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ABSTRACT

Several studies are available that use gene expression data to infer cell-cell inter-

actions. Nevertheless, most of these studies target intra-cellular interactions. The

advent of spatial expression data paves the way for methodologies capable of deduc-

ing interactions, spanning both intra- and inter-cellular domains. However, spatial

data also presents new challenges, including noisy and high-dimensional data and

sparse representation. We propose a new model based on a graph neural network

to predict cell-cell interaction from spatial data. Specifically, the study constructs

a graph from the spatial data, forming the foundation for the model that combines

the ability of Long Short-Term Memory and Graph Neural Network. The model’s

unique ability capitalizes on Long Short-Term Memory’s sequence learning and Graph

Neural Network’s graph-based potential, designed to predict links within the spatial

context. The model exhibits enhanced predictive capabilities through rigorous testing

compared to similar approaches. Our investigation demonstrates that integrating our

pipeline with the backward search technique yields the highest area under the curve

(Area under Receiver Operating Characteristic curve) score. Furthermore, we have

conducted a comparative analysis, juxtaposing this performance against two alter-

native approaches, SEAL (learning from Subgraphs, Embeddings and Attributes for

Link prediction) and GCNG (Graph Convolutional Neural Networks for Genes). Our

results demonstrate that integrating our pipeline with the backward search technique

yields the highest Area under the ROC Curve score. The effectiveness of our approach

is validated on two well-known datasets, seqFISH+ and Merfish, which capture the

spatial intricacies of cellular communication.

Keywords : cell-cell interaction prediction, graph convolutional neural network, spatial

transcriptomics, feature selection, LSTM.
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CHAPTER 1

Introduction

1.1 Basics Of Molecular Biology

Molecular biology is deals with the biological processes at the molecular level, un-

derstanding the interactions between and within various cellular components. In

cell-cell interaction, molecular biology plays a pivotal role in unraveling the intricate

mechanisms governing cell communication [1].

At the heart of cell-cell interactions are signaling molecules, often proteins or

peptides, that transmit information between cells. These signaling events coordinate

physiological processes, including development, immune response, and tissue home-

ostasis. Understanding these interactions at the molecular level provides insights into

the regulatory networks that govern multicellular organisms [1]. One fundamental

aspect is the concept of ligand-receptor interactions. Ligands are signaling molecules

released by one cell, and receptors are proteins on the surface of another cell that

recognize and bind to these ligands. This binding triggers a torrent of molecular

events within the recipient cell, initiating a response. These interactions are highly

specific, with each ligand binding to a corresponding receptor akin to a lock and key

mechanism [17].

Molecular biology techniques, such as RNA sequencing, come into play to profile

the gene expression patterns in interacting cells. RNA sequencing allows scientists

to analyze the entire transcriptome, providing a comprehensive view of which genes

are activated or repressed during cell-cell interactions. This information is critical

for identifying the key players in signaling pathways and understanding how these

1



1.1. BASICS OF MOLECULAR BIOLOGY

interactions influence cellular behavior [1]. Moreover, advancements in molecular bi-

ology have led to the development of sophisticated tools like CRISPR-Cas9, enabling

researchers to manipulate specific genes and observe the effects on cell behavior [11].

This precision in genetic editing is instrumental in deciphering the functional roles of

various molecular components involved in cell-cell communication. Molecular biology

provides the toolkit for investigating the molecular intricacies of cell-cell interactions.

It sheds light on how cells communicate, coordinate their activities, and maintain

the delicate balance required for the proper functioning of biological systems. Apply-

ing molecular biology techniques in studying cell-cell interactions is foundational for

advancements in developmental biology, immunology, and cancer research [17].

1.1.1 Cells

Cells are the fundamental units of life, representing the basic structural and func-

tional entities of all living organisms. In molecular biology, cells are the building

blocks that form tissues, organs, and entire organisms. Understanding the intricacies

of cell biology is essential for unraveling the complexities of molecular interactions

and the functioning of living systems. At a basic level, cells are enclosed by a lipid

bilayer comprehended as the cellular membrane, which separates the internal cellu-

lar environment from the external surroundings. This membrane serves as a selective

barrier, regulating the passage of molecules in and out of the cell. Within the cell, var-

ious organelles, such as the nucleus, mitochondria, and endoplasmic reticulum, carry

out specialized functions critical for the cell’s survival and function. In multicellular

organisms, cells communicate with one another via complex signaling networks. Cell-

cell interactions are essential for coordinating processes such as development, immune

response, and maintaining tissue homeostasis. These interactions involve exchanging

signaling molecules, such as hormones, growth factors, and cytokines, between neigh-

boring cells [1].

Distinct types of cells exist in the body, each specialized for particular functions.

Stem cells, for example, can distinguish into different cell types, contributing to tissue

repair and rejuvenation. Neurons transmit electrical signals in the nervous system,

2



1.1. BASICS OF MOLECULAR BIOLOGY

while immune cells are crucial in defending the body against pathogens. Refinements

in molecular biology approaches have entitled scientists to explore different cell types

and their functions. Single-cell RNA sequencing, for instance, enables gene expression

profiling in individual cells, uncovering heterogeneity within cell populations. This

heterogeneity is crucial for understanding the dynamic nature of cell populations and

their responses to environmental cues [11].

Cells are the basic units of life, and their interactions form the foundation of bi-

ological processes. Molecular biology provides tools to study cells at the molecular

level, revealing the intricacies of cellular functions, signaling pathways, and the dy-

namic nature of cell populations within multicellular organisms. The study of cells

is pivotal for advancing our understanding of health, disease, and the fundamental

principles of life [1].

1.1.2 Deoxyribonucleic acid and Ribonucleic acid

Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) are fundamental molecules

that play pivotal roles in storing and transmitting genetic information, serving as the

building blocks of life. DNA, often described as the ”genetic blueprint,” contains the

instructions necessary for all living organisms’ growth, development, and functioning.

DNA possesses a unique double-helix network of two long strands that coil about each

other in a right-handed spiral. The structure is stabilized by hydrogen bonds between

complementary pairs of nucleobases. The four types of nucleobases found in DNA

are adenine (A), cytosine (C), guanine (G), and thymine (T). Adenine couples with

thymine, and cytosine couples with guanine, forming the basis for the complementary

nature of DNA strands [1].

The information encoded in DNA is transferred into RNA through a process known

as transcription. RNA, like DNA, is composed of nucleotides but is typically single-

stranded. The three main types of RNA are messenger RNA (mRNA), transfer RNA

(tRNA), and ribosomal RNA (rRNA). mRNA serves as a temporary copy of the ge-

netic code, carrying it from the DNA in the cell nucleus to the cellular machinery,

where proteins are synthesized. The nucleotide structure of RNA is similar to that

3



1.1. BASICS OF MOLECULAR BIOLOGY

of DNA, with a phosphate group, ribose sugar, and nucleobases. However, in RNA,

thymine is substituted by uracil (U). RNA polymerase reads the DNA template dur-

ing transcription and synthesizes a complementary RNA strand, incorporating uracil

instead of thymine. The functional significance of DNA lies in its role as a hereditary

molecule, passing genetic information from one generation to the next. It undergoes

processes like replication, ensuring faithful transmission of genetic material during

cell division. Mutations in DNA can lead to genetic variations, providing the raw

material for evolution [1].

Conversely, RNA plays a crucial role in the synthesis of proteins, acting as an

intermediary between the genetic code in DNA and the actual protein production.

The information carried by mRNA is translated by ribosomes, with the help of tRNA,

into a specific sequence of amino acids, forming proteins essential for cellular structure

and function. DNA and RNA are intricately connected molecules, with DNA serving

as the stable repository of genetic information and RNA facilitating the dynamic

processes of gene expression and protein synthesis. Together, they orchestrate the

molecular ballet that defines life’s complexity and diversity [9].

1.1.3 Ligands

In molecular biology, ligands bind to a specific site on a target molecule, often a

larger biomolecule, to form a complex. Ligand-receptor interactions are fundamental

in cellular communication and are pivotal in various physiological processes. Un-

derstanding the nature of ligands and their interactions is crucial for unraveling the

intricacies of signaling pathways and molecular events within cells.

Ligands can vary widely in structure and function. They can be ions, small

molecules, or large proteins. Hormones, neurotransmitters, and growth factors are

typical examples of ligands involved in cell signaling. The specificity of ligand binding

is often determined by the shape and chemical properties of both the ligand and the

binding site on the target molecule.

Ligands are not limited to interactions with cell surface receptors. Some ligands

are designed to act within the cell, binding to receptors located inside the cell. In

4
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this case, ligands often must pass through the cell membrane to reach their target

receptors. Understanding ligand-receptor interactions is crucial in drug development.

Many pharmaceutical drugs work by acting as ligands, either mimicking the action of

endogenous ligands or blocking specific interactions. Designing drugs that selectively

target certain receptors allows for developing therapies with fewer side effects [17].

Ligands are critical players in cellular communication, mediating essential pro-

cesses in health and disease. The study of ligand-receptor interactions provides in-

sights into the molecular mechanisms governing cellular responses and opens avenues

for therapeutic interventions in various fields, including medicine and biotechnology

[6].

Fig. 1.1.1: The basic functionality of ligand and receptor for cell-cell communication
[3].

1.1.4 Receptors

The most well-known class of ligands is signaling molecules that attach to receptors

on the surface of cells. These interactions initiate signaling cascades that regulate

various cellular responses. For instance, neurotransmitters binding to receptors on

5



1.2. RNA SEQUENCING

neurons trigger nerve impulses, while hormones binding to cell surface receptors can

influence gene expression and cell behavior. Receptors are molecules, often proteins,

that receive signals from the external environment or other cells and initiate a specific

cellular response. Receptors play a central role in cell communication, allowing cells

to respond to their surroundings and coordinate various physiological processes [6].

When a ligand binds to a receptor, it triggers a series of events known as signal

transduction, leading to a cellular response. This process often involves the activation

of intracellular proteins, changes in gene expression, or alterations in cell behavior.

The specificity of receptor-ligand interactions is critical for the proper functioning

of cells. Receptors exhibit high specificity, recognizing and binding to particular

ligands with precise affinity. This specificity ensures that cells respond appropriately

to specific signals [17].

Receptors are involved in diverse cellular processes, including:

• Cell Growth and Differentiation: Receptors regulate cell division and differen-

tiation in response to growth factors.

• Immune Response: Immune cells use receptors to detect signals from pathogens

and other immune cells.

• Neuronal Signaling: Neurotransmitter receptors are crucial in transmitting sig-

nals between nerve cells [6].

1.2 RNA Sequencing

RNA sequencing (RNA-Seq) is a powerful molecular biology technique that provides

a comprehensive and quantitative transcriptome analysis, encompassing all the RNA

molecules within a cell or tissue at a specific moment. It has revolutionized the study

of gene expression by enabling researchers to profile RNA molecules, measure their

abundance, identify novel transcripts, and understand the dynamic nature of gene

regulation. The RNA-Seq process begins with isolating RNA from the biological

6



1.2. RNA SEQUENCING

sample of interest, such as cells or tissues. This RNA can be a mix of various types,

including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA),

and non-coding RNA. The next step involves converting the isolated RNA into a com-

plementary DNA (cDNA) library through reverse transcription. This cDNA library

represents a snapshot of the RNA present in the sample [4].

Once the cDNA library is prepared, high-throughput sequencing technologies se-

quence the cDNA fragments. The most common sequencing platforms include Illu-

mina, Ion Torrent, and PacBio. These platforms generate millions or even billions of

short DNA sequences, or ”reads,” in a massively parallel fashion. Each read corre-

sponds to a fragment of cDNA derived from an RNA molecule in the original sample.

After sequencing, the resulting data must be processed and analyzed. Depending

on the experimental design, Bioinformatics tools align the short reads to a reference

genome or transcriptome. This alignment step allows researchers to map the se-

quenced fragments back to their genomic or transcriptomic origin, providing insight

into the expression levels of specific genes and transcripts [4]. Quantification of gene

expression is a primary goal of RNA-Seq analysis. The number of reads mapped to

each gene or transcript serves as a measure of its abundance. This information en-

ables researchers to compare gene expression levels across different conditions, such as

healthy and diseased tissues, before and after a specific treatment. Differential gene

expression analysis identifies up or downregulated genes under specific experimental

conditions.

7
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Fig. 1.2.1: the basic steps involved in generation of RNA-sequencing dataset [4].

RNA-sequencing is not limited to measuring gene expression alone; it can also

capture alternative splicing events, identify novel transcripts, and detect non-coding

RNAs. Alternative splicing, a process where a single gene can produce multiple

mRNA isoforms, contributes to the diversity of proteins generated from a limited

number of genes. RNA-Seq permits researchers to specify and quantify additional

splice variants, providing a more nuanced understanding of gene function. The abil-

ity of RNA-sequencing to detect novel transcripts and non-coding RNAs has expanded

our understanding of the complexity of the transcriptome. It has revealed the pres-

ence of long non-coding RNAs and small non-coding RNAs that play crucial roles

in regulating gene expression, cellular processes, and disease. RNA sequencing is a

transformative technology that has revolutionized the field of genomics. Its ability to

provide a detailed and quantitative snapshot of the transcriptome allows researchers

to explore gene expression, alternative splicing, and non-coding RNA biology with

unprecedented depth. The information derived from RNA-sequencing experiments

contributes significantly to our understanding of cellular processes, development, and

the molecular mechanisms underlying various diseases [9].

8
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1.3 Spatial Transcriptomics Data

Spatial transcriptomics is a cutting-edge field in genomics that goes beyond traditional

gene expression analysis by preserving the spatial context of gene activity within tis-

sues. Unlike conventional transcriptomics approaches, which provide insights into the

abundance of mRNA molecules in a bulk tissue sample, spatial transcriptomics seeks

to unravel the intricate patterns of gene expression about the spatial organization of

cells. This spatial dimension is critical for understanding the complex architecture of

tissues and the nuanced interplay between different cell types [5].

In spatial transcriptomics, the data generated includes information about the

identity and abundance of transcripts and retains the positional information of where

these transcripts are located within the tissue. This is achieved through innovative

technologies that allow researchers to map the transcriptome onto the spatial co-

ordinates of the tissue. Techniques like seqFISH (Sequential Fluorescence In Situ

Hybridization) and MERFISH (Multiplexed Error-Robust Fluorescence In Situ Hy-

bridization) enable the visualization of gene expression at the single-cell level while

preserving the spatial relationships between neighboring cells [15].

The spatial transcriptomics workflow typically involves the collection of tissue

samples, followed by the preservation of spatial information during the extraction of

RNA. High-throughput sequencing techniques, such as RNA-Seq, are then employed

to capture the transcriptome of individual cells. Importantly, spatial information is

retained by preserving the spatial coordinates of the cells during the library prepara-

tion and sequencing steps. One of the critical advantages of spatial transcriptomics

is its ability to provide a holistic view of the gene expression landscape within tis-

sues. This approach allows researchers to identify the types of cells present and their

spatial distribution and interactions [5]. For instance, spatial transcriptomics can

unveil the communication networks between different cell types in cell-cell interac-

tions, shedding light on signaling cascades and molecular dialogues within the tissue

microenvironment. The spatially resolved gene expression data obtained from spatial

transcriptomics experiments has diverse applications. It can aid in identifying spa-
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tially restricted cell populations, elucidate the role of specific genes in defined tissue

regions, and provide insights into how cells coordinate their activities in a spatially

organized manner. This spatially aware transcriptomic data is precious in areas such

as developmental biology, neuroscience, and research on cancer, where the spatial

organization of cells is crucial for understanding physiological processes and disease

mechanisms [5].

1.4 Cell-cell communication

Cell-cell communication is a fundamental biological process that allows cells to har-

monize their activities, respond to environmental cues, and participate in the intricate

orchestration of physiological processes. This communication is vital for the correct

functioning and homeostasis of multicellular organisms, where diverse cell types func-

tion concurrently in a coordinated way to support the overall health and functionality

of tissues and organs. At the core of cell-cell communication is the exchange of signals

between neighboring cells. These signals can take various forms, including chemical,

electrical, and mechanical signals, each playing a specific role in different biological

contexts [7]. The communication between cells is not a passive process; instead, it

involves a dynamic interplay where cells send and receive signals, allowing them to

sense their environment and respond accordingly. Chemical signaling is a predomi-

nant mode of cell-cell communication. It involves the release of signaling molecules,

often called ligands, by one cell and the recognition of these molecules by receptors on

the surface of a neighboring cell. This interaction triggers a cascade of events within

the recipient cell, leading to a specific response. Ligands can be small molecules, pro-

teins, or even nucleic acids, and they bind to receptors with high specificity, ensuring

the precision of the cellular response [6].

10
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Fig. 1.4.1: Different ways in which the cells can communicate [3]

There are different ways in which the cell can communicate as illustrated in Figure

1.4.1.

Autocrine Signaling: Autocrine signaling is a cell communication mode where

ligands a cell produces to bind to receptors on the same cell that secreted them. In

this self-stimulatory process, the cell signals itself, often to regulate its activity or

maintain a certain cellular state. This form of signaling allows cells to respond to

their secretions, enabling a fine-tuned control mechanism. For instance, a cell might

release a signaling molecule, such as a growth factor, and then detect and respond to

that signal via its receptors. Autocrine signaling is vital for various cellular functions,

including growth, differentiation, and immune responses.

Paracrine Signalling: In paracrine signaling, cells release signaling molecules (lig-

11
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ands) that affect nearby target cells in the immediate environment. Ligands travel

short distances to interact with receptors on neighboring cells, influencing their be-

havior or activities. This type of communication is crucial for coordinating cellular

activities within specific tissues or microenvironments. For example, immune cells

release signaling molecules to alert nearby cells of an infection, triggering a localized

response. Paracrine signaling regulates tissue repair, inflammation, and neuronal

communication.

Signaling Across Gap Junctions: Gap junctions provide a direct physical con-

nection between adjacent cells, allowing the passage of ions, small molecules, and

signaling molecules directly from one cell to another. This direct cell-to-cell commu-

nication mechanism is known as signaling across gap junctions. It enables rapid and

coordinated responses among connected cells. This form of communication is com-

mon in tissues that require synchronized activity, such as cardiac muscle; through

gap junctions, cells share information, collectively coordinating their functions.

Endocrine Signalling: Endocrine signaling involves the release of signaling molecules,

typically hormones, into the bloodstream by endocrine glands. These molecules travel

through the circulatory system to reach distant target cells in various body parts.

Unlike autocrine, paracrine, and gap junction signaling, endocrine signaling has no

distance limitations. It enables cells to communicate across long distances, allowing

for systemic coordination and regulation of physiological processes. For instance, the

thyroid gland secretes hormones into the bloodstream that affect target cells through-

out the body, influencing metabolism and energy balance [3].

Cell-cell communication is closely intertwined with cell-cell interaction, where the

physical and molecular contacts between cells influence their behavior and function.

Cell-cell interactions encompass a broad spectrum of phenomena, ranging from di-

rect physical connections, such as gap junctions that permit direct communication

between the cytoplasm of neighboring cells, to indirect signaling through diffusible

molecules like growth factors and hormones. In the context of tissues and organs, cell-

cell interactions are vital for processes like development, immune response, and tissue

repair [2]. For example, during embryonic development, precise cell-cell communica-
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tion guides the formation of tissues and organs, ensuring that cells differentiate into

the right cell types and migrate to their designated locations. Cell-cell communica-

tion coordinates the response to pathogens in the immune system, allowing different

immune cells to work together to mount an effective defense. Cell-cell communi-

cation is also integral to pathological processes, including cancer. Dysregulation of

communication pathways can lead to uncontrolled cell growth, invasion of surround-

ing tissues, and metastasis. Understanding the nuances of cell-cell communication

in both healthy and diseased states is crucial for developing targeted therapies that

modulate these interactions to restore normal cellular function [6].

1.5 Graphs

Graphs comprise nodes (vertices) (V ) and edges (E). Nodes symbolize entities, and

edges depict connections or relationships between them. In the context of cell-cell

interaction studies, nodes represent individual cells (ci ∈ V ), while edges represent

pairwise interactions (eij ∈ E) between cells. This graph-based representation, de-

noted by G = (V,E), effectively captures the inherent relational structure within

complex systems, offering a versatile framework for modeling and analyzing diverse

interactions, including those within molecular signaling pathways. The edges act as

conduits of information, conveying the connections between entities and providing a

visual and computational means to dissect and interpret the intricate relationships

within biological networks.[14].

1.5.1 Adjacency Matrix

The adjacency matrix, given by A = {aij}, is a square matrix that encodes the con-

nections within a graph. In the context of cell-cell interaction graphs, every row and

column of the adjacency matrix represents a cell, and the element aij at row i and

column j indicates whether there is a direct interaction between cell i and cell j. A

value of 1 signifies a connection (edge) between the corresponding cells, while 0 indi-

cates the absence of a direct interaction. This binary matrix provides a concise and
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computationally efficient way to capture the network’s structure, making it a funda-

mental tool in analyzing cell communication patterns within spatial transcriptomics

datasets.[7].

Fig. 1.5.1: An exemplar adjacency matrix that illustrates the interactions between
nodes in a network derived from the data. 1 denotes a relationship, 0 denotes none.

1.5.2 Directed and Undirected Graphs

Directed and undirected graphs represent relationships between entities, denoted as

G = (V,E). In a directed graph, edges (eij ∈ E) have a defined direction, signifying

a one-way relationship between nodes (vi, vj ∈ V ). This analogy holds true for

directed cell-cell interactions, where the influence or signaling flows from one cell

to another. Conversely, undirected graphs denote symmetric relationships without

a specified direction, reflecting mutual interactions. In cell-cell interaction graphs,

undirected edges represent bidirectional signaling. These graph types are critical

in spatial transcriptomics, where the directionality of molecular signaling and the

symmetry of interactions play a significant role in understanding complex cellular

communication networks. Additionally, the adjacency matrix A = {aij} encodes

these relationships, where aij = 1 indicates a connection among the nodes vi and vj,

and aij = 0 indicates their absence. [8].
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Fig. 1.5.2: Shows the difference between the directed and undirected graphs.

1.5.3 Attributed graphs

Attributed graphs incorporate additional attributes associated with nodes or edges,

enriching the basic graph structure. In cell-cell interactions, attributed graphs can

represent diverse features like gene expression levels, cell types, or signal strengths.

Nodes and edges carry attribute vectors, offering a multi-dimensional perspective

on cellular relationships. This is particularly valuable in spatial transcriptomics,

where attributing nodes with spatial information or molecular attributes enhances

the understanding of intricate cellular networks. Attribute-rich graphs provide a

comprehensive framework to model complex biological phenomena, enabling nuanced

analyses of cell interactions and spatial organization [8].

1.6 Machine Learning

Machine learning has recently played a key role in analyzing complex biological data

[7] [14]. It can be applied to identify patterns in gene expression profiles, pre-

dict cell-cell communication networks, and uncover hidden relationships within high-
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dimensional spatial transcriptomics datasets. Machine learning models, including

graph-based neural networks, excel at capturing intricate dependencies in biological

data, providing valuable insights into cellular behavior and interaction dynamics [14].

The application of machine learning in biology and medicine is expanding rapidly,

contributing to advancements in personalized medicine, drug discovery, and under-

standing of complex biological processes. As technologies for data generation in the

life sciences continue to evolve, machine learning is poised to play an increasingly

critical role in unraveling the complexities of cell-cell interactions and advancing our

understanding of biological systems [2].

1.6.1 Graph Neural Network

Graph Neural Networks (GNNs) are machine learning models designed to handle data

with a graph or network structure, making them particularly powerful for tasks in-

volving relationships and interactions. In cell-cell interaction studies, where cellular

relationships form a complex network, GNNs are instrumental. Unlike conventional

neural networks that use grid-like data such as images or sequences, GNNs can ef-

fectively capture the intricate dependencies present in graph-structured data. These

networks extend neural network architectures to process and analyze information

from nodes (representing entities, such as cells) and edges (representing connections,

such as interactions between cells) in a graph [18].

Graph Neural Networks (GNNs) represent a transformative paradigm in machine

learning, specifically designed to handle data structured as graphs or networks (G =

(V,E)). Their unique architecture, leveraging message-passing mechanisms, allows

them to effectively capture and propagate information across nodes and edges, making

them adept at addressing tasks involving intricate relationships and interactions.

GNNs have proven particularly influential in cell-cell interaction studies, where

cellular relationships naturally form a complex network [18]. Unlike traditional neural

networks excelling in handling grid-like data (e.g., images, sequences), GNNs are

purpose-built to unravel the complexities embedded in graph-structured data like

cell-cell interaction networks. This distinctive feature positions them as powerful
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tools for understanding and modeling relationships in various domains.

For instance, in cell-cell interaction analysis, GNNs can operate on a graph rep-

resentation G where nodes (vi ∈ V ) represent individual cells and edges (eij ∈ E)

signify interactions between them. The adjacency matrix A = {aij} encodes these

connections, where aij = 1 indicates a connection between nodes vi and vj, and

aij = 0 indicates their absence. By exploiting the inherent structure of the graph and

propagating information across nodes and edges, GNNs can effectively learn to predict

cell-cell interactions based on node and edge features, GNNs can predict the likelihood

of interaction between two cells, potentially uncovering novel or hidden interactions

within the network. Additionally, it can classify cell types; GNNs can leverage node

features and information from neighboring cells to classify cell types within the net-

work, providing insights into cellular composition and organization. These are just a

few examples of how GNNs revolutionize our understanding of cell-cell interactions

and complex biological networks. Their ability to handle graph-structured data ef-

fectively makes them a powerful tool for various tasks like network analysis, drug

discovery, disease classification, and biomarker discovery in computational biology

and beyond [14].

In cell-cell interactions, where the relationships between individual cells weave a

complex network, GNNs provide a versatile and efficient solution. The nodes in the

graph typically represent entities, such as cells, while the edges signify connections

or interactions between these entities. This graph-based representation allows GNNs

to capture the nuanced dependencies and contextual intricacies inherent in cellular

interactions. Traditional machine learning models need help to navigate the intricate

web of relationships in such scenarios. However, GNNs excel in discerning patterns

and extracting meaningful information from these graph structures [15].

The core strength of GNNs lies in their ability to aggregate information from nodes

and edges within a graph. By leveraging this comprehensive understanding of the

relationships between entities, GNNs can make informed predictions or classifications.

This becomes particularly crucial in domains like biology, where individual cells’

behavior and interactions play a pivotal role in overall system dynamics.
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One notable aspect of GNNs is their capacity for representation learning. Through

the iterative processing of node and edge information, GNNs can generate meaningful

embeddings that capture the underlying structure and patterns in the graph. This

representation learning enables GNNs to effectively encode complex relationships,

making them invaluable in predicting cell behavior, understanding disease mecha-

nisms, or optimizing biological processes.

The adaptability of GNNs extends beyond biological domains to various fields

where relationships are best represented as graphs. Applications span social network

analysis, recommendation systems, cybersecurity, transportation networks, and more.

GNNs provide a versatile framework that accommodates diverse data structures, of-

fering a powerful solution for understanding and leveraging complex relationships in

real-world scenarios. Graph Neural Networks stand as a groundbreaking development

in machine learning, specifically tailored for tasks involving graph-structured data.

Their adeptness in capturing complex relationships, as exemplified in cell-cell inter-

action studies, showcases their transformative potential in understanding intricate

systems. With applications spanning multiple domains, GNNs represent a pivotal

advancement in pursuing more accurate and insightful machine learning models [18].

Fig. 1.6.1: The structure of Deep Graph Convolutional Neural Network (DGCNN),
the underline GNN used in SEAL [18].

In the study of spatial transcriptomics, GNNs can be employed to model the

spatial organization of cells, identify signaling pathways, and predict communication

patterns within tissues. By leveraging the inherent structure of cellular networks,

GNNs contribute significantly to unraveling the complexities of cell-cell interactions

and enhancing our understanding of biological systems [15].
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1.6.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), denoted as LSTM(xt, ht−1, ct−1), represents a

recurrent neural network (RNN) architecture designed to overcome challenges in cap-

turing long-term dependencies within sequential data. This proves crucial in studying

cell-cell interactions, where understanding sequences is critical. Traditional RNNs

suffer from limitations in handling long sequences, but LSTMs address this by intro-

ducing memory cells (ct) and gating mechanisms:

• Input gate (it): Regulates new information flow (xt) into the cell.

• Forget gate (ft): Controls information to be discarded from the previous cell

state (ct−1).

• Cell update: Combines forgotten and new information using cell state updates.

• Output gate (ot): Controls the information output (ht) based on the updated

cell state.

• Hidden state update: Combines the updated cell state and output gate to

produce the new hidden state.

These gating mechanisms enable LSTMs to selectively remember and utilize infor-

mation across long timeframes, making them adept at modeling temporal sequences

in cell-cell interaction studies, gene expression analysis, and other applications with

sequential data. [12].
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Fig. 1.6.2: The basic structure of LSTM [12].

As illustrated in 1.6.2, Long Short-Term Memory (LSTM) networks have signifi-

cantly advanced recurrent neural networks (RNNs) designed to combat the challenges

inherent in handling long-term dependencies – a limitation plaguing traditional RNNs.

The architectural intricacies of LSTMs involve four interconnected layers: the input

gate, forget gate, cell state, and output gate. These layers collaborate to manage the

information flow and control the memory retention within the cell. The LSTM cell

produces two primary outputs: the cell state, acting as the memory reservoir capa-

ble of carrying information across extended sequences, and the cell output, which is

derived from the cell state and transmitted to the subsequent hidden layer.

Unlike conventional RNNs, LSTMs incorporate three logistic sigmoid gates – out-

put, forget, and input gates – and a hyperbolic tangent (tanh) layer. The sigmoid

gates play a pivotal role in determining the relevance of information and deciding

which parts of the data should be preserved and which should be discarded. The

tanh layer, on the other hand, processes selected input information, generating val-

ues in the range of -1 to 1. This combination of gates and layers enables LSTMs to

address the challenges associated with learning long-term dependencies.
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The basic functioning of LSTMs involves several key steps. First, the input gate

processes the current input, deciding which information should be stored in the cell

state. Simultaneously, the forget gate assesses the previous cell state, determining

which information should be discarded. The cell state is then updated by combining

the relevant information from both the input and forget gates. This mechanism allows

LSTMs to selectively remember or forget information over time, enabling the network

to maintain context over extended sequences. Finally, the output gate decides what

information from the cell state should be passed to the next hidden layer, and both

the cell output and the updated cell state are transmitted to the subsequent layer in

the network.

The advantages of LSTMs over traditional RNNs are noteworthy. One of the

primary benefits lies in their ability to handle long-term dependencies effectively, a

critical improvement over the vanishing gradient problem observed in RNNs. The in-

troduction of gated mechanisms in LSTMs provides finer control over the preservation

and forgetting of contextual information. Additionally, LSTMs nearly eliminate the

vanishing gradient problem, contributing to more stable and efficient training of deep

networks. Furthermore, LSTMs exhibit flexibility in handling diverse data types,

including noise, distributed representations, and continuous data. Unlike traditional

models like hidden Markov models (HMMs), LSTMs do not require a fixed number

of states from the outset, offering adaptability in various applications. Long Short-

Term Memory Networks have arisen as a powerful solution for processing sequential

data, mainly where long-term dependencies are crucial. Their intricate architecture,

encompassing gated mechanisms and memory management, enables them to effec-

tively capture and retain information over extended sequences, addressing critical

limitations of traditional RNNs [12].

In studying cell-cell interactions, LSTM aids in modeling the sequential nature of

gene expression patterns. This is essential for understanding how cells communicate

and respond to their microenvironment over time. LSTMs learn patterns in sequential

data, enabling them to discern meaningful signals in complex biological processes [12].
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1.7 Performance Metrics

Performance metrics are crucial as they provide quantitative benchmarks to assess

the effectiveness of predictive models. They offer insights into the model’s accuracy

and ability to discern between different classes, guiding researchers in selecting and

refining models for optimal performance in cell-cell interaction predictions [10].

The prediction of cell-cell communication can help uncover new information in un-

derstanding biological processes and discover some new interactions among or within

cells. This can be difficult due to complexity of the data that arises due to high

dimensionality and sparse nature of the data. Keeping these points in mind, we have

chosen two critical metrics for the evaluation of our model – Accuracy and AUC.

1.7.1 Accuracy

Accuracy is a rudimentary metric that measures the overall correctness of a model’s

predictions. In cell-cell interaction prediction, accuracy quantifies the proportion of

correctly predicted interactions against the total predictions. It is a straightforward

measure, clearly indicating how well the model is performing across the entire dataset.

However, accuracy might be limited in scenarios with imbalanced datasets, where

one class (interaction or non-interaction) dominates, potentially leading to skewed

evaluations [10].

Mathematically, it can be expressed as:

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives

1.7.2 Area Under the Curve

Area under the curve (AUC) is a performance metric widely employed in binary clas-

sification problems, particularly useful when assessing the predictive capabilities of

models in cell-cell interaction studies. The ROC (Receiver Operating Characteristic)

curve, from which AUC is derived, plots the trade-off between true positive rates and
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false positive rates at various thresholds. AUC quantifies the model’s ability to dis-

tinguish between positive and negative instances, regardless of the chosen threshold.

In spatial transcriptomics, where accurate discrimination between cell-cell interac-

tions and non-interactions is crucial, AUC provides a nuanced assessment, especially

when class distribution is imbalanced. A high AUC indicates superior discrimina-

tory power, showcasing the model’s proficiency in distinguishing between different

interaction classes [15].

Fig. 1.7.1: A sample AUC graph with two different classifiers. A perfect classifier is
close to the top left corner of the AUC graph.
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1.8 Motivation

The motivation behind this research stems from the ever-growing importance of un-

derstanding cellular interactions within spatial transcriptomics data. While signifi-

cant progress has been made in deciphering intracellular processes, we focus on un-

raveling the intricate web of cell-cell communication [6]. Recognizing that this facet

plays a pivotal role in tissue function, development, and response to stimuli, there is a

critical need for advanced computational models to navigate spatial data’s complex-

ities. Existing studies have laid a foundation, but challenges persist, such as dealing

with spatial transcriptomics data’s high dimensionality and sparsity [15]. The limited

scope of previous models in capturing the nuanced relationships between diverse cell

types and their interactions underscores the need for a more sophisticated approach.

Moreover, the shift in research emphasis from intracellular to intercellular inter-

actions necessitates tailored methodologies. Our research seeks to address this gap

by leveraging the power of machine learning, particularly Graph Neural Networks

(GNNs) and Long Short-Term Memory (LSTM) networks [16]. This combination

allows for a more accurate representation of spatial relationships and the sequential

nature of cellular interactions. The spatial dimension adds an extra layer of complex-

ity, and the need for effective feature selection methods is apparent. The integration

of Backward Search provides a solution, enhancing the model’s interpretability and

performance.

Our motivation lies in advancing the understanding of cell-cell interactions within

spatial transcriptomics data. By tackling the challenges unique to this domain, we aim

to contribute valuable insights, laying the groundwork for more accurate predictions

and opening avenues for broader applications in spatial transcriptomics and beyond.

1.9 Problem Statement

The research addresses the challenge of predicting cell-cell interactions within intricate

spatial transcriptomics data, characterized by high dimensionality and complexity.
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The spatial relationships inherent in the data are effectively encapsulated in a graph,

G = (V,E,X), where V represents individual cells, E signifies cell-cell interactions,

and X incorporates attribute vectors for each node. The goal is to accurately predict

the cell-cell communication. For this, we first employ ligand-receptor pairs extracted

from spatial data to construct the graph G, where nodes denote cells and edges signify

their interactions. This molecularly enriched graph serves as the basis for predicting

cell-cell interactions within the spatial context.

To achieve this prediction, we combined a Graph Neural Network (GNN) with

Long Short-Term Memor(LSTM), leveraging their respective proficiencies in handling

graph-structured data and sequential information. The ligand-receptor pairs, integral

to cellular interactions, are seamlessly integrated into the GNN framework. The

resulting graph is represented by an adjacency matrix A, where aij is 1 if an edge exists

between nodes vi and vj, and 0 otherwise. This research addresses the complexities of

spatial transcriptomics by mathematically modeling cell-cell interactions, providing

a robust framework for predictive analysis within high-dimensional spatial data.
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1.10 Proposed Method

The objective is to predict cell-cell interactions within complex and high-dimensional

spatial data. We have devised a pipeline tailored for this purpose, beginning with the

conversion of spatial data into a graph format. This graph, denoted as G = (V,E,X),

encapsulates the spatial relationships inherent in the data. Here, V is a finite set of

nodes representing individual cells, E is a set of edges signifying cell-cell interactions,

and X encompasses attribute vectors associated with each node.

Crucially, the ligand-receptor pairs extracted from the spatial data contribute to

the construction of this graph [13]. The molecular interactions between cells are cap-

tured within G, with nodes embodying individual cells and edges encapsulating the

interactions between these cells. The attribute vector X linked to each node encapsu-

lates pertinent information about the corresponding cell, allowing us to contextualize

the spatial relationships within the data.

To carry out the prediction of cell-cell interactions, we employ a Graph Neu-

ral Network (GNN). This computational approach is particularly apt for handling

graph-structured data. Furthermore, the ligand-receptor pairs, integral to cellular

interactions, are effectively considered within this framework. The resulting graph is

further represented by an adjacency matrix A, a square matrix of size N ×N where

N is the number of nodes. Elements aij in the adjacency matrix are defined as 1 if

there exists an edge between nodes vi and vj, and 0 otherwise.

1.10.1 Contributions

Cell-cell communication has seen significant advancements in recent years, leading

to a deeper understanding of the field. However, several challenges still need to

be solved in dealing with the nature of spatial data, including sparsity and high

dimensionality. This work addresses these challenges by introducing a new pipeline

that combines graph neural networks with long short-term memory. This research

builds upon previous work of GCNG[15] and SEAL [18], and some of the highlights

of the research are listed below:
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• We introduced an innovative pipeline for predicting cell-cell interactions. Our

methodology is designed to handle various spatial transcriptomics datasets ef-

fectively, which can be challenging due to their high dimensionality and sparsity.

• We strategically combined Long Short-Term Memory (LSTM) with a graph

neural network; our method goes beyond conventional approaches, offering a

nuanced understanding of cellular relationships. It improved upon the existing

methodology based on graph neural networks to produce the best results.

• We applied the proposed method to different spatial transcriptomics datasets.

Additionally, we improved the existing methodologies (like GCNG), extending

them by using other feature selection techniques to select the best features

(genes). We provided a detailed outlook of our methodology by comparing it

against the existing methods to highlight the improvement it provides.

• Leveraging the power of NetworkX and UMAP, we visually mapped cellular con-

nectivity within spatial transcriptomics data. These visual insights contribute

to a deeper understanding of the cellular landscape by highlighting different cell

clusters with strong cell-cell interactions in the cell network.

References

[1] Bruce Alberts. Molecular biology of the cell. Garland science, 2017.

[2] Erick Armingol et al. “Deciphering cell–cell interactions and communication

from gene expression”. In: Nature Reviews Genetics 22.2 (2021), pp. 71–88.

[3] Mary Ann Clark, Jung Choi, and Matthew Douglas. “Propagation of the Sig-

nal”. In: Biology 2e (2018).

[4] Jiawen Cui et al. “Analysis and comprehensive comparison of PacBio and

nanopore-based RNA sequencing of the Arabidopsis transcriptome”. In: Plant

Methods 16 (2020), pp. 1–13.

27



1.10. PROPOSED METHOD

[5] Ruben Dries et al. “Advances in spatial transcriptomic data analysis”. In:

Genome research 31.10 (2021), pp. 1706–1718.

[6] Rui Hou et al. “Predicting cell-to-cell communication networks using NATMI”.

In: Nature communications 11.1 (2020), p. 5011.

[7] Suoqin Jin et al. “Inference and analysis of cell-cell communication using CellChat”.

In: Nature communications 12.1 (2021), p. 1088.
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CHAPTER 2

Prediction of Cell-cell

Communication from Spatial

Transcriptomics Data Using a

Long Short-term Memory Graph

Neural Network

2.1 Introduction

Cell-cell interactions form a complex network of signaling pathways where molecular

signals intricately regulate cellular activities . This intricate interplay is essential

for orchestrating diverse physiological functions, from development and tissue home-

ostasis to immune responses [20]. Cells communicate through a complex network of

signalling pathways, where molecular signals are exchanged to regulate cellular activi-

ties [23]. Understanding cell-cell interactions is crucial for deciphering the mechanisms

underlying health and disease. Recent advancements in technologies like single-cell

RNA sequencing and spatial transcriptomics have provided unprecedented insights

into the molecular dialogues between cells, enabling the exploration of intra- and in-

tercellular interactions. In contemporary research, there has been a notable transition

in focus from intracellular interactions, which pertain to molecular processes occurring

within individual cells, to intercellular interactions [24], which involve communication
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and signaling between neighboring cells. This shift reflects a growing recognition of

the significance of cell-cell communication in the intricate orchestration of biologi-

cal processes, shedding light on the dynamic interplay between cells within complex

biological systems. [2]. This is where spatial data comes into play.

In the context of biological research, spatial data refers to information about the

spatial arrangement and distribution of biological entities, such as cells within tis-

sues and organs [5]. Unlike traditional gene expression data, spatial data capture the

specific location of individual cells, providing a spatial context to molecular informa-

tion [4]. This type of data is crucial because it offers a three-dimensional perspective

on the cellular landscape, allowing researchers to explore how cells are organized in

tissues. The importance of spatial data lies in its ability to unravel the spatial re-

lationships between cells, shedding light on the intricate architecture of tissues. By

understanding the spatial context of gene expression, researchers can decipher the

spatial organization of cell types, identify signalling gradients, and investigate how

cells interact within their microenvironment [17]. This spatial awareness is crucial for

unraveling the complexities of cellular behavior.

2.2 Related Work

In line with this, advanced computational tools, such as Single-cell graph neural net-

work (scGNN) [19], have emerged as invaluable instruments for analyzing single-cell

RNA sequencing (scRNA-seq) data. Key features encompass modeling cell-type-

specific regulatory signals and formulating cell relationships from a pruned Graph

Neural Network (GNN) cell graph. The GNN cell graph is a structural foundation,

representing cellular interactions and regulatory influences. The graph is refined

through pruning to emphasize essential connections, facilitating a more focused anal-

ysis of the intricate web of cellular relationships and regulatory signals specific to

individual cell types. scGNN demonstrated superior performance over existing tools.

Integrating gene regulatory signals and cell network representations contributes to

its success, with promising results validated across various datasets, showcasing its
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potential in unraveling intricate cell relationships and contributing to disease stud-

ies. Addressing the challenges of high dimensionality and sparsity in RNA-sequencing

data, the paper offers insights into how the proposed framework navigates these issues,

enhancing its applicability to real-world datasets and bolstering its robustness in cap-

turing meaningful biological information within vast and sparse genomic landscapes

[19].

DeepSignalingLinkNet [11] is a deep-learning model that predicts signaling cas-

cades critical in cancer biology by integrating transcriptomics and copy number data

with protein-protein interactions. Addressing the limitations of existing models that

rely on gene co-expression networks or shortest-path-based protein-protein interaction

analyses, deepSignalingLinkNet is designed to predict direct and sparse signaling (Pre-

dicting specific signaling cascades with a limited molecular set.) cascades precisely. It

ensuring a more focused and targeted approach rather than encompassing the entire

network. This precision enhances the utility of deepSignalingLinkNet in uncovering

key regulatory pathways without unnecessary complexity, contributing to a more nu-

anced understanding of cellular signaling events. Trained on curated KEGG signaling

pathways, the model identifies informative omics and protein-protein interaction fea-

tures in a data-driven manner. The broader context underscores the significance of

understanding signaling pathways in cancer molecular biology and the challenges in

uncovering comprehensive signaling networks that regulate tumor development and

drug response [11].

Prior research has mainly focused on deciphering intracellular interactions, re-

vealing critical challenges within the broader context of cell-cell interactions. These

investigations, while valuable, underscore the need for a more comprehensive explo-

ration of intercellular dynamics to capture the broader landscape of cellular commu-

nication within the spatial context. The transition from intracellular to intercellular

studies represents a critical shift in focus, recognizing the intricate interplay between

cells and emphasizing the importance of studying cell interactions within their spatial

microenvironment.

The graph convolutional neural networks for inferring gene interaction (GCNG)
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[25] is a novel method to infer gene interactions involved in cell-cell communication

from spatial single-cell expression data. It leverages graph convolutional neural net-

works (GCNs) to encode the spatial relationships between cells and the expression

of gene pairs within each cell. Unlike traditional correlation-based methods, GCNG

captures intra- and inter-cellular interactions using the graph structure and gene ex-

pression data. The method is particularly suitable for spatial transcriptomics, where

high-throughput information about intra- and inter-cellular interactions is available.

GCNG outperforms unsupervised methods such as Giotto and Spatial PC, providing

accurate predictions of extracellular gene interactions involved in cell-cell commu-

nication. Its effectiveness is demonstrated on SeqFISH+ and MERFISH datasets,

showcasing its ability to predict meaningful interactions and overcome the limita-

tions of unsupervised methods [25].

Hist2ST [27] represents a groundbreaking deep-learning paradigm tailored to pre-

dict RNA-seq gene expression within the spatial transcriptomics framework, leverag-

ing histology images. This innovative model adopts a multifaceted approach involving

extracting 2D visual features, capturing details such as shapes and spatial relation-

ships through convolutional modules, incorporating transformer and graph neural

network modules to capture spatial relations, and, notably, integrating a Long Short-

Term Memory (LSTM) mechanism. LSTM, as a recurrent neural network, introduces

a temporal learning dimension to the model, enabling it to discern and utilize tem-

poral dependencies within the data effectively. Through extensive testing on diverse

cancer and standard datasets, Hist2ST emerges as a frontrunner, demonstrating supe-

rior gene expression prediction and spatial region identification capabilities compared

to existing methodologies. Furthermore, pathway analyses highlight Hist2ST’s pro-

ficiency in preserving critical biological information. It solidifies its standing as a

robust tool for extracting spatial transcriptomics insights from histology images and

unraveling intricate tissue molecular signatures [27].

Both of these papers highlight the importance of spatial data, but they still need to

employ appropriate feature selection methodologies. The significance of feature selec-

tion lies in its ability to enhance model performance, reduce overfitting, and enhance
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interpretability. In many datasets, redundant or irrelevant features often introduce

noise and decrease the efficiency of a model. Additionally, in high-dimensional data,

selecting a subset of relevant genes not only improves model efficiency but also helps

reduce computational costs [26].

Feature selection techniques play a crucial role in enhancing the predictive power of

models, especially in complex tasks like predicting cell-cell interactions from spatial

transcriptomics data. In this research, three distinctive feature selection methods,

backward search, information gain, and chi-squared, were strategically chosen for

their unique strengths and relevance to the study’s objectives. While various methods

exist, our selection was motivated by their proven effectiveness in similar studies and

their suitability for capturing spatial transcriptomics patterns [9].

Backward search stands out as an effective technique for feature selection due to its

systematic approach of iteratively removing features to improve model performance.

This method optimizes the model’s capacity to capture relevant information while

mitigating the risk of overfitting, contributing to the robustness of the predictions [7].

Information gain is a widely used method in machine learning and provides a

principled way to assess the relevance of features based on their ability to reduce

uncertainty or entropy in the dataset. Its capability to measure the impact of features

on the overall dataset’s entropy aligns well with the study’s objective of uncovering

significant contributors to cell-cell interactions [2].

Chi-squared is a statistical test commonly used for categorical data which com-

plements the feature selection process by evaluating genes’ independence and associ-

ation with cell-cell interactions. In spatial transcriptomics, where genes often exhibit

complex relationships, chi-squared analysis provides a statistical lens to discern the

significance of each gene in contributing to the observed interactions. By considering

the distribution of genes and their associations with cell-cell interactions, chi-squared

augments the feature selection process, offering insights into genes that might play

pivotal roles in mediating spatial cellular communication [16].

Filter Methods: In exploring feature selection, metrics like information gain, chi-

squared, and correlation coefficients are computationally efficient but may overlook
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feature dependencies. It motivates our strategic choice of methods to balance effi-

ciency and nuanced relationship capture in spatial transcriptomics data.

Wrapper Methods: As an alternative, wrapper methods, like Recursive Feature

Elimination (RFE) and forward/backward search, involve iterative model training to

assess feature subsets’ impact on performance. This nuanced approach aligns with

our selection rationale, balancing efficacy and computational efficiency in the context

of spatial transcriptomics data. [22].

Each technique has advantages and trade-offs, making the selection dependent

on the dataset characteristics and modeling goals. For instance, filter methods are

computationally efficient but may not capture feature dependencies, while wrapper

methods can be more accurate but computationally intensive. The choice depends

on the dataset size, computational resources, and the interpretability required for the

specific task [22]. By enhancing predictive model performance and offering insights

into the molecular nuances of spatial transcriptomics data, these techniques play a

pivotal role in unraveling complex cellular interactions. Our research focuses on deci-

phering cell connections, where nodes symbolize individual cells and edges represent

cell-cell interactions. To predict these interactions, we employed a methodology akin

to the GCNG approach.

2.3 Materials and Methods

2.3.1 Datasets

Exploring the spatial nuances of gene expression, our study delves into publicly

available datasets, namely seqFISH+ and MERFISH. These spatial transcriptomics

datasets capture the intricate spatial organization of gene expression within tissues,

offering a distinctive perspective. seqFISH+ captures gene expression patterns in

intact tissues, enabling the exploration of intricate cellular relationships. On the

other hand, MERFISH employs a combinatorial labelling strategy, facilitating the

high-throughput mapping of RNA transcripts with spatial precision. They form the
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foundation for investigations into cellular heterogeneity, spatial organization, and

gene expression dynamics within complex biological environments. In this study,

both datasets are from the mouse cortex tissue; seqFISH+ comprises 3,000 gens for

10,000 cells, while MERFISHis consists of 10,050 cells with 1,368 genes.

Table 2.3.1 depicts the details of datasets including the number of cells, number

of genes and tissue.

Table 2.3.1: Details of the datasets used in this work.

Dataset Accession Tissue No. of Cells No. of Genes

seqFISH+ Mouse Cortex 10,000 3,000

MERFISH GSE202638 Mouse Cortex 10,050 1,368

2.4 Proposed Method

The objective is to predict cell-cell interactions within complex and high-dimensional

spatial data. We have devised a pipeline tailored for this purpose, beginning with the

conversion of spatial data into a graph format. This graph, denoted as G = (V,E,X),

encapsulates the spatial relationships inherent in the data. Here, V is a finite set of

nodes representing individual cells, E is a set of edges signifying cell-cell interactions,

and X encompasses attribute vectors associated with each node.

Crucially, the ligand-receptor pairs extracted from the spatial data contribute to

the construction of this graph [21]. The molecular interactions between cells are cap-

tured within G, with nodes embodying individual cells and edges encapsulating the

interactions between these cells. The attribute vector X linked to each node encapsu-

lates pertinent information about the corresponding cell, allowing us to contextualize

the spatial relationships within the data.

To carry out the prediction of cell-cell interactions, we employ a Graph Neu-

ral Network (GNN). This computational approach is particularly apt for handling
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graph-structured data. Furthermore, the ligand-receptor pairs, integral to cellular

interactions, are effectively considered within this framework. The resulting graph is

further represented by an adjacency matrix A, a square matrix of size N ×N where

N is the number of nodes. Elements aij in the adjacency matrix are defined as 1 if

there exists an edge between nodes vi and vj, and 0 otherwise.

The proposed methodology based on a modified version of the SEAL (learning

from Subgraphs, Embeddings and Attributes for Link prediction) method [28] con-

sists of three steps, namely, 1) Preprocessing step, 2) Network Construction, and 3)

Prediction. The preprocessed data is used to construct the graph network based on

which the graph neural network makes the prediction. The fundamental steps com-

prise certain substeps, including feature selection, subgraph extraction, construction

of node information matrix, and learning from the graph convolution neural network.

These steps will be explained in the upcoming section of the paper and are shown in

figure 2.4.1.
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Fig. 2.4.1: The overall proposed methodology with various steps involved.

2.4.1 Step 1: Data Preprocessing

Data preprocessing is crucial to render the data suitable for analytical pursuits. The

normalization process is integral, involving the scaling of individual samples to a con-

sistent magnitude. This could entail adjusting gene expression values within cells in

spatial data, ensuring a uniform scale across varied genes. For instance, normalizing

expression levels within each cell to a standardized sum value facilitates compara-

bility. Simultaneously, transformation techniques may address challenges like high

dimensionality or skewed gene expression distributions [13]. Common transforma-

tions, such as logarithmic conversions, mitigate skewed distributions, enhancing the

dataset’s adaptability to specific analyses. Leveraging the power of Scanpy, a versa-
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tile Python library, we conducted robust data preprocessing tasks, including trans-

formation and normalization. Scanpy’s capabilities, inspired by Seurat, ensure the

generation of high-quality, standardized datasets, providing a solid foundation for

subsequent analyses [18].

Additionally, given the inherent sparsity in spatial data, employing sparse matrix

representations or specialized algorithms tailored for sparse datasets becomes perti-

nent. Spatial coordinate transformations might also be employed, particularly when

integrating data from disparate spatial sources or aligning diverse spatial datasets to

a standard coordinate system. The amalgamation of these preprocessing strategies

is instrumental in refining data quality, reducing noise, and establishing a conducive

foundation for meaningful spatial analyses and modeling. [19]

2.4.2 Step 2: Network Construction

Determining the neighbors of each cell involves a spatial approach using Euclidean

distance calculations in the image coordinates. The Euclidean distance is computed

for all cell pairs, and a distance threshold is applied to identify neighboring cells.

The selection of the threshold is a crucial step, and in this study, it was determined

through 10-fold cross-validation. For 2D images, the threshold value was chosen

to represent the number of neighbors in physical contact with a cell. Taking the

seqFISH+ cortex data as an example, the set of neighbors was used to construct an

adjacency matrix (A) with a size of 10,000 x 10,000, where 10000 is the number of

cells in the seqFISH+ dataset. The binary adjacency matrix A(b) is symmetric, with

A
(b)
ij = A

(b)
ji = 1 if cells i and j are neighbors and 0 otherwise. Similarly, a weighted

adjacency matrix A(w), with A
(w)
ij = A

(w)
ji = weight (euclidean distance) between cells

i and j if cells i and j are neighbors, and 0 otherwise. The two matrices are combined

to obtain a whole adjacency matrix, which is then normalized. This matrix serves as a

representation of the spatial relationships between cells in the dataset. The seqFISH+

dataset is divided into seven ”fields of view”. Each field of view represents a distinct

portion of the sample that is imaged or analyzed separately. In the SeqFish+ dataset,

the profiling includes information from seven fields of view. These fields of view have
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been selected strategically to capture a comprehensive understanding of the biological

sample, and analyzing multiple fields of view provides a more nuanced view of the

spatial gene expression patterns within the tissue or cells under investigation [25].

2.4.3 Step 3: Prediction

After constructing a graph network, the next step is link prediction. It starts with

feature selection. Later, the prediction phase involved constructing a comprehensive

node information matrix comprising node embeddings, labels, and attributes. This

matrix was then fed into a Graph Neural Network, complemented by LSTM, to predict

intricate cell-cell interactions in spatial transcriptomics datasets.

2.4.3.1 Feature/Gene Selection

Feature selection is a critical component in the preprocessing pipeline, focused on

identifying and retaining the most informative features while discarding irrelevant or

redundant ones [1]. Information gain, chi-squared, and backward search are methods

that we choose to achieve this objective. These three feature selection techniques

are widely utilized. A comprehensive comparison is provided, emphasizing the ad-

vantages of using filter and wrapper methods. Unlike some modern feature selection

techniques, these techniques use less computation power [1]. These techniques en-

hance the efficiency and effectiveness of subsequent analyses, ensuring that the model

is built on a refined set of features that genuinely capture the underlying patterns

and relationships in the spatial data.

Chi-squared The chi-squared test is a statistical method used to determine if

there is a significant association between two categorical variables. It compares the

expected and observed frequencies in a contingency table. The resulting chi-squared

statistic helps determine the significance of the association.

The chi-Squared (χ2) test is a statistical method to assess the independence or de-

pendence between categorical variables within a dataset. Originating from inferential

statistics, the chi-Squared test operates on data that can be categorized into distinct
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groups. It is particularly useful when dealing with nominal data, where observations

fall into discrete categories but lack a natural order.

The fundamental premise of the chi-Squared test is to compare the observed fre-

quencies of occurrences in a contingency table with the frequencies that would be

expected if the variables under investigation were independent. The test calculates

a statistic (χ2) based on the squared differences between observed and expected fre-

quencies, normalized by the expected frequencies. The larger the resulting χ2 value,

the greater the discrepancy between observed and expected values. Subsequently,

the calculated χ2 value is compared to a critical value from the chi-Squared distribu-

tion to determine whether the observed and expected frequencies significantly deviate

from independence. If the calculated χ2 value exceeds the critical value, it indicates

a significant association between the variables. Conversely, a lower χ2 value suggests

independence.

The chi-squared statistic is calculated as follows:

χ2 =
∑ (Oi − Ei)

2

Ei

Where:

• χ2 is the chi-squared statistic.

• Oi is the observed frequency in each category.

• Ei is the expected frequency in each category [22].

Information Gain Information gain is a metric used in feature selection to

assess the significance of a feature in terms of its ability to contribute relevant infor-

mation to a predictive model. Particularly employed in decision trees and machine

learning, information gain quantifies the reduction in uncertainty about the target

variable achieved by considering a specific feature.

The calculation of information gain involves evaluating the entropy or impurity

of a dataset before and after considering a feature. Entropy represents the measure

of disorder or unpredictability in a set of data. A high information gain implies
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that a feature provides substantial information about the target variable, making it

crucial for effective prediction. In essence, information gain aids in selecting features

that enhance the model’s predictive performance by reducing uncertainty, thereby

contributing to more accurate and efficient machine learning models.

It quantifies the reduction in entropy (uncertainty) achieved by dividing the

dataset based on the values of a particular variable. Information gain ranks features

based on how well they contribute to the classification task [22].

IG = Entropyoriginal −
∑(

|Subset|
|Total|

× Entropysubset

)
Backward Search Backward search, a feature selection method, operates by

iteratively removing features from a model to enhance its performance. This method

begins by including all available features and systematically eliminates those deemed

less relevant or redundant. The process is driven by the model’s performance, which is

assessed at each step of feature removal. In machine learning, especially when dealing

with high-dimensional datasets, backward search is valuable in enhancing model effi-

ciency, reducing overfitting, and improving interpretability. The method aims to find

the optimal subset of features that maximizes predictive accuracy while minimizing

computational complexity. The backward search algorithm often employs a criterion

such as accuracy, AUC (Area Under the Curve), or other relevant metrics to evaluate

the model’s performance after removing each feature. Features that contribute less

to the model’s predictive power are successively pruned, leading to a refined set that

retains only the most informative attributes. It also has a memory mechanism to

store subsets of features that have been evaluated to avoid redundant evaluations.

While backward search is effective, its computational cost may be relatively high,

especially when dealing with a large number of features. Therefore, it is essential to

strike a balance between feature reduction and computational efficiency, considering

the specific characteristics of the dataset and the goals of the machine learning task

at hand. Overall, backward Search is a valuable tool in feature selection methods,

offering a systematic and data-driven approach to optimizing model performance [8].
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The steps carried out in backward search are defined in algorithm 2.4.1.

Algorithm 2.4.1 Backward Search with Memory

Initialize: Start with the entire set of features: CurrentFeatures = AllFeatures.
Iteration:

while stopping criterion is not met do

for all features in CurrentFeatures do
Remove the feature and form a new subset: NewSubset = CurrentFeatures -
{FeatureToRemove}.

if NewSubset is not in the Memory then
Evaluate the performance criterion on the model with features in NewSubset.
Update the Memory with NewSubset.

if the performance improves then
Update CurrentFeatures to be NewSubset.
Update the selected features if needed.
Output: Return the final selected features.

2.4.3.2 Subgraph Extraction

Based on the SEAL method, we extracted the enclosing subgraph. Enclosed sub-

graph extraction is a process that involves capturing the local neighborhood struc-

tures around specified target nodes, denoted as u and v. In this context, ”enclosing

subgraph” refers to the subgraph induced by considering the union of neighbors of

both u and v up to a certain number of hops (k-hops) [10] in the network. This sub-

graph is tailored for a node pair (u, v). The process is crucial for link prediction tasks,

where the objective is to predict the existence or absence of links between nodes. The

training data contains both positive (existing) and negative (non-existent) links, sam-

pled based on h-hop neighbors for the target nodes u and v. It involves examining

the local structures up to a specified distance around the nodes of interest. Utiliz-

ing subgraphs enables the calculation of various first-order heuristics, like familiar

neighbors, which are valuable features for predicting links in the network. [28].

43



2.4. PROPOSED METHOD

2.4.3.3 Node Information Matrix Construction

This step’s central part is constructing Node Information Matrix, X, which represents

the features or attributes associated with each node (cell) in the spatial graph. It has

three subcomponents including node labelling, node embedding and node attribute

we explain them in the following paragraphs.

Node Labelling: The Double-Radius Node Labeling (DRNL) algorithm is devised

for assigning labels to nodes in enclosing subgraphs precisely to distinguish target

nodes x and y in the context of link prediction. The labels are assigned based on the

double-radius of nodes concerning the target nodes, represented as (d(i, x), d(i, y)).

The algorithm starts by assigning label 1 to the target nodes x and y. Then, labels

are assigned to other nodes based on their double-radius values. DRNL ensures that

nodes with similar relative positions receive similar labels, and it achieves benefits

where the magnitude of labels reflects the distance to the center. The algorithm’s

distinctive features include satisfying specific criteria for nodes i and j based on

their distances to target nodes, ensuring the preservation of magnitude information

in labels. The DRNL algorithm is handy for training or ranking nodes when node

labels are used. The node labeling includes a perfect hashing property, allowing for

closed-form computation, and a lookup table for DRNL is presented for practical

implementation. Notably, the calculation of distances involves temporarily removing

the influence of the other target node to capture the distance between nodes. The

algorithm works to satisfy the following conditions:

1. if d(i, x) + d(i, y) ̸= d(j, x) + d(j, y), then d(i, x) + d(i, y) < d(j, x) + d(j, y) ⇔

fl(i) < fl(j);

2. if d(i, x) +d(i, y) = d(j, x) +d(j, y), then d(i, x)d(i, y) < d(j, x)d(j, y) ⇔ fl(i) <

fl(j).

where fl(i) is the label assigned to node i and (d(i, x), d(i, y)) is the double radius

[28].
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Fig. 2.4.2: The labelling of the nodes based on their distance from the target node.

As illustrated in figure 2.4.2, Double-radius node labeling calculates two types of

distances for each node: the shortest path distance to other nodes and the distance to

nodes within a specified radius. The first radius encompasses nodes reachable within

a single step, while the second radius extends the reach to nodes reachable within two

steps. Combining these two distance metrics results in a label for each node, reflecting

its local and slightly more distant neighborhood relationships. This dual-radius label-

ing approach is particularly useful in graph-based applications where capturing local
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and semi-local connectivity patterns is crucial for graph classification, clustering, or

link prediction tasks. The resulting node labels serve as feature representations that

encode information about the node’s immediate surroundings and broader network

context.

Node Attributes: For the prediction of a link, three primary feature types are

utilized. Inherent in observed node and edge structures, graph structure features en-

compass link prediction heuristics, centrality scores, and structural patterns. Latent

features, obtained through matrix factorization, provide low-dimensional node rep-

resentations, emphasizing global properties but facing challenges in capturing struc-

tural similarities. Explicit features, given as attribute vectors, encompass any non-

structural side information. Examples include word distributions in citation networks

and user profiles in social networks. While graph structure features are handcrafted

and limited, latent features may struggle with interpretability, and explicit features

offer additional context beyond network structure [28].

Node Embeddings: The challenge arises when directly generating embeddings

on the observed network G=(V ,E) using positive and negative training links. If

embeddings are generated directly on G, the model may focus too much on fitting

the link existence information of the training links, leading to poor generalization

performance. A technique known as ”negative injection” is employed to address

the issue at hand. This involves temporarily incorporating the sampled negative

training links (En) into the set of edges (E), thereby creating a new graph G′ =

(V,E∪En). By doing so, both positive and negative training links share the same link

existence information in the embeddings. This strategic move prevents the model from

solely optimizing for the link existence information, leading to improved generalization

performance. The negative injection trick aims to enhance SEAL’s learning process

by mitigating the bias introduced by focusing solely on link existence during training

[28].
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2.4.3.4 Graph Neural Network

Following this, the graph convolutions are employed to extract hidden feature in-

formation from nodes in a graph. The network comprises four graph convolutional

layers, each followed by a hyperbolic tangent (tanh) non-activation function. Tanh

is an activation function that squashes the output to the range [-1, 1]. The architec-

ture involves stacking these convolutional layers to extract multi-hop node features.

This stacking enables the model to capture information from multiple graph levels,

considering different numbers of hops from each node. Additionally, the node states

from each layer are concatenated to form the final node states. This mechanism en-

hances the model’s ability to capture and integrate information across various local

substructures, contributing to the overall predictive performance of the network [28].

The convolutional and dense layers play a crucial role in making predictions based

on the sorted graph representations generated by the SortPooling layer. The network

takes as input the adjacency matrix A of a graph G with n nodes, where each node

has a c-dimensional feature vector represented by the node information matrix X of

an enclosing subgraph.

Underline SEAL’s DGCNN architecture comprises of adjacency matrix A ∈ {1, 0}nXn

of graph G with n number of nodes and each node containing the c dimensional feature

vector as well as the node information matrix X ∈ RnXc of an enclosing subgraph with

each row representing the node, DGCNN employs the following convolution layer:

Z = f( ˜D−1ÃXW ) , (1)

where Ã = A + I, I is the identity matrix, D̃ is the diagonal degree matrix with

D̃i,i =
∑

jÃi,j, W is a trainable graph convolutional parameters, f is a non-linear

activation function, and Z ∈ RnXc′ is the output activation matrix [28].

This convolutional operation allows the model to learn and capture complex pat-

terns and features within the graph structure, contributing to the overall predictive

capabilities of the network [28].
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2.4.3.5 Long Short-Term Memory Layer

The addition of an LSTM layer (Long Short-Term Memory) to the SEAL pipeline

brings about many benefits, including noise reduction by filtering out irrelevant infor-

mation and focusing on relevant sequences, improved generalization by considering the

sequential nature of the data by allowing the model to discern patterns and context

across sequential information, LSTM’s can improve the model’s ability to generalize

to unseen data points while reducing noise.[14]. These improvements are shown in

the later section of the paper when our model is compared against the SEAL. These

results are visible in table 2.6.1 and table 2.6.2.

2.5 Performance Evaluation

Our model’s effectiveness was assessed using the Area Under Curve (AUC) and Re-

ceiver Operating Characteristic (ROC) curve as metrics. The choice of AUC and

ROC is pivotal in binary classification scenarios, particularly in predicting interac-

tions. The ROC curve, fundamental to AUC computation, charts the trade-off be-

tween true positive and false positive rates across diverse threshold settings. Opting

for AUC is strategic as it comprehensively evaluates the model’s ability to discrimi-

nate between positive and negative instances, transcending the influence of a specific

threshold setting. This choice is rooted in the robustness and versatility of AUC

and ROC metrics, making them well-suited for the nuanced evaluation required in

predicting cell-cell interactions. [28].

This involved using both training and testing datasets, encompassing positive (ex-

istent) and negative (non-existent) links. The negative set was created by randomly

selecting an equal number of unconnected pairs of nodes from the network where

no edge connection exists. Notably, these negative pairs were ligand-receptor pairs

chosen randomly from non-interacting gene data. On the other hand, the positive set

comprised known interactions between the samples. These are pairs of genes known to

interact in the given sample. To create the negative set, we randomly selected ligand-

receptor pairs that are not known to interact among the sample. For the training and
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testing split, 10% of the links were arbitrarily removed and set aside as testing data,

while the remaining 90% were utilized as training data. This division was crucial for

assessing the model’s generalization and predictive capabilities on unseen data [25].

SEAL’s γ decaying theory highlighted that a small number of hops is enough to

extract high-order heuristics that help focus on local subgraph structures to capture

complex patterns and relationships. SEAL suggests that such patterns can be effec-

tively captured within a small neighborhood around the target nodes. This concept

is essential for computation efficiency and also aligns with the observation that local

structures often provide valuable information for predicting links in a network [28].

We used three popular feature selection techniques : chi-squared, information

gain, and backward search [22].

The number of features in a machine learning model is a critical decision involving

a trade-off between model complexity and generalization performance. We chose

70 features for all the three feature selection techniques. Increasing the number of

features improves the performance to a certain extent. However, it also gives rise

to other challenges like the risk of overfitting, where the model performs well on the

training data but fails to generalize to new, unseen data, and increased Complexity,

where more features can introduce noise and Complexity into the model [6]. This will

give us a healthy balance between the model complexity and performance.

Based on these performance metrics and feature selection techniques, we compared

our model against two other approaches to get a more comprehensive outlook.

One of these approaches is GCNG; the Graph Convolutional Neural Networks for

Genes (GCNG) is a novel approach designed to analyze spatial transcriptomics data.

In spatial transcriptomics, the goal is to understand the gene expression patterns of

the spatial organization of cells. GCNG leverages the power of graph convolutional

neural networks (GCNs) to integrate spatial information and gene expression data

for a more comprehensive analysis [25].

The other one is SEAL. SEAL is a methodology developed for the task of link

prediction in networks. Link prediction involves anticipating or predicting connections

between nodes in a network, and it has applications in various domains, such as
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social networks, biological networks, and recommendation systems. SEAL introduces

several innovative concepts to enhance the accuracy of link prediction [28].

This also gives us a chance to compare the result of SEAL and our modified version

of SEAL, making the results apparent and highlighting the advantage of using the

LSTM layer.

2.6 Results and Discussion

Our results presents a comprehensive evaluation of three distinct feature selection

methods, namely chi-Squared, information gain, and backward search, employing

three cutting-edge approaches—LSTM-SEAL, SEAL, and GCNG—on two spatial

transcriptomics datasets, SeqFISH+ and MERFISH. The results are systematically

summarized in two tables, encapsulating the Area Under the Curve (AUC) values for

various feature selection methods and approach combinations. Table 2.6.1 delineates

the performance metrics for the SeqFISH+ dataset, while Table 2.6.2 focuses on the

MERFISH dataset.

Moreover, two AUROC graphs visually represent the true positive rate against

the false positive rate.

The construction of the AUC graph involves plotting the ROC (Receiver Operating

Characteristic) curve, where the true positive rate is plotted against the false positive

rate across different threshold values. This curve visually encapsulates the model’s

discrimination capabilities across threshold settings. The steeper the ROC curve, the

more adept the model is at distinguishing between positive and negative classes. The

AUC itself is calculated as the area under this curve, with a perfect model achieving

an AUC of 1 and a model with no discriminatory power yielding an AUC of 0.5

[28]. Interpretation of the AUC graph involves an analysis of its shape and steepness,

providing insights into the model’s overall performance. A model that consistently

achieves higher true positive rates across a range of false positive rates is deemed

superior. The point (0,1) on the graph signifies perfect sensitivity and specificity.

Ultimately, the AUC graph is a comprehensive visualization aiding in comparing and
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Table 2.6.1: Comparison of our method with other approaches for seqFISH+ dataset
based on AUC values.

Selection Method Approach10
Fea-
tures

20
Fea-
tures

30
Fea-
tures

40
Fea-
tures

50
Fea-
tures

60
Fea-
tures

70
Fea-
tures

Chi-Squared

LSTM-
SEAL

0.4621 0.5239 0.5569 0.5998 0.6981 0.7189 0.7334

SEAL 0.4019 0.5412 0.5562 0.5834 0.6655 0.6997 0.7119

GCNG 0.4129 0.5389 0.5441 0.6089 0.6794 0.7245 0.7387

Information Gain

LSTM-
SEAL

0.4556 0.6013 0.6318 0.6589 0.7048 0.7234 0.7389

SEAL 0.4489 0.5689 0.6019 0.6455 0.6858 0.6987 0.7067

GCNG 0.4626 0.5833 0.6159 0.6419 0.6446 0.6768 0.6910

Backward Search

LSTM-
SEAL

0.5434 0.6429 0.7259 0.7566 0.8366 0.9119 0.9281

SEAL 0.4811 0.6334 0.6778 0.7081 0.7969 0.8876 0.8903

GCNG 0.4511 0.6023 0.6589 0.6832 0.7922 0.8345 0.8415

evaluating different models, enabling practitioners to make informed decisions about

model selection based on their discriminatory power [3].
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Table 2.6.2: Comparison of our method with other approaches for MERFISH dataset
based on AUC values.

Selection Method Approach10
Fea-
tures

20
Fea-
tures

30
Fea-
tures

40
Fea-
tures

50
Fea-
tures

60
Fea-
tures

70
Fea-
tures

Chi-Squared

LSTM-
SEAL

0.4716 0.6001 0.6259 0.6311 0.6778 0.7081 0.7203

SEAL 0.4589 0.5861 0.6008 0.6189 0.6482 0.6834 0.6890

GCNG 0.3926 0.5693 0.5771 0.5912 0.6221 0.6511 0.6522

Information Gain

LSTM-
SEAL

0.4212 0.5728 0.6063 0.6189 0.6784 0.7169 0.7089

SEAL 0.4026 0.5589 0.5911 0.6260 0.6588 0.6987 0.7068

GCNG 0.3605 0.5256 0.5598 0.5789 0.6239 0.6456 0.6672

Backward Search

LSTM-
SEAL

0.4833 0.6332 0.6988 0.7345 0.8256 0.8891 0.9129

SEAL 0.4758 0.6005 0.6711 0.6978 0.7986 0.8674 0.8798

GCNG 0.4053 0.5436 0.6333 0.6544 0.7558 0.8098 0.8245

Fig. 2.6.1: ROC graph for SeqFISH+ dataset compared with different approaches for
70 features and 40 features using backward search feature selection method.
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Fig. 2.6.2: ROC graph for MERFISH dataset compared with different approaches for
70 features and 40 features using backward search feature selection method.

The AUROC graphs visually represent the true positive rate against the false pos-

itive rate. Figure 2.6.1, illustrates the AUROC graph for SeqFISH+, showcasing the

performance of LSTM-SEAL, SEAL, and GCNG at 70 features and 40 features. The

graph delineates the nuanced interplay between the true positive and false positive

rates, visually understanding the models’ discriminative abilities. Similarly, Figure

2.6.2, captures the AUROC graph for the MERFISH dataset, presenting the perfor-

mance of the three approaches at 70 features and 40 features. This visual represen-

tation is a valuable supplement to the numerical AUC values, allowing for a more

intuitive grasp of the models’ classification accuracy.
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Fig. 2.6.3: Shows a line graph with AUC value of various approaches with different
feature selection technique for SeqFISH+ dataset.

Fig. 2.6.4: Shows a line graph with AUC value of various approaches with different
feature selection technique for MERFISH dataset.

Moreover, we have included a line graph to visually represent the quantitative

results presented in Table 2.6.1 (Figure 2.6.3). This graphical depiction shows the

performance of our approach, LSTM-SEAL, compared to other methods across dif-

ferent feature selection techniques for the seqFISH+ dataset. Similarly, Figure 2.6.4,

illustrates the performance trends for the MERFISH dataset presented in Table 2.6.2,

allowing for a detailed comparison of our method with other approaches under various

feature selection scenarios.

The findings underscore the efficacy of LSTM-SEAL, particularly when coupled

with the chi-Squared feature selection method, as it consistently yields superior AUC

values. Additionally, the backward search feature selection method demonstrates

notable efficacy, especially with LSTM-SEAL, indicating its potential for enhancing

model performance.
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Our findings demonstrated that the LSTM-SEAL outperforms SEAL and the

GCNG. The additional LSTM layer shows a noticeable advantage based on the AUC

values compared to SEAL for both datasets. Among the feature selection techniques,

backward search outperformed chi-squared and information gain. The combination

of LSTM-SEAL with backward search produced some of the best results among the

three approaches and feature selection techniques across the two datasets, producing

results with AUC values of 0.9281 for the seqFISH+ data and 0.9129 for the MER-

FISH dataset.

In spatial transcriptomics, crucial for deciphering cell-cell interactions, the Seq-

FISH+ dataset is notable for evaluating diverse prediction approaches and feature

selection techniques. As elucidated by the results in Table 2.6.1, LSTM-SEAL con-

sistently outshines its counterparts, showcasing robust predictive capabilities. Across

different feature counts, the AUC scores for LSTM-SEAL demonstrate a steady as-

cent, culminating at the peak of 70 features. While trailing LSTM-SEAL, SEAL ex-

hibits commendable performance, and GCNG, though competitive, falls short of the

superior AUC scores achieved by LSTM-SEAL and SEAL. This underscores LSTM-

SEAL’s proficiency in integrating spatial information for effective cell-cell interaction

prediction.

Shifting the focus to the MERFISH dataset, the dominance of LSTM-SEAL be-

comes even more pronounced, surpassing other approaches by a significant margin,

as evidenced by the results in Table 2.6.2. While competitive, SEAL and GCNG

consistently lag behind the above approach. Notably, the efficacy of LSTM-SEAL

across both datasets highlights its potential as a robust tool for unraveling intri-

cate cellular communication networks in spatial transcriptomics. This highlights the

improvements by including the LSTM layer in the original SEAL.

Delving into the feature selection realm, comparing chi-Squared, information gain,

and backward search across approaches and datasets reveals intriguing trends—chi-

Squared and information gain exhibit similar patterns, improving performance as

the feature count increases. In contrast, backward search is the most compelling
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feature selection method, consistently delivering superior results, particularly evident

in the Merfish dataset, where it achieves the highest AUC scores at 70 features.

This accentuates the crucial role of considering feature removal, not just selection, in

optimizing predictive models, emphasizing the nuanced nature of feature engineering.

These findings collectively contribute valuable insights to the spatial transcrip-

tomics landscape. LSTM-SEAL’s superior performance positions it as a promising

candidate for deciphering complex cellular communication networks. The promi-

nence of backward search underscores the significance of thoughtful feature selection

strategies, shedding light on the intricate dance between feature selection techniques,

prediction approaches, and dataset characteristics. This comprehensive evaluation

guides the selection of methodologies for predicting cell-cell interactions. It lays the

groundwork for further refinement and exploration in the dynamic and evolving field

of spatial transcriptomics and computational biology.

Fig. 2.6.5: Displays a NetworkX visualization of cell-cell interactions in SeqFISH+,
using UMAP for spatial awareness. Nodes represent cells, and links signify predicted
interactions.

In conjunction with the quantitative evaluation of predictive models, the applica-
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tion of NetworkX, a powerful Python library for network analysis [12], offers a com-

pelling visual dimension to exploring cell-cell interactions. Utilizing UMAP within

NetworkX allows for creating a spatially informed network visualization, enhanc-

ing our understanding of the cellular communication landscape.UMAP, which stands

for Uniform Manifold Approximation and Projection, is a dimensionality reduction

technique commonly used in data visualization tasks.UMAP serves the purpose of

projecting high-dimensional data into a lower-dimensional space while preserving the

local and global structure of the data. The key idea is to represent complex relation-

ships between cells in a more visually interpretable form [15]. The image depicted

in Figure 2.6.5, provides an illustrative example derived from the SeqFISH+ dataset.

Similarly Figure 2.6.6, illustrates a similar depiction for MERFISH dataset with nodes

representing cells, and links signify predicted interactions. This network visualization

reveals a complex interplay of cellular interactions, with nodes representing individual

cells and links signifying predicted interactions.

Fig. 2.6.6: Displays a NetworkX visualization of cell-cell interactions in MERFISH
dataset, using UMAP for spatial awareness. Nodes represent cells, and links signify
predicted interactions.
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Upon close examination, it becomes apparent that not all cells are linked, indi-

cating that some cells may have weaker interaction signals. The sparsity of links for

specific cells underscores the nuanced nature of cellular behavior in spatial contexts.

Furthermore, the network visualization unveils intriguing patterns in the form of dense

clusters. These clusters represent groups of cells with strong predicted interactions,

suggesting potential biological significance. The formation of dense clusters indicates

a higher likelihood of coordinated cellular activities within these groups. On the other

hand, less densely connected regions signify areas with fewer or weaker interactions,

providing insights into the spatial organization and functional relationships among

cells [3].

The integration of NetworkX and UMAP thus serves as a powerful tool for trans-

lating predictive model outcomes into visually interpretable representations. This not

only aids in identifying critical cellular communication patterns but also facilitates

the identification of cellular communities with distinct interaction profiles. Such vi-

sualizations provide a holistic perspective, enabling researchers to explore global and

local patterns within the spatial transcriptomics dataset.
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CHAPTER 3

Conclusion and Future Work

3.1 Conclusion

In this research, we introduced a new methodlogy for predicting cell-cell communi-

cation in spatial trascriptomics data. Our approach combines graph neural nrtwork

with Long Short-Term Memory (LSTM) improving upon the performace of existing

approaches. The main focus of our methodology is to unravel intricate cell rela-

tionships and predict meaningful interactions. Our approach combines LSTM, great

for understanding sequences, with graph neural network to tackle complex graph-

structured data. We use the combination of LSTM and a graph neural network to

better understand how cells interact, improving our model’s ability to predict accu-

rately. Using Backward Search, we chose 70 important features to make the model

precise and efficient.

Quantitative evaluation of our model showcases its remarkable performance with

high Area Under the Curve (AUC) values of 0.92 for seqFISH+ and 0.91 for MER-

FISH. These metrics highlight the performance of our methodology in navigating

the high-dimensional and sparse nature of spatial transcriptomics data. The care-

ful selection of features, incorporating Backward Search to optimize the choice of

features, contributes to the model’s efficiency by tackling overfitting and enhancing

interpretability. We visualize the results using UMAP and NetworkX in Python, help-

ing us see how cells are connected in space. This visual part reveals dense clusters

of strong interactions and less crowded areas, giving a detailed look into how cells

behave in different spatial contexts.
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3.1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• We introduced an innovative pipeline for predicting cell-cell interactions. Our

methodology is designed to handle various spatial transcriptomics datasets ef-

fectively, which can be challenging due to their high dimensionality and sparsity.

• We strategically combined Long Short-Term Memory (LSTM) with a graph

neural network; our method goes beyond conventional approaches, offering a

nuanced understanding of cellular relationships. It improved upon the existing

methodology based on graph neural networks to produce the best results.

• We applied the proposed method to different spatial transcriptomics datasets.

Additionally, we improved the existing methodologies (like GCNG), extending

them by using other feature selection techniques to select the best features

(genes). We provided a detailed outlook of our methodology by comparing it

against the existing methods to highlight the improvement it provides.

• Leveraging the power of NetworkX and UMAP, we visually mapped cellular con-

nectivity within spatial transcriptomics data. These visual insights contribute

to a deeper understanding of the cellular landscape by highlighting different cell

clusters with strong cell-cell interactions in the cell network.

3.2 Future Work

The following is a summary of some of the tasks that could be taken into consideration

and aid in advancing the domain’s research:

• We aim to use improved ground truth data, recognizing its pivotal role in re-

fining the model’s performance. Moving beyond negative links generated from

non-interacting cells, we aim to establish a more accurate ground truth, fortify-

ing the model’s capacity to discern true positives and negatives. This refinement
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addresses uncertainties in predicting cell-cell interactions, contributing to the

model’s reliability and robustness [1].

• We plan to broaden the scope of our research by exploring additional datasets

from various tissues. This expansion aims to provide a more comprehensive

evaluation of our adaptable approach across different biological contexts. Test-

ing the model on diverse datasets enhances the generalization and ensures its

effectiveness in capturing spatial relationships.

• A crucial aspect of our future work involves a thorough comparative analy-

sis with other existing approaches in the field. By benchmarking our method

against alternative models, we seek to validate its efficacy and identify unique

strengths. This comparative approach ensures a well-rounded understanding of

our method’s performance, fostering advancements in cell-cell interaction pre-

diction and related graph-based tasks.

• A future route for extension involves integrating the concepts of heterophily

and homophily into our graph models, further enhancing our understanding of

diverse cell interactions in spatial transcriptomics datasets.

• We plan to analyze the selected genes (features) to better understand the key

genes found that contribute to the cell cell communication for biological valida-

tion
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