
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

5-16-2024 

Traffic Congestion Sybil Attack Detection in VANETs using Traffic Congestion Sybil Attack Detection in VANETs using 

Machine Learning Techniques Machine Learning Techniques 

Sarthak Khanduja 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Khanduja, Sarthak, "Traffic Congestion Sybil Attack Detection in VANETs using Machine Learning 
Techniques" (2024). Electronic Theses and Dissertations. 9470. 
https://scholar.uwindsor.ca/etd/9470 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9470?utm_source=scholar.uwindsor.ca%2Fetd%2F9470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


TRAFFIC CONGESTION SYBIL ATTACK
DETECTION IN VANETS USING

MACHINE LEARNING TECHNIQUES

By

SARTHAK KHANDUJA

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2024

©2024 SARTHAK KHANDUJA



TRAFFIC CONGESTION SYBIL ATTACK DETECTION IN VANETS USING

MACHINE LEARNING TECHNIQUES

by

SARTHAK KHANDUJA

APPROVED BY:

J. Pathak

Odette School of Business

D. Wu

School of Computer Science

A. Jaekel, Advisor

School of Computer Science

April 26, 2024



DECLARATION OF CO-AUTHORSHIP

I. Co-Authorship

I hereby declare that this thesis incorporates material that is the result of research con-

ducted under the supervision of Dr. Arunita Jaekel. In all cases, the key ideas, primary

contribution, experimental designs, data analysis, and interpretation were performed by

the author, and the contribution of the co-author was primarily through providing feed-

back and the proofreading of the published manuscripts.

I am aware of the University of Windsor Senate Policy on Authorship, and I certify

that I have properly acknowledged the contribution of other researchers to my thesis

and have obtained written permission from each of the co-author(s) to include the above

material(s) in my thesis. I certify that, with the above qualification, this thesis, and the

research to which it refers, is the product of my work.

II. General

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I certify that, to the best of my knowledge,

my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights

and that any ideas, techniques, quotations, or any other material from the work of other

people included in my thesis, published or otherwise, are fully acknowledged in accordance

with the standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution. I understand that

my thesis may be made electronically available to the public.

III



ABSTRACT

Integrating Vehicular Ad-Hoc Networks (VANETs) into modern Intelligent Transporta-

tion Systems (ITS) introduces critical security concerns. This research addresses the

emerging threat of Traffic Congestion Sybil Attacks, where malicious entities inject spu-

rious data to fabricate artificial traffic congestion. The methodology involves a detailed

examination of the VeReMi dataset, a benchmark for VANET research, coupled with

state-of-the-art classification machine learning algorithms. The analysis includes training

and evaluating these models to identify patterns indicative of Grid Sybil attacks. Prelimi-

nary results obtained through meticulous testing demonstrate a substantial enhancement

in various classification metrics, showcasing promising improvements, especially in en-

hancing the recall value for accurately identifying maliciously induced traffic congestions.

These initial findings underscore the potential for further refinements and heightened clas-

sification metrics in subsequent phases of the research. This thesis emphasizes the urgency

of securing VANETs against Traffic Congestion Sybil Attacks, presenting an innovative

solution through the fusion of machine learning techniques and the VeReMi dataset. The

outcomes contribute to theoretical understanding and hold practical implications for en-

hancing the security of vehicular communication networks.
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CHAPTER 1

Introduction

1.1 Vehicular ad-hoc networks

Figure 1.1: An example of Vehicular ad-hoc network [1]

Imagine a busy intersection with many vehicles, traffic lights, and streetlights. In this

scenario, a smart network forms by connecting sensors on vehicles, streetlights, and traffic

lights. This type of network is called Vehicular Ad-Hoc Networks (VANETs), a crucial

part of Intelligent Transportation Systems (ITS).

VANETs form an interconnection of sensors on cars, streetlights, traffic signals, and

other nodes that talk to each other. This communication helps improve transportation

by sharing real-time information, as shown in Fig. 1.1 [1], making the system safer and
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1. INTRODUCTION

more efficient.

In recent years, VANETs have seen a lot of research and development. This growth

is largely due to the popularity and cost reduction of IEEE 802.11 technologies, vehicle

makers’ use of information technology to address safety and environmental issues, and

governments’ allocation of wireless spectrum for vehicle communication [2].

Intelligent Transportation System integrates information, communications, computers,

and other technologies and applies them in the field of transportation to build an inte-

grated system of people, roads, and vehicles by utilizing advanced data communication

technologies [3].

VANETs are a specific area within ITS and are a subset of Mobile Ad-Hoc Networks

(MANETs), which focus on communication among moving nodes. VANETs adapt these

principles to deal with the unique challenges of vehicles in motion.

1.1.1 Components of a VANET

Primary Components of a VANET are:

• On-Board Unit (OBU): The On-Board Unit is a key component installed in each

vehicle participating in the VANET. It facilitates communication among vehicles and

with roadside infrastructure. The OBU is equipped with communication modules

and sensors, enabling it to exchange information with other OBUs and roadside

units (RSUs).

• Road-Side Unit (RSU): The Road-Side Unit (RSU) is a fixed infrastructure com-

ponent installed along roadways. RSUs provide a communication interface between

vehicles and the broader transportation infrastructure. They may be strategically

placed at traffic signals, intersections, or other locations to enhance communication

range and reliability.

• Global Positioning System (GPS): GPS technology is often integrated into

OBUs and RSUs to provide accurate location information. This is essential for var-

ious VANET applications, including traffic management, navigation, and collision

avoidance.

2



1. INTRODUCTION

• Sensors: Vehicles equipped with sensors contribute to the VANET’s data pool.

These sensors can include cameras, RADAR, LIDAR, and other environmental sen-

sors. The data collected by these sensors are shared within the VANET, aiding in

real-time traffic monitoring, hazard detection, and other safety applications.

• Communication Protocols: VANETs rely on specific communication protocols

to facilitate effective information exchange. Commonly used protocols include IEEE

802.11p for wireless communication between vehicles and infrastructure.

1.1.2 Communication in VANETs

Communication within Vehicular Ad-Hoc Networks (VANETs) unfolds in the wireless

spectrum, presenting an array of communication types, each with its own set of vulnera-

bilities. While offering flexibility and adaptability, the wireless nature of these communi-

cations also introduces the susceptibility to various security threats and attacks.

Vehicle to Vehicle (V2V):

V2V communication involves direct interaction between vehicles on the road. It enhances

road safety by allowing vehicles to exchange real-time information, such as location, speed,

and potential hazards.

However, this form of communication is not without its challenges. The wireless nature of

V2V communication makes it susceptible to eavesdropping, where unauthorized entities

may intercept and gather sensitive data. Message tampering is also risky, where the

integrity of the information may be compromised.

In Vehicular Ad Hoc Networks (VANETs), the seamless exchange of vital information

among Vehicle-to-Vehicle (V2V) compatible nodes is paramount. This communication is

facilitated through the periodic dissemination of a fundamental safety message (BSM),

which serves as a conduit for relaying real-time data of the transmitting vehicle. The

BSM encapsulates a spectrum of crucial information, including the vehicle’s current po-

sition, velocity, heading, brake status, steering wheel angle, and other pertinent details

essential for ensuring road safety and facilitating intelligent vehicular operations [4]. This

continuous exchange of BSMs among vehicles forms the cornerstone of VANETs, enabling

3



1. INTRODUCTION

collaborative and proactive decision-making processes to enhance traffic efficiency, pre-

empt potential hazards, and foster a secure and resilient vehicular ecosystem.

Vehicle to Infrastructure (V2I):

V2I communication connects vehicles and fixed infrastructure elements like traffic lights

or roadside units. It is crucial for optimizing traffic flow, coordinating traffic signals, and

providing timely information to drivers.

The reliance on wireless communication exposes V2I links to potential denial-of-service

attacks. Malicious actors may attempt to disrupt or overload communication channels,

hindering the exchange of critical information. Unauthorized access to infrastructure

points is also a concern.

Vehicle to All (V2X):

V2X communication encompasses vehicle interactions and a broader spectrum of entities,

including other vehicles, infrastructure, and pedestrians. It is the most comprehensive

form, enabling a holistic exchange of information for enhanced safety and efficiency.

Due to its expansive nature, V2X faces many potential threats. Privacy concerns arise

from exchanging sensitive information, and there’s a risk of impersonation, where ma-

licious entities may pose as legitimate participants. The challenges in securing V2X

communications are diverse and complex.

1.1.3 Attacks on VANETs

Due to the wireless nature of communication between elements within a VANET, attackers

with malicious intent can always try and disrupt the network.

Safety-related messages, traffic management, and navigation messages are dissemi-

nated periodically in vehicular network systems. These messages are vulnerable to several

attacks, from passive eavesdropping to active interference [5].

Passive Attacks:

• Eavesdropping: Unauthorized entities secretly intercept and monitor communi-

cation, gathering sensitive information without actively altering the transmitted

data.

4
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Active Attacks:

• Jamming: Malicious entities intentionally disrupt communication channels, caus-

ing interference and potentially rendering the network inoperable.

• Spoofing: Attackers create fake identities or manipulate their identity to deceive

the network about their legitimacy.

• Replay Attacks: Malicious entities capture and re-transmit valid messages to

deceive the network, repeating outdated or irrelevant information.

• Selective Forwarding: Malicious nodes selectively forward or block specific mes-

sages, affecting the overall reliability of the network.

Integrity Attacks:

• Message Tampering: Attackers alter the content of messages, injecting false or

misleading information into the system.

• Data Injection: Malicious entities inject unauthorized data into the network,

potentially causing confusion and disrupting normal operations.

Privacy Attacks:

• Location Tracking: Malicious entities attempt to track the location of vehicles,

compromising the privacy of individuals within the network.

• Profile Inference: Attackers analyze communication patterns to infer sensitive

information about the behavior and preferences of network participants.

Sybil Attacks:

• Sybil Attacks: Malicious nodes create multiple fake identities to undermine the

authenticity and trustworthiness of communication within the network.

Denial-of-Service (DoS) Attacks:

5



1. INTRODUCTION

• Jamming: While mentioned earlier, jamming attacks can also be considered a

form of denial-of-service, where communication channels are deliberately disrupted

to prevent the normal functioning of the network.

• Resource Exhaustion: Attackers overwhelm network resources, making it chal-

lenging for legitimate participants to access and utilize the communication infras-

tructure.

Physical Attacks:

• Vandalism: Physical damage to communication infrastructure components, such

as RSUs or OBUs, can disrupt the overall functionality of the network.

Misbehavior Attacks:

• Selfish Behavior: Nodes may act selfishly by selectively participating in com-

munication or refraining from forwarding messages, undermining the collaborative

nature of VANETs.

This is not an exhaustive list but a broad categorization of different attacks seen in

VANETs.

For the purposes of this thesis, we will be focusing our attention on Sybil Attacks.

1.2 Motivation

In selecting my research focus on mitigating Traffic Congestion Sybil Attacks in Vehicu-

lar Ad-Hoc Networks (VANETs), my motivation stems from the profound impact these

attacks can have on our transportation systems’ efficiency, trustworthiness, and safety.

Beyond the evident disruptions to traffic flow and navigation, these attacks introduce

resource wastage whose repercussions extend beyond the immediate inconveniences. Re-

source wastage becomes a palpable concern as vehicles are redirected inefficiently, leading

to increased fuel consumption and environmental impact. Misleading behavior induced

among drivers in the network can result in unexpected maneuvers, increasing the likeli-

hood of accidents and compromising road safety.

6
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Recognizing the imperative to address these challenges, my research aims to develop pre-

cise and effective methods for classifying vehicles and distinguishing between legitimate

and malicious entities within the VANET. This work is driven by a commitment to forti-

fying vehicular communication’s integrity, contributing to the resilience and reliability of

future connected transportation networks.

1.3 Problem Statement

In the realm of Vehicular Ad-Hoc Networks (VANETs), the emergence of Traffic Conges-

tion Sybil Attacks poses a significant challenge. This threat involves malicious vehicles

fabricating deceptive identities, compromising network message integrity. The potential

ramifications extend beyond mere disruption, encompassing the risk of fatal accidents

and widespread traffic disturbances. Existing detection approaches, primarily relying on

Plausibility and Integrity checks, have demonstrated limitations regarding precision and

susceptibility to mimicking legitimate behavior.

This research aims to address these shortcomings by leveraging robust Machine Learn-

ing models. The objective is to enhance the classification precision and recall of vehicles

engaged in Traffic Congestion Sybil Attacks. The endeavor seeks to fortify the security

and integrity of vehicular communication within VANETs, thereby fostering safer and

more resilient transportation networks.

1.4 Solution Outline

The envisioned solution to address the challenge of detecting Traffic Congestion Sybil

Attacks in Vehicular Ad-Hoc Networks (VANETs) entails the application of a generalized

machine learning model. This model is trained on historical data to discern attacking

vehicles from normal ones with a heightened degree of precision and recall. Given the

nature of VANETs, where vehicles continually transmit messages throughout their jour-

neys, the proposed solution leverages the observation that malicious vehicles adopting

multiple identities tend to generate more messages than their legitimate counterparts.

7



1. INTRODUCTION

Furthermore, using pseudonyms by attacker vehicles becomes a distinguishing factor, as

duplicated identities are denied digital certificates by the Public Key Infrastructure (PKI).

The training dataset is derived from the VeReMi dataset, originally generated through

LuST [6] and VEINS [7] simulations, and encompasses varying traffic densities to ensure

adaptability to diverse traffic scenarios.

The solution framework unfolds across the following key stages:

Dataset Preparation:

• Collation and consolidation of the original JSON data, distributed across sender

vehicle folders, into a unified dataset.

Data Pre-processing:

• Removal of non-contributory features to assess a vehicle’s attacker status.

• In-depth analysis and extraction of valuable insights from the dataset distribution

to identify features significantly impacting classification.

Feature Engineering:

• Introduction of a supplementary set of features derived from the insights gathered

during the pre-processing stage, augmenting the dataset for enhanced processing.

Splitting the Dataset:

• Adoption of a bespoke dataset split methodology to preserve the temporal order of

time-series data, mitigating overfitting concerns experienced with random splits.

Classification using ML Models:

• Employing the trained machine learning model to classify vehicles, utilizing a test set

for performance evaluation. The outcome shows notable improvement over previous

attempts, demonstrating heightened efficacy in detecting Traffic Congestion Sybil

Attacks within VANETs.

This meticulously structured solution aims to refine the detection capabilities in the

context of VANETs and contribute to the broader landscape of securing vehicular com-

munication systems.

8



1. INTRODUCTION

1.4.1 Contributions

The contribution of this research is summarized as follows:

• Applied machine learning to precisely identify Traffic Congestion Sybil attacks in

VANETs.

• Introduced a novel dataset splitting method to preserve temporal features in time-

series data using classical machine learning algorithms.

• Elevated Recall and F-1 score metrics to enhance the detection accuracy of Traffic

Congestion Sybil Attacks.

• Introduced additional features to bolster the detection capabilities of Sybil Attacks

in VANETs.

1.5 Thesis Organization

The remaining outline of this thesis is as follows: Chapter 2 includes an overview of funda-

mental concepts of VANET and Traffic Congestion Sybil Attacks, along with a literature

review of related work in Misbehavior Detection using Machine Learning approaches.

Chapter 3 covers an overview of the suggested methodology and briefly describes the

VeReMi dataset, followed by Chapter 4, which includes the experimental setup and the

results. Finally, Chapter 5 portrays a conclusion of our work, followed by possible future

work on the proposed methodology.

9



CHAPTER 2

Background Review

2.1 Overview of VANET

Vehicular Ad-Hoc Networks (VANETs) represent a specialized subset within the broader

domain of Mobile Ad-Hoc Networks (MANETs), garnering escalating attention from

researchers and practitioners alike due to a plethora of compelling factors. Although

cellular networks enable convenient voice communication and simple infotainment ser-

vices to drivers and passengers, they are not well-suited for certain direct vehicle-to-

vehicle or vehicle-to-infrastructure communications. However, vehicular ad hoc networks

(VANETs), which offer direct communication between vehicles and to and from roadside

units (RSUs) can send and receive hazard warnings or information on the current traffic

situation with minimal latency [2].

With the surge in urbanization and the exponential growth of vehicular traffic, the need

for efficient and secure communication infrastructures has become paramount.

However, the very essence of VANET communication, occurring entirely wirelessly as

elaborated in the preceding section, renders it inherently vulnerable to various forms of

cyber-attacks. These vulnerabilities necessitate robust security measures and innovative

approaches to ensure the integrity, confidentiality, and reliability of communication within

VANETs.

Indeed, recognizing the susceptibility of VANETs to malicious activities due to their wire-

less communication nature, the emergence of Misbehavior Detection Systems has become

paramount. These systems serve the critical function of identifying and flagging ma-

licious nodes, often called ”attackers,” within the network. By employing sophisticated

10



2. BACKGROUND REVIEW

algorithms and security mechanisms, Misbehavior Detection Systems play a pivotal role in

safeguarding the integrity and reliability of VANET communication, mitigating potential

threats, and ensuring the smooth functioning of vehicular ad-hoc networks.

2.1.1 Security and Privacy Threats in VANET

Continuing the discussion of security and privacy threats in VANETs due to the wireless

nature of communication within it, from the previous section, we can broadly classify the

types of threats into five categories [8].

Figure 2.1: Security and Privacy Threats in VANETs
[8]

Referring to the above Fig. 2.1, the attacks are introduced below:

• Authentication:

VANETs are susceptible to various authentication attacks due to their dynamic and

decentralized nature. These attacks exploit vulnerabilities in the authentication

mechanisms designed to verify the identity and integrity of communicating entities

within the network.

There are several types of Authentication Attacks, some of them are:

– Replay Attacks:

Replay attacks involve re-transmitting previously recorded messages to deceive

legitimate nodes. Attackers exploit authentication weaknesses to impersonate

valid nodes or inject false data.

11



2. BACKGROUND REVIEW

– Position Falsification Attacks:

Whenever a vehicle travels, it sends out Basic Safety Messages (BSM) to its

neighboring vehicles to ensure that every vehicle has a broad understanding

of how the network moves. The attack caused by sending false positional

information within the BSM into the network is called the Position Falsification

Attack [9].

– Identity and Certificate Replication:

Attackers create multiple nodes with the same identity by replicating manage-

ment and RF certificates, aiming to confuse authorities and evade detection.

– Sybil Attacks:

A single malicious entity generates multiple fake identities to gain unfair ad-

vantages or disrupt network operations, which may lead to confusion or denial

of service for legitimate participants. Besides being one of the most dangerous

forms of attack, Sybil attack is also among the most difficult to detect [10].

• Confidentiality:

In VANETs (Vehicular Ad Hoc Networks), confidentiality refers to the protection

of sensitive information exchanged between vehicles (nodes) and between vehicles

and roadside units (RSUs) from unauthorized access or interception by malicious

entities.

Eavesdropping involves a malicious entity (attacker) passively monitoring the com-

munication between vehicles or between vehicles and RSUs [11]. Once the attacker

successfully intercepts the messages exchanged between vehicles or between a vehi-

cle and an RSU, they gain access to the contents of these messages. With access to

intercepted messages, the attacker can exploit the information for various malicious

purposes, such as Tracking, Theft, Sabotage, Identity Theft, Traffic Manipulation,

etc.

In addition to passive eavesdropping, attackers may engage in active attacks by

impersonating legitimate nodes or RSUs. Attackers may set up rogue RSUs strate-

gically to intercept communication from passing vehicles. These bogus RSUs can
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appear legitimate, leading vehicles to establish connections and exchange sensitive

data unwittingly.

• Integrity:

Attacks on integrity in VANETs, such as timing attacks, aim to manipulate the

timing or sequence of messages without altering their content. Timing attacks can

seriously affect vehicular communication networks’ reliability and safety.

In a timing attack, the attacker deliberately introduces delays or alterations in the

timing of messages exchanged between vehicles or between vehicles and RSUs [8].

This manipulation can disrupt the normal flow of communication and lead to various

undesirable outcomes.

For example, delaying the dissemination of congestion warnings to nearby vehicles

can lead to increased congestion or accidents as drivers are not adequately informed

about road conditions, or delaying emergency messages, such as collision warnings or

obstacle alerts, can result in delayed reactions from drivers or autonomous vehicles,

increasing the likelihood of accidents or collisions.

• Availability: Denial of service (DoS) attack is the most common intrusive attack

against the availability [8]. DoS attacks aim to disrupt or degrade the availability

and performance of VANET services by overwhelming network resources or exploit-

ing vulnerabilities in communication protocols.DOS can be classified into three levels

of attacks, which are (1)Basic level, (2)Extended level, and (3)Distributed Denial

of service attack (DDoS) [12].

Other types of attacks on Availability include Broadcast Tampering, Jamming,

Black Hole Attack, etc. [8].

• Accountability:

In this attack, malicious entities aim to compromise the privacy and security of

target nodes by exploiting vulnerabilities in the network’s communication protocols

and security mechanisms [8]. The attacker monitors the communication activities of

specific target nodes within the VANET and sends malicious packets or ”viruses” to

nearby vehicles near the target node. When nearby vehicles receive the virus packets,
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their systems may become overwhelmed or compromised. When that happens, they

may inadvertently reveal the identity and location information of the target node

[13]. The attacker can exploit this information for nefarious purposes, such as

tracking the target’s movements, impersonating the target, or launching attacks

against the target or other network participants.

Our research focuses specifically on accurately detecting Sybil attacks, which are

discussed below.

2.1.2 Sybil Attacks

Vehicular Ad-hoc Networks (VANETs) offer promising advancements in road safety and

traffic management. However, their reliance on open wireless communication channels

exposes them to security threats, including Sybil attacks.

In a Sybil attack, a malicious entity assumes multiple fake identities (Sybils) within the

network, gaining undue influence and disrupting its normal operation. Attackers lever-

age these fake identities to manipulate data, spread misinformation, and launch further

attacks.

For example, a malicious node may misleadingly report a traffic jam or accident to cause

a nearby vehicle driver to reroute, potentially causing a real traffic jam on another road.

Alternatively, the malicious node may exploit the fake virtual nodes to use a large amount

of bandwidth, disrupting communication [14].

Sybil attacks in VANETs can be grouped into three main categories [15] based on how

they communicate, their identity, and their involvement in the network:

• Communication Category:

In this type of attack, a malicious vehicle listens in when an honest vehicle sends

a message over the radio. Similarly, messages sent from Sybil (malicious) vehicles

appear to be sent from another malicious device. Communication with Sybil nodes

can be direct, where they communicate directly with legitimate vehicles, or indirect,

where they communicate through another malicious vehicle.

14



2. BACKGROUND REVIEW

• Identity Category:

Attackers create new identities for their malicious vehicles. These identities can ei-

ther be completely random (fabricated) or mimic the legitimate identity of a nearby

vehicle (stolen identity).

• Participation Category:

In this category, multiple Sybil identities created by malicious vehicles can simul-

taneously take part in an attack, or the attacker can use them simultaneously.

Sometimes, a single identity may repeatedly join and leave the network. The num-

ber of identities the attacker uses is usually equal to or fewer than the number of

physical vehicles. Attacks involving multiple Sybil nodes can seriously disrupt the

normal functioning of the network.

As seen in Fig. 2.2, the vehicle with the malicious intent of disrupting the network

is shown in yellow color. This attacker vehicle creates multiple ”fake” identities of it-

self within the network (shown using red-colored vehicles). It intends to send out fake

BSMs using these fake identities to disrupt the network. The malicious node (attacker)

creates multiple false identities or pseudonyms to manipulate network operations, deceive

legitimate nodes, and disrupt communication.

Figure 2.2: Sybil Attack in VANETs

Traffic Congestion Sybil Attack

Traffic Congestion Sybil Attack was first introduced in 2020. It is an attack aimed at

creating fake traffic congestion. The attacker generates a grid of fake vehicles in a chosen
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position by maintaining a new identity and a correct message frequency for each fake

vehicle [16].

2.2 VeReMi Dataset

The VeReMi dataset, also known as the Vehicular Reference Misbehaviour Dataset, is

a valuable resource in Vehicular Ad-Hoc Networks (VANETs), specifically designed for

evaluating misbehavior detection techniques in this domain. VeReMi separates itself from

its predecessors by being the first publicly available and expandable dataset, providing

researchers and practitioners with a vital tool for developing state-of-the-art VANET se-

curity [17].

VeReMi, which consists of message logs from onboard units (OBUs), is methodically de-

signed to cover a wide range of events and obstacles. It has three separate density levels to

accommodate diverse traffic circumstances, three malfunctions, and six different attacks

[16]. This diversity allows for thorough testing and validation of misbehavior detection

algorithms under various conditions, assuring robustness and dependability in real-world

deployment settings.

Table 2.1: Attacker Distribution by Traffic Density in VeReMi

[16]

Dataset ID Time Attacker Attacker Genuine Genuine

Density Vehicles Messages Vehicles Messages

Attack 0709 37.03V/km2 1,220 924,251 2,846 2,221,825

Attack 1415 16.36 V/km2 505 249,612 1,179 569,723

MixAll 0024 23.29 V/km2 7,399 7,505,418 17,264 11,951,210

The dataset is developed using a simulated environment called Framework for Misbe-

havior Detection (F2MD), provided using the LuST scenario [6] and the VEINS (Vehicles
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in Network Simulation) framework [7], which is based on the OMNeT++ and SUMO

platforms. By modeling actual vehicle interactions and communication protocols, VeReMi

accurately depicts the complexities of VANET systems, providing a high-fidelity simula-

tion of potential security risks and vulnerabilities.

VeReMi is built around Basic Safety Messages (BSMs) received by cars in the simulated

environment, which are scrupulously maintained with a labeled ground truth file that

depicts attacker behavior. This degree of detail enables researchers to precisely analyze

and evaluate misbehavior detection techniques, allowing them to successfully discover and

address security flaws.

2.3 Overview of Machine Learning

Machine learning is the Artificial Intelligence branch that facilitates machines to perform

specific jobs faster and skillfully using statistical learning [18]. It is a branch of artificial

intelligence (AI) that focuses on developing algorithms and statistical models that enable

computers to learn from and make predictions or decisions based on data without being

explicitly programmed [19]. It encompasses various techniques and approaches to enable

systems to learn and improve from experience automatically.

One fundamental distinction in machine learning is between supervised and unsupervised

learning.

• Supervised Learning

In supervised learning, the algorithm learns from labeled data, where each training

example is associated with a corresponding target or outcome. The goal is to learn

a mapping from input features to the correct output labels, allowing the algorithm

to make predictions on unseen data.

• Unsupervised Learning

On the other hand, unsupervised learning involves learning from unlabeled data,

where the algorithm tries to find patterns or intrinsic structures within the data

without explicit guidance. This type of learning is often used for tasks such as
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clustering, dimensionality reduction, and anomaly detection.

2.3.1 Basic Machine Learning Concepts and Terminologies

Basic terminologies and processes of machine learning [20] used in this thesis are defined

below:

1. Data Preprocessing: Refers to the cleaning, transforming, and normalizing raw

data to prepare it for machine learning algorithms, often involving tasks such as

handling missing values, encoding categorical variables, and scaling numerical fea-

tures.

2. Feature Engineering: The process of creating new features or modifying existing

ones from the raw data to improve the performance of machine learning models,

typically involving techniques such as feature selection, dimensionality reduction,

and creating interaction terms.

3. Hyperparameter Tuning: The process of optimizing the hyperparameters of

machine learning algorithms to improve their performance on unseen data is often

done using techniques such as grid search, random search, or Bayesian optimization.

4. Exploratory Data Analysis (EDA): An initial step in data analysis aimed at

exploring and understanding the structure, patterns, and relationships within the

data using statistical graphics, visualization techniques, and summary statistics.

5. Train-Test Split: The dataset division into separate training and testing subsets,

where the training set is used to train the machine learning model, and the testing

set is used to evaluate its performance on unseen data.

6. Train Set: The portion of the dataset used to train the machine learning model

by feeding input data along with corresponding labels or target variables to learn

patterns and relationships.
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7. Test Set: The portion of the dataset reserved for evaluating the performance of

the trained machine learning model on unseen data is typically used to assess its

generalization ability and predictive accuracy.

8. Cross-Validation: A resampling technique used to assess the performance of ma-

chine learning models by splitting the data into multiple subsets, training the model

on different subsets, and averaging the results to obtain a more reliable performance

estimate.

9. Overfitting and Underfitting: Common issues in machine learning where the

model either learns the training data too well (overfitting), leading to poor gen-

eralization on unseen data or fails to capture the underlying patterns in the data

(underfitting), resulting in low predictive performance.

2.3.2 Classification Models in Machine Learning

Within supervised learning, one common task is classification, where the goal is to predict

the categorical class labels of new instances based on past observations. Classification al-

gorithms aim to learn a mapping from input features to discrete output classes, allowing

the algorithm to classify new data points into predefined categories. These algorithms

are trained on labeled data, where each instance is associated with a class label, and

they learn to distinguish between different classes based on the features provided. Some

popular classification algorithms include K-Nearest Neighbors [21], Decision Trees

[22], Random Forests [23], support vector machines (SVM), and Logistic Re-

gression.

Each algorithm has its strengths and weaknesses, and the choice of algorithm often de-

pends on factors such as the data’s nature, the dataset’s size, and the desired level of inter-

pretability or complexity. In detecting attacks in vehicular ad hoc networks (VANETs),

classification algorithms can be applied to learn normal behavior patterns and distinguish

between legitimate and malicious activities based on features extracted from network traf-

fic or sensor data. These algorithms play a crucial role in developing effective intrusion

detection systems (IDS) for ensuring the security and integrity of VANETs.
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Given the nature of the dataset and the specific problem of detecting attacks in vehicular

ad hoc networks (VANETs), three classification models have shown promising perfor-

mance: K-Nearest Neighbors (KNN), Decision Trees, and Random Forest.

• K-Nearest Neighbours

KNN is a simple yet powerful algorithm for classification and regression tasks. It

operates on the principle of similarity, where a new data point is classified based on

the majority class of its nearest neighbors in the feature space. It tries to classify

an unknown sample based on the known classification of its neighbors [21]. In the

context of VANET security, KNN can be effective because it doesn’t assume any

underlying probability distribution of the data and can capture complex decision

boundaries. However, its performance may degrade with high-dimensional data or

imbalanced class distributions.

In the context of the K-Nearest Neighbors (KNN) algorithm, the process described

in Fig. 2.3 represents the fundamental principle of how KNN determines the classifi-

cation of a target point. In KNN, the algorithm classifies a data point by considering

the class labels of its nearest neighbors in the feature space. This approach allows

KNN to classify data points based on the consensus of their nearest neighbors in

the feature space, making it a simple yet effective algorithm for classification tasks.

However, the choice of ’k’ and the distance metric used can significantly impact the

performance of KNN, and careful parameter tuning is often necessary to achieve

optimal results.
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Figure 2.3: K-Nearest Neighbours

• Decision Trees

Decision trees are non-parametric supervised learning models used for classification

and regression tasks. They partition the feature space into disjoint regions based on

the values of input features, and each region is associated with a specific class label

[24]. Decision trees are interpretable and easy to understand, making them suitable

for explaining the logic behind classification decisions. However, they are prone to

overfitting, especially when the tree depth is not properly controlled.

In the context of decision trees, Fig. 2.4 likely represents the hierarchical structure

of decision-making within the algorithm. They recursively partition the feature

space into smaller regions, making decisions at each node based on the features’

values. At each node of the decision tree, a decision is made based on a particular

feature and a threshold value. The decision made at each node creates new branches

of possible decisions to be made. Each branch corresponds to a specific range or

category of the evaluated feature. As the data points traverse the decision tree

branches, they eventually reach a leaf node. A leaf node makes no further decisions

but represents a final classification or regression decision. This hierarchical decision-
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making structure allows decision trees to partition the feature space effectively and

make predictions based on simple rules at each node. However, the decision tree’s

complexity can vary depending on factors such as the depth of the tree, the number

of features, and the splitting criteria used.

Figure 2.4: Decision Trees

• Random Forest

Random Forest is an ensemble supervised learning method that constructs multiple

decision trees during training and outputs the mode of the classes (classification)

or the individual trees’ mean prediction (regression). It mitigates the overfitting

problem of decision trees by averaging the predictions of multiple weak learners.

Random Forest is robust to noise and outliers and can handle high-dimensional

data effectively. Moreover, it provides an estimate of feature importance, which can

be valuable for understanding the underlying factors contributing to classification

decisions. However, Random Forest models may be computationally expensive and

require hyperparameter tuning to optimize performance.

The number of trees necessary for good performance grows with the number of

predictors. The best way to determine how many trees are necessary is to compare

predictions made by a forest to predictions made by a subset of the forest. You have

enough trees when the subsets work, and the full forest [23].
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As depicted in Fig. 2.5, multiple decision trees are created, and during classification,

each tree independently evaluates the input data. The final classification decision

is then determined through an aggregation process, where the mode of the classes

predicted by individual trees is taken as the overall prediction.

Figure 2.5: Random Forest

2.4 Literature Review

Detecting misbehavior (such as transmission of misleading information) in vehicular ad

hoc networks (VANETs) is a problem with numerous ramifications., including safety-

related and congestion-avoidance applications. Most MDS are concerned with the detec-

tion of malicious nodes. In most situations, vehicles send wrong information for selfish

reasons by their owners, e.g., to gain access to a particular lane. It is, therefore, more

important to detect false information than to identify misbehaving nodes [25].

In vehicle communication networks, detecting misbehavior is crucial, but it’s no easy

task. Many types of attacks can happen, and each one needs its way of being spotted.

We must understand these attacks well before we can find effective solutions. That’s why

we must first figure out all the different kinds of attacks that could happen. Only then
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can we start to create smart ways to catch them.

2.4.1 VANET and Attacks in VANET

Codeca, Lara, et al. [6] addressed creating a realistic traffic scenario suitable for vehic-

ular networking research. Recognizing the importance of accurate simulations in evalu-

ating network protocols and applications, they devised the Luxembourg SUMO Traffic

(LuST) Scenario. Leveraging real-world data from the City of Luxembourg, including

OpenStreetMap and government statistics, they meticulously constructed a comprehen-

sive scenario encompassing road topology, demographics, mobility, and traffic patterns.

Their work culminated in the development of LuST, providing the research community

with a freely available framework for studying vehicular networking and facilitating the

comparison of protocols and applications.

Since this was still a simulation and not a concrete set of data that could be pro-

duced using which we could analyze patterns and differentiate attacks, van der Heijden,

Rens W., et al. [17] recognized the need for a standardized dataset to enable fair and

comparable evaluation of different misbehavior detection approaches. To address this,

they introduced the first-ever publicly extensible dataset allowing anyone to reproduce

the generation process, contribute attacks, and use the data to compare new detection

mechanisms against existing ones, called VeReMi - Vehicular Reference Misbehaviour

Dataset. It comprises realistic vehicular communication traces enriched with various ma-

licious activities. VeReMi [17] leveraged LuST [6]scenario to generate realistic vehicular

communication traces enriched with various types of misbehavior, enabling researchers to

evaluate misbehavior detection techniques in a representative urban traffic environment.

Hezam et al. [8] categorized different types of security and privacy threats in VANETs

and mentioned that to maintain secure vehicular communication and networks, the VANET

security system should satisfy the requirements mentioned as the categories of different

threats in section 2.1.1. However, this is still a broad categorization of threats.
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While introducing the VeReMi dataset, van der Heijden, Rens W., et al. [17] also intro-

duced a set of 5 different types of position falsification attacks in VANETs which could

be reproduced in a simulation by anyone utilizing the VeReMi dataset.

An extension of the VeReMi Dataset was introduced in 2020, where van der Heijden,

Rens W., et al. [16] and mention that while message authenticity is ensured through

digital certificates, the correctness of the information exchanged remains uncertain. Ex-

isting studies lack a common reference dataset, making comparing and validating results

challenging. The authors extend the original VeReMi dataset to address its limitations.

They introduce a realistic sensor error model, enhance the dataset with more data points,

and incorporate a new set of attacks. These enhancements aim to improve the dataset’s

realism and usefulness for researchers in the field of misbehavior detection in VANETs.

The paper introduces several new types of attacks to the VeReMi dataset:

• Denial-of-Service (DoS) Attacks: Vehicles send messages at a frequency higher

than the standard limit.

• DoS Random: DoS attacks with all message fields set to random values.

• Data Replay: Sending previously received information from a specific target neigh-

bor, signed with the attacker’s certificate.

• Disruptive Attacks: Information replay of previously received data from random

neighbors.

• Sybil Attacks: Vehicles pretend to be multiple entities on the road simultaneously.

• Traffic Congestion Sybil: Creates fake traffic congestion by generating a grid of

fake vehicles.

Consequently, this paper is the first-ever time the “Traffic Congestion Sybil Attack”

was formally introduced in VANETs.
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2.4.2 Misbehavior Detection in VANET

Ghosh et al.[26] propose a misbehavior detection scheme tailored for Post Crash Notifica-

tion (PCN) applications within vehicular ad hoc networks (VANETs), aiming to address

the problem of detecting and evicting incorrect messages, which can lead to false crash

alerts. The scheme relies on observing driver behavior post-alert reception, distinguishing

genuine crash alerts from false ones by comparing the actual vehicle trajectory with the

expected trajectory following a crash. If the deviation exceeds a threshold, indicating a

false alert recognized by the driver, it’s classified as false; otherwise, it’s deemed true.

Limitations include reliance on accurate position information in false alerts, potential

variability in effectiveness across mobility dynamics and applications, and assumption of

a Markovian mobility model, potentially restricting applicability in diverse scenarios.

In their work on misbehavior detection in VANETs, Ruj et al.[25] adopt a novel ap-

proach centered on observing vehicle alert messages and scrutinizing subsequent actions

to discern inconsistencies indicative of false alerts. Unlike conventional schemes focusing

on node classification or revocation, their method takes a data-centric stance, distin-

guishing between accurate and erroneous information rather than categorizing nodes as

trustworthy or untrustworthy. By eschewing the revocation of misbehaving nodes or their

credentials, Ruj et al.’s approach conserve communication bandwidth and computational

resources while safeguarding location privacy through pseudonyms. However, the efficacy

of their approach presupposes that misbehavior primarily arises from self-serving motives,

potentially overlooking malicious intent. Moreover, the reliance on precise location data

poses a vulnerability, as nodes could disseminate false location information alongside false

alerts, undermining the system’s accuracy.

van der Heijden et al. [17] propose misbehavior detection techniques tailored for

VANETs, leveraging vehicular reputation systems to assess participating vehicles’ trust-

worthiness based on past behavior and interactions. Reputation-based approaches, in-

cluding direct and indirect trust evaluation mechanisms, enable vehicles to exchange rep-
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utation reports and make informed decisions about neighboring nodes’ trustworthiness.

Additionally, a collaborative detection scheme aggregates reputation information from

multiple sources to enhance detection reliability and accuracy, mitigating malicious ac-

tivities and improving overall VANET security.

However, drawbacks persist despite the promising aspects of the proposed techniques.

Firstly, reliance on reputation systems introduces vulnerabilities related to reputation

information accuracy and integrity, as malicious nodes may manipulate scores to dis-

guise their misbehavior or tarnish legitimate vehicles’ reputations. Scalability issues and

communication overhead, especially in large-scale VANETs with high mobility, pose ad-

ditional challenges. Secondly, the collaborative nature of detection mechanisms raises

concerns about privacy and data confidentiality, as vehicles must share sensitive informa-

tion, potentially compromising privacy and leading to data leakage. Moreover, the dy-

namic nature of vehicular environments, including network congestion and environmental

conditions, can impact detection algorithm accuracy, further complicating misbehavior

detection effectiveness.

In their newly proposed extension of the VeReMi dataset [16], van der Heijden et al.

present an extension to the VeReMi dataset for misbehavior detection in VANETs, aiming

to address the lack of a common reference dataset in the field. The approach involves

employing a misbehavior detection system that combines local plausibility detectors with

a fusion detection mechanism. This system conducts plausibility and consistency checks

on received messages, analyzes them using threshold mechanisms, and classifies vehicles

as misbehaving based on predefined criteria. Compared to other approaches, the ex-

tension provides a comprehensive and standardized dataset for evaluating misbehavior

detection techniques in VANETs. However, limitations include the dependency on pre-

defined thresholds and the simplicity of the detection algorithm, which may not capture

all forms of misbehavior accurately, especially in complex real-world scenarios.

2.4.2.1 Misbehavior Detection using Machine Learning in VANET

Alzahrani et al. [27] propose an enhanced misbehavior detection scheme for Vehicular Ad

Hoc Networks (VANETs) using a combination of Kalman filtering and Artificial Neural

27



2. BACKGROUND REVIEW

Networks (ANNs). The approach involves data acquisition, feature extraction, and misbe-

havior detection. Kalman filtering is employed to integrate signal properties like angle of

arrival (AoA) and received signal strength indicator (RSSI) with Cooperative Awareness

Messages (CAMs) for feature extraction, focusing on the innovation errors as indicative

of misbehavior. These features are then input into an ANN classifier trained on a labeled

dataset generated through simulation. Compared to other approaches, this method re-

places static detection thresholds with a dynamic ANN-based classifier, providing better

adaptability to changing network conditions and potentially improving accuracy. How-

ever, limitations include relying on supervised learning in a dynamic environment, ex-

cluding certain types of attacks like tampering with transmission range, and the need for

further evaluation in scenarios with higher mobility.

So et al. [28] propose a novel approach for misbehavior detection in Vehicular Ad Hoc

Networks (VANETs) by integrating plausibility checks with machine learning techniques.

The method involves two main phases: plausibility checks and machine learning-based

detection. In the plausibility checks phase, the system examines the received messages

for consistency with expected behavior based on predefined rules and thresholds, aiming

to filter out invalid messages. Then, in the machine learning-based detection phase, the

remaining messages are analyzed using machine learning algorithms to identify subtle or

complex misbehaviors. The system can effectively detect misbehavior types by combining

these two approaches while minimizing false positives. However, the approach relies on the

availability of accurate models for expected behavior, and the effectiveness may depend on

the quality of the training data and the chosen machine learning algorithms. Additionally,

the system may face challenges distinguishing between genuine anomalies and intentional

misbehavior designed to evade detection.

Kamel et al. [29] propose an enhanced misbehavior detection mechanism, named

CaTch, for Vehicular Ad Hoc Networks (VANETs), focusing on embedded misbehavior

detection mechanisms in C-ITS. The approach incorporates physical measurement uncer-

tainty into plausibility detectors, allowing for a more accurate assessment of the credibil-

ity of received messages. By simulating scenarios involving simple offset faults and more

complex Sybil attacks, the study demonstrates that CaTch outperforms legacy detectors,
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particularly in detecting subtle misbehavior where attackers attempt to remain within

plausible ranges. CaTch provides an uncertainty factor for each detector, aiding intelli-

gent detection applications in making more informed decisions. However, the approach

requires additional computational power and consideration for potential manipulation of

the uncertainty factor by attackers. It is noted that manipulating CaTch is more com-

plex than manipulating legacy detectors. Thus, while CaTch offers improved detection

capabilities, its effectiveness hinges on developing intelligent decision-making algorithms

and carefully considering computational resources and potential attack vectors.

Grover et al. [30] propose an ensemble-based machine learning approach for detect-

ing misbehaviors in Vehicular Ad Hoc Networks (VANETs), a critical aspect given the

potential safety implications of inaccurate messages transmitted by illegitimate vehicles.

Leveraging features extracted from experiments conducted in the NCTUns-5.0 simula-

tor, the approach utilizes classifiers such as Naive Bayes, Instance-Based Learner (IBK),

Random Forest, Decision Tree (J-48), and AdaBoost to classify nodes as legitimate or

malicious. By employing a majority voting scheme, the ensemble method combines the

strengths of individual classifiers, thereby enhancing detection accuracy. The paper high-

lights the importance of accurately classifying various misbehaviors, including identity

spoofing, position forging, packet suppression, replay, and detention attacks, to mitigate

potential safety hazards in VANETs. Compared to traditional methods, the ensemble-

based approach demonstrates superior classification accuracies, particularly in improved

true positive and negative rates. However, the paper acknowledges limitations such as the

need for extensive training data and the challenge of adapting the framework to different

types of misbehavior.

Sharma et al. [9] propose an approach for detecting misbehavior in VANETs that

utilizes a Machine Learning (ML)-based framework that focuses specifically on position

falsification attacks, where vehicles transmit incorrect position information in Basic Safety

Messages (BSMs). Unlike traditional cryptographic techniques, which may not effectively

detect such attacks, the proposed ”2BSM approach” combines information from consecu-

tive BSMs sent by a vehicle to enhance accuracy. The key innovation lies in deploying the

misbehavior detection framework at Road Side Units (RSUs) instead of individual vehi-
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cle On-Board Units (OBUs), leveraging the RSUs’ superior computational resources and

enabling network-wide information sharing. The approach effectively classifies vehicles as

legitimate or malicious by analyzing features extracted from BSMs and training ML mod-

els, achieving high precision and recall rates across various attack types. Moreover, the

approach addresses the challenge of imbalanced datasets and incorporates hyperparame-

ter tuning and cross-validation techniques for model optimization. However, limitations

include reliance on RSU infrastructure, making it more suitable for urban areas, and

the assumption of real-time access to a shared database, which may not always be fea-

sible. Additionally, while the approach demonstrates robust performance against known

attack types, its effectiveness against emerging threats and other types of misbehavior

beyond position falsification requires further exploration, potentially by developing more

sophisticated deep learning-based techniques.

Gyawali et al. [31] propose a machine learning-based misbehavior detection system for

Vehicular Ad-hoc Networks (VANETs) to address attacks such as false alert generation

and position falsification. Unlike traditional cryptographic methods, which are less effec-

tive against insider attacks, the proposed system leverages machine learning techniques

trained on realistic VANET simulation datasets. The VeReMi dataset is utilized to derive

labeled datasets for training and testing the position verification scheme, which aims to

detect various types of position falsification attacks in VANETs. The derived datasets

are then used to compare the performance of the proposed scheme with the detectors

used in VeReMi for different position attacker types. The system can accurately identify

malicious behavior by utilizing features extracted from vehicle-to-vehicle communication

and applying algorithms like decision trees and random forests. The machine learning

approach offers the advantage of detecting known and unknown attacks compared to

signature or specification-based systems. However, the proposed system’s effectiveness

relies heavily on the quality and representativeness of the training data, and it may face

challenges in scenarios with rapidly changing network topologies and resource-constrained

environments.

Khot et al.[32] proposed a machine-learning framework to predict the next position of

the vehicle in the network. The authors used beacon messages from neighboring vehicles
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and created features such as distance between sender and receiver. Machine learning

algorithms were utilized to train and test them. The authors compared the predicted

value with the actual value of the vehicle comparison. If the position is not equal to the

prediction, it is classified as an attack vehicle. The authors claimed that Random Forest

performs best among other algorithms.

2.4.3 Detecting Sybil Attacks in VANET

Ayaida et al. [33] propose an approach to detect Sybil attacks in Cooperative Intelligent

Transport Systems (C-ITS) by leveraging traffic flow theory. Unlike other approaches,

which may rely on resource testing or Public Key Infrastructure (PKI), this method

utilizes the inherent characteristics of traffic flow models to estimate vehicle speeds and

detect anomalies indicative of Sybil attacks. The approach can identify discrepancies

that signal potential attacks by comparing real vehicle speeds with those estimated using

V2V communications and traffic flow models. The algorithm is distributed, efficient, and

does not require additional hardware or complex infrastructure, making it suitable for

implementation in real-world vehicular networks. However, it does have limitations, such

as the dependence on accurate traffic flow models and the need for a sufficient number

of neighboring vehicles for reliable detection, especially in congested traffic scenarios.

Additionally, it may struggle to detect attacks when the number of attackers is low or

when the speed threshold for detection is set too high, leading to false negatives.

Baza et al. [34] proposed an approach for detecting Sybil attacks in VANETs involv-

ing leveraging proofs of work (PoW) and location information obtained from multiple

Roadside Units (RSUs) encountered by vehicles. Unlike traditional methods that rely

on signatures from individual RSUs, this approach requires contributions from at least

t (’t’ represents the minimum number of Roadside Units (RSUs) required to contribute

their location information) RSUs using a threshold signature scheme, thereby mitigating

the risk of RSU compromise attacks. A PoW algorithm prevents malicious vehicles from

creating multiple Sybil trajectories simultaneously. Experimental results and a mathe-

matical model validate the approach’s effectiveness, demonstrating high detection rates

and low false negative rates with short detection times. Compared to existing methods,
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the proposed approach offers better resilience against attacks and provides acceptable

computation and communication overheads. However, it still has limitations, such as the

reliance on dense RSU deployment for effectiveness and the need for careful parameter

tuning to balance detection accuracy and computational overhead.

Hammi et al. [35] present a novel approach for detecting Sybil attacks in Cooperative

Intelligent Transportation Systems (C-ITS) using machine learning classifiers within a

VANET context. The approach involves a three-step process: data monitoring and col-

lection, data aggregation, and classification of stations’ activity based on aggregated data

matrices. The detection system operates at the Road Side Unit (RSU) level, leveraging

the RSUs’ computational capabilities to alleviate the burden on vehicles. The approach’s

effectiveness is demonstrated through extensive simulations using real-world datasets,

showing high accuracy in detecting Sybil attacks, particularly those involving random or

static values. However, the approach’s performance diminishes when faced with more

complex attack scenarios, such as replayed values. The paper acknowledges the need

for a decentralized approach to scale with the distributed nature of C-ITS environments,

suggesting future work in this direction.

Laouiti et al.[36] present a focus on detecting misbehavior in VANETs, specifically

targeting the Sybil attack, a significant threat in vehicular networks. It introduces a

method that leverages machine learning algorithms and features derived from vehicle

behavior data to identify Sybil nodes. By preprocessing the data into Driving Pattern

Matrices (DPM) and computing their eigenvalues, the proposed method enhances the

accuracy and efficiency of detection compared to previous approaches. Including features

such as predicted position and acceleration variations and introducing a plausibility factor

significantly improves detection performance. The approach outperforms other methods

regarding F1-score and accuracy, achieving notable results of 89% and 87%, respectively.

However, the main limitation lies in the time-consuming nature of preprocessing, which

can be mitigated with more powerful computing resources.
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2.4.3.1 Detecting Traffic Congestion Sybil Attack

Mahmoudi et al.[37] proposed a comprehensive work on a misbehavior detection frame-

work tailored to C-ITS. Their primary objective was to bolster system security using

ML techniques at the Misbehavior Authority (MA) level. Through a multi-step process

encompassing local misbehavior detection, reporting to the MA, global detection, and

subsequent reaction, the framework aimed to classify reported ITS-S behavior as misbe-

having, faulty, or genuine, thereby enhancing the overall security posture of C-ITS. To

evaluate their approach, the authors utilized the F2MD framework within the VEINS

extension for simulations, leveraging OMNeT++ for network simulation and SUMO for

road traffic simulation. While the VeReMi dataset was not employed, training data was

sourced from the Luxembourg SUMO Traffic (LuST) scenario, with testing conducted on

a test bench featuring random vehicle trace data extracted from Paris-Scalay. In assessing

the efficacy of their framework, various ML algorithms, including XGBoost, LightGBM,

and neural networks, were employed, selected for their robustness and ability to model

time-dependent data effectively. However, algorithms like Random Forests and Gradient

Boosted trees, offering insights into feature relevance, were sparingly used due to limi-

tations in modeling time-dependent data in a purely supervised fashion. Despite these

challenges, the study reported promising results, with the proposed LSTM-based solution

achieved an exceptional overall detection accuracy of 97% for various types of misbehav-

ior in C-ITS. However, the study acknowledged certain limitations, including reliance on

synthetic data for evaluation and addressing challenges associated with real-world deploy-

ment scenarios.

Zhao et al.[38] proposed a FedMix approach for detecting Sybil attacks within VANETs.

Their method ingeniously combines federated learning with cross-layer information fusion

to bolster privacy protection. By adeptly training detection models without transmit-

ting sensitive data such as BSM, Zhao et al. leverage physical and application layers

data. Their experimental results showcase FedMix’s efficacy, surpassing centralized train-

ing methods in detection accuracy, precision, recall, and F1-score, while notably reduc-
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ing communication costs. Furthermore, Zhao et al. introduce the SFedAvg aggregation

algorithm, which outperforms the baseline FedAvg in terms of efficiency. Leveraging

both VeReMi and BSMList datasets (simulated using F2MD simulator), Zhao et al. en-

hance FedMix’s robustness, having partially extended the VeReMi dataset by adding

two fields: the location and the received signal strength when the vehicle receives the

message. These enhancements, aggregated with the BSMList dataset, contribute to Fed-

Mix’s performance. Notably, Zhao et al. achieved recall and F1-score values of 85% and

91%, respectively, showcasing FedMix’s exceptional effectiveness in Sybil attack detection.

Despite these advancements, potential limitations such as reliance on communication in-

frastructure and vulnerabilities in federated learning setups warrant further consideration.

Alladi et al.[39] propose a Deep Learning-based Anomaly Detection Framework (DeepADV)

tailored specifically for Vehicular Ad-Hoc Networks (VANETs), aiming to detect various

anomalies, including faults and attacks, within VANET data sequences. Their approach

involves training six different Deep Neural Network (DNN) architectures exclusively on

genuine data sequences, utilizing Mean Absolute Error (MAE) as the loss function for

backpropagation. The trained models are then employed as sequence reconstructors in

fault-only, attack-only, and combined anomaly scenarios, with evaluation metrics such

as Precision, Recall, Accuracy, and F1-score used to assess performance. The CNN-

LSTM model (M-1) consistently outperforms others across all scenarios. The results

showcase high accuracy, precision, recall, and F1 scores for detecting genuine and anoma-

lous classes, highlighting the framework’s effectiveness in detecting anomalies, including

attacks, within VANET data sequences. However, the requirement for fixed-length mes-

sage subsequences is a limitation of their approach.

Liu et al.[40] proposed the SVMDformer, a data-centric framework for vehicular mis-

behavior detection in VANETs, leveraging semi-supervised learning and Transformer ar-

chitecture. Their approach involves transforming vehicular message sequences into mis-

behavior scores and classifying misbehavior using a threshold. Through comprehensive

experiments, they compared three supervision methods and found semi-supervised learn-
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ing to be the most effective. They analyzed and discussed individual misbehaviors by vi-

sualizing scores, and identifying the optimal training volume for difficult-to-detect types.

Compared to baseline models like CNN and Bi-LSTM, their SVMDformer demonstrated

superior performance in metrics such as AUC, accuracy, precision, and F1 score, notably

reducing false detection rates. However, the SVMDformer can only determine whether a

vehicle exhibits misbehavior without identifying the exact type, leaving room for future

improvements in misbehavior type identification and efficient deployment in IoV simula-

tion systems.

Reviewing the literature on misbehavior detection in Vehicular Ad-Hoc Networks

(VANETs), we note that there is a wide range of attacks that have been considered.

While some studies employ non-machine learning (ML) methods for this purpose, their

effectiveness diminishes as the scale of VANETs increases. Additionally, certain research

works rely on privately simulated datasets, rendering their findings less reproducible and

applicable in real-world scenarios. Furthermore, most existing approaches target attacks

other than Traffic Congestion Sybil Attacks, leaving this specific threat largely unad-

dressed. To the best of our knowledge, the only works done in Traffic Congestion Sybil

Attack has been mentioned in this section. While some works utilize privately simulated

datasets, others use public datasets like VeReMi coupled with detection algorithms using

Deep Learning since they claim that algorithms like Random Forests have limitations in

modeling time-dependent data in a purely supervised fashion.

Consequently, my thesis identifies this gap in the literature on detecting Traffic Con-

gestion Sybil Attacks, particularly using the VeReMi dataset and classical ML approaches.

This research aims to fill this crucial gap by proposing innovative classical ML-based tech-

niques tailored to detect and mitigate Traffic Congestion Sybil Attacks in VANETs while

utilizing the VeReMi dataset. This decision was driven by the need to ensure that the

findings and methodologies are easily reproducible for further validation and refinement.

Table 2.2 compares various research papers in the literature review related to detecting

Sybil attacks in VANETs. The table evaluates different aspects of each paper, including

whether machine learning techniques were utilized, whether the VeReMi dataset was

35



2. BACKGROUND REVIEW

employed, the type of attack addressed in the paper, and the approach proposed to detect

attacks.
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Table 2.2: Comparison table of Literature Review

No. Paper Machine
Learn-
ing

Used?

VeReMi
Dataset
Used?

Attack Approach

1 Heijden et
al.

No Yes Position
Falsification;
DoS; Sybil

Trust based approach

2 Kamel et al. Yes No Sybil; Constant
Offset

Embedded MBD; Integrates
data inaccuracy

3 Baza et al. No No Sybil Proofs of Work

4 Hammi et al. Yes No Sybil ML based classifiers

5 Laouiti et al. Yes Yes Sybil Adaboost classifiers

6 Mahmoudi
et al.

Yes No Traffic
Congestion

Sybil

Deep Learning

7 Zhao et al. Yes No All Federated Machine Learn-
ing

8 Alladi et al. Yes No All incl. Traffic
Congestion

Sybil

Deep Learning

9 Liu et al. Yes Yes All incl. Traffic
Congestion

Sybil

Semi-supervised,
transformer-based Deep
learning

10 Proposed
Method

Yes Yes Traffic
Congestion

Sybil

Custom split using classical
ML
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CHAPTER 3

Machine Learning Based

Classification of Attacker Vehicles

3.1 Introduction

In Vehicular Ad-Hoc Networks (VANETs), ensuring the integrity and security of com-

munication systems is paramount, particularly in the face of emerging threats such as

Traffic Congestion Sybil Attacks. These attacks, a sub-type of Sybil Attacks, involve ma-

licious entities creating multiple false identities to simulate traffic congestion artificially,

leading to disruption and potentially dangerous situations on the road. This research

addresses this critical challenge by proposing a novel methodology for detecting Traffic

Congestion Sybil Attacks in VANETs utilizing machine learning (ML) approaches specifi-

cally applied to the VeReMi dataset. VANETs represent a dynamic and complex network

environment where vehicles communicate with each other and with infrastructure com-

ponents to enhance transportation efficiency and safety. However, the proliferation of

digital threats, including Sybil Attacks, poses significant risks to the reliability and safety

of VANETs. Despite the increasing attention to security issues in VANETs, the specific

threat of Traffic Congestion Sybil Attacks has been relatively overlooked in the existing

literature. Through this research, we aim to bridge this gap by introducing a comprehen-

sive detection methodology explicitly tailored to address Traffic Congestion Sybil Attacks.

This approach is motivated by the observed limitations in previous works, where either

no direct focus on this attack vector was given or methodological constraints hindered

evidence, reproducibility, and comparison with other detection techniques. Central to
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our methodology is the application of classical machine learning algorithms, which, while

proven effective, are augmented by innovative techniques for dataset interpretation and

feature engineering. The proposed methodology aims to:

• Provide a framework to detect traffic congestion Sybil attacks with better Recall

and F-1 score but with less computational overhead

• Introduce a custom data split method to preserve temporal features of the dataset

during the training phase while using classical machine learning algorithms

• Incorporate new features (extended from the existing ones) into the dataset to im-

prove the generalizability and effectiveness of ML models.

• Detect vehicles that create false identities of themselves with a malicious intent to

disrupt the VANET, with high recall and F-1 score.

3.2 Outline of Proposed Approach

The proposed methodology has four main stages:

• Data Extraction

• Exploratory Data Analysis and Data Pre-processing

• Feature Engineering

• Classification using Machine Learning models

A detailed discussion of these four stages is as follows:

3.2.1 Data Extraction

The VeReMi dataset has several simulations with different traffic scenarios for each type

of attack. Each simulation consists of two types of files: Ground truth file and log files.

There is only one ground truth file in a simulation that includes the vehicle’s actual

behavior in the network. Ground truth file also comprise an attack type, differentiating
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legitimate vehicles from misbehaving vehicles. On the other hand, the number of log files

in a simulation is equal to the number of vehicles in the network. Each sender vehicle

creates a log file that includes all the BSMs sent to other vehicles.

To extract the dataset from the publicly available VeReMi dataset’s repository[41], we

need to do the following:

• For a single simulation, the number of log files equals the number of senders; hence,

the first step is to combine the separate log files into a single file.

• Each log file consists of BSMs in the JSON format. Hence, a consolidated log file

must first be generated with all the BSMs.

• Once we have the JSON, we need to convert this consolidated JSON file into a

CSV format. The conversion of data from JSON to CSV format enhances com-

patibility with machine learning frameworks, facilitating seamless integration and

computational processing.

Figure 3.1: Dataset Preparation Flow

The resultant consolidated dataset serves as a robust foundation for exploratory data

analysis that can be used to discern patterns and anomalies critical for informing detection

mechanisms within VANETs.

3.2.2 Exploratory Data Analysis (EDA) and Data pre-processing

Before we begin the pre-processing steps, let’s understand the consolidated dataset first.

• There are 1,501,368 rows and 26 columns in the consolidated dataset.
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• 4 columns were dropped since their x, y, and z coordinate splits were available

in the dataset

• On checking for the uniqueness of values across the dataset, a further 6 columns

were dropped since their value was constant or similar to another column through-

out the 1.5 million rows of the dataset.

• There are more BSMs related to attacker vehicles than non-attacker in-

stances, as shown in the Fig. 3.2. This is coherent with the idea that since multiple

attacker vehicles create fake identities of themselves, the number of BSMs transmit-

ted by those would be higher than that of non-attacker vehicles.

Figure 3.2: Distribution of target variable

• Without feature engineering included, we find that the senderPseudo features have

the highest correlation with the target variable. This could imply that attackers use

certain pseudonyms more frequently or change pseudonyms in a specific pattern. It

can also be verified from the correlation matrix shown in Fig. 3.3:
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Figure 3.3: Correlation matrix

In interpreting the correlation matrix presented in Fig. 3.3, one can analyze the

relationships between each feature in the dataset by examining the correlation values

within each feature’s row. This allows for identifying strong positive and negative

correlations between different features, providing insights into the interdependencies

within the data.

• There are no null values or categorical variables in the dataset.

• There are more unique senderPseudo column entries than actual senders, which

indicates that some vehicles might change or have multiple pseudonyms over time.

Again, this is a typical behavior of an attacker in our case.

• Sender with pseudoID 1 is significantly more active than any other pseudonym,

with a staggering 179,375 messages

3.2.3 Feature Engineering

Based on the features we examined earlier, we noticed a big problem: the model didn’t

do a good job even after we prepared the data. It struggled to understand the difference
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between normal and attacker behavior. So, we looked back at what we learned from the

Literature Review section. We realized we needed to give the model more information to

work with. By adding extra details to the dataset, we hoped to make it easier for the model

to tell the difference between normal driving and the tricky maneuvers of attackers. This

process of tweaking the data is what we call feature engineering, and it’s key to improving

our results.

The following features were added to the dataset:

• Message Frequency

This feature represents the number of messages sent out by each sender up to the

current point in time. By tracking the message count over time, we can analyze

the communication behavior of individual senders and detect any unusual spikes or

drops in message transmission rates.

This was calculated by grouping the data frame by the sender and then applying

the transform function to count the number of messages sent by each sender. This

operation ensures that the message count is calculated for each row in the data

frame, considering all messages sent by the corresponding sender up to that point.

Figure 3.4: Message Count Distribution: Attackers vs. Non-Attackers

From Fig. 3.4, we can derive that the median of the message frequency (The white

dot inside each violin represents the median message count for the corresponding

group) for attackers and non-attackers is very different. The width of the violin at
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each point represents the density of message counts at that value. This aspect of

the plot provides a detailed view of the distribution, allowing us to observe peaks,

valleys, and changes in density more effectively than a traditional histogram. The

attackers have a low density and high variability of message count. In contrast,

the message count for non-attackers is more dense within a given range and doesn’t

show high variability.

• Distance

This feature calculates the distance traveled by each sender based on its speed and

the time elapsed between consecutive messages. It provides information about the

spatial movement patterns of vehicles in the VANET network.

The distance between vehicles is calculated using the Euclidean distance formula,

which measures the straight-line distance between two points in a two-dimensional

space.

This formula computes the distance between consecutive positions (divided in pos x

and pos y spaces) of vehicles in the dataset, assuming that these positions represent

coordinates in a two-dimensional space.

Distance =
√
(x− xshift)2 + (y − yshift)2

Here, x and y refer to the original position of the vehicle, and x-shift and y-shift

refer to the vehicle’s new “shifted” position.

• Statistical values of speed and acceleration

The calculated statistical columns were mean, median, and standard deviation

of each of the x and y coordinates of ‘spd’ and ‘acl’ features. These statistical

measures were chosen because they provide valuable insights into the behavior and

characteristics of the vehicles in the dataset.

– Mean: The mean provides a measure of the central tendency of the data. It

gives us an average value, which can be useful for understanding typical or

average behavior.
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– Median: The median represents a dataset’s middle value when sorted in as-

cending order. Unlike the mean, extreme values or outliers do not influence

the median. Therefore, it provides a robust measure of central tendency, par-

ticularly in the presence of skewed or non-normally distributed data.

– Standard Deviation The standard deviation quantifies the dispersion or vari-

ability of the data points around the mean. A higher standard deviation in-

dicates greater variability, while a lower standard deviation suggests that the

data points are closer to the mean.

These statistical measures were chosen based on their ability to capture different

aspects of the distribution and variability of the data. By calculating these measures

over time (i.e., using a running average approach), we can observe how the average,

median, and variability of speed and acceleration values evolve as new data points

are collected.

We used the expanding() function provided by the ‘pandas’ library [42] in Python

to implement the running average aspect. This function allows us to calculate

cumulative statistics over a rolling window of increasing size, effectively computing

the running average for each data point as we iterate through the dataset.
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Figure 3.5: Statistical Summary of ’spd’ feature

As seen in Fig. 3.5, attackers exhibit a more focused and less varied behavior in

terms of mean speed. At the same time, non-attackers show a broader and more

diverse range. The figure depicts the statistical summary of the ‘spd’ feature in the

dataset for attackers and non-attackers.

3.2.4 Classification using Machine Learning models

Finally, we can use the pre-processed dataset to classify the attacker vehicles from the

non-attacker vehicles. In a typical Machine Learning flow, we go through the following

steps:

1. Splitting the dataset into training and testing sets
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2. Scaling the features (if required)

3. Model training

4. Evaluation

5. Optimizing the model performance

We have customized the above steps to address the specific needs of VANET misbehavior

detection systems, as detailed below -

1. Splitting the dataset

The dataset is randomly split into training and testing sets in a supervised machine-

learning pipeline. A random split refers to the process of dividing a dataset into two

subsets: a training set and a testing (or validation) set. This division is performed

randomly, meaning that the samples in the dataset are shuffled, and a specified

percentage (e.g., 80% for training and 20% for testing) of the shuffled samples are

allocated to each subset. In this split process, the dataset undergoes shuffling ini-

tially, effectively randomizing the order of samples to mitigate any inherent biases

in their arrangement. Following shuffling, a predetermined percentage of samples

is then allocated to the training set, with the remaining samples designated for the

testing set, ensuring both subsets represent the overall dataset.

This random split is usually recommended in the community for several reasons:

• Generalization Performance:

It ensures that the model is trained on diverse data samples, allowing it to

learn generalizable patterns rather than memorizing specific instances in the

dataset.

• Unbiased Evaluation:

We can use random splits to evaluate the model’s performance on unseen data,

which helps assess its ability to generalize to new samples. This unbiased

evaluation is crucial for estimating the model’s real-world performance.
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• Efficiency:

Random splits are simple to implement and computationally efficient, making

them widely used in practice.

While random splits are effective in many cases, they can lead to overfitting

in scenarios where the data exhibits temporal dependencies or sender-

specific patterns, as we experienced in our research.

Overfitting occurs when the model learns to capture noise or idiosyncrasies in the

training data, resulting in poor generalization to unseen data. We were very unsure

of why this was happening, and hence, we employed the industrial best practices to

address overfitting an understanding of causes:

• Cross-Validation:

Implemented k-fold cross-validation to assess the model’s performance on mul-

tiple train-test splits. This helps obtain more reliable estimates of model per-

formance and identify potential sources of overfitting.

• Feature Importance Analysis:

Conducted feature importance analysis to identify which features contribute

the most to the model’s predictions. This helps understand which aspects of

the data are driving overfitting and can guide feature selection.

• Learning Curves:

Plotted learning curves to visualize the model’s performance on training and

validation data as a function of training set size. This helps diagnose issues

related to underfitting or overfitting and determine whether collecting more

data would benefit.

At the end of a bunch of the above techniques ensembled together, we understood

that the dataset contains some sender-specific patterns that the model cannot gen-

eralize upon. Moreover, since BSMs are time-sensitive, the dataset primarily repre-

sents a time-series dataset, which, as pointed out by the work done by Mahmoudi

et al. [37], is difficult to generalize when working in a purely supervised fashion.
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However, we devised and implemented a custom split strategy that can be more

appropriate in scenarios where the dataset contains temporal features or sender-

specific patterns.

Custom Split:

The custom split, as opposed to a random split, is tailored to preserve the temporal

sequence of data in a dataset, which is particularly crucial in scenarios where the

order of events matters, such as in time series data or sequential data like in vehic-

ular networks, as in our case. Here, the dataset is partitioned based on a specific

criterion, often involving time stamps or event sequences. In the context of vehic-

ular networks, the custom split ensures that data from the same sender vehicle is

grouped together and then split into training and testing sets, thereby maintaining

the chronological order of events for each vehicle. This approach allows machine

learning models to learn from past events in the training phase and generalize to

future events during testing, mirroring the real-world scenario more accurately. By

preserving the temporal aspect of the data, the custom split enhances the model’s

ability to capture temporal dependencies and make predictions based on the sequen-

tial nature of the data.

In our case, the custom split involves:

• Sender-based split:

Grouping the dataset by the sender and splitting the senders into distinct

training and testing sets ensures that data from each sender is exclusively

present in either set. This preserves temporal dependencies and sender-specific

patterns, leading to more accurate model evaluation.

• Temporal Preservation:

Sorting the data by timestamp before splitting ensures that the temporal order

of the data is maintained. This is crucial in VANET applications where the

timing of events is significant, and models need to learn from sequential data.
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• Real-World Relevance:

The custom split reflects real-world deployment scenarios, where models en-

counter new senders or time-varying patterns not seen during training. This

promotes better generalization and ensures the model’s performance evaluation

aligns with real-world usage.

This was achieved by employing the following steps:

(a) Sender Identification:

Identify unique sender vehicles in the dataset.

(b) Temporal Sorting:

Sort the dataset based on temporal attributes such as received time or event

sequence.

(c) Partitioning:

Split the sorted dataset into training and testing sets while ensuring that data

from the same sender remains intact within each set.

(d) Preservation of Order:

Maintain the chronological order of events for each sender vehicle in both the

training and testing sets.

(e) Temporal Dependency:

Enable machine learning models to learn from past events during training and

generalize to future events during testing, thereby capturing temporal depen-

dencies effectively.

By employing the custom split strategy, we can address the challenges posed by

our dataset’s temporal dependencies and sender-specific patterns, leading to more

robust and accurate machine learning models for VANET applications.

2. Scaling features (if required)

Often, in the case of classical machine learning problems, we must scale our features

before they’re given for training. This is for the models that often rely on distance-

based calculations, gradient descent optimization, or regularization techniques where
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scaling can help improve their performance. However, it’s important to note that

not all classification algorithms require feature scaling, and the necessity depends

on the specific algorithm and the nature of the data.

Scaling features is a crucial preprocessing step in machine learning that offers nu-

merous benefits. Firstly, it aids in converging optimization algorithms like gradient

descent by preventing features with larger magnitudes from dominating the process,

thereby facilitating faster convergence. Secondly, scaling ensures that all features

contribute equally to the learning process, preventing biases towards features with

larger scales. This equal treatment of features enhances the model’s ability to gen-

eralize well to new data. Additionally, scaling improves the conditioning of the

optimization problem, making it easier to find the optimal solution, especially when

features vary widely in scale. Moreover, it enhances the model’s robustness to

outliers by reducing their disproportionate influence, particularly in distance-based

algorithms. Lastly, scaling can aid in the interpretability of the model by making

coefficients or weights associated with features more comparable, facilitating easier

assessment of feature importance.

Many types of Scaling algorithms and methodologies are available, like MinMaxS-

caler, RobustScaler, StandardScaler, Normalization, etc.

In our case, we use K-Nearest Neighbors as our base classifier, and hence, we uti-

lize the StandardScaler for our pre-processing in the case of KNNs. It scales the

features to have a mean of 0 and a standard deviation of 1. This is achieved by

subtracting the mean and dividing by the standard deviation of each feature.

3. Model Training:

In our model training phase, we adopted a pragmatic approach by leveraging su-

pervised machine learning algorithms such as KNN, Decision Trees, and Random

Forests to classify attacker vehicles from non-attacker vehicles in vehicular ad hoc

networks (VANETs). We made this decision based on careful consideration of the

computational overhead associated with more complex algorithms. We aimed to bal-

ance model accuracy and computational efficiency by opting for these algorithms,
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ensuring that our classification process remains tractable even with large datasets.

Moreover, we employed a custom split technique to preprocess the data, dividing it

into training and testing sets. This partitioning allowed us to train our models on

a subset of the data while reserving another portion for evaluation, enabling us to

assess the model’s performance on unseen data. Through this approach, we aimed

to develop robust classification models capable of accurately distinguishing between

attacker and non-attacker vehicles in real-world VANET scenarios.

Furthermore, we implemented several standard practices during the model train-

ing phase to optimize our classifiers’ performance and generalization ability. This

included feature scaling to ensure that all features contributed equally to the learn-

ing process and regularization techniques to prevent overfitting. Additionally, we

conducted hyperparameter tuning to fine-tune the parameters of our algorithms

and optimize their performance on the training data. We also implemented cross-

validation to assess how the results of our statistical analysis will be generalized to

an independent data set. This helps to prevent problems like overfitting, ensuring

that the model performs well not just on the training data but also on new, un-

seen data. Through iterative experimentation and validation, we iteratively refined

our models, adjusting various parameters and configurations to achieve the best

possible classification metrics. By following these best practices in model training,

we aimed to develop reliable and effective classifiers capable of accurately identify-

ing potential attackers in VANETs while minimizing computational overhead and

maintaining scalability.

4. Evaluation:

In the evaluation phase, we used classification metrics like Accuracy, Precision,

Recall, and F-1 score to determine the performance of the models. The definitions

of these metrics and the results of our approach are outlined in Chapter 4 in detail.

5. Hyper-parameter tuning:

In our pursuit of creating highly accurate and reliable machine learning models for

the detection of attacker vehicles, we embarked on an extensive hyperparameter
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tuning exercise, focusing on key parameters such as the number of neighbors in

K-Nearest Neighbors, maximum depth, and minimum samples per leaf in Decision

Trees and Random Forest models. This meticulous process, grounded in a 5-fold

cross-validation framework that honors the temporal progression of our dataset,

enabled us to discern the most effective configurations that balance model complex-

ity with predictive power. By carefully adjusting these select hyperparameters, we

aimed to fine-tune our models’ ability to generalize well to unseen data, enhancing

their precision in identifying threats without succumbing to overfitting, thus laying

a solid foundation for optimizing the overall performance of our predictive modeling

efforts.

Similarly, we employed cross-validation to evaluate different parameter combina-

tions. We chose the settings (mentioned in chapter 4) that yielded the highest

recall and F-1 scores, considering the importance of accurately identifying attacker

vehicles. Additionally, we ensured the robustness of our hyperparameter tuning

strategy by employing stratified k-fold cross-validation to prevent bias in the evalu-

ation process and shuffling the training data to mitigate any sequence-related biases.

We found that the value of k=5 for the cross-validation yielded the best results. This

meticulous approach to hyperparameter tuning allowed us to optimize the perfor-

mance of our machine-learning models and enhance their ability to classify attacker

vehicles effectively.

Our aim throughout this process was to model the real-world scenario as closely as

possible, which is why our Custom Split makes more sense when we look at it compared

to a general random split of the data. Additionally, the additional features engineered

into the dataset were deliberately extended from the existing ones since this offers a very

minimal computational overhead compared to the ones that might require extra external

plausibility checks. If this architecture were to be deployed in real-world vehicles, each

of the OBUs would be able to compute these values for each BSM they receive, as they

receive, and hence would facilitate a real-time misbehavior detection system.
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3.3 Assumptions

This proposed approach has a few assumptions for the network on which this methodology

will perform to its full potential. The assumptions are as follows:

• Data Quality:

We assume that the data collected from VANET sensors is accurate and reliable, free

from significant noise or errors that could affect the performance of the detection

algorithms.

• Data Privacy and Security:

Since Misbehavior Detection is all about data integrity, we assume that measures

are in place to protect the privacy and security of sensitive data collected from

VANETs, ensuring that only authorized entities have access to the information and

that it is used solely for legitimate purposes such as attack detection and prevention.

3.4 How the Proposed methodology differs from ex-

isting approaches

1. Use of publicly available benchmark dataset

VeReMi [16] was the first publicly extensible dataset we are using to allow future

works to reproduce ours easily using a standard dataset. Many studies mentioned

in the literature survey use customized and private datasets, making it difficult to

reproduce their work.

2. Classical Machine Learning and Training Time Most studies [37] [38] [39] [40]

involved in detecting Traffic Congestion Sybil Attacks, even Sybil Attacks for that

matter, make use of Deep Learning techniques since they claim the dataset to contain

complex patterns and the fact that supervised machine learning algorithms are

unable to preserve the temporal features of the data. However, we think otherwise.

By utilizing classical machine learning models, we can detect Traffic Congestion
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Sybil Attack and significantly reduce training times and the computational resources

required compared to deep learning-based techniques.

3. Custom Split

Many studies claim that classical machine learning algorithms cannot preserve the

temporal features of time-series data like that in VeReMi. Our work shows otherwise

since we use classical machine learning, ensuring that the temporal features of the

data are preserved throughout.

Moreover, we have taken special care to ensure that even while implementing cross-

validation and hyper-parameter tuning to enhance our models’ performance, we

ensure that each data fold is split using our custom split and not randomly.

4. Feature Engineering

Studies using VeReMi have either augmented the dataset with external features

(calculated through plausibility and integrity checks) or not. In our case, we have

extended the features already present in the dataset by adding more context so the

model can pick up on the patterns and generalize them more easily.
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CHAPTER 4

Results

Due to safety concerns, high infrastructure costs, facilities, and resource requirements,

conducting experiments to test the efficiency of a detection system in a real-world scenario

is hazardous and difficult. Simulated data is crucial in experimental research, providing

a controlled environment for testing algorithms and models. Its cost-effectiveness, scal-

ability, and ability to manipulate parameters enable comprehensive system performance

evaluations. Moreover, simulated data often comes with known ground truth labels, en-

hancing the reliability of results. Additionally, it helps mitigate ethical concerns associated

with real-world data. However, validating findings with real-world data remains essential

to ensure the applicability of research findings in practical scenarios. In this chapter,

section 4.1 reviews the setup discussion regarding simulation tools and parameters used

in the VeReMi dataset, experimental setup toolkits, classification parameters, and eval-

uation metrics for measuring the proposed classification model’s performance. Section

4.2 discusses the results obtained, followed by a comparison with existing approaches in

section 4.3.

4.1 Setup Discussion

4.1.1 Simulation setup of VeReMi Dataset

In this research, we use the VeReMi dataset [41], and this dataset was extracted through

simulation tools. As mentioned by van der Heijden et al. [16], to generate the dataset,

they utilized the Framework For Misbehavior Detection (F2MD) , an extension of VEINS
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[7] designed to recreate and detect various instances of Misbehavior Detection (MBD).

VEINS, an open-source simulator for Inter-Vehicular Communication, operates on top of

OMNeT++ [43] and SUMO [44]. OMNeT++ is a C++ simulation library for building

network simulators, while SUMO is a widely used open-source suite for simulating road

traffic.

Table 4.1: Simulation parameters used in VeReMi dataset [17]

Parameters Value Description

Mobility SUMO LuST Luxembourg SUMO traffic

Simulation Area 2300, 5400–6300, 6300 Various road types

Simulation Duration 100s

Attacker Probability (0.1, 0.2, 0.3) Attacker probability in the
network

Simulation Start (3, 5, 7)h Control Density

Signal interference model Two-ray interference VEINS Default

Obstacle shadowing Simple VEINS Default

Shadowing Log-normal VEINS Default

MAC implementation 802.11p VEINS Default

Thermal power -110dBm VEINS Default

Bit-rate 6Mbps VEINS Default

Sensitivity -89dBm VEINS Default

Antenna model Monopole on roof VEINS Default

Beaconing rate 1Hz VEINS Default

Moreover, the researchers employed vehicle traces from the Luxembourg SUMO Traf-

fic (LuST) scenario [6], which has been validated with real data by the VehicularLab at

the University of Luxembourg. The LuST scenario provides synthetic traffic patterns for

research purposes. The researchers focused on a subsection of this network spanning 1.61
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square kilometers, with a peak density of 67.4 vehicles per square kilometer. This combi-

nation of tools and datasets facilitated the creation of a realistic environment for studying

vehicular communication and misbehavior detection, contributing to the advancement of

research in this domain.

4.1.2 Dataset Analysis and Classification parameters

The VeReMi dataset encompasses three distinct traffic density profiles: ”0709” denotes

the period between 0700 and 0900 hours, corresponding to peak traffic hours; ”1416”

represents the interval from 1400 to 1600 hours, characterized by lower traffic volumes; and

”MixAll 24” aggregates data from the entire day, presenting the most comprehensive

dataset. This study employed the ”GridSybil 1416” dataset, focusing on low traffic

density scenarios pertinent to the Grid Sybil, or Traffic Congestion Sybil Attack. This

selection was driven by the objective of enhancing model resilience with minimal data,

rendering it a judicious choice among the available options.

Table 4.2: Traffic Densities in VeReMi dataset

dataset id Time
density

Attacker
Vehicles

Attacker
Messages

Genuine
Vehicles

Genuine
Messages

Attack 0709 37.03
V/km2

1,220 924,251 2,846 2,221,825

Attack 1416 16.36
V/km2

505 249,612 1,179 569,723

MixAll 0024 23.29
V/km2

7,399 7,505,418 17,264 11,951,210

Within a designated folder structure, individual subfolders house distributed JSON

files corresponding to each vehicle in the network, documenting the Basic Safety Mes-

sages (BSMs) transmitted and received by each entity. Accompanying these files is a

ground truth document. As delineated in chapter 3 of this thesis, these JSON files were

consolidated and transformed into a unified CSV format to facilitate subsequent process-

ing and model training endeavors. This data preprocessing step streamlines analysis and
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lays the groundwork for applying machine learning techniques to investigate vehicular

communication integrity and misbehavior detection strategies.

Model Selection

A model is selected to perform classification. There are different algorithms for classifica-

tion, as discussed in chapter 2. This research uses three classifiers: K-Nearest Neighbour,

Decision trees, and Random Forest.

Hyperparameter tuning

As mentioned in chapter 3, hyperparameter tuning is the process of optimizing the hy-

perparameters of a machine learning model to enhance its performance by systematically

searching through a predefined hyperparameter space. This optimization aims to find

the best set of hyperparameters that maximize the model’s predictive accuracy or other

performance metrics.

For K-Nearest Neighbors (KNN), our exploration of a range of values for the number

of neighbors (k) was aimed at identifying the optimal ’k’ value. Uniquely, we tested ’k’

values from 1 to 101 to avoid ties and ensure decisive classification. Through a 5-fold

cross-validation process adapted to respect the data’s temporal sequence, we computed

the mean accuracy for each ’k’ value. Notably, our findings revealed that the recall metric

began to plateau after k=81, signaling a diminishing return on model sensitivity with

further increases in ’k’.

For Decision Trees (DT), tuning parameters such as the maximum depth of the trees,

the minimum number of samples required to split an internal node, and the minimum

number of samples required at a leaf node led to significant insights. The optimal param-

eters were identified as ’criterion’: ’gini’, ’max depth’: 15, ’min samples leaf’: 8,

’min samples split’: 10. These settings suggest a balanced approach between model

complexity and generalization ability. Specifically, the choice of Gini as the criterion indi-

cates a preference for the Gini impurity measure in tree-splitting decisions. A max depth
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of 15 prevents the model from becoming overly complex and overfitting. At the same

time, the min samples leaf and min samples split parameters set at moderately conser-

vative values ensure that each split contributes meaningfully to model accuracy, thereby

enhancing the model’s ability to recall attacker vehicles effectively.

In tuning our Random Forest model, we identified optimal parameters as ’max depth’:

15, ’min samples leaf’: 10, ’min samples split’: 15, ’n estimators’: 50, reflect-

ing a strategic balance aimed at enhancing recall while preventing overfitting. The choice

of a max depth of 15 and higher thresholds for min samples leaf and min samples split

suggests a model that prioritizes learning from more significant, representative data pat-

terns, thereby improving its generalizability and accuracy in identifying attacker vehicles.

Opting for 50 trees (n estimators) strikes a careful balance between the ensemble’s ro-

bustness and computational efficiency, ensuring the model captures data complexities

effectively without excessive resource use.

Cross Validation

Cross-validation is a technique used to assess the performance of a machine learning model

by dividing the dataset into multiple subsets or folds. The model is trained on a subset

of the data and validated on the remaining folds. This process is repeated multiple times,

with each fold serving as the validation set exactly once. Cross-validation helps evaluate

the model’s ability to generalize to unseen data and provides a more reliable estimate of

its performance than a single train-test split.

We tried to split the dataset into 5 folds, keeping the randomization off since it’s a

time-series dataset and keeping the scoring metric as recall since that’s our metric of main

concern in this research. we also ensured that the data was split using our custom split

in each fold, not randomly, to ensure our approach’s integrity and results.

4.1.3 Evaluation Metrics

The VeReMi Dataset encompasses records of both legitimate and malicious vehicles. How-

ever, it’s important to note that this dataset exhibits an inherent class imbalance, meaning
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there’s a significant disparity in the distribution between normal and malicious vehicle

instances. Consequently, relying solely on accuracy as an evaluation metric would be

inadequate for assessing model performance. Instead, precision, recall, and the F1-score

are employed to gauge the effectiveness of the proposed model. These metrics offer a

more nuanced understanding of how well the model distinguishes between normal and

malicious vehicles by considering factors such as the proportion of correctly identified

malicious instances (recall), the accuracy of identified malicious instances among all in-

stances classified as malicious (precision), and a harmonic mean of both precision and

recall (F1-score). A confusion matrix summarizes the model’s performance by tabulating

the correct and incorrect predictions, as shown in Table 4.3.

Table 4.3: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

• True Positive (TP): As shown in 4.3, a true positive occurs when the model

correctly predicts a positive instance (belonging to the positive class).

• True Negative (TN): As shown in 4.3, a true negative occurs when the model

correctly predicts a negative instance (belonging to the negative class).

• False Positive (FP): As shown in 4.3, a false positive occurs when the model

incorrectly predicts a positive instance (classifies a negative instance as positive).

• False Negative (FN): As shown in 4.3, a false negative occurs when the model

incorrectly predicts a negative instance (classifies a positive instance as negative).

• Accuracy: Accuracy measures the proportion of correctly classified instances (both

true positives and true negatives) out of the total number of instances in the dataset.

Accuracy provides an overall assessment of the model’s predictive performance but

61



4. RESULTS

may not be suitable for imbalanced datasets.

Accuracy =
TP + TN

TP + TN+ FP + FN

• Precision: Precision measures the proportion of true positive predictions (correctly

predicted positives) out of all positive predictions made by the model. Precision

indicates the model’s ability to avoid false positive predictions.

Precision =
TP

TP + FP

• Recall (Sensitivity): Recall, also known as sensitivity or true positive rate (TPR),

measures the proportion of true positive predictions out of all actual positive in-

stances in the dataset. Recall indicates the model’s ability to capture all positive

instances.

Recall =
TP

TP + FN

• F1-Score: The F1-score is the harmonic mean of precision and recall. It provides

a balance between precision and recall, taking into account both false positives and

false negatives. It is often used as a single metric to evaluate a model’s overall

performance in binary classification tasks.

F1-Score =
2× (Recall× Precision)

Recall + Precision

4.1.4 Implementation Environment and Toolkit

All the experiments in this research were conducted in the following environment and

configuration:

• Operating system: Windows 11 Home

• Processor: Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz

• Memory: 8.00 GB
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Tools and libraries used for the implementation of this research are:

• Programming language: Python 3.7

• Scripting language: Shell script

• Integrated Development Environment: Jupyter Notebook

• Libraries: Scikit-learn, matplotlib, NumPy, pandas, seaborn

4.2 Classification Results

We applied three supervised classification machine learning models to our processed and

feature-engineered dataset, as mentioned in chapter 3. A summarized view of our best

results throughout extensive experiments can be found in the table 4.4, and a detailed

discussion about the results can be found below.

We encountered a significant challenge with overfitting, particularly when employing

random splits for dividing our dataset. While commonly used, this method failed to

maintain the critical temporal structure inherent to our data. More importantly, we

observed that the model was inadvertently learning to recognize specific sender details,

treating them as predictive features. As a result, whenever the model encountered similar

sender information in the test set, it could easily classify it, albeit for the wrong reasons.

This over-reliance on sender details and disregard of the dataset’s temporal sequence due

to random splitting compounded the overfitting issue.

This is why we moved to work on a custom split. After a series of experiments, we came

up with this split, which would ensure that the data’s temporal features would always be

preserved, and we call this dataset our “Base Custom Split”, as mentioned in Table 4.4.

This dataset gave us the base set of results, which we then worked towards improving

upon.

After analyzing the results and the dependency factors of the model’s classification

report, we understood that we needed to create more features from the existing ones so

that the model could pick up those patterns better and faster. A detailed discussion on
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Table 4.4: Results

Experiment Stage Algorithm Accuracy Precision Recall F-1 Score

Random Split KNN 0.97 0.97 0.97 0.97

Random Split Decision Trees 0.99 0.99 0.99 0.99

Random Split Random Forest 1.00 1.00 1.00 1.00

Base Custom Split KNN 0.75 0.74 0.73 0.73

Base Custom Split Decision Trees 0.73 0.72 0.71 0.71

Base Custom Split Random Forest 0.76 0.75 0.75 0.75

Feature Engineered
Custom Split

KNN 0.94 0.94 0.94 0.94

Feature Engineered
Custom Split

Decision Trees 0.95 0.95 0.95 0.95

Feature Engineered
Custom Split

Random Forest 0.98 0.98 0.98 0.98

Hyper-parameter
tuned; Feature Engi-
neered Custom Split

KNN 0.94 0.96 0.95 0.95

Hyper-parameter
tuned; Feature Engi-
neered Custom Split

Decision Trees 0.96 0.96 0.96 0.96

Hyper-parameter
tuned; Feature Engi-
neered Custom Split

Random Forest 0.98 0.98 0.98 0.98
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which features were added and how they contribute to a better performance of the model

is mentioned in chapter 3. This dataset has new additional features and is used with the

custom split to get new results as “Feature Engineered Custom Split” in the table 4.4.

Finally, to enhance the model performance, we also performed hyper-parameter tun-

ing. The exact hyperparameters that were tuned have been mentioned in section 4.1.2

for each model. In this scenario, the feature-engineered data is first used with the custom

split; then, the models are applied with tweaked hyper-parameters to get the most op-

timal results. These results are mentioned within the “Hyper-parameter tuned; Feature

Engineered Custom Split” row of table 4.4.

From table 4.4, we can see that Random Forests is our best-performing model, and

hence, we will use this to compare previous work mentioned in chapter 2 and our proposed

approach.

4.3 Comparison with Existing Approaches

Table 4.5 compares the proposed approach with existing techniques to detect Traffic

Congestion Sybil Attack, mentioned in chapter 2.

As mentioned in chapter 2, below is also a summarization of each of the works and

their techniques used, and how it is different from our proposed approach:

• van der Heijden [16] uses VeReMi, but they use a trust-based approach.

• Mahmoudi et al. [37] used a privately simulated dataset using an F2MD simulator

with VEINS, and they employed an LSTM-based approach to get their best results.

• Zhao et al. [38] use FedMix, which means federated machine learning approach, and

they are using VeReMi in conjunction with the BSMList dataset, which has been

privately simulated.

• Alladi et al. [39] use deep learning and cannot work with variable-length messages.

• Liu et al. [40] use a Transformers-based approach and employ the VeReMi dataset

to assess the performance.
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Table 4.5: Comparison of results

Paper Dataset Approach Accuracy Precision Recall F-1 Score

[16] VeReMi Trust-based 0.8001 0.9972 0.5842 0.7367

[37] Privately
simulated

LSTM x 1.00 0.92 0.96

[38] VeReMi +
BSMList

Federated
ML

x 0.985 0.851 0.913

[39] VeReMi CNN-LSTM 0.987 0.998 0.964 0.981

[40] VeReMi Transformer
based

0.9943 0.9886 1.00 0.9943

Proposed VeReMi Classical ML 0.98 0.98 0.98 0.98

Looking at the difference between approaches by Alladi et al.[39] and Liu et al. [40]

versus the approach proposed by this thesis, we can see that both the previous works

include the use of Deep Learning. This introduces a significant computational overhead,

leading to extensive computational resources and increased training time for these models.

Realistically, this makes them unsuitable for real-time detection of attacks as they come.

Moreover, these approaches utilize the VeReMi dataset but do not mention preserving its

temporal features. We could very well argue that the results they have received might

be overfitting since if they used a Random Split, the temporal features of the VeReMi

dataset would not be preserved. Hence, there is a lack of clarity on their data-splitting

approach.

However, our thesis adopts a method that emphasizes the importance of this temporal

aspect by using the custom split while utilizing classical machine learning algorithms that

are less demanding computationally and quicker to train. This approach ensures our

models are efficient and capable of real-time attack detection, offering a practical solution

for vehicular networks where time is of the essence.
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Conclusion and Future Work

5.1 Conclusion

In conclusion, this thesis presents a novel approach for detecting Traffic Congestion Sybil

Attacks in VANETs using classical machine learning algorithms while preserving the

temporal features of the dataset. Our contributions include the development of a custom

split technique to ensure the integrity of the temporal data, preventing leakage between

training and testing sets. By sorting the data according to the received time, we maintain

the time-series nature of the dataset, which is crucial for understanding the dynamics of

traffic congestion and Sybil attacks.

Additionally, we introduced three types of features to enhance the understanding of

patterns within the data. Statistical distributions of vehicle speed and acceleration values,

frequencies of messages, and distances between vehicles were incorporated into the dataset,

providing valuable insights for classification. Leveraging the publicly available VeReMi

dataset further strengthened the reproducibility and extensibility of our work, allowing

for comparisons with existing research in the field.

Our use of classical machine learning algorithms addresses scalability and computa-

tional overhead challenges prevalent in previous works. While deep learning techniques

may offer complex architectures, they often require substantial computational resources

and time for training. In contrast, our approach demonstrates that with their simpler

architectures, classical machine learning models can effectively detect Traffic Congestion

Sybil Attacks without compromising performance.

By overcoming the perceived limitations of classical machine learning algorithms in

67



5. CONCLUSION AND FUTURE WORK

preserving temporal features, our work opens new avenues for research in VANET se-

curity. The successful application of classical machine learning models underscores the

importance of methodological innovation and dataset extensibility in advancing research

in intelligent transportation systems and VANET security.

5.2 Future Work

Although our work removes the computational overhead and training time issue, it would

be interesting to see how reinforcement learning could make this a real-time detection

technique. Our work could also be extended to see how this approach with a custom

split and classical machine learning algorithms can perform a multi-class classification

of Sybil Attacks in VANETs. Also, since we have applied our methods to the “GridSy-

bil 1416” traffic density only, future work could include applying these techniques to the

“GridSybil 0709” dataset.
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