
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-8-2024

Generation of random graphs with applications to complex Generation of random graphs with applications to complex

networks networks

Srivatsan Vasudevan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vasudevan, Srivatsan, "Generation of random graphs with applications to complex networks" (2024).
Electronic Theses and Dissertations. 9508.
https://scholar.uwindsor.ca/etd/9508

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9508?utm_source=scholar.uwindsor.ca%2Fetd%2F9508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Generation of random graphs with
applications to complex networks

By

Srivatsan Vasudevan

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2024

©2024 Srivatsan Vasudevan

Generation of random graphs with applications to complex networks

by

Srivatsan Vasudevan

APPROVED BY:

M. S. Monfared

Department of Mathematics and Statistics

Jianguo Lu

School of Computer Science

A. Mukhopadhyay, Advisor

School of Computer Science

12 June, 2024

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Given a sequence d of n positive integers, n−1 ≥ d1 ≥ d2 ≥ . . . ≥ dn ≥ 0, different

sets of necessary and sufficient conditions have been proposed for the graphicality of

such a sequence. When such a graph exists, we can use 2-switches of pairs of indepen-

dent edges to transform one such graph G into another graph G′ with the same degree

sequence. This was proved by various authors. In this thesis we address the question

whether a given graph G is at all switchable. Indeed, we show that unswitchable

graphs are a proper subclass of split graphs, and exploit this fact to propose efficient

algorithms for the recognition and generation of unswitchable graphs. This question

of unswitchability is important as switching has been tried as a mechanism for gen-

erating a random graph with a given degree sequence or for generating new ones,

preserving properties like simplicity or connectedness (this is known as constrained

switching).

In the second part of this thesis, motivated by the application to the area of

so−called complex networks (examples are: protein−protein interaction networks,

social networks, metabolic networks etc.), the statistical properties of province-wise

transportation networks of Canada are studied and compared with two random

graphs, generated using the Erdos-Renyi model and the Configuration model. A

method to extract transportation network and network resilience two key practical

contributions are discussed in depth.

Finally, taking cue from the configuration model, in an appendix we discuss an

implementation that generates a directed graph uniformly at random, using a Markov

Chain Monte Carlo (MC−MC) method.

IV

DEDICATION

To all the people who have supported me in my whole academic journey.

V

ACKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my su-

pervisor Dr. A. Mukhopadhyay, his continuous interaction helped me gain valuable

research experience. His ideas and approach to a problem created an intrigue in this

field and was the driving force to help me present this research.

I want to thank my committee members M. S. Monfared and Dr Lu for their

valuable time and input on this thesis.

I want to thank the department of computer science and its computer science

faculty for imparting the knowledge necessary for this work. Finally, to my friends

and family who have always believed in me throughout this journey.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENTS VI

LIST OF TABLES IX

LIST OF FIGURES X

1 Introduction 1
1.1 Preliminaries . 1
1.2 Graph Terminologies . 2
1.3 Prior Work . 3
1.4 Thesis Organisation . 4

2 Recognizing and generating unswitchable graphs 6
2.1 Introduction . 6
2.2 An application of edge-switching . 7
2.3 Split graphs . 9
2.4 Unswitchable graphs . 11
2.5 Generating an unswitchable graph . 16
2.6 Conclusions . 23

3 Road Network Analysis of Canadian Provinces 24
3.1 Introduction . 24
3.2 Data Extraction Methodology . 24
3.3 Network Statistics and Random Graph Generation 27

3.3.1 Network Statistics . 27
3.3.2 Random Graph Models . 28

3.4 Clustering Coefficient . 28
3.5 Average Shortest Distance . 31
3.6 Degree Distribution . 33
3.7 Average Degree of Neighbours . 36
3.8 Topological Assortativity . 38
3.9 Network Resilience . 40

3.9.1 Vertex Based Attack . 40
3.9.2 Edge Based Attack . 43

3.10 Conclusion . 44

VII

4 Conclusion and Future Work 47
4.1 Future Works . 48

REFERENCES 49

APPENDIX A Generating a directed graph with given marginals uni-
formly at random 51
A.1 Introduction . 51
A.2 Background . 51
A.3 Rao et al’s Algorithm . 53
A.4 Algorithm Flow and Implementation Details 56
A.5 Conclusion . 58

VITA AUCTORIS 59

VIII

LIST OF TABLES

3.3.1 Province-wise Network Statistics . 26

3.3.2 Province-wise Network Statistics with Population 27

3.4.1 Clustering Coefficients . 30

3.5.1 Average Shortest Distances . 32

3.5.2 Average Shortest Distances Ranked 33

3.7.1 Average Degree of Neighbors by Graph Type and Province 37

3.8.1 Assortativity . 39

IX

LIST OF FIGURES

1.1.1 Sample Directed and Undirected Graph 1

1.1.2 Representation of undirected graph in fig 1.1.1 as adjacency matrix . 2

1.1.3 Representation of directed graph in fig 1.1.1 as adjacency matrix . . 2

1.2.1 Example of a simple graph . 3

1.2.2 Example of a multi graph . 3

1.2.3 Example of Edge Switching . 4

2.1.1 Graph G′ obtained from G by a 2-switch 6

2.2.1 Graph H obtained from G by a 2-switch 9

2.3.1 A split graph . 10

2.3.2 Forbidden subgraphs of a split graph 10

2.4.1 A unswitchable graph G1 . 13

2.4.2 Set distribution of the vertices of G1 13

2.4.3 Distribution of the vertices among the sets Si 13

2.4.4 A split graph that is switchable . 14

2.4.5 A graph that is switchable but not split 15

2.4.6 Adjacency Lists for the modified Graph of Fig. 2.4.1 16

2.5.1 First step in generating an unswitchable graph 18

2.5.2 Second step in generating an unswitchable graph 19

2.5.3 Third step in generating an unswitchable graph 19

2.5.4 Construction of the graph of Figure 2.5.3 by applying Eggleton’s theorem 21

3.2.1 Flow Diagram of data extraction . 25

3.2.2 Representation of graph returned from OSMNx 26

3.6.1 Degree Distributions of Each province 34

3.6.2 Degree Distributions of Each province 35

3.7.1 Avg Degree of Neighbours . 36

3.9.1 Avg Shortest Distance vs Percentage of Nodes Removed 42

X

3.9.2 Random vs Targetted Vertex Attack 42

3.9.3 Random vs Targetted Vertex Attack 43

3.9.4 Avg Shortest Distance vs Percentage of edges Removed 45

3.9.5 Random vs Targetted Edge Attack 45

3.9.6 Random vs Targetted Edge Attack 46

A.2.1 Markov chain and its transition probabilities 52

A.2.2 example of a random walk . 52

A.3.1 Example of a type 1 matrix . 54

A.3.2 Example of a type 2 matrix . 54

A.3.3 Problem formulated as Markov chain with its transition matrix . . . 54

A.3.4 Example of an alternating rectangle 55

A.3.5 Example of a compact hexagon . 55

A.4.1 Flow Diagram of generating a directed graph using MC-MC method 57

XI

CHAPTER 1

Introduction

Graph theory is a fundamental area of mathematics with extensive applications in

various fields such as computer science, biology, social sciences, and transportation. It

provides powerful tools to model and analyze complex networks, which are crucial for

understanding the underlying structure and dynamics of real-world systems. In this

thesis, two problems in the domain of complex networks one a theoretical problem

and the other a practical problem are discussed.

1.1 Preliminaries

A graph is a set of vertices and edges. Graphs can be categorized into directed and

undirected graphs based on whether the edges have a direction or not. Figures 1.1.1

show an example of a directed and an undirected graph.

A

C D

B A B

C D
Fig. 1.1.1: Sample Directed and Undirected Graph

A graph can represented in the form of an adjacency matrix. For a graph with n

vertices, an adjacency matrix is an n ∗ n matrix with each cell denoting the relation

1

1. INTRODUCTION

on how the vertices are connected. Figures 1.1.3 and 1.1.2 are the adjacency matrices

of the graphs in Figure 1.1.1.

A B C D

A

B

C

D

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

Fig. 1.1.2: Representation of undi-
rected graph in fig 1.1.1 as adjacency
matrix

A B C D

A

B

C

D

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

Fig. 1.1.3: Representation of directed
graph in fig 1.1.1 as adjacency matrix

1.2 Graph Terminologies

Degree of node: For an undirected graph, the degree of a node represents the num-

ber of connections that node has.

In-degree (out-degree) of a node: In the case of a directed graph, the in-degree

(out-degree) of a node is a count of the number of edges that come into (leave) the

node. We use in-edges (out-edges) edges as shorthand for incoming (outgoing) edges.

Multigraph: It is a graph in which self-loops and multiple edges are allowed. Figure

1.2.2 is an example of a multigraph.

Simple graph: A simple graph has no multiple edges and self-loops. Figure 1.2.1 is

an example of a simple graph

2

1. INTRODUCTION

A B

CD

Fig. 1.2.1: Example of a simple graph

A B

CD

Fig. 1.2.2: Example of a multi graph

Degree Sequence: A list of non-negative integers that represent the degree of each

node in the graph in that order is called a degree sequence. For example, the degree

sequence of the undirected graph in figure 1.1.1 is [2, 2, 2, 2]. For a directed graph

the degree sequence is split into in-degree sequence and out-degree sequence. For the

directed graph in figure 1.1.1 the in-degree and out-degree sequences are [1, 1, 1, 1]

and [1, 1, 1, 1] respectively.

Edge-Switching: This is the process of switching any two independent edges (two

edges that do not have an end-point in common) {u, v} and {x,w} of a graph G to

the edges {u, x} and {v, w} or {u,w} and {v, x} (Figure 1.2.3)

1.3 Prior Work

Edge-switching is a mechanism that helps to move from one realization graph to

another without affecting the degree sequence of the graph. This is a tried mechanism

for generating a random graph with a given degree sequence. Taylor [17] showed that

we can move from a connected graph G to another graph G′ through switching,

3

1. INTRODUCTION

u

v

w

x

u w

v x

u

v

w

x

u w

v x

u

v

w

x

u

v

w

x

Fig. 1.2.3: Example of Edge Switching

preserving the connectivity of G. Lowcay et al. [12] provided a constructive proof for

constrained switching. However, not all graphs are switchable and in this thesis, we

have addressed this problem.

1.4 Thesis Organisation

This thesis is divided into four chapters.

Chapter 1: In the first chapter, we define graphs, and some associated terminologies

used throughout. We discuss some prior works on degree sequence and edge switching

and introduce the class of unswitchable graphs

Chapter 2: In the second chapter, we explore the class of unswitchable graphs in-

depth and provide algorithms for identification for recognizing an unswitchable graph

given a realization of the graph and generation of unswithcable graphs given the num-

ber of vertices required in the graph.

Chapter 3: In the third chapter, a practical application of a complex network is

4

1. INTRODUCTION

discussed. The transportation network is chosen as the subdomain. First A method

to extract road networks of 10 provinces of Canada is discussed. Then two random

graphs with the same number of nodes and edges as the province road network are

generated using the Erdos Renyi model and the Configuration model. A comparative

analysis both among provinces and between province networks and random graphs is

done and the results are discussed.

Chapter 4: In the fourth chapter, contains the conclusion and future work for this

thesis. Taking a cue from the configuration model to generate a random graph, a

method to generate a directed graph with given marginals using the Markov Chain

Monte Carlo (MC-MC) method is furnished in the appendix.

5

CHAPTER 2

Recognizing and generating

unswitchable graphs

2.1 Introduction

Let G = (V,E) be a simple graph on the vertex set V = {v1, v2, . . . , vn}. Let di be the

degree of vi. Assume without loss of generality that n− 1 ≥ d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.

There may exist many other graphs G with the same degree sequence, making it a

many-to-one mapping.

Let the edges {u, v}, {w, x} of G be independent (this means that the edges do

not have an end-point in common). For each of the three ways the edges can be

independent, we can obtain another graph G′ with the same degree sequence by

means of a 2-switch as shown in Figure 2.1.1, in pairs from left to right and top to

bottom, where the dashed lines show the replacement edges.

u

v

w

x

u w

v x

u

v

w

x

u w

v x

u

v

w

x

u

v

w

x

Fig. 2.1.1: Graph G′ obtained from G by a 2-switch

6

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

A graph G is said to be unswitchable if it cannot be reduced to another graph H

with the same degree sequence by edge-switching. In this paper, we propose an algo-

rithm for recognizing unswitchable graphs that exploits the relationship of this class

of graphs to the class of split-graphs.

To motivate the significance of the concept of edge-switching we dicuss an application

in the next section.

2.2 An application of edge-switching

Given a graph G, it is easy to obtain its degree sequence d. However, given d with the

di’s in non-increasing order, the question whether there exists a graph whose degree

sequence is d has spawned a lot of research. We begin with the following definition.

Definition 1 The sequence d is graphical if there exists a graph G such dG(vi) = di

for i = 1, . . . , n, where dG(vi) denotes the degree of the vertex vi in G.

Both Hakimi [7] and Havel [9] are credited with the following result.

Theorem 1 Let n ≥ 2 and d1 ≥ 1. The sequence d is graphical if and only if the

sequence d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn, arranged in nonincreasing

order, is graphical.

To prove this result we need a definition and prove two other results.

If a graph H can be obtained from a graph G by a finite sequence of 2-switches we

indicate this reduction by the notation G
2s
=⇒ H. Berge [1] proved that:

Theorem 2 Two graphs G and H on a common vertex set V satisfy dG(v) = dH(v)

for all v ∈ V if and only if G
2s
=⇒ H.

We will invoke this result when we introduce unswitchable graphs later on. To prove

Theorem 2, we first prove the following result, given a non-increasing degree sequence

d as above.

7

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Theorem 3 If G be a graph on n vertices such that dG(vi) = di, then there exists a

graph G′ such that G
2s
=⇒ G′ with NG′(v1) = {v2, . . . , vd1+1}.

Proof: Let d = ∆(G)(= d1) be the maximum vertex degree of G. Assume there

exists a vi such that {v1, vi} /∈ E for i in the range [2, d + 1]. Instead, there is an

index j ≥ d+2 such that {v1, vj} ∈ E. Again, as j > i, according to our assumption

on the degree sequence, dj ≤ di. If Vi and Vj are the subsets of vertices of V that

vi and vj are connected to respectively, Vi − Vj ̸= ∅. Hence there exists t such that

{vi, vt} ∈ E, but {vj, vt} /∈ E. Thus we can make a 2-switch so that v1 is adjacent to

vi. We repeat this till all the vertices adjacent to v1 have indices in the range [2, d+1].

■

Berge’s theorem is easily proved by induction on the number of vertices of the graphs

G and H. The condition is sufficient as G
2s
=⇒ H means that the vertex degrees are

preserved. Conversely, by applying Theorem 3 to each of the graphs G and H we

can find a vertex v such that in graphs G′ and H ′ respectively where G
2s
=⇒ G′ and

H
2s
=⇒ H ′, the neighborhood of v is identical. Now the reduced graphs G′ − v and

H ′−v have the same vertex degrees and by the induction hypothesis G′−v 2s
=⇒ H ′−v.

Consequently, G′ 2s
=⇒ H ′. Combining this with the fact that H ′ 2s

=⇒ H by a sequence

of reverse 2-switches, the necessity is proved.

Here’s is an interesting application of Berge’s result. Consider the example below

where we want to reduce graph G to graph H by 2-switches so that v1 is adjacent to

v2 and v3. We achieve this by switching the pair of edges {v2, v3}, {v1, v4} with the

non-existing pair of edges {v1, v3}, {v2, v4}.

Now, we can prove Theorem 1.

Proof: Consider the if direction. Let G be a graph on n− 1 vertices with the degree

sequence:

8

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

v1v2

v3v4v3 v4

v1v2
G H

Fig. 2.2.1: Graph H obtained from G by a 2-switch

⟨dG(v2) = d2−1, dG(v3) = d3−1, . . . , dG(vd1+1) = dd1+1−1, dG(vd1+2) = dd1+2, dG(vd1+3) =

dd1+3, . . . , dG(vn) = dn⟩

Add a new vertex v1 and the edges {v1, vi} for all i ∈ [2, dd1+1] . Then in the new

graph H, dH(v1) = d1 , and dH(vi) = di for all i ≥ 2.

For the only if direction, assume dG(vi) = di. By the Lemma proved earlier and

Berge’s result, we can assume that NG(v1) = {v2, . . . , vd1+1}. But now the degree

sequence of G− v1 is as above.

Example 1 The sequence ⟨4, 4, 4, 3, 2, 1⟩ is graphical since the following sequence

of reduced sequences are each graphical: ⟨3, 3, 2, 1, 1⟩, ⟨2, 1, 1, 0⟩ (this is obtained by

a reordering of ⟨2, 1, 0, 1⟩, obtained from the previous sequence), ⟨0, 0, 0⟩. The last

sequence corresponds to an empty graph, and the graph corresponding to the initial

sequence is easily constructed.

It should be pointed out that Hakimi’s algorithm will work if the sequence element

that we choose to saturate is any element of the sequence. If its degree is di, we

reduce the di highest degree elements by 1. This observation is due to Kleitman and

Wang [11].

2.3 Split graphs

A graph G is said to be a split graph if there exists a disjoint partition of its vertex

set V into a complete induced subgraph on V2 vertices and an independent (stable)

set of V1 vertices. Fig. 2.3.1 shows an example of a split graph where the induced

9

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

subgraph on the vertices {2, 4} is complete and the subset of vertices {1, 3} form an

independent set.

1 2

34

Fig. 2.3.1: A split graph

The partition of the graph into a complete graph and an independent set is not unique.

For the example split graph, {1, 2, 4} and {3} is another partition into a (maximal)

complete graph and an independent set.

There are other characterizations of split graphs. For example, this: A graph G is

a split graph iff it does not contain any of the graphs in Figure 2.3.2 as induced

subgraphs.

Fig. 2.3.2: Forbidden subgraphs of a split graph

There is yet another characterization of a split graph in terms of the degrees of its

vertices [8]. Let d = (d1, d2, . . . , dn) be the sequence of degrees of its vertices, with

n − 1 ≥ d1 ≥ d2 ≥ d3 ≥ . . . ≥ dn ≥ 0. Let m be the maximum index i for which

di ≥ i− 1. Call it the split index.

Then G is a split graph iff:

Σm
i=1di = m(m− 1) + Σn

i=m+1di (1)

Thus for the example split graph of Fig. 2.3.1, we have d = (3, 3, 2, 2), m = 3 and

both sides of Eqn.(1) evaluate to 8.

10

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

This last characterization forms the basis for an easy recognition algorithm for split

graphs. Going left to right in the degree sequence, find the split index m. Verify

that there is a complete graph on the first m vertices with degree dm. Check that

the remaining vertices form an independent set, with edges to the clique vertices to

saturate their degrees and the residual degrees of the clique vertices.

The forbidden subgraph characterization is of interest to us. If a split graph has a

4-cycle or its complement as an induced subgraph then it is switchable. The question

is: Are all split-graphs switchable ? We explore this matter in the next section.

2.4 Unswitchable graphs

A P4 is a chordless path on 4 vertices of G, while a C4 is a 4-cycle and a 2K2 (the

complement of a 4-cycle) is a subgraph with 2 disjoint edges of G.

Clearly, an unswitchable graph G cannot have a P4, a C4 or a 2K2 as an induced

subgraph on 4 vertices. Since no switching is possible, we cannot use 2-switches to

transform a given graph G to a graph G′ with the same degree sequence.

Extrapolating from the forbidden induced subgraph characterization of unswitchable

graphs, Eggleton [5] proposed the following constructive charaterization of unswitch-

able graphs.

Theorem 4 [5] For any positive integer n, let {Si : 1 ≤ i ≤ 2n} be a family of

pairwise disjoint finite (possibly empty) sets, with union V . Let G with a vertex set

V be such that any two distinct vertices a ∈ Si and b ∈ Sj, with i ≤ j, are adjacent in

G just if i + n < j or i > n. Then G is unswitchable; moreover, every unswitchable

graph is obtained by this construction.

Proof: (Ours) We show that the graph constructed cannot have any of the graphs

P4, C4 or 2K2 as an induced subgraph. We argue the case of C4. Let the labels of

11

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

the vertices of C4 be a, b, c, d in cyclic order. Since a and c are not connected both

cannot be in sets with indices greater than n. Let a be in a set Si with index i ≤ n.

Since a is joined to both b and d they are in sets Sj and Sk with indices greater than

i + n. Thus b and d must be connected. This contradicts the assumption that the

induced graph on a, b, c, d is a C4.

Similar argumemts can be made for the non-existence of 2K2 and P4 as induced sub-

graphs.

Now for the second half of the theorem. Let G be a given unswitchable graph. It is a

split graph, as follows from the forbidden subgraph characterization of split graphs.

Let there be m edges connecting a vertex of the independent set with a vertex of

the clique. If {u, v} is one such edge, let u ∈ Si1 and v ∈ Sj1 . Then we must have

j1 − i1 > n. Thus we have m such inequalities corresponding to the m edges.

Further, j1 > n and i1 ≤ n for each pair of indices corresponding to the m edges.

This means that we have to choose m pairs of points (indices) in the polygonal region

in the x− y plane, bounded by the lines x− y > n, x > n and y ≤ n.

We choose a minimum n such that m pairs of points can be found in this polygonal

region. For the unswitchable graph of Figure 2.4.1 a distribution of its vertices among

the sets Si is shown in Figure 2.4.2 ■

Following the theorem, we constructed the unswitchable graph shown in Figure 2.4.1,

setting n = 2.

The sets Si, the membership of the vertices in these sets and the mutual adjacencies

of the vertices are shown in Figure 2.4.2.

Here’s another example, where we have gone in the opposite direction, setting n = 2

12

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

1

23

4

56

Fig. 2.4.1: A unswitchable graph G1

1

2

3

4

5

6

S1 S2 S3 S4

Fig. 2.4.2: Set distribution of the vertices of G1

again and constructing the sets Si, for i = 1, 2, . . . , 2n, and adding edges between

vertices in pairs of sets Si and Sj for i ≤ j, satisfying the other constraints on i and

j.

1 2 3 4

1′ 2′ 3′ 4′

S3 = {3, 3′} S4 = {4, 4′}

S2 = {2, 2′}S1 = {1, 1′}

Fig. 2.4.3: Distribution of the vertices among the sets Si

Both the graphs of Figure 2.4.1 and Figure 2.4.3 are split-graphs. This leads us to

speculate on what might be the relationship between these two graph classes: split-

graphs and unswitchable graphs.

It appears that the class of split graphs has an overlap with the class of unswitchable

graphs. As evidence, we have the graphs of Figure 2.4.1 and Figure 2.4.3 which are

split graphs but not switchable. On the other hand the graph of Figure 2.4.4 is a

split graph but switchable as there exist several P4’s as induced subgraphs.

13

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Fig. 2.4.4: A split graph that is switchable

An interesting problem is to construct a switchable graph that is not a split graph.

Consider a graph G consisting of two copies of the graph of Figure 2.4.1. This graph

is not a split graph but it is switchable. Indeed, by running our implementation of

Hakimi’s algorithm [7] on the degree sequence d = (5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3), we

obtained the graph of Figure 2.4.5 as output. This is not a split graph as there is an

induced 4-cycle on the vertex set {2, 3, 9, 10} and is a switchable graph for the same

reason.

The above considerations lead us to make the following claim.

Claim 1 Unswitchable graphs are a proper subclass of split graphs.

Proof: This is true since the graphs defined by Eggleton’s result are all split graphs.

The vertices in the sets with indices at most n constitute an independent set and the

ones with indices greater than n form a complete graph. The inclusion is proper since

we have found a split graph that is switchable (Figure 2.4.4). ■

In view of Claim 1, we can design a recognition algorithm for unswitchable graphs.

Given an input graph, we first run a recognition algorithm for split graphs (for ex-

ample, the degree sequence based recognition algorithm mentioned in the previous

section) and if the output is true, check that the graph does not have a P4 as an

induced subgraph. For this we proceed as follows.

The recognition algorithm returns a split index m as discussed in the Section 2.3 so

that the vertices with degrees dm+1 ≥ dm+2 ≥ . . . ≥ dn constitute an independent

14

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

0

1

2

3
4

5

6
7

8

9

10

11

Hakimi Graph

Fig. 2.4.5: A graph that is switchable but not split

set. Knowing this, from the adjacency list of the input graph, we find the adjacency

list of each vertex of the independent set (Figure 2.4.6).

We use this information to construct another adjacency list that gives for each vertex

of the complete graph the vertices of the independent set that are adjacent to it.

Now, for an edge {u, v} of the clique we can find the sets of vertices Su and Sv of

the independent set that are adjacent to u and v respectively. If the set differences

Su − Sv and Sv − Su are both nonempty then there exists a path P4 betweeen u and

v, making the graph switchable. If there exists no clique edge {u, v} for which this is

true then the graph is unswitchable.

Consider the graph of Figure 2.4.1 without the edges 2-6 and 3-5. The adjacency list

for the vertices of the independent set and the adjacency list for the vertices of the

complete graph derived from it are shown in Figure 2.4.6.

For the edge u-v = 6-5, Su = {1, 3} and Sv = {1, 2}. The set differences are {2} and

{3}. Since these are both non-empty, there is a P4 path: 3-6-5-2. This shows that

15

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Fig. 2.4.6: Adjacency Lists for the modified Graph of Fig. 2.4.1

the modified graph is switchable.

A formal description of the recognition algorithm is given in Algorithm 2.4.1 below.

The time complexity of the recognition of the algorithm is O(n1n
2
2), where n1 and n2

are respectively the sizes of the independent set and the clique set. Since n1 and n2

are both bounded by n, O(n3) is a more succinct description of the complexity of the

algorithm.

Improving the complexity of the above recognition algorithm is left as an open prob-

lem.

2.5 Generating an unswitchable graph

The second half of the proof of Eggleton’s theorem requires an unswitchable graph as

input. We would also like to test the recognition algorithm of the previous section on

instances of unswitchable graphs. Motivated by these applications, we consider the

problem of generating an unswitchable graph on n vertices by an independent method.

We first generate a split graph. Let n be the number of vertices V of the graph,

obtained as (user) input. We partition V into two disjoint non-empty subsets V1 and

V2 of size n1 and n2 respectively. We assume that n2 ≥ 2 to avoid trivial cases. Con-

struct a complete graph on the vertices of V2. For each of the remaining n1 vertices

of V1, choose a random integer p in the range [0, n2] and join the chosen vertex to a

16

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Algorithm 2.4.1 UnswitchableGraphRecognition(G)

Input: The adjacency lists of the vertices of a graph G
Output: G is switchable or not

1: Extract the degree sequence, d = d1 ≥ d2 ≥ . . . ≥ dn of G
2: output ← Run the recognition algorithm for a split-graph on d
3: if (output = YES) then
4: Let m be the split index
5: Extract adjacency lists of the vertices with degrees ≥ dm+1

6: for each edge u− v of the complete graph on the vertices with degrees ≤ dm:
do

7: Compute the neighborhoods Su and Sv of the end points in the independent
set

8: Compute Su − Sv and Sv − Su.
9: if Su − Sv and Sv − Su are disjoint and non-empty: then
10: return “G is switchable”
11: else continue
12: end if
13: end for
14: return “G is unswitchable”
15: else
16: return “G is switchable”
17: end if

random subset of vertices of V2 of size p.

We now proceed as in the algorithm for recognizing a split graph with a small change.

For each pair of vertices {u, v} in the independent set V1, we determine the set of

neighbors Su and Sv in the set of clique vertices V2. Compute the difference sets Su-Sv

and Sv-Su. If these are non-empty and disjoint, for each pair of vertices x and y in

the difference sets we have a P4, defined by u-x-y-v.

A formal algorithm for generating these P4’s is described in Algorithm 2.5.1 below. If

no induced subgraph isomorphic to a P4 has been found, then we have an unswitch-

able graph. Othewise, we introduce new edges (chords) to eliminate the P4’s. This

in turn will generate new P4’s formed by pairs of the newly introduced chords. Once

again chords are introduced to eliminate the new P4’s. We continue until only one

new P4 is generated.

17

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Algorithm 2.5.1 findP4s

1: Input: Adjacency list of graph G and vertices of the independent set V1

2: Output: List of all P4s in G
3: procedure find all P4s(adjacency list, V1)
4: ListP4← []
5: for each pair of vertices v1 and v2 in V1 do
6: S1 ← set of neighbours of v1 read from adj list
7: S2 ← set of neighbours of v2 read from adj list
8: S12 ← S1 − S2

9: S21 ← S2 − S1

10: if both S12 and S21 are non-empty then
11: for each pair a, b where a ∈ S12 and b ∈ S21 do
12: Add [v1, a, b, v2] to ListP4
13: end for
14: end if
15: end for
16: return ListP4
17: end procedure

Consider the example of Figure 2.5.1, where V1 = {a, b} and V2 = {1, 2, 3, 4}. Apart

from the edges of the clique on V2, we have introduced edges {a1}, and {b2, b3, b4}.

a

b

1

2 3

4

Fig. 2.5.1: First step in generating an unswitchable graph

For each one of the edges of the clique we consider the induced P4 formed with pairs

of vertices in the set V1 = {a, b}. There are three of them as shown in Figure 2.5.2.

These induced subgraphs can be taken care of by introducing one the edges in {a2, b1},

{a3, b1} and {a2, b1} in the induced P4’s from left to right. All three can be taken

care of by introducing the edge b1 in the three induced P4’s. The updated graph is

shown in Figure 2.5.3, with the newly added edge as a dashed segment.

18

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

a b

1 2

a b

1 4

a b

1 3

Fig. 2.5.2: Second step in generating an unswitchable graph

a

b

1

2 3

4

Fig. 2.5.3: Third step in generating an unswitchable graph

We immediately see that this as a problem of finding an approximate minimum cover

for a class of 2-element sets in the general case. We have to go further.

Introducing these new edges can give rise to new induced P4’s. These are found by

examining pairs of newly introduced edges and checking whether a P4 is induced by

these edges and the edge joining their end points in the set V2. Once again, we gen-

erate a class of 2-element sets, for which we solve an approximate minimum cover

problem. We continue this iteratively, until we reach a stage when we have a cover

of size one.

In the chosen example above, the process comes to an end in one step.

We describe formally the algorithms to generate an instance of the vertex cover prob-

lem introduced at each stage and since it is an NP-complete problem a minimum-

vertex degree heuristic used to add as few chords as possible to eliminate the P4’s in

Algorithm 2.5.2 and Algorithm 2.5.3 below.

19

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Algorithm 2.5.2 vertexCoverInstanceGeneration

1: Input: ListP4 from G
2: Output: An ordered dictionary with the two vertices that define a chord as key

and value the frequency of occurrences of the chord.
3: procedure find all 2 element sets(ListP4)
4: two element set count← {}
5: for each e ∈ ListP4 do
6: two element inst one← first and third element of e
7: two element inst two← second and fourth element of e
8: if two element inst one is present in two element set count then
9: Increment the value by 1 for key two element inst one
10: else
11: Set the value to 1 for key two element inst one
12: end if
13: if two element inst two is present in two element set count then
14: Increment the value by 1 for key two element inst two
15: else
16: Set the value to 1 for key two element inst two
17: end if
18: end for
19: Sort two element set count in decreasing order of values
20: return two element set count
21: end procedure

20

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Algorithm 2.5.3 edgeAddition

1: Input: Current edge list of graph G, ListP4 and V1

2: Output: List of new edges added to make G unswitchable.
3: procedure add min edges(edge list, ListP4, V1)
4: edge list copy ← Copy current edge list
5: new edge list← []
6: while ListP4 is not empty do
7: two element counts← find all 2 element sets(ListP4)
8: vertices to add← first element of two element counts
9: Add the extracted vertices from vertices to add to edge list copy
10: Add the extracted vertices from vertices to add to new edge list
11: adjacency list← Convert edge list copy to adjacency list
12: ListP4← find all p4s(adjacency list, V1)
13: end while
14: return new edge list
15: end procedure

Finally, we put everything together and describe formally our algorithm for generat-

ing an unswitchable graph in Algorithm 2.5.4 below.

Now that we have discussed a method for generating unswitchable graphs, it is in-

structive to choose an n and construct sets S1, S2, . . . , Sn, distributing the vertices of

the graph in these sets so that the adjacencies are exactly the same as in the graph

of Figure 2.5.3.

Set n = 6 and define the sets Si as follows: S1 = {b}, S2 = {a}, S3 = S4 = {},

S5 = {2, 3, 4} and S6 = {1}. From Eggleton’s theorem the adjacencies of the ver-

tices in these sets are as shown in Figure 2.5.4 and we have the same graph as in

Figure 2.5.3.

1a 2
3
4

S1 S2 S3 S5 S6S4S3

b

Fig. 2.5.4: Construction of the graph of Figure 2.5.3 by applying Eggleton’s theorem

21

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Algorithm 2.5.4 unswitchableGraphGeneration

1: Input: Number of vertices, n1, in independent set V1 and number of vertices, n2,
in clique set V2

2: Output: An edge list describing the graph G.
3: procedure generate unswitchable graph for(n1, n2)
4: edge list← []
5: Add edges corresponding to the vertices in clique set to edge list
6: count in V1 ← Pick random number of vertices in V1 to connect to V2

7: while count in V1 do
8: vertex V1 index← Pick a random vertex from V1

9: vertices count to connect ← Pick a random number of vertices of V2 to
connect

10: while vertices count to connect do
11: vertex V2 index← Pick a random vertex in clique set
12: edge← (vertex V1 index, vertex V2 index)
13: if edge not in edge list then
14: Add the edge to edge list and decrement vertices count to connect
15: end if
16: end while
17: Decrement count in V1

18: end while
19: adjacency list← Convert edge list to adjacency list
20: new edge list← []
21: ListP4← find all p4s(adjacency list, V1)
22: if number of p4s > 0 then
23: new edge list← add min edges(edge list, ListP4, V1)
24: end if
25: Concatenate new edge list to edge list
26: return edge list that corresponds to unswitchable graph G
27: end procedure

22

2. RECOGNIZING AND GENERATING UNSWITCHABLE GRAPHS

Let N = #P4 the number of P4’s discovered in the first step of the vertex cover

algorithm. The time complexity of the generation algorithm is then O(n3 + N2),

where the term n3, as in the recognition algorithm, accounts for the time complexity

of identifying the P4’s and the second term is the sum obtained by adding a sequence

of P4’s starting with N and decreasing to one, each term being an upper bound on

the size of the vertex cover problem to be solved.

2.6 Conclusions

In this note we have proposed an algorithm for recognizing unswitchable graphs, by

first showing that unswitchable graphs are a subclass of split graphs. The second half

of the proof of Eggleton’s theorem requires an unswitchable graph as input. Moti-

vated by this, we have proposed an interesting algorithm for generating unswitchable

graphs. The algorithms have been implemented in Python 3. In the light of Theorem

2, the degree sequence of an unswitchable graph is uniquely realizable.

A challenging open problem is to design an algorithm for generating an unswitchable

graph on n vertices uniformly at random.

23

CHAPTER 3

Road Network Analysis of

Canadian Provinces

3.1 Introduction

Motivated by the applications of the principles of complex networks to examples such

as protein-protein interaction networks, social networks, etc., in this chapter, we study

the statistical properties of road networks of 10 provinces of Canada. Additionally,

we generate two random graphs using the Erdos Renyi model and the Configuration

model respectively with the same number of nodes and edges as in the road network

of each province. We compare the statistical properties both among provinces and

with the random graphs generated.

3.2 Data Extraction Methodology

The OSMnx [2] Python module is a powerful toolkit for extracting, modelling, and

analyzing geographical networks, with a special emphasis on road networks. OSMnx

uses data from OpenStreetMap to allow users to choose a geographical location, such

as a province and returns the accompanying road network as a graph. Figure 3.2.1

shows the data flow diagram (DFD) of the process that extracts a geographical net-

work using the OSMnx library. The initial input is a province name to the function

graph from place(province name), which outputs a directed multi-graph G(V,E).

The nodes of G represent the road intersections and the edges of G represent the

24

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.2.1: Flow Diagram of data extraction

road segments that define this intersection. Figure 3.2.2 shows the representation of

G. G is a directed multigraph means all the edges have directions and more than one

edge can connect two arbitrary nodes u, v of G. Next, using the versatile Networkx

[6] python package used in the analysis of networks, graph G is saved into the file

system as a GML (Graph Modelling Language) file. GML is a text-based format

commonly used for representing directed or undirected graphs, making it suitable for

storing complex network structures like a province’s road network. This makes the

task of analyzing the networks easier and also provides a way to replicate the results

discussed in the subsequent sections.

In this study, the road networks of 10 provinces of Canada are extracted and ana-

lyzed. These are : Nova Scotia, Ontario, Manitoba, Quebec, Alberta, Saskatchewan,

New Brunswick, British Columbia, Prince Edward Island and Newfoundland and

Labrador.

25

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

intersection intersection

Road Segment

Road Segment

R
o
ad

S
eg
m
en
t

R
o
ad

S
eg
m
en
t

R
o
ad

S
eg
m
en
t

R
o
ad

S
eg
m
en
t

Road Segment

Road Segment Road Segment

Road Segment

Fig. 3.2.2: Representation of graph returned from OSMNx

Province Number of
Nodes

Number of
Edges

Nova Scotia 46,182 111,310

Ontario 359,535 938,322

Manitoba 70,694 197,154

Quebec 265,932 682,993

Alberta 256,831 631,772

Saskatchewan 126,405 348,263

New Brunswick 44,220 106,184

British Columbia 133,872 321,925

Prince Edward Island 10,078 25,172

Newfoundland and Labrador 35,329 80,704

Table 3.3.1: Province-wise Network Statistics

26

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.3 Network Statistics and Random Graph Gen-

eration

3.3.1 Network Statistics

In any network analysis, the first metric that merits scrutiny is the number of nodes

and edges in the network. Table 3.3.1 encapsulates this information about the road

networks of all 10 provinces. We note that there are big differences in the number

of road segments and the number of intersections among the provinces. Ontario,

Quebec, Alberta, British Columbia and Saskatchewan have more than 100k nodes

or intersections whereas the other provinces have fewer, with Prince Edward Island

having the least of them all with just over 10k intersections. The number of edges or

road segments also follows a similar pattern. This is expected as the road network is

built to cater to the population in these provinces and the population table 3.3.2 below

validates our hypothesis. The population data of each province has been obtained

from the Statscan website [16].

Province Number of
Nodes

Number of
Edges

Population

Ontario 359535 938322 15911285

Quebec 265932 682993 8984918

British Columbia 133872 321925 5431355

Alberta 256831 631772 4800768

Saskatchewan 126405 348263 1225493

Manitoba 70694 197154 1474439

Nova Scotia 46182 111310 1069364

New Brunswick 44220 106184 846190

Newfoundland and Labrador 35329 80704 540552

Prince Edward Island 10078 25172 176162

Table 3.3.2: Province-wise Network Statistics with Population

27

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.3.2 Random Graph Models

A graph G = (V,E) is called random if the edges joining its nodes are generated by a

probabilistic mechanism. Two widely used mechanisms define respectively the Gn,m

model, also called the Gilbert model or the uniform model and the Gn,p model, also

called the Erdos-Renyi model (ER model,for short) or the binomial model.

In the first model, a graph is selected from the family of all graphs on n nodes with m

edges with the uniform probability 1/((n, 2),m). In the second model, we choose a p

such that 0 ≤ p ≤ 1, and a graph on n nodes with m edges is chosen with probability

pm(1− p)(n,2)−m.

In a simple undirected graph m <
(
n
2

)
but the road networks under discussion are

directed multigraphs so this bound on the edges may not hold. With the help of

iGraph [4], a Python module, a random graph with a given number of nodes and a

given number of edges is generated for each province.

The configuration model is another random graph generation model. In this model,

the degree sequence of the graph is given as input and a realization of a graph with

the given degree sequence is chosen at random. Since the province networks are

directed, to generate a random graph using the configuration model both in-degree

sequence and out-degree sequence are identified and given as input to Networkx li-

brary to generate the random graph, again with the same number of vertices and the

same number of edges for each province. In the upcoming sections, various network

parameters are studied for each one of the actual network and compared with the

same parameters of the two companion random networks.

3.4 Clustering Coefficient

In this section, two parameters, the local clustering coefficient and global clustering

coefficient are studied. Local clustering coefficient quantifies the cliquishness of a

28

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

node’s neighbourhood [18]. The local clustering coefficient ci is calculated using the

formula as given in :

ci =
|{(j, k)}|
ki(ki − 1)

: j, k ∈ Ni, (j, k) ∈ E

where ki is the out degree of node i and

Ni = j : (i, j) ∈ E

is the set of out neighbours of node i and E is set of all edges in the graph. The mea-

sure can be extrapolated to the entire graph by taking the average of local clustering

coefficient of all the vertices in the graph given by:

c =
∑
i∈V

ci
N

where ci represents local clustering coefficient of vertex i and N represents the total

number of nodes in the graph. From the table 3.4.1 we observe that the average local

clustering coefficient is high for each province in comparison with their respective

random graph models. We also observe that the global clustering coefficient also

shows a similar trend. This indicates the presence of clusters in all province road

networks. The formula for calculating the global clustering coefficient as defined in

[13] is given below. We also observe that both these values are very close among

provinces.

c =
3× number of triangles

number of connected triples

where the number of triangles refers to the count of triangles in the graph, and the

number of connected triples represents the number of sets of three vertices that are

all pairwise connected.

29

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Graph Name Local
Clustering
Coefficient

Global
Clustering
Coefficient

Nova Scotia 0.037104427 0.041856541

Erdos Renyi Nova Scotia 9.09E-05 0.000111951

Configuration Model Nova Scotia 6.61E-05 6.99E-05

Ontario 0.049957777 0.047601798

Erdos Renyi Ontario 1.44E-05 1.78E-05

Configuration Model Ontario 1.97E-05 1.95E-05

Manitoba 0.045995754 0.040694308

Erdos Renyi Manitoba 5.90E-05 7.10E-05

Configuration Model Manitoba 6.86E-05 8.08E-05

Quebec 0.044385356 0.046451164

Erdos Renyi Quebec 1.62E-05 1.80E-05

Configuration Model Quebec 2.20E-05 2.58E-05

Alberta 0.042446147 0.037262092

Erdos Renyi Alberta 1.71E-05 2.32E-05

Configuration Model Alberta 1.98E-05 2.08E-05

Saskatchewan 0.033833485 0.035661904

Erdos Renyi Saskatchewan 3.73E-05 3.75E-05

Configuration Model Saskatchewan 4.36E-05 5.36E-05

New Brunswick 0.041234287 0.046182481

Erdos Renyi New Brunswick 0.000103437 0.000105715

Configuration Model New Brunswick 0.000105102 0.000110583

British Columbia 0.04529786 0.042552878

Erdos Renyi British Columbia 4.28E-05 4.46E-05

Configuration Model British Columbia 2.86E-05 3.79E-05

Prince Edward Island 0.039926825 0.042793423

Erdos Renyi Prince Edward Island 0.000373186 0.000523249

Configuration Model Prince Edward Island 0.000771837 0.000607559

Newfoundland and Labrador 0.031565821 0.041185218

Erdos Renyi Newfoundland and Labrador 8.96E-05 0.000130307

Configuration Model Newfoundland and Labrador 0.000153051 0.000151161

Table 3.4.1: Clustering Coefficients

30

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.5 Average Shortest Distance

The next topological property studied is the average shortest distance between a

given node and all other nodes in the graph. Average shortest distance estimates the

shortest distance between any two nodes picked at random. Distance calculated here

is the number of directed edges along the shortest path for any two nodes. This is

calculated using the equation given below:

D =
∑
s,t∈V

d(s, t)

N(N − 1)

where: d(s, t) is the shortest path from s to t and V is the set of all nodes in the

graph and N is the total number of nodes in the graph. N*(N-1) is used to normalize

the value calculated for each node. If there is no path from node u to node v then the

default shortest distance is set to an integer max value of 2147483647. From the table,

we observe that despite the size of the graph the average shortest distance between

vertices is small for all the provinces. Another observation is that for all the provinces

the random graph constructed using the Erdos Renyi model has a significantly higher

value whereas the random graph generated using the configuration model has a value

in the same scale as the provinces. The Erdos Renyi model’s high value can be

attributed to the presence of many unreachable paths.

Average shortest distance values are ranked among provinces and are shown in the

table 3.5.2. From the table, we observe that provinces with greater numbers of nodes

and edges have smaller average shortest distances. Prince Edward Island has the

highest value. This pattern is expected because a higher number of nodes and edges

are required to support the population and their needs.

A small-world network has the following two characteristics as defined in [18]:

• High clustering coefficient when compared to a random network of the same

size.

• The average node-node distance is approximately equal to log(number of vertices).

31

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Graph Name Avg Shortest
Distance

Nova Scotia 22.15222561

Erdos Renyi Nova Scotia 10341.70208

Configuration Model Nova Scotia 15.10254497

Ontario 4.900450389

Erdos Renyi Ontario 1073.49372

Configuration Model Ontario 4.268804188

Manitoba 44.67356109

Erdos Renyi Manitoba 4492.89145

Configuration Model Manitoba 34.36634661

Quebec 5.435196569

Erdos Renyi Quebec 1524.372326

Configuration Model Quebec 4.281091444

Alberta 16.01079995

Erdos Renyi Alberta 1789.856991

Configuration Model Alberta 13.86329372

Saskatchewan 20.55355934

Erdos Renyi Saskatchewan 2589.355722

Configuration Model Saskatchewan 6.988198076

New Brunswick 47.20932853

Erdos Renyi New Brunswick 11069.10252

Configuration Model New Brunswick 24.15828839

British Columbia 15.93452592

Erdos Renyi British Columbia 3651.772081

Configuration Model British Columbia 13.77707738

Prince Edward Island 295.8976174

Erdos Renyi Prince Edward Island 44953.9689

Configuration Model Prince Edward Island 147.9858415

Newfoundland and Labrador 30.97069985

Erdos Renyi Newfoundland and Labrador 15622.19806

Configuration Model Newfoundland and Labrador 18.92512441

Table 3.5.1: Average Shortest Distances

32

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Province Avg Shortest
Distance

Ontario 4.900450389

Quebec 5.435196569

British Columbia 15.93452592

Alberta 16.01079995

Saskatchewan 20.55355934

Nova Scotia 22.15222561

Newfoundland and Labrador 30.97069985

Manitoba 44.67356109

New Brunswick 47.20932853

Prince Edward Island 295.8976174

Table 3.5.2: Average Shortest Distances Ranked

All the province networks satisfy the first criteria but not all provinces have an average

shortest distance in the range of log(number of vertices). Specifically, the province of

Prince Edward Island has a high average node-node distance.

3.6 Degree Distribution

The next parameter studied is the degree distribution of all the networks. In a di-

rected graph there are two types of degrees for a vertex: in-degree and out-degree.

In-degree is the number of the edges that come into the vertex and out-degree is the

number of edges that leave the vertex. In this study, the degree of a vertex is defined

as the sum of in-degree and out-degree of that vertex.

The degree distribution is the probability of finding a vertex with the given degree.

It signifies the probability of occurrence of junctions with 2, 4, 6, etc. number of

roads intersecting to form that junction. From Figures 3.6.1 and 3.6.2 below, we

observe that the as expected the Erdos-Renyi model graphs exhibit exponential degree

distribution as represented by the blue bell curve, but the same is not true for the

network of a province and its corresponding network in the configuration model.

33

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

However, the latter two networks exhibit the same degree distribution. This can be

attributed to the fact that the configuration model network graph is generated using

the in-degree and out-degree sequence of that province. All the provinces exhibit a

similar-looking degree distribution. This can be attributed to the fact that we are

using junctions as nodes and the roads forming the junctions as edges.

Fig. 3.6.1: Degree Distributions of Each province

34

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.6.2: Degree Distributions of Each province

35

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.7 Average Degree of Neighbours

The average degree of neighbours is a measure used to identify the kind of neighbours

a node associates with. It is a measure to identify if there is interdependence from

one intersection to another. One should expect for the actual network of the province,

the average degree of neighbours increases as the degree of the node increases. This

is because the purpose of the transport network is to support movement and to

prevent congestion there is a low possibility that an intersection’s neighbours have

small degrees. From Figure 3.7.1 below, we observe that in all the province networks

the average degree of nearest neighbours of a node increases with its degree, whereas

for the random networks, it is relatively constant. This agrees with our hypothesis

and in the next section, assortativity is also studied to validate the claim. Table 3.7.1

shows the global average degree of neighbours for all the networks.

Fig. 3.7.1: Avg Degree of Neighbours

36

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Graph Name Avg Degree of
Neighbours

Nova Scotia 5.76932931

Erdos Renyi Nova Scotia 5.446416528

Configuration Model Nova Scotia 5.684723332

Ontario 5.648767403

Erdos Renyi Ontario 5.959860155

Configuration Model Ontario 5.889503094

Manitoba 5.456051606

Erdos Renyi Manitoba 6.208088796

Configuration Model Manitoba 6.273989996

Quebec 5.507781483

Erdos Renyi Quebec 5.792333836

Configuration Model Quebec 5.78562714

Alberta 5.309459965

Erdos Renyi Alberta 5.616876808

Configuration Model Alberta 5.846647238

Saskatchewan 5.60740285

Erdos Renyi Saskatchewan 6.117146874

Configuration Model Saskatchewan 6.310307503

New Brunswick 5.274978991

Erdos Renyi New Brunswick 5.580254002

Configuration Model New Brunswick 5.528243765

British Columbia 5.373841507

Erdos Renyi British Columbia 5.46544186

Configuration Model British Columbia 5.670169289

Prince Edward Island 5.394721234

Erdos Renyi Prince Edward Island 5.685891107

Configuration Model Prince Edward Island 5.751521122

Newfoundland and Labrador 5.18232645

Erdos Renyi Newfoundland and Labrador 5.275580474

Configuration Model Newfoundland and Labrador 5.422694977

Table 3.7.1: Average Degree of Neighbors by Graph Type and Province

37

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.8 Topological Assortativity

In the previous section, we observed that there is a positive correlation between the

degree of a node and the average degree of its neighbours. Another parameter that

estimates this correlation is Assortativity. Assortativity measures to which kind of

neighbours a node prefers to attach. In other words, it tries to answer the question

of whether high-degree nodes prefer to attach to other high-degree nodes or not [13].

The assortativity coefficient (r) is calculated using:

r =

∑M
i=1(ji − µj)(ki − µk)√∑M

i=1(ji − µj)2
∑M

i=1(ki − µk)2

where:

• ji and ki are the degrees of the nodes at the ends of the i-th edge.

• µj and µk are the mean degrees of the nodes at the ends of all edges.

• M is the total number of edges in the network.

Value of r falls in the (-1,1) with 1 representing high assortative mixing meaning

high-degree nodes prefer to attach to other high-degree nodes, 0 representing random

connection that is there is no preference and -1 represents high disassortative mix-

ing meaning high-degree node prefers to attach to low degree nodes. For a directed

graph, the above formula has two possibilities in-assortativity and out-assortativity.

For in-assortativity, the in-degrees of the nodes are used and for out-assortativity,

the out-degrees are used in place of degrees mentioned in the formula. Both in-

assortativity and out-assortativity are shown in table 3.8.1 below.

From the table 3.8.1, we observe that the both in-assortativity and out-assortativity

coefficients are relatively high and are positive for all province networks barring the

road network of Newfoundland and Labrador. This implies that there is assortative

mixing in these networks except for the province of Newfoundland & Labrador and

is consistent with the results from the graphs shown above.

38

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Graph Name In
Assortativity

Out
Assortativity

Nova Scotia 0.068186012 0.066716534

Erdos Renyi Nova Scotia 0.002290793 0.000743063

Configuration Model Nova Scotia 0.000123939 -0.00030633

Ontario 0.19551312 0.195076679

Erdos Renyi Ontario -2.41E-05 -8.83E-06

Configuration Model Ontario 4.81E-06 0.000265914

Manitoba 0.227503019 0.228605825

Erdos Renyi Manitoba 0.000910535 -0.000926127

Configuration Model Manitoba 0.001480432 0.001776707

Quebec 0.171609501 0.172168904

Erdos Renyi Quebec -0.000200242 0.000176849

Configuration Model Quebec 0.000283334 0.000444947

Alberta 0.163011864 0.174027829

Erdos Renyi Alberta -0.000486747 -0.000112093

Configuration Model Alberta 0.000525548 0.000447223

Saskatchewan 0.148661789 0.149469205

Erdos Renyi Saskatchewan 0.001294267 -0.000292297

Configuration Model Saskatchewan -0.001011431 -0.000948201

New Brunswick 0.043693798 0.043082098

Erdos Renyi New Brunswick -0.001028574 -0.001346213

Configuration Model New Brunswick 0.002650523 0.002452597

British Columbia 0.130744531 0.133876507

Erdos Renyi British Columbia -0.000246289 0.000522609

Configuration Model British Columbia 0.002160879 0.002498941

Prince Edward Island 0.061387993 0.060756557

Erdos Renyi Prince Edward Island 0.001641834 -0.000504828

Configuration Model Prince Edward Island 0.004407728 0.008131692

Newfoundland and Labrador -0.069211687 -0.067428612

Erdos Renyi Newfoundland and Labrador -0.000323387 -0.000874421

Configuration Model Newfoundland and Labrador -0.008157141 -0.006541526

Table 3.8.1: Assortativity

39

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

3.9 Network Resilience

In the context of complex networks, network resilience involves studying how various

types of networks, such as social networks, transportation systems, power grids, or

computer networks, respond and adapt to disruptions or failures. Simulating attacks

on a network can also be used to measure a network’s resilience.

There are two types of network attack possible: one is a vertex-based attack and the

other is an edge-based attack. Holme et al. [10] compared both types of attack for

two real-world networks and four model networks, one of which is the Erdos Renyi

model. Here we conduct a similar kind of study with an actual network and a corre-

sponding random model network, generated using the configuration model.

The description of the various kinds of attacks and the inferences we can draw from

these simulations are addressed in the following sections.

3.9.1 Vertex Based Attack

A vertex-based attack identifies how the network behaves when vertices are removed

from a network. When we remove a vertex v all the incident edges are also removed.

There are many strategies available to remove vertices from a network. In this study,

we discuss two of them: random removal of vertices and removal of vertices in de-

scending order of vertex betweenness.

The betweenness centrality, CB(v), of a vertex v is defined as below (see [3] for more

details):

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

(1)

where:

40

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

• σst is the total number of shortest paths from node s to node t.

• σst(v) is the number of those paths that pass through the node v.

• The sum is taken over all pairs of nodes s and t, where s ̸= t and s, t ̸= v.

The vertex betweenness measure identifies important vertices in the network.

In random vertex removal, we repeatedly remove 10% of the current vertices, selected

at random from the network and to quantify network behaviour, the average shortest

distance is then re-calculated for the residual (90%) vertices.

Another strategy we have explored is to remove repeatedly the top 10% of the current

set of vertices in decreasing order of vertex betweenness and recalculate the average

shortest distance of the residual (90%) vertices.

Both strategies are repeated for the random graph generated using the configuration

model.

We have plotted a graph that shows how the average shortest distance varies for each

province in the targetted removal of vertices (3.9.1). From this figure, we can see that

for Prince Edward Island there is a steep incline in the average shortest distance as

vertices are removed. For the other provinces, the incline is gradual meaning other

provinces are more resilient towards targetted vertex-based attack. Another insight

we can gather from this plot is that bigger networks are more resilient. Understand-

ably so as in the bigger networks, there are multiple ways to get to a target node.

Figures 3.9.2 and 3.9.3 compare the impact of the average shortest distance on the

random removal of vertices and targeted removal of vertices for the province network

and the random model. Based on the definition of vertex betweenness one should

expect the average shortest distance to increase at first because important vertices

are removed and then merge the trend of random removal as more and more vertices

41

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.9.1: Avg Shortest Distance vs Percentage of Nodes Removed

Fig. 3.9.2: Random vs Targetted Vertex Attack

42

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.9.3: Random vs Targetted Vertex Attack

are removed. This behaviour is seen in almost all provinces except for Nova Scotia.

Another observation is that in the random model, the impact of vertex removal is

much more gradual when compared with the actual network. One possible expla-

nation for this could be that in the actual network, the intersection and the road

segments forming the intersection are interdependent. In contrast, in the random

model, it is completely probabilistic.

3.9.2 Edge Based Attack

An edge-based attack quantifies how the network behaves with the removal of edges

from the network. Since the removal of an edge does not affect the vertices, repeated

removal of edges leaves the network with isolated vertices.

As for vertex removals, two strategies for removing edges are explored here: one is

the random removal of edges, where in every iteration 10% of edges are selected at

random and removed and is repeated until 90% of the edges are removed. In every

iteration, the new average shortest distance between vertices of the network is cal-

43

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

culated and the graph of how it varies is plotted. Second is the targeted removal of

edges where again 10% of the edges are removed in each iteration in the decreasing

order of edge betweenness. Edge betweenness, CB(e), is calculated using the following

formula [3]:

CB(e) =
∑
s ̸=t

σst(e)

σst

(2)

where:

• CB(e) represents the betweenness centrality of an edge e.

• σst is the total number of shortest paths from node s to node t.

• σst(e) is the number of those paths that pass through the edge e.

• The summation is taken over all pairs of nodes s and t in the graph, where

s ̸= t.

Edge attacks as a whole have the same effect on province and random networks as

vertex attacks seen in the previous section. From figure 3.9.4 we see that bigger net-

works are less susceptible to this kind of attack. Figures 3.9.5 and 3.9.6 also show that

the average shortest distance increases gradually as compared with their respective

actual province network. This strongly indicates that there is an interdependence

between the vertices and edges of the network.

3.10 Conclusion

In this chapter, the province networks of 10 provinces are extracted. Two random

graphs, one using the Erdos Renyi model and the other using the configuration model

with the same number of nodes and the same number of edges as the province network

are generated. Parameters like clustering coefficient, degree distribution, average de-

gree of neighbours and assortativity are compared among provinces and with their

respective random graphs. An approach to quantify network resilience is discussed

44

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.9.4: Avg Shortest Distance vs Percentage of edges Removed

Fig. 3.9.5: Random vs Targetted Edge Attack

45

3. ROAD NETWORK ANALYSIS OF CANADIAN PROVINCES

Fig. 3.9.6: Random vs Targetted Edge Attack

and is compared with one of the random models and among provinces. From this

chapter, we found that the province network did not exhibit small-world properties,

the larger the size of the province network more resilient it was to both vertex-based

attacks and edge-based attacks and finally as expected there is an interdependence

between edges and nodes of a network. From the section, we also see that the con-

figuration model was able to model the network more closely than the Erdos-Renyi

model.

46

CHAPTER 4

Conclusion and Future Work

In this thesis, a theoretical problem and a practical problem in the field of complex

networks are explored. We begin by exploring edge switiching as a mechanism to move

from one realization of a graph to another without changing the degree sequence of

the graph. Edge switching was a mechanism that was explored for generating a graph

uniformly at random given a graphical degree sequence but we encountered the class

of unswitchable graphs where edge switching is not possible

In chapter two the class of unswitchable graphs is explored in depth. First, we prove

that unswitchable graphs are a proper subclass of split graphs. Then two algorithms

one to recognize whether a graph is an unswitchable graph or not given a realization

of the graph and the other to generate an unswtichable graph given the number of

nodes required are discussed and are presented as theoretical contributions to the

field of complex networks.

In chapter three transportation network of Canada is explored. First, a method to

extract the road networks of 10 provinces is discussed. Then two companion ran-

dom graphs with the same number of nodes and edges as the province network are

generated, one using the Erdos Renyi model and the other using the Configuration

model. Complex network parameters like clustering coefficients, degree distribution,

average degree of neighbours and assortativity are compared with companion random

networks and among province networks. A method to quantify network resilience is

discussed and implemented. The method identifies random networks being proba-

47

4. CONCLUSION AND FUTURE WORK

bilistic breaks more gradually than actual networks and among provinces networks

the networks with sparse connectivity break much faster than a network with more

dense connectivity.

4.1 Future Works

In Chapter 3, models to generate a directed random graph are discussed. In the

appendix, a method to generate a random directed graph given the in-degree sequence

and out-degree sequence is discussed. The in-degree and out-degree sequences are

the marginals (row sums and column sums) of the graph represented as an adjacency

matrix. This method used the Markov Chain Monte Carlo (MC-MC) method to

generate a random directed graph uniformly at random with the same marginals.

This thesis can be extended using a random graph generated using this provided this

method can scale to the size of the networks used here.

48

REFERENCES

[1] Berge, C. (1973). Graphs and Hypergraphs. North-Holland.

[2] Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyz-

ing, and visualizing complex street networks. Computers, environment and urban

systems, 65:126–139.

[3] Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of

mathematical sociology, 25(2):163–177.

[4] Csardi, M. G. (2013). Package ‘igraph’. Last accessed, 3(09):2013.

[5] Eggleton, R. B. (1975). Graphic sequences and graphic polynomials: a report. In

Colloq. Math. Soc. J. Bolyai, volume 10, pages 385–392.

[6] Hagberg, A. and Conway, D. (2020). Networkx: Network analysis with python.

URL: https://networkx. github. io.

[7] Hakimi, S. (1962). On the realizability of a set of integers as degrees of the vertices

of a graph. SIAM J. Appl. Math., 10:496–506.

[8] Hammer, P. L. and Simeone, B. (1981). The splittance of a graph. Combinatorica,

1:275–284.

[9] Havel, V. (1955). A remark on the existence of finite graphs (Czech.). C̆asopis

Pĕst. Mat., 80:477–480.

[10] Holme, P., Kim, B. J., Yoon, C. N., and Han, S. K. (2002). Attack vulnerability

of complex networks. Physical review E, 65(5):056–109.

49

REFERENCES

[11] Kleitman, D. J. and Wang, D. L. (1973). Algorithms for constructing graphs

and digraphs with given valences and factors. Discret. Math., 6(1):79–88.

[12] Lowcay, C., Marsland, S., and McCartin, C. (2013). Constrained switching in

graphs: a constructive proof. In 2013 International Conference on Signal-Image

Technology & Internet-Based Systems, pages 599–604. IEEE.

[13] Newman, M. E. (2003). The structure and function of complex networks. SIAM

review, 45(2):167–256.

[14] Oxford Dictionaries (2017). Markov chain — definition of markov chain in us

english by oxford dictionaries. Oxford Dictionaries. Archived from the original on

December 15, 2017. Retrieved 2017-12-14.

[15] Rao, A. R., Jana, R., and Bandyopadhyay, S. (1996). A markov chain monte

carlo method for generating random (0, 1)-matrices with given marginals. Sankhyā:

The Indian Journal of Statistics, Series A, pages 225–242.

[16] Statistics Canada (2024). Population estimates, quarterly. DOI. Retrieved from

https://doi.org/10.25318/1710000901-eng.

[17] Taylor, R. (2006). Contrained switchings in graphs. In Combinatorial Math-

ematics VIII: Proceedings of the Eighth Australian Conference on Combinatorial

Mathematics Held at Deakin University, Geelong, Australia, August 25–29, 1980,

pages 314–336. Springer.

[18] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. nature, 393(6684):440–442.

50

https://doi.org/10.25318/1710000901-eng

APPENDIX A

Generating a directed graph with

given marginals uniformly at

random

A.1 Introduction

In chapter three random models the Erdos-Renyi model and the Configuration model,

were used to compare the metrics of the actual network. This served as a motivation

for exploring other ways of generating a uniformly random directed graph. In Chapter

1 it is shown that a directed graph can represented as an adjacency matrix. Marginals

are the row sums and column sums of a matrix. In this appendix, we explore the

generation of a directed graph with the same marginals as the initial graph uniformly

at random using the Markov Chain Monte Carlo (MC-MC) method given an initial

directed graph.

A.2 Background

MC-MC method is a statistical method made up of two parts, one is a Markov chain

and the other is Monte Carlo method. A Markov chain is a model describing a se-

quence of possible events in which the probability of each event depends only on

the state attained in the previous event [14]. Figure A.2.1 shows an example of a

Markov chain. The matrix in the figure A.2.1 represents the transition probability

51

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

which is the probability of the system moving from the current state to the next state.

0.2

0.6

0.8

0.6

0.4

0.2

0.2

State 1

State 2 State 3

State 2 State 3

State 1

State 2

State 3

State 1

0.2 0.6 0.2

0.2 0 0.8

0.4 0.6 0

Fig. A.2.1: Markov chain and its transition probabilities

State 1 State 2 State 1 State 3

Fig. A.2.2: example of a random walk

The Monte Carlo method is a computational algorithm that relies on repeated ran-

dom sampling to obtain numerical results. Here the Monte Carlo method is used to

estimate the probability distribution of the Markov chain. For example, consider a

random walk represented in figure A.2.2. The probabilities of each state in the chain

are calculated:

P(state 1) = 2/4, P(state 2) = 1/4 and P(state 3) = 1/4

52

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

On repetition, the Markov chain converges to a stationary state. The stationary state

of a Markov chain is the state at which the probability of a state remains unchanged in

the Markov chain as the system moves from one state to another. Let P represent the

transition probability matrix and π*P represents the probability distribution after one

step in the Markov chain. Then, the stationary state of the system can be expressed

mathematically as:

π = π ∗ P (1)

In the stationary state probability of each state represents the target distribution.

However, not all Markov chains converge to a stationary state. Only Markov chains

that satisfy the balance condition converge to a stationary state. The balance condi-

tion is given below:

π(x)P (x→ y) = π(y)P (y → x) (2)

where x, y are the states and P(x → y) represents the transition probability to move

from state x to state y.

Rao et all [15] generated a random 0-1 matrix using the MC-MC method. In the next

section, the algorithm presented in the paper is discussed in depth.

A.3 Rao et al’s Algorithm

Given the marginals, two types of 0-1 matrices are possible. One is a m × n matrix

with no structural zeroes and the other is a square matrix with structural zeroes. Fig-

ures A.3.1 and A.3.2 show the same. The main focus is on type 2 matrices because

the adjacency matrix of the class of directed under consideration will be of type 2

as discussed previously. The main idea explained in Rao et al’s paper is if there is a

mechanism to move from one 0-1 matrix to another while preserving the marginals

then the problem can be formulated as a Markov chain as shown in Figure A.3.3 k

in figure A.3.3 is the total number of 0-1 matrices with the given marginal, in this

total number of directed graphs with the same marginals as the initial graph and two

53

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

0 0 1 0

1 0 0 1

1 0 0 1

0 1 1 0

Fig. A.3.1: Example of a type 1 matrix

X 0 1 0

1 X 0 1

1 0 X 1

0 1 1 X

Fig. A.3.2: Example of a type 2 matrix

(1-d(i))/k

d(i)/k

Current State

Adjacent State

Current State

Current State

Adj State

Adj State

(1-d(i))/k d(i)/k

0 0

Fig. A.3.3: Problem formulated as Markov chain with its transition matrix

54

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

matrices are adjacent if one can be obtained from another on switching one alternate

cycle. d(i) is the number of adjacent states available for the matrix. In other words,

it is the number of alternating cycles of the matrix at the given state.

An alternate cycle can be of two types one an alternate rectangle and the other a

compact hexagon

Definition 2 An alternate Rectangle is a set of four distinct cells with indices i1j1,

i1j2, i2j2, i2j1 with alternating zeroes and ones

Definition 3 Compact Hexagon is a set of 6 distinct cells with indices i1j2, i1j3, i2j3,

i2j1, i3j1, i3j2 with alternating zeroes and ones

Figures A.3.4 and A.3.5 show an example for each type of alternating cycle. Switching

0 0 1 0

1 0 0 1

1 0 0 1

0 1 1 0

Fig. A.3.4: Example of an alternating
rectangle

X 1 0

0 X 1

1 0 X

Fig. A.3.5: Example of a compact
hexagon

along an alternating cycle generates a new 0-1 matrix and preserves the marginals

of the matrix. The paper discusses how only an alternate rectangle is not enough

to move to all neighbouring states for the type 2 matrix. Further, the authors also

provide a mathematical proof for this method.

55

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

However, estimating k is not an easy problem and it is the most important step to

generate a directed graph with given marginals uniformly at random. Suppose k is

very large then remaining in the current state probability is close to one and conver-

gence to stationary state takes a long time. 3 methods for estimating k are discussed

in the paper:

• Estimating k using a pilot study

• Using the maximum number of alternating cycles visited so far

• Combination of 1 and 2 where a pilot study to estimate upper bound k and also

update on identifying new upper bound.

A Fortran-like pseudocode and the proofs are extensively discussed in the paper.

In the next section, the flow diagram and the implementation of pseudocode are

discussed.

A.4 Algorithm Flow and Implementation Details

Figure A.4.1 shows the flow diagram of the Fotran-like pseudo code given in the pa-

per. The algorithm has two parts, part one is the pilot run to get the estimated

upper bound of k and part two is moving from one 0-1 matrix to another by using

an alternating cycle 3 ∗ t times where t is the minimum of either number of 1’s or the

number of non-structural zeroes. The flow diagram is explained in detail as follows:

• Step 1. Given a starting directed graph, its adjacency matrix is used as the ini-

tial 0-1 matrix A and the set number of random graphs required to be generated

in S

• Step 2. Setting up the initial variable values. For example, t is either set

to minimum 0f number of 1’s or the number of non-structural zeroes. Other

notable variables are:

56

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

Fig. A.4.1: Flow Diagram of generating a directed graph using MC-MC method

57

A. GENERATING A DIRECTED GRAPH WITH GIVEN MARGINALS UNIFORMLY AT RANDOM

– AltCycCnt - number of alternating cycles for the matrix A

– PilotRun - number of runs required to estimate upperbound maxK

– MatCnt - matrix count to track the number of adjacency matrix got

– steps - to track the number of times the adjacency matrix has been changed

along an alternating cycle

– maxK - is the maximum of number of alternate cycles for a matrix en-

countered so far

• Step 3 is performing the pilot run PilotRun times to estimate maxK

• Step 4 is performing the switching along alternating cycle 3*t times and then

adding the final matrix to the list of matrix

• Step 5 Repeat until the required number of matrices is got.

The matrices got correspond to directed graphs with given marginals generated uni-

formly at random. The above algorithm was implemented in Python 3.

A.5 Conclusion

In this chapter, with the help of the MC-MC method a directed graph with given

marginals is generated uniformly at random. This method needs more exploration

on how it can scale to generate random graphs with sizes discussed in Chapter 3.

58

VITA AUCTORIS

NAME: Srivatsan Vasudevan

PLACE OF BIRTH: Chennai

YEAR OF BIRTH: 1997

EDUCATION: University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2024

59

	Generation of random graphs with applications to complex networks
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Preliminaries
	Graph Terminologies
	Prior Work
	Thesis Organisation

	Recognizing and generating unswitchable graphs
	Introduction
	An application of edge-switching
	Split graphs
	Unswitchable graphs
	Generating an unswitchable graph
	Conclusions

	Road Network Analysis of Canadian Provinces
	Introduction
	Data Extraction Methodology
	Network Statistics and Random Graph Generation
	Network Statistics
	Random Graph Models

	Clustering Coefficient
	Average Shortest Distance
	Degree Distribution
	Average Degree of Neighbours
	Topological Assortativity
	Network Resilience
	Vertex Based Attack
	Edge Based Attack

	Conclusion

	Conclusion and Future Work
	Future Works

	REFERENCES
	APPENDIX Generating a directed graph with given marginals uniformly at random
	Introduction
	Background
	Rao et al's Algorithm
	Algorithm Flow and Implementation Details
	Conclusion

	VITA AUCTORIS

