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Abstract
Detecting the human operator's cognitive state is paramount in settings wherein main-
taining optimal workload is necessary for task performance. Blink rate is an established
metric of cognitive load, with a higher blink frequency being observed under conditions of
greater workload. Measuring blink rate requires the use of eye‐trackers which limits the
adoption of this metric in the real‐world. The authors aim to investigate the effectiveness of
using a generic camera‐based system as a way to assess the user's cognitive load during a
computer task. Participants completed a mental task while sitting in front of a computer.
Blink rate was recorded via both the generic camera‐based system and a scientific‐grade
eye‐tracker for validation purposes. Cognitive load was also assessed through the perfor-
mance in a single stimulus detection task. The blink rate recorded via the generic camera‐
based approach did not differ from the one obtained through the eye‐tracker. No mean-
ingful changes in blink rate were however observed with increasing cognitive load. Results
show the generic‐camera based system may represent a more affordable, ubiquitous means
for assessing cognitive workload during computer task. Future work should further
investigate ways to increase its accuracy during the completion of more realistic tasks.

KEYWORD S
active vision, cognition, human‐robot interaction

1 | INTRODUCTION

Cognitive load is the demand for cognitive control imposed by a
task [1]. Maintaining optimal cognitive load is necessary for
effective task performance. Conditions of non‐optimal load
wherein the combined cognitive task demand is either too low
(underload) or too high (overload) for the user are associated
with performance declines and increased safety risks in safety‐
critical tasks. For example, completing activities like driving or
product assembly under high cognitive load often leads to
poorer task performance and a greater risk of collisions or work
injuries [2–5]. Likewise, cognitive underload resulting from, for
example, boredom, are associated with performance declines in
tasks requiring prolonged attentive engagement [6, 7].

Detecting the human operator's cognitive state is para-
mount in settings wherein maintaining optimal workload is
necessary for task performance and safety. In human–machine

interaction, prior research has used neurophysiological metrics
for the robotic agent to detect the user's state. For example,
Bird et al. [8] and Aldini et al. [9] used electroencephalography
as a way for the intelligent agent to detect the user's state and
adapt its behaviour to the characteristics of the human oper-
ator. In clinical settings, state detection systems have been
proposed for the development of computer aids that, through
adapting their interface based on the user's cognitive and
emotional state, can help with the treatment and enhancement
of conditions like anxiety and autism [10, 11].

Cognitive load is often assessed through measuring the
human operator's performance in secondary tasks. Simple
stimulus detection tasks wherein the user is instructed to press
a button in response to the presentation of an intermittent
stimulus are common for assessing the load of the primary task
at hand (e.g. [12]). Changes in cognitive load manifest through
changes in detection performance, with greater load resulting
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in longer response times [13, 14]. Given their simplicity, re-
searchers have adopted these assessment tasks in a variety of
applied settings, including driving, human‐computer interac-
tion, and lie detection [15–17]. However, because they require
the completion of a behavioural task demanding consistent
attentional engagement, it is argued that they incur in an added
cognitive cost [18, 19].

Eye metrics are commonly used for cognitive load assess-
ment. For example, blink rate which is the frequency of eye
blinking is found to track fluctuations in cognitive load.
Magliacano et al. [20] had participants complete an oddball
auditory task wherein they were instructed to actively count the
number of auditory tones. With the task becoming more taxing,
a spike in blink frequency was observed. Consistent patterns are
also found outside laboratory settings. For example, in a recent
study participants completed manufacturing tasks requiring
repeated full‐body motions in two conditions of low and high
cognitive demand [2]. As the cognitive demand of the task
increased, this resulted in a higher blink rate. Faure et al. [21]
found consistent patterns during simulated driving wherein, as
the difficulty of the secondary cognitive task increased, this led
to more frequent blinking (also, see ref. [22]). Blink rate can be
measured via either electrooculography (EOG) or optical eye‐
trackers. The former requires the use of contact sensors
placed on the user's eye muscles to record changes in voltage.
The latter record the amount of infrared light emitted by infrared
beams and reflected off of the pupil to estimate eye closure, and
require the use of either head‐mounted of remote equipment
(see Table 1). Because both approaches require the use of con-
tact equipment and laborious data processing, these pose a
limitation to the ability to record blink rate in everyday settings.

To tackle this issue, recent work has tested alternative, non‐
invasive ways for recording eye blinks that use ubiquitous,
widely available camera technology. For example, Al‐Gawwam
and Benaissa [23] estimated the aperture of the eyes via
extracting users' facial landmarks from a generic video. This
information was then compared against a set threshold to
determine the occurrence of eye blinks. Dewi et al. [24]
adopted a similar approach. In their work, they applied the dlib
algorithm [25] to generic video footage to estimate the aperture
of each eye based on six facial landmarks: two for the upper
eyelid, two for the lower eyelid, one for the medial canthus, and
one for the lateral canthus. A threshold known as eye‐aspect
ratio was calculated so that a blink was detected every time
the aperture of the eyes fell below the set threshold ([26, 27],
used similar methodologies for eye blink detection). In their
follow‐up work, Dewi et al. [24] used a similar camera‐based
approach for driver state detection. Facial landmarks were
first extracted from a generic camera video and compared
against the set threshold to determine eye blinks. Changes in
blink rate were observed in conditions of underload (consistent
patterns are observed in refs. [28, 29]).

Although promising, the above work failed to validate the
proposed approach using more established means for
measuring eye blink. In particular, whereas blink rate was
recorded using generic camera‐based systems, these studies
lacked the use of reliable metrics to help estimate these systems'

accuracy. In addition, what is also missing is information on how
accurate these systems are in tracking dynamic changes in
cognitive load during continuous tasks. To tackle this issue, the
current study aims to:

1. Adopt a scientific‐grade eye‐tracker to test the accuracy of a
generic camera‐based approach for eye blink detection. If
the camera‐based approach is accurate, we expect the
resulting blink rate not to be different from the one ob-
tained using the scientific‐grade eye‐tracker.

2. Investigate the accuracy of the generic camera‐based
approach in tracking changes in cognitive load. A higher
blink rate is expected with greater cognitive task demand.

To achieve this, we have participants complete a cognitive
task with increasing levels of difficulty. The generic video feed
from a ubiquitous camera is processed using a threshold‐based
approach similar to that used in Dewi et al.’s [24] to estimate
eye blinks. Its output is validated using the blink rate from a
scientific‐grade eye‐tracker. Cognitive load is measured
through tracking participants' performance in a single stimulus
detection task.

2 | METHOD

2.1 | Participants

Twenty‐five volunteers (18 men, 7 women) were recruited from
the University of Windsor student population and received a

TABLE 1 Examples of approaches for measuring eye blink.

Method for detecting eye
blinks Example

Optical eye trackers measure the
amount of infrared light
reflected off of the pupil to
estimate eye closure.

Courtesy of Pupil Labs.

Electrooculography (EOG)
measures the electrical
potential between electrodes
placed at points close the eye
to estimate eye blink.

Courtesy of Mind Media.
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$10 Amazon gift card in exchange for their participation. Their
age ranged between 18 and 32 years old (M = 23, SD = 5.3). A
sample of younger participants was selected to limit possible
confounding effects of age on cognitive processing. Participants
had no prior experience completing the stimulus detection task.
They all had normal or corrected‐to‐normal hearing and sight.
The research complied with American Psychological Associa-
tion Code of Ethics and was approved by the University of
Windsor Research Ethics Board (#19–045).

2.2 | Design

A design with two within‐subject factors was considered. The
first factor, blink detector, had two levels: generic camera‐based
and eye‐tracker. Eye blinks were computed using both a generic
camera‐based system and a scientific‐grade eye‐tracker that
were both operational throughout the study (more information
in the procedure and equipment section). The second factor,
cognitive task difficulty, was manipulated by having participants
complete one of three versions of a cognitive task: easy, me-
dium, hard, each producing increasing levels of cognitive task
demand (more information in the procedure and equipment
section). Dependent variables were: blink rate (in blinks per
minute) produced by the generic camera‐based system; blink
rate (in blinks per minute) produced by the eye‐tracker;
response times in the single stimulus detection task (in seconds);
self‐reported cognitive load ratings.

2.3 | Procedure and equipment

Upon entering the laboratory environment, participants were
instructed to complete the consent form and share their de-
mographics information. After being provided with an over-
view of the study, the familiarisation phase begun, which
consisted in participants becoming acquainted with the
experimental setup including the webcam, eye‐tracker, the
cognitive task, and the single stimulus detection task.

2.3.1 | Generic camera

A generic webcam that is widely available at office supply
stores and online retailers was used for this study. The NexiGo
N660P (NexiGo Inc., USA) has a resolution of 1080 pixels and
a sampling rate of 60 frames per second. During the famil-
iarisation and experimental phases, the webcam was placed on
top of an AOC 27‐inch screen with a resolution of
1920 � 1080 connected to a PC running Windows 10. Par-
ticipants sat on an office chair at a distance of approximately
50 cm from the screen with the webcam directly pointed at
their face. The video footage from the experimental phase was
recorded and processed for eye blink detection after the study
(see data processing and analysis). A schematic of the experi-
mental setup is presented in Figure 1. After having been seated,
participants received instructions on the eye‐tracker and cali-
bration process.

F I GURE 1 Schematic of the experimental
setup.

BIONDI ET AL. - 3
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2.3.2 | Eye‐tracker

A remote Gazepoint GP3 eye‐tracker (Gazepoint Inc., Van-
couver, BC, Canada) with data collection frequency of 60 Hz
was used. Previous research shows this as a reliable tool for
desktop‐based eye‐tracking [30–32]. The eye‐tracker has a
graphical user interface which was used for the calibration
process. During the calibration process, participants were
instructed to fixate on a red circle which moved to occupy nine
distinct positions on the screen. At the end of the calibration,
participants were instructed on how to complete the cognitive
task.

2.3.3 | Cognitive task

The auditory version of the n‐back task [33] was used as the
cognitive task as it allows to easily manipulate levels of
cognitive task demand, and it produces levels of cognitive load
comparable to those experienced when performing everyday
activities [14, 34, 35]. For this task, participants listen to a
series of digits randomised between zero and nine and pre-
sented at intervals of 3 s. Their task is to repeat aloud one of
the previously presented digit. In our study, we considered
three levels of cognitive task difficulty: easy, medium, hard.
In the easy condition, participants did not complete the
task (control). In the medium condition, participants were
instructed to repeat aloud the last digit that was presented to
them. In the hard condition, participants were instructed to
repeat aloud the third‐to‐last digit in the series. During the
familiarisation phase, participants received instructions on how
to complete this task and were given all the time they required
to practice it. After practicing this task, participants were
instructed on how to complete the single stimulus detection
task.

2.3.4 | Single stimulus detection task

For this task, participants were presented with a red circle with
a radius of 80 pixels that was located at the centre of a black
background of the same size of the screen. The stimulus was
presented randomly every 3–5 s and required participants to
detect it by pressing the spacebar on the keyboard as quickly as
possible. This task was created using the Python's Pygame li-
brary. Response times (in seconds) were recorded. Note that
this task was modelled after the visual version of the ISO
Detection Response Task [1], which is a standard protocol
for measuring cognitive load. This was done to ensure the
validity and accuracy of our methodology in assessing levels
of participants' cognitive load. During the familiarisation
phase, participants received instructions on how to complete
this task and were given all the time they required to prac-
tice it. After the practice was over, the experimental phase
begun.

2.3.5 | Self‐reported load

Participants were also familiarised with the scale for assessing
the cognitive load of the task at hand. They were asked to rate
on a scale from 0 (very low) to 100 (very high) the level of
cognitive load experience during the experimental condition.
This scale was modelled after mental demand scale of the
NASA‐TLX questionnaire [36].

2.3.6 | Experimental phase

During the experimental phase, participants completed three
experimental conditions wherein the difficulty of the cognitive
task was manipulated: easy, medium, hard. Each condition
lasted 4 min. Participants completed the single stimulus
detection task concurrently with the cognitive task. A video
footage of the participant's face was recorded throughout the
experimental phase, and later processed for eye blink detection
(see data processing and analysis section). Blink rate was also
measured using the Gazepoint eye‐tracker. The presentation of
the three conditions was counterbalanced using a Latin square
design [37]. At the end of each condition, participants reported
their subjective cognitive load ratings. The next condition
commenced when participants felt ready to do so. When all
three conditions were completed, participants were dismissed.

2.4 | Data processing and analysis

2.4.1 | Generic camera‐based eye blink
calculation

The generic camera‐based eye blink calculation was conducted
as follows (for similar approaches, see refs. [24, 27, 29]). First, a
Histogram of Oriented Gradients (HOG) based face detection
algorithm [38] was applied to a particular frame. The result of
this algorithm is the coordinates of a rectangle encapsulating the
human face in the frame. From this region of interest covering
the human face, shape prediction algorithms that are capable of
localising key points were applied. After the coordinates of the
rectangle were localised, the dlib‐facial landmark detector based
on Rosebrock [39] was applied. This detector algorithm pro-
vides 68 landmarks (X and Y coordinates) distinguishing
different features of the participants' faces (Figure 2). Of these
landmarks, the ones of interest are coordinates 37–41 corre-
sponding to the right eye and coordinates 43–47 corresponding
to the left eye. These eye landmark positions on the frame are
used to calculate the scalar value called Eye‐Aspect Ratio
(EAR). The formula below shows how EAR was calculated for
the left eye; a similar formula was used for the right eye.

EARleft eye ¼

�
�p38 − p42

�
�þ

�
�p39 − p41

�
�

2
�
�p37 − p40

�
�
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where
p38, p39 are the landmarks corresponding to the left eye's

top eyelid,
p42, p41 are the landmarks corresponding to the left eye's

bottom eyelid,
p37 is the landmark corresponding to the left eye's medial

canthus, and
p40 is the landmark corresponding to the left eye's lateral

cantus.
EAR was calculated individually for each eye, and then

averaged across the two eyes. Recorded EAR values were then
compared against a threshold to determine the occurrence of
eye blinks. In the studies by Dewi et al. [24] and Pandey and
Muppalaneni [27], fixed thresholds were selected. This proved
effective considering that it was applied to relatively short
videos recorded from one individual participant. Given our
distinct experimental design wherein the recorded videos had
longer durations and participants' oculomotor behaviour was
expected to change under diverse levels of cognitive task de-
mand, we decided to adopt an adaptive threshold. The average
EAR was calcualted for a video that was recorded at 60 Hz.
Due to this high sampling, the resulting EAR was very noisy.
For this research, a moving average filter was employed to
remove noise. This process is represented in Figure 3 wherein
the blue line represent the average EAR (of the left and right
eye combined) and the red line represent the smoothed data.

Each 4‐min video was then split into forty‐eight 5‐s time
windows. Considering that a normal blink rate is approximately
12 blinks per minute [40, 41], the duration of each 5‐s window
was determined so at least one blink would fall within each
window. Mean and standard deviation (SD) of EAR were
calculated for each window. Within each window, a threshold

of 2‐SD below the mean was set. This was empirically deter-
mined as being the most accurate among alternative ap-
proaches (e.g. 1‐SD, 1.5‐SD, 2.5‐SD, and 3‐SD below the
mean). The duration of individual eye blinks approximates
250 milliseconds [42–44]. With this in mind, considering that
webcam's sampling rate of 60 Hz, a threshold of 15 consec-
utive frames was set for blink detection. This means that, to be
classified as a blink, the recorded EAR must fall below the
adaptive threshold (means ‐2‐SD) for at least 15 consecutive
frames, else it would be classified as a non‐blink. This pro-
cedure was applied to all three experimental conditions so that
blink rate (in number of blinks per minute) was computed for
the easy, medium, and hard cognitive task conditions.

2.4.2 | Eye‐tracker eye‐blink calculation

The Gazepoint eye‐tracker output the number of eye blinks
recorded in each condition for each participant. A research
assistant visually inspected the output to ensure no artefacts
were present. The output from the Gazepoint eye‐tracker was
used to compare the output of the generic camera‐based eye
blink calculation.

2.4.3 | Single stimulus detection task

Following the ISO DRT protocol (2016), response times
shorter than 100 ms and longer than 2500 ms were removed
and no longer analysed. Average response times (in millisec-
onds) were calculated in each of the three experimental con-
ditions for each participant.

F I GURE 2 Sixty‐eight facial landmarks
detected through the dlib library. Landmarks of
interest for the right and left eye are surrounded by
green rectangles.
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2.4.4 | Self‐reported load

Mental load self‐reported ratings were processed for each
participant and condition.

2.4.5 | Statistical analysis

Our hypothesis for objective 1 is that there are no differences
in the blink rates obtained using the generic camera‐based
system and the scientific‐grade eye‐tracker. For this reason,
considering the characteristics of the traditional null hypothesis
statistical testing (NHST), using this approach would inflate the
type 2 error, that is, the likelihood of finding a false negative.
This is because the likelihood of the null hypothesis H0 being
accepted (and the alternative hypothesis H1 being rejected) is
higher than that of it being rejected (and H1 being accepted).
For this reason, a Bayesian analysis approach is preferred over
NHST. Bayesian analysis set up two competing models, one in
favour of the null hypothesis and the other in favour of the
alternative hypothesis, and estimate which of the two models is
more likely to generate the data at hand. In detail, the Bayesian
approach transforms the p‐values into direct evidence against
the null hypotheses [45]. The Bayes Factor (BF), which is used
to determine the likelihood of the data under either the null or
the alternative hypotheses is calculated as the ratio between the
marginal likelihood of the null model and that of the alternative
model [46]. A BF equal to X indicates that the data is X times
more likely under the alternative hypotheses than under the
null hypothesis. For example, a BF of 10 indicates that the
given data is 10 times likelier under H1, whereas a BF = 0.01
indicates that the same data is 10 times likelier under H0.

According to Dienes [47], BF varies between 0 and infinity.
The bigger the BF (with BF > 1), the stronger the evidence in
support of the alternative hypotheses. Likewise, the smaller the
BF (with BF < 1), the stronger the evidence in support of the
null hypotheses. BF = 1 indicate that the data is not supportive
of either model. In short, unlike NHST which only yields a
binary outcome (accept/reject H0), BF analysis allow for three
separate conclusions (evidence in support of H0, evidence in
support of H1, and insensitive evidence) as well as provides
information on the strength of the evidence. Bayesian test
equivalents of general linear tests were used to analyse data for
objectives 1 and 2 [46]. Data processing and analyses were
conducted using R (version 4.1.0) and RStudio (version
2023.03.0; [48]). The tidyverse (version 2.0) and BayesFactor
(version 9.12) libraries were adopted for data processing and
Bayesian analyses, respectively. The data used to support the
findings of this study have been deposited in the University of
Windsor RedCap repository which is available at the following
link: https://redcap.uwindsor.ca/surveys/?__file=LLSaQPkj
LrofM3uCvkIpYXfz33Q2UsnMybjzqjcegVAkQyroKcyLVco
NXDoDV8J5fPdAJ2Bk9tep8txbmEmCIgBnNfhcidx3E6JM.

3 | RESULTS

Results are presented by objectives with objective 1 investi-
gating the accuracy of the generic camera‐based system
through comparing the resulting blink rate with that obtained
using the eye‐tracker, and objective 2 investigating the accuracy
of the generic camera‐based system in detecting increasing
levels of cognitive load.

F I GURE 3 Raw and smoothed EAR.

6 - BIONDI ET AL.
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3.1 | Objective 1. Accuracy of the generic
camera‐based blink detection system

Repeated‐measure Bayesian analysis of variance models with
blink rate as dependent measure, and participant ID as random
factor were set up to test objective 1. A model with blink
detector (2 levels: eye‐tracker, generic camera‐based system) as
the independent factor was set up to investigate whether blink
rate differed across the two systems. A BF of 0.18 was found
indicating evidence in support of the null hypothesis that blink
rates obtained using the two systems were not different. A
model with blink detector and cognitive task difficulty (3 levels:
easy, medium, hard) was set up to investigate the interaction
between the two factors. A BF of 0.03 was found suggesting
strong evidence in support of the null hypothesis that no
interaction was present. Table 2 shows blink rates across the
two systems and three cognitive task difficulty conditions.

3.2 | Objective 2. Accuracy of the generic
camera‐based blink detection system in
detecting increasing levels of cognitive load

A repeated‐measure Bayesian analysis of variance model was
set up with participant ID as random factor, cognitive task
demand (3 levels: easy, medium, hard) as the independent
factor, and blink rate obtained through the generic camera‐
based system as the dependent measure. A BF of 0.22 was
found indicating evidence that the blink rate recorded using the
generic camera‐based system did not change with cognitive
task demand. To ensure that the increasing level of difficulty of
the cognitive task in fact induced greater cognitive load,
separate repeated‐measure Bayesian analysis of variance
models were run with blink rate obtained through the eye‐
tracker as the dependent measure. A BF of 40.65 revealed
that, when recorded using the eye‐tracker, blink rate in fact
increased under conditions of greater cognitive task demand
(Table 3). Similar analyses run on response times in the single
stimulus detection task and self‐reported mental demand rat-
ings both revealed consistent results showing very strong evi-
dence that the increasing cognitive task demand increased both
response times, BF = 1.15 � 1015, and self‐reported ratings of
mental demand, BF = 2.6 � 1084. Table 2 shows response
times and cognitive load ratings by condition.

4 | DISCUSSION

Our first objective aimed to test the accuracy of the generic
camera‐based blink detection system by comparing its resulting
blink rate with that obtained using a scientific‐grade eye‐tracker.
Bayesian analyses showed evidence that no differences were
present between the two systems. On average, only a small
discrepancy of 1.54 blinks per minute was observed between the
two systems across the three experimental conditions. This is a
key finding in that it shows the potential for generic camera‐
based systems that use footage from ubiquitous cameras to

serve as a feasible solution for tracking blink rate. Dewi et al.
[24] and Pandey and Muppalaneni [27] attempted to validate
similar video‐based systems for tracking eye blinks but failed to
do so as, in addition to only using short videos recorded on
individual participants, their results were not validated using
established ground‐truth methodologies. Our findings add to
the existing literature posing generic camera‐based systems as a
plausible future alternative to scientific‐grade eye‐trackers.

Our second objective aimed to investigate using the generic
camera‐based blink detection system to track changes in
cognitive load. Analysis showed that, when the output from the
generic camera‐based sysytem was used, no differences in blink
rate were observed under greater cognitive task demand. This
despite the fact that, consistently with the current literature [5,
21, 49, 50], slower response times to the detection task, higher
self‐reported ratings and, more importantly, a higher blink rate
obtained using the eye‐tracker were observed as the cognitive
task became more difficult. These results seemingly conflict
with our findings for objective 1. We posit that, overall, while
the output of our generic camera‐based system was consistent
with that of a scientific‐grade eye‐tracker's, its sensitivity in
tracking changes in cognitive load was in fact less than that of
its counterpart's. Note that a difference in blink rate of 2 blink/
minute was noted between the easy and hard task conditions
for the generic camera‐based system, compared to an increase
in 6 blink/minute for its counterpart. We argue that this could
be the result of the chosen approach for eye blink detection
and that the system's accuracy could be improved by further
revising the characteristics of the adaptive threshold (e.g. the
duration of the time window or how the threshold is calcu-
lated). The possible interfering role of camera characteristics
(e.g. sampling rate, noise) also cannot be excluded. It is also
possible that the rise in cognitive task demand experienced in
the hard condition was insufficient or the characteristics of the

TABLE 2 Mean blink rate (in number of blinks per minute) and
standard error (SE) of blink rate by system (eye‐tracker and generic
camera‐based) in the three cognitive task difficulty conditions (easy,
medium, hard).

System

Cognitive task difficulty

Easy Medium Hard

Mean SE Mean SE Mean SE

Eye‐tracker 19.07 2.48 22.10 3.42 25.81 3.63

Generic camera‐based 22.29 1.91 22.09 2.38 24.40 2.14

TABLE 3 Response times (RT in seconds) and standard error (SE) of
RT, self‐reported cognitive load ratings and SE of ratings in the three
cognitive task difficulty conditions (easy, medium, hard).

Measure

Cognitive task difficulty

Easy Medium Hard

Mean SE Mean SE Mean SE

RT 0.42 0.02 0.49 0.02 0.72 0.03

Ratings 21.60 1.51 30.00 1.48 58.40 1.53
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chosen task were inadequate to induce meaningful changes in
the blink rate obtained through the generic camera‐based
system. Our future research will address these issues.

Altogether, our findings show promise. Our study adds to
the literature using less intrusive means for the assessment of
oculomotor behaviours. While the vast majority of the research
use scientific‐grade eye‐trackers for recording blink rate [51, 52],
this methodology comes with severe limitations when employed
outside traditional laboratory settings. For once, even when us-
ingmore portable solutions, their associated costs (e.g.monetary,
expertise) limit its adoption in everyday settings [53–55]. With
this in mind, the current study has some clear caveats. Partici-
pants were instructed to complete a mental task while staring at
a computer screen from a set distance. While this was necessary
in our study, it may not reflect the reality in the workplace. For
this reason, future research should investigate using more real-
istic tasks, and explore the effect that sudden head and eye
movements have on the accuracy of the proposed approach.

Our data pose generic camera‐based systems as a potential
solution to this issue, especially in workplace environments
where generic cameras are readily available. For example, in of-
fice or homeoffice settingswherein the rate ofmental fatigue and
burnout increased during the COVID‐19 pandemic as a direct
result of the sustained engagement in videoconferencing [56, 57],
it is plausible that camera‐based solutions may be employed for
monitoring and proactively detecting cognitive overload before
its onset. Likewise, in manufacturing wherein psychological are
responsible for a higher risk of work‐related injuries [3, 58], it is
possible that inexpensive solutions like the one proposed here
may allow for the early detection of high cognitive load in
workers, especially for the jobs requiring completing repetitive
workstation tasks. In telehealth, where both the user and the
healthcare provider are at a high risk of experiencing mental
stress due to information overload, technological barriers, or
distractions [59, 60], leveraging camera technology that is already
part of telehealth's delivery methods may be a possible solution
to reduce the risk of cognitive overload.

Notwithstanding the potential applications and benefits of
the proposed system, we recognise that, because of its current
limitations, further research is required to validate its use in the
real‐world. While similar systems also promise accurate
camera‐based fatigue and distraction detection [61, 62], their
ability to detect dynamic fluctuations in the user state in the
field is still unproven.
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