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ABSTRACT

Vehicular ad-hoc network (VANET) is an emerging technology for vehicle-to-vehicle

communication vital for reducing road accidents and traffic congestion in an Intelli-

gent Transportation System (ITS). Integrating Vehicular Ad-Hoc Networks (VANETs)

into modern Intelligent Transportation Systems (ITS) has brought about significant

advancements in transportation efficiency and safety. However, it has also intro-

duced critical security concerns, particularly regarding the integrity of data exchanged

among vehicles. This research focuses on tackling the emerging threat of Position Fal-

sification Attacks in VANETs, where malicious entities broadcast fictitious location

information to disrupt traffic flow and compromise road safety. Our methodology

employs a detailed examination of the VeReMi dataset, a standard benchmark in

VANETs security research, alongside state-of-the-art machine learning classification

algorithms. A key focus is not only on developing robust detection models but also

on integrating XAI to enhance the interpretability of the outcomes. This approach

ensures that the underlying decision-making processes of the ML models are trans-

parent and understandable, fostering trust and facilitating more accessible validation

by human experts. Including XAI has demonstrated potential in providing deeper

insights into model behaviours, particularly in understanding why specific predic-

tions are made, thus identifying areas for model improvement. This thesis highlights

the critical need to secure VANETs against Position Falsification Attacks and pro-

poses an innovative solution by merging machine learning with explainable artificial

intelligence. The findings contribute theoretically and practically, enhancing our un-

derstanding of VANET security challenges and providing actionable insights that can

be implemented to safeguard vehicular communication networks against emerging

cyber threats.
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CHAPTER 1

Introduction

1.1 Vehicular ad-hoc networks

Intelligent Transportation System [1] is an advanced technology that can improve road

safety traffic management and reduce traffic congestion in the transportation system.

According to the 2018 Global status report on road safety by the World Health Or-

ganisation (WHO), road accidents and injuries have become the 8th leading cause

of death, with 1.35 million deaths annually. Moreover, road accidents are the 1st

leading cause of death for children and young adults aged 5-29 years [2]. Vehicular ad

hoc network (VANET)[3] is the emerging technology in the Intelligent Transportation

System (ITS). Through information flow and communication, VANET can make the

transportation network more efficient, secure, and safe. It is a highly dynamic wire-

less ad hoc network formed using vehicles, roadside units, and other infrastructures.

As VANET has a rapidly changing topology and high mobility, and vehicles in the

network can be stationary or continuously moving. Vehicles in the network are in-

stalled with On- Board Unit (OBU), which transmits a vehicle’s status in the network

to other nodes periodically. Road-side Units (RSU) are infrastructures stationed on

the road’s side, which provide services and help communication between the nodes in

the network. There are other infrastructures, such as the Central Authority/ Autho-

rization Party, which provides support such as registering a node in the network and

revoking them in case of misbehaviour[4].

1



1. INTRODUCTION

Figure 1.1: An example of Vehicular ad-hoc network [5]

In 1999, the Federal Communication Commission (FCC) of the United States

allocated Dedicated Short-Range Communication (DSRC), a licensed spectrum of

75MHz in 5.9 GHz frequency bandwidth for communication between vehicles and

road-side units [6]. DSRC is a service used for short to medium-range communication

that provides high data transfer with minimum latency. Wireless Access in Vehicular

Environment (WAVE) is the IEEE 1609 family standard protocol that uses the IEEE

802.11p standard to support communication in the vehicular network and provide

standards for DSRC [7]. As DSRC has limitations in transferring a large amount of

data and accessing the Internet of vehicles, a new standard is introduced, Cellular-

V2X (C-V2X), which gives a better connectivity scope. C-V2X stands for the cellular

vehicle to everything, and this cellular technology is designed to connect vehicles to

other vehicles, roadside units, central authority and cloud-based services [8].

Communication in VANET is of different kinds, such as Vehicle-to-Vehicle (V2V),

Vehicle-to-Infrastructure (V2I), Infrastructure-to-Infrastructure (I2I) and Vehicle-to

other devices (V2X). VANET supports two types of applications: Comfort applica-

tions and safety applications. Comfort application includes comfort-based commu-

nication such as weather information, advertisements, pricing and details about the

2



1. INTRODUCTION

nearest gas stations or restaurants. However, the safety application includes safety-

based communication between vehicles and infrastructures. Examples of safety ap-

plications are blind-spot warnings, emergency warnings, and lane change assistance.

Wireless communication in the network can provide important information to the

drivers or vehicles in time. However, wireless communication is vulnerable to various

security and privacy attacks, which can cause misbehaviour in the network; hence,

this information transmitted in the network must be verified and authenticated for

correctness.

We can classify attackers in the network into the following [9]:

1. Insider vs. Outsider Attacker: Insider attackers are those who are authenti-

cated members of the network, while outside attackers are those who are not

authorized.

2. Active vs. Passive Attacker: Active attackers take part in the attack by directly

interfering in the attack, such as altering the message or destroying the mes-

sage packet in the network. Passive attackers listen to the conversation in the

network without interfering directly and may use the information for malicious

purposes.

3. Malicious vs. Rational Attacker: Attack that harms the network or causes

extreme damage to the network by a malicious attacker. In comparison, rational

attackers trigger the attack for personal gain

Vehicles in the VANET network send periodic status messages; such messages are

called Basic Safety Messages (BSM). BSM contains the vehicle’s current status, such

as position coordinates, vehicle speed, and transmission time, which is broadcasted

in the network periodically. These messages are digitally signed using cryptographic

techniques [10] before broadcast, and only the authorized members of the network

can access these BSMs.

VANET, being a wireless network, is susceptible to attacks and detecting these attacks

can be termed as misbehaviour detection. Misbehaviour detection can be divided into

3



1. INTRODUCTION

node-centric detection, where the detection of misbehaviour depends on the credibility

of the node and data-centric detection, where detection is based on data reliability.

This thesis aims to detect a Position falsification attack, where the attacker vehicle

in the network sends a false position coordinate in the BSM. Position falsification

attacks can lead to traffic congestion and even accidents and cause severe damage to

the network.

Five types of position falsification attacks detected in this research are:

1. Constant attack: Attacker vehicle transmits a fixed position in the network.

2. Constant offset attack: Attacker vehicle transmits a position with a fixed offset

added to the actual position.

3. Random attack: Attacker vehicle transmits random position from the play-

ground.

4. Random offset attack: Attacker vehicle transmits a uniformly random position

from a pre-defined rectangle around the vehicle.

5. Eventual stop attack: Attacker vehicle behaves like a legitimate vehicle for some

time and then transmits a current position repeatedly in the network.

Cryptographic techniques can provide message integrity but do not ensure message

correctness; hence, cryptographic methods are insufficient to ensure network security.

Additional detection methods are required to detect malicious vehicles sending false

information in the network.

1.2 Motivation

The integration of Vehicular Ad-Hoc Networks (VANETs) into modern transporta-

tion systems has revolutionized road safety and efficiency, facilitating the exchange

of critical safety information among vehicles [11]. However, this integration also in-

troduces security vulnerabilities, with Position Falsification Attacks emerging as a

4



1. INTRODUCTION

significant concern [12]. These attacks involve the manipulation of broadcasted loca-

tion information to create artificial traffic congestion or disrupt safety applications,

posing a grave risk to road safety and transportation efficiency [13].

Traditional security mechanisms are often insufficient in detecting Position Falsifi-

cation Attacks, as they primarily focus on external threats rather than insider attacks

within VANETs. Therefore, there is a pressing need to develop advanced detection

techniques capable of accurately identifying these attacks. Machine Learning (ML)

presents a promising approach to address this challenge, leveraging the vast amount

of data generated within VANETs to detect anomalous behaviours indicative of at-

tacks [14]. By training ML models on labelled datasets or employing unsupervised

learning techniques, researchers can extract meaningful patterns from the data and

build robust detection systems capable of identifying position falsification attacks in

real-time.

Furthermore, the integration of Explainable Artificial Intelligence (XAI) principles

enhances the interpretability and trustworthiness of ML models [15]. XAI techniques

enable stakeholders to understand the underlying decision-making process of ML

models, providing insights into why certain predictions are made and facilitating

validation by domain experts[16]. This transparency is crucial in the context of

VANET security, where the consequences of false positives or negatives can have

far-reaching implications on road safety and traffic management.

This research endeavours to enhance the interpretability of anomaly detection

in Vehicular Ad-Hoc Networks (VANETs). While previous efforts have focused on

achieving high detection rates, they often lacked insight into the decision-making pro-

cess of the deployed models. Thus, this study aims to develop advanced detection

systems capable of discerning anomalies within VANET while also offering trans-

parency in the decision-making process.

5



1. INTRODUCTION

1.3 Problem Statement

In the context of Vehicular Ad-Hoc Networks (VANETs), the detection and under-

standing of position falsification attacks pose significant challenges. While existing

research has made strides in detecting such attacks using Machine Learning (ML) al-

gorithms, there remains a critical gap in comprehending the decision-making process

of these models. High detection rates alone do not provide insights into why certain

decisions are made, limiting the ability to mitigate threats and ensure the reliability

of VANETs effectively. Consequently, there is a pressing need to develop advanced

detection systems that not only accurately identify anomalies within VANET data

but also offer explainability in the decision-making process of the deployed mod-

els. Addressing this challenge requires a multifaceted approach that integrates ML

techniques with Explainable Artificial Intelligence (XAI) principles to enhance the

interpretability and transparency of detection systems. By bridging the gap between

detection efficacy and interpretability, this research aims to pave the way for safer,

more transparent, and more resilient VANETs, ultimately ensuring the security and

well-being of all road users.

1.4 Solution Outline

The proposed solution to this problem is a generalized model to detect malicious nodes

using Machine Learning and integrating XAI. this solution follows a multifaceted ap-

proach. First, the Dataset used in this research is the first public extensible dataset

available in the field of VANET: VeReMi Dataset(Vehicular Reference Misbehavior

Dataset)[17]. This generated dataset is processed and passed on to ML models, in-

cluding anomaly detection algorithms and ensemble methods, to detect position falsi-

fication attacks. Additionally, we integrate XAI techniques, such as SHAP (SHapley

Additive exPlanations) values and LIME (Local Interpretable Model-agnostic Expla-

nations), to provide insights into the decision-making process of the ML models.

6



1. INTRODUCTION

1.5 Thesis Organization

The remaining outline of this thesis is as follows: chapter 2 includes an overview

of fundamental concepts of VANET and position falsification attack along with a

literature review of related work in misbehaviour detection using machine learning

approaches. Chapter 3 contains an outline of the proposed methodology and a brief

discussion of the VeReMi dataset, followed by chapter 4, including experimental setup

and discussion of results. In the end, chapter 5 gives a conclusion followed by possible

future work on the proposed methodology.

7



CHAPTER 2

Background Review

2.1 Overview of VANET

The modern era has witnessed remarkable advancements in communication and tech-

nology, leading to the establishment of various networks. One such network is VANET,

which holds immense potential in expanding road networks while ensuring driver’s

comfort, safety, and security. VANET offers numerous benefits, including enhancing

road safety, reducing fuel consumption and CO2 emissions, alleviating traffic conges-

tion, promoting eco-friendly driving practices, and providing convenience to drivers.

Additionally, VANET facilitates commercial opportunities such as advertising nearby

establishments and locating essential amenities like gas stations.

VANET operates with nodes that move freely within the network, resulting in

dynamic changes in its topology as vehicles travel at high speeds. Each vehicle

within the network operates independently and can communicate with any other

node. VANETs can cover expansive geographical areas and are not constrained by

limited battery storage or power supply. The network comprises both uniform and

non-uniform regions: uniform regions occur when vehicles share similar speeds, paths,

and directions for an extended period, typically observed on highways. Conversely,

non-uniform regions encompass streets where vehicles have varied paths, directions,

and speeds, interacting with multiple vehicles during their journey.

8



2. BACKGROUND REVIEW

2.1.1 Types of Communication

Communication within VANET is classified as having brief, fleeting interactions with

minimal delay. Vehicles within the network are outfitted with On-board Units (OBUs)

to connect with Road-side Units (RSUs)[18]. The OBU utilizes Global Positioning

System (GPS) technology to relay the vehicle’s current position in the network. RSUs

serve as the network’s backbone, facilitating communication among vehicles.

VANET communication encompasses five distinct types:

1. Vehicle-to-Vehicle (V2V): Each vehicle can communicate with others by broad-

casting messages to multiple nearby vehicles.

2. Vehicle-to-Infrastructure (V2I): Vehicles interact with nearby infrastructures

like RSUs or central authorities to request services or update their status.

Figure 2.1: Types of communications in VANET [13]

3. Infrastructure-to-Infrastructure (I2I): Infrastructures communicate with one an-

other to provide updated services to network nodes.

9



2. BACKGROUND REVIEW

4. Infrastructure-to-Vehicle (I2V): Infrastructures communicate with vehicles to

offer services, such as RSUs broadcasting hazard warnings to nearby vehicles.

5. Vehicle-to-Everything (V2X): Vehicles have the capability to communicate with

various devices, including mobile phones and internet-connected devices.

The Figure 2.1 illustrates a smart transportation network integrating various com-

munication technologies. Vehicles are equipped with Onboard Units (OBUs) for

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication using

LTE/5G and Cellular V2X (C-V2X) technologies. Roadside Units (RSUs) and a

Trusted Authority (TA) manage and secure the communications. The setup aims to

enhance traffic management, safety, and connectivity among vehicles, infrastructure,

and pedestrians.

2.1.2 Security Requirements and Attacks in VANET

VANET provides numerous services through wireless channels; it also faces several

drawbacks and is susceptible to security and privacy threats. Vulnerabilities within

the network can lead to accidents and data loss, as wireless networks are susceptible

to malicious attacks from individuals with different motives, as discussed in Section

1.1. This section examines the primary security requirements in VANET as outlined

below [19]:

1. Authentication: Authentication verifies the legitimacy of members and their

messages within the network[20]. Both senders and receivers must be authen-

ticated members, and all information exchanged requires authentication to up-

hold network legitimacy. Examples of authentication attacks include Replay

attacks, Certification Replication attacks, and Sybil attacks. In a Replay at-

tack, an attacker sends the same message with a different time stamp [21].

In a Certification Replication attack, attackers possess replicas of vehicle keys

to send false messages [13]. Sybil attacks involve attackers creating multiple

identities or ghost vehicles to mislead legitimate vehicles with false messages

[21].

10



2. BACKGROUND REVIEW

2. Confidentiality: Confidentiality safeguards the information of registered nodes,

ensuring that identities and geographical data remain protected. Only authen-

ticated members should access network messages. Confidentiality attacks, like

eavesdropping and information gathering, allow attackers to obtain private in-

formation for potential misuse. In an eavesdropping attack, the attacker silently

listens to network communication and gathers data [22].

3. Integrity: Integrity ensures that information sent within the network remains

unaltered before reaching the receiver. Message tampering by attackers is pro-

hibited, including Message Deletion/Alteration and Timing attacks. In a Mes-

sage Deletion/Alteration attack, attackers insert incorrect information or delete

messages before reaching the receiver [12]. Timing attacks intentionally delay

emergency messages [23].

4. Availability: Availability ensures uninterrupted services for legitimate nodes.

Attacks on availability, like Denial of Service (DoS) attacks and jamming, dis-

rupt network services. A spamming attack inundates the network with requests,

rendering it unavailable [24]. DoS attacks make the network unavailable to au-

thenticated members [25]. Jamming attacks disrupt the network by interfering

with signals [26]. Broadcast tampering occurs when attackers insert erroneous

messages, disturbing network functionality [19].

2.1.3 Position Falsification Attack

Vehicular Ad-Hoc Networks (VANETs) serve two primary applications: comfort and

safety. Comfort applications offer services like weather updates, nearby gas stations,

restaurants, and advertisements for user convenience. Safety applications focus on se-

curity, providing warnings like blind spots and hazard alerts. Vehicles broadcast their

status via Basic Safety Messages (BSMs), digitally signed with the current position,

speed, direction, and transmission time. BSMs are encrypted using cryptographic

techniques, ensuring only authenticated members can decrypt them. However, ma-

licious vehicles may send false position data in BSMs, potentially causing harmful
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effects. These attacks, known as Position Falsification attacks[27], compromise data

integrity by altering the vehicle’s actual position. Such attacks can occur due to GPS

errors or malicious intent from insiders or outsiders. Adequate security measures are

crucial to mitigate the impact of these attacks and maintain network integrity.

1. Constant Position attack(CPA): In this attack, the sender vehicle continuously

broadcasts fixed position coordinates in the BSM, pretending to be in the same

network position. This attack could mislead honest vehicles into thinking of it

as a hazard or traffic congestion on the road.

2. Constant Position offset Attack(CPOA): Attacker vehicle adds a constant off-

set/fixed value to the actual position and transmits the network’s altered posi-

tion. This attack is difficult to detect as the attacker is behaving normally by

slightly altering the actual position in the BSM.

3. Random Position Attack(RPA): In a random position attack, the attacker sends

a random position coordinate from the simulation area/playground in the net-

work. It creates confusion in the network as every next BSM will have an

entirely different and random value from the simulation.

4. Random Position Offset Attack(RPOA): Attackers send a random value from

a preconfigured area around their vehicle. This attack is similar to a constant

offset attack as both slightly alter the position information.

5. Eventual Stop Attack(ESA): The attacker tries to behave normally for some

time in the network and then suddenly sends a fixed position repeatedly to

depict an eventual stopping of the vehicle. Attackers mislead legitimate vehicles

by gaining trust in the network for some time and then deceiving them.

2.2 Overview of Machine Learning

Machine learning, a branch of Artificial Intelligence, empowers machines to execute

specific tasks efficiently by leveraging statistical learning[28]. Its applications span
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various fields like healthcare, e-commerce, and law, facilitating disease detection, fa-

cial recognition, and email spam filtering. By identifying patterns in input data,

machine learning algorithms make predictions, categorize information, and address

real-world challenges[29]. Within Vehicular Ad Hoc Networks (VANETs), these al-

gorithms are crucial in detecting attacks, intrusions, and network misbehaviour. Ma-

chine learning encompasses four primary types:

• Supervised Learning: This involves training algorithms with labelled data to

address classification and regression problems.

• Unsupervised Learning: Algorithms work with unlabeled data, leveraging pat-

tern recognition and similarity detection for tasks like clustering and anomaly

detection.

• Semi-supervised Learning: Combining labelled and unlabeled data, this ap-

proach benefits from both supervised and unsupervised learning techniques.

• Reinforcement Learning[30]: Algorithms learn through interaction with their

environment, receiving rewards for successful actions and learning from failures.

2.2.1 Basic Machine Learning Concepts and Terminologies

The basic terminologies and processes of machine learning[31] used in this thesis are

defined below:

1. Feature: Features, also referred to as input variables, denote measurable prop-

erties or characteristics of the data under consideration. They serve as the basis

for machine learning models to make predictions or classifications.

2. Label: In supervised learning scenarios, a label represents the output or target

variable that the model seeks to predict based on the input features. Each data

point in the training dataset is associated with a corresponding label.

3. Training Data: The training data set comprises a collection of input features

along with their corresponding labels. This dataset is utilized to train machine
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learning models, enabling them to learn patterns and relationships within the

data.

4. Testing Data: Distinct from the training data, the testing dataset is employed

to evaluate the performance and generalization capability of the trained model.

Predictions generated by the model on the testing data are compared against

actual labels to assess accuracy and efficacy.

5. Model: A model is a machine learning algorithm which is trained to solve a

problem.

6. Testing/Evaluation: Evaluation involves assessing the performance of the trained

model on unseen testing data. Various evaluation metrics, including accuracy,

precision, recall, and F1-score, are utilized to gauge the model’s efficacy.

2.2.2 Classification Algorithms

Classification, a subset of supervised learning, involves categorizing labelled input

data into distinct classes. In the context of VANET, machine learning can be used to

differentiate between legitimate vehicles and misbehaving nodes. The classification

problem entails assigning data points to specific classes, with algorithms referred to as

classifiers training models by identifying similarities within the dataset. This process

aids in accurately categorizing the data for various applications.

• Binary classification: Binary classification involves the prediction of two dis-

tinct classes from a given data set. An example of this type of classification is

spam detection. In this thesis, two classes in binary classification are legitimate

vehicles and attacker vehicles.

• Multiclass classification: Multiclass classification involves classifying/predicting

more than two classes in a dataset. Five different position falsification attacks

and legitimate vehicles are the classes for multiclass classification in this re-

search.
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This section contains a brief description of the classification algorithms that were used

in this research. We implemented K-nearest neighbour, Decision Tree, and Random

Forest Algorithms.

2.2.2.1 K-Nearest Neighbours

K-Nearest Neighbour algorithm [32] is widely used for solving classification problems.

It is suitable for balanced as well as imbalanced datasets. K-Nearest Neighbour works

by finding the distance between all the points and a query point and selecting the

nearest neighbours to a query point. Based on the labels of k nearest neighbours, it

chooses the label based on popularity. This label is assigned to the query point by

the majority vote of the neighbours. Distance between the points can be calculated

using Euclidean, Manhattan, Minkowski or Hamming distance functions.

2.2.2.2 Decision Tree Algorithm

Decision Tree algorithm [33] constructs a tree of a dataset with branches to perform

classification. The topmost node, known as the root node, corresponds to the best

feature in the dataset. It consists of two entities, the decision node and the leaf node.

A decision node is the condition on which a tree navigates, and leaf nodes are the

outcomes of the decision node’s conditions. The main advantage of this algorithm is

it does not require any pre-processing of data and is faster. One major disadvantage

is that it is more prone to overfitting.

2.2.2.3 Random Forest Algorithm

The Random Forest algorithm addresses classification and regression tasks as de-

scribed in [34]. Comprising a collection of decision trees, this model predicts outcomes

based on the dataset provided. By employing an ensemble method, the algorithm

selects the best solution from the predictions generated by the individual trees. Ran-

dom Forest mitigates the limitations of the Decision Tree algorithm and demonstrates

robustness, yielding more accurate results in comparison.
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2.3 Overview of XAI

Explainable Artificial Intelligence (XAI) represents a pivotal advancement in the field

of machine learning, emphasizing the interpretability and transparency of AI models.

As AI systems become increasingly complex, there is a growing need to understand

the rationale behind their decisions, particularly in critical domains such as health-

care, finance, and autonomous systems. XAI addresses this imperative by providing

human-understandable explanations for AI-driven predictions and recommendations,

fostering trust, accountability, and regulatory compliance[35]. Techniques such as

feature importance analysis, model-agnostic approaches like LIME and SHAP, rule-

based systems, and interactive visualization tools enable users to comprehend and

scrutinize AI models’ decision-making processes. The different approaches in XAI

are

Figure 2.2: XAI Concept[36]

• Model-Agnostic Techniques: These techniques can be applied to any type of

machine learning model. Approaches like feature importance analysis, identi-

fying the most important features used by the model and LIME(Local Inter-

pretable Model-agnostic Explanations) and SHAP(SHapley Additive Explana-

tions) which provide the explanation of the model behaviour at a particular

instance.

• Model-specific Techniques: These techniques are designed for specific types of

machine learning models. For example, for decision trees, simply visualize the

tree structure to understand how the model makes decisions.
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This research focuses mainly on LIME and SHAP to provide explanations of the

decision-making of the black-box models. The Figure 2.2 shows how a model can be

more explainable to the users using the XAI model.

2.3.1 LIME

LIME is an XAI method that can explain the predictions of any classification or

regression by approximating it locally with an interpretable model[16]. Usually, a

black-box machine learning model takes data and produces outputs, but we can’t see

how it works. LIME tackles this by creating a simpler, transparent model around a

specific data point. This local model tries to mimic the complex model’s behaviour for

that particular instance, revealing which features were most influential in the original

model’s prediction. LIME is model-agnostic, where it can be applied to any model

like neural networks, decision trees, and support vector machines. LIME provides

clear, understandable explanations of the model’s decision-making.

2.3.2 SHAP

SHAP(SHapley Additive exPlanations) is another XAI technique like LIME. While

LIME focuses on explaining specific instances, SHAP tries to explain both global

model behaviour and local instance behaviour[37]. It used the game theory concept

to distribute credit among all features for their contribution to the model’s predic-

tion. SHAP calculates how much each feature’s presence impacts the prediction,

providing a better understanding of the feature importance of the entire dataset. For

local explanations, it considers all possible combinations of features and their respec-

tive contributions, averaging them to get SHAP values, which are used to provide

explanations.
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2.4 Basic Safety Messages

Basic Safety Messages (BSMs) play an important role in VANET safety applica-

tions[5]. They are commonly used in connected vehicle environments, where vehicles

communicate with each other and roadside infrastructure to share information about

their status and road conditions. BSM is a standardized communication packet sent

every tenth of a second between connected vehicles via Dedicated Short Range Com-

munication (DSRC)[6]. The data includes the sending vehicle’s direction, speed,

location, and turn signal status. The primary goal of BSM is to increase situational

awareness. BSMs offer the potential to significantly improve road safety and reduce

traffic congestion, ultimately paving the way for autonomous driving technologies.

BSMs typically contain the following crucial information:

• Vehicle ID: A unique identifier for the transmitting vehicle.

• Position: The vehicle’s current location, often represented by latitude, longi-

tude, and altitude.

• Speed: The vehicle’s current speed.

• Heading: The vehicle’s direction of travel.

• Acceleration: The vehicle’s current acceleration or deceleration.

• Vehicle Status: Information about the vehicle’s state, such as braking, turning,

or lane changing.

• Timestamp: The time the BSM was generated.

2.5 VeReMi Dataset

The VeReMi dataset is a popular resource for researchers developing methods to

detect misbehaving vehicles in VANETs (Vehicular Ad-Hoc Networks)[17]. This sim-

ulated dataset includes message logs from on-board units in vehicles. Each log con-
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tains GPS data for the local vehicle and Basic Safety Messages (BSMs) received

from other vehicles using DSRC (Dedicated Short-Range Communication)[27]. The

dataset’s strength lies in its realistic simulation of various traffic scenarios, encom-

passing both normal and malicious behavior. This comprehensiveness makes VeReMi

widely adopted by the research community for studying misbehavior detection in

VANETs.

2.5.1 Features of VeReMi

• Extensible and Publicly Available: The VeReMi dataset is the first public

dataset of its kind that is extensible[27], allowing researchers to reproduce the

data generation process and contribute additional attack scenarios. It also en-

ables comparative analysis of new detection mechanisms against existing ones.

• Detailed Simulation Executions:The VeReMi dataset is generated using the

LuST (Luxembourg traffic) scenario[38] and the VEINS[39]framework, which is

built on OMNeT++[40] and SUMO. It comprises 225 simulation runs, cate-

gorized by vehicular density: low density includes 35 to 39 vehicles, medium

density ranges from 97 to 108 vehicles, and high density has between 491 and

519 vehicles.

• Reception Logs and Ground Truth Files:Each vehicle in the VeReMi

dataset has detailed reception logs and ground truth files, which capture es-

sential data such as reception times, sender information, and position updates.

These logs include both legitimate and malicious messages and are crucial for

accurately evaluating misbehavior detection mechanisms.

2.6 Literature Review

Nowadays, many researchers are using a machine learning approach for misbehaviour

detection or attack detection in VANET. Machine learning framework such as [41]

focus on detecting the attacks but do not explain the decision-making process of the
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machine learning model. Though machine learning models perform better than the

traditional detection mechanism, every model cannot be trusted based on their pre-

diction since they are black-box models. Additional techniques, such as explainable

artificial intelligence, can help to interpret the black-box models. XAI helps to iden-

tify the insights of the model decision-making[35]. It helps in choosing the model

with more trust. Some of the machine learning and explainable artificial intelligence

approaches are discussed in this section. A comparative analysis of the literature

review is addressed in Table 2.1.

2.6.1 Machine Learning in VANET Misbehavior Detection

Grover et al. [42] proposed an ensemble-based machine learning approach to detect

misbehaviour in VANETs, combining the strengths of multiple classifiers to improve

accuracy. The proposed WEKA framework classifies various types of misbehaviours

using features extracted from nodes in NCTUns-5.0 simulator scenarios. The en-

semble method outperforms individual base classifiers, as demonstrated. In [22], the

authors examine the vulnerability of vehicular networks to attacks like DoS, Sybil,

and false alerts. They also highlight the limitations of cryptographic methods in pre-

venting insider attacks. The authors propose a system for detecting misbehaviour in

vehicular networks using machine learning and simulation data. This approach out-

performs previous methods in detecting various misbehaviours. The authors claim

to achieve better accuracy with their method. According to the authors, Random

Forest and Decision Trees outperformed other classifiers.

Khot et al. [43] proposed a machine-learning framework to predict the vehicle’s

next position in the network. The authors incorporated beacon messages from nearby

vehicles to create features like the distance between sender and receiver. Machine

learning algorithms were used to train and test the model. The authors compared

predicted and actual values in the BSM and classified vehicles accordingly. If the

position does not match the prediction, it is classified as an attacker vehicle. The

authors claimed Random Forest outperforms other algorithms. The authors claimed

that Random forest performs best among the other algorithms.
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2.6.2 Detecting Position Falsification Attack

Xue et al.[44] proposed a trusted neighbour table to detect position spoofing attacks.

The location verification scheme involves creating a TNT for each vehicle to record its

neighbouring vehicle’s updated location. To use TNT-based location verification, each

node in the network must keep a TNT with the most recent location of its neighbours.

The authors differentiated their TNT from the neighbour table by authenticating its

contents. Nodes generate trust values in the table, with higher values indicating

greater trustworthiness of neighbouring vehicles. The authors claim their approach

is secure and efficient when there is no infrastructure involved.

The study[45] on Vehicular Ad Hoc Networks (VANETs) and Intelligent Trans-

portation Systems (ITS) addresses privacy, network overhead, and security challenges.

They investigate the effectiveness of trust models in detecting misbehaving nodes in

VANETs. The research evaluates trust metric parameters using machine learning

techniques. The receiver power coherency metric is highly effective at identifying

nodes involved in fake position attacks. Simulation results show that the approach ac-

curately differentiates between well-behaved and misbehaving individuals. Improved

vehicle security in transportation systems.

Gyawali et al.[14] developed a misbehaviour detection model for false alert verifi-

cation and position falsification attacks. This framework uses the sender-receiver pair

approach. A false alert occurs when an attacker sends a false alert to nearby vehicles.

Alerts include hazard condition notifications, vehicle stopping warnings, and emer-

gency braking. The proposed framework includes a misbehaviour detection model

for each vehicle. Each vehicle broadcasts detected results to its neighbours, which

are combined to determine which vehicle should be removed from the network. The

authors apply the Greenshield model[46], which uses a linear speed-density relation-

ship to estimate continuous traffic. The receiver vehicle calculates changes in speed,

position, distance, and RSSI value compared to the sending vehicle. The dataset in-

cludes all of these values as features, which are then analyzed using machine learning

algorithms.
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Mankodiya et al.[47] developed a misbehaviour detection model for position falsi-

fication attacks. This framework uses machine learning and the XAI approach. They

have integrated XAI into the machine learning model for better interpretation of

the model. The research employs various machine learning algorithms to detect five

types of attacks: constant, constant offset, random, random offset, and eventual stop

attacks. The results show high accuracies with random forest and decision tree algo-

rithms. The study uses the VeReMi dataset for malicious detection in VANETs. The

study [48]explored the integration of XAI techniques like LIME and SHAP for expla-

nations of the model’s decision-making. The study uses a dataset which is generated

from Burst-ADMA.

Table 2.1: Comparison table of Misbehaviour detection in VANET’s

No. Paper Type of attack VeReMi
Dataset
Used?

XAI
used?

Approach

1 Grover et
al.[42]

false alert and Sybil
attacks

No No Ensemble method

2 Khot et
al.[43]

Postion falsification
attack

Yes No Predicting new posi-
tion

3 Sharma et
al.[5]

Postion falsification
attack

Yes No consecutive BSM ap-
proach

4 Steven et
al.[49]

Position falsification
attacks

Yes No Additional plausibil-
ity checks

5 Gyawali et
al.[14]

Position falsification
attacks

Yes No sender-receiver pair
approach

6 Mankodiya
et al.[47]

false alert and Posi-
tion falsification at-
tacks

Yes Yes XAI based approach

7 Idris et
al.[48]

Speed falsification at-
tacks

No Yes XAI techniques SHAP
and LIME approach

8 Proposed
Method

Postion falsification
attacks

Yes Yes Custom Split ap-
proach and Inte-
grating SHAP and
LIME
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The Table 2.1 is an overview of research papers, summarizing their approaches,

findings and contributions in identifying position falsification attacks.

In this research, the proposed methodology uses the custom split approach and

integrating SHAP and LIME for position falsification detection. Machine learning

algorithms are used to classify legitimate vehicles and attacker vehicles, and XAI

techniques provide LIME and SHAP explanations for better understanding of models

decision-making and helps to trust the models prediction.
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CHAPTER 3

Custom split BSM and XAI

approach

3.1 Introduction

Misbehaviour detection is a method of identifying attacks on the VANET using var-

ious techniques. In this research, the proposed methodology aims to detect position

falsification attacks on VANET using machine learning algorithms and integrating

XAI techniques like LIME and SHAP for explainability. Vehicles transmit BSMs into

the network, and all vehicles and infrastructures nearby receive these BSMs. BSMs

contain information on vehicles’ current status in the network. This information in-

cludes sender ID, position, speed, time, and a unique message ID. BSM can help

to identify the behaviour of the vehicle in the network. For this proposed method

collecting the BSMs data from the vehicles in the network is necessary. VANETs are

vulnerable networks, so it is not practical to directly apply the proposed method in

real time. So, the proposed method is implemented in a simulated environment using

the VeReMi dataset, which consists of a collection of BSMs in the network.

In this thesis, the Proposed methodology aims to provide a comprehensive machine

learning-based approach for identifying malicious BSMs within the vehicular net-

work. A custom-split BSM approach is implemented to partition the dataset into

unique senders for training and testing data to ensure model evaluation and perfor-

mance. Explainable AI(XAI) techniques, such as Local Interpretable Model-agnostic

24



3. CUSTOM SPLIT BSM AND XAI APPROACH

Explanations(LIME) and Shapley Additive Explanations(SHAP), are integrated to

explain the decision-making of the black-box models. These XAI techniques provide

transparent and interpretable insights into the model’s predictions, enhancing the

understanding and trust in the system’s output. This approach aims to improve the

security and reliability of vehicular networks by effectively identifying and mitigating

malicious activities.

3.2 Proposed Architecture

Vehicles transmit BSMs periodically into the network. All the neighbouring infras-

tructure and vehicles can receive these BSMs. Cryptographic methods like encryp-

tion and decryption provide authentication of the BSM in the network. The Central

Authority assigns public and private keys to vehicles upon registration. Registered

automobiles utilize these keys to sign network messages with Digital Signature tech-

niques. These solutions allow only authenticated cars in the network to transmit and

receive BSMs.

Figure 3.1: Proposed Architecture

The proposed architecture Figure 3.1 shows a model for detecting misbehaviour

in vehicular networks and providing the explanations of decision-making of the black-
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box models. The process begins with dataset preparation using the ground truth files

and log files mapped to csv files, data preprocessing, and feature engineering, where

vehicular data from the VeReMi dataset is cleaned, transformed and enhanced to cre-

ate meaningful features. these features are then input into the detection framework,

which employs machine learning algorithms to identify and classify the instances

of the attacker among the vehicles. To provide transparency and explainability,

XAI techniques such as LIME(Local Interpretable Model-agnostic Explanations) and

SHAP(SHapley Additive exPlanations) are used. These techniques offer detailed ex-

planations of the model’s decision-making by highlighting the significance and impact

of the individual features, making the detection process trustworthy.

3.3 High-level Outline of Proposed Approach

The proposed methodology has four main stages: dataset extraction, data prepara-

tion, classification and XAI Techniques, as shown in Figure 3.2. A detailed discussion

of these three stages is as follows:

3.3.1 Data Extraction

VeReMi dataset has a total of 225 simulations with different traffic scenarios, and each

simulation consists of two types of files they are ground truth file and log files. These

simulations are particularly helpful for studying how safety and security systems

perform in-vehicle networks. In a simulation of a vehicle’s network activity, there is

only one ground truth value. Ground truth includes an attacker type that categorizes

genuine and misbehaving vehicles. Meanwhile, the number of logs in a simulation

corresponds to the number of cars in the network.

Each vehicle generates a log containing all received BSMs from other cars. In

a position falsification attack, attacker cars transmit false information in the BSM,

resulting in false information in the log files. This setup allows researchers to study

how misinformation can spread through the network, impacting communication and

overall network safety. These log files are important for anyone looking to understand
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and enhance the security measures in vehicular communications.

Figure 3.2: Proposed Methodology

To form a labelled dataset, The ground truth file is merged with log files for each

simulation. During the data extraction, the ground truth file is mapped to the log

file for each simulation. For a single simulation, the number of log files is equal to the

number of receivers; hence, the first step is to combine these separate log files into a

single file. The ground truth file and log files have a unique ID named messageID.

To create a labelled dataset, the ground truth files attacker type must be mapped to

data in the combined log file, as shown in Figure 3.3. There are five different seeds of

the same scenario in the VeReMi dataset to create randomness in the network, and

this process is repeated for five repetitions. All five repetitions were combined in the

end to create a merged dataset for a single scenario.

Figure 3.3: Data extraction of Ground truth file and Log files to create labelled data
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3.3.2 Data Preparation

In this stage, merged data is pre-processed by removing any duplicate data present

in the dataset and filtering non-contributing features. Non-contributing features are

removed using the feature importance process. This process will provide information

about the features which contribute more to detecting the behaviour of the vehi-

cles and which contribute least. Non-contributing features can decrease the model’s

accuracy and efficiency, so it is best to remove those features.

Figure 3.4: Feature importance

From the Figure 3.4, we can see that position, heading, and speed features con-

tribute the most and other features have the least important information for training

the model. The purpose of this approach is to find information on vehicles to de-

tect misbehaviour in the network. We also removed a few features in the dataset

that did not provide meaningful information before training the machine learning

model. These features include position noise vectors, speed noise vectors, messageID,

receiver-id, density-level, and Type.

Vehicles send BSMs into the network based on time, so the dataset contains

multiple BSMs with the same vehicle according to the received time. so there is
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a chance of data leakage possible with train and test data, and there is a chance for

the algorithm to memorize the data points while training the model. So, a custom-

split approach is used to separate the train and test data with a unique sender to avoid

data leakage. This approach is done in two steps. Firstly, the data set is sorted by the

receive time, and then unique senders are extracted and split into train and test data

to make sure that there are unique senders in both train and test data. Implementing

custom split can be useful to organize messages in chronological order to maintain

the sequence of data and identify each vehicle by its unique ID to ensure separation

between training and testing datasets and ensure that no vehicle data appears in

both sets, preventing the model from memorizing specific patterns. Using custom

split prevents overfitting by segregating senders, the model learns generalized attack

patterns improving its ability to detect position falsification attack in unseen vehicles.

It also provides realistic evaluation for real-world scenarios and efficiently handles

different dataset sizes and network conditions, ensuring fairness and consistency.

3.3.3 Classification

The third stage of this methodology is to perform classification on the dataset. In

this step, machine learning algorithms are implemented to classify the non-attacker

vehicles from the network’s attacker vehicles. In this thesis, binary classification will

be performed on all five types of position falsification attacks. Machine learning

algorithms like Random Forest, Decision Tree and K-Nearest Neighbour algorithms

are used for classification. These algorithms train the model using a training set and

classify the future data as non-attackers or attackers.

3.3.4 XAI techniques

In this stage, XAI techniques like LIME(Local Interpretable Model-agnostic Expla-

nations) and SHAP(SHapley Additive exPlanations) are integrated to create expla-

nations for the black-box model’s decision-making. We first use LIME for local ex-

planations since they are human-readable. LIME creates a local surrogate model
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for each instance. surrogate models are simpler than the original model but try to

mimic its prediction for the data being evaluated. LIME can reveal the original

model’s decision-making by assessing the surrogate model’s prediction. such local

explanations classify and explain each of the samples individually. We then provide

human-understandable explanations for local samples. From Figure 3.5, we can see

an example of a LIME explanation of a particular instance. This helps to understand

how the model is trying to make the decision, whether it is an attacker or a non-

attacker and also shows which feature contributes more to the decision-making of the

model for a particular instance.

The LIME explanation in Figure 3.5 is for a constant position offset position falsi-

fication attack using random forest algorithm. Left side of the image indicates the

confidence of the model for a attacker and non-attacker and the center tree like struc-

ture highlights the contributions of various feature to the prediction. orange colour

indicates an attacker and blue indicates a non-attacker. The table on the right side

has features and its value for this particular instance. For example in LIME ex-

planation Figure 3.5 features pos-y(1138.18), pos-y(1429.75), senderspeudo(106935),

acl-x(-1.03) and sendTime(50736.93) are top features influencing the BSM as attacker

and features like hed-y(-0.86), messageID(1392944), rcvTime(50736.93), spd-y(-4,23)

and hed-x(-0.52) are contributing to non-attacker with lesser extent. Overall, the

LIME visualization provides a clear and interpretable explanation of the model’s pre-

diction, ensuring transparency and understanding of the machine learning model’s

decision-making process.

Figure 3.5: LIME Explanation
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The next stage in our method is to provide global explanations. Figure 3.6 is a

SHAP global explanation for a constant position offset using random forest algorithm.

The SHAP summary plot provides a detailed interpretation of feature contributions

to the machine learning model’s predictions by leveraging a game theory to assign

each feature an importance value called SHAP values. Unlike the traditional feature

importance, which simply ranks features based on their contribution to the models

accuracy, SHAP values offer more understanding by explaining how each feature af-

fects the prediction. This plot highlights pos-x, pos-y as the most influential features,

with SHAP values indicating that higher values in these features significantly impact

the model’s outputs.

SHAP values are calculated by considering the average marginal contribution of a

feature across all possible feature combinations, ensuring fair allocation of impor-

tance. senderPseudo, along with heading(hed-y, hed-x) and speed(spd-y, spd-x), also

demonstrates substantial impact. In contrast, features such as messageID, rcvTime,

sendTime, receiver-id and acceleration(acl-x, acl-y) exhibit minimal influence, as their

SHAP values remain closely clustered around zero, indicating negligible contribution

to the model’s output. This comprehensive analysis highlights the critical role of

positional data and the moderate importance of sender identification and motion pa-

rameters, while timing, receiver and acceleration are less significant. These insights

are important for enhancing model interpretability and guiding future model refine-

ment efforts.

Figure 3.6: SHAP Explanation
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3.4 How the Proposed Algorithm Differs from Ex-

isting Approaches

As discussed in the Section 2.6, many researchers have introduced a misbehaviour

detection framework to detect position falsification attacks using the VeReMi dataset

and Machine learning techniques. Techniques used in the current work include nor-

malization of features, implementing plausibility checks and employing trust-based

models to identify potential attacks. Some of the current work involves adding fea-

tures of calculation, such as a change in speed and position to train the model, and

most of the researchers split data randomly into train and test data, which may cause

scenarios like overfitting and data leakage. The majority of the studies have worked

on predicting the attacker and non-attacker vehicles in the network using machine

learning algorithms.

Our work differs from the existing approaches in the following techniques:

• We sort BSMs by receive time and split the data based on unique vehicle senders.

this ensures vehicles in the training set are not in the test set, preventing data

leakage and mimicking real-world scenarios.

• This method forces the model to learn generalized attack patterns rather than

memorizing specific vehicle data, enhancing its ability to detect falsification

from unseen vehicles.

• We integrate LIME and SHAP for local and global explanations of the decision-

making of the black-box models.
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CHAPTER 4

Results

Due to safety concerns, high infrastructure costs, facilities, and resource requirements,

conducting experiments to test the efficiency of a detection system in a real-world

scenario is hazardous and difficult. As a result, we run such experiments on a digital

scale using simulation tools. This is a much more cost-effective and safe way of

evaluating and analyzing algorithms. In this chapter, the section 4.1 reviews the

simulation setup of the VeReMi dataset, implementation environment and evaluation

metrics. Sections 4.2, 4.3, and 4.4 discuss the results and explanations obtained, and

section 4.5 discusses the comparison of the results with the existing approaches.

4.1 Setup Discussion

4.1.1 Simulation setup of VeReMi Dataset

In this research, we use the VeReMi dataset, which uses Luxembourg traffic sce-

nario(LuST)[38] and offers a wide range of scenarios for evaluating the VANET ap-

plication. The simulation parameters used to generate the VeReMi dataset are shown

in the Table 4.1.
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Table 4.1: Simulation parameters used in VeReMi dataset[27]

Parameters Value Description

Mobility SUMO LuST Luxembourg SUMO traffic

Simulation Area 2300, 5400-6300, 6300 Various road types

Simulation duration 100s

Attacker probability (0.1,0.2,0.3) Attacker probability in the
network

Simulation start (3,5,7)h Control density

Signal interference model Two-ray interference VEINS default

Obstacle shadowing Simple VEINS default

Shadowing Log-normal VEINS default

MAC implementation 802.11p VEINS default

Thermal power -110 dBm VEINS default

Bit-rate 6 Mbps VEINS default

Sensitivity -89 dBm VEINS default

Antenna model Monopole on roof VEINS default

Beaconing rate 1 Hz VEINS default

4.1.2 Evaluation Metrics

To evaluate the performance of our proposed model, we use several key metrics, and

they are discussed below.

• True Positive(TP) = instances correctly identified as positive(attacker)

• True Negative(TN) = instances correctly identified as negative(non-attacker)

• False Positive(FP) = instances incorrectly identified as positive(attacker)

• False Negative(FN)= instances incorrectly identified as negative(non-attacker)
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Accuracy: accuracy is a metric which is used to evaluate the performance of a

model. It is defined as the ratio of the correctly predicted observations to the total

observations.

Accuracy =
TP+TN

TP+TN+FP+FN

Precision: Precision measures the proportion of positive classifications that are

actually correct. Precision is also called positive predicted value.

Precision =
TP

TP+FP

Recall: Recall measures the ratio of actually positive classifications which was

classified as positive. Recall is also known as sensitivity.

Recall =
TP

TP+FN

F1-score: F1-score is a harmonic mean of precision and recall. F1-score gives a

trade-off between precision and recall such that a high F1-score denotes high precision

and recall values.

F1-score = 2 ∗ Precision∗Recall
Precision+Recall

4.1.3 Implementation Environment and Toolkit

All the experiments in this research were conducted in the following environment and

configuration:

• Operatin system : MacBook Pro - macOS Sonoma

• Processor: 3.2 GHz Apple M1

• Memory: 8 GB

Tools and libraries used for the implementation of this research are :

• Programing language: Python

• ‘Integrated Development Environment: Google Colab
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• Libraries: Scikit-learn, matplotlib, NumPy, Pandas, XAI

4.2 Classification Results

We implemented three algorithms (K-Nearrest Neighbour, Random Forest, Decision

Tree) and XAI techniques(LIME, SHAP) in the proposed framework on each attack

type. In this section, we will discuss the classification results of three algorithms

with precision, recall and F1-score as evaluation metrics for five types of position

falsification attacks.

The Table 4.2 shows the classification results of the attack types of the position

falsification attack. For Constant Position Attack, both the random forest and

decision tree algorithm are performing better with 90 and 92 percent accuracies com-

pared to the KNN algorithm with 86 percent.

The classification results of Constant Position Offest Attack show that all

algorithms are performing well. Random forest and decision tree algorithms are

92 and 96 percent, slightly better than the constant position attack. KNN has an

accuracy of 82 percent.

For Random Position Attack, the algorithms perform similarly to constant

position attacks with accuracies of random forest and decision tree algorithms around

92 percent, and KNN performed better than constant position and constant position

offset attacks with 89 percent accuracy.

For Random Position Offset Attack, the algorithms under-perform compared

to other attacks. Random forest and decision tree algorithms have an accuracy of

around 82 percent. and KNN has an accuracy of 62 percent, which is the lowest

compared to other attacks.

For Eventual Stop Attack, the algorithms perform similarly to other attacks

except random position offset attacks. Random forest and decision tree algorithms

have accuracies like 92 and 90 percent, and KNN has an accuracy of 82 percent.
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Table 4.2: Classification results of Proposed model

Algorithm Accuracy Precision Recall F1 Score

Constant Position Attack

Random Forest 92 92 91.25 89.71

Decision Tree 92.15 91.25 91.75 90.5

KNN 86.05 87.2 86.05 85.2

Constant Position Offset Attack

Random Forest 92 92 92.25 92

Decision Tree 96 96 96 96

KNN 82 82 81 82

Random Position Attack

Random Forest 92.5 92.5 92.25 92.5

Decision Tree 92.7 92.4 91.75 91.9

KNN 89.05 89.2 89.05 89

Random Position Offset Attack

Random Forest 82 82.6 82.25 81.71

Decision Tree 83.2 83.2 82.2 82.5

KNN 63.05 62.2 62.05 62.2

Eventual Stop Attack

Random Forest 92.5 92.6 92.5 92.4

Decision Tree 89.9 90 89.9 89.9

KNN 82.05 81.4 82.05 81.5

In the following sections, we use LIME and SHAP values to understand the

decision-making process for the above classification results. Although we have used

XAI for all three models, in the remainder of this chapter, we will focus on the expla-

nations using the random forest model only. The results for the other 2 models can
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be explained in a similar manner.

4.3 LIME EXPLANATIONS

LIME is used to explain individual predictions. In this section, we discuss some of

the LIME explanations for the individual instances of position falsification attacks.

We consider 5 different examples, one for each different type of position falsification

attack discussed in Sec 2.1.3.

Figure 4.1: LIME explanation of Random forest CPA

The LIME explanation in Figure 4.1 provides an explanation that Random For-

est predicts this instance as a non-attacker with 94 percent high confidence for

constant position attack. This instance is a true negative case. The model has

correctly classified the BSM. Top Features like pos-x(905.86) contribute most to-

wards the attacker, while pos-y(526.59), spd-y(-10.29), sender-pseudo(102015.00),

rcvTime(50548.44) contribute this as a non-attacker.

Figure 4.2: LIME Explanation of Random forest CPOA
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LIME explanation in Figure 4.2 provides an explanation that random forest pre-

dicts this instance as an attacker with 91 percent high confidence for constant position

offset attack. This instance is a true positive case, and the model correctly classifies

the BSM. Features like pos-y(1138.18), pos-x(1429.75), senderPseudo(106935), acl-

x(-1.03), and sendTime(50736.93) are the top features contributing to this BSM as

an attacker.

Figure 4.3: LIME Explanation of Random forest RPA

The LIME explanation in Figure 4.3 provides an explanation that the random

forest model predicts this instance as an attacker with 88 percent confidence for

random position attack. This instance represents a true positive case, where the

model correctly classified the BSM. Top features contributing to this classification

include pos-y (399.39), pos-x (1078.00), senderPseudo (102735), hed-y (0.99), and

acl-x (-0.06).

Figure 4.4: LIME Explanation of Random forest RPOA

The LIME explanation in Figure 4.4 provides an explanation that the random

forest model predicts this instance as a non-attacker with 91 percent high confidence
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for a random position offset attack. This instance represents a false negative case,

Where the model incorrectly classified the BSM. Top features like pos-y(411.27),

senderPseudo(102735.00), spd-x(-1.96), hed-y(0.99), rcvTime(50513.39) contribute as

an attacker, but this model classified this instance as a non-attacker.

Figure 4.5: LIME Explanation of Random forest ESA

The LIME explanation in Figure 4.5 provides an explanation that the random

forest model predicts this instance as an attacker with 95 percent high confidence for

eventual stop attack. This instance represents a true positive case, where the model

correctly classified the BSM. Top features like rcvTime(50513.39), sendTime(50513.39),

messageID(387380), pos-y(136.75) contributes it as a attacker and other features like

spd-y(0.00), pos-x(251.88), hed-x(-0.14), hed-y(0.99) contributes little towards non-

attacker.

Throughout our analysis, we have utilized LIME explanations to find the be-

haviour of random forest algorithm in identifying various position falsification attacks,

including CPA (Coordinate Position Attack), CPOA (Coordinate Position Offset At-

tack), RPA (Random Position Attack) and RPOA (Random Position Offset Attack).

The LIME explanations reveal that features such as pos-x, pos-y, senderPseudo, rcv-

Time, sendTime, heading (hed), speed (spd), and receiverId are the most influential

in these attack classifications. Specifically, pos-x and pos-y provide critical spatial

information, senderPseudo identifies the unique sender, while rcvTime and sendTime

offer temporal context. Additionally, heading and speed contribute to understand-

ing the motion dynamics of the vehicle, and receiverId helps distinguish different

receivers involved. For the ESA (Eventual Stop Attack) type, features like rcvTime,
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sendTime, messageID, position coordinates (pos-x and pos-y), and speed are found

to be the most impactful. These features are crucial for capturing the temporal se-

quence, unique message identification, spatial positioning, and velocity of the vehicle,

which are essential for accurately detecting ESA attacks. By using these LIME ex-

planations, we get a deeper understanding of the feature’s importance and model

behaviour, enhancing the transparency and interpretability of our attack detection

system.

4.3.1 LIME explanations for TP, TN, FP and FN predictions

In this section, we are using LIME to analyze the performance of a random forest

model in detecting constant position offset attacks. By examining True-Positive,

True-Negative, False-positive and False-Negative classifications, LIME helps identify

the key features influencing the model’s decisions. This analysis provides insights into

the model’s strengths and weaknesses, guiding improvements for more accurate and

reliable attack detection.

Figure 4.6: LIME Explanation of True-Positive instance of Random Forest

Figure 4.7: LIME Explanation of True-Negative of Random Forest
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Figure 4.8: LIME Explanation of False-Positive instance of Random Forest

Figure 4.9: LIME Explanation of False-Negative instance of Random Forest

The Figures 4.6, 4.7, 4.8, 4.9 are the explanations of the True-positive, True-

negative, False-positive, False-negative by random forest for the constant position

offset attack. These explanations can help to get insights into models’ decision-

making in true and false cases. For example, Figure 4.9 shows the model predicted

vehicle as a non-attacker with 77 percent confidence, despite most of the features

like pos-y(916.13), pos-x(925.66), senderPseudo(101955), spd-x(-8.48) influence the

vehicle as an attacker. This is a false negative case where the model has predicted

the output incorrectly.

The Random Forest model occasionally misclassified certain instances due to the

ensemble voting mechanism, where predictions are derived from the majority vote

of multiple decision trees. For this instance, even though features like pos-y and

pos-x indicate an attacker, their influence is counteracted by other features like spd-

y, hed-y, acl-x, and acl-y, which align with non-attacker patterns. This happens

because each tree in the forest may use different feature subsets and thresholds,

leading to a majority vote that can favour non-attacker classification despite strong
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individual indicators of an attack. Such mis-classification highlights the complex

interplay of feature contributions and the variability in how trees within the random

forest interpret feature values.

Table 4.3: Comparison of TP, TN, FP, and FN cases

Case
Type

Top Features Feature Impact Description

True-
Positive
4.6

pos-x, pos-y, sender,
acl-x,spd,hed-x, hed-
y,acl-y

Features correctly in-
dicate an attacker

Model correctly classifies at-
tack based on the top fea-
tures indicating malicious
behaviour with 90 percent
confidence.

True-
Negative
4.7

pos-y, pos-x, hed-x,
sender, hed-y, mess-
sageID, acl-y, spd-x

pos-y, pos-x, sender
misleadingly suggest
attack; other features
suggest non-attack

Despite some features sug-
gesting an attack, the model
correctly predicts as non-
attack with 73 percent con-
fidence.

False-
Positive
4.8

pos-x, pos-y, hed-x,
messageID, spd-
x,rcvTime, hed-y,
sender, spd-y

pos-x, sender, spd-x
are misleading as an
attacker and remain-
ing features suggest-
ing non-attacker

Model incorrectly predicts
an attacker with 87 percent
confidence despite most of
the features suggesting a
non-attacker

False-
Negative
4.9

pos-y, pos-x, sender,
spd-x, spd-y, hed-x,
send time, acl-x, acl-y

pos-y, pos-x, sender,
spd-x, hed-x, send-
Time suggest as at-
tacker and remaining
as non-attacker

Model incorrectly predicts
as non-attacker with 77
percent confidence although
features suggest as an at-
tacker.

The Table 4.3 is a summary of the comparison of the different prediction cases by

random forest for constant position offset attack. Each row includes the case type,

top features, features impact, and a brief description of each case.

Overall in this section, we examined true-positive, true-negative, false-positive, and

false-negative instances using random forest. Random Forest provides detailed ex-

planations and confidence levels. For instance, it correctly identified a true-positive

attacker with 87 percent confidence influenced by features like pos-x, pos-y, acl-x,

and spd-x. It also identified true-negative with 73 percent confidence despite most
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of the features suggesting an attack. However, it misclassified a non-attacker as

an attacker(false-positive) with 87 percent confidence and also misclassified a false-

negative case as a non-attacker with 77 percent confidence. The random forest’s

detailed insights into these predictions highlight its effectiveness in understanding

and improving model performance.

4.4 SHAP Explanations

These are some of the SHAP global explanations of the position falsification attack.

Figure 4.10: SHAP explanation of
RF for CPA

Figure 4.11: SHAP explanation of
RF for CPOA

Figure 4.12: SHAP explanation of
RF for RPA

Figure 4.13: SHAP explanation of
RF for RPOA
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Figure 4.14: SHAP explanation of
RF for ESA

The Figures 4.10, 4.11, 4.12, 4.13, 4.14 are the global explanations for five dif-

ferent attacks in position falsification attack using random forest algorithm. These

SHAP summary plots explain the impact of each feature on the model’s prediction by

displaying how SHAP values for specific features influence the model’s output. For

instance, in Figure 4.11, which explains a constant position offset attack, the features

pos-x and pos-y have the most impact on the model’s output with a wide range of

SHAP values. While other features like heading(hed-x, hed-y), senderPseudo, and

speed(spd-x, spd–y) have a moderate impact on the model’s output with less range

of SHAP values. Features messageID, rcvTime, sendTime, receiver-id, acl-x, and acl-

y have the lowest impact on the model’s output, with SHAP values of almost zero. In

this plot, red indicates the higher feature value, and blue indicates the lower feature

value. This analysis highlights the critical role of positional data and the moderate

importance of sender information and motion parameters, while timing, receiver and

acceleration are less important. This detailed analysis is crucial for interpreting the

model’s behaviour and improving its robustness against position falsification attacks.

4.5 Comparison with Existing Approaches

Based on the performance of the different Machine learning algorithms and XAI

explanations, we selected Random Forest with the proposed custom-split BSM and
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XAI model to compare with the existing techniques. The proposed model is different

from the existing models. We have used XAI techniques like LIME and SHAP to

provide insights into the model’s decision-making. Most of the existing approaches

only focus on the classification of vehicles. We have tried to get insights into how

the classification works because most ML models are black-box models which only

provide the result but never tell how they got the result. A detailed review of these

existing approaches can be found in the literature review Section 2.6

Table 4.4: Comparison of proposed model with existing approaches

Results
from:

Accuracy Precision Recall F1-
Score

Dataset XAI Explanations

Paper
1:[47]

98 99 97 98 VeReMi Not provided

Paper 2:
[48]

99 99 99 99 BurST
adma

LIME and SHAP ex-
planations provided

Proposed
Model

92 92 92 92 VeReMi LIME and SHAP ex-
planations provided

Table 4.4 shows a comparison of the proposed approach with the existing tech-

niques. Paper 1 and Paper 2 perform similarly with almost 98 and 99 percent accu-

racy. Paper 1 uses an XAI trust-based approach but does not provide any explanations

for the model’s predictions. This paper use VeReMi Datset and work on position fal-

sification attacks. Paper 2 uses an ML algorithm and integrates XAI techniques like

LIME and SHAP for providing explanations but uses a different dataset, which is

derived from BurST-adma, and they have been implemented for speed falsification

attacks. To the best of our knowledge, there are currently no XAI models for position

falsification attacks for the VeReMi dataset.

The proposed model works on position falsification attacks using the VeReMi

dataset, and we have implemented a new technique, a custom split BSM approach.

We made sure the test data and training data were unique to avoid data leakage. The

proposed model provides good classification results and LIME and SHAP explanations

for the insights for a better understanding of the black-box ML models.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

This thesis proposes a novel Machine learning and XAI techniques-based approach for

classifying position falsification attacks and providing classification LIME and SHAP

explanations in VANETs. Unlike the existing approaches, we have implemented a

custom-split BSM approach to avoid data leakage. These custom-splitted BSM train

data are used to train the proposed model using different machine learning algo-

rithms. The test data is used to measure the performance metrics of the machine

learning algorithms, and XAI techniques like LIME and SHAP are integrated to pro-

vide explanations of the classification made by the ML algorithms. The performance

of the four different machine learning algorithms was compared with each other using

performance metrics and explainability of the XAI explanations. Among all the ma-

chine learning algorithms, Random Forest and Decision tree algorithms yield the best

results with an accuracy around 92 percent compared to the K-Nearest Neighbour

algorithm. Random forest algorithm provides detailed LIME and SHAP explanations

like the confidence of the model and important features that contribute to the model

output compared to the decision tree and KNN algorithms. This thesis contributes

by providing valuable insights into the model’s decision-making by highlighting the

significance and impact of individual features, making the detection process trustwor-

thy. This work paves the way for future advancements in securing vehicular networks

against cyber threats.
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5.2 Future Work

The VeReMi dataset [17] is limited to five types of position falsification attacks and

does not fully represent all possible attacks in VANETs. This approach can be imple-

mented for all different types of attacks in the VeReMiEXT dataset [27] to provide

useful insights. Feature engineering and hyper-parameter tuning can be applied to

enhance the accuracy. Future work can be focused on enhancing the model’s robust-

ness against evolving attacks in VANETs, exploring advanced XAI techniques such as

Gradients, DeepLIFT or model-specific interpretability methods for deeper insights.

Develop methodologies for implementing real-time detection and responsive mecha-

nisms based on insights from XAI explanations. Address privacy concerns related to

collecting and using vehicular data in VANETs while ensuring the proposed approach

remains scalable.
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