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ABSTRACT

The Segment Anything Model (SAM) by Meta AI Research, trained on an ex-

tensive collection of over 1 billion masks, has gained significant attention for its ex-

ceptional ability to segment ”anything” in ”any scene”. SAM integrates a sophisti-

cated image encoder, prompt encoder, and lightweight mask decoder, enabling flexi-

ble prompting and rapid mask generation in segmentation tasks. This segmentation

model excels in granular, component-level segmentation, enriching our understanding

of pixel semantics, critical for local feature learning. On a different note, the challenge

of classifying small-scale objects persists, especially in sectors like medical imaging

and remote sensing where objects of interest typically represent a small fraction of

the entire image. In this study, we investigate the potential applications of SAM in

the classification of small objects despite its primary design as a segmentation model.

We introduce an ensemble deep learning methodology that leverages SAM within our

custom dataset, specifically targeting the classification of tiny objects. Through com-

parative analysis between segmented data (processed by SAM) and non-segmented

data (original data), our findings indicate a performance improvement in favor of the

segmented data, underscoring the efficacy of our proposed approach.
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CHAPTER 1

Introduction

1.1 Background

The challenge of identifying small lesions such as tiny tumors in medical imaging is

significantly exacerbated by their minimal pixel coverage within images, which often

leads to indistinguishable features. These diminutive lesions lack the pronounced

morphological and dynamic criteria usually relied upon to detect more conspicuous

tumors, complicating both manual and automated segmentation. The difficulty is

compounded in dynamic imaging scenarios like MRI (Magnetic Resonance Imaging),

where the contrast between a small lesion and its environment may be insufficient

for clear depiction. Additionally, the variability in the lesions’ appearance—shape,

size, and density—presents further complexities, as they often blend into surrounding

tissue or are obscured by complex anatomical backgrounds, challenging traditional

classification methods that depend on clear and consistent visual markers of pathology

[9].

Pituitary tumors, categorized as the second most common type of primary brain

tumor, embody a substantial challenge in neurodiagnostics due to their critical lo-

cation and typically minute size [10]. Originating from the pituitary gland (Fig-

ure:1.1.1)—a crucial endocrine gland positioned at the base of the brain—these tu-

mors constitute about 10-15% of all adult brain tumors [11]. According to diam-

eter size, pituitary tumors have been categorized into three types: microadenomas

(<10mm), macroadenomas ( ≥ 10mm), giant adenomas (≥ 40mm) [12]. The major-
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1. INTRODUCTION

ity of pituitary tumors are typically microadenomas, with a diameter ranging from 3

to 9 millimeters [13].

Fig. 1.1.1: Pituitary Gland [1]

Although most of the pituitary tumors are benign, known as pituitary adenomas,

they can disrupt hormone production, leading to significant health issues such as

diabetes, cardiovascular diseases, and fertility complications [11]. The detection and

accurate classification of these tumors are hindered by their small size and the gland’s

position deep within the cranial cavity, with traditional diagnostic methods like MRI

struggling to distinguish these tumors from surrounding brain tissue due to factors

like tumor size variability, image resolution, and evaluator fatigue [14] [15].

Fig. 1.1.2: Pituitary Tumor [2]

To address these diagnostic challenges, the advent of advanced deep learning

2



1. INTRODUCTION

models, particularly SAM introduced by Meta AI in April 2023, marks a significant

advancement in medical imaging [5]. SAM, developed on the largest segmentation

dataset to date featuring over 1 billion masks, enables the creation of precise masks

for a diverse range of objects across various scenes without prior training on new data.

This thesis explores SAM’s potential in enhancing the classification of pituitary tu-

mors from MRI scans, aiming to significantly improve the accuracy and reliability of

diagnostics by focusing on relevant image features and standardizing the appearance

of objects of interest, thus potentially transforming the approach to detecting and

managing this common yet complex type of brain tumor. The goal is to validate

SAM’s application in a real-world medical setting, assessing its efficiency against tra-

ditional diagnostic methods and its ability to contribute to more effective and timely

medical interventions.

In the next section, we will discuss about image classification, segmentation, and

SAM.

1.2 Image Classification

Image classification is a process in computer vision where an image is categorized into

one of several predefined classes [16]. It involves categorizing and labeling groups of

pixels or vectors within an image based on specific rules. The primary goal of image

classification is to identify and portray, as a unique value, the features of an image

for further analysis [17].

The evolution of image classification can be traced back to the late 20th century,

where it started with relatively simple algorithms. With the advent of machine learn-

ing and neural networks, particularly Convolutional Neural Networks (CNNs), the

field has witnessed a significant transformation. LeCun et al. [18] introduced CNNs,

which revolutionized the way computers perceive and interpret images, leading to

more accurate and efficient image classification.

Today, image classification leverages deep learning techniques to achieve unprece-

dented accuracies. Krizhevsky et al. [19] demonstrated the power of deep neural

3



1. INTRODUCTION

networks with their groundbreaking work in the ImageNet Large Scale Visual Recog-

nition Challenge, setting a new standard for image classification tasks.

These developments have found applications in various domains, from medical

diagnosis [20] to autonomous vehicles, showcasing the versatility and importance of

image classification in modern technology.

1.2.1 Formal Definition of Image Classification

Goal: Find a function h: X→Y that maps an input image x ∈ X to a category label

y ∈ Y, where X is the space of possible images and Y={1, 2, ...,K} is the set of

category labels.

Fig. 1.2.1: Image Classification Example [3]

1.3 Image Segmentation

Image segmentation is a process that involves dividing an image into various seg-

ments or sections. This technique is commonly utilized to identify objects and outline

boundaries within images [21]. It is a crucial process in computer vision that cleaves

an image into segments or regions with similar attributes, aiming to simplify its rep-

resentation. It is fundamental for tasks like object recognition, scene understanding,

medical imaging, etc. Early methods relied on techniques such as thresholding, clus-

tering, and edge detection. However, recent advancements leverage deep learning,

notably Convolutional Neural Networks (CNNs), for more accurate and nuanced seg-

4



1. INTRODUCTION

mentation. Deep learning-based approaches, such as Fully Convolutional Networks

(FCN) and U-Net, have set new benchmarks in segmentation tasks by learning from

vast amounts of data, offering precise and detailed segmentation outcomes [22] [23].

1.3.1 Formal Definition of Image Segmentation

Given: A digital image I represented as a two-dimensional array of pixels I(x, y)

where (x, y) are the coordinates of the pixels, and each pixel has a value correspond-

ing to its intensity or colour.

Objective: To find a segmentation S of the image I, such that S is a set of re-

gions {R1, R2, ..., Rn} where each region Ri is a connected set of pixels with similar

attributes (such as intensity, colour, texture), and n is the number of such regions.

Fig. 1.3.1: Image Segmentation Example [4]

1.4 Impact of Image Segmentation on Image Clas-

sification

The relationship between image segmentation and classification performance is a well-

studied topic in the field of computer vision and medical imaging. In the realm of

medical imaging, segmentation and classification can be closely related, and improve-

ments in segmentation can lead to more accurate classification.

Segmentation allows for a hierarchical and multi-scale analysis of images, where

classification can be performed at different levels of granularity. This is especially

5



1. INTRODUCTION

important in medical imaging where abnormalities could be present at various scales.

• Improved Interpretability and Reliability: Segmentation provides a way

to visualize and interpret the components of the image, which can be crucial for

medical diagnosis. This interpretability ensures that the classification results

are reliable and can be trusted by medical professionals.

• Focus on Relevant Features: Image segmentation allows for the isolation of

important parts of an image, helping the classification algorithm to focus on

the most relevant features. This is crucial in fields like medical imaging, where

the area of interest may be a small part of the entire image.

• Better Handling of Variability: In cases where the objects of interest exhibit

a lot of variability in size, shape, or appearance, segmentation can standardize

these objects, making it easier for the classification algorithm to identify them.

1.5 Segment Anything Model (SAM)

SAM is a state-of-the-art approach in image segmentation that relies on a vast dataset

and innovative architecture for prompt-based zero-shot transfer [24] across diverse im-

age tasks. Supported by the SA-1B dataset, which includes over 1 billion masks from

11 million images, SAM showcases scalable and real-time interactive segmentation

capabilities. This is achieved through a blend of an image encoder, prompt encoder,

and mask decoder, enabling dynamic, high-quality segmentation tasks [5].

6



1. INTRODUCTION

Fig. 1.5.1: Example images with overlaid masks from SA-1B dataset[5]

1.5.1 SAM Architecture Overview

The architecture of SAM is comprehensive and involves several key components de-

signed for efficient and effective image segmentation. Here is a detailed breakdown of

its architecture:

7
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Fig. 1.5.2: SAM Architecture [6]

1.5.1.1 Image Encoder

The image encoder can be any network capable of outputting a C×H×W image em-

bedding. SAM utilizes a Masked Autoencoder (MAE) pre-trained Vision Transformer

(ViT) [25][26] with adaptations for high-resolution input processing. Specifically, a

ViT-H/16 configuration is used with 14×14 windowed attention and four global atten-

tion blocks. The encoder outputs a 16× downscaled embedding of the input image.

For input, images are rescaled to 1024×1024, and the embedding is processed to

reduce the channel dimension to 256 through convolutions, followed by layer normal-

ization [5].

8
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1.5.1.2 Prompt Encoder

Sparse and Dense Prompts: The model maps sparse prompts (points or boxes)

and dense prompts (masks) to vectorial embeddings. Points are represented by a

combination of a positional encoding and learned embeddings indicating foreground

or background. Boxes use embeddings for corners, and free-form text is processed

using the CLIP text encoder [5].

Mask Processing: Masks are input at a lower resolution and further downscaled,

with the processing including convolutional layers, GELU activations, and layer nor-

malization to align with the 256-dimensional embedding space [5].

1.5.1.3 Lightweight Mask Decoder

SAM utilizes a modified Transformer decoder. The decoder integrates prompt embed-

dings with the image embedding through self-attention, cross-attention, and point-

wise MLPs. The decoder updates both image and prompt tokens via cross-attention,

upscales the image embedding, and dynamically predicts masks using the updated

tokens. It efficiently handles ambiguous prompts by predicting multiple masks and

uses a small head to estimate the Intersection over Union (IoU) for ranking predicted

masks [5].

9



1. INTRODUCTION

Fig. 1.5.3: Mask Decoder

1.5.2 Comparison Between SAM and Other Models

In the comparative analysis of segmentation models, SAM demonstrates notable ad-

vantages over established models such as ViTDet and U-Net [27][23] . SAM leverages

a vast dataset to offer robust segmentation capabilities across diverse scenarios with-

out the need for prior training on specific data. This flexibility is contrasted with

ViTDet, a high-performance vision transformer-based object detection model, which

still relies on conventional training datasets.

10
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Fig. 1.5.4: Comparison between SAM and ViTDet [5]

Similarly, while U-Net has been a preferred choice for medical image segmentation,

SAM’s ability to generalize across different types of images and its zero-shot learning

capabilities mark a significant improvement, particularly in handling varied and com-

plex segmentation tasks more efficiently. [7] assesses the effectiveness of SAM and

U-Net, in detecting cracks in civil infrastructure. SAM shows superior performance

in detecting longitudinal cracks due to its ability to divide the image into various

parts that help identify the location of the crack. This segmentation capability al-

lows SAM to handle the variability in crack shapes effectively, which is essential for

precise and comprehensive crack detection. On the other hand, while U-Net excels

in identifying spalling cracks through positive label pixel detection, it may struggle

with longitudinal cracks where the crack path is not as straightforward.

Fig. 1.5.5: Comparison between SAM and U-Net [7]

[8] shows SAM demonstrates superior performance over traditional semantic seg-

mentation methods primarily through its advanced handling of local features and its

11
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ability to generalize across diverse and complex visual scenes. SAM enhances local

feature learning by incorporating detailed, fine-grained semantic information, which

allows for more precise modeling of relationships between pixels. This capability is

particularly useful in scenarios where semantic segmentation models falter due to

their coarse-grained and category-specific nature. SAM, being trained on a massive

dataset of 11 million images, offers robust zero-shot generalization capabilities that

are not confined to predefined categories, enabling it to effectively handle a wide ar-

ray of objects and scenes. This versatility and depth of understanding make SAM

particularly adept at identifying and classifying features in images where traditional

models may struggle due to limited scope and granularity.

Fig. 1.5.6: Comparison between SAM and Semantic Segmentation [8]

These comparisons underline SAM’s potential to enhance the accuracy and ef-

ficiency of medical image analysis, including the classification and segmentation of

pituitary tumors, by providing more precise segmentation outputs than traditional

models.

1.6 Problem Overview

SAM represents a novel approach in the realm of image segmentation, holding sig-

nificant promise for the enhancement of small object classification. This innovative

model introduces capabilities that could potentially revolutionize the accuracy with

which small and often elusive objects are identified within various imaging contexts.

Despite its advanced capabilities, the application of SAM in the specific context of

classifying small objects has yet to be thoroughly investigated.

12
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Research Hypothesis

This research is predicated on the hypothesis that leveraging SAM’s inherent strengths

for small object classification, when combined with strategic enhancements inspired

by ensemble modeling techniques, can lead to substantial improvements in classi-

fication accuracy. By integrating SAM’s robust segmentation capabilities with the

collective intelligence of an ensemble model, this study develops a more precise and

effective classification system. This could not only validate SAM’s utility in a new

application domain but also extend its operational framework to achieve superior

performance outcomes in small object detection.

1.7 Motivation

The motivation for this thesis centers on the significant challenges in accurately classi-

fying small objects, such as pituitary tumors, within images. Traditional classification

methods often fall short when dealing with such small objects, leading to misclassifi-

cation and potential diagnostic errors. This research is driven by the question of how

well existing image segmentation and classification models perform on small objects,

aiming to leverage SAM and an ensemble deep learning approach to enhance classifi-

cation accuracy for small object detection in medical imaging, particularly pituitary

tumors. This approach is expected to mitigate the limitations of current models, of-

fering a more reliable and precise tool for medical diagnosis and treatment planning.

1.8 Thesis Statement

This thesis presents a comprehensive analysis of SAM in the context of small object

classification, with a particular focus on addressing the prevalent challenges of pre-

cision and reliability in the domain of applied fields such as medical imaging. The

core of this research lies in not only assessing the inherent capabilities of SAM but

also in enhancing its classification performance through an innovative ensemble deep

13
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learning technique tailored for small-sized entities. The culmination of this research

is showcased through a case study on pituitary tumor classification from brain MRI

scans—a critical endeavor, given the significance of accurate small object detection

in healthcare applications.

1.9 Thesis Contributions

• Evaluation of SAM’s Baseline Performance:

– Conducted a thorough examination of SAM’s ability to classify small ob-

jects, providing a nuanced understanding of its performance dynamics.

• Development of an Enhanced Classification Technique:

– Presented an advanced ensemble methodology that synergizes multiple

deep learning models with SAM, aimed at enhancing the performance of

small object classification.

• Comparative Analysis with Existing Methods:

– Performed a critical comparison of the enhanced SAM against established

classification models, utilizing a range of performance metrics to ensure a

comprehensive evaluation.

• Real-world Application to Pituitary Tumor Classification:

– Applied the improved classification model to the domain of pituitary tu-

mor identification in brain MRI scans, addressing a vital need within the

medical field.

In summary, the thesis delineates a significant advancement in the field of small object

detection, particularly in medical imaging, through the development and validation

of a refined SAM-based model.
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1.10 Thesis Outline

We have included six chapters for our thesis, which are organized in the following

way:

• Chapter 2: In this chapter, we review existing literature on different deep learn-

ing based methods that have been implemented in order to classify different kind of

brain tumors. We also explore the research works that have been conducted on SAM

in different areas. And lastly, we study different ensemble deep learning approaches

employed for different tasks.

• Chapter 3: This chapter provides a detailed explanation of our proposed method-

ology, including our custom dataset preparation.

• Chapter 4: This chapter focuses on the experimental setup, tuning hyperpa-

rameters for our models, and the evaluation metrics we consider for our experiment

analysis.

• Chapter 5: In this chapter, we present an analysis and discussion of the results

obtained from our experiments. We also conduct a comaparative analysis using seg-

mented data and original non-segmented data.

• Chapter 6: In the final chapter, we provide a comprehensive conclusion sum-

marizing our thesis work. We also suggest potential directions for future work and

improvements.
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CHAPTER 2

Related Works

2.1 Deep Learning Based Approaches For Differ-

ent Brain Tumors Classification

The process of detecting a brain tumor is quite time-consuming and depends largely on

the proficiency and expertise of the radiologist. With the growing patient population,

the volume of data needing analysis has skyrocketed, rendering traditional methods

inefficient and expensive. Numerous researchers have sought to devise algorithms

that can both identify and classify brain tumors quickly and accurately. Recently,

Deep Learning (DL) techniques have gained traction in creating automated systems

adept at diagnosing or segmenting brain tumors in a reduced timeframe. DL leverages

the power of pre-trained Convolutional Neural Network (CNN) models, specifically

designed for categorizing medical images related to brain cancer.

Recent advancements in brain tumor detection and classification have demon-

strated the potent application of deep learning and optimization techniques across

various studies. ZainEldin et al. [28] introduced the Brain Tumor Classification Model

(BCM-CNN) utilizing an Adaptive Dynamic Sine-Cosine Fitness GreyWolf Optimizer

(ADSCFGWO), achieving an exceptional accuracy of 99.98% on the BRaTS 2021

Task 1 dataset. This achievement parallels the work of Anita and Kumaran [29], who

developed a convolutional neural network (CNN)-based method for meningioma tu-

mor detection and segmentation, recording impressive sensitivity (99.1%), specificity
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(99.5%), and tumor segmentation accuracy (99.4%). Meanwhile, Muezzinoglu et al.

[30] proposed PatchResNet, a model leveraging patch-based deep feature engineering,

which accomplished a 98.10% classification accuracy. Adding to the innovation, Kis-

hanrao and Jondhale [31] presented a hybrid DCNN-DH framework for grade-based

classification, showing superior performance in various metrics. JGate-AttResUNet,

introduced by Ruba, Tamilselvi, and Beham [32], incorporated the J-Gate attention

mechanism and achieved mean dice values of 0.896 and 0.913 on the BRATS datasets.

The work of Farajzadeh, Sadeghzadeh, and Hashemzadeh [33] in deep hybrid represen-

tation learning method yielded 98.81% pixel-level accuracy and 98.93% classification

accuracy on the MICCAI BraTS’20 dataset. Sarala et al. [34] introduced a Dual

CNN method with a Histogram-Density Segmentation Algorithm (HDSA) achieving

98.9% sensitivity, 99.04% specificity, and 98.85% accuracy for both High-Grade and

Low-Grade Glioma images. Sharma et al. [35]’s model using a Histogram of Gra-

dient (HOG) technique for tumor detection noted an 88% accuracy. Additionally,

Zahoor et al. [36]’s two-phase framework for MRI-based brain tumor analysis, with

its detection scheme achieving a 99.56% accuracy and classification scheme outper-

forming existing methods with a 99.20% accuracy, underscores the field’s progress.

Mutual ensemble learning for segmentation by Hu, Gu, and Gu[37], utilizing Consen-

sus Dice loss, consistently improved baseline network performance. Özkaraca et al.

[38] merged DenseNet, VGG16, and basic CNN architectures to optimize MRI image

classification, albeit with increased processing time. Evaluation of seven CNN models

by Gómez-Guzmán et al. [39]on the Msoud dataset highlighted InceptionV3’s supe-

rior accuracy of 97.12%. Shafi et al. [40]’s ensemble learning method for classifying

brain tumors and autoimmune disease lesions marked a significant advancement with

weighted rates in sensitivity (97.5%), specificity (98.838%), precision (98.011%), and

accuracy (98.719%). These contributions collectively highlight the evolving landscape

of medical imaging, showcasing both the efficacy of current deep learning applications

and the continuous quest for improved diagnostic tools.
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2.2 Segment Anything Model

The exploration of SAM in medical imaging has sparked a considerable amount of

interest and research, leading to diverse applications and evaluations across various

medical imaging modalities. de Oliveira et al. [41]investigated SAM’s zero-shot ca-

pabilities across four imaging modalities, finding notable success in diverse medical

imaging tasks and highlighting SAM’s potential as a versatile tool in medical image

segmentation. Mazurowski et al. [42] extended the evaluation of SAM across 19

medical imaging datasets, observing variability in SAM’s performance which excelled

in segmenting well-circumscribed objects and suggesting the utility of box prompts

over point prompts for improved accuracy. Gong et al. [43] focused on adapting SAM

from 2D to 3D medical imaging, particularly for tumor segmentation, proposing en-

hancements that surpass state-of-the-art models in some aspects, albeit noting the

superior performance of CNN-based methods in specific segmentation tasks.

Further comparative studies such as those by Zhang et al. [44] and Ahmadi et al.

[45], contrast SAM with established methods like FSL’s BET and U-Net, respectively,

showcasing SAM’s advanced segmentation capabilities in challenging scenarios and

its limitations in handling complex tumor shapes and text within images. Hu, Li,

and Yang [46] applied SAM to breast tumor segmentation in ultrasound images,

evaluating its effectiveness across different pre-trained model variants. Meanwhile,

Höst et al. [47]introduced CellViT, demonstrating state-of-the-art performance in

cell nuclei segmentation in tissue images, reflecting on the potential of integrating

SAM with Vision Transformer architectures for enhanced medical image analysis.

Shin, Kim MD, and Baek [48] explored the synergy of SAM with condition embed-

ding for ultrasound image segmentation, achieving significant improvements over tra-

ditional models. He et al. [49] benchmarked SAM across 12 medical image datasets,

highlighting its underperformance compared to specialized medical image segmenta-

tion deep-learning algorithms, underscoring the necessity for further adaptation of

SAM to the medical domain. This theme of customization and adaptation is further

explored by Zhang and Liu [50] with SAMed, and Gao et al. [51] with DeSAM,

18



2. RELATED WORKS

both aiming to bridge the gap between general image segmentation and the specific

challenges of medical image analysis.

Wu et al. [52] presented the Medical SAM Adapter, enhancing SAM’s application

in medical image segmentation and achieving state-of-the-art results in several tasks,

pointing towards the importance of domain-specific knowledge integration. Cheng et

al. [53]’s comprehensive study on SAM’s application across various medical datasets

reveals the model’s variable performance, emphasizing the critical role of prompt

choice in segmentation tasks. Comparative studies like those by Mohapatra, Go-

sai, and Schlaug [54], and Bui et al. [55] with SAM3D, delve into the specifics of

brain extraction techniques and 3D medical image segmentation, highlighting SAM’s

adaptability and areas for improvement.

Emerging studies such as Ma et al. [56] ’s introduction of MedSAM, and Deng et

al. [57]’s evaluation of SAM in digital pathology, further expand on SAM’s applica-

bility and limitations in medical image segmentation, suggesting avenues for future

research and development. Huang et al. [58]’s examination of SAM in the context of a

consolidated medical dataset underscores the model’s potential and the challenges in-

herent in medical image segmentation. Putz et al. [59] evaluated SAM in the context

of brain tumor segmentation for radiotherapy planning, noting the model’s favorable

accuracy but highlighting the influence of prompt number and view combination on

segmentation performance.

In summary, the exploration of SAM and its adaptations in medical imaging

reveals a landscape marked by innovative applications, challenges, and the ongoing

quest to harness SAM’s potential for enhancing medical diagnostics and treatment

planning. These studies collectively underscore the dynamic interplay between model

design, dataset specificity, and task complexity in leveraging SAM for medical image

analysis [60] [61].
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2.3 Ensemble Deep Learning Approaches

Various ensemble deep learning approaches have been explored to enhance the ac-

curacy of medical diagnostics across different modalities. A notable integration of

ResNet-152 and DenseNet-121 was introduced to detect COVID-19 from chest X-ray

images [62]. Similarly, Xue et al. [63] proposed an ensemble framework that com-

bines ResNet152, VGG16, ResNet50, and DenseNet121 to diagnose COVID-19 and

pneumonia using CT scans and X-ray images. The field of cancer detection has also

seen significant advancements through ensemble models. Barsha et al. [64] developed

two models for detecting and grading Invasive Ductal Carcinoma (IDC), a common

type of breast cancer. Their initial model uses DenseNet-121 and DenseNet-169 for

IDC detection, while a subsequent model for IDC grading incorporates DenseNet-121,

DenseNet-201, ResNet-101v2, and ResNet-50.

Further applications in cancer detection include an ensemble system employing

DenseNet201, ResNet-101, ResNet-50, and AlexNet, coupled with a binary Support

Vector Machine to evaluate malignancy in breast cancer [65]. Research into dermato-

logical applications has seen implementations of deep learning methods like Resnet-50,

VGG-16, Densenet, Mobilenet, Inceptionv3, and Xception for identifying skin can-

cer types, where multiple stacked models like inceptionv3-inceptionv3 and Resnet50-

Vgg16 were evaluated [66]. However, these stacked models generally underperformed

compared to existing methods.

Beyond medical imaging, ensemble methods have been applied in agriculture,

where Vallabhajosyula et al. [67] utilized a weighted ensemble of deep neural net-

works to detect plant diseases, showing superior performance over other pre-trained

models. In neurology, Anand et al. [68] implemented a weighted average ensem-

ble model to detect brain tumors in MRI images, optimizing model weights via grid

search. Additionally, Shaga Devan et al. [69] proposed an ensemble-based seman-

tic segmentation process that evaluated various base learner models for optimizing

segmentation tasks.

These studies illustrate the broad applicability and potential of ensemble deep
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learning models in improving diagnostic accuracy across a spectrum of medical and

environmental challenges.
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CHAPTER 3

Methodology

In this chapter, we discuss our custom datasets and introduce our proposed method-

ology.

3.1 Dataset Preparation

Our research utilizes MRI images, focusing on pituitary tumors and healthy brain

scans, sourced from four publicly available datasets. These datasets include Kaggle

[70][70], Figshare [71], and BR35H [72], which collectively provide a diverse range of

imaging data. We compiled these resources into a custom dataset categorized into

two distinct classes: pituitary tumor images and normal or healthy brain images.

The dataset comprises a total of 3,287 MRI scans, with 1,857 images representing

pituitary tumors and 1,430 images depicting normal brain conditions.

This section presents a visual comparison of the dataset used in our study. Figure

3.1.1 in the first row displays the original MRI scans of pituitary tumors. These images

serve as the baseline for assessing the effectiveness of SAM. The second row, shown

in Figure 3.1.2, illustrates the results post-application of SAM. These segmented

images highlight the detailed isolation and enhanced visibility of the pituitary tumors,

demonstrating SAM’s capability to refine and clarify the features critical for accurate

medical diagnosis.
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Fig. 3.1.1: Original Pituitary Tumor MRI Scans

Fig. 3.1.2: Corresponding Segmented Images After Applying SAM

3.2 Methodology Overview

In this section we include the overview of proposed methodology with details expla-

nation of each steps. The methodology illustrated in the figure 3.2.1 is a structured

approach to classifying MRI images for the presence of pituitary tumors. It encom-

passes several key stages, as follows:

a. Original MRI: The starting point is the collection of MRI scans. These scans

are complex and high-dimensional data that require preprocessing to highlight

the features of interest, namely, the anatomical structures within the brain.
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Fig. 3.2.1: Methodology Overview

b. Apply Segment Anything Model: SAM is applied to each MRI scan. It

leads to the process of partitioning an image into multiple segments to simplify

or change the representation of an image into something that is more meaningful

and easier to analyze.

c. Segmentation: As a result of segmentation, the regions of interest within the

MRI scans, such as potential tumors or specific brain structures, are isolated.

This process is crucial for medical imaging as it aids in distinguishing patho-

logical areas from normal tissue.

d. Segmented Images: The output from the segmentation process is a set of

images where the regions of interest have been clearly marked or highlighted. A

segmented image is the result of dividing a digital image into multiple segments

(sets of pixels), with the aim of simplifying or changing the representation of

the image into something that is more meaningful and easier to analyze. These

images are now ready for further processing and analysis.

e. Split dataset: The segmented images are divided into two groups: a training

set and a testing set. The training set is used by the machine learning algorithms

to learn the patterns associated with normal scans and those with pituitary

tumors. The testing set, which the algorithms have not seen during training, is

used to evaluate the performance and generalizability of the trained models.
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f. Transfer Learning using ImageNet: The methodology employs transfer

learning [73], which involves taking a pre-trained model (trained on a different

but related task) and fine-tuning it for a specific task. In this case, the pre-

trained models (DenseNet 201, ResNet 152, VGG 16) have been trained on

ImageNet, a large dataset containing millions of labeled images of thousands

of categories. By using these pre-trained models, the system can leverage the

rich feature representations these networks have developed for general image

recognition tasks, which can be beneficial for medical image analysis despite

the difference in domain [74]. We include brief description of each base models

in the following:

• DenseNet 201: Huang et al. [75] introduce the concept of a dense con-

volutional network, known as DenseNet, which redefines connectivity in deep

learning architectures. Diverging from the norm where a conventional convolu-

tional network with ’n’ layers has ’n’ connections, DenseNet innovatively forges

a total of n(n+1)/2 direct connections. This architectural enhancement facili-

tates each layer receiving input from all preceding layer feature maps, with its

outputs serving as inputs to every successive layer.

The operation of DenseNet can be visualized when an initial image x0 pro-

gresses through a network comprised of ’n’ layers, each responsible for a unique

non-linear transformation denoted as Hn(.). Here, ’n’ symbolizes the ordered

sequence of layers. In this setting, the nth layer obtains an aggregated set of

feature maps from all preceding layers [x0, x1, . . . , xn−1], producing the output:

xn = Hn([x0, x1, . . . , xn−1]) (1)

In this equation, [x0, x1, . . . , xn−1] signifies the concatenated feature maps from

layers 0 to n-1. DenseNet-201, a particular adaptation within the DenseNet

family, is distinguished by its depth, with ’201’ indicating the total count of
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layers it contains. This depth allows DenseNet-201 to learn highly complex

patterns and nuances from the data, making it exceptionally suitable for tasks

requiring detailed feature extraction, such as image classification.

• ResNet 152: In the domain of convolutional neural network architectures,

Residual Networks (ResNets) represent a significant advancement, primarily in-

troduced to address the vanishing gradient issue that hampers deep network

training [76]. The cornerstone of ResNet’s efficacy is the ’skip connection’

strategy, which facilitates the bypassing of one or several layers. This tech-

nique involves the forwarding of the activation from an earlier layer directly to

a subsequent layer, effectively enabling deeper networks to learn without the

hindrance of diminishing gradients [77]. The ResNet-152 model is a variant

within the ResNet family, characterized by its depth, with the number ’152’

signifying the total layers it comprises. This depth endows ResNet-152 with

the capacity to perform intricate feature extractions, rendering it particularly

potent for a wide array of complex tasks in computer vision.

• VGG 16: The VGG-16 architecture, conceived by the Visual Geometry

Group at the University of Oxford [78], is recognized for its depth and utiliza-

tion of multiple convolutional layers. Structurally, it consists of 16 layers that

include 13 convolutional layers complemented by three fully connected layers.

The model adopts compact 3x3 convolutional filters, systematically arranged

in sequential blocks punctuated by max pooling to reduce dimensions progres-

sively. Initial blocks are engineered to capture fundamental image attributes,

whereas subsequent blocks are adept at recognizing more sophisticated patterns.

The VGG-16 model has been seminal in demonstrating the profound capabil-

ities of deep neural networks in the realm of image recognition. Its design

underscores the significance of network depth in enhancing feature extraction

capabilities and showcases the effectiveness of using small convolutional filters

to discern detailed patterns within images.

g. Build Weighted Average Ensemble Model: An ensemble approach com-
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bines multiple models to improve the overall predictive performance [79]. A

weighted average ensemble assigns a weight to the outputs of individual models

before averaging, giving more influence to certain models in the decision-making

process.

h. Weight Optimization: We apply Grid Search to find the best combination of

weights for the Ensemble Model: Grid Search is an exhaustive search technique

that tries out all possible combinations of weights within a specified range for

the models in the ensemble [80]. The goal is to find the set of weights that

yield the best performance, usually measured by accuracy, precision, or recall.

This process involves training the ensemble multiple times with different weight

combinations and evaluating the results.

i. Classification: After training, the ensemble model is used to classify new MRI

scans into either having pituitary tumors or being normal. The final classifi-

cation is made based on the learned features and patterns from the training

process, taking into account the optimized weights from the grid search. ”Pitu-

itary Tumor” and ”Normal” are the final categories into which the MRI scans

are classified. ”Pituitary Tumors” would be assigned to scans where the model

identifies patterns consistent with known tumors, whereas ”Normal” would be

assigned to scans that do not show these patterns.

In this methodology, the initial segmentation step is crucial as it enhances the

models’ focus on relevant features, potentially improving classification perfor-

mance. The use of transfer learning can significantly reduce the training time

and data requirements, which is especially important in the medical domain

where labeled data can be scarce and expensive to obtain. The ensemble ap-

proach aims to create a robust system that is less likely to be affected by the

weaknesses of individual models. Grid search ensures that the ensemble’s clas-

sification ability is optimized for the highest possible accuracy. Each step in

this process would typically be accompanied by rigorous testing to ensure the

models are generalizable and not overfitting to the training data.
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3.3 Algorithm for the Proposed System

Input: Original MRI Image

Output: Classification Result: ”Pituitary Tumors” or ”Normal”

Steps:

1. Segmentation of MRI Image

1.1 Load the original MRI image into the system.
1.2 Apply the ”Segment Anything Model” to segment the MRI image.
1.3 Store the segmented image for further processing.

2. Dataset Preparation

2.1 Collect a dataset of segmented MRI images.
2.2 Split this dataset into two parts: (i)Training Dataset, (ii) Testing Dataset

3. Transfer Learning

3.1 Initialize the following pre-trained models using ImageNet weights: DenseNet

201, ResNet 152, VGG 16.
3.2 Fine-tune each of these models on the Training Dataset of segmented MRI

images.
3.3 Store the weights and architecture of the fine-tuned models for ensemble.

4. Build Weighted Average Ensemble Model

4.1 Create an ensemble of the fine-tuned models (DenseNet 201, ResNet 152,

VGG 16) using a weighted average mechanism.
4.2 Initialize the weights for each model in the ensemble.

5. Weight Optimization

5.1 Apply a Grid Search algorithm on the Training Dataset to find the best

combination of weights that optimize the ensemble model’s performance.
5.2 Store the optimized weights for classification.

6. Classification

6.1 Use the Weighted Average Ensemble Model with optimized weights to

classify the segmented MRI images from the Testing Dataset.
6.2 Compare the predicted classification with the actual labels to evaluate the

model’s performance.
6.3 Return the classification result: ”Pituitary Tumors” or ”Normal”.
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CHAPTER 4

Experiments

This section explains the experiments and settings utilized for this study, encompass-

ing the assortment of tools and libraries employed in the construction of our proposed

model, the system configuration details, the specific hyperparameters selected during

the training phase, comprehensive information about the dataset, and an in-depth

explanation of the evaluation metrics applied to assess the performance of our model.

4.1 Environmental Setup

The technical specifications for the environment in which the experiments were per-

formed are as follows:

A system with Windows 11 64-bit, powered by an Intel(R) Core (TM) i7-8750H pro-

cessor with a clock speed of 2.2 GHz, complemented by 16 GB of memory and a 8

GB NVIDIA GeForce GTX 1070 GPU laptop. Python was the primary programming

language employed during the experimental procedures.

4.2 Tools and Libraries:

• NumPy (numpy): This is a library for numerical computing in Python. It provides

support for large, multi-dimensional arrays and matrices, along with a collection of

mathematical functions to operate on these arrays.

• TensorFlow (tensorflow): TensorFlow is an end-to-end open-source platform for
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machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and

community resources that lets researchers and developers build and deploy machine

learning powered applications.

• Keras API (tensorflow.keras): Keras is an open-source software library that pro-

vides a Python interface for artificial neural networks. Keras acts as an interface for

the TensorFlow library. Within the Keras module, several classes are used:

-applications (ResNet152, DenseNet201, VGG16): Pre-trained models on the Ima-

geNet dataset, used for transfer learning.

-models.Model, models.load model: For constructing the neural network model and

loading the saved model, respectively.

-layers: Different types of neural network layers, such as Input, Average, GlobalAv-

eragePooling2D, Dense, and Dropout, for constructing custom model architectures.

-optimizers.Adam: Optimization algorithm used for training the neural network.

-callbacks.EarlyStopping: To stop training when a monitored metric has stopped im-

proving.

• scikit-learn (sklearn.metrics): This library is used for performing various machine

learning tasks. It provides tools for model fitting, data preprocessing, model selection,

and evaluation metrics.

• Matplotlib (matplotlib.pyplot): A plotting library for creating static, interactive,

and animated visualizations in Python.

• Pillow (PIL): The Python Imaging Library adds image processing capabilities to

your Python interpreter. It allows for opening, manipulating, and saving many dif-

ferent image file formats.

• OpenCV (cv2): Open Source Computer Vision Library, which is aimed at real-time

computer vision.

• OS (os): This module provides a way of using operating system-dependent func-

tionality like reading or writing to a filesystem.

• Jupyter is used as IDE for development.
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4.3 Hyperparameter tuning

Hyperparameter tuning is a critical step in the construction of machine learning mod-

els, which involves finding the most effective combination of parameters that defines

the model architecture and training process. Unlike model parameters, hyperparam-

eters are not directly learned from the training process and must be set prior to the

training [81].

In the development of our ensemble CNN models for image classification, we em-

ployed various hyperparameter tuning techniques to optimize the performance. These

techniques are integral for improving model accuracy and preventing overfitting.

Here is the summary of hyperparameter tuning:

Learning rate = 0.0001

Train-test split ratio = 80:20

Batch Size = 32

Number of Epochs = 50

Image size = (224, 224)

4.4 Weight Optimization in Ensemble Models Us-

ing Grid Search

To enhance the predictive performance of our ensemble model, which integrates out-

puts from ResNet152, DenseNet201, and VGG16 models, we implemented weight

optimization using the grid search technique. This approach plays a crucial role in

determining the optimal weights assigned to each constituent model within the en-

semble. Grid search is a methodical approach used to tune hyperparameters where

a model is evaluated for each combination of hyperparameter settings specified in a

predefined grid. In the context of our ensemble model, the grid comprised various

possible weight combinations for the predictions from the individual models.

The specific implementation involved defining a set of potential weights for each
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model, and then exhaustively testing every possible combination to identify which

set of weights maximized the ensemble’s performance on the validation dataset. This

process ensures that the selected weights are those that best leverage the strengths

of each individual model. For example, the predefined grid for our ensemble might

look like this:

weights grid = [[0.5, 0.1, 0.4], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], ...]

Each combination of weights is applied to the predictions of the individual models,

and the ensemble’s performance with each weight set is evaluated. The optimal

weights are those that achieve the highest accuracy.

This method of hyperparameter tuning via grid search not only fine-tunes the

ensemble for better accuracy but also provides insights into the relative effectiveness

of each individual model within the ensemble.

4.5 Learning Rate Optimization

The learning rate for the Adam optimizer was set to a small value of 0.0001. We

experiment with other values, like 0.01, 0.001, etc, but this learning rate gives us

highest accuracy. The learning rate is a hyperparameter that controls how much to

update the model in response to the estimated error each time the model weights are

updated. Choosing a smaller learning rate can lead to precise convergence but may

require more training epochs:

opt = Adam(learning rate = 0.0001)

4.6 Evaluation Metrics

In our experiments, we employed four evaluation metrics: accuracy, precision, recall,

and F1-score.
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(i) Precision: Precision measures the proportion of correctly predicted positive

observations to the total predicted positives. It evaluates a model’s capacity to min-

imize false positives [82]. Mathematically, it is expressed as:

Precision =
True Positives

True Positives+False Positives
(1)

In our thesis, achieving high precision indicates that our classification model effec-

tively classifies the tumor images with minimal incorrection.

(ii) Recall: Recall, also known as sensitivity, is the ratio of correctly predicted

positive observations to all observations in the actual class. It assesses the model’s

ability to capture all relevant instances [82]. Mathematically, it is defined as:

Recall =
True Positives

True Positives + False Negatives
(2)

A high recall value in our experiments suggests that our model proficiently classifies

the tumor images.

(iii) F1-Score: The F1-score is a metric that quantifies a model’s accuracy on a

dataset by combining the precision and recall into a single measure. This is impor-

tant as balancing these two metrics is a common challenge [82]. It is calculated as

the harmonic mean of precision and recall:

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

A high F1-score indicates that both precision and recall are high, suggesting a more

accurate and consistent performance from our classification model.

(iv) Accuracy: Accuracy is a widely-used evaluation metric in the field of machine

learning and statistics, particularly in classification tasks. It is defined as the ratio of

correctly predicted instances to the total number of instances evaluated. In essence,
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it measures the proportion of true results, both true positives and true negatives, in

the data [82]. The formula for accuracy is given by:

Accuracy =
True Positives + True Negatives

True Positives+True Negatives+False Positives+False Negatives
(4)

34



CHAPTER 5

Results and Discussions

In this chapter, we embark on a detailed analysis of the experimental outcomes previ-

ously delineated. We will delve into a comparative assessment, examining the perfor-

mance metrics and results in a comprehensive discussion that synthesizes our findings

within the broader context of our research objectives.

5.1 Analysis of DL Models for Classification

In our research, we explored a variety of DL architectures to evaluate their per-

formances on the task at hand. These architectures included DenseNet-201, Incep-

tionV3, ResNet50, ResNet-101, ResNet-152, MobileNetV2, EfficientNetB0, Xception,

VGG-19, VGG-16, and NasNet-Large. Upon careful examination of their accuracy,

three models stood out: ResNet-152, DenseNet-201, and VGG-16. These models

achieved accuracy scores of 0.9312, 0.9103, and 0.9475, respectively, when applied to

data segmented by SAM.

Building on the individual strengths of these top-performing models, we con-

structed an ensemble model. The ensemble approach was based on a weighted average

methodology, which considers the predictive confidence of each model by assigning it

a weight. To optimize these weights (w1 for ResNet-152, w2 for DenseNet-201, and

w3 for VGG-16), we employed the grid search technique, which exhaustively searched

for all possible weight combinations to enhance the ensemble’s predictive accuracy.
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Table 5.1.1: Weight Optimization Using Grid Search

w1 w2 w3 Train Loss Val Loss Val Acc

0.1 0.1 0.8 0.0089 0.1019 0.9627

0.1 0.2 0.7 0.0057 0.1335 0.9539

0.1 0.3 0.6 0.0026 0.0954 0.9676

0.1 0.4 0.5 0.0054 0.0695 0.9753

0.1 0.5 0.4 0.0086 0.0881 0.9741

0.1 0.6 0.3 0.0037 0.0768 0.9753

0.1 0.7 0.2 0.0040 0.0769 0.9724

0.1 0.8 0.1 0.0033 0.0704 0.9803

0.2 0.1 0.7 0.0092 0.1116 0.9638

0.2 0.2 0.6 0.0110 0.0825 0.9655

0.2 0.3 0.5 0.0057 0.0748 0.9741

0.2 0.4 0.4 0.0077 0.0933 0.9688

0.2 0.5 0.3 0.0096 0.0887 0.9692

0.2 0.6 0.2 0.0030 0.0742 0.9532

0.2 0.7 0.1 0.0122 0.0680 0.9786

0.3 0.1 0.6 0.0206 0.1341 0.9572

0.3 0.2 0.5 0.0186 0.0663 0.9803

0.3 0.3 0.4 0.0095 0.0723 0.9757

0.3 0.4 0.3 0.0101 0.0878 0.9770

0.3 0.5 0.2 0.0127 0.0912 0.9819

0.3 0.6 0.1 0.0184 0.0547 0.9786

0.4 0.1 0.5 0.0157 0.0792 0.9741

0.4 0.2 0.4 0.0152 0.0758 0.9753

0.4 0.3 0.3 0.0133 0.0521 0.9235

0.4 0.4 0.2 0.0365 0.1036 0.9720

0.4 0.5 0.1 0.0157 0.0607 0.9852

0.5 0.1 0.4 0.0154 0.0880 0.9885

0.5 0.2 0.3 0.0217 0.0726 0.9836

0.5 0.3 0.2 0.0334 0.1552 0.9836

0.5 0.4 0.1 0.0298 0.0692 0.9852

0.6 0.1 0.3 0.0728 0.4178 0.6891

0.6 0.2 0.2 0.0316 0.1066 0.9424

0.6 0.3 0.1 0.0278 0.0797 0.9737

0.7 0.1 0.2 0.0393 0.2109 0.8717

0.7 0.2 0.1 0.0562 0.0402 0.9622

0.8 0.1 0.1 0.0683 0.1243 0.9465
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Our grid search revealed that the ensemble model attained the highest accuracy,

at 0.9885, with the weights set to w1 = 0.5, w2 = 0.1, and w3 = 0.4. This outcome

demonstrates the efficacy of leveraging ensemble techniques and hyperparameter tun-

ing to improve model performance significantly beyond what the individual models

achieved on their own.

5.2 Comparative Analysis

In our comparative analysis, we carefully executed the implementation of the three

foundational models—namely, ResNet-152, DenseNet-201, and VGG-16—as well as

their integrative ensemble model using the original MRI datasets as inputs. This

step was critical to establish a performance baseline for models utilizing unprocessed

imaging data.

Subsequently, we compared the performance of the same models when applied

to data that had been pre-processed through segmentation using SAM. Our findings

revealed a noticeable enhancement in model performance metrics when leveraging the

segmented data. The segmentation effectively isolates and emphasizes the regions of

interest within the MRI scans, thus providing the models with refined inputs that are

more conducive to accurate classification.

This improvement in performance on segmented data underscores the efficacy of

the SAM in pre-processing complex medical images for subsequent analysis. Such

segmentation aids in reducing the background noise and focusing the model’s atten-

tion on salient features, which is paramount in medical imaging tasks where precision

is of the utmost importance.

Further, these findings align with the hypothesis that models trained on data that

are closely aligned with the task-specific features can outperform those trained on

raw, unprocessed data. This comparative analysis not only serves as a testament to

the importance of data pre-processing in deep learning workflows but also sets the

stage for further discussion on the integration of segmentation models into clinical

diagnostic processes.

37



5. RESULTS AND DISCUSSIONS

Table 5.2.1: Experiment results using original MRI (data without segmentation)

Evaluation
Metrics

ResNet152 DenseNet201 VGG16 Ensemble
Model

Recall 0.9251 0.8818 0.9244 0.9681

Precision 0.9146 0.8997 0.9211 0.9697

F1 Score 0.9198 0.8907 0.9227 0.9689

Accuracy 0.9173 0.8953 0.9271 0.9708

Training
Time(second)

2167.9955 1269.9225 1117.3872 4021.1835

Inference
Time(second)

11.0752 9.7861 5.9373 19.5717

Table 5.2.2: Experiment results using segmented data (segmented by SAM)

Evaluation
Metrics

ResNet152 DenseNet201 VGG16 Proposed
Ensemble
Model

Recall 0.9399 0.9018 0.9389 0.9791

Precision 0.9286 0.9233 0.9586 0.9879

F1 Score 0.9342 0.9124 0.9486 0.9835

Accuracy 0.9312 0.9103 0.9475 0.9885

Training Time
(second)

1996.7869 1159.5039 1040.4228 4016.5057

Inference
Time(second)

9.7003 9.4863 5.6003 11.1178

38



5. RESULTS AND DISCUSSIONS

In the process of evaluating performance of our model, a critical factor considered

was the computational efficiency, particularly the time overhead for mask generation.

The segmentation task involves the creation of masks that outline the target regions

within each image. Our experimental results indicate that the average time required

to generate these segmentation masks across all tested images was approximately

20.0259 seconds per image. This measurement was taken from the initiation of the

segmentation process to the completion of the mask generation for each image, reflect-

ing the computational overhead associated with SAM. This duration is a significant

metric, as it impacts the practical deployment of the model in real-time applications,

where speed is often as critical as accuracy.

5.3 Findings

In this research, our objective extended to a comprehensive comparative analysis

of the ensemble model’s performance using both segmented and non-segmented MRI

datasets. The segmented dataset, processed by SAM, and the original, non-segmented

MRI data formed the basis for this evaluation. The ensemble model, intricately

weighted with w1 = 0.5 for ResNet-152, w2 = 0.1 for DenseNet-201, and w3 = 0.4

for VGG-16, served as the analytical tool for this comparison.

Upon implementation, the ensemble model, utilizing the optimally tuned weight

configuration, demonstrated a remarkable accuracy of 98.85% on the segmented data.

In contrast, the same model achieved a lower accuracy of 97.08% when applied to

the non-segmented original dataset. This differential outcome underscores a notable

accuracy improvement of 1.77% as a result of employing SAM for data pre-processing.

Moreover, an assessment of the individual base models revealed a consistent trend,

with an average performance enhancement of 1.6430% observed upon the application

of SAM to the datasets. This enhancement was not limited to accuracy metrics alone;

there was a discernible improvement in computational efficiency as well, evidenced

by reductions in both training and inference times for the base models.

These observations unequivocally suggest that the integration of segmentation
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model, SAM can play a pivotal role in boosting the performance of deep learning

models in medical image analysis. The segmentation process aids in distilling critical

features from the MRI scans, thereby enhancing the model’s ability to learn and

generalize from the data. This enhancement in accuracy, coupled with the efficiencies

gained in computational performance, holds significant promise for the application

of such methodologies in clinical settings, potentially improving diagnostic processes

and patient outcomes.

5.4 Significance of Our Study

In the realm of medical imaging, radiologists are frequently confronted with the in-

tricate task of specifying diminutive anatomical structures, such as minuscule brain

tumors or skin lesions. The challenge is compounded by the often-indistinct bound-

aries of such objects, which can blend imperceptibly into surrounding tissues.

Current automated and semi-automated segmentation strategies are not without

their drawbacks. They necessitate extensive customization to suit specific datasets

and are hindered by a dearth of dependable methods for result validation, as high-

lighted in reference [9]. These hurdles can lead to inefficiencies in the segmentation

process and may introduce uncertainties in subsequent diagnostic analyses.

To address these impediments, our research introduces an ensemble deep learning

framework, incorporating SAM. This innovative approach presents a robust solution

to the quandaries posed by small object segmentation. By leveraging SAM within

our ensemble method, we seek to pioneer advancements in the classification of minute

medical entities.

Our contributions have the potential to markedly reduce the health risks associ-

ated with minuscule, yet clinically significant abnormalities. These include small lung

nodules, incipient pituitary tumors, and diminutive polyps detectable in colonoscopy

imagery. Such conditions, if undiagnosed, may escalate undetected, precipitating

grave health complications. The detection of these anomalies in their nascent stages

is vital, as it can enable timely medical interventions. By facilitating earlier detec-
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tion, our research endeavors to enhance therapeutic outcomes and may obviate the

necessity for more aggressive, invasive procedures down the line.

The implications of this work are profound. It not only stands to refine diagnostic

precision but also to usher in an era of improved patient prognoses through the early

interception of conditions that, if left unchecked, could prove detrimental to patient

health.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In conclusion, this thesis has successfully demonstrated the considerable potential of

an ensemble deep learning approach in enhancing the accuracy of medical image clas-

sification. Through extensive experimentation, it became evident that the application

of SAM to preprocess the data significantly improved the performance of the models

under investigation. The precise segmentation of elusive medical structures like small

tumors and lesions, achieved by the SAM, has proven pivotal, leading to an increase

in classification accuracy by 1.77% when compared to original non-segmented data.

The findings confirm the hypothesis that the integration of sophisticated seg-

mentation techniques with advanced deep learning models can lead to more precise

and reliable medical imaging analysis. Specifically, the optimized ensemble model,

harnessing the collective strengths of ResNet-152, DenseNet-201, and VGG-16 with

finely-tuned weights, emerged as a powerful tool, outperforming the individual base

models with an impressive accuracy of 98.85% on segmented data.

This work contributes a significant step forward in the application of artificial

intelligence in medical diagnostics, particularly in the detection and classification of

small-scale pathologies, which are often challenging yet critical for early diagnosis

and treatment. It sets the stage for future advancements where such AI-driven tools

could be routinely used in clinical practice, aiding radiologists in making faster, more

42



6. CONCLUSION AND FUTURE WORK

accurate diagnoses and thus improving patient outcomes.

Moreover, this thesis lays the groundwork for future research to expand upon.

Subsequent studies could explore a broader range of medical imaging modalities,

apply the ensemble model to larger and more diverse datasets, and investigate the

implementation of such AI systems in real-world clinical settings. The promising

results obtained here advocate for the continued intersection of artificial intelligence

and healthcare, with the goal of developing non-invasive, efficient, and highly accurate

diagnostic techniques for the betterment of global health.

6.2 Future Work

In future investigations, it would be beneficial to refine our segmentation approach

by specifically targeting the segments containing the pituitary gland, rather than

processing entire images. This focused segmentation could potentially reduce compu-

tational overhead and enhance the accuracy of our model. By isolating the region of

interest—namely, the pituitary gland—the model can dedicate more computational

resources to analyzing features critical for accurate classification of pituitary tumors.

Moreover, the application of these methodologies to other types of medical imag-

ing data, such as CT scans or advanced MRI modalities, could broaden the impact

of our research. By adapting our models to handle different imaging technologies

and conditions, we can contribute to the broader field of medical image analysis,

potentially aiding in the detection and classification of other diseases.

Through these focused efforts, our future work aims to not only advance the

state of technology in medical image processing but also significantly enhance the

tools available to radiologists and medical professionals, thereby improving patient

outcomes and diagnostic efficiency.
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