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ABSTRACT

A new category of Fully Homomorphic Encryption (FHE) schemes, first presented

in CHIMERA, offers methods of converting between different schemes to circumvent

the disadvantages found inherently in each individually. The work done in PEGA-

SUS introduced a similar agile Encryption framework, via an improved repacking

algorithm that converts FHEW Ciphertexts into a CKKS Ciphertext. Using PEGA-

SUS as a starting point, the goal was to speed up their novel repacking algorithm

through the use of additional GPU computation. In doing so, the accelerated software

created achieved a speedup of approximately 50x when comparing replaced portions

of the algorithm now running in the GPU, and 25% reduction in the overall repacking

algorithm runtime compared with the CPU only computation. This work focuses on

the parts of the repacking algorithm that have thus far been unexplored by other GPU

acceleration works, while leaving alone some other Homomorphic functions that have

already been proven amenable to GPU acceleration. Also, the acceleration function

is integrated in such a way that it builds alongside the current Open-Source PEGA-

SUS framework, with minimal invasiveness, which increases potential for coupling

this with complimentary works on acceleration of Homomorphic Encryption.
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CHAPTER 1

Introduction

In a world that is increasingly more connected, and reliant upon safe, and secure

technology, the topic of Encryption is more important than ever. This is contrasted,

at the same time, by the fact that Security-breaching technologies like Quantum

Computing are also becoming a realistic threat to our current level of security. This

combination of increased connectivity, use, and threats have resulted in a greater

desire to improve encryption technologies to meet these new needs and threats. New

breakthroughs in Homomorphic Encryption help solve two of the major needs that

are emerging in a data centric world. The first being quantum hardness, which

implies that the encryption scheme is based on a problem that is difficult even for

quantum computers. Secondly, Homomorphic Encryption can also provide no-trust

data privacy, which means being able to store, and have data processed remotely

without the need to trust the remote device’s security. This has major implications

for consumer’s rights, because as it stands now, with non-homomorphic encryption,

if a service is offered that processes a consumer’s data, the consumer must at least

trust the processor, since the data must first be decrypted to be processed. Probably

the industry most interested in taking advantage of a security feature like this is

healthcare, which has stringent consumer privacy laws and regulations that make

offering data-centric services problematic. One of the major issues with Homomorphic

Encryption as it stands today is processing speeds. Compared to the encryption

methods typically used today (AES, ECC), Homomorphic operations can be slow to

the point of being practically unusable, which puts them in a category where they are

not feasible replacements to non-quantum safe encryption. This also shows a great

1



1. INTRODUCTION

opportunity to be able to create faster implementations of these encryption schemes,

which can improve a variety of security concerns.

1.1 Homomorphic Encryption

An Encryption Scheme is considered “Homomorphic” if you are able to perform func-

tions on encrypted data without first decrypting it i.e:

Decryption(Homomorphic Function(Encrypted(x), Encrypted(y))) = Function(x, y)

There were limitations on earlier homomorphic schemes that attempted this,

which is why there is a distinction between “Fully” homomorphic schemes and “Par-

tially”, or “Somewhat” homomorphic Schemes, but the schemes mentioned here are

all Fully Homomorphic Encryption (FHE) schemes. The issue is that in order to en-

crypt, an “error”, or “noise”, is added to the ciphertext, which grows upon operations

being performed, if this error grows too large, eventually decryption will be unsuc-

cessful. Despite this, a FHE scheme can perform an unlimited number of operations

while still being possible to decrypt. The first work to achieve this was in Gentry’s

work[16], which has been foundational for further research and development of other

FHE schemes. The key concept that Gentry was able to introduce was what is called

“bootstrapping”, which essentially provides a method of Homomorphically decrypt-

ing the ciphertext, which resets the noise down to a level where further homomorphic

functions can be called without causing a failure in decryption. Since this original

work, which was based on Ideal-Lattices [16] there have been many improvements,

and schemes to follow. Most of these new schemes have been based on the Learning

with Error (LWE), Ring Learning with Error (RLWE) problem, which are similar to

ideal lattices originally used. The key issue that has followed every iteration of these

FHE schemes is that the computation is simply much too expensive to be practical in

use[4]. Additionally, each scheme brings a set of advantages and disadvantages over

the others, causing users to need to make trade-offs if they wish to setup a homomor-

phic program. This can be seen very clearly in the Figure. 1, from a FHE survey[22]

that shows some of the most widely used FHE schemes today. It is obvious, looking

2



1. INTRODUCTION

FIGURE 1: FHE Scheme Generations with Key Differences[22]

at the chart, that depending on the type of data, and type of functions that are de-

sired to be performed, there will likely have to be some compromise when choosing

a FHE scheme to use. Fortunately, there is another group of FHE frameworks that

have a promising way of getting around the limitations that arise from using a single

FHE scheme. These “Combination” FHE frameworks find ways to convert the same

value between different schemes without decryption, in order to be able to use the

best data structure for the Homomorphic Function that the user wishes to use. The

first example found that employs an agile FHE framework like this was CHIMERA,

which bridged the BF/V, TFHE, and CKKS scheme [7]. The work most focused on

for this though is the PEGASUS scheme, which allows for conversions between the

FHEW (Predecessor to TFHE [22]), and CKKS encryption schemes[21].

3



1. INTRODUCTION

1.1.1 FHEW

The FHEW Scheme, created by Ducas and Micciancio, is one of the early binary

based FHE schemes that followed Gentry’s work, and is the predecessor of the TFHE

scheme which is now more commonly used. The main goal of FHEW was to provide

a method of bootstrapping that was much faster than any of the work that had

been done at that time, as that is generally a bottleneck in most FHE schemes,

even now. They achieved this by creating a LWE based FHE structure that works

very effectively at a binary level with XOR operations. This combined with a more

efficient bootstrapping function provided an effective solution to homomorphic binary

operations[14]. One of the main issues with FHEW, and other bit-wise FHE schemes

is when larger arithmetic operations are required (Addition/Multiplication), as these

will need large circuit depths of Boolean operations in order to function.

1.1.2 CKKS

CKKS is a RLWE based encryption that follows a different path than most FHE

schemes, mainly in how it is an “Approximate” system, meaning that there there can

be bit loss during homomorphic functions. This is due to the fact that it mixes its

low bits (least significant bits) with the encryption noise and can essentially treat

the noise (encryption error) as precision lost normally found in Floating/Fixed point

arithmetic. The bootstrapping method used essentially scales up the ciphertext, to

a new and larger modulus. This allows the user to continue performing operations,

while maintaining the bit precision of the decrypted value[10].

1.1.3 CHIMERA

CHIMERA was developed to provide a coherent framework for working with multiple

FHE schemes with the same data. This was achieved by unifying the plain-text space

of several RLWE FHE schemes, including the B/FV, TFHE, and CKKS schemes.

The reasoning behind this was that, as mentioned previously, each of the upcoming

schemes had advantages and disadvantages in how data could be processed and stored

4



1. INTRODUCTION

[22]. This work provided a solid foundation for improvements, and further research

in this topic. The clear goal of this unification can also be seen in their paper as

well, providing a clear path for using Homomorphic Schemes with Deep Networks[7].

This is something that has proven difficult without a Scheme-Conversion type FHE,

as you run into one of two problems; You have to deal with non-vectorizable data like

TFHE[11], or you cannot easily perform non-linear functions like in CKKS[10].

1.1.4 Microsoft SEAL

Microsoft SEAL is an open-source library that aims to provide a simple application

programming interface (API) to some of the most used Homomorphic Encryption

schemes. Additionally, to this, their aim is to facilitate some of the more difficult

Mathematical practices required in getting started with a HE scheme, as by doing

this work for the user it lowers the barrier to entry in using these schemes. The

majority of the library is written in C/C++, which allows for use across a large variety

of platforms, and it also has implemented many of the most commonly used FHE

schemes, like CKKS, BFV, and BGV. Additionally, many low-level mathematical

tools are implemented in order to provide an improved performance over many simpler

implementations, like using the Residue Number System (RNS) for large modulus

values, Number Theoretic Transform (NTT) for improved polynomial multiplication,

and effective use of Barrett, and Montgomery modulus functions when the situation

is suitable[29]. For these reasons and more, Microsoft SEAL has become an attractive

platform for building applications that make use of Homomorphic Encryption.

1.2 Previous Works

1.2.1 PEGASUS

PEGASUS, which is the main precursors to this work, was able to continue CHIMERA’s

success in unifying FHE Schemes. This trend was again in the pursuit of creating

tools that would enable the design of Fully Homomorphic machine learning algo-

5



1. INTRODUCTION

FIGURE 2: Basic PEGASUS Workflow Example

rithms. At a high level, one of the key differences between the two is that PEGASUS

focuses solely on the CKKS and FHEW scheme (Which is similar to TFHE but is

LWE based instead of (R)LWE), leaving the B/FV scheme that CHIMERA includes

out of their framework. That said, the novelty of this work is found in the lower-level

improvements. These mathematical changes greatly improve the conversion process,

both in terms of time, and space complexity[21]. “To the best of our knowledge, this

is the first work that supports practical K-means clustering using HE in a single server

setting.”[21] Another notable part of the PEGASUS software is that it makes use of

Microsoft SEAL’s homomorphic library. This allows for low-level speedups using the

NTT and RNS functionality of SEAL, and the authors have a public, open-source

project available on Github[5].

At its most basic, PEGASUS offers the following standard workflow seen in Fig-

ure. 2. Start with a vector of Real values in the CKKS (RLWE) scheme. When a

Non-linear lookup-table (LUT) function is to be used, convert the CKKS vector ci-

phertexts to a corresponding number of FHEW (LWE) ciphertexts, perform the LUT

function on any or all LWE ciphertexts, and convert back. Using this paradigm, the

user has the advantage of performing simple arithmetic (addition/multiplication) in a

vector format using CKKS, but they can also take advantage of the LUT operations

6



1. INTRODUCTION

for things like Sigmoid, or ReLU functions which are difficult to perform using solely

the CKKS format[21].

1.2.2 GPU Acceleration

GPU (Graphics Processing Unit) acceleration for any FHE scheme that is based on

the LWE problem is a feasible option due to the highly parallel structure of the un-

derlying lattice math. For instance, the PEGASUS Framework specifically expresses

that they’d like to see performance upgrades using hardware like FPGAs or GPUs

[21]. Improvements from GPU hardware in previous implementations can see speed

ups of 4.5x [35], all the way up to 378.4Ö[30]. These numbers, on their own are

somewhat arbitrary unless one looks at a specific Encryption Scheme, with specific

parameters, and a specific CPU being used, but it is still important to note as it

shows that there is generally a great deal of potential in using GPUs to accelerate

FHE schemes. One commonality with most the papers that were found on this is

that there is a focus on the low-level arithmetic, particularly modular multiplication,

which is a very slow and common operation in almost all FHE schemes[34] [31] [30].

This makes sense as a focus, as by implementing the speedup of one function, you

can see a large amount of improvement over many areas of the FHE Scheme.

There are also a host of works that focus solely on speed up of the Number Theoretic

Transform (NTT), which is generally used to speed up Modular Multiplication, and

other aspects of FHE schemes[9][26][15][36]. It would have been convenient if there

was a simple 64-bit NTT library in Cuda publicly available, but one that met the

criteria of this project was not found. This was a somewhat unlikely scenario because

this work aimed to parallelize the repacking function from a high-level functional per-

spective, which takes on the issue of running multiple NTTs in parallel, instead of

using the whole GPU processing for a single, larger NTT, which there is far less work

on[36].

7



CHAPTER 2

Mathematical Background

2.1 Mathematical Notation

The cyclotomic polynomial Φn = Xn+1, will be used in describing Rn = Z[X]
qΦn

, which

in turn is used in representing the polynomial ring Rn, q = Rn/qRn.

Basic Arrays and Matrices will be described by M [a, b, . . . , c] where a, b, . . . , c

describe the dimensions and their corresponding lengths. Values denoted with a hat

refer to CKKS RLWE based ciphertexts (ĉt), whereas a check refer to those encrypted

using the LWE FHEW scheme (čt). Plaintexts of both schemes will be referred to as

simple arrays already previously described.

Algorithms will use the following for loop style: For(Initialization; Condition; PostLoopOperation)Do,

where Initialization is done before the loop starts, Condition is the condition checked

before each loop, and PostLoopOperation is performed after every loop before start-

ing a new one or checking the Condition.

The a << b and a >> b operations denote bit shifting a by b bits to the left and right

respectively. The brackets ⌈·⌉ round a value up, and ⌊·⌋ down, whereas [·]q indicates

applying modulus q to the value. The min(a, b, . . . , x) function returns the smallest

value given, and the max(a, b, . . . , x) returns the largest. Adding a double plus like

a++ is shorthand for the increment a = a+ 1.

8



2. MATHEMATICAL BACKGROUND

2.2 Learning with Error Problem

Difficult mathematical problems are the basis of any encryption scheme. From these

problems, encryption constructs can be created and based on, with the assurance

that solving that problem will be too hard statistically[19]. With that in mind, the

Learning with Error problem, (LWE) first introduced by Regev and its related math-

ematical problems like the Ring Learning with Error (RLWE) can provide a level of

security that as of now appears very concrete, even against an attacker with Quantum

Computing[27]. A very basic overview of the LWE problem can be seen if one first

considers a series of Linear Equations. For example:

2a+ 3b+ 5c = 4

a+ 5b+ c = −3

a+ b+ 9c = 8

Now obviously, these can be solved very straightforwardly under the assumption that

you have enough equations (ie. Samples). Now the LWE problem simply adds a

degree of uncertainty, or error to each of these instances. For example:

2a+ 3b+ 5c ∼= 4 or 2a+ 3b+ 5c = 4 + e1

a+ 5b+ c ∼= −3 or a+ 5b+ c = −3 + e2

7a+ b+ 9c ∼= 8 or 7a+ b+ 9c = 8 + e3

This has now changed the problem significantly, and with the error it becomes more

difficult to solve with the higher the degree as the error when solving will add expo-

nentially as you add more equations to solve it.[28] This problem can be stated as

either solving for the variables, which can be equivalent to solving for a secret vector

s={a, b, c}, or by sorting between a random distribution of equations, and equations

that are part of those generated with the same variables. These two problems are

called the Search and Decision LWE respectively. With the general idea, we can now

construct a simpler way of explaining this problem, namely with a secret key s of

9



2. MATHEMATICAL BACKGROUND

length n, and m≥n equations of the LWE problem, a Matrix A, and vector b can

now be generated such that A is an m x n matrix, and b is of length m. This can be

shown simpler now as

As ∼= b

Or conversely,

As = b+ e

The problem now breaks down to simply solving for s with the noise present in the

system. So far, the LWE problem has been portrayed at a high-level, and to proceed

we must now introduce further notation. Generally, if you add a modulus q to all

calculations, and only use integers, we can say that variables in this system belong to

Zq, and that the errors are sampled from the distribution χq where the distribution

is generally Gaussian, and small enough that its very unlikely to sample an e from χq

such that e ≥ q/4.

χerr: Error Distribution to sample from

LWEq,n =



s ∈ Zq length n,

b ∈ Zq length n,

A ∈ Zq size ≥ n·n,

e← χerr

(1)

With a basic definition and understanding of the LWE problem, we can now define the

Ring Learning with Error (RLWE) problem which is very similar. The main difference

here is that we now use a polynomial ring as the data in the LWE system. This is

created by adding a polynomial modulus f(x) which is an irreducible polynomial,

generally taken as xn∓1. This, combined with the regular value modulus means that

there can be polynomials < f(x), which has values of modulus q. Put more simply,

we are in a system of [modulus q modulus f(x)]. We can now put together a simple

RWLE system:

10



2. MATHEMATICAL BACKGROUND

Zq - integer ring

f(x) = xn ∓ 1 - irriducible polynomial

Rq,n = Zq modulo f(x) - Polynomial Ring

χerr: Error Distribution to sample from

RLWEq,n,N =



s ∈ Zq length N,

b ∈ Zq length N,

A ∈ Zq size ≥ N·N,

e← χerr ∈ Rq,n length N

(2)

2.3 Common Algorithms

2.3.1 Residue Number System (RNS)

The Residue Number System (RNS) is a useful tool in computing modulus for large

numbers, especially when the size of the modulus becomes restrictive in the system

that the computation is taking place. This system works based on the Chinese-

Remainder Theorem, which effectively allows for reconstructing of a certain range

of integers based on a set of relatively-prime moduli. This allows us to evaluate

operations in ZQ at a large modulo Q, but broken down into n smaller co-prime

moduli qi[23].

Q =
i=n−1∏
i=1

qi

A ∈ ZQ = (ai ∈ Zi, . . . , an−1 ∈ Zn−1)

B ∈ ZQ = (bi ∈ Zi, . . . , bn−1 ∈ Zn−1)

[A+B] mod Q = [(ai + bi) mod qi, . . . , (an−1 + bn−1) mod qn−1]

[A ∗B] mod Q = [(ai ∗ bi) mod qi, . . . , (an−1 ∗ bn−1) mod qn−1]

(3)
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2. MATHEMATICAL BACKGROUND

It is clear from Equation. 3 that a value in ZQ can instead be represented by an

array of smaller values with their own residue modulus, and further so that arithmetic

operations (addition, multiplication), can be performed using these as well[32].

2.3.2 Barrett Reduction

The Barrett reduction algorithm was first created in the search to do fast public-key

encryption operations [6], and continues to be useful to this day. This algorithm is

particularly useful when performing many modular reductions with the same modulus

as it makes use of pre-computed factors that speed up the calculation. The pre-

calculation algorithm for a modulus n can be seen in Algorithm 1, and the actual

reduction can be seen in Algorithm 2.

Algorithm 1 Barret Reduction Precomputation

Input: modulus n

Output: k2, r

1: chose k such that 2k > n

2: r = ⌊4k
n
⌋

Algorithm 2 Barret Reduction Computation

Input: input x modulus n, precalculated k2, r

Output: x mod n

1: t = x− ⌊xr
4k
⌋n

2: if t < n then

3: return t

4: else

5: return t− n

6: end if

[6]
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2. MATHEMATICAL BACKGROUND

2.3.3 Fast Fourier Transform (FFT)

A basic version of the Discreet Fourier Transform can be seen in Equation 4, and the

Inverse FFT (IFFT) in Equation 5.

Xk =
n=N−1∑
n=0

xne
− 2πi

N
nk (4)

xk = 1/N
n=N−1∑
n=0

Xne
2πi
N

nk (5)

The Fast Fourier Transform (FFT) comes from the work done originally by Coo-

ley and Tukey, which implemented a faster version of the Discreet Fourier Trans-

form (DFT)[12]. The version of the FFT used in this paper follows the format of a

bit-reversal radix-2 FFT based on Cooley and Tukey’s work, which was taken and

modified from both PEGASUS[21], and Microsoft SEAL’s code[29], and can be seen

in Algorithm 3. The main advantages of this algorithm is it allows for computations

to be done in-place, meaning it does not require additional memory[13], and allows

it to be broken down into log(N) computations of size N/2 of the same algorithm, as

opposed to the näıve algorithm using N2 computations of size N. In addition to the

base algorithm it is sometimes necessary to implement a bit-reversal of the output

array depending on the direction (forward or reverse). This was achieved using the

algorithm given in PEGASUS[5], and can be seen in Algorithm 4.
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2. MATHEMATICAL BACKGROUND

Algorithm 3 General Radix-2 FFT Program Flow

Input: X[N], Pre-computed table

Z[N+1]

Output: X[N]

1: function Butterfly(x0, x1, z)

2: Modifies x0, x1 in place using the

pre-computed value z depending on

the type (FFT/NTT) and direction

(Forward/Reverse)

3: end function

Main Loop

4: w = 0

5: for h = N/2;h > 2;m <<=

1, h >>= 1 do

6: x0 = 0

7: x1 = x0 + h

8: for r = 0; r < m; + + r do

9: for i = 0; i < h; i+ = 4 do

10: Butterfly(X[x0], X[x1], Z[z])

11: Butterfly(X[x0+1], X[x1+

1], Z[z])

12: Butterfly(X[x0+2], X[x1+

2], Z[z])

13: Butterfly(X[x0+3], X[x1+

3], Z[z])

14: x0 = x0 + 4

15: x1 = x1 + 4

16: z = z + 1

17: end for

18: x0 = x0 + h

19: x1 = x1 + h

20: end for

21: end for

Middle Loop

22: m = N/4

23: x0 = 0

24: x1 = x0 + 2

25: for r = 0; r < m; + + r do

26: Butterfly(X[x0], X[x1], Z[z])

27: Butterfly(X[x0 + 1], X[x1 +

1], Z[z])

28: x0 = x0 + 4

29: x1 = x1 + 4

30: z = z + 1

31: end for

Final Loop

32: m = N/2

33: x0 = 0

34: x1 = x0 + 1

35: for r = 0; r < m; + + r do

36: Butterfly(X[x0], X[x1], Z[z])

37: x0 = x0 + 2

38: x1 = x1 + 2

39: z = z + 1

40: end for

Note: Depending on the type, a bit-

reversal of the array may be required

here
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2. MATHEMATICAL BACKGROUND

Algorithm 4 In-Place Bit Reversal from PEGASUS

Input: Vector X of length N

Output: Vector X of length N in bit-reversed order

1: j = 0

2: for i = 0; i < N − 1; i++ do

3: bit = length >> 1

4: while bit < j do

5: j = j − bit

6: bit = bit >> 1

7: end while

8: j = j + bit

9: if i < j then

10: Swap(X[i], X[j])

11: end if

12: end for

2.3.4 Number Theoretic Transform (NTT)

The Number Theoretic Transform (NTT) is essentially a version of the DFT that has

been applied to a finite field using integer math and a modulus p. Due to this, the

actual structure of the algorithm is the same as that found in the FFT section, with

the caveat being that all math is performed with respect to the modulus p, and an

n-th root of unity (ω) is used to replace the omega value. A very basic description of

this can be found in Equation 6[18].

Xk =
n=N−1∑
n=0

xnω
nkmod p (6)

One of the main attributes that makes the NTT very attractive for cryptography is

that it allows for simpler and more computationally-parallel polynomial multiplication

when dealing with polynomial rings. This can be seen in Equation. 7, as the NTT has

more options for parallelizing the computational load of computing the multiplication

than doing it in the normal domain.

15



2. MATHEMATICAL BACKGROUND

c, a, b ∈ Rq, n

c = a ∗ b

c = INNTZ−1

(NTTZ(a) ∗NTTZ(b))

(7)

2.4 PEGASUS Repacking

Taking a closer look at the conversion from FHEW → CKKS (or LWE → RLWE),

the authors of PEGASUS have created a novel approach over CHIMERA’s method,

based around a Linear transform with the matrix formed by the individual LWE ci-

phertexts. The matrix formed by the LWE ciphertexts can be described by its width

(Length of the ciphertexts) and height (number of ciphertexts to be repacked). This

approach followed previous work in the area of Homomorphic Linear Transforms, but

in adding extra steps, is able to achieve a more flexible product, that’s computation

cost is independent of the number of ciphers it needs to repack when that number

exceeds the size of the ciphertext (i.e a “tall” matrix)[21]. A programmatic version

of the original PEGASUS repacking algorithm can be seen in Algorithm. 5.

EncodingCKKS(a[dim], b): An encoding of the vector of real values a[dim] with

the scaling factor b using the CKKS Encryption scheme. This encodes the real vector

into a ring element such that the output plaintext bu[n] ∈ Rn,q. More details on this

operation can be found in the original works[10][17].

Rotationx(a[·]): Rotates the array a[·] to the left by x values, negative values rotate

right.

Rotationx
CKKS(â, b̂): Given the CKKS Ciphertext â with the underlying plaintextA[·],

and the Rotation Key b̂, return the CKKS ciphertext ĉ = Encryption(Rotationx(A[·]))

(The encryption of the rotated plaintext of â).

Rescale(â, x): Given the CKKS Ciphertext â with the underlying encoding EncodingCKKS(a[dim], y),

return a ciphertext b̂ = Encryption(EncodingCKKS(a[dim], y/x)) which has a smaller

modulus.

16



2. MATHEMATICAL BACKGROUND

Algorithm 5 PEGASUS Repacking

Input: LWE Cipher Matrix M [l, n], Ro-

tation Key ĉtRotK , Repacking Key ĉtRPK ,

scaling factor △r′ > 0, vector t[l]

Output: RLWE Ciphertext of repacked

LWE Ciphers ĉtout

Preliminary

1: K = min(l, n)

2: J = max(l, n)

3: B =
√
min(l, n)

4: G = ⌈min(l, n)
B
⌉

5: ĉt
j

RPK = Rotationj
CKKS(ĉtRPK , ĉtRotK)

Tiling

6: tile[K, J ]

7: for k = 0; k < K; k ++ do

8: for j = 0; j < J ; j ++ do

9: tile[k, j] = M [j mod l, j +

k mod n]

10: end for

11: end for

Giant-Steps

12: ĉtout = NULL

13: for g = 0; g < G; g ++ do

Baby-Steps

14: ĉt = NULL

15: for b = 0; b < B and (b ∗ G) <

J ; b++ do

16: tilecurrent = Rotation−g∗B(tile[g∗

B + b])

17: ĉttemp = EncodingCKKS(tilecurrent,△r′)

18: ĉttemp = ĉttempĉt
b

RPK

19: ĉt = ĉt+ ĉttemp

20: end for

21: ĉtout = ĉtout+Rotationg∗B
CKKS(ĉt, ĉtRotK)

22: end for

Sum Columns

23: if l < n then

24: γ = log(n/l),

25: ĉttemp = ĉtout

26: for j = 1; j ≤ γ; j ++ do

27: ĉttemp rotated = Rotationl2j

CKKS(ĉttemp, ĉtRotK)

28: ĉttemp = ĉttemp + ĉttemp rotated

29: end for

30: ĉtout = ĉttemp

31: end if

Rescale

32: ĉtout = Rescale(ĉtout,△r) +

Encoding(t,△r′)
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2. MATHEMATICAL BACKGROUND

2.5 GPU Architecture

Nvidia’s CUDA programming language was used for the majority of the program-

ming on the GPU. When discussing the relationship between the GPU and main

CPU processor Device refers to the GPU, whereas Host refers to the CPU which is

in keeping with the CUDA programming model. The GPU programming model used

here can generally be thought of in terms of threads, blocks, and kernels, since grids

were not used as a part of this. Threads refer to the lowest level of computation,

similar to a CPU thread running operations in sequence. Blocks are groupings of

threads that allow synchronization of all threads in a single block. Lastly a Kernel

is an instantiation of function that is to be run on the device, with a Block/Thread

count that is specified at runtime. A simple summary would be, work is done in

threads, synchronization is done in blocks, blocks are run, and grouped, in kernels.

Threads and blocks can also be organized in 1 to 3 dimensional grids, which can be

used to assist in matching the parallel processing logic to the data to be processed.

Another important aspect of GPU programming involves memory management, which

follows a similar structure to that seen in the programming model, but with some ad-

ditions. Registers are memory that only a single Thread can access, Shared variables

are accessible to all Threads in a Block. Lastly, there is also Global, and Constant

memory, which are both accessible to any thread in any block. In general, these grow

in size as you move higher up the hierarchy, while also becoming slower to access,

i.e: Registers are the fastest memory for a thread to access, but are very limited in

number, whereas Global memory is large, but slower to access. The exception to this

is Constant memory, which is fast to access even though it has a broad scope, but it

is also limited in size[1]. An additional memory type that is not used in this work

is Texture memory, which offers access at any level like Global or Constant Memory.

An overview of this basic structure can be seen in Figure. 3, where the processing

models (thread/block/kernel) have been put together with their memory counterparts

(Registers/Shared/Global/Constant).

18



2. MATHEMATICAL BACKGROUND

FIGURE 3: CUDA programming Memory and Processing Model
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CHAPTER 3

Methodology

In looking to achieve faster homomorphic conversions, a base set of working software

was a great boon in providing a starting point. This allowed for a simple decision in

using PEGASUS as a base framework to be added onto. The existing PEGASUS soft-

ware implementation already integrated a number of appealing systems, most notably

of those being Microsoft SEAL. The accelerated functions, or accelerated software, is

built alongside the base PEGASUS software, with minor modifications. This allows

us to leverage the existing Microsoft SEAL and PEGASUS functions for things like

generating parameters (Secret keys, LUT’s) and gives us a functional entrance. This

additional accelerated functionality uses mainly the CUDA programming language,

which provides control over a GPU program connected to the Host CPU running PE-

GASUS. A GPU was chosen as the acceleration hardware because it allows for rapid

prototyping, flexibility, and is an easy to find component that is already compatible

with the environment PEGASUS was already made to run with, an everyday desktop

computer.

With the goal of accelerating Homomorphic conversion in mind, the repacking al-

gorithm was chosen as the most impactful function. The reasoning behind this is

twofold; Firstly, the conversions between Homomorphic Encryption schemes (in this

case FHEW→CKKS) are part of the novel contributions of PEGASUS[21], and sec-

ondly, the internal structure of the Repacking algorithm contains many independent

functions that need to be run. This secondary feature is very important, as there is

already a large amount of work done in low-level GPU acceleration for FHE functions
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(see “GPU Work” section), which means simply adding a low-level multiplication ac-

celeration library is not very novel and has a predictable outcome. Instead, the focus

in this paper was on accelerating this algorithm by focusing on the high-level struc-

ture. This is important for future work as seeing the resource usage, and speed that

can be achieved at this level can give insight into creating larger systems that are

more useful for real world applications.

3.1 Repacking

The repacking algorithm achieved in this work still uses many aspects of the original

Microsoft SEAL and PEGASUS software. The main goal was to replace the inner-

most loop of the repacking algorithm with a parallel structure because the outermost

loop consists simply of sequential homomorphic operations in the CKKS scheme that

have been shown already to be amenable to low-level parallelization[30][35]. A very

casual look at PEGASUS repacking algorithm’s Baby-Step Giant-Step portion which

contains the large summations shows the general structure seen in Equation. 1.

ĉt =
∑

RotationHomomorphic(
∑

Encoding(Rotated T ile)∗Rotated Repacking Key)

(1)

Looking at this, it is obvious that at a high-level, the internal, non-homomorphic

summation, can be done with a high degree of parallelization. In addition to this,

the Rotated Repacking Keys are generally pre-computed as this is easy to do and

applies to subsequent repacking operations that will use the same repacking key. This

means that the internal summation consists of a large number of simpler functions,

that are non-dependant on one another. It is for this reason that the accelerating

software computes these internal sums in the GPU, then passes this information back

to the CPU to complete the repacking in the base PEGASUS software. This is done

in 5 phases that can be seen in Figure. 4. Essentially, repacking parameters are

first calculated and grabbed from SEAL/PEGASUS, the LWE matrix that is to be

repacked is sent to the GPU, the GPU performs all the inner loop calculations and
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sums them in 3 synchronizing-steps, and these sums are transferred back to the CPU,

where the PEGASUS software finishes the repacking.

3.2 Software Strategy

3.2.1 Design Goals

As can be seen in Figure. 5, the accelerated software receives inputs from the PEGA-

SUS, and returns results directly back to the PEGASUS system. The idea behind this

being that eventually a variety of PEGASUS operations can be accelerated in a simi-

lar way, allowing them to work effectively as an optimization library to be used when

the required hardware is present. The software created here has been used in Linux

Ubuntu, as a base OS as well as with Windows WSL support. Only minor modifica-

tions to the base PEGASUS library were required to enable this, mainly consisting of

changing parameter visibility to allow access to private data, and splitting functions

up to take over some computations in the GPU. Due to the close integration of these

systems, which includes Microsoft SEAL, a variety of parameters are required to be

mirrored in the GPU, so that when these functions are transferred, they can retain

homogeneity in their calculations.

With all these things in mind, there are many considerations to take when look-

ing at how to approach accelerating the Repacking algorithm. The first point that

comes up is that, as mentioned previously, the integration of SEAL and PEGASUS

are crucial, and because of this an immediate requirement is to be able to perform

functions with 64-bit math. This, along with the functional requirements of work-

ing with lattice-based math, means having methods of dealing with large bits, like

unsigned 128-bit modular reduction that would come from 64-bit multiplication. An-

other design goal was to ensure that the created acceleration software would be easy

to integrate, and not dependent heavily on any outside libraries (other than PE-

GASUS and SEAL of course). The reason for this being that it should be easy to

be added onto and change as PEGASUS and SEAL will likely change in the fu-
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FIGURE 4: GPU and CPU Timing Diagram
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FIGURE 5: Basic overview of Hardware, and Interaction Architecture

ture. Lastly, a focus will be placed on performing high-level functions in parallel,

as opposed to optimizing low-level functions. The reason behind this is that there

is already a large amount of research in optimizing many of the low-level functions

for FHE schemes[31][26]. Providing an implementation of high-level of parallelization

can show serious improvements, that can then be further improved in the future with

low-level functions that can be used ubiquitously.

3.2.2 Data Transfers

To use the GPU unit with CUDA, the data to be processed, along with any subsidiary

information like parameters, ect., must be first passed to the GPU, and subsequently

the final result must be passed back to the CPU from the GPU. This means at min-

imum two transfers will be required to complete an accelerated function. The issue

that arises is that data transfers between CPU↔GPU are generally slow, and it must

be minimized where at all possible. With this in mind, as well as the knowledge that

variables in PEGASUS can be large (in the territory of Megabytes per ciphertext),

it is crucial to be able to minimize the number of transfers that are required during
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runtime. With this in mind, we can parse out all the data that needs to be sent

between them into 3 separate stages listed below, essentially adding an additional

transfer that is done at setup, so that less data is transferred per operation:

1. Preparation Phase – all data transfers and calculations done before program is

ready for conversions. This data is non-specific to a particular data repacking and is

used among all of them as long as the same Encryption Scheme/Key are being used.

This phase is the least important as it is a function of the setup and doesn’t impact

individual repacking operations.

2. Input Phase – Data that must be transferred in order to initiate a single

repacking operation. This is the specific LWE Ciphertexts that we wish to repack.

This data consists simply of the LWE Ciphertexts formatted as a Matrix.

3. Collection Phase – Data that must be transferred in order to grab completed

data from a repacking operation. This is the output of the parallelized parts of the

repacking algorithm that can then be used to form the repacked RLWE ciphertext.

This data consists of several RLWE ciphertexts, which are grabbed individually and

re-formatted into the PEGASUS/SEAL framework.

3.2.3 GPU Processing Organization

One of the key decisions to make while creating GPU software is in the thread/block

dimensionality used at runtime. These decisions must be done while creating the

application’s logic and are important factors in the final implementation’s runtime. In

the case of the repacking algorithm, there is a change of paradigm partway through as

the function moves from the Matrix of LWE (FHEW) ciphers, to the RLWE Plaintext

(CKKS scheme). During this, the dimensions of the data that is being processed is

essentially shift from the lower lattice size to the higher lattice size. This is the

reasoning for using multiple kernel calls, allowing the dimensions of GPU resources

to be changed during runtime. This turned out to be the simplest way to deal with
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the parameter change, with the additional benefit of causing all blocks to synchronize.

The other important parameters that play into determining the block sizing is the

number of inputs. This parameter will affect the input matrix size, which determines

the number of Giant-Steps (g), and Baby-Steps (h) required in the algorithm. By

using block sizes that match these parameters we can make the logic simpler for

parallelization of the algorithm. A general description of a Kernel, with its thread

and block structure can be seen previously in Figure. 3, with just the block dimensions

changing with the different kernels.
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CHAPTER 4

Implementation

4.1 Hardware

All metrics reported were performed using Ubuntu 20.04, with an Intel(R) Xeon(R)

CPU @ 2.20GHz 8 Core processor and a Tesla V100-SXM2 16GB Graphics Card.

Additional testing and builds were done using Windows WSL with the same version

of Ubuntu, along with an Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz 8 Core

Processor with a Nvidia GeForce RTX 3080 10GB Graphics Card.

4.2 Software

4.2.1 Setup and Integration

The software that makes up the acceleration software can essentially be described

as a C++ interface to the Cuda GPU instructions. This worked very well with

the foundational software (PEGASUS and SEAL) as both are written mainly in

C++. To match the PEGASUS build process, the CMAKE program was used to

give the compiler instructions on which files makeup the library. This allowed for easy

integration and building of the PEGASUS library, as well as its third-party software,

alongside the acceleration work being done here. Dependencies were avoided as much

as possible, especially third-party software that would be difficult to integrate. The

exception to that was code that was taken from another public repository. Some of the

low-level math functions which are described later come from such a repository, which

helped eliminate both re-doing of already done work, as well as keeping dependencies
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to a minimum as the code used does not depend on anything other than standard

Cuda library functions. Other than this additional code, and obviously the PEGASUS

library itself, no additional software is required aside from standard Cuda libraries.

4.2.2 Repacking Program Flow

As mentioned previously, the software work can be separated into the C++ interface

that runs on the processor, and the CUDA program that runs on the GPU. The

interface has several priorities but runs on the assumption that PEGASUS has al-

ready been setup as it grabs parameters from the PEGASUS runtime variable. As

can be seen below in the CPU Repacking Program, the first step is to grab all the

information that the GPU will need in order to run, the majority of which comes

from PEGASUS with a small amount being grabbed directly from Microsoft SEAL.

With this done, there are some additional parameters that were either easier to, or

had to be calculated manually, so these variables are also all calculated. This mainly

includes the parameters for the Barrett reduction, and the Bit-Reversed NTT omega

values. Now that all the information has been gathered, it needs to be initialized

into the GPU, which involves allocating memory for the variables, then transferring

them over. They are first organized into 2 main categories: “Repacking Parameters”

and “Encoding Parameters”. The main distinction between these two is “Encoding

Parameters” deals with mainly the low-level math like parameters needed for the

IFFT, and NTT, whereas “Repacking Parameters” deals more with the Encryption-

Scheme level parameters. Lastly, with all the parameters needed to run the algorithm,

storage space has to be created for the large variables that are used during computa-

tion. This is again done in two levels, with “Repacking Workspaces” dealing with the

large CKKS plaintext/ciphertext variables, and “Encoding Workspaces” being used

to store the smaller but more numerous FHEW and Encoding parameters. Addition-

ally, space must be created in which the LWE ciphertext matrix can be transferred

into, so that this won’t have to be done before each repacking operation. With all this

completed, and all data transferred over and workspaces allocated the gpu can begin

computations, and concludes the setup for acceleration software, which is lines 1-6
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of the CPU Repacking Program. The last portion of the program that is run in the

CPU is where we have received the GPU’s computations of the inner repacking loop,

and now pass this information back into PEGASUS in order to finish the repacking

operation.

Algorithm 6 CPU Repacking Program

Input: PEGASUS Runtime, LWE Matrix

Output: Repacked RLWE Ciphertext

1: Grab all required runtime parameters from PEGASUS and SEAL

- Omega Roots and Modulus per CKKS level

- CKKS prime modulus

- LWE and RLWE lattice dimensions

- Repacking Key

2: Calculate any additional runtime parameters in CPU

- LWE Rotational Grouping

- IFFT Complex Root values

- Barret Parameters

- Bit-Reversed NTT omega values per moduli

3: Initialize Encoding Parameters in GPU

4: Initialize Encoding Workspaces [Giant-Steps * Baby-Steps]

5: Initialize Repacking Parameters in GPU

6: Initialize Repacking Workspaces [Giant-Steps * Baby-Steps]

7: Perform GPU Repacking on LWE Matrix

8: Perform Giant-Step math in PEGASUS

- Homomorphically shift each Giant-Step

- Accumulate Shifted data

When all the setup has been completed for the software, the GPU kernels can

be run. The transfer of the LWE matrix into the GPU, and the transfer of the

accumulated plaintexts back out to the CPU are included in this process as they are

done for every repacking operation that is calculated. The actual program is run
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in 3 successive kernels, with error checking and synchronization being performed in

between each. This is done mainly because it made creating Block-Logic simpler by

matching the growing size of data dimensions as the algorithm progresses, and to

allow for a way of synchronizing between blocks.

Algorithm 7 GPU Repacking Program

Input: LWE Matrix

Output: Vector of RLWE Plaintexts

1: Transfer LWE Matrix CPU → GPU

2: Perform Pre-Encode in GPU [(Giant-Steps, Baby-Steps) blocks / (64,4) Threads]

- Grab Tiling Diagonal

- Perform IFFT

- Round Data

3: Perform Encode + Repacking Key Multiplication in GPU [(Giant-Steps, Baby-

Steps, number CKKS moduli) blocks / (64,4) Threads]

- Perform NTT per modulus

- Multiply each with Repacking Key

4: Perform Giant-Step Accumulation in GPU [(Giant-Steps, 2, number CKKS mod-

uli) blocks / (64,4) Threads]

- Accumulate the Baby-Step Plaintexts per Giant-step into a single output per

Giant-Step

5: Transfer Accumulated Giant-Step Data GPU → CPU

4.3 GPU Block and Thread Organization

4.3.1 Thread Dimensions

The thread dimensions were the simplest in terms of planning. At the low thread

level, a base (64,4) thread dimension was used. This allows for simple x,y coordinates

for use in some of the Cooley-Tukey FFT-based algorithms (IFFT, and NTT), but is

simple enough to flatten out into a linear 256 thread block to use in other algorithms.
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These thread dimensions are used throughout all the changing block sets. For the

testing hardware, larger thread blocks may have been possible, but due to the large

amount of per-thread resources required it this level of threads per block was found

to be the largest acceptable.

4.3.2 Pre-Encoding Block Dimensions

During the portion of the algorithm when the operations are being performed at the

LWE Matrix level, the dimensions are mainly compromised of the number of inputs

(slots), the LWE lattice size (LVL1 lattice dimension). Knowing this, the blocks used

are simply the Giant-Steps as the X, and Baby-Steps as the Y, with Z being kept at

1. This allows us to perform each Pre-Encoding operation in a single block.

FIGURE 6: PreEncode Kernel Diagram
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4.3.3 Encoding and Repacking Key Multiplication Block Di-

mensions

In this part of the algorithm, calculations are performed at the RLWE level. Here the

dimensions are determined by the CKKS lattice size, and number of moduli, as well

as the Giant-Step, and Baby-Steps. Knowing this, the third Z dimension is added to

take care of the multiple moduli in the calculation, this allows us to assign blocks for

each Baby-Step in the Giant-Steps (X, Y), as well as a separate block for processing

each modulus (Z).

FIGURE 7: Encoding and Repacking Key Multiplication Diagram

4.3.4 Giant-Step Accumulation Block Dimensions

The last dimensional assignment comes from the Giant-Step Accumulation functions.

Here, the Baby-Step data is now being accumulated into a Giant-Step input, which

involves summing all the included Baby-Steps. Because of this, we change the (Y)

32



4. IMPLEMENTATION

dimension of the previous step to now match the Ciphertext Size of 2 to keep the

logic simple. Now the dimensions match X as Giant-Steps, Y as CKKS ciphertext

Index, and Z as CKKS Modulus for block calculations.

FIGURE 8: Giant-Step Accumulation Block Dimensions

4.4 Mathematical Calculations

4.4.1 Data Storage

The storage of Parameters and Workspaces for the created program was simple, be-

cause of the limitations. The CKKS encryption scheme, that is the larger parameter

set used in the repacking algorithm, ends up requiring a lot of memory for typi-

cal parameters. An example would be when using 216 (65536) means that a single

ciphertext requires 216 * 2 * 64-bit which equates to approximately 8MB of data.

Considering CUDA Constant Memory must be kept under 64KB (value found from

doing a “deviceQuery” on the GPU), it is easy to see how most optimized storage

options are not going to be available when working in these large data sets. The

acceleration software can still make use of some of this constant memory in order

to store pointers, and some very basic values like lengths and sizes, which will make

program logic simpler, and access to these often-used values quicker. Aside from this

though, the large workspaces needed to perform the repacking and encoding must be

done in the Global memory, for space requirements and the fact that they must be
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Read/Write.

4.4.2 Data Types

One of the complications that arose in trying to create a CUDA function that could

complete part of the repacking algorithm was simply the large data types required.

The math mainly in the NTT, as well as some of the other ciphertext functions re-

quired going all the way up to 192-bit precision at times. Generally, we were able to

do most math in 64-bit precision, with allowances to 128-bit where required before

simplifying back down to 64-bit with the modulus. An understanding of the different

functions, and how large they can get was key in order to avoid any possible bit loss

when simplifying back down using the modulus. It was necessary to go to these large

data sizes in order to keep compliance with Microsoft SEAL’s scheme, which uses

Uint64 as its basic data type for ciphertext and plaintexts[29].

The most basic solution to this problem would be to use an unsigned integer 128-

bit precision library for this math. Ideally, this would have been an Nvidia Cuda

standard library, but there were versioning issues in using this library with some of

the other things used in the project. Because of this, a separate library, that focuses

on 64-bit-NTT speedup was used in part and modified for much of the basic 128-bit

unsigned integer math[3]. This gave efficient, low-level solutions to things like Uint64

multiplication, and addition, in Cuda Assembly. Using these solutions, along with

some added helper functions allow us to achieve all the required large-bit operations

described below.

Because the moduli used have at most 63-bit precision:

Ciphertext Addition

Result: at most 64-bit

Solution: 64-bit modulus operation

Ciphertext Multiplication

Result: At most 126-bit
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Solution: 128-bit Barret Reduction

Ciphertext Multiplication with 128-bit

Result: at most 192-bits

Solution: Used only in a specific shift, store as 128-bit + 64-bit carry and specialized

function used to extract correct shifted bits

4.4.3 Barrett Reduction

For reducing 64-bit modular multiplication the Barret Reduction method was used.

The first step to performing this operation requires deriving r, and k2 from the Mod-

ulus that is desired. Because these values are fixed by modulus though, they can

be pre-computed before the main repacking portion is run and are a part of the pro-

gram’s setup after all the required moduli are decided. The following runtime portion

of the algorithm was derived from other work, easily found online, and runs in a single

thread.

Multiply (a, b) → multiplies 2 64-bit values and returns an 128-bit value.

MultiplyWithCarry (a, b) → multiplies an 128-bit and 64-bit value and returns

a 64-bit value and 128-bit value. The 64-bit value are the upper 64-bits (carry), and

the 128-bit value are the lower 128-bits.

Subtract (a, b) → returns a – b of same type as a and b.

Shift (a, b, c)→ returns the 192-bit value represented by a and b shifted right by c

bits. The output of this will be < 64-bit because of the modulus and k2 parameters.

Assumptions: 0 ≤ input value < modulus2

We can assume that all values that this algorithm are used on are in this range

because firstly they are unsigned integers and thus unable to be less than 0, and

secondly modular reduction is performed immediately after any calculation has the

potential to be greater than the modulus.
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Algorithm 8 Barret Reduction in Acceleration Software

Input: input x 128-bit, modulus n 64-bit

Output: x mod n

1: Establish Temporary Variables tmp64[Uint64-bit] and tmp128[Uint128-bit]

2: MultiplyWithCarry (input, r) → tmp64 (high bits), tmp128(low bits)

3: shift (tmp64, tmp128, k2) → tmp64

4: Multiply (tmp64, Modulus) → tmp128

5: Subtract (Input, tmp128) → tmp128

6: if tmp128 < modulus then

7: Return (lower 64-bits of tmp128)

8: else

9: Subtract (tmp128, modulus)

10: Return (lower 64-bits of tmp128)

11: end if
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4.4.4 Encoding

FIGURE 9: Data Dimensions for encoding plaintexts

The encoding operation can be defined as input: Vec(Float64)→ output: Vec(CKKS

Plaintext). This is accomplished in essentially 3 steps. First an Inverse Fast Fourier

Transform (IFFT) is performed on the vector. Next, the values are rounded, and

sparsely packed into an Integer vector of the same size as a CKKS Plaintext. Lastly,

the values are moved into a vector of CKKS ciphertexts, one for each residue modulus

that makes up the CKKS modulus being used, and an NTT is performed on each with

their respective moduli. This Multiple-Moduli NTT essentially requires performing

an NTT on the same data, but with each different modulus based on the Encryption

Scheme parameters of the CKKS ciphertext. This allows for a large degree of paral-

lelization, as not only can the NTT itself be run in parallel, but each modulus can

also be calculated in parallel. It is at this point in the calculation that we essentially

go from having been working with X-number of LWE samples, to M-modulus CKKS

Plaintexts.
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4.4.5 Parallelization of NTT and FFT

During the encoding process, both an FFT and NTT are encountered at different

sections. The similarity of these two functions though allows for a large amount of

commonality between how both algorithms are implemented and can thus be dis-

cussed at the same time when regarding parallelization. At a high-level, both use

a radix-2 Cooley-Tukey butterfly approach to computation, allowing the respective

algorithms to be broken down into log(N) computations of size N/2 of the same al-

gorithm, as opposed to the näıve algorithm using N2 computations of size N. This

can be described at a high level like in Algorithm. 9, which is a simpler version of the

previous description in Algorithm. 3.[20][8]

Algorithm 9 General Radix-2 FFT Program Flow

Input: Vector X of length N, Pre-computed table Z

Output: Vector X of length N

1: t = N

2: for m = 1→ m < N → m = 2m do

3: t = t/2

4: for iter = 0→ iter < m do

5: x0 = 2 ∗ iter ∗ t

6: x1 = x0 + (t− 1)

7: z = Z[m+ iter]

8: for j = 0→ j < x1 → j ++, x0 ++, x1 ++ do

9: X[x0], X[x1] = Func(X[x0], X[x1], z)

10: end for

11: end for

12: end for

Looking at this it is easy to see 2 things, first that each iteration of the loop

requires N/2 calculations, which essentially are pairing different values in the array

and performing the butterfly operation on them. Secondly, each of these butterflies are

independent, meaning a full loop of calculations can be run in parallel in a collision-
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free way. This also means that if it was attempted to perform the algorithm at a

level of using multiple blocks per iteration, some form of inter-block synchronization

would be required in order to avoid a calculation collision on an array value. Due

to this, parallelization is done only per-iteration of the smaller NTT or FFT that

the larger algorithm is broken into. Doing it in this way allows the program to keep

all the processing in a single block, and not require inter-block synchronization, as

each iteration of the smaller NTT/FFT is collision free, so synchronizations are only

required before starting each.

The thread dimensions were matched to what is used for the full program flow,

basically (x, 4) (the x is not important other than that it divides the dimension N of

the input array). This works for the high-level parallelization because it is running a

large number of these FFT/NTT’s in parallel in separate blocks, so even though the

smaller thread counts of a single block requires iteration through the arrays gener-

ally, a speedup is still seen across the function as a whole. This is compounded when

running the NTTs as PEGASUS uses the RNS system, which means multiple NTTs

have to be run in parallel for each sub-modulus that makes up full modulus. The

general outline for how this is performed can be seen in Algorithm. 10, and started by

using the code that was available from PEGASUS [5] and SEAL [29]. This algorithm

is broken up into sections in Algorithms. 11,12, 13, and 4 in order to make pairing

off the values for butterflying simpler in the code. The parallelization technique uses

a similar, but simpler method outlined in other works done on NTT parallelization

in GPU[26, 25].

The other issue that comes from running specifically the IFFT version of this, is

that at the end of the function the results are in bit-reversed order. This is however

easily reversed using a single thread, as it is not a collision-free function that can be

performed by multiple threads easily. Here the approach PEGASUS uses is copied

for simplicity since this is a small computation cost, and completes the bit-reversed

ordering in-place, with no further memory required for storing.
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Algorithm 10 Parallelized Radix-2 FFT Program Flow

Input: X[N], Pre-computed table Z[N+1]

Output: X[N]

1: function Butterfly(a, b, c)

2: Modifies a, and b in place depending on the type (FFT/NTT) and direction

(Forward/Reverse)

3: end function

4: valuesperthread = (N/2)/numberofthreads

5: Main Loop

6: Middle Loop

7: Final Loop

Note: Depending on the type, a bit-reversal of the array may be required here

Algorithm 11 Parallelized Radix-2 FFT Program Flow - Main Loop

Used in Parallelized Radix-2 FFT Program Flow

1: w = 0

2: for h = N/2;h > 2;m <<= 1, h >>= 1 do

3: x0 = 0

4: x1 = x0 + h

5: for divs = 0; divs < valuesperthread; divs++ do

6: divisionoff = divs ∗ blockDimx ∗ blockDimy

7: xoff = (threadIdxx ∗ blockDimy) + threadIdxy + divisionoff

8: zoff = xoff/h

9: hoff = zoff ∗ h

10: Butterfly(X[x0 + xoff + hoff ], X[x1 + xoff + hoff ], Z[z + zoff ])

11: end for

12: Synchronize Threads

13: w = w +m− 1

14: end for
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Algorithm 12 Parallelized Radix-2 FFT Program Flow - Middle Loop

Used in Parallelized Radix-2 FFT Program Flow

1: x0 = 0

2: x1 = x0 + 2

3: for divs = 0; divs < valuesperthread; divs++ do

4: divisionoff = divs ∗ blockDimx ∗ blockDimy ∗ 2

5: if threadIdxy < 2 then

6: xoff = (threadIdxx ∗ blockDimy ∗ 2) + threadIdxy + divisionoff

7: zoff = 2 ∗ threadIdxx

8: else

9: xoff = (threadIdxx ∗ blockDimy ∗ 2) + (threadIdxymod2) + divisionoff +

blockDimy

10: zoff = (2 ∗ threadIdxx) + 1

11: end if

12: Butterfly(X[x0 + xoff ], X[x1 + xoff ], Z[z + zoff ])

13: z = z + (blockDimx ∗ 2)

14: end for

15: Synchronize Threads
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Algorithm 13 Parallelized Radix-2 FFT Program Flow - Final Loop

Used in Parallelized Radix-2 FFT Program Flow

1: x0 = 0

2: x1 = x0 + 1

3: for divs = 0; divs < valuesperthread; divs++ do

4: divisionoff = divs ∗ blockDimx ∗ blockDimy ∗ 2

5: xoff = (threadIdxx ∗ blockDimy ∗ 2) + (threadIdxy ∗ 2) + divisionoff

6: zoff = (threadIdxx ∗ blockDimy) + threadIdxy

7: Butterfly(X[x0 + xoff ], X[x1 + xoff ], Z[z + zoff ])

8: z = z + (blockDimx ∗ blockDimy)

9: end for

10: Synchronize Threads

4.4.6 Repacking Key Multiplication and Baby-Step Accumu-

lation

In the original PEGASUS Software, a Montgomery Multiply-Accumulate is performed

during the step where the repacking key is multiplied by the Encoded LWE Plaintext.

This makes sense in this context, as these values need to be summed eventually so

this is performing two steps in one function. However, for this work, to increase the

ability to allow more threads to run in parallel, this step is run in two separate steps.

This allows us to throw a lot of resources at the Multiplication step, and the Addition

step, without causing any data collisions, which can be seen in Figure. 10.
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FIGURE 10: Repacking Key Multiplication

Also, because PEGASUS originally used a Montgomery Multiply Accumulate,

they did some pre-calculations on the Rotated Repacking keys. Since the accelerated

software does these steps separate and uses a Barrett reduction here there is no need

to modify the rotated repacking key, though we also use a stored version of it rather

than calculating the rotations on the fly.

43



CHAPTER 5

Results

The results of the Accelerated function compared to running PEGASUS repacking on

only the CPU can be seen in Table. 1, where at lower lattice dimensions there can be

as much as 25% speedup of the overall repacking. This also equates to a 24x speedup

of the part of the repacking algorithm that is currently being done in the GPU. Part

of this time comprises the time it takes to transfer the data back from the GPU to

the CPU, which in its current form is inefficient. If the full repacking algorithm can

be done solely in the GPU, this time will no longer be wasted as that large data set

instead is used in the next calculation, and a much smaller amount of data needs to be

transferred back to the CPU at the end. When this computation is looked at in more

detail, it can be seen that the GPU Data transferring aspect of the runtime accounts

for over half of the GPU’s total runtime. This means when looking purely at the

GPU’s calculations, and ignoring the data transfers, a 50x speedup over the regular

CPU computation is achieved. In previous works, there has been a large variation in

reported speedup over CPU computation when GPU acceleration has been added due

to the wide variety in targeted functions, and hardware comparisons. For instance,

some have used multiple GPUS and achieve large boosts of 287.2Ö speedup over

particular CKKS functions over CPU only[30]. Others report more modest numbers

like in a work that focuses on TFHE (similar to FHEW) boolean and multiplication

operations, which achieves a 20x speedup over CPU only work[24]. Although there is

a lot of research being done generally in the FHE acceleration space, this work sets

itself apart in focusing solely on the conversion process, and achieves speedups that

are in line with other similar reported numbers.
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FIGURE 12: Breakdown of Accelerated Repacking

FIGURE 11: Full breakdown of base PEGASUS vs Accelerated Repacking
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Another important finding in the results was that the speedup seen was diminished

when the dimensions of the larger (CKKS) lattice dimension increased. This likely has

to do with the fact that at the larger dimensions you begin to lose “parallelization”, as

the number of calculations begins to grow larger than the cores being used to calculate.

This can be mitigated by changes to the scheme that would involve more cores, or

through the use of larger, or multiple GPU’s for increased processing power. It would

also suggest a lower limit, where at the lowest calculation levels full parallelization is

achieved, and below it no further speedups (as a ratio) would occur. Along the same

topic, it can be seen that the smaller lattice dimension (TFHE) has little impact on

the speedup, and overall runtime. This is likely due to the fact that the lower lattice

bounds, as they relate to the larger one, keep it from effecting the parallelization to

the same degree that the larger bounds do.

TABLE 1: Performance Improvements in PEGASUS using GPU-accelerated Repack-

ing with Varying CKKS dimensions

RLWE(CKKS) Speedup Total Speedup (X) *Speedup (X)

Dimension (2x) (%)

12 24.87% 23.18 51.26

14 21.95% 17.77 39.83

16 21.93% 16.95 38.00

TABLE 2: Performance Improvements in PEGASUS using GPU-accelerated Repack-

ing with Varying FHEW dimensions

LWE(FHEW) Dimension (2x) Speedup Total (%) Speedup (X)

10 21.33% 16.20606824

11 21.13% 16.17386519

12 20.68% 15.554524
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The Accelerated repacking was compared 1:1 with the base PEGASUS’s repacking

to ensure that the results were real, this found an extremely small amount of error,

that has been hard to pin down. It is possible it comes from a slight difference in the

way Floating point math happens early in the encoding process, but it has not been

completely determined and solved as of now. That said, as previously stated it is a

very small amount, and should not affect normal results of operating with PEGASUS.

TABLE 3: Output Differences between Accelerated and Base PEGASUS

Run Number Average Difference Max Difference

1 6.45361E-09 1.07193E-07

2 5.93735E-09 9.82973E-08

3 6.76987E-09 9.04605E-08

4 5.1547E-09 8.56686E-08

5 6.38357E-09 8.04439E-08

6 5.99021E-09 9.76073E-08

7 5.85862E-09 1.05462E-07

8 5.33757E-09 1.16918E-07

9 5.73707E-09 9.92051E-08

All the results come from running the Accelerated and Base PEGASUS code on

the same hardware, Ubuntu 20.04, with an Intel(R) Xeon(R) CPU @ 2.20GHz 8

Core processor and a Tesla V100-SXM2 16GB Graphics Card, obviously only the

Accelerated code makes use of the GPU. Additional parameters not mentioned that

were used to initialize PEGASUS software are as follows: CKKS Levels: 4, CKKS

Scale: 240, Inputs to Repack: 512 PEGASUS CPU Threads: 4

TABLE 4: Full and Amortized Runtimes for CKKS length 212

CKKS 212 Full (s) Amortized (s)

PEGASUS Runtime 3.643213333 0.007115651

Accelerated Runtime 2.737066 0.005345832

Difference 0.906147333 0.001769819
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TABLE 5: Full and Amortized Runtimes for CKKS length 214

CKKS 214 Full (s) Amortized (s)

PEGASUS Runtime 11.52451467 0.022508818

Accelerated Runtime 8.995158 0.017568668

Difference 2.529356667 0.00494015

TABLE 6: Full and Amortized Runtimes for CKKS length 216

CKKS 216 Full (s) Amortized (s)

PEGASUS Runtime 45.60303733 0.089068432

Accelerated Runtime 35.60146567 0.069534113

Difference 10.00157167 0.01953432
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CHAPTER 6

Conclusion

6.1 Summary

The work done here has begun the process of accelerating the functions of the PEGA-

SUS framework. This has been achieved through starting with a function that has so

far escaped the attention of other GPU work in this field and contained a high degree

of parallelization at a functional level. The speedup to the full functionality could be

significant and could be useful to other works that make use of a similar FHE con-

version method. Additionally, the integration with Microsoft SEAL and PEGASUS

makes it an attractive springboard for further acceleration projects. FHE conver-

sion schemes have great potential in creating Fully Homomorphic machine learning

functions[21]. This has the potential to revolutionize different consumer services like

healthcare[33], and can add consumer privacy and protection to almost any software

service that relies on a machine-learning algorithm.

6.2 Possible Future Works

The obvious work to be done would be to complete acceleration functions for the full

PEGASUS library. This would be useful but may be better done in conjunction with

work already done in this line by combining with a previously created FHE GPU

acceleration library, like the CARM library [30] on the CKKS side of processing.

At a lower level, using something like Cuda Cooperative groups would allow more

resources to be used during some of the computations [2]. More work has to be done
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on the standardization of the FHE schemes in order to determine best what can be

added to the work done on in this paper.
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