = 𝐻(𝐴, 𝐵, 𝐶) − 𝐻(𝐴, 𝐵) = 2.5 − 1.75 = 0.75 𝑏𝑖𝑡𝑠 

• For four pieces of information 

                   𝐻(𝐴, 𝐵, 𝐶, 𝐷) = − (
2

8
∙ log2

2

8
+ 6 ∙

1

8
∙ log2

1

8
) = 2.75 𝑏𝑖𝑡𝑠 

                   𝐻(𝐷|𝐶, 𝐵, 𝐴) = 𝐻(𝐴, 𝐵, 𝐶, 𝐷) − 𝐻(𝐴, 𝐵, 𝐶) = 2.75 − 2.5 = 0.25 𝑏𝑖𝑡𝑠 

• For five pieces of information 

 

                   𝐻(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) = − (8 ∙
1

8
∙ log2

1

8
) = 3.0 𝑏𝑖𝑡𝑠 

                   𝐻(𝐸|𝐷, 𝐶, 𝐵, 𝐴) = 𝐻(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) − 𝐻(𝐴, 𝐵, 𝐶. 𝐷) = 3.0 − 2.75 = 0.25 𝑏𝑖𝑡𝑠 
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4) Resolved Uncertainty Rate 

The previous subsections discussed the methodologies for identifying individuals 

based on various pieces of information and quantifying the amounts of uncertainty. In 

this subsection, we focus on measuring the level of privacy risks, termed the resolved 

uncertainty rate, which is based on the concept of normalized entropy. Normalized 

entropy serves as a measure of privacy risk level. We have established that the total 

uncertainty in our context is 3 bits, representing the highest level of uncertainty. 

Normalized entropy is utilized to gauze the magnitude of entropy in a specific condition 

relative to this highest possible entropy, as indicated in references [16] and [17]. In our 

example, the resolved uncertainty rate for each process is calculated by dividing the 

entropy values by the highest of 3 bits. Table 4-6 shows the resolved uncertainty rate 

corresponding to the number of pieces of information gathered. 

 

Table 4-6. Resolved uncertainty rate by number of information 

Number of information Joint entropy (bits) Resolved uncertainty rate 

1 0.811 27% 

2 1.75 58% 

3 2.5 83% 

4 2.75 92% 

5 3.0 100% 
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By accumulating visit locations in the sequence of A-B-C-D-E, we achieved a 

100% resolved uncertainty rate. Assuming that a 90% resolved uncertainty rate poses 

significant privacy risks, it is evident that only four pieces of information are required to 

reach this threshold. However, it should be noted that trends in increasing resolved 

uncertainty rate will vary according to the specific data and its components. The 

following section explores diverse data scenarios and their impact on the resolved 

uncertainty rate.  

 

 

4.5 Experimental Design and Results 

4.5.1 Data Description and Experimental Design 

1) Data 

Our research employs synthetic data, which is structured around four subway 

stations in a city, each representing a distinct region. This synthetic data was created by 

considering real-world travel patterns of transit users derived from Smart card data. As a 

result, the synthetic data accurately reflects realistic travel behaviours and associated 

privacy risks. These regions are characterized by their unique land uses, which influence 

the travel patterns of visitors. Region A is an industrial complex with manufacturing 

plants, warehouses and other industrial facilities. Regions B and C are primarily 

residential areas, while region D is notable for its university and numerous companies, 

attracting a diverse mix of students, professionals, and visitors. A single camera is 

installed at ticket booths at each station to record individual visits, and the recorded video 

clips are stored. These recordings are made during two distinct time slots over three days: 

from 5 am to 2 pm (termed the first time slot) and from 2 pm to 11 pm (termed the second 
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time slot), over three days. Consequently, we have twenty-four distinct databases 

corresponding to the two-time slots across three days at four stations, as illustrated in Fig. 

4-3 and Table 4-7. 

 
Fig. 4-3 Conceptual diagram of the study area 

 

The travel patterns observed in the four regions vary according to the land uses. 

Fig. 4-4 illustrates these travel patterns, segmented by time slot and region. For instance, 

regions A and D exhibit typical business or industrial area travel patterns, with two peak 

demand periods. In region D, the majority of visitors arrive during the first time slot 

(before 2 pm) for work (48%), and depart in the second time slot (after 2 pm) to return to 

their homes (40%). Region A also displays similar travel patterns, with two peak periods 

of demand accounting for 37% and 30%, respectively. Conversely, regions B and C, 

which are residential areas, show a different pattern. Most visitors use the subway during 
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the first time slot to leave for their day’s activities and return to these regions in the 

evening.  

 

 
Fig. 4-4 Composition of recorded travel patterns by time slot and region 

 

2) Experimental Design 

Our study involves four different regions where video clips were recorded. We 

considered a hypothetical situation where an individual is reported missing at the end of 

the third day. In response, police officers were assigned to investigate this case, utilizing 

the recorded data to track the missing person. Due to the absence of facial recognition 

technology, the officers were required to review all the recordings manually. This task 

involves analyzing data from 24 separate databases to identify the individual. After an 

extensive investigation, the officers successfully recognized 212 transit users and their 

travel records across the 24 distinct databases. For the purpose of our research, we refer 

to these 24 databases as cubes, as described in Table 4-7.  
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Table 4-7. Cubes by region and time 

Region 

1st day 2nd day 3rd day 

Before  

2 pm 

After  

2 pm 

Before  

2 pm 

After  

2 pm 

Before  

2 pm 

After  

2 pm 

A Cube 1 Cube 2 Cube 9 Cube 10 Cube 17 Cube 18 

B Cube 3 Cube 4 Cube 11 Cube 12 Cube 19 Cube 20 

C Cube 5 Cube 6 Cube 13 Cube 14 Cube 21 Cube 22 

D Cube 7 Cube 8 Cube 15 Cube 16 Cube 23 Cube 24 

 

In our database, the travel records for all 212 transit users across the 24 cubes are 

recorded based on their visits. For each individual, a '1' is recorded if they visited a cube 

and a '0' if they did not. This binary method efficiently tracks each individual's visits to 

the cubes, providing a complete dataset for our analysis. As outlined in the methods of 

analysis section, this study conducted multiple analyses using the travel records of 212 

individuals across 24 cubes. The analyses consist of estimating total uncertainty, 

identifying individuals based on their visit conditions, calculating joint entropy and 

conditional entropy from the identification results, and estimating resolved uncertainty 

rates. 

The 24 cubes led to a vast number of combinations for providing information. For 

instance, if police officers need to review just one video clip, they can select from any of 

the 24 cubes. This selection process would be repeated 24 times, once for each cube to 

cover all cubes. With the two pieces of information, the number of potential 

combinations for cube data review increases. This is calculated as 24 choose 2 (24C2), 

resulting in 276 combinations, examples being Cube1-2, Cube 1-3, …, and Cube 23-24. 
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Considering 12 pieces of information out of 24 pieces, which was half of the entire piece, 

increases the number of combinations extremely. For example, combinations like Cube 

1-2-3-4-5-6-7-8-9-10-11-12 or Cube 12-13-14-15-16-17-18-19-20-21-22-23 are possible. 

Using the combinatorial formula for choosing 12 items from a set of 24 (denoted as 24 

choose 12 or 24C12), we find that the total number of these combinations reaches 

2,704,156. Therefore, when we sum up all possible combinations from 1 to 24 pieces of 

information ‒ 24C1 + 24C2 + 24C3 + …+ 24C23 + 24C24 ‒ the aggregate figure reaches 

approximately 16.7 million combinations.  

Given the extensive number of combinations, it is challenging to demonstrate the 

identification process with tables and figures like Table 4-3, Table 4-5 and Fig. 4-2. 

Accordingly, this section primarily focused on showing the results using the same 

methods from the previous section. These included the identification process, uncertainty 

quantification, joint entropy and conditional entropy through the more efficient approach, 

and the calculation of the resolved uncertainty rate.  

 

 

4.5.2 Amount of Total Uncertainty and Joint Entropy  

1) Total Uncertainty 

The first step in our analysis involved calculating the total uncertainty based on 

the number of individuals involved. We uniquely identified each of the 212 individuals 

by utilizing the travel records. In our view, uniquely identifying all 212 individuals is 

significant, as it presents the most hazardous privacy risks. The probability of uniquely 

identifying an individual is inversely proportional to the number of individuals. 

Therefore, in our case with 212 individuals, the most hazardous probability is calculated 
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as 
1

212
. Using this probability, we determined the total entropy with the formula 

−212 ×
1

212
× log2

1

212
, resulting in approximately 7.728 bits  

 

2) Joint Entropy and Resolved Uncertainty Rate by Information Piece 

Then, this study estimated the joint entropy to measure the fluctuation of privacy 

risks based on the number of information pieces from 1 to 24 cubes. Table 4-8 depicts 

these fluctuations of joint entropy corresponding to the number of information sources. 

As more information about visit locations was added, we observed that the joint entropy 

values approached 7.728 bits, equating to the total uncertainty. We found that even 

though we had the same number of information, the amount of uncertainty varied 

significantly. From the methods section, we assumed that 90% of the resolved uncertainty 

rate poses significant privacy risks. When analyzing the resolved uncertainty rate with the 

10 pieces of information, we found that certain combinations of cubes reached 

approximately 90%, while others showed only about 65%. Our findings indicate that, in 

terms of the minimum resolved uncertainty rate, at least 19 pieces of information were 

needed to reach the 90% threshold.  
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Table 4-8. Resolved uncertainty rate by number of information  

No of 

info 

Minimum 

uncertainty 

(entropy) 

Maximum 

uncertainty 

(entropy) 

Minimum resolved 

uncertainty rate 

Maximum 

resolved 

uncertainty rate 

1 0.804 0.986 10.4% 12.8% 

2 1.422 1.951 18.4% 25.3% 

3 1.873 2.862 24.2% 37.0% 

4 2.264 3.712 29.3% 48.0% 

5 2.605 4.506 33.7% 58.3% 

6 2.995 5.216 38.7% 67.5% 

7 3.772 5.780 48.8% 74.8% 

8 4.291 6.264 55.5% 81.1% 

9 4.594 6.609 59.4% 85.5% 

10 5.021 6.912 65.0% 89.4% 

11 5.299 7.133 68.6% 92.3% 

12 5.392 7.286 69.8% 94.3% 

13 5.674 7.390 73.4% 95.6% 

14 5.935 7.479 76.8% 96.8% 

15 6.206 7.545 80.3% 97.6% 

16 6.425 7.611 83.1% 98.5% 

17 6.645 7.662 86.0% 99.1% 

18 6.849 7.709 88.6% 99.8% 

19 7.108 7.718 92.0% 99.9% 

20 7.172 7.728 92.8% 100.0% 

21 7.327 7.728 94.8% 100.0% 

22 7.519 7.728 97.3% 100.0% 

23 7.690 7.728 99.5% 100.0% 

24 7.728 7.728 100.0% 100.0% 
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Additionally, Fig. 4-5 provides a more detailed view of the fluctuations in 

uncertainty across different numbers of information. In this figure, we employed a box 

plot to illustrate the variability in uncertainty amount for the same number of information 

pieces and to show the trend of approaching the total uncertainty. We want to clarify that 

while outliers in a box plot generally indicate extreme cases or potential data errors, in 

our study, these outliers represent unique user travel patterns rather than errors or extreme 

values. 

When analyzing scenarios with fewer pieces of information, we observed that the 

interquartile range of the box pots was relatively narrow, and outliers were limited in 

their spread. This can be linked to the limited diversity in the information available with a 

smaller number of information pieces. As the number of information pieces increases, 

reaching a peak at 12 ‒ where the diversity is maximum ‒ both the interquartile range and 

the outliers in the box plots expand noticeably. However, as we approach 24 pieces of 

information, the diversity begins to decrease. The enlargement of the interquartile range 

and outliers can be attributed to the increased diversity of travel patterns. As the number 

of information pieces increases, the entropy value eventually reaches the total uncertainty 

of 7.778 bits. This level of uncertainty is achieved regardless of the diversity in the data, 

indicating the point of highest privacy risk. The most hazardous privacy risk occurs when 

the entropy value equals the total uncertainty. Further analysis can expand on this 

observation by illustrating the trends between entropy and the number of reidentified 

individuals.  
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Fig. 4-5 Entropy fluctuation over the number of observations 

 

 

4.5.3 Anonymity Values and Entropy  

1) Anonymity Values  

This section explored the relationship between entropy and the anonymity value, a 

concept introduced in Chapter 3 regarding the privacy risks associated with COVID-19 

patient data. The anonymity value refers to the count of individuals sharing identical 

travel records corresponding to the visit conditions across the pieces of information. 

Table 4-9 indicates a part of the data, focusing on two pieces of information and visit 

conditions, which are defined as visited (yes) or not visited (no), along with the 

corresponding anonymity value, denoted as (n).  
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We note that even with an equal number of information pieces, there are 

noticeable variations in entropy and anonymity values across the visit conditions. For 

analytical purposes, this study grouped these varying anonymity values into six 

categories: n = 1, 1<n≤5, 5<n≤10, 10<n≤20, 20<n≤50, 50<n≤100, and 100<n≤212. 

Particularly, an anonymity value of n=1 indicates the re-identification of a single unique 

individual from the combinations of information. When only one individual’s data is 

distinguishable, it is considered the most hazardous regarding privacy. This situation 

completely contrasts with the principle of k-anonymity, where k represents the threshold 

number of individuals required in a dataset to obscure individual identities effectively. 

Under k-anonymity, each dataset should be indistinguishable from at least k-1 others, 

ensuring anonymity. Hence, when this threshold is markedly reduced to 1, as with n=1, 

the risk to privacy significantly increases, marking it as the most vulnerable scenario for 

individual re-identification. In this research, we assumed that the anonymity value of 

fewer than 10 individuals is dangerous because the small number of remaining 

individuals can be easily reidentified. 

 

Table 4-9. Example of the anonymity values under visit conditions with two pieces of 

information 

No of 

info 

Information 

combination 
Entropy Visit conditions 

Anonymity 

values 
Category 

2 Cube1 – Cube 10 1.677 No (0) – Yes (1) 29 20<n≤50 

2 Cube1 – Cube 10 1.677 Yes (1) – Yes (1) 41 20<n≤50 

2 Cube1 – Cube 10 1.677 No (0) – No (0) 118 100<n≤212 

2 Cube1 – Cube 10 1.677 Yes (1) – No (0) 24 20<n≤50 

2 Cube1 – Cube 11 1.823 No (0) – No (0) 78 50<n≤100 
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2 Cube1 – Cube 11 1.823 Yes (1) – No (0) 49 20<n≤50 

2 Cube1 – Cube 11 1.823 No (0) – Yes (1) 69 50<n≤100 

2 Cube1 – Cube 11 1.823 Yes (1) – Yes (1) 16 10<n≤20 

… 

2 Cube 22 – Cube 24 1.822 Yes (1) – No (0) 41 20<n≤50 

2 Cube 22 – Cube 24 1.822 No (0) – No (0) 90 50<n≤100 

2 Cube 22 – Cube 24 1.822 Yes (1) – Yes (1) 20 10<n≤20 

2 Cube 22 – Cube 24 1.822 No (0) – Yes (1) 61 50<n≤100 

2 Cube 23 – Cube 24 1.878 No (0) – No (0) 91 50<n≤100 

2 Cube 23 – Cube 24 1.878 Yes (1) – Yes (1) 49 20<n≤50 

2 Cube 23 – Cube 24 1.878 Yes (1) – No (0) 40 20<n≤50 

2 Cube 23 – Cube 24 1.878 No (0) – Yes (1) 32 20<n≤50 

2 Total 1104 

 

 

The previous analyses in subsection 4.5.2 demonstrated fluctuations in entropy 

and anonymity values across different numbers of information pieces. We discussed that 

using 10 pieces of information can reach 90% resolved uncertainty. For further analysis, 

this study analyzed the composition percentages by the anonymity values category across 

various numbers of information pieces.  

To estimate these percentages, we divided the count of each anonymity values 

category by the total number of anonymity values for each set of information pieces. 

More specifically, for the two pieces of information, the total number of anonymity 

values was 1104, categorized as follows: 5<n≤10 with 1 individual, 10<n≤20 with 173 
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individuals, 20<n≤50 with 347 individuals, 50<n≤100 with 534 individuals, and 

100<n≤212 with 49 individuals. The corresponding percentages were 0.1%, 15.7%, 

31.4%, 48.4% and 4.4% respectively.  

Fig. 4-6 describes the composition percentages of the anonymity value categories 

for 2 pieces of information to 24 pieces. As the number of information pieces increased, 

the percentage of the lower-risk anonymity values, such as 50<n≤100 and 100<n≤212, 

decreased and eventually vanished. On the other hand, the percentages for n≤10 

categories increased. Previously, we discussed that with 10 pieces of information, 90% of 

resolved uncertainty was first reached. Fig. 4-6 details this with the following 

composition: n=1 with 54%, 1<n≤5 with 41%, 5<n≤10 with 4%, and other categories 

contributing less than 1%. Accordingly, we found that approximately 99% of individuals 

faced significant privacy risks as they were reidentified in groups of less than 10 

individuals when considering 10 pieces of information. 

This approach allowed us to illustrate how different numbers of information 

pieces contribute to privacy risks using a united measurement of percentages. We believe 

that using composition percentages provides a more effective way to understand the 

impacts of varying numbers of information pieces on privacy risks compared to relying 

solely on varying anonymity values.  
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Fig. 4-6 Composition percentage of the anonymity values category 

 

2) Relationship Between Anonymity Values and Entropy  

Lastly, this study explored the relationship between the categories of anonymity 

values and entropy across varying numbers of information pieces. Fig. 4-7 displayed box 

plots that visualize this relationship, and the plot corresponding to two pieces of 

information is located in the upper left corner of Fig. 4-7 (a). Considering the median 

values in these box plots of the two information pieces, categories such as 50<n≤100, 

20<n≤50, and 10<n≤20 exhibited higher entropy values compared to other categories: 

5<n≤10 and 100<n≤212.  

When focusing on three information pieces, as shown in the upper right corner of 

Fig. 4-7 (a), the median entropy values for all categories tended to converge at around 2.7 

bits. Notably, the n=1 category, indicating the highest privacy risk, exhibited the highest 

entropy values. In contrast, the category with the least privacy risk, 100<n≤212, showed 

the lowest entropy values. A similar pattern was observed with seven and ten information 

pieces: the highest risk category, n=1, consistently showed the highest entropy values, 

while lower risk categories, such as 50<n≤100 or 100<n≤212, showed the lowest entropy 
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values. This pattern was consistent across information pieces from 3 to 24, indicating that 

higher privacy risks were associated with increased entropy values.  

Detailed box plots for each individual number of information pieces are included 

in Appendix B.  

 
(a) For numbers of information: 2, 3, 7, and 10 pieces 

 
(b) For numbers of information: 11, 17, 19, and 24 pieces 

Fig. 4-7 Box plots across the number of information pieces and anonymity values 
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4.5.4 Amount of Information Considering Order of Acquisition 

This subsection examines information quantity with a particular focus on the 

order of acquisition and the value of newly acquired information concerning the existing 

data set. As previously mentioned in Section 4.1, the value of information can 

significantly vary based on the circumstances and the sequence of its collection. This 

study aims to quantify the value of new information, considering how it integrates with 

and complements previously collected data. For instance, if information about Cube 11 is 

gathered fifth in a sequence, its value is influenced by the nature of the data collected in 

the preceding steps. If Cube 11’s information is distinct from the earlier data, it is 

considered more valuable due to its novelty. Conversely, if it largely overlaps with the 

existing data, the incremental value of Cube 11's information could be minimal.  

One of the key objectives of this study was to quantify the variation in the amount 

of newly added information. For this purpose, we analyzed patterns by calculating the 

fluctuation of conditional entropy, utilizing a more efficient method described in the 

methods of analysis section. By employing the conditional entropy method, we 

specifically focused on estimating the novel value of each new cube’s information, 

considering the extent of its overlap with previously obtained data. This approach 

enabled us to effectively quantify the amount of novel information for different 

sequences of information pieces.  

To achieve this, we focused on scenarios that involve acquiring 10 distinct pieces 

of cube information. As shown in Table 4-8, when considering 10 cube information 

pieces, the resolved uncertainty rate reached approximately 90% for the first time. Based 

on this, we selected 12 specific combinations of cube information acquisition from these 

scenarios. Table 4-10 presents these 12 combinations. For instance, the first combination, 
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termed Com1, consists of visiting cubes in the following sequence: Cube 1-2-4-7-11-12-

14-18-23-24. 

Table 4-10. Combinations of visiting cubes based on information acquisition order 

Acquisition  

order 

Combination 

Cube information acquisition order 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Com1 Cube 1 2 4 7 11 12 14 18 23 24 

Com2 1 2 4 7 11 12 16 18 23 24 

Com3 1 2 4 7 11 12 16 21 23 24 

Com4 1 2 4 7 11 12 16 22 23 24 

Com5 1 2 4 7 11 14 16 18 23 24 

Com6 1 3 4 8 11 12 14 18 23 24 

Com7 1 7 8 11 12 16 18 19 20 23 

Com8 1 7 8 11 12 16 18 20 21 23 

Com9 2 3 4 7 11 12 16 18 23 24 

Com10 2 4 5 7 11 12 16 18 23 24 

Com11 2 4 7 11 12 16 18 21 23 24 

Com12 3 4 7 8 9 11 12 18 23 
Cube 

24 
Colour highlights indicate the same information 

 

In our analysis, we employed colour highlights to group visiting cube 

information, facilitating the comparison of different combinations and their respective 

information acquisition patterns. Combinations 1, 2, 3, 4 and 5 (Com1 to Com5) 

displayed almost identical sequences. However, starting from the 6th piece of 

information, these combinations began to differ. For instance, in the 6th piece, 

Combination 5 (Com5) included information from Cube 14, whereas the other 

combinations used information from Cube 12. This difference resulted in different 

conditional entropy values between the 5th and 6th pieces. In Fig. 4-8 (a), Com5 had 
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0.643 bits, and the others had 0.729 bits, respectively. In this case, the value of the 6th 

piece of information, which involved Cube 12, was greater than that for Cube 14, given 

the previous sequence of Cubes 1-2-4-7-11.  

Moving to the 7th piece of information, Combination 1 (Com1) contained Cube 

14, while the other combinations chose Cube 16. This choice led to conditional entropy 

values of 0.549, 0.616 and 0.694 bits. Notably, Com5 recorded the highest conditional 

entropy for the 7th piece, in contrast to having the lowest value for the 6th piece. This 

observation suggests that the value of information is significantly influenced by the 

sequence in which it is acquired. The fluctuation in the amount of information continued 

through to the 10 pieces of information, with the joint entropy estimation eventually 

converging to approximately 6.8 bits. 

Similarly, in Fig. 4-8 (b), Combinations 7 and 8 exhibited almost identical 

patterns, with the only difference being in the 8th and 9th pieces of information. When 

analyzing the conditional entropy between the 7th and 8th pieces, which involved Cube 

19 and 20, respectively, we found it to be 0.546 bits for Cube 19 and 0.496 bits for Cube 

20. This indicated that the information amount from Cube 19 was slightly greater than 

that from Cube 20. Despite having the same 10th piece of information, Cube 23, the 

differences in the 8th and 9th pieces resulted in different conditional entropies for the 

10th piece, with both combinations converging to 6.9 bits.  

This analysis enabled us to quantify the amount of each piece of information by 

considering the different sequences in which they were acquired. Employing this method 

allows for understanding the novel amount of information each new cube adds. It 
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highlights how the sequence of information acquisition can significantly impact the 

overall value of the information.  

 

  
(a) For Combinations 1, 2, 3, 4, and 5 

 

  
(b) For Combinations 7 and 8 

Fig. 4-8 Joint and conditional entropy by information acquisition pattern 

 

 

 

4.7 Conclusion 

The value of information is inherently variable, influenced by the recipient’s 

interests, circumstances, and timing. Quantifying this value, particularly in terms of 

newly added pieces of information, presents notable challenges. Travel data contains 

many sensitive details. When these details are reidentified, they pose a significant risk to 
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privacy. Therefore, accurately measuring the levels of privacy risk in travel data is crucial 

to protect this valuable information. 

In this study, we investigated methods to quantify the amounts of a piece of 

information from travel data in relation to privacy risk. Initially, we conducted an 

identification process by adding pieces of information and uniquely identifying 212 

individuals based on various combinations of obtained information.  

We then applied joint entropy from information theory to quantify the amounts of 

information concerning the identification process. A key metric we introduced was the 

resolved uncertainty rate, which served as an indicator of privacy risk levels associated 

with the added information. Our findings revealed that with just 10 pieces of information, 

the resolved uncertainty rate reached a 90% level, indicating a significant privacy risk. 

These 10 pieces of information were less than half of the total 24 pieces. It is critical to 

note that certain combinations of these pieces can pose greater privacy risks, even when 

they make up less than 50% of the total information piece. While these results are 

specific to our dataset, privacy experts should be cautious in assuming that using only a 

small proportion of the total information pieces is safe. 

Furthermore, we introduced the concept of anonymity value to denote the count 

of individuals who have identical visit records in each travel information combination, 

highlighting the re-identification risk. It was observed that as more pieces of information 

were added, both the entropy values and privacy risks proportionally increased.  

Additionally, we employed the conditional entropy method to quantify the 

amount of each newly added piece of information. By analyzing how conditional entropy 

varied across different combinations of travel information, especially those with almost 
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identical records, we were able to discern the novel value each new piece of information 

brought to the dataset. 

Although this study introduced an information-theoretic approach to quantifying 

amounts of information from travel records, further developments are necessary. We 

utilized synthetic data that reflected real-world travel patterns across 24 travel 

combination cases to demonstrate our methodology. A broader and larger transportation-

related dataset, such as smart card and location-based service data, should be analyzed to 

expand our approach. Additionally, examining how the amount of information fluctuates 

across different user clusters can provide valuable insights into the relationship between 

individual travel patterns and associated privacy risks.  

Lastly, this dissertation did not consider certain people’s preferences regarding 

using non-digital or cash transactions to hide their travel records. The consideration of 

non-digital or cash transactions as a factor in privacy risk quantification certainly presents 

a significant area for future research. Many individuals prefer to use cash to maintain 

privacy in their movements, making this a critical variable in quantifying the risk. 

However, the primary goal of this dissertation was to establish foundational 

methodologies for quantifying privacy risks based on information theory. Therefore, 

exploring non-digital payment methods as a variable in privacy risk quantification is a 

promising direction for future research. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Research findings and contributions 

This dissertation has explored two principal areas: cybersecurity threats targeting 

AVs and privacy breach risks associated with data sets in relation to ITS. This section 

summarized the findings and conclusions in light of the research questions and objectives 

discussed in Chapter 1.  

 

5.1.1 Understanding A Novel Type of Malware Attack  

Our focus was on AVs' most vulnerable moments - during scanning for repairs 

and maintenance in mechanic shops. We modified the well-developed, mathematically-

based Susceptible-Infected (SI) epidemic model, drawing parallels with the malaria 

spreading model. By adopting this vector-host model, we introduced a novel approach to 

understanding malware propagation in the context of AV cybersecurity. 

Furthermore, we utilized the transportation gravity model to estimate the speed of 

the spread of malware. Due to the lack of real-world data on visits to mechanic shops, we 

employed the gravity model as an alternative approach. Our study enriched the gravity 

model by incorporating various factors, such as the probability of malware spread and 

vehicle owners’ preferences for certain mechanic shops.  

This comprehensive analysis contributes to a deeper understanding of novel 

malware propagation among AVs and builds a groundwork to prepare for future potential 

attacks through CAN-bus communication. 
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5.1.2 Exploring Privacy Issues Using Real-world Privacy Breach Case 

This dissertation examined privacy risks in mobility data, particularly focusing on 

the effects of language-based external observations from the COVID-19 patient travel 

logs. Our findings indicated a relationship between the number of travel observations, 

varying spatial/temporal resolutions, and the risk of re-identification. Another key finding 

of our research was that various visited locations can increase the likelihood of re-

identification. 

This research contributed to illuminating the significant impact of language-based 

external observations on privacy risks. Google Map reviews and social networking stories 

are prime examples of language-based observations. These observations include details 

about where and when events happen but also contain spatial and temporal resolutions, 

which can affect privacy risk levels. Research into these types of observations lays 

essential groundwork for developing strategies to protect data privacy, especially when 

data publication is necessary. 

 

5.1.3 Quantifying Privacy Risks Based on Information Theory 

In this part of the dissertation, we delve into our core research question: how can 

we quantify the amount of information related to privacy risks? We utilized 

methodologies based on information theory. We illustrated how resolved uncertainty 

values can mirror privacy risks and applied concepts of joint entropy and conditional 

entropy to quantify the amount of information from newly added pieces of information.  

The main contribution of this research is to reduce the research gap by developing 

an information theory-based methodology that quantifies the amount of information in 

transportation datasets. This approach highlights the importance of considering privacy 
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risks from the perspective of the entire dataset rather than solely from selected or filtered 

subsets, thereby offering a more comprehensive understanding of privacy research in the 

transportation data sector.  

 

 

 

5.2 Research Limitations and Future Plans 

Future research endeavours can expand upon our current insights and 

methodologies, addressing various aspects of cybersecurity and privacy risks in ITS.  

 

5.2.1 For Cybersecurity Research with Diverse Methods of Spreading Malware 

Our study primarily focused on malware propagation through physical contact 

between AVs and OBD-II scanners during maintenance and repair. However, it is crucial 

to consider both remote and direct attack methods, as they could lead to substantial 

damage regardless of their current prevalence. We hypothesized that Stuxnet malware 

could spread across all vehicle brands and models via universal communication through 

the CAN bus. Future research could explore different malware propagation rates, 

factoring in the varied usage of OBD-II scanners by vehicle model. 

Given the innovative nature of our research, we could not compare our findings 

with other models of malware propagation in AVs. The cybersecurity field for AVs is 

uncertain due to its unique environment. Future studies could compare propagation 

speeds and success rates of different attacks against various security measures in AVs. 

Additionally, incorporating real-world data from mechanic shop visits would provide a 

stronger foundation for this research.  
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5.2.2 For language-based external observation privacy research 

One limitation of our study stemmed from government policies. For instance, the 

Korean government, acknowledging potential privacy breaches, concealed sensitive 

personal data. This policy shift meant that our research was based on a comparatively 

smaller dataset, limiting our ability to review risks thoroughly over extended periods and 

across diverse travel patterns. 

Expanding this study to include privacy breach cases of COVID-19 patients from 

other countries could have provided a more comprehensive analysis. As the world 

transitions into the endemic phase of COVID-19, broadening our research scope to 

incorporate global data could yield valuable insights for academic research and practical 

data privacy protection.  

 

5.2.3 For Information Theory-based Quantifying Privacy Risks 

This dissertation utilized information theory-based methodologies to quantify 

information in transportation-related data, but there were some limitations. Our analysis 

used synthetic data modelled on real-world travel patterns. This approach was crucial in 

helping us understand how to measure the uncertainty resolution. However, employing 

larger and more diverse transportation-related datasets, such as extensive smart card big 

data, could provide deeper insights.  

In our study, we primarily focused on information about locations and times, 

which we represented as cubes. Future research could improve by clustering individuals 

based on their travel patterns. This method would provide a clearer understanding of how 

different travel behaviours relate to privacy risks.   
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5.2.4 For Inter-chapter Research Opportunities 

This dissertation explores two intertwined pillars within the realm of ITS: 

cybersecurity and privacy. These closely intertwined areas demonstrate that a cyber 

attack can lead to both substantial physical damages and privacy breaches, as recently 

witnessed in hospitals in Southern Ontario, Canada [1].  

Chapter 2 investigates malware propagation through infected OBD-II scanners 

and computers at mechanic shops. Chapter 3 presents real-world cases of privacy 

breaches and their impacts on the privacy risks associated with transportation smart card 

databases. Chapter 4 develops a methodology to quantify privacy risks from databases. 

The interconnected nature of these chapters underscores the potential for future research. 

Mechanic shops often hold sensitive customer information, including addresses, 

telephone numbers, and license plate numbers. In addition, vehicles equipped with 

embedded navigation systems and dash cameras add another layer of risk. These factors 

present a significant security concern. Hackers could potentially access and misuse 

customers’ travel records and personal conversations, linking them to criminal activities. 

Future research, therefore, can simultaneously address the intertwined concerns of 

cybersecurity and privacy in ITS, thus enhancing our understanding of these critical 

areas. 
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APPENDICES  

Appendix A. Travel Records for Chapter 4 

ID Cube1 Cube2 Cube3 Cube4 Cube5 Cube6 Cube7 Cube8 Cube9 Cube10 Cube11 Cube12 

ID1 0 0 0 0 0 0 0 0 1 1 0 0 

ID2 1 0 1 0 0 0 0 0 0 1 0 1 

ID3 0 0 0 0 1 0 1 0 0 0 0 0 

ID4 0 0 0 0 1 1 1 1 0 0 0 0 

ID5 0 0 1 1 0 0 1 1 0 0 1 0 

ID6 1 1 1 1 0 0 0 0 1 1 1 1 

ID7 0 0 0 0 1 1 1 1 0 0 0 0 

ID8 0 0 1 0 0 0 1 0 0 0 1 1 

ID9 1 1 0 0 0 0 1 1 1 1 0 0 

ID10 0 0 1 0 1 0 0 0 0 0 1 1 

ID11 0 1 0 0 0 0 0 1 1 0 0 0 

ID12 0 0 1 0 0 0 1 0 0 0 1 1 

ID13 0 0 1 1 1 1 0 0 0 0 1 0 

ID14 1 1 0 0 1 1 0 0 1 1 0 0 

ID15 0 0 0 0 0 0 0 0 0 0 1 1 

ID16 0 1 0 0 0 0 0 1 0 1 0 0 

ID17 0 0 1 0 1 0 0 0 0 0 1 1 

ID18 0 0 1 1 1 1 0 0 0 0 1 1 

ID19 1 0 0 0 0 0 1 0 1 0 0 0 

ID20 0 0 1 1 0 0 1 1 0 0 1 1 

ID21 0 1 0 1 0 0 0 0 1 1 1 1 

ID22 0 0 1 1 0 0 1 1 0 0 0 0 

ID23 0 0 1 1 1 1 0 0 0 0 1 1 

ID24 1 1 1 1 0 0 0 0 1 1 1 1 

ID25 0 0 1 1 1 1 0 0 0 0 1 0 

ID26 1 1 0 0 0 0 1 1 1 1 0 0 

ID27 0 0 1 1 0 0 1 1 0 0 0 0 

ID28 0 1 0 0 0 0 0 1 0 0 0 0 

ID29 1 0 0 0 0 0 1 0 1 1 0 0 

ID30 1 0 0 0 0 0 1 0 0 1 0 0 

ID31 0 1 0 0 0 1 0 0 1 1 0 0 

ID32 0 0 1 1 0 0 1 1 0 0 1 1 

ID33 0 0 1 1 0 0 1 0 0 0 1 1 

ID34 1 1 0 0 0 0 1 1 1 0 0 0 

ID35 0 0 1 0 1 0 0 0 0 0 1 0 

ID36 0 0 1 1 0 0 1 1 0 0 1 1 

ID37 0 0 0 0 1 1 1 1 0 0 0 0 

ID38 0 1 0 0 0 0 0 1 1 1 0 0 

ID39 0 0 1 0 1 1 0 1 0 0 0 0 

ID40 0 0 0 1 0 1 0 0 0 0 0 1 

ID41 0 0 1 1 1 1 0 0 0 0 1 1 

ID42 0 0 1 0 0 0 1 0 0 0 1 0 

ID43 0 0 1 0 0 0 1 0 0 0 1 1 

ID44 0 0 1 1 0 0 1 1 0 0 1 0 

ID45 0 1 0 0 0 0 0 1 1 0 0 0 

ID46 0 0 1 1 0 0 1 1 0 0 0 0 

ID47 1 1 0 0 0 0 1 1 1 0 0 0 

ID48 1 0 1 0 0 0 0 0 1 1 1 1 

ID49 1 1 0 0 1 1 0 0 1 1 0 0 

ID50 1 0 0 0 0 0 1 0 1 1 0 0 

ID51 1 0 0 0 0 0 1 0 1 0 0 1 

ID52 0 0 0 0 0 1 0 1 0 0 0 0 

ID53 0 0 0 1 0 0 0 1 0 0 1 1 
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ID Cube13 Cube14 Cube15 Cube16 Cube17 Cube18 Cube19 Cube20 Cube21 Cube22 Cube23 Cube24 

ID1 1 0 0 0 1 1 0 0 1 1 0 0 

ID2 0 0 0 0 1 1 1 1 0 0 0 0 

ID3 1 0 1 0 0 0 0 0 1 1 1 1 

ID4 1 1 1 1 0 0 0 0 1 1 1 1 

ID5 0 0 1 0 0 0 1 0 0 0 1 0 

ID6 0 0 0 0 1 0 1 0 0 0 0 0 

ID7 1 1 1 1 0 0 0 0 1 0 1 0 

ID8 0 0 1 1 0 0 1 0 0 0 1 0 

ID9 0 0 1 1 1 1 0 0 0 0 1 1 

ID10 1 1 0 0 0 0 1 0 1 0 0 0 

ID11 0 0 1 0 1 1 0 0 0 0 1 1 

ID12 0 0 1 1 0 0 0 0 0 0 0 0 

ID13 1 0 0 0 0 0 1 1 1 1 0 0 

ID14 1 1 0 0 1 1 0 0 1 1 0 0 

ID15 0 0 1 1 0 0 1 1 0 0 1 1 

ID16 0 0 0 1 0 1 0 0 0 0 0 1 

ID17 1 1 0 1 0 0 1 1 1 1 0 0 

ID18 1 1 0 0 0 0 1 1 1 1 0 0 

ID19 0 0 1 0 1 1 0 0 0 0 1 1 

ID20 0 0 1 1 0 0 1 0 0 0 1 0 

ID21 0 0 0 0 1 0 1 0 0 0 0 0 

ID22 0 0 0 0 0 0 1 1 0 0 1 1 

ID23 1 1 0 0 0 0 0 0 0 0 0 0 

ID24 0 0 0 0 1 1 1 1 0 0 0 0 

ID25 1 0 0 0 0 0 1 0 1 0 0 0 

ID26 0 0 1 1 1 0 0 0 0 0 1 0 

ID27 0 0 0 0 0 0 1 0 0 0 1 0 

ID28 0 0 0 0 0 1 0 0 0 0 0 1 

ID29 0 0 1 1 0 1 0 0 0 0 0 1 

ID30 0 0 0 1 1 1 0 0 0 0 1 1 

ID31 1 1 0 0 0 1 0 0 0 1 0 0 

ID32 0 0 0 1 0 0 1 1 0 0 1 1 

ID33 0 0 1 1 0 0 1 1 0 0 1 1 

ID34 0 0 1 0 1 1 0 0 0 0 1 1 

ID35 1 0 0 0 0 0 1 1 1 1 0 0 

ID36 0 0 1 1 0 0 1 1 0 0 1 1 

ID37 1 0 1 0 0 0 0 0 1 0 1 0 

ID38 0 0 1 1 1 1 0 0 0 0 1 1 

ID39 1 0 1 0 0 0 1 0 1 1 0 1 

ID40 0 1 0 0 0 0 1 1 1 1 0 0 

ID41 1 1 0 0 0 0 1 0 1 0 0 0 

ID42 0 0 1 0 0 1 1 0 0 0 1 1 

ID43 0 0 1 1 0 0 1 1 0 0 1 1 

ID44 0 0 1 0 0 0 0 0 0 0 0 0 

ID45 0 0 1 0 1 0 0 0 0 0 1 0 

ID46 0 0 0 0 0 0 0 1 0 0 0 1 

ID47 0 0 1 0 0 1 0 0 0 0 0 1 

ID48 0 0 0 0 1 0 1 0 0 0 0 0 

ID49 1 1 0 0 1 0 0 0 1 0 0 0 

ID50 0 0 1 1 1 0 0 0 0 0 1 0 

ID51 0 0 1 1 1 0 0 0 0 0 1 0 

ID52 1 1 1 1 0 0 0 0 0 1 0 1 

ID53 0 0 1 1 0 0 1 1 0 0 1 1 
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ID Cube1 Cube2 Cube3 Cube4 Cube5 Cube6 Cube7 Cube8 Cube9 Cube10 Cube11 Cube12 

ID54 0 0 1 0 1 0 0 0 0 0 1 1 

ID55 0 0 0 1 0 1 0 0 0 0 1 1 

ID56 1 0 1 0 0 0 0 0 1 1 1 1 

ID57 0 1 0 0 0 1 0 0 1 1 0 0 

ID58 0 0 0 0 0 0 0 0 1 1 0 0 

ID59 0 0 0 0 1 1 1 1 0 0 0 0 

ID60 0 0 0 0 0 0 0 0 1 1 0 0 

ID61 0 0 1 1 0 0 1 1 0 0 1 1 

ID62 0 0 0 0 0 0 0 0 1 1 0 0 

ID63 1 0 1 0 0 0 0 0 1 0 1 0 

ID64 0 1 1 0 1 1 0 0 0 0 1 0 

ID65 0 0 0 1 0 0 0 1 0 0 1 0 

ID66 1 1 0 0 1 1 0 0 1 1 0 1 

ID67 0 0 0 0 1 1 1 1 0 0 0 0 

ID68 1 1 0 0 1 1 0 0 1 0 0 0 

ID69 1 1 0 0 0 0 1 1 1 1 0 0 

ID70 0 1 0 0 0 0 0 1 1 1 0 0 

ID71 0 0 1 1 0 0 1 1 0 0 1 0 

ID72 0 0 1 0 1 0 0 0 0 0 1 0 

ID73 1 1 0 0 0 0 1 1 1 0 0 0 

ID74 0 0 0 0 0 0 0 0 0 0 1 1 

ID75 1 0 0 0 1 0 0 0 1 1 0 0 

ID76 0 0 0 1 0 0 1 1 0 0 0 1 

ID77 0 0 1 0 0 0 1 0 0 0 1 0 

ID78 1 1 1 1 0 0 0 0 1 1 1 0 

ID79 1 1 1 1 0 0 0 0 1 1 1 1 

ID80 0 0 1 1 1 1 0 0 0 0 0 0 

ID81 0 0 0 0 0 0 0 0 0 1 0 0 

ID82 0 0 0 1 0 0 0 1 0 0 0 1 

ID83 0 0 1 0 0 0 1 0 0 0 1 0 

ID84 0 0 0 0 0 0 0 0 0 0 0 0 

ID85 0 0 1 1 1 1 0 0 0 0 1 0 

ID86 0 0 0 0 1 1 1 1 0 0 0 0 

ID87 0 0 0 0 0 1 0 1 0 0 0 0 

ID88 0 0 0 0 1 0 1 0 0 0 0 0 

ID89 0 0 0 1 0 0 0 1 0 0 1 1 

ID90 0 0 0 0 0 0 0 0 1 0 1 0 

ID91 0 0 0 0 0 0 0 0 0 0 1 1 

ID92 1 0 0 1 0 0 1 1 0 0 1 1 

ID93 0 0 1 0 0 0 1 0 0 0 1 1 

ID94 1 1 0 0 0 0 0 1 1 1 0 1 

ID95 0 0 0 0 1 1 1 1 0 0 0 0 

ID96 0 0 1 0 0 0 1 0 0 0 1 0 

ID97 0 0 1 0 0 0 1 0 0 0 1 0 

ID98 0 0 0 1 0 0 0 1 0 0 1 0 

ID99 1 1 0 0 0 0 1 1 0 1 0 0 

ID100 0 0 1 1 0 0 1 1 0 0 0 1 

ID101 1 1 0 0 0 0 1 1 0 0 0 0 

ID102 0 0 0 0 1 0 1 0 0 0 0 0 

ID103 0 0 0 1 1 0 1 1 0 0 0 1 

ID104 0 0 1 1 1 1 0 0 0 0 1 1 

ID105 1 1 0 0 1 1 0 0 0 1 0 0 

ID106 0 0 1 1 0 0 1 1 0 0 1 1 
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ID Cube13 Cube14 Cube15 Cube16 Cube17 Cube18 Cube19 Cube20 Cube21 Cube22 Cube23 Cube24 

ID54 1 1 0 0 0 0 1 1 1 1 0 0 

ID55 1 1 0 0 0 0 1 1 1 1 0 0 

ID56 0 0 0 0 1 1 1 1 0 0 0 0 

ID57 1 1 0 0 1 1 0 0 1 1 0 0 

ID58 0 0 1 1 1 1 0 0 0 0 0 1 

ID59 1 0 1 0 0 0 0 0 1 1 1 1 

ID60 0 0 1 1 1 1 0 0 0 0 1 1 

ID61 0 0 1 1 0 0 0 0 0 0 0 0 

ID62 1 1 0 0 1 1 0 0 1 1 0 0 

ID63 0 0 0 0 1 1 1 1 0 0 0 0 

ID64 1 0 0 0 0 1 0 0 0 1 0 0 

ID65 0 0 1 0 0 0 1 0 0 0 1 0 

ID66 1 1 0 0 0 1 1 0 1 1 0 0 

ID67 1 0 1 0 0 1 0 0 1 1 1 0 

ID68 1 0 0 0 1 0 0 0 1 0 0 0 

ID69 0 0 1 1 0 1 0 0 0 0 0 1 

ID70 0 0 1 1 1 0 0 0 0 0 1 0 

ID71 0 0 1 0 0 0 1 1 0 0 1 1 

ID72 1 0 0 0 0 0 1 1 1 0 0 0 

ID73 0 0 1 0 1 0 0 0 0 0 1 0 

ID74 1 1 0 0 0 0 1 1 1 1 0 0 

ID75 1 1 0 0 1 1 0 0 1 1 0 0 

ID76 0 0 1 1 0 0 0 1 0 0 1 1 

ID77 0 0 1 0 0 0 1 0 0 0 1 0 

ID78 0 1 0 0 1 0 1 0 0 0 0 0 

ID79 0 0 0 0 1 1 1 0 0 0 0 1 

ID80 0 0 0 0 0 0 1 1 1 1 0 0 

ID81 0 0 0 1 0 1 0 0 0 0 0 1 

ID82 0 0 0 1 0 0 1 1 0 0 1 1 

ID83 0 0 1 0 0 0 1 1 0 0 1 1 

ID84 1 1 1 1 0 0 0 0 1 1 1 1 

ID85 1 0 0 0 1 0 1 0 1 0 0 0 

ID86 1 0 1 0 0 0 0 0 0 1 0 1 

ID87 1 1 1 1 0 0 0 0 1 1 1 1 

ID88 1 1 1 1 0 0 0 0 0 1 0 1 

ID89 0 0 1 1 0 0 1 0 0 0 1 0 

ID90 0 0 0 0 1 1 1 1 0 0 0 0 

ID91 0 0 1 1 0 0 1 1 0 0 1 0 

ID92 0 0 1 1 0 0 1 1 0 0 1 1 

ID93 0 0 1 1 0 0 0 1 0 0 0 1 

ID94 0 0 1 1 1 1 0 0 0 0 0 1 

ID95 1 1 1 1 0 0 0 0 0 0 0 0 

ID96 0 0 1 0 0 1 1 1 0 0 1 1 

ID97 0 1 1 1 0 0 1 1 0 0 1 1 

ID98 0 0 1 0 0 0 1 1 0 0 1 1 

ID99 0 0 0 1 0 1 0 0 0 0 0 1 

ID100 0 0 0 1 0 0 1 1 0 0 1 1 

ID101 0 0 0 0 1 1 0 0 0 0 1 1 

ID102 1 1 1 1 0 0 0 0 1 1 1 1 

ID103 1 0 1 1 0 0 1 0 1 0 1 0 

ID104 1 1 0 0 0 0 0 1 0 1 0 0 

ID105 0 1 0 0 0 1 0 0 0 1 0 0 

ID106 0 0 1 1 0 0 0 1 0 0 0 1 
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ID Cube1 Cube2 Cube3 Cube4 Cube5 Cube6 Cube7 Cube8 Cube9 Cube10 Cube11 Cube12 

ID107 1 1 0 0 1 1 0 0 1 1 0 0 

ID108 1 1 0 0 0 0 1 1 0 1 0 0 

ID109 0 0 1 1 0 0 1 1 0 0 1 0 

ID110 1 1 0 0 1 1 0 0 1 1 0 0 

ID111 0 0 1 1 1 1 0 0 0 0 1 1 

ID112 1 1 0 0 0 0 0 1 1 1 0 0 

ID113 0 1 0 1 0 0 0 0 0 1 0 1 

ID114 1 1 1 1 0 0 0 0 1 1 1 1 

ID115 1 1 1 1 0 0 0 0 1 0 1 0 

ID116 0 0 0 0 1 0 1 0 0 0 0 1 

ID117 1 0 0 0 0 0 1 0 1 1 0 0 

ID118 1 0 0 0 0 0 1 0 1 0 0 0 

ID119 1 0 0 0 1 0 0 0 1 0 0 0 

ID120 0 0 1 0 0 0 1 0 0 0 0 1 

ID121 1 0 0 0 1 0 0 0 0 1 0 0 

ID122 0 0 0 0 0 0 0 0 1 1 1 1 

ID123 0 0 0 0 0 0 0 0 0 0 1 1 

ID124 0 0 0 1 0 0 0 1 0 0 1 1 

ID125 1 1 0 0 0 0 1 1 1 1 0 0 

ID126 0 1 0 1 0 0 0 0 0 1 0 1 

ID127 0 0 1 1 1 1 0 0 0 0 0 1 

ID128 1 0 1 0 0 0 0 0 1 1 0 0 

ID129 0 1 1 0 0 0 1 1 1 1 0 0 

ID130 0 0 1 0 0 0 0 1 0 0 1 1 

ID131 0 1 0 0 0 0 0 1 0 1 0 0 

ID132 0 0 0 0 0 0 0 0 1 1 1 0 

ID133 1 1 1 1 0 0 0 0 0 1 0 1 

ID134 0 0 0 0 0 0 0 0 0 0 0 0 

ID135 0 0 1 1 0 0 1 1 0 0 0 1 

ID136 1 0 0 0 1 0 0 0 1 1 0 0 

ID137 0 0 1 0 0 0 1 0 0 0 1 1 

ID138 0 0 0 1 1 0 1 1 0 0 0 1 

ID139 0 0 1 1 0 0 1 1 0 0 1 1 

ID140 1 0 0 0 0 0 1 0 1 1 0 0 

ID141 0 0 1 1 0 0 1 1 0 0 0 0 

ID142 0 0 1 0 0 0 1 0 0 0 0 1 

ID143 1 1 1 1 0 0 0 0 0 0 0 0 

ID144 0 0 1 0 0 0 1 0 0 0 0 0 

ID145 1 1 0 1 1 0 0 0 1 1 0 1 

ID146 0 0 0 0 0 0 0 0 0 0 1 0 

ID147 1 0 0 0 0 0 1 0 1 0 0 0 

ID148 1 1 1 1 0 0 0 0 0 1 0 1 

ID149 0 1 0 0 0 1 0 0 1 0 0 0 

ID150 0 0 0 0 1 1 1 1 0 0 0 0 

ID151 0 0 1 1 0 0 1 1 0 0 1 0 

ID152 1 1 1 1 0 0 0 0 1 0 1 0 

ID153 1 1 0 1 1 1 0 0 1 1 0 0 

ID154 1 1 1 0 0 0 0 1 1 0 1 0 

ID155 1 1 0 0 1 1 0 0 1 1 0 1 

ID156 1 0 0 0 0 0 1 0 1 0 0 0 

ID157 0 0 1 1 1 1 0 0 0 0 0 1 

ID158 0 0 1 1 1 1 0 0 0 0 1 0 

ID159 0 1 0 1 0 0 0 0 1 1 1 1 
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ID Cube13 Cube14 Cube15 Cube16 Cube17 Cube18 Cube19 Cube20 Cube21 Cube22 Cube23 Cube24 

ID107 1 1 0 0 0 0 0 0 0 0 0 0 

ID108 0 0 0 1 1 1 0 0 0 0 1 1 

ID109 0 0 1 0 0 0 0 1 0 0 0 1 

ID110 1 0 0 0 1 1 0 0 1 1 0 0 

ID111 1 1 0 0 0 0 1 1 1 1 1 0 

ID112 0 0 1 1 0 1 0 0 0 0 0 1 

ID113 0 0 0 0 0 1 0 1 0 0 0 0 

ID114 0 0 0 0 0 0 0 0 0 0 0 0 

ID115 0 0 0 0 1 0 1 0 0 0 0 0 

ID116 1 1 1 0 0 0 0 0 1 1 1 1 

ID117 0 0 1 1 1 0 0 1 0 0 1 1 

ID118 0 0 1 0 1 0 0 0 0 0 1 0 

ID119 1 0 0 0 1 0 0 0 1 0 0 0 

ID120 1 0 1 1 0 0 1 0 0 0 1 0 

ID121 0 1 0 0 1 1 0 0 1 1 0 0 

ID122 0 0 0 0 1 1 1 1 0 0 0 0 

ID123 0 0 1 1 0 0 1 0 0 0 1 0 

ID124 0 0 1 1 0 0 0 1 0 0 0 1 

ID125 0 0 1 1 0 0 0 0 0 0 0 0 

ID126 0 0 0 0 0 0 0 0 0 0 0 0 

ID127 0 1 0 1 0 0 1 1 1 1 0 0 

ID128 0 0 1 1 1 0 1 0 0 0 0 0 

ID129 0 0 1 1 0 0 1 0 0 0 1 0 

ID130 0 0 1 1 0 0 1 0 0 0 1 0 

ID131 0 0 0 1 1 0 0 0 0 0 1 0 

ID132 0 0 1 1 1 0 0 0 0 0 1 0 

ID133 0 0 0 0 1 0 1 0 0 0 0 0 

ID134 1 0 1 0 0 0 0 0 1 0 1 0 

ID135 0 0 0 1 0 0 1 0 0 0 1 0 

ID136 1 1 0 0 1 0 0 0 1 0 0 0 

ID137 0 0 0 1 0 0 1 0 0 0 1 0 

ID138 0 0 0 1 0 0 0 0 0 0 0 0 

ID139 0 0 1 1 0 0 1 0 0 0 0 1 

ID140 0 0 1 1 1 1 0 0 0 0 1 1 

ID141 0 0 0 0 0 0 0 1 0 0 1 1 

ID142 0 0 0 1 0 0 1 1 0 0 1 1 

ID143 0 0 0 0 1 1 1 1 0 0 0 0 

ID144 0 0 0 0 0 0 1 0 0 0 1 0 

ID145 1 0 0 0 1 1 0 1 1 0 0 0 

ID146 0 0 1 0 0 0 1 0 0 0 1 0 

ID147 0 0 1 0 0 0 0 0 0 0 0 0 

ID148 0 0 0 0 1 1 1 1 0 0 0 0 

ID149 1 0 0 0 1 1 0 0 1 1 0 0 

ID150 0 0 0 0 0 0 0 0 1 1 1 1 

ID151 0 1 1 1 0 0 1 0 0 1 1 1 

ID152 0 0 0 0 0 1 0 1 0 0 0 0 

ID153 1 1 0 0 1 1 0 0 1 1 0 0 

ID154 0 0 0 0 0 1 0 1 0 0 0 0 

ID155 1 0 0 0 1 0 0 0 1 0 0 0 

ID156 0 0 1 0 1 1 0 0 0 0 1 0 

ID157 0 1 0 0 0 0 0 1 0 1 0 0 

ID158 1 0 0 0 0 0 0 0 0 0 0 0 

ID159 0 0 0 0 1 1 1 1 0 0 0 0 
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ID Cube1 Cube2 Cube3 Cube4 Cube5 Cube6 Cube7 Cube8 Cube9 Cube10 Cube11 Cube12 

ID160 0 0 1 0 1 0 0 0 0 0 0 1 

ID161 1 0 0 0 1 1 0 1 0 0 0 0 

ID162 0 0 0 1 1 0 1 1 0 0 1 0 

ID163 0 0 1 1 1 1 0 0 0 0 1 0 

ID164 0 1 0 1 0 0 0 0 0 0 1 1 

ID165 0 1 0 1 0 0 0 0 1 1 1 1 

ID166 1 0 0 1 0 0 1 1 0 0 1 0 

ID167 0 0 0 0 0 1 0 1 0 0 1 0 

ID168 0 0 1 1 0 0 1 1 0 0 0 1 

ID169 0 0 0 0 1 0 1 0 0 0 0 0 

ID170 0 1 0 0 0 1 0 0 1 1 0 0 

ID171 0 0 1 1 0 0 1 1 0 0 0 1 

ID172 0 0 0 1 0 1 0 0 0 0 1 1 

ID173 0 0 0 0 1 1 1 1 0 0 0 0 

ID174 1 1 0 0 1 1 0 0 0 0 0 0 

ID175 1 1 1 1 0 0 0 0 1 0 1 0 

ID176 1 1 0 0 1 1 0 0 1 1 0 0 

ID177 0 1 0 1 0 1 0 0 0 0 0 0 

ID178 0 0 0 1 1 1 1 0 0 0 0 1 

ID179 0 0 0 0 0 0 0 0 1 1 1 0 

ID180 0 0 1 1 1 1 0 1 0 0 1 1 

ID181 0 1 1 0 1 1 0 0 1 1 0 0 

ID182 0 0 0 1 0 0 0 1 0 0 0 0 

ID183 0 0 1 0 0 0 1 0 0 0 0 1 

ID184 0 0 0 0 1 0 1 0 0 0 0 0 

ID185 0 0 0 0 0 0 0 0 0 0 0 0 

ID186 0 0 0 1 0 0 0 1 0 0 0 1 

ID187 1 1 1 1 0 0 0 0 1 1 1 1 

ID188 0 1 0 1 0 0 0 0 0 0 0 0 

ID189 0 0 0 0 0 1 0 1 0 0 0 0 

ID190 0 0 0 0 0 0 0 0 0 1 0 0 

ID191 0 1 0 0 0 0 0 1 0 1 0 0 

ID192 0 0 0 0 0 0 0 0 1 1 0 0 

ID193 1 1 0 0 1 1 0 0 0 1 0 0 

ID194 0 0 0 0 1 1 1 1 0 0 0 0 

ID195 0 0 1 1 0 0 0 1 0 0 1 1 

ID196 1 1 0 0 1 1 0 0 1 0 0 0 

ID197 0 1 0 0 1 1 1 0 0 1 0 0 

ID198 1 0 0 1 1 1 0 0 1 0 0 0 

ID199 0 0 0 1 0 0 0 1 0 0 0 1 

ID200 0 1 1 0 0 0 1 1 0 1 1 0 

ID201 0 1 0 0 0 1 0 0 0 1 0 0 

ID202 0 1 0 1 0 0 0 0 1 1 0 1 

ID203 1 0 0 0 0 0 1 0 0 0 0 0 

ID204 1 1 0 0 1 1 0 0 1 1 0 1 

ID205 0 0 1 1 0 0 1 1 0 0 1 1 

ID206 0 1 1 1 1 0 0 0 0 0 1 0 

ID207 0 1 1 0 0 0 1 1 0 0 1 1 

ID208 0 0 0 0 0 0 0 0 0 0 0 1 

ID209 0 0 0 0 1 1 1 1 0 0 0 1 

ID210 1 1 1 1 0 0 0 0 1 1 1 1 

ID211 0 0 0 0 1 0 1 0 0 0 1 0 

ID212 0 1 0 1 0 0 0 0 0 0 1 0 
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ID Cube13 Cube14 Cube15 Cube16 Cube17 Cube18 Cube19 Cube20 Cube21 Cube22 Cube23 Cube24 

ID160 0 1 0 0 1 0 1 0 1 0 0 0 

ID161 1 0 1 0 0 1 0 0 1 1 1 0 

ID162 0 0 1 0 0 0 0 1 1 0 1 1 

ID163 1 0 0 0 0 0 0 1 0 1 0 0 

ID164 0 0 1 1 0 0 0 1 0 0 0 1 

ID165 0 0 0 0 0 1 0 1 0 0 0 0 

ID166 0 0 1 0 0 0 1 1 0 0 1 1 

ID167 1 1 0 1 0 0 1 0 1 1 0 1 

ID168 0 0 0 1 0 0 0 1 0 0 0 1 

ID169 1 1 1 1 0 0 0 0 1 0 1 0 

ID170 1 1 0 0 1 0 0 0 1 0 0 0 

ID171 0 0 0 1 0 0 0 0 0 0 0 0 

ID172 1 1 0 0 0 0 0 1 0 1 0 0 

ID173 0 1 0 1 0 0 0 0 1 1 1 1 

ID174 0 0 0 0 1 1 0 0 1 1 0 0 

ID175 0 0 0 0 1 1 1 1 0 0 0 0 

ID176 1 1 0 0 0 1 0 0 0 1 0 0 

ID177 0 0 0 0 0 1 0 0 0 1 0 0 

ID178 0 1 0 0 0 0 0 1 0 1 0 0 

ID179 0 0 0 1 0 1 0 0 0 0 0 1 

ID180 1 1 0 1 0 0 1 0 1 1 0 1 

ID181 1 1 0 0 1 1 0 0 1 1 0 0 

ID182 0 0 0 0 0 0 0 1 0 0 0 1 

ID183 0 0 0 1 0 0 0 1 0 0 0 1 

ID184 0 1 0 1 0 0 0 0 1 1 1 1 

ID185 0 0 0 0 0 0 1 1 0 0 1 1 

ID186 0 0 0 1 0 0 0 1 0 0 0 1 

ID187 0 0 0 0 1 1 1 1 0 0 0 1 

ID188 0 0 0 0 1 1 1 0 0 0 0 1 

ID189 1 0 1 0 0 0 0 0 1 1 1 1 

ID190 0 0 0 1 1 1 0 0 0 0 1 1 

ID191 0 0 0 1 0 0 0 0 0 0 0 0 

ID192 0 0 1 1 1 0 0 0 0 0 1 0 

ID193 0 1 0 0 1 1 0 0 1 1 0 0 

ID194 0 1 0 1 0 0 0 0 1 0 1 0 

ID195 0 0 1 1 0 0 0 0 0 0 0 0 

ID196 1 0 0 0 1 1 0 0 1 1 0 0 

ID197 1 1 1 0 0 1 0 0 1 1 1 0 

ID198 1 0 0 0 1 1 0 0 1 1 0 0 

ID199 0 0 0 1 0 0 0 0 0 0 0 0 

ID200 0 0 1 1 0 0 0 0 0 0 0 0 

ID201 0 1 0 0 1 1 0 0 1 1 0 0 

ID202 0 0 0 0 0 1 0 1 0 0 0 0 

ID203 0 0 0 0 1 0 0 0 0 0 1 0 

ID204 1 0 0 0 1 1 0 0 1 1 0 0 

ID205 0 0 1 1 0 0 1 1 0 0 1 0 

ID206 1 0 0 0 0 0 1 0 1 0 0 0 

ID207 0 0 1 1 0 1 1 0 0 0 1 1 

ID208 0 0 0 1 0 0 0 1 0 0 0 1 

ID209 0 0 0 1 0 0 0 0 1 1 1 1 

ID210 0 0 0 0 0 1 0 1 0 0 0 0 

ID211 0 0 1 0 0 0 0 0 1 1 1 1 

ID212 0 0 1 0 0 0 1 0 0 0 1 0 
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Appendix B. Box Plots of Entropy and Number of Information for Chapter 4 
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