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Abstract

Computer simulation is a powerful technique to create synthetic images for the

testing of computer vision algorithms. However, the discrepancies caused by incon-

sistencies between the simulated environment and the physical world have made the

results of algorithms testing with synthetic datasets hardly reliable in real-world appli-

cations, which is a phenomenon called the “reality gap”. Among various factors that

impact on photo-realism of computer-synthesized outdoor environments, researchers

have analyzed the most influential and identified them as geometry, appearance, light-

ing, physics, environment, camera, and rendering parameters.

This thesis research develops a novel system for the generation of synthetic datasets

with a reduced reality gap. In the system, a scene environment is first constructed

with the geometry of objects according to real-world data. Information retrieved for

the time of a day from the Internet of Things (IoT) is then used by a simulator en-

gine to render images with the actual appearance of objects, physics of shadows and

reflections, and rendering parameters, such as camera, lighting, and environmental

conditions. Similarity scores between the synthesized and real-world images are fi-

nally calculated to evaluate the effectiveness of the proposed system in reducing the

reality gap.
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CHAPTER 1

Introduction

This chapter introduces topics like computer vision, object recognition, image dataset

and data generation, generative AI, challenges involved with image data and simu-

lation. The introduction helps in understanding the main challenge handled in this

study of generating realistic simulated outdoor image data which can be used for

training different computer vision and artificial intelligence algorithms. Following

the introduction, this study delves into related research in the Chapter 2, outlines

the research methodology in the Chapter 3, presents experiments and analysis in the

Chapter 4, and concludes with conclusion and future works in the Chapter 5. At

the end, this study contributes by developing a system for generating simulated im-

ages with a reduced reality gap through enhanced data curation methods and defined

metrics to measure the reality gap between the simulated and the actual real world

scenario.

1.1 Computer Vision

Computer vision is a dynamic and rapidly evolving field within the realm of artificial

intelligence (AI), garnering significant attention from researchers and practitioners

alike. Computer vision stands out as one of the foremost research domains in AI,

characterized by its ability to empower machines with visual perception capabilities

akin to human vision. Through sophisticated algorithms and advanced techniques,

computer vision enables computers to “see”, interpret, and comprehend visual data,

thereby facilitating tasks such as image recognition, description, classification, and

1



1. INTRODUCTION

Fig. 1: Influence of Computer Vision in Other Areas [33]

pattern grouping [33].

The pivotal role played by computer vision transcends disciplinary boundaries,

finding application and relevance across diverse domains including biological sciences,

biomedical engineering, medicine, marketing, robotics, computer graphics, artificial

intelligence, and remote sensing. The impact of computer vision extends beyond mere

image analysis, it underpins critical functions and processes in various industries and

scientific endeavors.

In recent years, the advent of deep learning frameworks and convolutional neu-

ral networks (CNNs) has revolutionized the field of computer vision, enabling un-

precedented advancements in image understanding, object detection, semantic seg-

mentation, and scene recognition. These breakthroughs have propelled computer

vision into the forefront of technological innovation, driving transformative changes

in sectors such as autonomous vehicles, healthcare diagnostics, surveillance systems,

augmented reality, and industrial automation.

Figure 1 illustrates the multifaceted domains and applications influenced by com-

puter vision, showcasing its pervasive impact on modern society and industry. As

researchers continue to explore novel methodologies, algorithms, and applications

within the realm of computer vision, the potential for groundbreaking discoveries and

transformative solutions remains boundless.

2



1. INTRODUCTION

In essence, computer vision represents a cornerstone of AI research, offering pro-

found insights and capabilities that redefine human-computer interaction, decision-

making processes, and problem-solving paradigms in the digital age.

1.2 Object Recognition

Object recognition is a fundamental aspect of computer vision, encompassing the

ability of a system to identify and classify objects within visual data accurately.

Object recognition is a multifaceted process that involves several sequential steps,

each contributing to the overall performance and efficacy of the recognition system

[33]. The steps of object recognition according to Rani et al.[33] are as follow.

Fig. 2: Basic Steps of Pattern Recognition [33]

The initial step in object recognition typically involves data acquisition, where

raw data in the form of images or videos is collected from various sources such as

sensors, scanners, or digital machines. This data may undergo transformation and

preprocessing to enhance its quality and suitability for subsequent analysis.

Data preprocessing, the second step in the object recognition pipeline, plays a

crucial role in preparing the data for analysis. This phase involves tasks such as

isolating the region of interest (ROI) from the background, filtering out noise and

unwanted artifacts, and normalizing the data to ensure consistency and comparability.

3



1. INTRODUCTION

Subsequently, the data analysis step involves the learning and training of the data

using machine learning or deep learning algorithms. During this phase, the system

extracts meaningful features and patterns from the data, building a knowledge base

that will aid in the classification of objects in later stages.

The classification step is where the object recognition system leverages its learned

knowledge to assign categories or labels to new input data. This decision-making

process is informed by the training and analysis conducted earlier, enabling the system

to make accurate predictions about the identity of objects within the visual input.

It’s worth noting that the performance of an object recognition system is in-

fluenced by various factors [33]. These factors include the size and quality of the

dataset used for training, the methodology and technology employed in the recogni-

tion system, the expertise of the system designer in selecting appropriate algorithms

and parameters, and the specific needs and expectations of the end-users who will

interact with the system.

In essence, object recognition represents a critical capability within computer vi-

sion, enabling machines to interpret and understand visual data in a manner that

mimics human perception. Advances in object recognition techniques have led to

significant progress in diverse fields such as autonomous navigation, image retrieval,

surveillance, robotics, and augmented reality, paving the way for innovative applica-

tions and solutions in the digital era.

4



1. INTRODUCTION

1.2.1 Algorithms for (3D) Object Recognition

Table 1 lists and describes different algorithms for 3D object recognition, including

classification, clustering, regression, sequence labeling and parsing.

Name Description

Classification

The system is designed for supervised machine learning, where
the algorithm learns from input patterns and derives desired out-
puts under the supervision of a supervisor. The main goal is to
accurately label new test data based on the training phase.

Clustering

Cluster analysis groups similar objects together, representing un-
supervised machine learning. Unlike supervised learning, there’s
no need for model supervision, allowing it to discover patterns
in unlabeled data. While unsupervised learning handles more
complex tasks, accuracy may be lower.

Regression

Regression analysis predicts the dependent variable using known
values of the independent variable. The dependent variable is the
outcome, while independent variables are features or predictors.
Linear regression is a common method in this analysis, primarily
used for prediction and forecasting in machine learning.

Sequence la-
beling

This pattern recognition task assigns a class or label to each
element in an observed data sequence, often a crucial step in NLP
tasks. Examples include speech tagging, POS (part of speech)
tagging, and NER (Name Entity Recognition). Label sequencing
learning predicts sequences of labels rather than individual class
labels.

Parsing

It is a process of examining the string of symbols in computer lan-
guage, data structure, or natural language. In terms of computer
science, this term is used to analyze the language of computers
and is referred to as syntactic analysis. According to the syntac-
tic technique, a pattern is a combination of simple sub-patterns.

Table 1: Algorithms for (3D) Object Recognition [33]

1.2.2 An Example: Enhancing Decision-making

An autonomous vehicle equipped with cameras and other sensors captures real-time

images of the road. These images are processed by the vehicle’s AI system, which

5



1. INTRODUCTION

Fig. 3: Use of Object Recognition in Decision-Making [15]

analyzes the data to recognize objects, interpret the environment, and make decisions

accordingly.

If the system detects a pedestrian crossing the road, it can autonomously stop

or slow down to ensure safety. Here, the use of object recognition techniques helps

decision making and thus images play a vital role in enhancing decision-making across

various fields, one example being autonomous vehicles.

1.3 Image Datasets and Data Generation

Image dataset generation is a critical aspect of training deep learning models in

computer vision. Over the past decade, the evolution of computer vision has shifted

towards deep learning-based models that learn from extensive labeled data, leading to

more accurate and robust systems. However, the cost and effort involved in annotating

each example have increased significantly, especially as the focus expands to complex

6



1. INTRODUCTION

tasks that require labeling objects or even pixels in images [2].

Traditional methods of data collection using photography devices yield high-

quality data but are time-consuming and costly. As a remedy, researchers have turned

to synthetic image data generation techniques [10]. Synthetic data generation involves

creating virtual environments where training examples are generated in a controllable

and customizable manner, circumventing the challenges of real-world data collection

and annotation.

Synthetic data generation employs various methods such as simulation tools, AI

models, and rendering engines to produce diverse datasets efficiently. One of the

primary advantages of synthetic data generation is its reduced time and cost compared

to traditional methods. While the effectiveness of synthetic data initially may be

lower than real-world data, preprocessing, human verification, and rigorous testing

can significantly enhance its effectiveness and utility in training deep learning models.

By leveraging synthetic image data generation techniques, researchers and practi-

tioners can access larger and more diverse datasets, accelerating the development and

deployment of robust computer vision systems. This approach not only streamlines

the data collection process but also offers greater flexibility and scalability in training

models for a wide range of applications across industries such as robotics, healthcare,

automotive, and more.

1.4 Generative AI: Image Generation

Generative AI, with its diverse capabilities ranging from text and image generation

to voice synthesis and style transfer, represents a groundbreaking advancement in

artificial intelligence (AI). generative AI encompasses a wide array of applications,

each showcasing its ability to create and manipulate content in innovative ways [12].

In the realm of image generation, generative AI leverages sophisticated algorithms

and neural networks to produce visually appealing and contextually relevant images.

One of the notable features of generative AI is its flexibility in generating images

based on different inputs. For instance, images can be generated by providing textual

7



1. INTRODUCTION

prompts that describe the desired scene or by using existing images as references

along with text prompts, allowing for a more nuanced and personalized approach to

content creation [34].

While generative AI has demonstrated remarkable performance in generating por-

traits, artworks, and stylized images, there are still challenges when it comes to gen-

erating realistic scenes comparable to real-world images. The complexity of capturing

intricate details, spatial relationships, and environmental factors in scenes remains a

frontier that generative AI continues to explore and improve upon [12][34].

Figure 4 shows two images that are presented side by side, with the first image

provided as a prompt and the second image generated using AI technology. The

resulted image turned out very well. The AI generated image has nature of an artwork.

An artwork differs from real image with details like edges, color selections and lighting.

Although the results in the Figure 4 (b) seems impressive, generative AI faces few

challenges which are discussed in Section 2.6.

(a) Reference Image Given with the Prompt (b) Image Generated Using Generative AI

Fig. 4: Images Generated Using Generative AI

1.5 Challenges Involved with Image Data

Training and testing object recognition models entails a complex and resource-intensive

process, starting with the acquisition and labeling of large volumes of real-world data.

This data often contains uncertainties, biases, and nuances inherent to real-world

scenarios, necessitating meticulous labeling and domain expertise. Subsequently, the

8



1. INTRODUCTION

trained models undergo rigorous testing to assess their performance, requiring eval-

uation in both common and rare situations to ensure robustness [26]. This compre-

hensive evaluation process is vital but adds to the complexity and time investment

involved in designing, implementing, and testing object recognition systems under

realistic environmental conditions. Consequently, researchers and practitioners face

significant challenges in navigating this arduous, costly, and often non-reproducible

process, hindering advancements in the field [26].

Moreover, the necessity for continual training with fresh real-world data to enhance

model decision-making capabilities over time is evident, particularly in applications

like autonomous vehicles. However, the practicality of acquiring large volumes of

labeled real-world data at regular intervals presents a formidable challenge. This

process is not only time-consuming but also laborious, especially in domains like

computer vision, where detailed labeling and data curation are crucial for effective

training and testing. Thus, while ongoing training is crucial for improving decision-

making techniques in computer vision models, the logistical hurdles associated with

gathering and managing substantial datasets regularly remain a significant obstacle

in advancing the field [16][38].

1.6 Simulation

Simulation plays a pivotal role in generating substantial volumes of training data

affordably and efficiently within lifelike environments [2]. By leveraging simulation

techniques, researchers and practitioners can create synthetic data that closely mim-

ics real-world scenarios, offering numerous advantages in the realm of computer vi-

sion and artificial intelligence. As computer graphic software tools have evolved, the

computer vision community has increasingly turned to simulation as a cost-effective,

efficient, and scalable solution for data collection in training [35]. Simulation involves

approximating real-world scenes within a computer graphic software environment,

creating what is termed a simulation scenario. This scenario is then processed to

generate simulated images. The simulation process typically starts with replicat-

9



1. INTRODUCTION

Fig. 5: Simulated Image Using Blender Simulation Tool [39]

ing real-world objects and their environments, while also accounting for the physical

properties that define these objects and settings. For example, Figure 5 illustrates a

simulated indoor scene featuring various object models and environmental elements

like daylight and weather conditions. These properties are effectively modeled using

components such as physics engines, modeling tools, environment modules, render-

ing engines, and application programming interfaces (APIs). With the definition of

real-world objects and environments, users can leverage the API modules to gener-

ate simulated images at scale, reducing the need for manual effort. As users have

knowledge of the objects and environments being simulated, they can programmati-

cally obtain accurate labels without human intervention. Computer graphic software

tools are employed to generate these simulated images, which serve various purposes,

including training computer vision [16] and object recognition algorithms and cre-

ating computer-animated videos or multimedia content. Notable software tools for

simulation, such as Unity[41], Cinema4D[9], and Blender[7], have been utilized for

generating simulated datasets for tasks like object recognition.
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CHAPTER 2

Related Researches

This chapter discusses the relevant background and various methods for synthetic

data generation. Furthermore, we discuss various computer graphics software tools

used to generate simulated data. Lastly, we discuss about image similarity and the

model utilised for comparing two images.

2.1 The Problem of Reality Gap

In the context of autonomous vehicle driving, simulation suites offer invaluable capa-

bilities for automated validation techniques across diverse scenarios, facilitating the

development of closed-loop validation methods like machine learning and reinforce-

ment learning approaches. However, simulation tools encounter a significant challenge

known as the Reality Gap [4].

(a) Simulated Image (b) Real-World Image

Fig. 6: Indoor Object Models in a Shelf Environment [11]
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The Reality Gap represents the disparity between simulation conditions and real-

world scenarios [3]. Bridging this gap is crucial to enhance the effectiveness of syn-

thetic data generation and simulation-based validation processes. The difference that

results in the problem of reality gap is due to the incorrectly simulated physical prop-

erties of scene. These physical properties are considered influential factors include

texture, material, illumination (lighting condition), and weather conditions [43]. To

minimize the Reality Gap, simulators must strive to create scenes that are highly

realistic, mirroring real-world settings with precision.

(a) Real Image

(b) Simulated Image

Fig. 7: Simulation of an Outdoor Scene [16]

If models are tained with poorly simulated data which has large reality gap it

effects models performance negatively. Poorly simulated data may not accurately

12
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represent the real-world distribution of images. As a result, models trained on such

data may exhibit bias and struggle to generalize to real-world scenarios [39][38][26].

If the simulated data does not capture the diversity and complexity of real-world

images, the model may overfit to the training data, resulting in poor performance on

unseen data.

The simulation process has to capture and handle various details in order to appear

the same as it real world match. In Figure 6, the images look same but if the focus

go to the background and its material then two scene appears as different. However

in Figure 7 (b), the building objects do look close but their shape and structure

as well as background makes them look different. Although these are the examples

with visible differences for understanding, there are various other factors like object

material, scene lighting etc. which might not visible to the human eyes but if caught

by model then affects the model significantly.

Hence, it becomes imperative to develop a system capable of comparing simulated

images with real-world counterparts to assess their similarity. Such a system will

provide valuable insights on enhancing the effectiveness of simulated datasets and

optimizing the performance of object recognition algorithms in real-world testing

scenarios.

2.2 Synthetic Data Generation

Synthetic data refers to images generated using simulation techniques, yet differences

between simulated and real scenarios persist due to rendering performance and scene

modeling challenges. While high-quality realistic images can be generated, accurately

simulating object details, materials, lighting, camera parameters, and imperfections

remains a hurdle [43].

Simulation and animation primarily focus on 3D scenes to create synthetic datasets

[30], aiming to bridge the Reality Gap. To reduce this gap effectively, it’s crucial to

prioritize rendering engines, accurately model object characteristics, adjust physics

and environmental factors. By implementing these measures thoughtfully, the Real-
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ity Gap in synthetic data can be minimized, leading to more effective and reliable

simulation outcomes.

2.3 Influential Factors

In the context of synthetic image generation, influential factors refer to the key ele-

ments that significantly affect the quality, realism, and effectiveness of the generated

images. Therefore, it is important to tackle these elements carefully and precisely in

order to increase the realism of synthetic image data [30]. The identifield inflential

factors are presentated in Table 2

1. Physics

2. Rigid bodies

3. Physical soil

4. Deformable objects

5. Fluid dynamics

6. Thermodynamics

7. Obstacles

8. Magnetism

9. Soft bodies

10. Cloth

11. Slicing

12. Fracture

13. Atmospheric conditions

14. Wind

15. Rain

16. Snow

17. Clouds

18. Crowds

19. Seasonal changes

20. Perturbations

21. Object deformation

Table 2: Identified Influential Factors [30]

Table 2 considers influential factors for various indoor as well as outdoor environ-

ment. however, there are factors which affects the scene irrespective of its environment

nature(Indoor or Outdoor) and these factors are discussed below.
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• Lighting Conditions: The way light is simulated in the synthetic environment,

affecting shadows, highlights, and overall visual appearance.

• Object Placement: The positioning and arrangement of objects within the syn-

thetic scene, influencing spatial relationships and interactions.

• Time : This factor involves accounting for changes over time, such as dynamic

lighting conditions, object movements, or alterations in the overall scene com-

position.

• Sky Color: The color of the sky and the way it interacts with the scene’s lighting

conditions impact the overall color palette and mood of the synthetic image.

• Weather Conditions: Incorporating weather effects, such as rain, snow, or fog,

in the sky adds a dynamic aspect to the scene, enhancing the diversity of the

synthetic dataset.

2.4 Internet of Things (IoT)

Fig. 8: IoT System Architecture [6]

The “Thing” in IoT can be any device with any type of sensor embedded with the

ability to collect data and transmit it across the network without manual interven-

tion. Internet of things systems such as networked vehicles, smart traffic systems, and

sensors embedded in roads and bridges bring us closer to the idea of “smart cities”,

which help reduce congestion and energy consumption [24]. Once created, IoT net-

work can add a number of different sensors and devices, including mobile phone-based
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sensors(Accelerometer, Gyroscope, GPS etc.), Medical Sensors, Specialized Physical,

Mechanical, and Chemical Sensors, Radio Frequency Identification (RFID) etc.

At the core of modern Smart City initiatives lies the Internet of Things (IoT),

a technological framework that enables seamless connectivity and data exchange be-

tween various devices and systems. IoT plays a pivotal role within the context of

Smart Cities by facilitating the collection and transmission of data from sensors de-

ployed throughout the urban [8]. These sensors capture real-time information about

the city’s infrastructure, environment, and services, sending this data to a central-

ized cloud platform. In the cloud, the data is processed, analyzed, and mined to

extract patterns and insights that inform decision-making processes aimed at opti-

mizing city operations and improving quality of life for residents. Key components

of Smart Cities, such as transportation systems, energy grids, waste management,

public safety, and environmental monitoring, can be seamlessly integrated with IoT

through the deployment of specific sensors tailored to each domain. This integration

enables cities to leverage data-driven strategies for efficient resource management,

sustainability initiatives, and enhanced citizen services [8].

2.5 Synthetic Data Generation Methods

Table 3 provides an overview of different methods for generating synthetic image

data. The table categorizes the synthetic image data generation methods based on

their techniques and highlights their key characteristics.

2.6 Generative AI for Synthetic Image Generation

Image generation using generative AI has revolutionized the field of computer vision

and creative content generation. These models have shown impressive capabilities in

creating synthetic images that closely resemble real ones. As these models are such

powerful tools, is it reliable to use them for generating synthetic image data? The

answer is not really due the phenomena called Model Collapse. It is a degenerative
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Method Description

The method of
using the gener-
ator [31]

The method relies on an existing generator that can be pre-
programmed or built using a tool for digital content creation
or a physics or game engine. The generator allows the user
to change the synthesis parameters, and the output does not
necessarily generate in real-time.

programming
method [19]

The synthetic data is created algorithmically, by direct pro-
gramming of the output.

The method of
using the simula-
tor [17]

This technique relies on the programming of the respective or
the use of a game engine or a modified commercial computer
game to conduct a specific simulation.

The digital
content creation
method [37]

This method relies on tools, such as 3ds Max, Blender or
After Effects, that often contain a physics engine and enable
automation by programming.

Use of commer-
cial computer
game method
[40]

It depends on the license which regulates whether the game
may be used to generate a synthetic data. If it can, the biggest
problem is the way to access the content within the game, pos-
sibly adapt it to own needs and output it in the appropriate
form (final image with the corresponding annotation).

Use of game en-
gine [36]

The technical basis of every computer game is the game en-
gine such as Unity or Unreal Engine, which is, when used as
a production tool, also a distinct method that can produce
synthetic data without first making a game. Game engine
method allows direct integration with machine learning plat-
forms.

Generative
adversarial
training [44]

It uses neural networks (GANs) during the synthetic data
generation process but is limited by the inability to create
appropriate annotations automatically and is more suitable
for use as an auxiliary tool for domain adaptation.

Table 3: Synthetic Data Generation Methods

process affecting generations of learned generative models, where generated data end

up polluting the training set of the next generation of model, being trained on polluted

data, they then misperceive reality [38].

When an AI model is used to generate synthetic image data, the data it produces

might have captured noise. If the same data is used to train another model, there are
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Fig. 9: Model Collapse

high chances of these noises in training data affect the model learn negatively. Now

if the data from this second model used for training of other model, the same effect

continues and at the end there come a n model which when use this polluted data it

collapses. This phenomena is represented in Figure 9 and is called model collapse.

2.7 Simulation Engines

2.7.1 Blender

(a) Scene with indoor lighting condition and
clear weather

(b) Scene with outdoor lighting condition
and clear weather

Fig. 10: 3D Scenes Developed in Blender [39]

Blender is a powerful open-source 3D creation suite widely utilized for modeling,
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animation, rendering, compositing, and more. Developed by the Blender Foundation,

this versatile software has garnered significant attention within the computer graphics

community due to its extensive feature set, intuitive interface, and active user commu-

nity. Originally conceived as an in-house tool for a Dutch animation studio, Blender

has evolved into a comprehensive platform that caters to the needs of professionals,

enthusiasts, and researchers alike. One of the key distinguishing features of Blender is

its accessibility. Being open-source, Blender is freely available for download and use,

empowering users worldwide to unleash their creativity without financial barriers.

Moreover, Blender’s user-friendly interface and extensive documentation facilitate a

smooth learning curve, making it an ideal choice for beginners venturing into the

realm of 3D content creation. Blender’s capabilities extend beyond mere modeling

and animation. With its integrated rendering engine, cycles, and powerful node-based

compositing toolset, Blender enables users to create stunning visual effects and life-

like renders with ease. Furthermore, Blender’s robust Python API opens up endless

possibilities for customization and automation, allowing users to tailor the software to

their specific requirements and integrate it seamlessly into their workflows [45][7]. The

scenes created using Blender are represented in Figures 10, showcase diverse lighting

and weather conditions. Blender’s versatility extends to the development of datasets

for indoor object recognition, autonomous driving, and robotic object detection tasks.

2.7.2 Unity

Unity is a powerful and versatile cross-platform game engine developed by Unity

Technologies. It is widely used by game developers, architects, engineers, filmmakers,

and other professionals to create interactive 2D and 3D experiences. Unity provides

a comprehensive suite of tools for designing, developing, and deploying applications

across multiple platforms, including PC, mobile devices, consoles, and augmented re-

ality/virtual reality (AR/VR) headsets. Unity’s key features include Graphics Ren-

dering, Physics Simulation, Scripting Support, Asset Store that provides a vast library

of ready-made assets, Cross-Platform Development, Networking capabilities for cre-

ating multiplayer games and online experiences and last but not the least it supports
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Fig. 11: Outdoor Environment Scene Simulation in Unity Engine [42]

development for augmented reality (AR) and virtual reality (VR) applications, mak-

ing it a popular choice for creating immersive experiences in these emerging technolo-

gies.Unity has gained widespread adoption in both the gaming industry and beyond,

thanks to its user-friendly interface, extensive documentation, and active community

support. Whether you’re a seasoned game developer or a newcomer to interactive

design, Unity provides the tools and resources you need to bring your ideas to life

[41][42][39]. Figure 11 shows an outdoor simulation done using unity.

2.7.3 Cinema 4D

Cinema 4D, developed by Maxon Computer GmbH, has established itself as a pre-

mier software solution for 3D modeling, animation, and rendering in the creative

industry. Its popularity stems from its user-friendly interface, powerful toolset, and

versatility, making it a go-to choice for professionals across various fields such as mo-

tion graphics, visual effects, product design, and architectural visualization. One of

the standout features of Cinema 4D is its intuitive workflow, which allows artists

to seamlessly navigate through its robust suite of tools, making complex tasks more

manageable and accessible. Whether creating intricate models, dynamic animations,
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(a) Real Image (b) Simulated Image

Fig. 12: Cinema 4D Simulation [20]

or stunning visual effects, Cinema 4D offers a comprehensive set of features tailored

to meet the demands of modern 3D production. At the core of Cinema 4D’s appeal

is its extensive toolset, which covers every aspect of the 3D content creation pipeline.

From sophisticated modeling tools that enable artists to sculpt detailed objects with

precision, to advanced animation features that facilitate the creation of lifelike char-

acter movements and dynamic simulations, Cinema 4D provides artists with the tools

they need to bring their creative visions to life. Furthermore, Cinema 4D’s rendering

capabilities are second to none, with built-in render engines such as Physical Render

and ProRender delivering high-quality, photorealistic results. Additionally, Cinema

4D seamlessly integrates with other industry-standard software packages, allowing for

smooth interoperability and efficient workflow integration. With its combination of

intuitive design, powerful features, and seamless integration, Cinema 4D remains a

top choice for artists and designers seeking to push the boundaries of 3D creativity

[9][20][39].

2.8 Image Simulator

As discussed in the previous section, there exist various simulation engines or image

simulators using which simulated scenes can be generated. These simulators have

number of tools and features using which realistic animation can be created. The

number and variety of features provided vary in each of the simulators, but they all
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share the same key modules as shown in Figure 13.

Fig. 13: Image Simulator Modules

Among the different modules, a Modelling Component It provides an interface for

generating three-dimensional models and has support for a variety of geometric prim-

itives, including polygon meshes, subdivision surface modeling, curves and metaballs.

Also, it provides diverse modifiers and sculpting tools to model imperfections.

Physics Engine provides an approximate simulation of certain physical systems

such as enabling gravitational properties for objects, rigid body dynamics, soft body

dynamics and fluid dynamics.

Environment Module allows us to define a variety of weather and lighting condi-

tions as it is very important to test object recognition in different conditions. This

module allows to simulate different properties of environment like external and indoor
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lights, weather, fluid simulator for simulating liquids, smoke simulation which will be

used to model the simulated scenes.

Rendering Engine is responsible for rendering photorealistic imagery. This module

efficiently renders shadows, indirect lighting, and ambient occlusion. Many rendering

engines provide GPU support to enable efficient and fast rendering of scenes.

Scripting and Add-ons enable users to automate tasks, create custom tools, and

extend functionality. Add-ons in a simulator refer to additional software modules or

extensions that users can install to enhance the functionality or capabilities of the

simulator. These add-ons are developed either by the official development team or by

third-party developers and can offer a wide range of features, tools, or functionalities

that are not included in the core software.

2.8.1 Image Similarity and OpenAI Clip

Image similarity refers to the degree of likeness or resemblance between two images.

It is a measure of how closely the visual content of one image matches that of another.

Image similarity is a fundamental concept in computer vision and image processing,

used in various applications such as image search, duplicate detection, and content

recommendation systems. Algorithms for measuring image similarity analyze the fea-

tures, patterns, and structures present in images to determine their level of similarity,

enabling efficient organization and retrieval of images from large datasets [13][30].

OpenAI’s CLIP (Contrastive Language-Image Pretraining) is a cutting-edge model

that has revolutionized the field of artificial intelligence by bridging the semantic gap

between images and text. Unlike traditional computer vision models that rely solely

on pixel-level features, CLIP leverages the power of natural language processing to

understand the content of images at a more conceptual level. By pretraining on

a massive dataset of images and associated text from the internet, CLIP learns to

associate images with their textual descriptions in a way that captures their under-

lying semantics and context. This enables CLIP to perform a wide range of tasks,

including image classification, zero-shot learning, and most notably, image similarity

comparison [32].
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One of the most compelling applications of CLIP is its ability to check the sim-

ilarity of two images based on their content. By encoding both images and textual

descriptions into a shared semantic space, CLIP can effectively measure the similar-

ity between them, even if they belong to different categories or have different styles.

This capability opens up a plethora of possibilities in various domains, such as con-

tent moderation, image retrieval, and creative applications. For example, CLIP can

be used to identify visually similar images in large datasets, detect duplicate content

across the web, or even generate artistic compositions based on a user’s textual in-

put. With its ability to understand images in a more nuanced and contextually rich

manner, CLIP represents a significant leap forward in the field of multimodal AI and

has the potential to drive innovation in numerous fields [28].
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CHAPTER 3

Research Methodology

This chapter discusses the methodology for generating highly realistic and detailed

geometric models for objects of interest with realistic lighting conditions, different

weather conditions, variable and static objects, materials, and textures. The results

produced using this methodology will make the simulated scene appear closer to

reality.

3.1 Problem Statement

Simulation environments have emerged, and they are used as an efficient, safe, and

cost-effective solution for generating large-scale synthetic data. Simulation environ-

ments have been used to generate data where objects are set in the indoor envi-

ronment. However, when used for outdoor environments, they are used to imitate

real-world scenarios, but minimal emphasis is given to designing real-world objects.

Considering the problem of reality gap, it is essential to evaluate the most influen-

tial factors that can bridge the difference between real-world and simulated outdoor

scenarios.

3.2 Contributions

• Develop an end-to-end system to generate photo-realistic simulated images us-

ing object models and environment scenes with matching physical properties.

• Investigate and get real-time data of influential factors from sensors and devices
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connected to IoT networks.

• Improve the process of simulated data curation by configuring physical proper-

ties of object models and environment scenes, which assists in defining realistic

scenarios suitable for training Computer Vision and AI models.

• Define metrics to measure the reality gap between the simulated and the actual

real-world scenario.

3.3 System Architecture and Overall Process

The system architecture is illustrated in Figure 14. At the beginning, all the required

add-ons are added to the Blender simulator to extend the functionality. The add-ons

we used are listed in the Table 4.

Fig. 14: System Architecture
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Name Feature

Blosm
First, the coordinates of the area of interest are taken, and using
them, the 3D scene of that location is generated.

Object
Real Snow

This feature helps in generating snow simulation on selected sur-
faces.

Table 4: List of Add-ons Used in the System

Algorithm 1 (System)

Input : Simulation Environment, Location and Prior Information about the

Area of Interest

Output : Photorealistic Simulated Image of Scene with its Similarity Score

1. Input simulation environment and the scene objects created using coor-

dinates of area of interest to Module 1 to initiate the simulation process

2. Input 3D scene from Module 1 to Module 2 and input scene properties

and influential factors data collected from the IoT network into Module

2 for scene reconstruction process

3. Input reconstructed 3D scene data from Module 2 to Module 3 for ren-

dering a synthetic image

4. Input simulated image from Module 3 and the real-world image counter-

part to Module 4

5. Calculate the similarity score in Module 4 and interpret the gap between

real-world and simulated images

6. End

The working and flow of the system are as per Algorithm 1. To initiate the

process of creating synthetic images, the system creates a new Blender project for
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the simulated environment. Moreover, in order to generate 3D scene of the desired

location, coordinates of location are fetched from Openstreet Maps with the help of

prior information. Here the prior information involves the information that helps

in locating desired area on a 2D map such as Address, Landmarks, Street Names,

Intersections, Reference Points and Compass Directions. By providing the discussed

inputs, the process is initiated and the further tasks are then performed by each

module in the system. In the Section 3.4, we discuss the workings of these modules.

3.4 Algorithms for Individual Modules

As discussed in the Section 3.3, the system comprises four modules designed to gener-

ate synthetic images and to assess their similarity to real images to gauge the reality

gap. Each module is assigned specific tasks to achieve particular outcomes within

its domain, collectively contributing to the creation of highly realistic synthetic im-

ages. To provide an in-depth understanding of the tasks carried out by each module,

these modules are discussed next, outlining the algorithms used and presenting a test

example for illustration.
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3.4.1 Simulated Scene Generation Module

Algorithm 2 (Module 1)

Input : Simulation environment, location and prior information about the

area of interest

Output : 3D scene with terrain, building, road and paths

1. Using the prior information about the location, the area of interest (AoI)

is fetched on a 2D map and its coordinates are obtained

2. Input AoI coordinates to simulation environment to create basic 3D scene

3. Get the terrain, buildings, roads and paths objects of the scene

4. Check the simulated scene and if there are missing objects or part of

scene, go to step 1

5. Add environment objects like sun light, street lights and camera for

setting up the basis for the simulated scene

6. End

The process begins with the prior information about location of interest as dis-

cussed in Section 3.3. Using the details like Address, Landmarks, Street Names,

Intersections, Reference Points and Compass Direction, the coordinates of the loca-

tion are fetched from a 2D map.

The obtained coordinates are then used as an input into the simulation environ-

ment software. This action defines the boundaries and positioning of the simulated

space, establishing the area of the virtual scene to be created.

Using the AoI coordinates, the simulation environment generates a 3D scene rep-

resenting the area of interest with basic shape and structure of terrain, buildings

and raods/paths. The terrain is landscape or ground surface for 3D scenes, which

is created with consideration of all the pits and hills from the real ground surface.
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(a) Instruction to for
Fetching Coordinates

(b) Map to Locate Area of Interest

Fig. 15: Use of OpenStreetMap for Fetching Coordinates of Desired Location

Paths and Roads are important parts of the scene, and they are created by accu-

rately adjusting width, length, curves, and turns. For buildings, Dimensions, Scale,

and Primary Architectural Features are considered to ensure accuracy and realism.

A 3D Map of the scene in the Figure 16 is generated here with no physical or material

details.

After creating the basic 3D scene and retrieving scene objects, it is important to

check for any missing components or inaccuracies. If any objects or parts of the scene

are missing or incomplete, the process returns to step 1 in Algorithm 2 to refine the

input data or to regenerate the scene.

Once the basic scene is constructed, additional environment objects are incorpo-

rated to enhance realism and functionality. These objects include lighting sources

such as sunlight or street lights, as well as cameras for viewing and interacting with

the simulated environment.

With the scene fully constructed and environment objects added, the process

concludes. The Basic scene is now ready.
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(a) Generated 3D Scene (b) Blosm Menu in
Blender

Fig. 16: 3D Scene Generation Using Blosm Add-On

To generate test result using the system, from the actual scene’s location, the area

is fetched in OpenStreetMap. From the OpenStreetMap, the coordinates of the AoI

are extracted which is shown in Figure 15 and given as input in Blender as shown in

Figure 16 (b). Finally by clicking on import in menu shown in Figure 16 (b), objects

like terrain, roads, and buildings of the scene are generated as shown in Figure 16

(a). A 3D Map of the scene in the Figure 16 is generated with no physical or material

details.
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3.4.2 Scene Reconstruction Module

Algorithm 3 (Module 2)

Input : 3D Scene form Module 1, Influential Factors from IoT Network and

Scene Object Properties

Output : Reconstructed 3D scene with accurately modeled objects, Scene and

object properties, physical properties and carefully handled influential factors.

1. Input 3D scene from Module 1 and reconstruct the scene by enhancing

details of architectural structure of the building objects and by adding

missing objects in the scene

2. Input scene object properties like object textures and colors and map

them to the 3D objects in the scene

3. Input influential factors data form Iot network and accurately apply scene

environment properties like Time, Visibility, Weather and Time.

4. Check the 3D scene, and if there are missing key features, then repeat

step 1, step 2 and step 3 for architectural structure, Object properties

and scene environment properties respectively

5. End

The process in Algorithm 3 starts by taking the 3D scene generated in Mod-

ule 1, which represents the basic layout of the area of interest. This scene is then

reconstructed to enhance details of architectural structures, such as buildings. As il-

lustrated in Figure 17, this reconstruction involves adding finer details to the building

objects, refining their shapes, textures, and other architectural features. The infor-

mation required in this refining task is captured from sources like Google Street View

maps as well as from the real image data of the scene. For example as illustrated in

Figure 16, the building object is missing the mesh window structure on its facades.
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(a) Instance of 3D Scene Reconstruction
Process

(b) 3D Scene after reconstruction

Fig. 17: Use of Scene Reconstruction Module for Refining details and Increase Realism

As visually this is an identifiable key feature of the building, this and the same kind

of other key features are observed, noted and then modeled into the 3D scene which

is shown in Figure 17. Additionally, any missing objects in the scene are identified

and added to improve completeness and accuracy. The missing objects mainly are

street lights, signs, etc. The information about these object for the test scene is also

captured from Google Street View maps as well as from the real image data of the

scene. Some examples of missing objects that are created for test result scene are

shown in Figure 18.

Next, the properties of scene objects are input into the simulation environment.

This includes specifying details such as textures, colors, material properties, and other

visual attributes of the objects in the scene. These properties are extracted from

real world object, ensuring that the virtual representation closely resembles its real

world counterpart in terms of appearance and characteristics. It is very important to

carefully extract and model the scene with object textures. One example is to make

concrete walls, a rough surface texture is used on building walls. In the research

done by Khairnar[16], Street View Static API was utilised for extracting textures of

objects in the scene. Using the same approach object textures are extracted for the

test results. The extracted textures are then mapped to the objects.
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(a) Simulated Bench Objects (b) Simulated street light Object

(c) Simulated Brick Wall Object (d) Simulated Sign Objects

Fig. 18: Simulated Objects Designed and Created Additionally for the Scene

Furthermore, the data collected from IoT network, such as sensor readings or

environmental conditions, is extracted. This data includes influential factors such

as time of day, visibility conditions, weather conditions, and other environmental

parameters. Accurately applying these influential factors to the scene environment

adds realism and dynamic variability to the simulation. As discussed in Section 2.3,

there are few main factors that control effects of other sub factors. These factors
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(a) 3D Scene without Object and
Environmental Properties

(b) 3D Scene with Object and
Environmental Properties

Fig. 19: Effect of Mapping Objects Textures and Applying Influential Factors

are listed in the Table 5. Hence, to increase realism and to reduce reality gap, the

properties listed in Table 5 can be extracted from the Environment Canada Website.

The extracted data are then used in the test scene as the main influential factors.

Main Factor Sub Factor

Time Sun Position, Sun light Intensity

Weather Rain, Snow, Background Sky, clouds

Lighting Street Lights, Building Lights, Visibility, background sky

Visibility Fog, Dust, Haze

Table 5: List of Main Factors and the Dependent Sub Factors

The Sun light is one of the most crucial factor of the real world as well as of a 3D

scene. Setting the sun light source position in 3D scene is very important because it

adds realism, believability, atmosphere, shadows and depth in the scene. Moreover,

variation in the sun position and the sun light intensity help in adjusting time in the

scene. Below is the formula that gives position of the sun in the form of coordinates

using time.

Solar Declination (δ): δ = 23.45◦ × sin

(
365

360
× (d− 81

)

Hour Angle (H): H = (t− 12)× 15◦
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Azimuth (Az): Az = arctan 2 (sin(H), cos(H) · sin(ϕ)− tan(δ) · cos(ϕ))

Elevation (El): El = arcsin (sin(ϕ)× sin(δ) + cos(ϕ)× cos(δ)× cos(H))

Conversion to Cartesian Coordinates (x,y,z):

x = cos(Az)× cos(El), y = sin(Az)× cos(El), z = sin(El)

Here, ϕ is the latitude of the location, d is the day of the year, t is the time of

day in hours. As these factors are present in the real world and affect the way how

scenes appear in reality, it is essential to take care of their effects in the simulated

environment so that the generated simulated results can be close to their real-world

counterparts. Figure 20 shows how the position of the earth changes with respect

to the sun. Due to the variation in the position of sun and earth, calculation of the

discussed angles become important in order to get the accurate position of the sun

light in simulation environment.

(a) (b) (c)

Fig. 20: Figure (a) Represents Solar Declination, Figure (b) Represents Azimuth
and Elevation, Figure (c) Represents Hour Angles

Through out the day intensity of sunlight also changes. Let Imax be the maximum

intensity of sunlight (usually around noon) and t be the time, the following formula

generates the intensity of sun light I(t).

Sun Light IntensityI(t): I(t) = Imax · cos
( π

24
· (t− 12)

)
Here, t is the time of day in hours, π

24
represents a 24-hour cycle, and (t-12) shifts

the function so that it reaches its maximum at noon.
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Another influential factor is the weather. The data extracted from the IoT network

for the weather at a particular time is in the form of labels. The detailed list of

possible weather and their label is available at Environment Canada Website [27].

Some examples of the data labels are below.

• Rain

• Snow

• Drizzle

• Hail

• Freezing Rain

• Freezing Drizzle

• Unknown Precipitation

When Unknown Precipitation weather or no obstructions to visibility occur, sky

conditions are provided, reflecting the observation of the total cloud amount. The

following terms are used based on the amount (in tenths) of cloud covering the dome

of the sky.

• Clear (0 tenths)

• Mainly clear (1 to 4 tenths)

• Mostly cloudy (5 to 9 tenths)

• Cloudy (10 tenths)

For the test scene in this section, the clear weather is implemented with high

visibility and without any effects like rain, snow, fog etc. To create weather conditions

in the Blender simulator, a particle system for the weather is created to represent

effects like snowfall, rainfall, etc. Moreover, in weather conditions like rain and snow,

water and snow are simulated on the ground surfaces to increase the believability of
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(a) Simulated Outdoor Scene in the Morning

(b) Simulated Outdoor Scene in the Night

Fig. 21: Test Results Generated Using the System

the weather effect. Finally, from the time and the weather data from the IoT network,

the background sky is set in the simulated scene.
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Giving simulated scenes lighting that is similar to the real world influences its

realism. The scene’s lighting not only decides the effect of the shadow and reflection

but also sets the overall aesthetic. Lighting includes primary light sources like Sunlight

or Moonlight and other sources like street lights, building ceiling lamps, etc. For

example, to generate a scene as shown in Figure 21 (a), sunlight is adjusted to the

following settings in Blender.

Sun Light

Shade FFFBB6

Strength 13

Angle 1.3d

Sun Location

X -69.5799 m

Y -65.5795 m

Z 72.5111 m

Sun Rotation

X -50.69d

Y -13.8412d

Z 124.941d

Table 6: Sun Object Settings in Blender for Figure 21 (a)

The settings in Table 6 give the scene night effect and change sunlight to moon-

light by and setting light intensity to low levels and the shade of light. Moreover,

streetlights and building ceiling lamps are turned on at night, which is also adjusted

in the simulated scene. The sunlight for Figure 21 (b) is adjusted to the settings

according to Table 7.

Visibility of the scene is a factor that controls the amount of clearly seeable details

in the scene. When the weather is adjusted in the scene, the amount of visible

information is reduced due to obstacles in the view from the atmosphere, such as
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Sun Light

Shade FFF6EC

Strength 1

Angle 100d

Sun Location

X -149.857 m

Y -51.9302 m

Z 40.4893 m

Sun Rotation

X -52.2676d

Y 56d

Z 154.991d

Table 7: Sun Object Settings in Blender for Figure 21 (b)

raindrops or falling snow. However, irrespective of seasonal factors, visibility levels

sometimes drop due to the presence of fog, mist, dust, etc. To depict these effects,

volumetric shaders in the Blender are employed, and the desired atmosphere condition

is achieved by adjusting density and color.

The forms in which the data extracted from the network for the illustrated images

in this section is in Table 8 and the factors simulated for each of them are also

presented in the Table 8

After reconstructing the scene, mapping object properties, and applying influential

factors data, the simulated 3D scene is thoroughly checked for any missing key features

or inaccuracies. If any deficiencies are identified, the process iterates through steps

1, 2, and 3 accordingly, focusing on architectural structure, object properties, and

scene environment properties, respectively. This iterative approach ensures that the

simulated scene meets the desired level of completeness and fidelity. Figure 19 shows

the scene before and after applying object and environment properties.
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Influential
Factors

Form of Ex-
tracted Data

Adjustments in Simulator

Time
YYYY/MM/DD,
HH:MM

Sun Object Position, Sun Light Intensity, Other
Lighting objects, Sky Background

Weather Labels
Particle System, Sky Background, Ground Ef-
fects

Lighting From Time of Day
Light Object Intensities, Sun Object Position,
Sun/Moon Light Shade

Visibility Value(km) Particle System, Time, Lighting

Table 8: Influential Factor Adjustment in Simulator

Once the reconstructed scene is deemed satisfactory in terms of architectural de-

tail, object properties, and scene environment properties, the Module 2 process con-

cludes.
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3.4.3 Rendering Module

Algorithm 4 (Module 3)

Input : Reconstructed 3D scene from Module 2

Output : Simulated image of 3D scene

1. Input reconstructed 3D scene, set the camera position, adjust camera

focal length and camera orientation according to the desired view of the

image

2. Input parameters for desired denoising effect in the output image

3. Input filtering parameters for desired anti-aliasing effect in the output

image

4. With the set parameters in steps 2 and 3, start the rendering process in

the rendering engine

5. Analyze the results, and if the image does not have the desired view, go

to step 1, if the image lacks quality, go to step 2.

6. End

The process of generating synthetic image begins by taking the reconstructed 3D

scene from the previous steps, which includes all the enhanced architectural details,

object properties, and environmental factors. This scene serves as the foundation for

generating the final rendered image.

The camera position, focal length, and orientation are adjusted according to the

desired view of the image. This step allows for specifying the viewpoint and framing

of the scene, ensuring that the rendered image captures the desired perspective and

composition.

Parameters for denoising, which reduce the presence of noise in the rendered image,

are specified. For generating the test results in this section, denoising settings used
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in Blender are shown in Figure 22. Understanding the GPU and CPU specifications

of the computer system being used is essential. A computer system with a high-

configuration GPU and CPU can perform better in high-quality rendering settings,

while a computer system with a low-configuration GPU and CPU struggles to produce

rendered images in the same settings. Denoising helps improve the image’s visual

quality by smoothing out irregularities and enhancing clarity, especially in areas with

low light or complex textures. It is observed form the test results that the rendering

engine typically takes between one to two minutes to produce a single image with the

used system configuration.

(a) (b)

Fig. 22: Rendering Settings Used in Blender

Parameters for anti-aliasing, which reduce the appearance of jagged edges and

smooth out pixelation in the rendered image, are defined. Anti-aliasing improves

the overall visual quality of the image by mitigating the effects of aliasing artifacts,

resulting in a more polished and realistic appearance.

With the camera parameters, denoising parameters, and anti-aliasing parameters

set, the rendering process is initiated in the rendering engine. This process involves

simulating the interaction of light rays with the scene geometry and materials to

produce a photorealistic image of the virtual environment.

Once the rendering process is complete, the resulting image is analyzed to deter-

mine if it meets the desired criteria. If the image does not have the desired view,

indicating that the camera parameters need adjustment, the process returns to step

2 to refine the camera settings and restart rendering. Similarly, if the image lacks
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quality, suggesting that denoising or anti-aliasing parameters need adjustment, the

process returns to step 3 to fine-tune these parameters and re-render the image.

The process of setting camera parameters, denoising parameters, and anti-aliasing

parameters may involve iterative refinement until the desired view and quality of the

rendered image are achieved. This iterative approach ensures that the final image

meets the desired standards of accuracy, realism, and visual fidelity.

The scenes presented in Figure 21 are the results generated using the discussed

system. Setting properties of variable objects like grass, trees, sun and clouds play

vital role in giving scene weather and season conditions. Once the primary scene is

ready, it becomes effortless to generate scene of different time by changing randomiza-

tion properties like different weather conditions(Clouds, Leaf and Grass Color, Snow,

Rain etc.), different times(Darkness, Sunlight, Sun Position) and variable objects like

Grass, Snow, Fog, Sky etc.

3.4.4 Similarity Module

Algorithm 5 (Module 4)

Input : Simulated Image from Module 3, Real World Image

Output : Similarity Score of Simulated Image

1. Input the simulated image from Module 4 and the real world image to

the module

2. Compute the embeddings of two images

3. Calculate cosine similarity between the two images

4. Display similarity score

5. End

In order to assess the efficacy of simulated images, it is crucial to compare them

with a real-world counterpart. This comparison gives results in the form of a reality
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gap, which represents the effectiveness of synthetic data. The process begins by

obtaining the simulated image generated by Module 4, which represents the virtual

scene created through the simulation process. Additionally, a real-world image of

the same scene or environment is also provided. These images serve as the basis for

comparison to evaluate the similarity between the virtual simulation and reality.

Both the simulated image and the real-world image are passed through an em-

bedding model. An embedding is a vector representation of an image that captures

its semantic features in a high-dimensional space. The embedding model transforms

each image into a numerical vector representation, encoding its visual characteristics

and content.

Once the embeddings of the simulated and real-world images are computed, the

cosine similarity between the two vectors is calculated. Cosine similarity is a metric

used to measure the similarity between two vectors in a multi-dimensional space. It

calculates the cosine of the angle between the two vectors, with values ranging from -1

(completely dissimilar) to 1 (completely similar), where higher values indicate greater

similarity. For testing results in this thesis, a model that utilizes Open AI CLIP by

[32] is used. General formula for calculating the cosine similarity is as follows.

Cosine Similarity: cos(θ) =
AḂ

∥ A ∥∥ B ∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

The computed cosine similarity score is displayed to provide a quantitative mea-

sure of how similar the simulated image is to the real-world image. This score indi-

cates the degree of resemblance between the two images, with higher scores indicating

greater similarity and lower scores indicating more divergence. The visual represen-

tation of this process is represented in Figure 23.

The process concludes after displaying the similarity score. This score serves

as a valuable metric for assessing the accuracy and fidelity of the simulated image

compared to reality. It provides insights into the effectiveness of the simulation process

and can guide further refinements or adjustments to improve the realism of virtual

environments.

45



3. RESEARCH METHODOLOGY

Fig. 23: Image Similarity Calculation Representation

When simulating indoor environment images, the better approach is to set up

the simulation environment and then place objects in them. Then the use of object

recognition algorithms for checking the reality gap provides better accurate estimation

of similarity score. By training the model on the synthetic data and then using it

for testing with real world counterparts provides accurate reality gap information. If

the same approach from this study approach is for checking similarity, it results in

higher similarity scores as replicating dimension and shapes of small objects in indoor

simulation is not as difficult as outdoor scene objects. An example for this is shown

in Figure 24.

Conversely, outdoor environments demand careful attention to structural informa-

tion for accurate simulation. Inaccuracies in replicating architectural and structural

details can exacerbate the reality gap in generated synthetic data. Therefore, outdoor

scenes require meticulous efforts to ensure fidelity in simulation, as inaccuracies can

significantly impact the quality of the synthetic data produced.
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(a) (b)

Fig. 24: Indoor Environment Simulations and Its Real World Counterpart [39]

3.5 Time Complexity

Time complexities of all the algorithm are presented in Table 9. All the modules

contributes in the time complexity of the system.

The system works in iterations for generating desired result, in the starting results

may show low similarity. However, with iterative changes in reconstruction task, in-

fluential factors setting and object textures mapping the system improves and reaches

the desired outcome showing higher similarity scores. Hence the time complexity of

the system can be O(n).
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Algorithm Time Complexity Details

1 O(n) n = number of iterations required to get
desired results for a particular scene

2 O(n) n = Number of iterations required to
get desired scene and its objects

3 O(l) +O(m) +O(n)

l = Number of reconstruction iteration,
m = Number of texture mapped, n =
Number of adjustments made in simu-
lator for setting influential factors

4 O(n) n = Number of scenarios rendered

5 O(n) n = Number of image embedding cal-
culated

Table 9: Time Complexity of Algorithms
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CHAPTER 4

Experiments and Analysis

This chapter includes a variety of experiments conducted to generate simulation im-

ages with matching or unmatched influential factors. Rather than generating a large-

scale dataset of synthesized images for the evaluation of computer vision algorithms,

the objective of the experiments is to assess the reality gap of synthesized images

with an image similarity checking model. Therefore, all experiments focus at a fixed

area of interest and investigate the difference between synthesized and real images

while introducing controlled changes to the influential factors. After the explanation

of implementation environment and software tools in Sec. 4.1, this chapter presents

two phases of experiments that examine the impact on similarity scores when a single

influential factor or multiple influential factors are different in Sec. 4.2 and Sec. 4.3

respectively. An analysis of the experiment results is finally presented in Sec. 4.4

with discussions.

4.1 Implementation and Tools

This section contain specifications of the tools that are used in the implementation of

the research study. The implementation environment, followed by the development

tools, are detailed below.
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Implementation Environment

1. Operation system: 64-bit Windows 11, version 23H2

2. System type: x64 based processor

3. CPU: Intel Core i7-10750H CPU with 2.60GHz frequency

4. GPU: NVIDIA GeForce GTX 1650 5. RAM: 8.00 GB

Development Tools

1. Computer Graphics Software Tool: Blender v3.6

2. Programming Language: Python 3.10

3. Libraries: PIL, transformers, Numpy

4.2 Experiments and Results Phase 1

The system is implemented by creating a repository of object models with various

materials and environment scenes with different lighting conditions. As presented

in Figure 21, Chrysler Hall building at the University of Windsor is selected as the

test scenario location. For each simulation scenario, the experiment uses Blender

simulator to generate first a photorealistic image according to the physical properties

of the real-world environment and then a set of synthetic images with variations being

introduced to the value of influential factors. The varied simulation scenarios are

compared with the real-world images to assess the reality gap. This section presents

the initial set of experiments, which considers the main building object under the

influence of object material and environment scene lighting conditions.
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4.2.1 Sunny Afternoon in Summer

To generate a sunny afternoon scenario in summer, a real-world image of the scene

was captured on 2nd October, 2023 at 5:02 PM. Using Blosm add-on in Blender 3.6, a

basic 3D location scene with the right measurements of buildings, terrain, and roads

is created. To make the scene photorealistic, the scene reconstruction module is used

and all the factors were fine-tuned. It is crucial to model objects in this module

to achieve the structure that they have in real world, hence, objects are modeled

according to their structures. Furthermore, the data collected from Google Street

View API is used to give the objects their appropriate material. At this stage, the

3D scene is ready with all the objects that are both realistic and have the same

structure and shapes as their real-world counterparts.

(a) (b)

Fig. 25: Test Result 1: Generated Using the System where (a) is a Real World
Image and (b) is a Simulated Result

Finally, the last step is to accurately set influential factors. The data gathered

from Environment Canada Website for the same day and time is utilised to set the

influential factors like sky, weather, time, and sunlight. Figure 25 represents the real

scene and the generated simulated image result. The information about influential

factors and the achieved similarity score for the scene is added in Table 10.
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Similarity score 87.98

Influential Factors

Weather Sunny

Time 5:02 PM

Visibility 16.1KM

Lighting 20

Table 10: Results and Influential Factors Information for Sunny Afternoon in
Summer Experiment

4.2.2 Cloudy Afternoon in Early Winter

(a) (b)

Fig. 26: Test Result 2: Generated Using the System where (a) is a Real World
Image and (b) is a Simulated Result

To begin with, a picture of the location was captured on 27th November, 2023 at

4:36 PM from a different angle in winter season.
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To generate the simulated result, the steps mentioned in Section 4.2.1 are followed

until the 3D scene with realistic objects is ready, the influential factors are carefully

handled. As seen in Figure 26 (a), The real scene in the winter has snow on the

ground. From the Environment Canada Website, the data is extracted where cloudy

sky and low visibility are the important elements.

As listed in the Table 4, the Object Real Snow add-on is used in Blender 3.6,

using which snow on the ground is generated. To imitate cloudy sky background,

sunlight is set to a low setting and a cloudy weather HDRI image is added in as scene

world background. For this simulaed result, the visibility is not adjusted to a lower

setting. In the end, after setting the camera position, the result synthetic image is

rendered, which is shown in Figure 26 (b). The effect of visibility factor is reflected

in the similarity score, which is added in Table 11.

Similarity score 78.4

Influential Factors

Weather Snow

Time 4:36 PM

Visibility 16.1KM

Lighting 0.2

Table 11: Results and Influential Factors Information for Cloudy Afternoon in Early
Winter Experiment

4.2.3 Evening in Summer

To begin with, a picture of the location was captured on 18th September, 2023 at 7:47

PM from a different angle in the evening time.

To generate the simulated result for an evening in summer, the steps mentioned

in Section 4.2.1 are followed until the 3D scene with realistic objects is ready, the

influential factors are then carefully handled. As shown in Figure 26(a), The real

scene is in the evening, and hence, the lighting is very low. Moreover, the streetlights
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(a) (b)

Fig. 27: Test Result 3: Generated Using the System where (a) is a Real World
Image and (b) is a Simulated Result

Similarity score 80.06

Influential Factors

Weather Clear

Time 7:47 PM

Visibility 16.1KM

Lighting 8

Table 12: Results and Influential Factors Information for Evening in Summer
Experiment

and building ceiling lamps are lit up. From the Environment Canada Website, the

data is extracted where clear sky and good visibility are the important factors.

As the real scene has a clear sky and low light, the sunlight is replaced with the

moonlight and it is adjusted to a low-intensity setting. Although the real scene has
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a clear sky that is less dark, a dark night sky with clouds HDRI image is used in

the simulated scene to showcase its influence on the similarity score. In the end,

by setting the appropriate camera position, the result is rendered which is shown in

Figure 27. The information of influential factors and the achieved similarity score for

the scene is added in Table 12. Here, it is clear that the sky as background plays a

vital role in comparison, and hence, the lower similarity score is resulted.

4.2.4 Analysis

When simulating real world object, there are certain characteristics of objects which

are influential factors that has to be completely accurate in order to incorporate other

factors and make scene look real. From the experiments, it is observed that these are

the influential that can be added in the category of default influential factors which

has major effects on reality gap. The default influential factors observed from the

experiments are:

• Dimensions: Proper dimensions replicate real-world scale, ensuring objects

and environments are realistically sized. Accurate dimensions are crucial for

simulations involving physics, engineering, or architectural visualization to func-

tion correctly.

• Shapes: Proper shapes ensure that objects behave realistically in simulations

involving physics or interactions. Correct shapes contribute to visual coherence,

creating a more cohesive and immersive virtual environment.

For the experiments in this study, dimensions are set accurately using open source

add on feature called Blosm.

4.3 Experiments and Results Phase 2

From the results generated in the previous section using the system, it is observed that

multiple factors affect the similarity score, and if any one or more than one of them
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is not set accurately, the similarity gets affected significantly, and hence, the reality

gap increases. These are the influential factors that need to be handled precisely in

order to achieve a higher similarity score. To achieve better results and to gain more

insights into how each factor affects similarity score, another phase of experiments is

performed and various results are gathered.

In this experiment phase, the real-world scene is selected from Section 4.2.1 and

various simulated images are generated by varying single or multiple influential fac-

tors. In this experiment, a total of 20 results are generated and presented for analysis.

4.3.1 Single Variations

Fig. 28: Real World Image Used in the Experiments for the Comparison

To check the impact of each factor on the reality gap, the results are generated

by disabling one factor at a time and then compared with Figure 28. Here, disabling

the factor means setting the value of that factor incorrectly or not setting it at all to

give an adverse effect compared to what is present in the real-world scene.

Table 13 below shows the information of each factor with its set and unset influ-

ential factor.

To begin this experiment phase, the 3D simulation scene is selected from Section

4.2.1 in Blender, for which a simulated image is generated that is shown in Figure 28.
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1 % ! ! ! ! ! ! ! ! ! ! 80.43

2 ! % ! ! ! ! ! ! ! ! ! 78.95

3 ! ! % ! ! ! ! ! ! ! ! 66.27

4 ! ! ! % ! ! ! ! ! ! ! 73.65

5 ! ! ! ! % ! ! ! ! ! ! 74.02

6 ! ! ! ! ! % ! ! ! ! ! 77.50

7 ! ! ! ! ! ! % ! ! ! ! 82.52

8 ! ! ! ! ! ! ! % ! ! ! 73.54

9 ! ! ! ! ! ! ! ! % ! ! 76.88

10 ! ! ! ! ! ! ! ! ! % ! 79.03

11 ! ! ! ! ! ! ! ! ! ! % 77.78

Table 13: Simulated Results with Single Factor Variations

Initially, all the influential factors are already set for generating results in Figure

28, hence, first the shape of the building is changed by reducing the bounding edges

of Chrysler Hall building. By variating the edges, minor changes in the building’s

shape are introduced, and the simulated image converted to a Rectangular building

structure, which is different from its real-world structure. The real image as Figure 28

and the simulated image as Figure 29 are then used in the similarity module. After

the comparison, the similarity score of 80.43% is achieved which is lower than the

score achieved of 87.98 in Section 4.2.1.

The main observation here is that the shape factor contributes in increasing the

realism of the simulated image, and here, as the change is minutiae, its effect on the

57



4. EXPERIMENTS AND ANALYSIS

Fig. 29: Simulation Scene with Unset Shape Factor

similarity is also small and is about 7.55%.

For the second result in Table 13, the previous factor is reset to what it is in Figure

28, and for generating a new simulated image, the materials of the scene are disabled

and single color textures are added to the scene. Therefore, the scene is kept with

the right shades of color but no material information. The real image as Figure 28

and the simulated image as Figure 30 are then used in the similarity module. After

the comparison, the similarity score of 78.95% is achieved.

The main observation here is that all the materials contribute to realism of the

synthetic image. Here, as the materials are disabled and the objects are kept only

with the same shades of colors, there is a reduction of 9.03% in similarity score.

For the third result in Table 13, all the materials are remapped and for generating

a new simulated image, the visibility of the scene is set to low levels, which is the

opposite of what is present in real world scene. The real image as Figure 28 and

the simulated image as Figure 31 are then used in the similarity module. After

the comparison, the similarity score of 66.27% is achieved which is the lowest score

achieved in Table 13.

The observation here is that visibility is the factor that controls the amount of

information visible in the scene. Therefore, if the real scene has higher visibility and
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Fig. 30: Simulation Scene with Unset Materials of Objects

Fig. 31: Simulation Scene with Unset Visibility Factor

a clear view, setting it too low in the simulated scene makes the image look dissimilar

as the synthetic images would not include as many details in the scene. Due to the

lowered visibility, there is a reduction of 21.71% in the similarity score.

For the fourth result in Table 13, the visibility is reverted to what it is in Figure

28, and for generating a new simulated image, the time of scene is changed setting

by setting the sunlight intensity to 0.2 in the blender. The real image as Figure 28
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and the simulated image as Figure 32 are then used in the similarity module. After

the comparison, the similarity score of 73.65% is achieved which shows a clear effect

of reduction in realism.

Fig. 32: Simulation Scene with Incorrectly Set Sunlight

The observation here is that time, in terms of sunlight intensity, is the factor that

controls how clear and bright the objects are visible in the scene. If the intensity of

light is too low or too bright in comparison to the real world, it negatively affects the

similarity score, so it needs to be handled with good accuracy. Hence, when the time

is disabled, a reduction of 14.33% in similarity score is resulted.

For the fifth result in Table 13, the time is changed to what it is in Figure 28,

and for generating a new simulated image, the season of the scene is changed by

adding rain drop filter, puddles on the ground and cloudy sky as the background.

The real image as Figure 28 and the simulated image as Figure 33 are then used

in the similarity module. After the comparison, the similarity score of 74.02% is

achieved which shows the clear effect of reduction of realism in Table 13.

In this result, the added features to introduce the rainy season visibly make the

real and the synthetic images look different. Here, as the season is disabled, there is

reduction of 13.96% in similarity score.

For the sixth result in Table 13, the season is changed to sunny again, and for
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Fig. 33: Simulation Scene with Changed Season Features

generating a new simulated image, position of the sun in the scene is changed. The

real image as Figure 28 and the simulated image as Figure 34 are then used in the

similarity module. After the comparison, the similarity score of 77.50% is achieved

which shows the clear effect of reduction in realism.

Fig. 34: Simulation Scene with Incorrect Sun Position

The observation here is that when the sun is set to a position that is not the

same as the real-world image, it changes various factors in the scene. Taking about
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this scene specifically, it is clear that the shadow projection and its directions are

different from the real scene. Moreover, in the scene, the reflections on the glasses

are also observed to be different. Here, as the sun is disabled by not setting to the

right position, there is a reduction of 10.48% in the similarity score.

For the seventh result in Table 13, the sun is reverted to its original position,

and to generate a new simulated image, rain is added to the scene. The real image

as Figure 28 and the simulated image as Figure 35 are then used in the similarity

module. After the comparison, the similarity score of 82.52% is resulted, which shows

the clear effect of reduction in realism.

Fig. 35: Simulation Scene with Added Rain Features

The observation here is that as only the raindrops and the puddles are added but

not the cloudy background, the image’s overall appearance stayed the same with only

raindrops and puddles in the scene. Therefore, the rain here is disabled by adding it

into the scene where it is not present in the real world, there is a reduction of 5.46%

in similarity score.

For result number eight in Table 13, the rain is removed, and to generate a new

synthetic image, the snow is added to the scene. The real image as Figure 28 and

the simulated image as Figure 36 are then used in the similarity module. After the

comparison, the similarity score of 73.54% is achieved, which shows the clear effect
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of reduction in realism.

Fig. 36: Simulation Scene with Snow Features

It is observed here that as only falling snow particles and snow on the ground are

added but not the cloudy background, the effects are seen the same as the last image

with only rain Figure 35. Therefore, the snow here is disabled by being added into

a scene where it is actually not present, there is a reduction of 14.44% in similarity

score.

For the ninth result in Table 13, the snow features are removed, and to generate

a new simulated image, the sky background of the scene is changed. The real image

in the similarity module as Figure 28 and the simulated image as Figure 37 are then

used. After the comparison, the similarity score of 76.88% is achieved, which also

shows the effect of reduction in realism.

In this result, it is visible that with the change in the sky, the background image

appears to be either of a different season or of a different time. However, the main

object and other objects appear the same with all the other settings correctly handled.

Here, as the background is disabled, the reduction of 11.4% is seen in the similarity

score.

For the tenth result in Table 13, the background is changed to what is in Figure

28, and for generating a new simulated image, the camera orientation is changed in
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Fig. 37: Simulation Scene with Different Sky in The Background

the scene. The real image as Figure 28 and the simulated image as Figure 38 are then

used in the similarity module. After the comparison, the similarity score of 79.03%

is achieved, which is surprisingly low.

Fig. 38: Simulation Scene with Changed Camera Position

Here, the synthetic image has objects which are not presented or seen in the actual

image. According to this observation, there is an imbalance of information or details

between both images, where one has a smaller portion of an object than the other.
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As the actual image is in portrait orientation, it covers more ground and sky view

compared to the synthetic image which is in landscape orientation. Therefore, both

of the images contain different information of extra details. As a result, there is a

reduction of 8.95% in similarity score.

Fig. 39: Simulated Image with Changed Camera Orientation

For the result number eleventh in Table 13, the orientation is changed back to

portrait, and to generate a new simulated image, the camera’s position is changed,

capturing the image’s different view. The actual image as Figure 28 and the simulated

image as Figure 39 are then used in the similarity module. After the comparison, the

similarity score of 77.78% is achieved, which shows the effect of reduction in realism.

Here, we still wanted the scene to be nearly the same, hence, a slight position

change is introduced to the camera object. As the view changed, the image visibly

looks different and a reduction of 10.20% is seen in similarity score.
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4.3.2 Multi-Factor Variations

Until now, all the experiments are performed to get insight into the effect of each in-

dividual factor on image similarity. As shown in Table 14, the cases when the number

of disabled factors increases, the similarity score reduces gradually until reaching the

lowest score of 59.78% at the end of Case 8.

(a) Synthetic Image of Case
Number 1 in Table 14

(b) Synthetic Image of Case
Number 2 in Table 14

Fig. 40: Synthetic Images Used in Case 1 & 2 with Image in Figure 44 (a)

(a) Synthetic Image of Case
Number 3 in Table 14

(b) Synthetic Image of Case
Number 4 in Table 14

Fig. 41: Synthetic Images Used in Case 3 & 4 with Image in Figure 44 (a)
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(a) Synthetic Image of Case
Number 5 in Table 14

(b) Synthetic Image of Case
Number 6 in Table 14

Fig. 42: Synthetic Images Used in Case 5 & 6 with Image in Figure 44 (a)

(a) Synthetic Image of Case
Number 7 in Table 14

(b) Synthetic Image of Case Number 8 in
Table 14

Fig. 43: Synthetic Images Used in Case 7 & 8 with Image in Figure 44 (a)
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(a) Synthetic Image of Case Number 9 in
Table 14

(b) Real World Image Used in all of the
Experiments in Table 14

Fig. 44: Synthetic Image Used in Case 9 and the Real Image
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1 % ! ! ! ! ! ! ! ! ! ! 80.43

2 % % ! ! ! ! ! ! ! ! ! 77.28

3 % % % ! ! ! ! ! ! ! ! 66.66

4 % % % % ! % ! ! % ! ! 75.19

5 % % % % % % ! % % ! ! 73.50

6 % % % % % % % ! % ! ! 63.56

7 % % % % % % % ! % % ! 63.35

8 % % % % % % % ! ! % % 59.78

9 ! ! ! ! ! ! ! ! ! ! ! 87.98

Table 14: Simulated Results with Multiple Factor Variations
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No. Influen-
tial
Factor

Enabled (!) Disabled (%)

1 Shape Building edges(Facade
mashes) are correctly ad-
justed

Building edges are reduced to
almost zero

2 Material Objects are set with correct
materials

Objects are colored without
material information

3 Visibility A fog object is added having
volumetric shader with den-
sity of -0.84

The fog object is removed

4 Time Sun light intensity: 20 Sun light intensity: 0.2

5 Season Sunny day HDRI background,
Accurate sun light

Inaccurate sun light, Rain
particle system, Cloudy HDRI
background, Puddles on the
ground using noise texture

6 Sun Sun Position: [X=-69.5799m,
Y=-65.5795m, Z=72.5111m],
Sun Rotation: [X=-50.69d,
Y=-13.8412d, Z=124.941d]

Sun Position: [X=108.199m,
Y=-30.6449m, Z=72.5111m],
Sun Rotation: [X=-36.7609d,
Y=-79.2629d, Z=194.5d]

7 Rain No settings as the real scene
has a sunny day

Rain particle system, Water
using noise texture on the
ground

8 Snow No settings as the real scene
has a sunny day

Snow particle system, Snow
simulation on the ground us-
ing Object Real Snow add-on

9 Backgro-
und

Sunny day HDRI background Cloudy afternoon HDRI back-
ground

10 Camera
Position

Camera Position:
[X=4.26163m, Y=21.0894m,
Z=3.84031m], Camera Ro-
tation: [X=181.264d, Y=-
76.3983d, Z=30.2728d]

Camera Position:
[X=12.3236m, Y=18.0101m,
Z=3.97194m], Camera Ro-
tation: [X=98.9491d, Y=-
0.531919d, Z=111.117d]

11 Camera
Orienta-
tion

Resolution: [X=1332,
Y=1000]

Resolution: [X=1000,
Y=1332]

Table 15: Settings of Influential Factors in Blender for the Experiments
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The enabled and disabled settings used in Blender for each influential factors are

added in the Table 15. It was observed in this experiment phase that if multiple

influential factors are disabled, realism of image affects significantly and thus reality

gap increases. Therefore, in order to reduce the reality gap and increase realism of

synthetic image, it is very important to handle each factor and all factors accurately.

We discuss more about the above results and their analysis in Section 4.4.

4.4 Analysis and Discussions

According to results obtained from the two phases of experiments, it becomes evident

that the accurate placement of the sun, sun light intensity according to the time,

weather features, and visibility in synthetic scene generation significantly impact the

realism and fidelity of the resulting images. During the experiments, altering influen-

tial factors results in a notable reduction in the similarity score between the synthetic

and real images. Specifically, disabling the factor of sun position led to a 10.48% de-

crease, setting sun light not according to the time led to a 14.33% decrease, changing

season led to a 13.96% decrease in similarity. The results highlight the importance

of environmental parameters in scene generation. Moreover, it was noticed that vis-

ibility in the simulated scene is also one of the important influencing factors as the

result generated by disabling it showed the highest similarity drop of 21.71%.

The observed differences in shadow projection and reflections on surfaces under-

score the intricate interplay between lighting conditions and visual perception. Accu-

rate modeling of visibility, including factors such as fog, haze, and occlusion, is crucial

for capturing the nuances of depth and spatial relationships within a scene. Similarly,

incorporating realistic weather effects such as rain, snow, or mist can greatly enhance

the atmospheric authenticity of synthetic imagery, contributing to its overall realism.

Furthermore, accounting for variations in time of day and dynamic lighting changes

is essential for simulating naturalistic lighting conditions and accurately portraying

the temporal progression of scenes over the course of a day. These considerations

highlight the critical role of comprehensive environmental modeling in ensuring the
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fidelity and believability of synthetic imagery across a diverse range of scenarios and

conditions.

The work done by Khairnar [16] showcased automated approach of constructing

3D city models where less emphasis was given to refining objects. This study draws

inspiration as well as extends work done by Sonetta [39] for generating simulated

outdoor environment scene. By prioritizing the reconstruction of objects, detailed

3D models are created. Ultimately, through the meticulous adjustment of real-world

properties and careful management of influential factors, the system successfully gen-

erated scenes and synthetic image data that exhibited enhanced realism.Therefore,

employing our system for generating synthetic datasets to train computer vision algo-

rithms presents a promising alternative to address the limitations of real-world image

datasets’ availability.

Finally, scalability and computational efficiency could be the major challenges

for the system, particularly when aiming for high-resolution, photorealistic outputs.

Balancing computational resources with the demand for realistic imagery presents a

significant hurdle in achieving widespread adoption of synthetic data in real-world

applications. Developing efficient algorithms and optimization techniques to stream-

line the generation process while maintaining quality standards is an area ripe for

further exploration in future research.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we studied the area of generating synthetic image data and the problem

of reality gap. We developed a system that is capable of generating large amount

synthetic image data using simulation. The data generated using the system are

carefully modeled, reconstructed and has carefully handled influential factors which

increases the realism of synthetic data. According to the observations from previous

research done by Khairnar[16], the system in this thesis incorporates a module focus-

ing on the reconstruction of the scene. Meticulous modeling of architectural details

in 3D simulated scenes is paramount for enhancing realism and fostering immersive

experiences. By faithfully replicating almost every aspect of real world structures,

from textures to dimensions, quality of scene increased and helped getting higher

similarity scores. Moreover, incorporating IoT technology in the system to gather

real time weather data and integrating it into 3D scene simulations help dynamically

adjust virtual environments to mirror real world conditions. Finally, the similarity

module that utilises OpenAI CLIP is used for the task of image comparison, demon-

strates remarkable accuracy in discerning visual similarities. Its versatility extends

beyond traditional image recognition methods, offering robust performance across a

wide range of visual tasks.

Through rigorous testing and by performing a number of experiments we showed

the model’s effectiveness and data quality. From the gained insights from testing

we generated results and compared them with its real world counterparts by which
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a similarity score of 87.98% is achieved. The achieved similarity suggests that the

simulated scene effectively captures essential elements of the real environment, in-

cluding geometry, textures, lighting, and overall ambiance. As the scene 3D scene are

tested to be effective, by varying influential factors within the simulated scene, such as

lighting conditions, object placements, camera angles, and environmental parameters,

developers can generate a diverse range of data instances. This variability introduces

richness and complexity into the training dataset, allowing Computer Vision and AI

models to learn from a broad spectrum of scenarios and adapt more effectively to dif-

ferent conditions encountered in the real world. Moreover, the ability to control and

manipulate these factors enables targeted data augmentation strategies, enhancing

the robustness and generalization capabilities of the trained models.

5.2 Future Work

This work can be extended by exploring methods to automate the generation process.

In addition, it will be beneficial to improve efficiency, for scaling up data generation

to even larger amounts and for generating very large sized 3D models such as cities.

Another area worth investigating is the development of techniques to dynamically

adapt the synthetic data generation process based on feedback from the performance

of computer vision algorithms, thereby continuously improving the realism and effec-

tiveness of the generated data. Furthermore, exploring ways to generalize the model

across different domains or tasks could expand its applicability and impact. Over-

all, continued research and development in this area hold the potential to further

bridge the reality gap and facilitate the advancement of computer vision algorithms

in various real-world applications.
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