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ABSTRACT 

Cucumbers constitute a significant portion of greenhouse vegetables cultivated in 

southern Ontario. The human labour shortage and potential injuries associated with 

manual labour in cucumber harvesting highlight the need to explore automation as 

a viable solution. The proposed automated system in this study comprises two key 

components: an image processing unit and a cutting robotic arm. The image 

processing phase involves the identification of cucumbers using six models using 

shape and colour features. Four models are successfully employed in YOLOv8, 

yielding results in the form of bounding boxes and keypoints, with no false positives. 

Near-real-time cucumber detection is also achieved using YOLO. One model has 

been successfully tested in RoboFlow. Finally, one new model is being initially 

investigated for the direct management of raw RGB-XYZ data in Python. About 

harvesting unit, a robotic arm equipped with a cutting tool is programmed to move 

to specific positions and perform cutting tasks. To enable this functionality, a 3D 

camera and cutter are integrated into the TCP of a UR3e robot. The 3D camera 

installed on TCP of the robot can move at angles and positions to capture cucumbers 

hidden from view. Additionally, analyses of cucumber geometry and force are 

carried out to improve the understanding of cucumber properties. Finally, initial cost 

and OEE analyses are conducted to assess the potential improvement resulting from 

transitioning from manual harvesting to automation. 

Keywords: Image Detection; YOLO; Robotic Arm; Shape and Colour Features; 

Cucumber Characteristics; Force Analysis; Geometry Analysis; 3D Camera. 
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NOMENCLATURE 

 

3D camera A camera gives XYZ-RGB data of each pixel 

3D printing Material deposition layer by layer in 3 axises. 

Additive manufacturing 

3D shape data x, y, z data 

Annotation Adding labels or mark to images 

Augmentation Adding various transformations, such as rotation and 

scaling to an image  

Bounding box A rectangle drawn around a target object  

Classification Assign categories to different images 

Collaborative robot Robots that work human 

Colour threshold Setting and filtering special pixels to isolate a target 

CVAT Computer Vision Annotation Tool for annotating 

images 

Depth data Data related to the distance of camera to a pixel (z) 

Edge detection Finding the edges or borders of an object 

Feature extraction Finding special patterns in an image 

Fiji An open access software for image processing 

HSV  Hue, Saturation, Value 

Image preprocessing Some step done on a raw image before doing more 

processes 

IMU Inertial Measurement Unit 

Intel RealSense Calibration 

Print Target 

A page with special grid sizes that should be printed 

for camera calibration. It is provided by Intel 

Intel's Dynamic Calibrator 

software  

A software developed by Intel for 3D camera 

calibration 

Keypoints Some points by which a pose will be detected 

Peak tolerable force  Maximum force that cucumber can tolerate before 

bruising 

Pressure sensors Sensors that convert mechanical stimuli into electrical 

pulses. 

R-CNN  Region-based Convolutional Neural Network  

RGB parameters Red, Green, Blue values of a pixel 

RoboFlow A platform for object detection 

RPN Region Proposal Network 

Segmentation Defining an image to different meaningful regions 

SSD Single Shot Multibox Detector 

Super pixel blocks Mixing some pixels together 

TBD To Be Determined 

TCP Tool Center Point 
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Teach pendant A displaying device for manually control a robot 

motion 

UR3e robot Universal Robots 3e 

WIDACS Wireless Data ACquisition System 

YOLO You Only Look Once; a pretrained object detection 

algorithm 

YOLOL YOLO Large model 

YOLON YOLO Nano model 

YOLOX YOLO X-large model 
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1. INTRODUCTION 

Cucumbers are extensively grown and economically significant crops utilized in both fresh 

consumption and various food preparations. The cultivation process commonly involves a 

three-crop system per year, although variations exist with some smaller greenhouses 

adopting a two-crop system and larger ones employing a four-crop approach. Typically, 

cucumber plants begin producing cucumbers within 2-3 weeks after transplantation and 

continue to yield for a period ranging from 60 to 150 days [1]. 

The manual method of cucumber harvesting is labour-intensive, inconsistent, physically 

damaging on pickers, and time-consuming. The study explores automated harvesting as a 

substitute, aiming to address labour shortages and health concerns. 

This chapter outlines greenhouse statistics in Ontario and Canada, the difference between 

automation and manual harvesting, the functional requirements for automating greenhouse 

harvesting and identifies the problem space, focusing on replicating manual cucumber 

harvesting using robotics. The study aims to design a semi-functional automated cucumber 

harvester, incorporating cucumber detection through image processing and harvesting with 

a robotic arm. Specific goals include detecting cucumbers, executing cutting arm 

trajectories, and collecting data for future modeling. 

1.1.Greenhouse Statistics in Ontario 

Windsor Essex boasts one of the highest greenhouse densities globally, second only to the 

Netherlands. Canada stands as the fourth-largest cucumber exporter in the world. Figure 1-

1.a illustrates the distribution of greenhouse produce in Canada for the year 2021. Given 

that cucumbers represent a significant greenhouse crop, they constitute the primary focus 

of this study [2]. Approximately 70 growers in Southern Ontario collectively yield an 

annual cucumber production of 400 million pounds. Figure 1-1.b indicates that 71% of all 

greenhouses in Canada are situated in Ontario. Examining Figures 1-1.c and 1-1.d, the 

2021 statistics reveal that cucumber cultivation accounts for 237,000 metric tons, with 

Ontario contributing 321 greenhouses out of a total of 892 across Canada. Interestingly, 

despite housing only 36% of the total number of greenhouses, Ontario manages to produce 

71% of the greenhouse products, underscoring either the presence of larger greenhouses or 
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more fertile soil in the province. Furthermore, the farm gate value of greenhouse vegetables 

for 2021 by province are depicted in Figures 1-1.e and 1-1.f. Ontario emerges as the leader 

in this regard, with cucumbers ranking second only to peppers, as indicated in Figure 1-

1.g. Notably, labour costs account for a significant portion, with 29% of total expenses 

allocated to human labour. This translates to an expenditure of CAD 27 million for manual 

labour associated with cucumber harvesting. 

 

 
a. Greenhouse distribution by harvested area 

in Canada 

 

 
b. Provincial greenhouse distribution by harvested area 

in Canada 

 

 
c. Distribution of greenhouse production volumes (in 

metric tons) in Canada 

 

 
d. Distribution of commercial greenhouses in Canada 

(total 892 greenhouses) 
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e. Provincial farm gate value of greenhouse vegetables 
(in thousands of CAD), calculated as the market value 

minus selling costs 

 
 
 

f. Farm gate value of greenhouse vegetables, measured 
in thousands of CAD, categorized by each commodity 

 

 

 
g. Expenses distribution 

 
Figure 1-1. 2021 statistics on Canadian greenhouses [1-2] 

1.2.Traditional manual greenhouse harvesting 

The practice of manually harvesting cucumbers is referred to as the traditional method of 

cucumber harvesting. When any form of automation, from planting to harvesting and 

sorting, is employed in farming operations, it is considered non-traditional cucumber 

farming. Traditional cucumber cultivation comes with certain drawbacks, which are 

outlined below. 
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Harvesting heavily depends on human labour. All farming stages are manual and carried 

out by workers. In 2021, approximately 5,000 workers are employed in Canadian cucumber 

greenhouses, encompassing both permanent and seasonal labour. Particularly during the 

COVID-19 pandemic, labour shortages posed challenges for greenhouse operations.  

Processes in traditional greenhouses are not consistently executed. The quality, speed, and 

efficiency of harvesting heavily rely on the workers' skills, physical strength, and pace. 

This reliance on human factors introduces inconsistency into the process, leading to 

unpredictable outcomes. Harvesting quality can vary from season to season and among 

different farms. Furthermore, the inconsistency in harvesting quality also increases the 

likelihood of cucumbers being damaged, with the extent of damage depending on each 

worker. 

Traditional harvesting can cause harm to workers. It requires specific body postures that 

are not in line with normal body alignment, resulting in potential damage to their wrists, 

necks, backs, and hands [3]. 

Under standard conditions, it is assumed that each worker can harvest approximately 80-

100 small cucumbers per hour. However, factors such as the presence of cucumbers on all 

plants, the occurrence of diseases, and damaged cucumbers are considered normal. 

Workers typically do not work during the night or on holidays. In contrast, robots can 

operate continuously, seven days a week, 24 hours a day (7/24). This is particularly 

advantageous because the cucumber harvesting window is short, and human workers are 

limited in the number of hours they can work each week. Consequently, timely harvesting 

can be a challenge. 

1.3.Automation as a substitute for traditional harvesting 

Advancements in robotics and image processing have sparked a substantial transformation 

in the farming sector, automating tasks previously performed manually. This research 

tackles critical challenges, notably labour shortages and health concerns, with a specific 

emphasis on the harvesting process. The primary goals include minimizing cucumber 

damage, enhancing overall efficiency, and accelerating the harvesting speed. 
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This approach is crafted for scalability, accommodating both small and large farms. The 

primary challenges centre on achieving successful detection and precise cutting to prevent 

damage to both the plants and cucumbers. 

1.4.Problem definition and functional requirements 

The primary focus of this study lies in addressing the challenge of replicating the manual 

harvesting of cucumbers. The objective is to incorporate this principle into a robotic arm. 

Similar to humans, the initial requirement for the robot is a visual perception, achieved 

through a camera functioning as the "eye," while an image processing algorithm serves as 

its "brain." 

1.4.1. Problem space 

The study is guided by a specific problem space, as illustrated in Figure 1-2. Each space is 

presented in its corresponding section to facilitate a visual understanding of the problem 

space. All needed components should be identified and arranged in the proposed device. 

Particularly crucial is the determination of the camera and cutter placement on the robot. 

Additionally, the image processing unit must possess the capability to detect cucumbers 

and pinpoint the stem end for harvesting. This positional data is then transmitted to a 

robotic arm through an interface. The robot navigates to the designated position with 

precision, ensuring it avoids unpredicted accidental contact with the plant. Further research 

on cucumber characteristics, including its geometry and peak tolerable force, is helpful for 

comprehensive understanding and effective implementation. 
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Figure 1-2. The problem space of this research shown in seven blocks 

1.4.2. Research Statement 

This study aims to apply various cucumber detection algorithms and a robotic arm to detect 

and harvest greenhouse cucumbers. The methodology involves the utilization of a 3D 

camera and programming a cutting robotic arm. Additionally, considerations extend to 

characterize cucumbers by doing force and geometry analysis, along with a preliminary 

study on managing RGB-XYZ data generated by a 3D camera for shape detection. 

Establishing a framework for real-time detection considering the dynamic conditions of 

cucumber greenhouse and its environment is also considered for future studies. 

1.4.3. Functional requirements and limitations 

The functional requirements, briefly depicted in Figure 1-3, commence with cucumber 

detection as the initial task. The system is designed to do near-real-time detection. Selection 

of cucumbers for harvesting is based on specific criteria, requiring a decision-making 

process. The robot should prevent unpredicted accidents with the plant's components. 

However, some gentle contact with the plant is unavoidable during harvesting.  
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Figure 1-3. Functional requirements for automating cucumber harvesting processes in greenhouses 

Assigning a task currently performed by a skilled smart human to a robot presents inherent 

constrains. Some limitations need to be considered, such as “achieving a comprehensive 

prediction of all dynamic conditions, such as lighting variations that impact detection and 

harvesting accuracy, may not be feasible, and needs to be an ongoing area of research.” 

1.5.Research goals 

Research goals are as follows. 

The overarching objective of this research is to design and develop an automated cucumber 

harvester capable of cucumber and stem end detection and subsequent harvesting using a 

robot. The specific sub-goals are as follows. 

• Detect cucumbers in artificial greenhouses using multiple algorithms.  

• Program a cutting robotic arm to harvest detected cucumbers. 

• Analyze peak tolerable force and geometry of cucumber, cucumber appearance, 

and greenhouse environment for future modeling. 

• Manage raw data of 3D camera (RGB-XYZ): a preliminary study designed to be 

adaptable for various types of produces. 

Chapter 2 is the literature review, leading to the identification of the research gap. Chapter 

3 outlines the methodology and test setup, detailing how the identified gap will be 

addressed. In chapter 4, the results pertaining to the finalized methodology are presented 

and discussed. Chapter 5 encapsulates the research's conclusions and outlines directions 

for future work. 
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2. LITERATURE REVIEW 

This section comprises a literature review of previous research. Initially, an examination 

of various automated harvesters is conducted. Subsequently, the chapter outlines several 

algorithms proposed in the literature, categorized based on distinct recognition criteria, 

presented in a matrix format summarizing key points. The final sections of this chapter 

delve into the research gap within the identified problem space. 

2.1.Statistical analysis of literature documents 

In the field of automated agricultural robots, numerous research studies have been 

conducted. Many of these studies tend to focus on specific aspects or components of a fully 

automated system. Some concentrate on the detection of produce, while others propose 

innovative gripper designs. Some delve into the trajectory and efficiency of robotic arms, 

some explore autonomous functionalities, and others investigate mechanical alternatives 

to improve harvesting. 

Bibliometrix, Biblioshiny, and RStudio are chosen for the analysis of trends and available 

references related to keywords of this research: "agricultural," "image processing," and 

"automation" in Scopus. Figure 2-1 displays the results of this statistical analysis. The 

analysis shows that there is a good annual growth rate (6.74%) in this topic.  

 

Figure 2-1. Statistical analysis of the literature using Bibliometrix, Biblioshiny, and RStudio indicate a trend 

To narrow down the search and reduce the number of documents to a more manageable 

level and target the specific research challenges, the keywords are adjusted to add 

“harvester”. The statistical analysis is shown in Figure 2-2. As shown in this Figure there 
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are 17 documents available with the mentioned keywords, which shows a need of research 

in this domain. 

 

Figure 2-2. Utilizing new keywords to narrow down the search results and identify the most pertinent documents. 

The thematic map of the mentioned keywords is also depicted in Figure 2-3. Based on this 

graph, the current study aligns with the "motor themes" section due to its high relevance to 

the field and its status as a novel technological advancement. Thus, this research has a 

distinctive contribution in greenhouse harvesting. 

 

Figure 2-3. Thematic map of the literature and the position of the current research 

2.2.Literature review and matrix 

Jing et al. (2021) studied apples’ detection with 1036 images as their dataset [4]. Their 

algorithm incorporates bounding box detection based on colour information and identifies 

contours that most accurately represent the shape of the apples. They used contours and 

RGB as their recognition features. While their model demonstrated a high level of accuracy 



 

10 
 

(95.66%) and incorporated both RGB and shape data to mitigate reliance solely on RGB 

information, the study did not delve into the examination of harvesting post-detection. 

Their model's dependence on the specific dataset used confined its applicability to only the 

studied apples. 

Zheng et al. (2022) conducted a study involving cucumber, eggplant, tomato, and pepper 

recognition using shape and RGB features [5]. Their dataset comprised 1600 samples, and 

their model achieved an accuracy range of 80% to 100%. They employed a RealSense 

D415 camera for data acquisition, which involved a multi-step process. First, they acquired 

colour images and depth maps, aligning them for subsequent analysis. Then, they employed 

keypoint detection, utilizing the keypoint RCNN provided by Detectron2, for size 

estimation. Additionally, they proposed a zoom-in technique to magnify the targets 

(cucumber, eggplant, tomato, and pepper), enhancing detection accuracy. Finally, they 

calculated the length and diameter of the recognized objects using 3D space and focal 

length measurements. While the study covered cucumbers, eggplants, tomatoes and 

peppers, the accuracy of size estimation and keypoints detection remained inadequate, 

indicating a need for further investigation. The research did not emphasize the aspects of 

harvesting and data collection in a greenhouse environment, however. 

Gené-Mola et al. (2019) conducted research on Fuji apples, employing recognition features 

including backscatter signal, RGB, and depth [6]. Their dataset consisted of 967 samples, 

and their model achieved an impressive accuracy rate of 94.8%. They utilized a Microsoft 

Kinect sensor for data acquisition and followed a comprehensive methodology. The data 

preparation process is composed of several steps, including dataset preparation, registration 

to create a 5-channel multi-modal image combining RGB and depth (RGB-DS), and 

annotation. In the experimental phase, they employed a Faster R-CNN object detection 

network, focusing on multi-modals and regions of interest (ROIs) using RPN (Region 

Proposal Network) for ROI classification. Furthermore, they optimized anchors, 

specifically bounding boxes, and conducted extensive training to refine their models. 

Nevertheless, their multiple models significantly relied on colour information, and their 

study exclusively focused on apple detection without addressing the harvesting aspect. 
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Kheiralipour et al. (2017) conducted a study on cucumber shapes [7]. They utilize PC1438 

and Canon cameras for image acquisition and employed a multi-step methodology. The 

process involved image preparation, including extracting the blue channel, among other 

adjustments. Additionally, they extracted both common features like diameter and 

introduced novel shape features such as centroid non-homogeneity. The final step of their 

methodology is classification using an artificial neural network (ANN). While they 

conducted an extensive study on geometry analysis with appropriate metrics, it's 

noteworthy that their categorization was limited to certain cucumbers, and the study did 

not include the automation of the process through harvesting. 

Rabby et al. (2018) conducted research focused on the detection of oranges and apples 

utilizing shape and RGB recognition features [8]. However, specific details regarding the 

number of samples and the best accuracy achieved are not provided. Their approach 

involved the application of a modified Canny edge detection algorithm. This algorithm 

underwent several stages, including the computation of horizontal and vertical gradients 

and their angular directions, identification of candidate points, thresholding, edge 

connection, and removal of weak edges. Additionally, they employed preprocessing, 

segmentation, feature extraction encompassing intensity and size, as well as testing, 

training, and matching procedures in their image processing methodology. While their 

focus encompasses apples and oranges with varying colours, it's notable that they did not 

investigate a fully automated harvester. 

Liu et al. (2019) conducted research focused on the detection of apples using RGB and 

shape recognition features [9]. Their dataset comprised 1844 images, achieving an 

accuracy ranging from 85% to 95.12%. They utilized a Canon IXUS 275HS camera for 

image acquisition. The key steps in their algorithm included the segmentation of super 

pixel blocks using Simple Linear Iterative Clustering (SLIC). Subsequently, they extracted 

colour vectors and trained an SVM classifier. In addition, they worked with rectangular 

blocks, extracting HOG vectors and again training an SVM classifier. For new images, 

their approach involved processing super pixel blocks, extracting colour vectors, 

identifying candidate regions, extracting HOG vectors, and finally detecting the cucumber. 

However, they did not study detection and harvesting together. 
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Tu et al. (2020) conducted research focused on counting passion fruits, utilizing both RGB 

and depth recognition features [10]. Their dataset comprised 2275 samples, and their model 

achieved an impressive accuracy of 96.2%. They employed a Microsoft Kinect camera for 

data acquisition. The key steps in their algorithm included RGB data augmentation and a 

detector based on MS-FRCNN. This process is repeated for depth data. Subsequently, they 

fused the results from both steps using a linear probability operation to achieve RGB-D 

detection for passion fruit. They employed multiple models; however, they did not conduct 

a comprehensive analysis of the passion fruit's geometry nor determine the peak load it can 

tolerate before bruising. This gap in analysis stems from their exclusion of a complete 

device in their study. 

Iskandar et al. (2022) undertook a study concerning Melinjo fruit detection using both RGB 

and HSV recognition features [11]. Their dataset consisted of 1,003 samples, achieving an 

impressive accuracy rate of 98.0%. their methodology included Google Collaboratory 

Design and manipulation of RGB and HSV data. This process involved masking for black 

and white conversion to facilitate background removal. Further steps encompassed the 

classification of Melinjo into ripe and raw categories based on HSV values. However, they 

omitted the consideration of the harvesting process, and their model depends on specific 

dataset and thus is not expandable to other produce. 

There have been relatively few instances where comprehensive research has been 

conducted on fully automated harvesters. One notable example is the root trimmer 

proposed by McGuinness et al. [12]. This machine is capable of handling lifting, soil 

removal, root trimming, and sorting of various materials. During its implementation, each 

subprocess of a field factory is tested and verified on the ground. 

Another significant development is the robot with dual arms introduced by Yoshida et al., 

shown in Figure 2-4 [13]. This robot is equipped with an RGB-D camera, two robotic arms, 

and two end effectors. It achieved an impressive 95% accuracy rate in produce detection, 

with a processing speed of 20 seconds per produce. 
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Figure 2-4. A dual arm harvester developed by Yoshida et al with an accuracy of 95% [13] 

Theoretical aspects of automated harvesting have been explored by Shaprov et al. [14]. 

Their work involved modeling the system and determining optimal forces to prevent crop 

damage. However, they solely focused on the theoretical aspects of the harvester. 

Eizentals et al. conducted research on the pose estimation of peppers, utilizing a laser range 

finder, as depicted in Figure 2-5. Their system demonstrated an accuracy rate exceeding 

75%, and they tested it in a real farm [15]. They partly considered and analyzed some 

geometry aspects of peppers. However, the maximum accuracy of their model, which was 

77.6%, is insufficient for practical use in real-world scenarios. 

 

Figure 2-5. Pose estimation method proposed by Eizentals et al [15] 

A yield real time monitoring system was developed by Chang et al. (2012) that is able to 

map the yield of wild blueberries [16]. Blueberry precise geographic locations are found. 

Figure 2-6 shows the device. Using the percentage of blue pixels, they conclude there is a 

possibility of finding the blueberry spots. Their model heavily relies on colour data and is 
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specifically designed for generating blueberry yield maps, emphasizing a narrow focus 

within the broader farm context. 

 

Figure 2-6. Device configuration for automated yield monitoring system for detection of location of target plants [16] 

Davidson et al. (2016) proposed a new gripper for harvesting apples as shown in Figure 2-

7 [17]. They used image processing technique to detect the apples. The accuracy of their 

system is 95% and the harvesting time is about 8 seconds for each apple. However, some 

modifications, such as expanding the workspace and mounting the device on a vehicle, are 

necessary to investigate the device in real orchards. 

 

 

Figure 2-7. Gripper designed for harvesting apples using a robotic arm [17] 

Based on the above review, a literature review matrix is presented in Table 2-1 to highlight 

the key points of their work and to position the contribution of this research.  
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Jing [4] O × ✓ C, S × × × ✓ 

Zheng [5] C, O ✓ ✓ C, S, D × × × × 

Gené-Mola [6] O × ✓ C, D × × × ✓ 

Kheiralipour [7] C × ✓ S, C × ✓ × × 

Rabby [8] O ✓ ✓ S, C × × × × 

Liu [9] O × ✓ C, S × × × × 

Tu [10] O × ✓ C, D × × × ✓ 

Iskandar [11] O × ✓ C × × × × 

McGuinness [12] O × × × × × × × 

Yotisha [13] O × ✓ C ✓ × ✓ × 

Shaprov [14] O ✓ × × × × × × 

Eizentals [15] O × ✓ 
C, S, D, W, 

H 
× ✓ × × 

Chang [16] O × ✓ C × × × × 

Davidson [17] O × ✓ C ✓ × ✓ × 

This study C ✓ ✓ 
C, S, D, W, 

H 
✓ ✓ ✓ ✓ 
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2.3. Research gap 

It can be seen that prior studies have focused on certain aspects outlined in the matrix. 

However, this study addresses complete automated cucumber harvesting, incorporating 

cucumber detection, a robotic arm for harvesting, geometry analysis, and communication 

between image processing and a robotic arm. Thus, this research establishes a foundation 

for all aspects of the process and offers alternative ways to compare results.  

Utilizing a 3D camera, a novel preliminary study is conducted to directly manage RGB-

XYZ data to find the shape of the cucumber; eliminating the need for datasets and training. 

Force analysis is conducted to determine the peak force that cucumbers can withstand 

before bruising. The study explores the impact of various parameters such as cucumber 

diameter and curvature. 

The following chapter furnishes details regarding the methodology employed in this study 

to achieve the research objective. 
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3. METHODOLOGY AND TEST SETUP 

This chapter begins with the introduction of the proposed model, accompanied by flow 

diagrams such as data and event flow diagrams. Subsequently, the essential experimental 

and software tools are outlined. Following this, metrics employed for image processing 

evaluation are presented. The artificial greenhouse is then discussed. The configuration and 

calibration of the 3D camera, followed by an exploration of the camera's movements are 

presented. The chapter further elaborates on the image processing methods, with a 

subsequent focus on force and geometry analyses as the final components of the research. 

3.1. Proposed model 

The proposed model is illustrated in Figure 3-1, showcasing four primary components: 1. 

Image processing unit, 2. Robotic arm, 3. Cutter, and 4. Container to hold cut cucumbers. 

 

Figure 3-1. Overview of the proposed model of the automated cucumber harvester 

3.2.Flow diagrams of the proposed model 

The flow diagram delineates the sequential steps of the automated system, from the image 

input to the cucumber placement. Flow diagrams are categorized into three primary types: 

process flow diagram, event flow diagram, and data flow diagram.  

3.2.1. Process and event flow diagrams 

The process and event flow diagram are illustrated in Figure 3-2. Image processing unit 

identifies and target cucumbers. A cutting robotic arm receives the position of cucumber 
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through a communication system, that links the output of the image processing to the robot. 

Ultimately a successful cut with the cutter and the placement in a container are expected. 

 

Figure 3-2. The process and event flow diagram of the proposed automated harvester 

3.2.2. Data flow diagram 

The data flow of the proposed model is also shown in Figure 3-3.a. The information related 

to cucumber is processed using image processing algorithm. The decision-making involves 

selecting the target cucumber based on the processed data. The system then transmits the 

position of the target stem end and trajectory information to the robotic arm for cutting. All 

acquired and processed data are stored in a database for further analysis and future 

reference, allowing continuous improvement of the system based on historical data. A 

flowchart of the system’s input/output and decision making is presented in Figure 3-3.b. 

 

Figure 3-3. Data flow of the proposed model 
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3.3.Experimental tools and equipment 

An overview of the experimental equipment is presented in this section. 

First, the compact and lightweight robotic arm (model UR3e) which is manufactured by 

Universal Robots is used. The UR3e finds application in industrial settings where precision 

and safety are paramount, and human-robot collaboration is essential. Featuring a user-

friendly programming interface, the UR3e can seamlessly integrate into various work 

environments, enhancing efficiency and productivity. Detailed overview on UR3e can be 

found in reference [18] and APPENDIX A. 

An experimental tool in use is an artificial greenhouse featuring 3D printed peppers, 

cucumbers, and apples, with some artificial leaves and vines. 

In this study, cutting blades are placed in 3D printed brackets, which are embedded in TCP 

of the UR3e robot. There should be an appropriate level of tightness between the TCP and 

the blades to prevent any slipping. 

Intel's RealSense D435if camera employs LiDAR and stereo depth technologies [19]. 

Operating on USB 5V power, the D435if captures colour and XYZ data simultaneously, 

producing a point cloud for scene reconstruction. Widely utilized in machine-vision-based 

devices due to its compact design, this 3D camera proves particularly useful when the focus 

is on measuring the distance between the object and the camera. 

Pressure sensors are employed to measure the maximum force cucumbers can withstand, 

determining their tolerance before permanent damage. This study employs two types of 

sensors: finger type, utilized for cutting and gripping forces when applied parallel to the 

cucumber cross-section, and plate type, employed for examining the length and curvature 

effects of cucumbers with applied force normal to the cross-section. 

To mount the camera on the UR3e arm, a bracket is 3D printed. The optimal position for 

the camera on the robot is determined, and subsequently, the dimensions and shape of the 

bracket are obtained. The bracket is then 3D printed using 3D printer (model Creality-

Halton-Mega Pro). 

3.4.Software tools 

The following section provides information about software tools. 
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The YOLO architecture has undergone several iterations, each bringing about 

improvements in accuracy, speed, and versatility. YOLOv8 introduced by Ultralytics has 

new features and improvements for enhanced performance, flexibility, and efficiency that 

support a full range of vision AI tasks [20]. These tasks include detection, segmentation, 

pose estimation, tracking, and classification. In this study, both pose estimation and object 

detection models are employed. 

RealSense SDK software is used to configure D435if cameras. The software should be 

installed after connecting the 3D Webcam D435if to the computer. 

Roboflow is an automated platform designed to streamline object detection, image 

classification, and segmentation. Roboflow provides a range of pre-defined tools for 

dataset preparation, such as resizing, labeling, cropping, annotation, and augmentation.  

The Dynamic Calibrator software from Intel is specifically designed for the calibration of 

D435 series cameras.  

MATLAB is employed for geometry analysis, with specific emphasis on utilizing the 

Curve Fitting Toolbox. 

Two programming methods include graphical programming interfaces (arranging and 

sequencing predefined commands from a library) and teach pendants (manually 

manipulating the end-effector to instruct the robotic arm) are used. 

SolidWorks software is used for design artificial peppers, apples, and cucumbers and 

brackets before 3D printing. 

Python is a programming language commonly employed for developing applications, 

including those in machine learning and image processing. Python can be employed to 

implement or interact with YOLO-based object detection algorithms. 

RStudio serves as the tool for analyzing literature and establishing the study's context. 

Functioning as a platform for the R programming language, RStudio is specifically 

designed for statistical analysis within datasets. 

WIDACS software connects the pressure sensors to a PC. The software records force 

variations, pinpointing the moment when the cucumber is damaged. 
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CVAT is utilized for labeling images intended for image processing purposes. Prior to 

training, it was necessary to label cucumbers..  

3.5.Metrics in image processing evaluation 

Precision, recall, and F1 score are fundamental metrics used in evaluating object detection 

models, providing insights into their performance regarding true positive (TP), false 

positive (FP), and false negative (FN) predictions. Precision, denoted as the ratio of TP to 

the sum of TP and FP, measures the model's accuracy in correctly identifying positive 

instances. Recall, calculated as the ratio of TP to the sum of TP and FN, assesses the model 

ability to capture all relevant positive instances. F1 score, representing the harmonic mean 

of precision and recall, offers a balanced assessment of a model’s overall performance by 

considering both false positives and false negatives. 

3.6.Artificial greenhouse 

An artificial greenhouse for testing the harvester and for identifying potential drawbacks 

is fabricated. In summary, the test environment aims to: 

• Implement the image processing unit and cutting robotic arm. 

• Validate the setup under various light conditions. 

• Prepare the harvester for real-world scenarios, such as hidden cucumbers. 

• Ensure there is a setup for future development, including the detection of peppers. 

Initially, artificial cucumbers, peppers and apples are manufactured using additive 

manufacturing. CAD files before 3D printing of them are depicted in Figure 3-4 [21]. 

 

(a)                      (b)                                               (c)   

Figure 3-4. Sample CAD files for the artificial: a. peppers, b. apples, and c. cucumbers before 3D printing 
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The 3D printed peppers, apples, and cucumbers are showcased in Figure 3-5. Attaching the 

stem ends to them requires a post-processing step involving drilling, as depicted in Figure 

3-5. 

 

                                                                         (a)                                   (b)                         

Figure 3-5. a. 3D printed peppers, cucumbers, and apples, and b. The post-processing 

After manufacturing peppers, cucumbers, and apples, they are integrated into a frame along 

with leaves, as shown in Figure 3-6. The drawback of this artificial greenhouse is that 

produce doesn't grow in this manner (multiple types on one vine). However, since only 

cucumbers are the focus of this study, this artificial greenhouse contributes to the feasibility 

of the model. Artificial Peppers and apples are for future studies. 

 

Figure 3-6. In-house artificial setup 

3.7.Camera setup and calibration 

Detailed information regarding camera setup and specifications is provided in APPENDIX 

B. Intel has developed the Dynamic Calibrator software for calibrating D435 series 

cameras. The process involves connecting the camera to a laptop, launching the RealSense 

software, and transitioning to 2D mode for simultaneous access to RGB and 3D modes. 
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The calibration utilizes the Intel RealSense Calibration Print Target. Running the Intel 

RealSense Dynamic Calibrator software involves positioning the printed target in various 

orientations, directions, and distances for XYZ mode calibration as shown in Figure 3-7. 

The process for calibrating RGB mode follows a similar approach, with the RGB 

calibration interface. A comprehensive camera calibration process is outlined in 

APPENDIX C.  

 

Figure 3-7. The dynamic calibration print target should be placed in 16 different positions for camera calibration 

3.8.Camera and cutter movement control using UR3e 

In this study, the motion of camera and cutter is controlled by graphical programming 

interfaces and teach pendants of UR3e. An experimental test is conducted wherein the 

D435if camera is mobilized using the UR3e robot. The RealSense software records the 

scanning process. The robot is programmed to scan at various angles and sides, 

acknowledging that a cucumber may be visible from one angle but concealed by leaves 

from another side. The results are presented in Figure 3-8.  

 

Figure 3-8. Camera movement at different angles and directions 
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If the camera moves too quickly, the D435if's limitations may lead to the cucumber being 

invisible. On the other hand, moving too slowly can result in wasted time. The UR3e offers 

the flexibility to set different speeds for the TCP where the camera is positioned. A speed 

between 50 and 70 mm/s is recommended based on this test. 

3.9.Object detection using popular pretrained models 

For accurate object detection, pretrained models have become a common practice. 

Pretrained models are neural networks that have undergone training on extensive datasets 

for general tasks, such as image classification. The pretrained model excels in extracting 

high-level features from images, enabling the detection of complex patterns and objects. 

They significantly reduce training time compared to training a model from scratch. 

Three of the popular pretrained models are explored with their characteristics and their 

advantages and they are summarized in Table 3-1. 

Table 3-1. Comparison between three of popular pretrained models 

Pretrained 

model 

Characteristics Advantages 

SSD Multiscale feature 

extraction, narrow down 

target in each stage 

1. Balance between speed and accuracy 

2. Handling different object sizes 

Faster R-

CNN 

Two-stage approach: 1. 

RPN, 2. Final object 

detection 

1. High accuracy 

2. Better handling of complex object detection 

YOLO Single-pass approach 1. Real-time detection 

2. Fast response 

3. Easy to implement 

4. Diverse range of objects 
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Based on Table 3-1, YOLO has the capability to rapidly detect cucumbers in near-real-

time scenarios, and its ease of implementation makes it the chosen approach for this study. 

The process is elaborated in the rest of the text. 

3.10. Cucumber bounding box detection using two models in YOLOv8 

The bounding box method is the most prevalent approach to fruit detection, as per the 

literature. It entails creating a rectangle around the detected cucumbers. Different models 

in YOLOv8 are applied to detect cucumber bounding box. These configurations differ in 

the size and complexity of the model, allowing users to choose a version that aligns with 

specific trade-offs between computational efficiency and detection accuracy. The object 

detection task begins with camera calibration and data preparation. To fulfill object 

detection task, two distinct custom datasets are used. Artificial Cucumber Greenhouse 

dataset includes synthetic representations of cucumber greenhouses. The second dataset, 

known as the Real Cucumber Greenhouse dataset includes images captured within real 

cucumber greenhouses. YOLOL and YOLON are utilized for bounding box detection. The 

difference between them lies in their performance characteristics. YOLOL is known for its 

accuracy but demands more processing time and a more robust computer. On the other 

hand, YOLON is a lighter and faster model, but typically sacrifices some accuracy 

compared to YOLOL. 

For annotation and labeling of objects within these datasets, CVAT is utilized [22]. The 

use of CVAT facilitated a systematic and accurate labeling process. An instance of the 

labeled cucumbers in CVAT are shown in Figure 3-9. After annotating images, they are 

fed into YOLO models, which undergo training. Subsequently, these models are tested 

with new images, and the identified cucumbers and metrics are showcased in the results 

section. The resulting output consists of images containing bounding boxes, accompanied 

by corresponding text files, called Json file. These text file has the position information of 

the detected cucumber. 
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Figure 3-9. An example of labeled cucumbers using CVAT 

3.11. Cucumber keypoints detection using two models in YOLOv8 

Pose estimation and highlighting keypoints are critical tasks in computer vision, involving 

the determination of the spatial position and orientation of objects or humans in an image 

or video [23]. The whole process is like bounding box detection other than the labelling 

approach. Labeling involves outlining rectangles around the cucumbers in a dataset before 

commencing the model training process. For cucumber pose estimation, three keypoints of 

each cucumber: top, bottom, and middle points are labelled. Each cucumber in the dataset 

is labeled with these three keypoints. Here, only YOLOX and YOLOL are applied. The 

only distinction between them is that YOLOL is faster compared to YOLOX, but it is less 

accurate. 

3.12. Cucumber bounding box detection using one model in RoboFlow 

Roboflow simplifies the preparation of image datasets for research purposes, offering key 

features. Users can easily import image datasets, whether they are stored locally or in the 

cloud. Cucumber detection requires labeling of regions containing cucumbers. Roboflow 

provides annotation and labeling tools for this purpose.  

3.13. Cucumber shape detection using raw RGB-XYZ data 

In this part, the output from the 3D camera (RGB-XYZ data) is partly managed using 

Python. First, conducting a colour analysis on the target cucumber and plant components 

is done. After filtering, the target RGB values for cucumbers are kept and other RGBs 

related to vines and leaves are removed as shown in Figure 3-10. Some pixels of cucumber 

are mistakenly filtered out (false negatives), while some pixels of leaves and vines are 
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inaccurately identified as cucumber pixels (false positives), as shown in Figure 3-10. By 

eliminating false positives and retaining false negatives, the final remaining RGBs form a 

cucumber shape. 

Then, XYZ data comes into the picture. Using XY data, the sizes of cucumbers and the 

position of the stem end are identified. With Z data, the distance between the robot and the 

cucumber is determined. This process can be handled using Python. More details are 

provided in APPENDIX D. 

 

Figure 3-10. Left: visualization of target RGB values for cucumber, vine, and leaf (each square assumed to be a pixel). 

Middle: false positives and false negatives pixels. Right: after removing false positives and retaining false negatives, a 

complete cucumber shape is maintained, while all leaves and vines effectively filtered out 

3.14. Communication between image processing and robotic arm 

The third component of the automated cucumber harvester is the interface between image 

processing and the robotic cutting arm. After detecting the position of cucumber, the 

robotic cutting arm initiates its movement for harvesting. In this study, a JSON file 

containing the X and Y positions of the cucumber is generated through YOLO. 

Subsequently, the obtained position is manually input to the robot. Upon receiving the 

position data, the cutting robotic arm initiates movement towards the stem end, executing 

the cutting process. The outcomes are detailed in the results section. More details on 

different possible interface in UR3e are presented in APPENDIX E. 

 

Filter 

Cucumber 

RGBs 

Remove false 

positive and 

fill false 

negatives 

Cucumber RGB 

Vine RGB 

Leaf RGB 



 

28 
 

3.15. Force analysis using pressure sensors 

Force analysis is essential to avoid any damage on the cucumber when placing it in a 

container and when cutting it from the stem end. The aim is to investigate the forces that 

cucumbers can withstand. This information is useful for designing the container and 

determining the appropriate distance between them and the cucumbers to ensure that the 

cucumbers remain undamaged when falling into the container. Undamaged cucumbers are 

those without any trace of distortion on their surfaces resulting from harvesting. More 

details on the container are provided in APPENDIX F. 

Pressure sensors are employed to measure the maximum force that different types of 

cucumbers can endure. The experimental setup used to measure this force and an example 

of a damaged cucumber after applying force are shown in Figure 3-11. The WIDACS 

software is installed, and forces on cucumbers are manually put to the pressure sensors. 

The results are presented in the results section.  

   

                                                                                        (a)                                                         (b) 

Figure 3-11. a. Experimental setup to find the peak forces that each cucumber can tolerate and a damage cucumber 

after applying force, b. Damaged cucumber after applying force on its surface 

3.16. Geometry analysis with MATLAB 

Understanding the shape of target cucumbers is crucial. The identification of cucumber 

sizes is dependent on determining the curve that fits the cucumber's boundaries and 

acquiring specific data points. The method involves utilizing 3D shape data obtained from 

a 3D camera and the use of MATLAB. In this approach, curves are fitted to various images 

of cucumbers utilizing the curve fitting toolbox in MATLAB. The curve can take different 

orders. The results of this analysis are shown in chapter results. 
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The following chapter presents the results and outcomes obtained through the application 

of the methodology and test setup discussed in the preceding section. 
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4. RESULTS AND DISCUSSION 

This chapter delves into the outcomes of image processing employing four models in 

YOLOv8, encompassing corresponding qualitative and quantitative outputs. The findings 

of near-real-time detection in YOLOv8 are also shown. The chapter also incorporates 

findings related to programming the cutting arm. Geometry and force analyses results, 

contributing to a comprehensive understanding of cucumber characteristics, are also 

showcased. Finally, a comparison between manual and automated processes is established 

through cost and OEE analyses.  

4.1. Cucumber bounding box and keypoints detections using YOLOv8 

The examination of cucumber bounding box and keypoints detections is conducted, and 

qualitative and quantitative results are showcased. 

4.1.1. Bounding box 

As discussed in the literature review and methodology chapters, the use of bounding boxes 

stands out as one of the most prevalent methods for cucumber detection. The procedural 

steps are expounded upon in the methodology chapter, and in this section, the outcomes 

are showcased through the application of two distinct models. The resultant metric for each 

model is also presented. Figure 4-1 displays two images in which cucumbers are detected 

in YOLOL (YOLO Large) model, accompanied by their respective detection confidence 

for each cucumber. As evident from Figure 4-1, there is no false positive in detection. 

However, few false negatives are observed, primarily because very small portions of 

cucumbers are visible in some cases. The percentage of correctness for each detected 

cucumber bounding box is shown in the figure. A higher percentage indicates a higher 

priority for harvesting that cucumber. For future decision-making regarding which 

cucumber to harvest in each camera capture, this information is essential. In another 

capture from a different angle and camera position, a different cucumber may receive a 

higher percentage. Therefore, that would be the priority in that capture. 
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Figure 4-1. YOLOL: two images with their detected cucumbers and their confidences 

F1, which is defined in methodology section, and confidence relationship is showed in 

Figure 4-2. Although it shows a F1 of 0.55, which shows a great balance between precision 

and recall, the confidence of 0.204 is pretty low. 

 

Figure 4-2. F1-confidence curve in YOLOL 

Figure 4-3 illustrates two images with detected cucumbers in YOLON, along with their 

corresponding detection confidence for each cucumber. As is visible in Figure 4-2, like 
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YOLOL model, there are no false positives. Nonetheless, few instances of false negatives 

are noted. 

    

Figure 4-3. YOLON: two images with related detection confidences 

Figure 4-4 displays the F1-confidene curve obtained in YOLON. Based on this graph, the 

best F1 score is 0.38 at a confidence of 0.121. The F1 score shows a fair trade-off between 

precision and recall. 

 

Figure 4-4. F1 and confidence relationship in YOLON 
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The summary of the metrics for cucumber bounding box detection is presented in Table 

4-1. 

Table 4-1. Summary of metrics for cucumber bounding box detection 

Model F1 Confidence 

YOLOL 0.55 0.204 

YOLON 0.38 0.121 

 

4.1.2. Near-real-time cucumber detection using YOLON 

Cucumbers have been identified in a brief video captured at JEM Farms. Selected frames 

from the video are presented in Figure 4-5 (a) through (e). The speed of the video is a 

challenge here because it was mainly recorded for data collection purposes rather than for 

detection, which may be one reason of presenting many false negatives. Nevertheless, there 

are no examples of false positives. Moreover, almost always, at least, one cucumber is 

detected for harvesting in near-real-time detection.  

 

(a) 
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(b) 

 

 

(c) 

 

 

(d) 
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(e) 
Figure 4-5 (a) through (e). Near-real-time cucumber detection in a video from real greenhouse using YOLOL 

4.1.3. Cucumber keypoinsts detection with YOLOv8 

In this section, the results of keypoints detection are presented using YOLOL and YOLOX 

models. Qualitative results and F1-confidence curves for each model are depicted in 

Figures 4-6 to 4-8. As indicated in Figure 4-6, the confidence level for the majority of 

detected cucumbers in YOLOL is notably high. With an F1 score of 0.82 and a confidence 

of 0.502, YOLOL exhibits promising performance, as shown in Figure 4-7. Conversely, a 

lower F1 score of 0.42 with a confidence of 0.053 suggests that YOLOX is not performing 

as effectively as YOLOL, as shown in Figure 4-8. 
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                                          (a)                                                            (b) 

Figure 4-6. Detecting the cucumber pose and identifying keypoints to determine the position of the stem end in YOLOL 
(a), and YOLOX (b) 

 

Figure 4-7. F1 and confidence graph in pose-YOLOL 
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Figure 4-8. F1 and confidence relationship in pose-YOLOX 

The summary of the metrics for cucumber keypoints detection is presented in Table 4-2. 

Table 4-2. Summary of metrics for cucumber keypoints detection 

Model F1 Confidence 

YOLOL 0.82 0.502 

YOLOX 0.42 0.053 

 

4.2.Robotic arm movement  

As stated in the methodology section, upon detecting a cucumber, YOLO generates a JSON 

file containing XY data. Subsequently, the robotic arm is programmed to move towards 

the identified stem end for harvesting. The outcomes of this test are similar to what is 

illustrated in Figure 4-9. 
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(a) 

 

 

(b) 

 

 

(c) 
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(d) 

 

 

(e) 
Figure 4-9. a through e. Robot trajectory to harvest detected cucumbers based on received position data 

Utilizing the outcomes of image processing and the trajectory of the robotic arm, the 

ultimate flowchart outlining the process is depicted in Figure 4-10. 
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Figure 4-10. Final flowchart of the system including input/output, decision-making and harvesting 

4.3.Geometry MATLAB analysis results 

The geometry analysis using MATLAB is outlined in this section. The detailed data related 

to this analysis is available in APPENDIX G. 

The image of the initial cucumber sample captured by the D435if camera is depicted in 

Figure 4-11. 

 

                                                                  (a)                                                                (b) 

Figure 4-11. the experimental arrangement for the initial cucumber sample (a), and the resulting image displayed in 
the RealSense software (b) 

MATLAB curve fittings of orders 2 and 3 are displayed in Figure 4-12, which show a good 

representation of the real cucumber geometry. 
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(a) 

 

 

(b) 
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Figure 4-12 MATLAB curve fittings of orders 2 (a) and 3 (b) for first cucumber sample 

The image captured by the D435if camera of the second cucumber sample is depicted in 

Figure 4-13. Curve fittings of degrees 2 and 3 for the second cucumber sample are shown 

in Figure 4-14. The curves do not exhibit a satisfactory fit for the cucumber. Perhaps, 

higher-order or spline curves are required. This is a future research activity if this is 

considered significant. 

 

                                                                 (a)                                                                      (b) 

Figure 4-13 The experimental setup for the second cucumber sample (a) and the resultant image exhibited in the 
RealSense software (b). 

 

(a) 
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(b) 

 
Figure 4-14 MATLAB curve fittings of degrees 2 (a) and 3 (b) for the second cucumber sample. 

The image captured from the D435if camera depicting the third cucumber sample is 

illustrated in Figure 4-15. 

 

                                                                 (a)                                                                     (b) 

Figure 4-15 The experimental arrangement for the third cucumber sample (a) and the resulting image displayed in the 
RealSense software (b). 

MATLAB curve fittings of orders 2 and 3 are displayed in Figure 4-16 and they show a 

good fit for all orders. 
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(a) 

 

 

(b) 

 

Figure 4-16. MATLAB curve fits of orders 2 (a) and 3 (b) for the third cucumber sample. 
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The image captured by the 3D camera of the fourth cucumber sample is shown in Figure 

4-17. MATLAB curve fittings of orders 2 and 3 are presented in Figure 4-18. They show 

a good fit, no matter in which order. 

 

                                                                  (a)                                                                    (b) 

Figure 4-17 The experimental setup for the fourth cucumber sample (a), along with the resultant image showcased in 

the RealSense software (b). 

 

(a) 
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(b) 
Figure 4-18 MATLAB curve fittings with orders 2 (a) and 3 (b) for the fourth cucumber sample. 

The image taken by the camera of the fifth cucumber sample is shown in Figure 4-19. 

 

                                                             (a)                                                                        (b) 

Figure 4-19 The experimental configuration for the fifth cucumber sample (a), accompanied by the resulting image 

displayed in the RealSense software (b). 

MATLAB curve fittings of orders 2 and 3 are displayed in Figure 4-20, they show a good 

fit with real cucumber boundaries. 
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(a) 

 

 

(b) 

 

Figure 4-20. MATLAB curve fittings of degrees 2 (a) and 3 (b) for the fifth cucumber sample 

4.4.Managing RGB-XYZ data in Python 

A total of 13,806 unique R, G, and B values are identified in images captured from the 

JEM farm, categorized into two types; type 1 is long English cucumbers and type 2 is small 
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regular cucumbers. Intervals of RGB values of cucumbers, stem ends, vines, and leaves are 

presented in Tables 4-3 and 4-4. 

 

Table 4-3. RGBs’ intervals for type 1 plant’s components 

 Red interval Green interval Blue interval 

Cucumber (61.6-81.2) (55.7-74.7) (44.1,69.9) 

Stem end (62.3-109.2) (61.4-104) (39.7-83) 

Vine (105-148.7) (115.4-148.6) (39.2-97.8) 

Leaf (91.4-122.8) (112.4-151) (43.7-95.5) 

 

Table 4-4. RGBs’ intervals for type 2 plant’s components 

 Red interval Green interval Blue interval 

Cucumber (42.8-88.3) (52.2-108.9) (7.6-36.3) 

Stem end (73-139.6) (98.3-158.8) (8.9-78.2) 

Vine (90-151.5) (115.4-167.2) (17.9-50.2) 

Leaf (70.4-123.1) (107-148.4) (14.9-53.9) 

 

A Python script is developed to filter the red, green, and blue intervals of cucumbers, as 

outlined in Tables 4-3 and 4-4. Following the retention of only the RGB values of 

cucumbers, the pixels are then successfully sorted based on their Z value. 

4.5.Force analysis 

Following the experimental setup outlined in the methodology chapter, a force test is 

conducted on the cucumber samples as depicted in Figure 4-21.  
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Figure 4-21. Samples for experimental test on peak tolerable force 

Finger pressure sensor is used for all experiments other than when examining the effect of 

curvature and length on peak axial load, where the plate pressure sensor is used. After 

applying force, the variation of force is recorded as a parameter of time. After seeing the 

first trace of damage on the cucumber, the force is stopped. The impact of certain 

parameters is presented in the following paragraphs. 

In the initial test, force tests are conducted on three cucumbers with different G values 

(Green colour values). All other parameters are consistent across these cucumbers. The 

direction of applying force and the final peak load for each sample is determined and 

presented in Figure 4-22.  It appears that as the G value increases, the peak load before 

observing any signs of damage on the cucumber also increases. 

 

(a) 
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(b) 

Figure 4-22. a. The direction of applying force, and b. The effect of colour on peak load 

The influence of curvature on axial peak load is investigated. Four cucumbers with varying 

degrees of curvature undergo testing, and the peak load results are depicted in Figure 4-23. 

All parameters remain consistent across these cucumbers. From the graph, it is evident that 

straighter cucumbers can withstand more axial force. This is a predictable outcome as 

buckling is less likely to significantly impact straight cucumbers. 

 

 

 

(a) 
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(b) 

Figure 4-23. a. The direction of applying force, and b. The effect of curvature on peak axial load 

Four cucumbers with varying diameters undergo testing, and the corresponding peak loads 

are depicted in Figure 4-24. All parameters remain consistent across these samples. 

Perhaps, the rising trend is attributed to cucumbers with larger diameters distributing the 

applied force over a broader surface. Conversely, cucumbers with smaller diameters 

experience higher pressure, leading to earlier instances of damage. 

 

 

(a) 

 

(b) 
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Figure 4-24. a. The direction of applying force, and b. The effect of diameter on peak load 

In the other test, the influence of force direction on peak load is investigated. Within each 

of the three samples, four segments are generated, and the pressure sensor applies pressure 

at angles of 10, 30, 45, and 90 degrees. Subsequently, the graph is plotted as depicted in 

Figure 4-25. Damaging the cucumbers appears to be more pronounced when force is 

applied perpendicular to them, as opposed to when the force is applied more parallel to the 

cucumber axes. In other words, the perpendicular component of the force is what causes 

damage.  

 

(a) 

 

 

 

(b) 

Figure 4-25. a. The direction of applying force, and b. The effect of angle on peak load 

Impact of cucumber length is investigated. Four cucumbers are selected. The resulting 

graph is shown in Figure 4-26. The adjustment for the trend is that lengthy cucumbers 

would be affected by buckling more than the short ones. Thus, lengthy ones break sooner. 
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(a) 

 

 

(b) 

Figure 4-26. a. The direction of applying force, and b. Effect of cucumber length on peak load  

4.6.Cost analysis 

The results of an analysis comparing the cost variances between traditional and automated 

harvesting is presented in this section. In this analysis, there are a couple of main 

assumptions. Firstly, it is assumed that the time required for a robot to harvest one 

cucumber is four times longer than the time needed for a human labourer to harvest the 

same cucumber. Secondly, it is assumed that a robot operates for 24 hours a day, whereas 

a labourer works for 6 hours a day. Based on these assumptions, it can be inferred that 

although a labourer works for fewer hours (6 hours) but at a speed four times faster than a 

robot, they can be effectively replaced by a robot operating for 24 hours, albeit at a speed 

four times slower than the labourer. Consequently, this analysis considers the replacement 

of 20 labourers with 20 robots.  

Traditional cost themes are as follows and are summarized in Table 4-5 (all in CAD). 

• Human labour (20 people) is considered for 250 days (50 weeks, 5 days each week), 

with 6 hours each day, at a minimum wage of $16.55 per hour: $2482K 
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• Insurance is approximately 2.2% of the overall wage (based on WSIB ON): $55K 

• Benefit and payroll tax is calculated as 1.5 times the overall wage: $3723K 

• Energy costs for robots are equated to the trolley cost associated with manual 

labour, which is considered to be zero. 

Table 4-5. Cost analysis results in manual cucumber harvesting 

Cost factor for five years Cost CAD 

Annual wage of harvesters (minimum: 

$16.55 per hour) 
$2482K 

Insurance (WSIB ON) $55 K 

Benefit and payroll tax $3723 K 

Total $6261 K 

 

Parameters in calculating the automation harvesting cost are as follows and are 

summarized in Table 4-6. 

• The total cost for 20 robotic systems is $800K, in addition to the setup cost of 

$500K. 

• General equipment and system support (maintenance) over 5 years are calculated 

at $125K, with consideration for a breakdown of 5% of robots. 

• Decision-making algorithms cost 10 times the cost of the camera, totaling 100K. 

• The vision system cost is $10K. 

• To mount the robot, the Ateago S4 mobile robot chassis costs $220K. 

• Human specialists, consisting of four people with an annual wage of $80K each, 

sum up to $1600K for five years. 
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• The analysis assumes that the robot becomes non-operational after 5 years because 

it becomes outdated or no longer useful due to technological advancements or 

changes in requirements. 

• Overhead costs are factored into the robotic method at 20%, while the traditional 

method is assumed to have zero overhead. 

• Energy costs for robots are equated to the trolley cost associated with manual 

labour, considered to be zero. 

Table 4-6. Cost analysis results in automation of cucumber harvesting 

Components Component description 
Total cost 

(CAD) 

Setup and robot costs 

Cost of buying robot, floor preparation, and training 

people 

Single arm with end effector 

$1300 K 

Vision system 3D cameras (1 per robot) $10K 

Decision making 

algorithms 

Software costs 

Decision making for maintenance 

License fee 

IT support 

$100K 

General equipment and 

system support 

(maintenance) 

Highly skilled employees for maintenance, engineering, 

and software support, 

breakdown of 5% of robots 

$125 K 

Specialists Experienced workers $1600 K 

Trolley 
To mount the robot on it: 

Ateago S4 mobile robot chassis 

$220K 
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Total cost  $3355 K 

Total cost including 

overhead (20%) 
 

$4026 k 

4.7.OEE analysis 

Overall Equipment Effectiveness (OEE) is determined by multiplying availability, 

performance, and quality. OEE for both manual and automated cucumber harvesting 

methods are examined. 

OEE parameters for manual harvesting are as follows. 

• Availability: Workers are unable to work for the entire 8 hours, with one hour of 

non-productive time accounted for. Thus, the availability is 87.5%. 

• Performance: Calculated with an ideal cycle time of 100 cucumbers per hour, the 

average total output is 90 cucumbers over a 7-hour runtime. Therefore, the 

performance is 90%. 

• Quality: Assuming 10% of cucumbers have low quality, the overall quality is 

considered to be 90%. 

The resulting OEE for the manual method is obtained by multiplying availability, 

performance, and quality which would be 71%. 

OEE parameters for automated harvesting are as follows. 

• Availability: Accounting for a 5% daily damage rate to robots, the availability is 

considered to be 95%. 

• Performance: The performance is evaluated at 99%. 

• Quality: Similar to the manual method, 10% of cucumbers are assumed to have low 

quality, resulting in an overall quality of 90%. 

The final OEE for the automated method is obtained by multiplying availability, 

performance, and quality which would be 85%. 
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4.8.Summary 

Here are some summaries of the results. 

• For both cucumber bounding box and keypoints detections, YOLOL affirmed as 

the superior model as confirmed by F1-confidence curve and the fact that there is 

no false positive when detecting with YOLOL.  

• Near-real-time detection in YOLON reveals misses, possibly attributed to the swift 

video recording pace. 

• During the robot's harvesting trajectory, successful trajectory and cutting without 

accidents are observed.  

• In RGB analysis, cucumber values consistently rank lower than stem ends, vines, 

and leaves. Vines exhibit the highest RGB values between plant components. The 

B value shows ineffectiveness for detection purposes because plant components 

share the similar value in B. 

• Analysis of cucumber properties reveals that samples with higher G values can 

tolerate more force. Moreover, a straighter cucumber withstands greater axial loads, 

and increasing diameter correlates with increased peak load tolerance. An increase 

in length correlates with a decrease in peak axial load. However, more samples and 

tests are needed to verify this. The system design should consider the worst-case 

scenario to ensure that no damage occurs to the surface of cucumbers during 

harvesting.  

• ImageJ and Fiji exhibit successful background removal and successful boundaries 

detection of plant components. 

• RoboFlow platform shows accurate cucumber bounding box identification.  

• Geometry analysis in MATLAB aligns well with real cucumber shapes, regardless 

of curve fitting order, as long as it is not linear fitting. 

• Python script for manipulation of RGB-XYZ data shows promise in filtering pixels 

based on input RGB intervals and sorting them based on Z value. 
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• Cost analysis anticipates a minimum 35% reduction in cucumber harvesting costs 

over a 5-year period with the proposed automation. 

• OEE demonstrates improvement from 71% to 85% after shifting form manual 

harvesting to automation. 
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5. CONCLUSION AND FUTURE 

The conclusion of this study is as follows. 

1. Proposed harvesting framework is promising because:  

• Successful harvesting framework (like camera installations and cutting blades) 

• Successful near-real-time detection using YOLO 

• Successful robot trajectory with minor contact with plant 

2. Presented false negatives in detection may be mitigated by dynamic camera 

movements. 

3. Detection accuracy is not conclusive for final cutting point at this stage. 

4. Cucumber characteristics influence peak load tolerance: increasing G value, 

curvature, and length decreases the peak force. However, increasing diameter and 

sensor angle rises the peak load. 

5. Geometry analysis shows a good curve fitting. 

6. Cost analysis reveal potential improvements. 

For the future there are some suggestions:  

1. Test under various lighting conditions. 

2. Manage directly raw RGB-XYZ data from 3D camera for cucumber shape 

detection. 

3. Cuts & grips cucumbers simultaneously.  

4. Study on cost analysis in more depth. 

5. Send a command to the client (robot) automatically.  

6. Collect data on greenhouse environment for modeling. 
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APPENDICES 

APPENDIX A. UR3e specifications 

The UR3e specifications are mentioned as Figure A-1. More information regarding 

technical specification of UR3e robot on reference [18]. 

 

Figure A-1. UR3e specifications 
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APPENDIX B. D435if: Intel RealSense software and specifications 

By combining LiDAR and stereo depth technology, these cameras generate point clouds 

based on time-of-flight sensors, providing both colour and geometry information about the 

scene. 

Due to their ability to capture depth information, 3D cameras are valuable for accurately 

determining positions. Several studies utilize 3D cameras from manufacturers like 

Microsoft and Canon. 

The process encompasses several steps: estimating extrinsic parameters, rectifying left and 

right images, calculating disparities to obtain the data cloud, and measuring object 

distances. To precisely pinpoint positions, the use of 3D cameras is imperative, given their 

ability to provide depth data. Various studies employ a diverse array of 3D cameras from 

manufacturers such as Microsoft and Canon. 

A thorough examination of the Intel RealSense 3D Webcam D435if is conducted as it is 

utilized in this study. Figure B-1 showcases its physical components. The information 

presented here is sourced from Intel's official website. 

 

Figure B-1. Intel RealSense 3D Webcam D435if physical components 

Intel produces 3D cameras under the RealSense brand, and the D4 series, including models 

like D435 and D455, incorporates LiDAR and stereo depth technologies. Although each 

series has distinct characteristics, they are commonly utilized in machine-vision-based 



 

65 
 

devices. The D435if operates on a USB 5V power supply, consuming approximately 1.5 

W. Below, the capabilities of this specific 3D camera are explored in detail. 

Intel RealSense 3D Webcam D435if possesses the distinctive capability to capture colour 

information and XYZ data simultaneously. Moreover, module data can be extracted from 

this camera. In this context, depth refers to the distance between each image point and the 

camera. Utilizing time-of-flight sensors, this camera acquires depth data, facilitating the 

generation of a point cloud for reconstructing the scene's geometry. Additionally, with its 

RGB cameras, the Intel RealSense 3D Webcam D435if can furnish colour information for 

images as shown in Figure B-2. 

 

Figure B-2. An illustrative example of the D435if's output. 

An overview of the camera key specifications is presented in Table B-1. 

Table B-1. An overview of the key camera specifications, highlighting the key parameters. 

 



 

66 
 

APPENDIX C. Camera setup and calibration  

Dynamic Calibrator software is used for calibrating D435 series cameras. As depicted in 

Figure C-1, initially, the camera is connected to a laptop, and the RealSense software is 

launched. 

 

Figure C-1. Camera setup 

Subsequently, a transition to 2D mode is performed to enable simultaneous access to RGB 

and 3D modes, as illustrated in Figure C-2. The upper right side corresponds to the 3D 

mode, while the lower right side represents the RGB mode. The left side is associated with 

the Inertial Measurement Unit (IMU) and the camera's position, which is a specific feature 

in the D435if camera. 

 

Figure C-2. Switching different modes in camera 
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There is a document available on the Intel website titled "Intel RealSense Calibration Print 

Target," which is shown in Figure C-3. 

 

Figure C-3. Dynamic calibration print target 

The next step involves running the Intel RealSense Dynamic Calibrator software. For this 

study, version 2.13.1 of the software is utilized. As illustrated, the Intel RealSense 

Calibration print target should be printed. The page needs to be positioned in various 

orientations, directions, and distances from the camera to calibrate the XYZ mode, as 

depicted in Figure C-4. 

 

Figure C-4. The process of x, y, and z calibration 

The process for calibrating the RGB mode is the same as the XYZ mode calibration. 

Following the XYZ calibration, the RGB calibration interface appears, and the printed page 

should be moved in different directions and angles, as depicted in Figure C-5. 
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Figure C-5. RGB calibration and different positions that dynamic calibration print target should be placed 
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APPENDIX D. Managing RGB-XYZ data in Python 

The target is the position of the stem end, determined by applying mathematical 

processes to the identified RGB values. Initially, the centre of the cucumber is 

determined using the following equations: 

 

 

Then, the length and width of the cucumber is calculated using the following equations. 

The maximum x (y) represents the average of the 1000 maximum x (y) values in a group. 

 

 

Finally, the position of stem end is; 
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APPENDIX E. Client interfaces 

Generally, the interface can be accomplished using six methods, as shown in Figure E-1 

each with its specific criteria, equipment, and methods. The following line provides further 

insight into them. 

 

Figure E-1. All interfaces provided by UR companies 

Primary/Secondary interfaces: According to the company's information, UR controllers 

serve as the central intelligence for these robots, overseeing both motion control and 

communication with external servers. The controller consistently monitors the robot's 

position and status, relaying this real-time information to external devices. The 

programming language employed in these robots is URScript, through which external 

devices transmit commands. Upon receiving a URScript code, the robot executes the 

corresponding command, essentially allowing the UR controller to share the robot's current 

state information and respond to URScript inputs from external devices, such as an image 

processing unit. 

Real-time interfaces: It functions similarly to a primary and secondary interface, differing 

only in the transition and update rates. 

Dashboard server interfaces: The Universal Robot company offers users the capability to 

transmit straightforward commands, such as pause and load, from an external source. This 

feature is facilitated through a dashboard server, with the robot seamlessly receiving these 

commands via TCP/IP socket communication. 
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Socket communication interfaces: Data transfer occurs through socket communication 

between the robot and external devices. In this communication setup, the robot functions 

as the client, while the external device operates in the role of the server. 

Extensible Markup Language Remote Procedure Call (XML-RPC) interfaces: URScript is 

limited in performing complex calculations. To address this, Remote Procedure Call (RPC) 

utilizes XML language to facilitate data transfer between programs via sockets. Through 

XML-RPC, integration with other software packages becomes possible, enhancing the 

capabilities of URScript. 
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APPENDIX F. Container 

Designing a container for collecting cucumbers during automated harvesting is a crucial 

aspect of the process. The container should meet some requirements. Firstly, it should have 

sufficient capacity to hold a significant quantity of cucumbers without overflowing, 

ensuring it can effectively accommodate the harvested produce. Secondly, the container's 

structure needs to be stable and capable of withstanding the weight and impact of falling 

cucumbers. Durability and resistance to damage are essential attributes. The container 

should be designed for easy access, allowing for the convenient removal of the collected 

cucumbers. Additionally, it should prevent cucumbers from rolling out or being damaged 

during collection, which may involve incorporating a secure cover to ensure the cucumbers 

remain protected and contained. Finally, in the future, a system should be developed to 

detect when containers are full. Another approach involves determining the maximum 

number of cucumbers in each greenhouse row. Then, at the end of each row, the robot 

would dump the full container to prepare for the next row. Data collection to determine the 

maximum cucumber count per row in the farm is essential. 
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APPENDIX G. Geometry analysis  

The raw XYZ data got from 3D camera for each cucumber sample are presented in 

Tables G-1 to G-5. 

Table G-1. The output data gained from 3D camera for the borders of the initial cucumber sample 

Section Vector X (m) Y (m) Z (m) 

Δy 

(cucumber 

diameter) 

Section 1 

Vector 1 -0.046 0.009 0.207 

31 mm 

Vector 2 -0.047 0.040 0.205 

Section 2 

Vector 1 -0.036 0.016 0.208 

29 mm 

Vector 2 -0.036 0.043 0.203 

Section 3 

Vector 1 -0.024 0.022 0.209 

31 mm 

Vector 2 -0.025 0.053 0.210 

Section 4 

Vector 1 -0.015 0.023 0.208 

33 mm 

Vector 2 -0.015 0.056 0.211 

Section 5 

Vector 1 -0.006 0.012 0.211 

37 mm 

Vector 2 -0.005 0.049 0.208 

Section 6 

Vector 1 0.001 0.005 0.210 

35 mm 

Vector 2 0.001 0.040 0.206 

Section 7 

Vector 1 0.006 -0.004 0.212 

42 mm 

Vector 2 0.007 0.038 0.208 
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Table G-2. The data obtained from the 3D camera for the boundaries of the second cucumber sample 

Section Vector X (m) Y (m) Z (m) 

Δy 

(cucumber 

diameter) 

Section 1 

Vector 1 -0.088 0.033 0.209 

18 mm 

Vector 2 -0.089 0.051 0.211 

Section 2 

Vector 1 -0.072 0.030 0.209 

20 mm 

Vector 2 -0.072 0.050 0.210 

Section 3 

Vector 1 -0.057 0.026 0.211 

28 mm 

Vector 2 -0.056 0.054 0.213 

Section 4 

Vector 1 -0.036 0.027 0.211 

25 mm 

Vector 2 -0.035 0.052 0.215 

Section 5 

Vector 1 -0.018 0.025 0.214 

28 mm 

Vector 2 -0.018 0.053 0.219 

Section 6 

Vector 1 -0.006 0.027 0.213 

24 mm 

Vector 2 -0.006 0.051 0.221 

Section 7 

Vector 1 0.006 0.024 0.216 

23 mm 

Vector 2 0.007 0.047 0.217 
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Table G-3. Data acquired from the 3D camera for the edges of the third cucumber sample 

Section Vector X (m) Y (m) Z (m) 

Δy 

(cucumber 

diameter) 

Section 1 

Vector 1 -0.048 0.029 0.232 

17 mm 

Vector 2 -0.048 0.046 0.227 

Section 2 

Vector 1 -0.035 0.024 0.229 

14 mm 

Vector 2 -0.036 0.038 0.225 

Section 3 

Vector 1 -0.025 0.020 0.235 

13 mm 

Vector 2 -0.025 0.033 0.223 

Section 4 

Vector 1 -0.004 0.018 0.237 

12 mm 

Vector 2 -0.004 0.030 0.223 

Section 5 

Vector 1 0.017 0.023 0.240 

13 mm 

Vector 2 0.016 0.036 0.223 

Section 6 

Vector 1 0.030 0.031 0.225 

13 mm 

Vector 2 0.030 0.044 0.230 

Section 7 

Vector 1 0.040 0.036 0.227 

9 mm 

Vector 2 0.039 0.045 0.228 
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Table G-4. Information obtained from the 3D camera for the boundaries of the fourth cucumber sample 

Section Vector X (m) Y (m) Z (m) 

Δy 

(cucumber 

diameter) 

Section 1 

Vector 1 -0.048 0.017 0.207 

26 mm 

Vector 2 -0.047 0.043 0.203 

Section 2 

Vector 1 -0.028 0.019 0.206 

26 mm 

Vector 2 -0.028 0.045 0.202 

Section 3 

Vector 1 -0.012 0.023 0.203 

27 mm 

Vector 2 -0.012 0.050 0.204 

Section 4 

Vector 1 -0.003 0.020 0.205 

29 mm 

Vector 2 -0.001 0.049 0.205 

Section 5 

Vector 1 0.015 0.019 0.203 

28 mm 

Vector 2 0.015 0.047 0.202 

Section 6 

Vector 1 0.029 0.018 0.202 

25 mm 

Vector 2 0.029 0.043 0.202 

Section 7 

Vector 1 0.041 0.016 0.206 

22 mm 

Vector 2 0.041 0.038 0.203 
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Table G-5. Data acquired from the 3D camera for the edges of the fifth cucumber sample 

Section Vector X (m) Y (m) Z (m) 

Δy 

(cucumber 

diameter) 

Section 1 

Vector 1 -0.049 0.035 0.216 

13 mm 

Vector 2 -0.049 0.048 0.218 

Section 2 

Vector 1 -0.044 0.029 0.219 

15 mm 

Vector 2 -0.043 0.044 0.216 

Section 3 

Vector 1 -0.031 0.025 0.220 

15 mm 

Vector 2 -0.030 0.040 0.219 

Section 4 

Vector 1 -0.018 0.022 0.223 

14 mm 

Vector 2 -0.018 0.036 0.220 

Section 5 

Vector 1 -0.007 0.025 0.222 

15 mm 

Vector 2 -0.007 0.040 0.222 

Section 6 

Vector 1 0.003 0.027 0.224 

14 mm 

Vector 2 0.004 0.041 0.222 

Section 7 

Vector 1 0.010 0.033 0.223 

13 mm 

Vector 2 0.009 0.046 0.225 
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APPENDIX H. Detailed data collection plan 

Having an understanding of the shapes and colours of all plant components and the 

physical environment within the greenhouse can help further process modeling and image 

processing. 

Recommended data collection themes for cucumber appearance are length, diameter, and 

geometry. Themes for stem end appearance are length, diameter, geometry, and stem end 

angle with cucumber. Data collection themes for vines/stalk appearance is only diameter. 

Suggested themes for leaves appearance are length and shape. Data collection on RGBs 

of cucumber, stem end, vines, leaves, blossom end is recommended. Data collection on 

blossom end appearance includes length, diameter, geometry, and blossom end angle 

with cucumber. Distribution profile of cucumbers and angle of stem end and vines are 

also two other themes. Data collection themes for greenhouse environment includes 

growth height from ground, lower height, upper height, and consecutive pods distance. 

Themes for greenhouse environment are general layout, pod and cucumber distance, gap 

in each row, length of each row, parallel rails distance, rail width, cucumber and frame 

distance, harvesting cycle (growth rate), and number of pods in each row. 

For each mentioned theme, information on definition, data collection methods, the 

instruments used, sample frequency, data type, data sources, limitations, anticipated time 

requirements, minimum number of collectors, sample size, and sketches of the parameters 

are needed, which are elaborated as follows. 

First, cucumber appearance is a crucial factor to consider because the image processing 

unit needs to recognize its external features for detection. There are four main parameters 

related to cucumber appearance, and they are elaborated in the rest of the passage. 

The details for data collection on cucumber length are provided in Table H-1. 

 

Table H-1. Data collection plan for length and diameter of cucumber 

  Cucumber length 

(mm) 

Cucumber D 

average (mm) 

Cucumber D 

max (mm) 
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Definition Straight distance 

between stem end 

and blossom end 

Average 

Diameter of 

cucumber 

Max Diameter 

of cucumber 

How? Methods Manual 

measurement 

Manual 

measurement 

Manual 

measurement 

What instruments? Caliper Caliper Caliper 

Why? Which research 

questions will be addressed? 

Shape recognition Shape 

recognition 

Shape 

recognition 

Sample frequency: How 

much/many data 

Random 30 

cucumbers 

Random 30 

cucumbers 

Random 30 

cucumbers 

Data type (continuous or 

discrete, quantitative or 

qualitative) 

Discrete, 

quantitative 

Discrete, 

quantitative 

Discrete, 

quantitative 

Data sources Market, Commercial 

greenhouses 

Market, 

Commercial 

greenhouses 

Market, 

Commercial 

greenhouses 

Limitations N/A N/A N/A 

Predicted needed time 

(minutes) 

60 150 150 

Minimum people needed as 

collectors 

1 1 1 

How often the data is 

collected? 

Multiple sessions Multiple 

sessions 

Multiple 

sessions 
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Sample size: the number of 

data points collected per 

sample 

2 5 5 

When the data are collected?  TBD TBD TBD 

Day or night, What time? TBD TBD TBD 

Sunlight condition (very 

cloudy, cloudy, sunny, strong 

sunlight) 

TBD TBD TBD 

Distance between camera and 

pod 

TBD TBD TBD 

Sketch of theme 

 

 

 

 

The details for data collection on cucumber’s geometry are provided in Table H-2. 

 

Table H-2. Data collection plan for geometry of cucumber 

   Cucumber Geometry 

Definition General shape of cucumbers. One 

example is bell-shape cucumber 
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How? Methods Visual observation 

What instruments? N/A 

Why? Which research questions will be 

addressed? 

shape recognition 

Sample frequency: How much/many data Random 30 cucumbers 

Data type (continuous or discrete, 

quantitative or qualitative) 

Discrete, quantitative 

Data sources Market, Commercial greenhouses 

Limitations N/A 

Predicted needed time (minutes) 30 

Minimum people needed as collectors 1 

How often the data is collected? Multiple sessions 

Sample size: the number of data points 

collected per sample 

1 

When the data are collected?  TBD 

Day or night, What time? TBD 

Sunlight condition (very cloudy, cloudy, 

sunny, strong sunlight) 

TBD 

Distance between camera and pod TBD 

Sketch of theme N/A 
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The details for data collection on length of stem end are provided in Table H-3. 

Table H-3. Data collection plan for stem end’s length and diameter 

  Stem end length 

(mm) 

Stem end D 

mean (mm) 

Stem end D max 

(mm) 

Definition The length of 

stem end 

Average 

Diameter of stem 

end 

Max Diameter of 

stem end 

How? Methods Manual 

measurement 

Manual 

measurement 

Manual 

measurement 

What instruments? Caliper Caliper Caliper 

Why? Which research questions 

will be addressed? 

Shape 

recognition 

Shape 

recognition 

Shape 

recognition 

Sample frequency: How 

much/many data 

Random 30 

leaves 

Random 30 stem 

ends 

Random 30 stem 

ends 

Data type (continuous or discrete, 

quantitative or qualitative) 

Discrete, 

quantitative 

Discrete, 

quantitative 

Discrete, 

quantitative 

Data sources Market, 

Commercial 

greenhouses 

Market, 

Commercial 

greenhouses 

Market, 

Commercial 

greenhouses 

Limitations N/A N/A N/A 

Predicted needed time (minutes) 60 150 60 

Minimum people needed as 

collectors 

1 1 1 

How often the data is collected? Multiple sessions Multiple sessions Multiple sessions 

Sample size: the number of data 

points collected per sample 

2 5 2 

When the data are collected?  TBD TBD TBD 

Day or night, What time? TBD TBD TBD 

Sunlight condition (very cloudy, 

cloudy, sunny, strong sunlight) 

TBD TBD TBD 

Distance between camera and pod TBD TBD TBD 
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Sketch of theme  

 

 

  

 

The details for data collection on geometry of cucumber are provided in Table H-4. 

Table H-4. Data collection plan for geometry of stem end and its angle with cucumber 

  Stem end geometry Stem end angle with 

cucumber 

Definition The profile of stem end 

where it reaches to 

cucumber 

the angle between 

cucumber and stem 

end 

How? Methods Taking pictures and 

interpreting the geometries 

Manual measurement 

What instruments? Camera, geometry analysis 

using math 

protractor 

Why? Which research questions will be 

addressed? 

shape recognition shape recognition 

Sample frequency: How much/many 

data 

Random 150 shapes Random 150 shapes 

Data type (continuous or discrete, 

quantitative or qualitative) 

Continuous, qualitative Continuous, 

qualitative 

Data sources Market, Commercial 

greenhouses 

Commercial 

greenhouses 

Limitations N/A N/A 

Predicted needed time (minutes) 30 30 

Minimum people needed as collectors 1 2 

How often the data is collected? Multiple sessions Multiple sessions 

Sample size: the number of data points 

collected per sample 

1 2 

When the data are collected?  TBD TBD 
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Day or night, What time? TBD TBD 

Sunlight condition (very cloudy, 

cloudy, sunny, strong sunlight) 

TBD TBD 

Distance between camera and pod TBD TBD 

Sketch of theme N/A  

 

 

The details for data collection on Dmean and Dmax of vines are provided in Table H-5. 

Table H-5. Data collection plan for diameters of vine 

  Vines/stalk D mean 

(mm) 

 Vines/stalk D 

max (mm) 

Definition Average Diameter of 

Vines/stalk 

Max Diameter of 

vines/stalk 

How? Methods Manual 

measurement 

Manual 

measurement 

What instruments? Caliper Caliper 

Why? Which research questions will be addressed? Shape recognition Shape recognition 

Sample frequency: How much/many data Random 30 samples 

Data type (continuous or discrete, quantitative or 

qualitative) 

Discrete, quantitative Discrete, 

quantitative 

Data sources Commercial 

greenhouses 

Commercial 

greenhouses 

Limitations N/A N/A 
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Predicted needed time (minutes) 150 150 

Minimum people needed as collectors 1 1 

How often the data is collected? One session One session 

Sample size: the number of data points collected 

per sample 

5 5 

When the data are collected?  TBD TBD 

Day or night, What time? TBD TBD 

Sunlight condition (very cloudy, cloudy, sunny, 

strong sunlight) 

TBD TBD 

Distance between camera and pod TBD TBD 

Sketch of theme 
  

 

The details for data collection on length of leaf are provided in Table H-6. 

 

 

 

Table H-6. Data collection plan for length and shape of leaf 

  Leaf length (mm) Leaf shape 
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Definition maximum distance 

between two points in one 

leave 

General shape of 

leaves like 5 

lobed 

How? Methods Manual measurement Manual 

measurement 

What instruments? Caliper N/A 

Why? Which research questions will 

be addressed? 

Shape recognition Shape recognition 

Sample frequency: How much/many 

data 

Random 30 leaves Random 30 

leaves 

Data type (continuous or discrete, 

quantitative or qualitative) 

Discrete, quantitative Discrete, 

quantitative 

Data sources Commercial greenhouses Commercial 

greenhouses 

Limitations N/A N/A 

Predicted needed time (minutes) 60 30 

Minimum people needed as collectors 1 1 

How often the data is collected? One session One session 

Sample size: the number of data points 

collected per sample 

2 1 

When the data are collected?  TBD TBD 

Day or night, What time? TBD TBD 
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Sunlight condition (very cloudy, 

cloudy, sunny, strong sunlight) 

TBD TBD 

Distance between camera and pod TBD TBD 

Sketch of theme 

 

N/A 

 

The details for data collection on distribution profile are provided in Table H-7. 

Table H-7. Data collection plan for distribution profile 

    Distribution profile 

Definition How cucumbers are distributed around 
the vines 

How? Methods visual observation 

What instruments? N/A 

Why? Which research questions will be addressed? The locations that the robot stops to take 
pictures 

Sample frequency: How much/many data Random 30 pods 

Data type (continuous or discrete, quantitative or 
qualitative) 

Discrete, quantitative 

Data sources Commercial greenhouses 

Limitations N/A 

Predicted needed time (minutes) 60 

Minimum people needed as collectors 1 

How often the data is collected? One session 
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Sample size: the number of data points collected 
per sample 

1 

When the data are collected?  TBD 

Day or night, What time? TBD 

Sunlight condition (very cloudy, cloudy, sunny, 
strong sunlight) 

TBD 

Distance between camera and pod TBD 

Sketch of theme N/A 

 

The details for data collection on RGBs of cucumber, stem end, vine, blossom end, and 

leaf are provided in Table H-8. 

Table H-8. Data collection plan for RGBs of cucumber, stem end, vine, blossom end, and leave 

  Cucumber 
RGB 

Stem end 
RGB 

Vines RGB blossom end 
RGB 

Leaves RGB 

Definition Red, Green 
and Blue 
values of 
colour of 
cucumbers 

Red, Green 
and Blue 
values of 
colour of 
stem ends 

Red, Green 
and Blue 
values of 
colour of 
vines 

Red, Green 
and Blue 
values of 
colour of 
blossom end 

Red, Green 
and Blue 
values of 
colour of 
leaves 

How? Methods Take & 
analyze 
images 

Take & 
analyze 
images 

Take & 
analyze 
images 

Take & 
analyze 
images 

Take & 
analyze 
images 

What 
instruments? 

Camera & 
software 

Camera & 
software 

Camera & 
software 

Camera & 
software 

Camera & 
software 

Why? Which 
research 
questions will be 
addressed? 

Cucumber 
detection 

stem end 
detection 

Vines 
removal 
from image 

cucumber 
detection 

Leaves 
removal 
from image 

Sample 
frequency: How 
much/many data 

200 200 200 200 200 

Data type 
(continuous or 
discrete, 
quantitative or 
qualitative) 

discrete, 
quantitative 

discrete, 
quantitative 

discrete, 
quantitativ
e 

discrete, 
quantitative 

discrete, 
quantitativ
e 
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Data sources Commercial 
greenhouses
, Market 

Commercial 
greenhouses
, Market 

Commercia
l 
greenhouse
s, Market 

Commercial 
greenhouses, 
Market 

Commercial 
greenhouse
s, Market 

Limitations N/A N/A N/A N/A N/A 

Predicted 
needed time 
(minutes) 

200 200 200 200 200 

Minimum people 
needed as 
collectors 

1 1 1 1 1 

How often the 
data is collected? 

One session One session One session One session One session 

Sample size: the 
number of data 
points collected 
per sample 

1 1 1 1 1 

When the data 
are collected?  

TBD TBD TBD TBD TBD 

Day or night, 
What time? 

TBD TBD TBD TBD TBD 

Sunlight 
condition (very 
cloudy, cloudy, 
sunny, strong 
sunlight) 

TBD TBD TBD TBD TBD 

Distance 
between camera 
and pod 

TBD TBD TBD TBD TBD 

Sketch of theme N/A N/A N/A N/A N/A 

 

The details for data collection on angle between stem end and vine are provided in Table 

H-9. 
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Table H-9. Data collection plan for angle between stem end and vine 

  Angle between stem end and vines 

Definition In plant, the stem end of each cucumber has an angle 
with its vine when looking at front view 

How? Methods Manual measurement 

What instruments? protractor 

Why? Which research questions will 
be addressed? 

Stem end detection 

Sample frequency: How much/many 
data 

50 

Data type (continuous or discrete, 
quantitative or qualitative) 

Discrete, quantitative 

Data sources Commercial greenhouses 

Limitations N/A 

Predicted needed time (minutes) 50 

Minimum people needed as 
collectors 

1 

How often the data is collected? one session 

Sample size: the number of data 
points collected per sample 

1 

When the data are collected?  TBD 

Day or night, What time? TBD 

Sunlight condition (very cloudy, 
cloudy, sunny, strong sunlight) 

TBD 

Distance between camera and pod TBD 
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Sketch of theme  

 

 

The details for data collection on lower/upper height growth from ground are provided in 

Table H-10. 

Table H-10. Data collection plan for lower/upper height growth from ground 

  Lower (upper) height (m) 

Definition Distance between ground and the lowest (highest) 

cucumber's stem end 

How? Methods Manual measurement 

What instruments? measuring tape 

Why? Which research questions will be 

addressed? 

Finding: 1. Needed acutation of robot 2. Robot 

height 

Sample frequency: How much/many data Random 50 pods 

Data type (continuous or discrete, 

quantitative or qualitative) 

Discrete, quantitative 

Data sources Commercial greenhouses 

Limitations 1. Measurement error (inaccurate tools, vertical 

error, etc.) 

Predicted needed time (minutes) 100 

Minimum people needed as collectors 1 

How often the data is collected? One session 
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Sample size: the number of data points 

collected per sample 

2 

When the data are collected? TBD 

Sketch of theme  

 

 

The details for data collection on consecutive pods distance are provided in Table H-11. 

Table H-11. Data collection plan for consecutive pods distance 

  Consecutive pods distance (m) 

Definition The distance between the centres of two consecutive pods 

in the same row 

How? Methods Manual measurement 

What instruments? measuring tape 

Why? Which research questions 

will be addressed? 

The horizontal step that the robot moves, then stops and 

starts taking picture in the vertical direction 

Sample frequency: How 

much/many data 

Random 5 samples 

Data type (continuous or discrete, 

quantitative or qualitative) 

Discrete, quantitative 

Data sources Commercial greenhouses 

Limitations 1. Measurement error (vertical error, inaccurate tools, etc.) 

Predicted needed time (minutes) 10 
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Minimum people needed as 

collectors 

1 

How often the data is collected? One session 

Sample size: the number of data 

points collected per sample 

1 

When the data are collected? TBD 

 

Some parameters to understand the greenhouse environment are as follows.The details for 

data collection plan are provided in Table H-12. 

Table H-12. Data collection plan for general layout, pod and cucumber distance and gap in each row 

  General layout Pod and 

cucumber 

distance 

Gap in each row 

(m) 

Definition Consecutive 

linear rows 

Distance 

between a pod's 

bottom and the 

 lowest cucumber 

from the same 

pod 

The free distance in 

each row 

How? Methods Observation Manual 

measurement 

Manual measurment 

What instruments? N/A measuring tape measuring tape 

Why? Which research 

questions will be 

addressed? 

Robot design Robot size 1. Robot size, 2. 

Accident avoidance 

Sample frequency: How 

much/many data 

N/A Random 50 pods Random 5 

consecutive rows 
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Data type (continuous or 

discrete, quantitative or 

qualitative) 

Qualitative Discrete, 

quantitative 

Discrete, 

quantitative 

Data sources Commercial 

greenhouses 

Commercial 

greenhouses 

Commercial 

greenhouses 

Limitations N/A 1. Measurment 

error 

(vertical error, 

inaccurate tools, 

etc.) 

1. Measurment error 

 (vertical error, 

inaccurate tools, etc.) 

Predicted needed time 

(minutes) 

10 100 10 

Minimum people 

needed as collectors 

1 1 1 

How often the data is 

collected? 

One session One session One session 

Sample size: the number 

of data points collected 

per sample 

N/A 2 1 

When the data are 

collected? 

TBD TBD TBD 

Length of each row, parallel rails distance, and rail width 

The details for data collection on length of each row are provided in Table H-13. 
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Table H-13. Data collection plan for length of each row, parallel rails distance, and rail width 

  Length of each 

row (m) 

Parallel rails 

distance 

Rail width (m) 

Definition The rail length The distance 

between 

 two rails in 

one row 

The width of one single rail 

How? Methods Manual 

measurment 

Manual 

measurment 

Manual measurment 

What instruments? measuring tape measuring 

tape 

Caliper 

Why? Which research 

questions will be 

addressed? 

Speed of robot Robot width  Future improvement on 

the robot by elimination of 

harvesting trolley 

Sample frequency: 

How much/many data 

Random 2 rows Random 3 

rows 

Random 3 rails 

Data type (continuous 

or discrete, 

quantitative or 

qualitative) 

Discrete, 

quantitative 

Discrete, 

quantitative 

Discrete, quantitative 

Data sources Commercial 

greenhouses 

Commercial 

greenhouses 

Commercial greenhouses 

Limitations 1. measuring 

tape size, 2. 

Measurment 

errors 

N/A 
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Measurement 

errors 

Predicted needed time 

(minutes) 

10 10 10 

Minimum people 

needed as collectors 

1 1 1 

How often the data is 

collected? 

One session One session One session 

Sample size: the 

number of data points 

collected per sample 

1 1 1 

When the data are 

collected? 

TBD TBD TBD 

 

The details for data collection plans are provided in Table H-14. 

Table H-14. Data collection plan for cucumber and frame distance, harvesting cycle and number of pods 

  Cucumber and frame distance Harvesting 

cycle (growth 

rate) 

Number of pods 

in each row 

Definition There is a horizontal metal frame 

above ground in greenhouse: For 

placing  

container under cucumbers, the 

container should be placed in that 

distance 

The number of 

days that take 

to have ripened 

cucumbers 

The number of 

pods in each row 

to find the speed 

of harvesting 

How? Methods Manual measurment Interviewing Observation 

What 

instruments? 

measuring tape N/A N/A 

Why? Which 

research 

questions will be 

addressed? 

Container design For the date of 

real tests in 

farm 

Robot 

performance 
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Sample 

frequency: How 

much/many data 

Random 30 pods N/A N/A 

Data type 

(continuous or 

discrete, 

quantitative or 

qualitative) 

Discrete, quantitative discrete, 

quantitative 

discrete, 

quantitative 

Data sources Commercial greenhouses Commercial 

greenhouses's 

people 

Commercial 

greenhouses 

Limitations N/A N/A N/A 

Predicted 

needed time 

(minutes) 

60 20 20 

Minimum 

people needed 

as collectors 

1 1 1 

How often the 

data is 

collected? 

One session One session One session 

Sample size: the 

number of data 

points collected 

per sample 

2 N/A N/A 

When the data 

are collected? 

TBD TBD TBD 
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Appendix I. Boundary detection using ImageJ and Fiji 

Image processing for detection requires specialized platforms. ImageJ and Fiji, open-

source programs, stand out for its versatility in handling various image formats. Offering a 

range of adjustments such as thresholding and brightness modification, they empower users 

to fine-tune visual data. After importing an image, analysis involves extracting specific 

information and measurements, utilizing pre-existing plugins, or creating custom ones for 

advanced tasks. In this study, segmentation and thresholding are performed initially, 

followed by utilization of some detection plugin to identify the borders and edges of plant 

components. 

The results of applying colour threshold and some other filters, are shown in Figure 4-10. 

The system removed the background and focused on green colours. By utilizing the colour 

deconvolution option, quality of image processing is enhanced. Additionally, the edges are 

eroded to enhance the quality of connecting points and edges as shown in Figure 4-11. The 

only unresolved step in this part of study involves accurately keeping the boundaries of 

cucumbers while excluding the vines and leaves’ boundaries. Future research will require 

detailed geometric analysis to differentiate between cucumber boundaries and those of the 

vines and leaves. Once this understanding of geometry is established, the cucumber's 

boundaries can be retained while the boundaries of vines and leaves are removed, 

facilitating cucumber detection. 

 

Figure I-1. Background removal 
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Figure I-2. The deconvolution option and finding the edges of plant components and final polish on edge detection 

using eroded option 
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Appendix J. Cucumber bounding box detection using Roboflow platform 

Like YOLO, first images are labeled in RoboFlow. After the training is completed, the 

model is tested with three images, and one sample is presented in Figure 4-12. The model 

also provides the position of each detected cucumber, along with its height, width, and 

confidence level. 

 

Figure J-1. The sample test used to see the accuracy of trained model 
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