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ABSTRACT	
Large	 language	models	 (LLMs)	brought	about	a	paradigm	shift	 in	 the	

domain	 of	 natural	 language	 processing,	 characterized	 by	 their	 large	 scale,	

deep	 architectures,	 and	 pre-training	 on	 massive	 amounts	 of	 data,	 enabling	

them	 to	 learn	 rich	 and	 nuanced	 representations	 of	 language.	 They	 have	

demonstrated	 impressive	 performance	 in	 natural	 language	 understanding	

tasks	 across	 different	 domains.	 Recent	 works	 have	 started	 incorporating	

LLMs	 in	 pharmacological	 domains	 such	 as	 drug	 discovery	 and	 drug	

interactions.	

Drugs	 play	 a	 crucial	 role	 in	 alleviating	 pain	 and	 curing	 diseases	 but	

often	come	with	unintended	side	effects,	which	can	lead	to	significant	health	

risks	and	financial	costs.	Early	detection	of	these	drug	side	effects	during	drug	

development	 is	 essential	 to	 avoid	 adverse	 outcomes.	 Recent	 studies	 have	

started	to	focus	on	a	relatively	newer	problem	-	predicting	the	frequencies	of	

given	 side	 effects	 which	 is	 an	 important	 factor	 in	 evaluating	 therapeutic	

efficacy.	 This	 area,	 however,	 remains	 somewhat	 underexplored,	with	 only	 a	

few	studies	dedicated	to	it	so	far.	

In	this	study,	we	introduce	a	novel	LLM-based	architecture	that	utilizes	

LLMs	to	generate	embeddings	from	drug	and	side	effect	attributes	in	order	to	

predict	the	frequencies	of	drug	side-effects	as	well	as	the	high	frequency	drug	

side	 effects.	 We	 used	 Galeano's	 dataset,	 a	 standard	 benchmark	 dataset	 for	

drug	side-effect	frequency	prediction.	Our	approach	utilized	different	LLMs	to	

generate	embeddings	and	fine-tune	them	in	order	to	predict	the	frequencies.	

Measuring	 the	 frequency	 of	 the	 side	 effects	 can	 help	 determine	 the	

therapeutic	efficacy	of	a	drug	in	clinical	settings	and	help	weigh	the	potential	

risks	and	benefits	of	certain	drugs.	The	key	objective	of	this	research	is	to	look	

into	 the	 performance	 of	 utilizing	 large	 language	 models	 for	 predicting	 the	

frequencies	of	drug	side	effects.	
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CHAPTER	1	

Introduction	
	
 

A	molecule	consists	of	two	or	more	atoms	chemically	bonded	together,	forming	

the	 basic	 unit	 of	 chemical	 substances,	 that	 represents	 the	 smallest	 unit	 of	 a	 pure	

substance,	maintaining	 the	 substance's	 composition	 and	 chemical	 properties	 even	

when	divided	[1].	Drugs	are	chemical	entities	composed	of	specific	molecules	with	

pharmacological	 properties	 that,	 when	 administered	 to	 an	 organism,	 can	 bring	

about	changes	in	the	organism's	physiology	or	psychology	[2].	These	changes	do	not	

always	bring	about	the	intended	therapeutic	effects.	Sometimes,	they	can	also	bring	

about	 side	 effects,	which	 constitute	 any	unintended	 reactions	 resulting	 from	drug	

administration.	Side	effects	can	be	either	therapeutic,	providing	unexpected	benefits	

[3],	 or	 adverse,	 causing	 harmful	 or	 undesired	 reactions	 [4].	 Adverse	 side	 effects	

(ASEs)	 are	 the	 undesired	 reactions	 of	 certain	 drugs	 and	 can	 range	 from	 mild	

symptoms	like	headaches	or	nausea	to	severe	complications	such	as	cardiac	arrest,	

brain	stroke,	organ	failure,	cancer,	or	even	death	[5].	

The	development	and	approval	of	drugs	involve	a	rigorous	series	of	clinical	trials	

that	 is	 set	 in	place	 to	ensure	safety	and	efficacy.	However,	despite	 these	 thorough	

evaluations	and	tests,	absolute	drug	safety	cannot	always	be	guaranteed	[6].	Several	

factors	contribute	to	this	uncertainty.	The	relatively	small	and	controlled	nature	of	

clinical	 trial	 populations	 may	 not	 adequately	 represent	 the	 diverse	 real-world	

populations	 that	 will	 use	 the	 drug	 post-approval	 [7].	 Differences	 in	 age,	 sex,	
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genetics,	pre-existing	conditions,	and	concurrent	medications	can	all	influence	how	

a	drug	affects	an	individual,	potentially	leading	to	unforeseen	side	effects	[6][7].	The	

limited	 duration	 of	 clinical	 trials	might	 not	 capture	 long-term	 side	 effects	 or	 rare	

adverse	 reactions	 that	 only	 become	 apparent	 after	 extended	 use	 or	 in	 larger	

populations	[8].	Additionally,	an	important	aspect	of	clinical	trials	 is	the	frequency	

with	which	 an	ASE	occurs	 as	 it	 is	 a	 significant	 factor	 in	 assessing	 the	 benefit	 risk	

assessment,	i.e.	the	balance	between	the	therapeutic	efficacy	and	the	safety	risks	of	a	

drug	[9].		

The	 implications	 of	 adverse	 side	 effects,	 especially	 how	 frequently	 they	 occur,	

are	profound,	affecting	not	only	 the	 individuals	who	experience	 them	but	also	 the	

broader	 healthcare	 system	 and	 the	 drug	 development	 process.	 This	 is	 why	 ASEs	

have	 garnered	 significant	 attention	 in	 recent	 times	 as	 well	 as	 looking	 into	 the	

frequencies	with	which	they	occur	[10].	

1.1 Background	

ASEs	are	encompassed	by	a	broader	term	Adverse	Drug	Reactions	(ADR)	which	

includes	other	unexpected	responses	such	as	allergic	reactions	or	drug	interactions	

besides	ASEs.	In	North	America,	ADRs	are	in	the	top	ten	causes	of	fatalities	and	the	

annual	costs	incurred	by	the	Canadian	healthcare	system	is	estimated	to	be	over	$13	

billion	(CAD)	[11].	Deaths	from	ASEs	rank	amongst	the	fourth	to	sixth	leading	cause	

of	fatalities	around	the	world	[12].		

According	 to	 various	 research	 studies,	 it	 has	 been	 estimated	 that	 drug-related	

cases	contribute	to	approximately	1-25%	of	all	hospital	admissions	and	emergency	

department	(ED)	visits	[13].	It	is	noted	that	around	two-thirds	of	these	drug-related	

hospital	admissions	and	ED	visits	are	due	to	ADRs	[14].		

Drug	 discovery	 involves	 the	 innovation	 of	 new	 therapeutic	 drugs	 using	 a	

combination	of	computational,	experimental,	translational,	and	clinical	models	[15].	

Introducing	 a	 new	 drug	 to	 the	 market	 has	 to	 go	 through	 numerous	 stages	 of	



 

3 
 

innovation	as	well	 as	 testing.	The	average	 total	 cost	 of	 research	and	development	

over	 many	 years	 to	 introduce	 a	 single	 drug	 to	 the	 market	 is	 in	 the	 range	 of	

approximately	 $314	million	 USD	 to	 $2.8	 billion	 USD	 [16].	 ASEs	 pose	 a	 significant	

challenge	 for	 pharmaceutical	 companies,	 as	 their	 occurrence	 during	 clinical	 trials	

can	slow	down	the	drug	discovery	process	and	prevent	many	candidate	molecules	

from	 being	 developed	 into	 commercial	 drugs	 [17].	 ASEs	 are	 the	 most	 common	

reason	for	a	drug	not	making	it	into	commercial	development,	second	only	to	lack	of	

efficacy	[18].	

With	 the	 lengthy	 and	 expensive	 experimental	 procedures	 to	 explore	 the	 side	

effects	 during	 the	 trial	 phase	 of	 a	 drug	 in	 traditional	 wet	 experiments,	 recent	

researches	 have	 started	 to	 look	 into	 in	 silico	methods,	 especially	 those	 based	 on	

machine	 learning	 and	 deep	 learning,	 to	 help	 expedite	 the	 screening	 process	 and	

reduce	the	expensive	trial	costs	[19].	

1.2 Drug	Computational	Representation	

Machine	 learning	models	need	to	convert	different	 forms	of	data	such	as	 texts,	

images,	 audio	 etc.	 to	 dense,	 lower-dimensional	 numerical	 vectors	 to	 be	 able	 to	

process	 the	 data	 and	 capture	 underlying	 patterns	 and	 relationships	 [59].	 These	

dense	vectors	are	called	embeddings.	

In	order	to	obtain	embeddings	for	drugs	and	side	effects	using	Large	Language	

Models	(LLM)	and	predict	the	frequencies	of	those	side	effects	using	deep	learning	

techniques,	 we	 need	 different	 computational	 representation	 of	 drugs	 and	 side	

effects.	Representation	of	drugs	for	computational	purposes	can	be	generalized	into	

4	types	–	Chemical	Structure	Representation	by	strings,	Molecular	Fingerprint,	Drug	

Descriptors,	and	Graph	Representation	as	illustrated	in	Figure	1.2.1.	

These	representations	serve	as	the	foundation	for	converting	complex	chemical	

and	biological	information	into	a	format	that	machine	learning	models	can	process	

and	 analyze.	 Each	 of	 these	 types	 captures	 unique	 aspects	 of	 the	 drug's	 chemical	
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makeup	 and	 biological	 activity,	 providing	 a	 comprehensive	 dataset	 for	 predictive	

modeling.	These	diverse	computational	representations	are	essential	for	generating	

high	quality	embeddings	 for	downstream	 tasks	 such	as	drug	discovery,	drug	side-

effect	prediction	and	drug	side-effect	frequency	prediction.	

	

 

Figure	1.2.1:	Category	of	Drug	Representations	

1.2.1 String	Representation	

The	simplest	string	representation	that	a	molecule	can	be	represented	by	is	 its	

molecular	 formula.	 Molecular	 formula	 consists	 of	 just	 the	 different	 atoms	 that	 a	

molecule	 contains	 and	 how	many	 of	 those	molecules	 are	 there.	 For	 example,	 the	

molecular	 formula	of	glucose	would	be	represented	as	C6H12O6.	However,	 this	 is	a	

reductive	 and	 minimalistic	 representation	 of	 a	 molecule	 and	 lacks	 information	

regarding	 the	 structure	 of	 the	 molecule.	 In	 computational	 chemistry,	 this	 lack	 of	

information	could	hinder	the	performance	of	models	as	it	requires	representations	

containing	more	information	such	as	the	bonds	and	chains	of	molecules.	
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Some	of	the	more	expressive	string	representations	of	molecules	which	is	more	

information-rich	 are	 SMILES	 representation	 and	 SELFIES	 representation	 of	

molecules:	

1.2.1.1 SMILES	

SMILES	 (Simplified	Molecular	 Input	 Line	 Entry	 System)	 string	 representations	

are	a	notation	system	that	consists	of	ASCII	characters	and	follows	a	set	of	rules	to	

represent	 chemical	 structures	 in	 a	 linear	 textual	 format	 [20].	 Some	 of	 the	 key	

features	are:	

• Atoms	 are	 represented	 by	 their	 atomic	 symbols.	 For	 example,	 “C”	 for	

carbon	and	“O”	for	oxygen.	

• Single	bonds	are	implied,	so	they	are	not	shown,	and	double	bonds,	triple	

bonds	 and	 aromatic	 bonds	 are	 represented	 by	 “=”,	 “#”,	 and	 “:”	

respectively.		

• Branches	are	represented	using	parentheses.	For	example,	“CCC(C)O”.	

• Rings	 are	 represented	 by	 numbers	 at	 the	 start	 and	 end	 of	 a	 string.	 For	

example,	 cyclohexane	would	be	 represented	as	 “C1CCCCC1”	with	 the	Cs	

enclosed	by	the	1s	denoting	the	ring.	

• Aromatic	atoms	are	represented	by	lowercase	letters.	

An	 example	 of	 3-cyanoanisole	 illustrating	 the	 ways	 in	 which	 bonds,	 branches	

and	rings	discussed	above	are	represented	by	a	SMILES	string	is	shown	below:	

 

Figure	1.2.2:	SMILES	representation	of	3-cyanoanisole	[60]	
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1.2.1.2 SELFIES	

SELFIES	 (Self-Referencing	 Embedded	 Strings)	 is	 a	 novel,	 machine-readable	

molecular	 representation	 that	 uses	 context-free	 grammar	 to	 encode	 structural	

information	 of	 molecules	 [21].	 SELFIES	 representation	 is	 particularly	 useful	 in	

computational	 chemistry	 for	 representing	 chemical	 compounds	 in	 a	 way	 that	

ensures	syntactical	validity,	making	it	more	robust	for	use	in	machine	learning	and	

other	computational	models.	Some	of	the	key	features	of	SELFIES	are:	

• Self-referencing	 grammar	 ensures	 valid	 chemical	 structure	 thus	 not	

requiring	post-generation	validation	checks.	

• All	SELFIES	strings	are	syntactically	valid.	

• Its	canonical	form	can	uniquely	represent	molecules.	

An	example	of	a	SELFIES	string	representation	can	be	seen	in	Figure	1.2.3.	

 

Figure	1.2.3:	Molecular	Graph	Representation	as	(A)	SMILES	(B)	SELFIES	[21]	

1.2.1.3 Other	String	Representations	

There	are	numerous	other	string	representations	of	the	chemical	structure	of	

molecules	such	as	InChl	[22],	Canonical	SMILES	[23],	SMARTS	[24],	etc.	



 

7 
 

1.2.2 Molecular	Fingerprint	

A	 molecular	 fingerprint	 is	 a	 vector	 representation	 of	 a	 molecule's	 structure,	

capturing	 specific	 information	 about	 its	 atomic	 and	 molecular	 features.	 These	

fingerprints	capture	certain	patterns	or	structures	within	molecules.		

They	 are	 also	 capable	 of	 representing	 certain	 substructures	 or	 properties	 that	

enables	efficient	and	convenient	comparison	and	analysis	of	different	compounds	in	

large	databases.	

Described	below	are	some	of	the	most	common	fingerprinting	techniques:	

1.2.2.1 Topological	Fingerprint	

It	 captures	 the	 molecular	 connectivity	 and	 the	 arrangement	 of	 atoms	 in	 a	

molecule.	The	name	comes	 from	this	approach	encoding	 topological	 information	–	

information	regarding	how	atoms	are	connected	to	one	another	within	a	molecule	

into	a	fixed	length	binary	or	integer	vector	[25].	

A	widely	used	example	of	topological	fingerprint	is	the	Daylight	Fingerprint	[68]	

method	 of	 encoding	 molecules.	 In	 Daylight	 Fingerprint	 generation	 of	 molecules,	

various	substructures	are	identified	based	on	different	number	of	bonds	in	a	path	–	

it	represents	a	sequence	of	n	number	of	connected	atoms.	These	substructures	are	

then	hashed	into	specific	positions	into	a	bit	string.	The	positions	in	the	fingerprint	

represent	the	presence	or	absence	of	these	substructures	in	a	molecule.	Finally,	the	

binary	 fingerprint	 formed	 is	 a	 fixed-length	 binary	 vector	 where	 each	 position	

indicates	whether	a	substructure	(path)	exists	in	a	given	molecule.		

An	 example	 of	 how	 daylight	 fingerprint	 encodes	 a	 molecule	 into	 a	 binary	

fingerprint	 vector	 is	 illustrated	by	 the	 encoding	 of	 the	molecule	 cyclohexanone	 in	

the	figure	below:	
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Figure	1.2.4:	Daylight	Fingerprinting	of	Cyclohexanone	[68]	

1.2.2.2 Pharmacophoric	Fingerprint	

The	pharmacophore	model	is	used	in	drug	discovery	and	design	to	identify	and	

optimize	potential	drug	candidates	by	ensuring	they	possess	the	necessary	features	

to	elicit	the	desired	biological	response.	They	look	for	pharmacophoric	features	such	

as	 hydrogen	 bond	 donors,	 hydrogen	 bond	 acceptors,	 hydrophobic	 centers,	 et	

needed	to	bind	to	target	proteins	or	enzymes.	

This	 type	 of	 fingerprint,	 unlike	 other	 types	 of	 molecular	 fingerprinting	

techniques	 where	 the	 focus	 is	 on	 bond-level	 or	 atomic	 connectivity	 structure	 as	

explain	in	the	previous	section,	focuses	on	abstracting	the	molecule	into	sets	of	key	

functional	groups	that	are	significant	for	drug	target	interactions.	

To	 generate	 pharmacophoric	 fingerprints,	 3D	 structures	 containing	 the	 spatial	

information	of	a	molecule	is	considered.	The	next	step	is	to	abstract	away	the	bonds	

and	atoms	and	 just	 focus	on	key	pharmacophoric	 features	such	as	hydrogen	bond	

acceptors,	 donors,	 cationic	 and	 anionic	 groups,	 et	 cetera.	 This	 step	 of	 isolation	 of	

functional	 group	 assists	 in	 focusing	 on	 the	 features	 that	 are	 more	 important	 for	

target	interaction	rather	than	considering	the	whole	atomic	structure.	
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The	next	step	is	to	connect	these	abstracted	functional	groups	representing	the	

spatial	 relationship	 between	 them	 followed	 by	 distance	 between	 the	 functional	

groups	being	measured.	Finally,	the	distances	and	relationships	are	encoded	into	a	

binary	fingerprint	that	represents	if	specific	distance	or	arrangement	between	these	

pharmacophoric	features	are	present	or	absent.	

This	 process	 of	 encoding	 a	 molecule	 to	 its	 pharmacophoric	 fingerprint	 is	

illustrated	by	the	example	below:	

 

Figure	1.2.5:	Pharmacophoric	Fingerprint	[69]	

1.2.2.3 Extended	Connectivity	Fingerprint	(ECFP)	

ECFP	is	a	type	of	molecular	fingerprint	used	in	chemical	informatics	to	represent	

the	structural	features	of	molecules	[26].	They	are	designed	to	capture	the	presence	

and	 arrangement	 of	 chemical	 substructures	 within	 a	 molecule.	 ECFPs	 are	 widely	
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used	 in	 virtual	 screening,	 similarity	 searching,	 and	 quantitative	 structure-activity	

relationship	 modeling.	 They	 provide	 a	 robust	 and	 compact	 representation	 of	

molecules,	facilitating	the	comparison	and	analysis	of	chemical	compounds	based	on	

their	 structural	 similarities	 and	 differences	 [70].	 ECFPs	 are	 also	 referred	 to	 as	

circular	 fingerprints	 as	 they	 encode	 the	 local	 spatial	 environment	 of	 an	 atom	

considered	to	be	the	central	atom	within	a	specific	radius	which	is	usually	around	2-

4	bonds.	

To	encode	molecules	to	its	ECFP,	the	first	step	is	to	identify	a	central	atom.	This	

is	followed	by	setting	specific	radii,	or	the	number	of	bonds	from	the	central	atom	to	

be	 considered.	This	 is	 illustrated	by	 concentric	 circles	 of	 different	 radius	 showing	

different	distance	from	the	central	atom.	This	splits	the	molecule	into	atom	centered	

fragments.	These	fragments	are	then	hashed	to	specific	bits	in	a	fixed-length	binary	

vector.	These	represent	the	presence	or	absence	of	these	fragments	in	a	molecule.	

This	process	is	illustrated	in	the	figure	below:	

 

Figure	1.2.6:	Extended	Connectivity	Fingerprint	[71]	
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1.2.3 Molecular	Descriptors	

Molecular	 descriptors	 are	 quantitative	 descriptions	 of	 a	 molecule's	 chemical	

structure	 and	 properties	 that	 can	 be	 used	 in	 cheminformatics	 and	 computational	

chemistry	 to	 characterize	 and	 analyze	 chemical	 compounds.	 These	 contain	 any	

physicochemical	 numeric	 descriptors	 such	 as	molecular	weight,	 polarity,	 partition	

coefficient,	solubility,	etc.	

Molecular	 descriptors	 such	 as	 molecular	 weight	 or	 partition	 coefficient	 are	

encoded	 numerically	 as	 scalar	 values.	 Molecular	 descriptors	 such	 as	 presence	 or	

absence	of	hydrogen	bond	donors	can	be	represented	as	Boolean	values.	Numerous	

of	these	physicochemical	molecular	descriptors	can	be	combined	together	to	create	

a	feature	vector.	An	example	of	a	feature	vector	could	look	like:	

[Molecular	 Weight:	 300,	 Partition	 Coefficient:	 2.5,	 H-bond	 Donors:	 1,	 Molar	

Refractivity:	80.5,	Solubility:	0.001]	

These	vectors	are	crucial	in	predicting	biological	activity	of	molecules	based	on	

their	 molecular	 descriptors	 as	 well	 as	 searching	 similar	 molecules	 based	 on	

similarity	in	their	physicochemical	properties.	

1.2.4 Graph	Representation	

Molecular	 graph	 representation	 models	 drugs	 as	 graphs,	 with	 atoms	

represented	as	nodes	and	bonds	as	edges.	This	approach	captures	the	connectivity	

and	 spatial	 relationships	 between	 atoms	 within	 a	 molecule,	 providing	 a	 detailed	

depiction	 of	 the	 molecule's	 structure.	 Such	 representations	 are	 highly	 useful	 in	

computational	 chemistry	 and	 drug	 discovery,	 as	 they	 allow	 for	 the	 application	 of	

robust	and	efficient	learning	algorithms	specifically	designed	for	graph	data.		
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These	 algorithms	 can	 analyze	 the	 molecular	 graph	 to	 predict	 properties,	

activities,	 and	 interactions,	making	 them	 invaluable	 tools	 in	 the	 identification	 and	

optimization	of	potential	drug	candidates.	

In	 this	 representation,	 each	 atom	 is	 represented	 as	 a	 node	 in	 a	 graph	 and	 the	

bonds	between	those	atoms	are	represented	by	edges	in	a	graph.	Different	types	of	

atoms	can	be	represented	by	different	types	of	nodes	and	the	edges	can	also	be	of	

different	types	based	on	the	different	types	of	bonds	between	them.	However,	in	the	

simplest	form,	all	bonds	are	treated	as	generic	edges.	

An	example	of	molecular	graph	representation	of	the	molecules	4-Pentynenitrile	

and	Toluene	is	illustrated	below:	

 

Figure	1.2.6:	Molecular	Graph	Representation	of	a)	4-Pentynenitrile	and	b)	Toluene	

1.3 Large	Language	Models	

Large	 Language	 Models	 (LLMs)	 are	 advanced	 neural	 network	 architectures	

designed	 to	understand,	 generate,	 and	manipulate	human	 language.	These	models	

have	very	large	number	of	parameters,	often	in	the	range	of	hundreds	of	millions	to	

tens	of	billions.	These	large	number	of	parameters	enable	these	models	to	capture	
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the	 nuances	 of	 language	 and	 develop	 comprehension	 unlike	 any	 other	 machine	

learning	models.	 These	models	 are	built	 on	deep	 learning	 techniques,	 particularly	

leveraging	 the	 Transformer	 architecture	 [27],	 which	 has	 revolutionized	 natural	

language	 processing	 (NLP)	 due	 to	 its	 ability	 to	 handle	 vast	 amounts	 of	 data	 and	

capture	complex	linguistic	patterns.	

1.3.1 Advantages	

The	advantages	of	using	LLMs	are:	

• They	 are	 extremely	 versatile	 and	 can	perform	a	wide	 array	 of	 different	

tasks	 such	 as	 text	 generation,	 translation,	 summarization,	 sentiment	

analysis,	etc.	

• LLMs	have	the	capacity	to	generalize	very	well.	

• LLMs	excel	at	context	comprehension	due	to	the	attention	module	of	the	

Transformer	architecture	[27].	

• Pre-training	of	LLMs	on	huge	datasets	allows	 it	 to	come	preloaded	with	

context	of	language	thus	reducing	the	need	for	large,	labeled	datasets.	

• LLMs	have	demonstrated	 impressive	performance	 in	 zero-shot	 learning	

(where	 the	 model	 has	 to	 categorize	 or	 recognize	 types	 of	 a	 sample	

without	ever	having	seen	any	sample	of	that	type)	and	few-shot	learning	

(where	it	was	exposed	to	very	minimal	training	data).	

1.3.2 Types	of	LLMs	

Different	 types	 of	 LLMs	 have	 been	 discovered	 that	 excel	 in	 different	 tasks.	

However,	they	could	be	categorized	into	2	main	types:	

• GPT	(Generative	Pre-trained	Transformer)	[28]:	GPT	models	are	used	

primarily	for	generating	texts.	It	utilizes	the	unidirectional	decoder	block	

from	 the	 transformer	 model	 predicting	 the	 next	 word	 in	 a	 sequence	
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based	on	the	input	sequence.	GPTs	are	pre-trained	on	a	massive	corpus	of	

text	 thus	making	 it	 capable	of	very	accurate	 text	generation	 in	different	

domains	and	can	also	be	 fine-tuned	to	 fit	various	different	 tasks.	One	of	

the	 most	 common	 uses	 of	 GPTs	 are	 in	 OpenAI’s	 ChatGPT	 [32]	 and	

Google’s	Gemini	[33].	

• BERT	 (Bidirectional	 Encoder	 Representation	 from	 Transformers)	

[29]:	BERT	are	primarily	used	for	tasks	such	as	question	answering	and	

comprehension	of	natural	language	using	embeddings.	

	

1.4 Problem	Statement	

Given	a	Drug	Side-Effect	Frequency	(DSF)	network	 -	 consisting	of	drug	𝑑! ∈ 𝐷	

where	D	is	a	drug	set	containing	m	drugs,		side	effect	𝑠" ∈ 𝑆	where	S	is	a	side	effect	

set	with	n	side	effects,	with	known	frequency	values	between	𝑑!	and	𝑠";	and	a	new	

pair	𝑝#$ =	 (𝑑# , 𝑠$)		the	 goal	 is	 to	 predict	 the	 frequency	𝐹%!&" 	between	 the	 new	 drug	

and	side	effect	pair	𝑑# 	and	𝑠$ 	where	𝐹%!&" ∈ [1, 5] ∩ ℤ.	

For	instance,	

• DSF	–	Galeano	and	Zhao’s	Dataset	[30][31],	

• Drug	(𝑑)	–	Gadobutrol	

• Side	Effect	(𝑠)	–	Headache	

• Task	-	2𝑑# , 𝑠$3 → [1, 5]	
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Figure	1.4.1:	DSF	Network	(Sampled)	

Furthermore,	given	a	Drug	Side-Effect	High	Frequency	(DSHF)	network,	which	is	

the	binarized	DSF	network	with	 frequency	values	greater	 than	3	considered	 to	be	

high	 frequency	 (1)	and	 the	 rest	 as	0,	 consisting	of	drug	 set	𝑑! ∈ 𝐷,	 side	effect	 set	

𝑠" ∈ 𝑆,	with	known	high	frequency	values	between	𝑑!	and	𝑠";	and	a	new	pair	𝑝#$ =

	(𝑑# , 𝑠$)		we	have	to	predict	the	high	frequency	𝐻%!&"between	the	new	drug	and	side	

effect	pair	𝑑# 	and	𝑠$ 	where	𝐻%!&" ∈ [0, 1] ∩ ℤ.	

For	instance,	

• DSHF	–	Galeano	and	Zhao’s	Dataset	[30][31]	binarized,	
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• Drug	(𝑑)	–	Gadobutrol	

• Side	Effect	(𝑠)	–	Headache	

• Task	-	2𝑑# , 𝑠$3 → [0, 1]	

	

 

Figure	1.4.2:	DSHF	Network	(Sampled)	

This	 research	 intends	 to	 develop	 a	 novel	 similarity	 based	 architecture	 to	

generate	embeddings	using	LLMs	and	fine-tune	them	using	a	DSF	network	curated	

in	 previous	 research	 [30][31]	 along	 with	 additional	 descriptions	 curated	 from	

multiple	sources	to	predict	the	frequency	of	certain	side	effects	for	certain	drugs.		
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We	 generate	 the	 embeddings	 of	 the	 attributes	 in	 two	 concurrent	 steps.	 We	

generate	embeddings	of	the	drug	chemical	structure	and	side	effect	names	and	then	

generate	 embeddings	 of	 the	 biomedical	 text	 information	 of	 the	 drugs	 and	 side	

effects.	We	 then	concatenate	 these	embeddings	and	perform	the	 final	 task	of	drug	

side	effect	frequency	prediction.	

We	 also	 use	 the	 exact	 same	 framework	 for	 high	 frequency	 drug	 side	 effect	

prediction	where	we	binarized	the	DSF	network.	

1.4.1 Thesis	Motivation	

Understanding	the	frequency	of	side	effects	associated	with	a	drug	is	crucial	for	

evaluating	 its	 overall	 therapeutic	 efficacy	 in	 clinical	 settings.	 By	 quantifying	 how	

often	 specific	 adverse	 reactions	 occur,	 healthcare	 providers	 and	 researchers	 can	

assess	 the	 safety	profile	 of	 the	medication	and	make	 informed	decisions	 about	 its	

use.	This	information	helps	in	identifying	the	threshold	at	which	the	benefits	of	the	

drug	outweigh	its	potential	risks,	particularly	for	drugs	that	treat	serious	conditions	

but	may	have	significant	side	effects.	For	instance,	a	drug	that	is	highly	effective	in	

treating	a	 life-threatening	 illness	but	has	a	known	side	effect	 that	occurs	 in	a	very	

small	percentage	of	patients	may	still	be	considered	beneficial.	On	the	other	hand,	if	

the	side	effects	are	more	common	or	severe,	the	risk-benefit	analysis	might	suggest	

alternative	treatments.	Additionally,	understanding	the	frequency	and	nature	of	side	

effects	 can	 guide	 dosage	 adjustments,	 patient	 monitoring	 strategies,	 and	 the	

development	 of	 guidelines	 for	 safe	 use,	 thereby	 optimizing	 patient	 care	 and	

improving	therapeutic	outcomes.	Finding	out	DSF	to	ascertain	the	efficacy	of	a	drug	

via	wet	experiments	in	lab	can	be	quite	lengthy	and	costly.	In	silico	methods	could	

help	us	filter	out	potential	side	effects	and	have	better	screening	techniques.	

LLMs	 have	 demonstrated	 impressive	 capabilities	 in	 NLP	 tasks,	 particularly	 in	

capturing	context	comprehending	contextually	relevant	 text.	Unlike	earlier	models	

that	struggled	with	understanding	context	beyond	a	 few	words,	LLMs	can	process	
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entire	 sentences	 or	 even	 paragraphs,	 understanding	 the	 nuances	 of	 language,	

idiomatic	 expressions,	 and	 syntactic	 structures.	Also,	when	 these	models	 are	 fine-

tuned	 on	 specific	 tasks,	 they	 start	 from	 a	 strong	 foundational	 understanding,	

requiring	less	task-specific	data	to	achieve	high	performance.		

Despite	 the	 overwhelming	 positives	 of	 LLMs,	 their	 effectiveness	 has	 not	 been	

explored	in	the	domain	of	DSF	prediction.	This	research	aims	to	investigate	whether	

LLMs	 can	 enhance	 predictive	 performance	 in	 this	 relatively	 new	 domain	 by	

leveraging	 their	 contextual	 understanding	 and	 advanced	 language	 processing	

abilities.	

1.5 Thesis	Contribution	

The	key	contributions	of	our	paper	are	as	follows:	

• We	design	and	train	a	novel	LLMPred	model	 that	 is	based	on	BERT-

based	LLMs	to	predict	DSF	and	DSHF.	

• We	expand	the	current	benchmark	dataset	of	Galeano	[30]	and	Zhao	

[31]	 with	 biomedical	 semantic	 text	 information	 of	 drugs	 and	 side	

effects.	

1.6 Thesis	Organization	

The	remainder	of	the	thesis	is	organized	as	follows:	

Chapter	2	comprehensively	reviews	the	relevant	literature	in	the	domain	of	drug	

side	effect	frequency	prediction	as	well	as	papers	on	BERT	and	other	LLMs	relevant	

to	this	research.	

Chapter	3	introduces	the	architecture	of	our	proposed	LLM	model	and	explains	

it	in	detail.	
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In	Chapter	4,	we	go	through	the	experimental	setup	and	the	evaluation	metrics	

used	in	this	research.	

Chapter	5	discusses	the	performance	of	our	LLMPred	model	 in	a	10-fold	cross-

validation	study.	We	compare	the	results	obtained	in	our	study	to	the	current	state-

of-the-art	methods.	

In	 Chapter	 6,	 we	 summarize	 our	 research	 findings,	 share	 the	 insights	 gained	

throughout	the	study,	and	identify	potential	areas	for	future	exploration.	
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CHAPTER	2	

Literature	Review	
	

 

This	section	discusses	the	relevant	scholarly	research	on	prediction	of	frequency	

of	drug	side-effects.	Large	Language	Models	(LLMs)	have	been	incorporated	in	this	

research	in	order	to	generate	embeddings	for	the	various	attributes	and	descriptors	

related	to	drugs	and	side	effects.	The	domain	of	pharmacology,	especially	those	on	

drug	 research	 encompasses	 diverse	 data	 sources,	 including	 chemical	

representations	 of	 drugs,	 drug	 descriptors,	 side	 effects,	 and	 description	 of	 side	

effects.	 First,	we	will	 discuss	 the	key	databases	 from	which	 the	data	was	 sourced,	

followed	by	a	review	of	the	relevant	literature.	

2.1 Datasets	

2.1.1 PubChem	

PubChem	[34]	is	a	comprehensive,	freely	accessible	database	maintained	by	the	

National	 Center	 for	 Biotechnology	 Information	 (NCBI),	 a	 division	 of	 the	 National	

Library	 of	 Medicine	 (NLM).	 PubChem	 contains	 three	 interlinked	 databases:	

PubChem	 Substance,	 PubChem	 Compound,	 and	 PubChem	 BioAssay.	 As	 of	 now,	

PubChem	 contains	 over	 115	 million	 unique	 chemical	 compounds,	 309	 million	

substances,	 and	 292	 million	 bioassays	 bioactivity	 results,	 making	 it	 one	 of	 the	

largest	chemical	information	repositories	available.	It	provides	extensive	data	such	
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as	 chemical	 structures,	 identifiers,	 chemical	 and	 physical	 properties,	 biological	

activities,	 safety	and	 toxicity	 information,	patents,	 literature	 citations,	 and	 links	 to	

other	 databases.	 Researchers,	 educators,	 and	 the	 general	 public	 widely	 use	

PubChem	for	drug	discovery,	chemical	research,	and	educational	purposes.	

2.1.2 SIDER	

SIDER	 (SIDE	 Effect	 Resource)	 [35]	 is	 a	 comprehensive	 database	 of	 drug-side	

effect	associations,	compiled	from	multiple	sources	such	as	package	 inserts,	public	

databases,	 and	scientific	 literature.	The	 latest	version,	 SIDER	4.1,	 includes	data	on	

1430	unique	drugs	and	5868	unique	side	effects,	encompassing	a	 total	of	139,756	

known	associations.	

2.1.3 DrugBank	

DrugBank	[36]	is	an	online	database	that	offers	comprehensive	details	on	drugs,	

including	 chemical,	 pharmacological,	 and	 pharmaceutical	 information,	 as	 well	 as	

data	 on	 drug	 targets	 such	 as	 protein	 sequences,	 structures,	 and	 pathways.	 The	

database	 features	 over	 200	 data	 fields,	 providing	 extensive	 coverage.	 The	 latest	

version,	 DrugBank	 5.1.10,	 includes	 information	 on	 a	 total	 of	 15,758	 approved	

experimental	drugs.	

2.1.4 STITCH	

STITCH,	 which	 stands	 for	 Search	 Tool	 for	 Interactions	 of	 CHemicals,	 is	 a	

comprehensive	resource	containing	information	on	chemical	interactions	including	

drugs	and	their	association	[61].	It	also	integrates	information	on	chemical-protein	

interactions.	 Different	 types	 of	 associations	 contained	 in	 STITCH	 are	 Similarity,	

Experimental,	 Database,	 Text-Mining,	 and	 Combined	 Score.	 The	 latest	 version	 of	
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STITCH	 contains	 500k	 chemicals,	 9.6	 million	 proteins	 and	 1.7	 billion	 chemical	

protein	interactions.	

2.1.5 OnSIDES	

OnSIDES	(ON-label	SIDE	effectS	resource)	is	a	database	that	consists	of	adverse	

drug	events	which	have	been	extracted	from	drug	labels	by	a	BERT-based	language	

model	[62].	The	200	drug	labels	from	which	the	adverse	drug	events	were	extracted	

from	were	manually	curated	[63].	The	latest	version	of	OnSIDES	contains	3.6	million	

drug-adverse	drug	event	pairs	for	2,739	drugs	extracted	from	46,686	labels.	

2.2 Drug	Side	Effect	Prediction	

Drug	 Side	 Effect	 Prediction	 involves	 predicting	 all	 the	 possible	 side	 effects	

associated	 with	 a	 drug.	 Since	 a	 single	 drug	 can	 be	 associated	 with	 multiple	 side	

effects,	 this	 task	 is	 inherently	 a	 multi-label,	 multi-class	 classification	 problem.	 To	

tackle	 this,	 various	problem	 transformation	methods	can	be	employed.	One	of	 the	

most	key	approaches	is	the	binary	relevance	approach	where	each	drug-side	effect	

pair	is	treated	as	a	separate	binary	classification	problem.		

In	 this	binary	 classification	approach,	provided	a	drug	 side	effect	network,	 the	

objective	of	the	model	is	to	predict	whether	a	link	exists	between	a	given	drug	and	a	

given	side	effect	pair.		

In	this	approach,	the	network	is	a	bipartite	graph	of	drug	nodes	and	side	effect	

nodes	and	if	a	side	effect	exists	for	a	certain	drug,	there	will	be	an	edge	between	the	

drug	node	and	side	effect	node.	This	is	illustrated	in	Figure	2.2.1:	
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Figure	2.2.1:	Drug	Side	Effect	Prediction	

The	 key	 difference	 between	 drug	 side	 effect	 prediction	 and	 drug	 side	 effect	

frequency	 prediction	 is	 that	 in	 the	 drug	 side	 effect	 prediction,	 the	 association	

between	the	drug	and	side	effect	nodes,	that	is,	if	a	certain	side	effect	is	associated	

with	a	certain	drug,	is	illustrated	by	the	edge	between	the	nodes,	and	an	absence	of	

an	edge	between	the	nodes	represent	no	association	between	that	drug	side	effect	

pair.		

In	contrast,	drug	side	effect	frequency	prediction	is	where	the	edges	between	the	

drug	and	side	effect	nodes	represent	the	presence	of	an	association	between	a	drug	

and	side	effect	pair,	and	there	are	edge	weights	for	those	edges	that	represent	how	

frequently	the	side	effect	occurs	given	that	drug	is	administered.	
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2.3 Current	Literature	on	Drug	Side	Effect	
Prediction	

Recent	works	 in	 the	 domain	 of	 drug	 side	 effect	 prediction	 can	 by	 seen	 in	 the	

work	 of	 Yu	 et	 al.	 [64]	 –	 IDSE-HE,	 where	 they	 approach	 the	 drug	 side	 effect	

prediction	 problem	 by	 framing	 it	 as	 an	 adjacency	matrix	 reconstruction	 problem	

utilizing	 learned	representations	 through	a	novel	hybrid	embedding	Graph	Neural	

Network	(GNN).		

Their	method	employs	dual-view	learning	with	multiple	feature	perspectives	for	

drugs,	 specifically	 using	 Molecular	 Fingerprint	 and	 Molecular	 Graph	 Embedding	

representations,	along	with	randomly	Xavier-initialized	vectors	for	side	effects.	For	

molecular	 graph	 representation	 learning,	 they	 first	 designed	 and	 trained	 a	 simple	

framework	combining	a	Message	Passing	Neural	Network	(MPNN)	for	the	message-

passing	phase	with	a	set2set	model	 for	 the	readout	phase.	The	 trained	model	was	

then	used	to	extract	the	physicochemical	properties	of	drugs.		

Subsequently,	a	graph-level	GNN	was	applied	 to	capture	relational	 information	

within	the	overall	drug-side	effect	network.	Finally,	they	multiplied	the	drug	feature	

matrix	and	the	side	effect	feature	matrix	and	reconstructed	the	adjacency	matrix.	

Their	work	achieved	an	F1-score	of	0.55	on	the	SIDER	dataset	[35]	using	10-fold	

cross-validation.	
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Figure	2.3.1:	Architecture	of	IDSE-HE	[64]	

	

2.4 Current	Literature	on	Drug	Side	Effect	
Frequency	Prediction	

2.4.1 Galeano’s	Model	

In	 Galeano	 et	 al.'s	 study	 [30],	 the	 authors	 present	 a	 framework	 to	 predict	 the	

frequencies	of	drug	side	effects.	This	paper	addresses	an	elemental	part	of	drug	risk-

benefit	 assessment.	 This	 assessment	 is	 conventionally	 performed	 through	

randomized	 controlled	 clinical	 trials,	 but	 this	 paper	 goes	 to	 challenge	 that	 and	

illustrates	 the	 future	 where	 a	 preliminary	 risk	 benefit	 assessment	 could	 be	

ascertained	using	 this	 framework.	They	employ	a	matrix	decomposition	algorithm	

that	identifies	latent,	biologically	interpretable	signatures	of	drugs	and	side	effects.	

Their	 model	 is	 trained	 on	 a	 dataset	 that	 they	 curated	 from	 the	 SIDER	 4.1	 [35]	

database	 and	 Drugbank	 [36]	 that	 has	 frequency	 information	 from	 0	 to	 5	 of	 759	
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drugs	 and	994	 side	 effects.	The	 frequencies	 are	 categorized	 into	 five	 classes:	 very	

rare,	rare,	infrequent,	frequent,	and	very	frequent. 	

 

Figure	2.4.1:	Architecture	of	Galeano's	Model	[30]	

The	matrix	decomposition	approach	enables	the	model	to	learn	low-dimensional	

representations	of	drugs	and	side	effects.	The	side	effect	and	drugs	are	decomposed	

into	 drug	 and	 side	 effect	 vectors	 represented	 into	 a	 latent	 space	 where	 latent	

features	of	drugs	capture	features	related	to	the	drugs'	anatomical,	therapeutic,	and	

chemical	properties,	while	side	effect	features	relating	to	the	physiological	systems	

affected	are	 captured.	The	 frequency	of	 a	drug-side	effect	pair	 is	predicted	by	 the	

dot	product	of	their	respective	matrices.	

Galeano’s	 model	 demonstrates	 robust	 performance	 after	 performing	 10-fold	

cross	validation,	achieving	a	root	mean	squared	error	 (RMSE)	of	1.32	and	an	area	

under	 the	 receiver-operating	 curve	 (AUROC)	 of	 0.932	 on	 the	 test	 set.	 The	

predictions	obtained	offer	insights	into	the	biological	mechanisms	underlying	drug	

side	 effects.	 The	 non-negative	 matrix	 factorization	 made	 the	 predictions	

interpretable	which	enabled	the	connection	from	drugs	to	physiological	effect.	The	

approach	 is	 especially	 useful	 in	 early	 clinical	 trial	 phases	where	 it	 can	be	used	 to	

construct	a	complementary	hypothesis	for	risk	assessment.	

Galeano	 et	 al.'s	work	 introduces	 a	 novel,	 computational	method	 for	 predicting	

drug	 side	 effect	 frequencies,	 potentially	 enhancing	 drug	 safety	 evaluations,	 and	

reducing	the	reliance	on	extensive	clinical	trials.	
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2.4.2 MGPred	

In	Zhao	et	al.'s	 study	 [31],	 the	authors	propose	MGPred,	 a	 framework	utilizing	

multi-view	 data	 for	 drug	 side	 effect	 frequency	 prediction	 using	 a	 novel	 graph	

attention	 model.	 MGPred	 uses	 different	 types	 of	 data	 such	 as	 the	 similarity	 of	

chemical	structure	for	drugs,	drug-side	effect	 frequency	information,	and	semantic	

similarity	 of	 the	 side	 effects.	 This	multi-view	 approach	 provides	 a	wider	 array	 of	

information	 that	 allows	 for	 a	 more	 comprehensive	 prediction	 of	 side	 effect	

frequencies.	

The	 study	 utilizes	 Galeano’s	 benchmark	 dataset	 containing	 37,071	 drug-side	

effect	 frequency	 pairs	 extracted	 from	 750	 drugs	 and	 994	 side	 effects.	 MGPred's	

architecture	 consists	 of	 two	 segments	 -	 a	 feature	 extraction	part	 and	 a	 prediction	

part.		

In	 the	 feature	extraction	part,	separate	 feature	extractors	are	 fed	with	 features	

from	all	 the	different	 kinds	of	 views.	These	 feature	 extractors	 learn	 latent	 feature	

representations	 of	 the	 different	 attributes	 by	 aggregating	 heterogeneous	

neighborhood	 features	 through	a	node-level	 attention	module.	The	 representation	

of	 drug	 nodes	 and	 side	 effect	 nodes	 are	 concatenated	 to	 get	 the	 overall	

representation	vector.		
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Figure	2.4.2:	Architecture	of	MGPred	[31]	

In	the	prediction	part,	a	multilayer	perceptron	model	is	used	to	predict	the	drug	

side	effect	frequency	values.	

MGPred	 demonstrates	 superior	 performance	 compared	 to	 Galeano’s	model	 on	

the	 benchmark	 dataset.	 The	 model's	 effectiveness	 is	 validated	 through	 10-fold	

cross-validation	and	ablation	experiments.	MGPred	achieved	a	 root	mean	 squared	

error	(RMSE)	of	0.6521	and	a	mean	absolute	error	(MAE)	of	0.4905.	

This	 study	 illustrated	 the	 improvement	 in	 performance	 when	 multiple	 data	

sources	 were	 incorporated	 and	 using	 deep	 learning	 models	 to	 improve	 the	

prediction	of	drug	side	effect	frequencies.		
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2.4.3 SDPred	

In	Zhao	et	al.'s	study	[37]	from	a	year	later,	the	authors	came	up	with	SDPred	to	

predict	 the	 frequencies	of	drug	 side	effects	using	a	 similarity-based	deep	 learning	

architecture.	 Previous	 methods	 were	 limited	 to	 predicting	 frequencies	 of	 known	

drug-side	 effect,	 rendering	 them	 ineffective	 for	 ascertaining	 the	 frequency	

information	 for	 new	 drugs.	 SDPred,	 overcomes	 this	 limitation	 by	 integrating	 rich	

features	 and	 multi-correlation	 embeddings,	 making	 it	 applicable	 to	 new	 drugs	

without	any	prior	data	on	frequency	information.	

The	SDPred	 framework	builds	on	Galeano’s	dataset	and	expanded	 it	 to	 include	

757	drugs	and	994	side	effects,	which	contains	37,366	frequency	values.	The	data	is	

taken	from	the	STITCH	and	DrugBank	databases.	It	consists	of	chemical	structures,	

drug	 target	 proteins,	 and	 pre-trained	 word	 vectors,	 and	 other	 features.	

Incorporating	these	different	features	model	has	a	robust	foundation	for	predicting	

drug	side	effects.	

A	 very	 crucial	 element	 of	 SDPred	 is	 its	 feature	 extraction	 and	 integration	

framework.	 10	 drug	 similarity	 matrices	 are	 constructed	 based	 on	 different	

similarity	 information,	 chemical	 structure,	 target	 proteins,	 word	 embeddings	 and	

interaction	profiles.	The	similarity	matrices	for	side	effect	similarity	are	developed	

using	semantic	similarities	and	other	factors.	 	These	matrices	are	stacked	together	

providing	a	comprehensive	multi-dimensional	view	of	the	drugs	and	their	potential	

side	effects	and	the	embeddings	are	generated	followed	by	the	creation	of	different	

interaction	maps.	

SDPred	 employs	 a	multi-task	 learning	 framework	where	 it	 uses	 convolutional	

neural	networks	(CNNs)	to	capture	high-order	correlations	between	drug	and	side	

effect	vectors	from	the	interaction	map.	Multi-layer	perceptron	(MLP)	are	then	used	

to	 combine	 these	 embeddings	 to	 predict	 drug-side	 effect	 frequencies.	 This	

architecture	enables	SDPred	to	handle	the	complex	relationships	between	drugs	and	

their	side	effects	to	predict	the	frequencies.	
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Figure	2.4.3:	Architecture	of	SDPred	[37]	

The	 model's	 effectiveness	 is	 rigorously	 tested	 as	 SDPred	 significantly	

outperforms	 existing	models	 in	 predicting	 drug	 side	 effect	 frequencies.	 In	 10-fold	

cross-validation,	 the	 model	 achieves	 a	 notable	 improvement	 in	 predictive	

performance.	 SDPred	 demonstrates	 superior	 performance	 across	 all	 the	 metrics	

used	 with	 an	 MAE	 of	 0.4212	 and	 RMSE	 of	 1.3212,	 indicating	 its	 robustness	 and	

reliability	in	predicting	drug	side	effect	frequencies.	

SDPred	provides	significant	advantages	over	traditional	models	and	frameworks	

for	predicting	drug	side	effect	 frequencies.	 Its	ability	 to	handle	new	drugs	without	

prior	side	effect	data	makes	it	particularly	valuable	for	drug	development	and	risk	

assessment.		

2.4.4 DSGAT	

In	Xu	et	al.'s	study	[38],	the	authors	propose	DSGAT	to	predict	the	frequencies	of	

drug	side	effects.	DSGAT	introduces	a	novel	deep	learning	model	that	utilizes	graph	

attention	networks	(GAT)	for	this	task.	Traditional	methods	often	rely	on	drug-side	

effect	 interaction	 graphs,	 which	 suffer	 from	 sparsity	 and	 inability	 to	 handle	 cold	
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start	drugs	–	drugs	that	do	not	appear	in	the	training	data.	DSGAT	works	on	these	

limitations	by	employing	the	molecular	graph	of	drugs	instead	of	interaction	graphs.	

This	enables	the	model	to	learn	embeddings	for	a	cold	start	drug	well.	

The	DSGAT	architecture	comprises	of	an	encoder-decoder	framework.	To	learn	

the	embeddings	from	the	molecular	graphs	of	the	drugs,	a	3-layer	GAT	is	employed	

by	 the	 encoder	 layer.	 The	 encoder	 uses	 it	 to	 learn	 representations	 from	 the	

similarity	 graph	 of	 the	 side	 effects	 as	well.	 The	 decoder	 part	 then	 utilizes	matrix	

factorization	 to	 predict	 the	 frequency	 of	 drug-side	 effect	 pairs	 from	 the	 learned	

representations	 of	 drugs	 and	 side	 effects.	 A	 novel	 weighted	 ε-insensitive	 loss	

function	 is	 utilized	 in	 this	 paper	 to	 tackle	 the	 sparsity	 problem	 and	 improve	

predictive	performance.	

 

Figure	2.4.4:	Architecture	of	DSGAT	[38]	

DSGAT	worked	on	Galeano’s	benchmark	dataset	comprising	750	drugs,	994	side	

effects,	 and	37,071	known	 frequency	 items	derived	 from	 the	SIDER	database.	The	

experimental	results	obtained	demonstrated	performance	improvement	over	most	
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of	 the	 existing	models.	 The	model	 achieved	 an	 RMSE	 score	 of	 1.469	 and	MAE	 of	

1.175.	

DSGAT	 illustrated	 its	 robustness	 to	 alterations	 in	 chemical	 similarity	 between	

training	and	test	sets,	confirming	its	generalization	power.	The	independent	test	on	

post-marketing	 side	 effects	 further	 validated	 its	 predictive	 power,	 indicating	

practical	utility	for	drug	risk-benefit	evaluation.	

2.4.5 NRFSE	

In	Wang	et	al.'s	study	[39],	the	authors	introduced	NRFSE,	a	new	method	based	

on	neighborhood	regularization	to	predict	the	frequencies	of	drug	side	effects	using	

multi-view	data.	NRFSE	takes	the	drug-side	effect	frequency	matrix	and	decomposes	

it	leveraging	a	class-weighted	non-negative	matrix	factorization	and	unknown	drug-

side	 effect	 frequency	 pairs	 are	modelled	 using	 drug-side	 effect	 pairs.	 NRFSE	 uses	

multi-view	neighborhood	 regularization	 to	 integrate	 3	 drug	 attributes	 (side	 effect	

frequency,	 chemical	 structure,	 and	Gene	Ontology	 (GO)	annotations)	and	 two	side	

effect	attributes	(frequencies	across	drugs	and	MedDRA	terms).	This	method	works	

by	 modelling	 certain	 similar	 drug	 and	 side	 effect	 pairs	 to	 have	 similar	 latent	

signatures.		

The	study	utilizes	a	modified	version	of	Galeano’s	benchmark	dataset	containing	

34,604	 known	 frequency	 items	 across	 664	 drugs	 and	 994	 side	 effects.	 It	 has	 less	

drugs	because	 the	drugs	 for	which	GO	target	 information	were	not	available	were	

dropped.	 NRFSE’s	 architecture	 includes	 non-negative	 matrix	 factorization	 on	 the	

drug	 side	 effect	 frequency	matrix	 to	 predict	 the	 frequency	 scores	 and	multi-view	

neighborhood	 regularization	 to	 refine	 embeddings	 for	 new	drugs	 and	 side	 effects	

based	on	the	three	drug	views	and	two	side	effect	views.		
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Figure	2.4.5:	Architecture	of	NRFSE	[39]	

The	 model’s	 effectiveness	 is	 validated	 through	 10-fold	 cross-validation	 under	

different	scenarios	such	as	warm-start	and	cold-start.	The	results	show	that	NRFSE	

significantly	 outperforms	previous	 approaches	 in	AUC	 and	AUPR	values.	 They	 got	

AUC	scores	of	0.898	and	AUPR	scores	of	0.442.	They	also	achieved	RMSE	scores	of	

0.1.378	and	MAE	scores	of	1.142.	

Furthermore,	 NRFSE	 ran	 an	 independent	 test	 on	 post-marketing	 side	 effects	

which	 illustrates	 the	 model’s	 practical	 usefulness,	 accurately	 predicting	 the	

frequencies	of	 side	 effects	not	 included	 in	 the	 training	data.	Ablation	 experiments	

highlight	 the	 importance	 of	 integrating	 multiple	 data	 sources,	 and	 sensitivity	

analysis	 validates	 the	 robustness	 of	 NRFSE’s	 hyperparameter	 settings.	 The	 study	

concludes	 that	 NRFSE	 provides	 a	 reliable	 tool	 for	 predicting	 drug	 side	 effect	

frequencies,	with	potential	applications	in	guiding	randomized	controlled	trials	and	

enhancing	drug	safety	assessments.	
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2.4.6 Park’s	Dual	Representation	Learning	Model	

In	 the	 recent	 Park	 et	 al.'s	 study	 [40],	 the	 authors	 came	 up	with	 a	 novel	 deep	

learning	 model	 for	 drug	 side	 effect	 frequency	 prediction,	 Dual	 Representation	

Learning.	They	utilize	protein	target	information.	Previous	methods	used	structural	

and	 chemical	 properties	 of	 drugs	 and	 drug-side	 effect	 associations	 for	 predicting	

frequencies	of	 those	pairs.	Although	 the	previous	models	performed	well,	 the	 fact	

that	rich	information	contained	in	drug	target	proteins	were	not	utilized	left	room	

for	 improvement	 in	 the	 research.	 Park’s	 model	 addresses	 these	 shortcomings	 by	

leveraging	 numerous	 features,	 including	 molecular	 graphs,	 fingerprints,	 chemical	

similarities,	and	especially,	protein	target	information.		

 

Figure	2.4.6:	Architecture	of	Park’s	Model	[40]	

The	 study	 utilizes	 Galeano’s	 benchmark	 dataset	 containing	 37,071	 drug-side	

effect	pairs,	including	750	drugs	and	994	side	effects.	The	proposed	model	takes	all	

these	heterogeneous	features	and	integrates	them	to	construct	embeddings	for	the	

drugs	and	side	effects,	representing	them	in	a	common	feature	space.	This	is	where	

the	 name	 dual	 representation	 learning	 comes	 from.	 This	 dual	 representation	

facilitates	 the	prediction	of	 frequencies	of	drug	side	effect	pair	of	both	known	and	

unknown	pairs.	

The	architecture	of	the	model	uses	different	techniques	to	encode	different	drug	

features.	It	utilizes	a	graph	attention	network	(GAT)	to	encode	the	molecular	graphs,	
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fully	connected	multi-layer	perceptron	for	similarity	matrices	of	drugs	and	protein	

target	information,	and	network	propagation	to	simulate	the	downstream	effects	of	

drug-target	 interactions.	 The	 side	 effect	 features	MedDRA	 categorical	 vectors	 and	

Glove	 word	 embeddings	 are	 first	 concatenated	 and	 then	 embedded	 using	 a	 fully	

connected	 multi-layer	 perceptron.	 The	 embeddings	 are	 then	 combined	 using	 an	

Adaboost	framework	to	improve	predictive	performance.	

The	model's	effectiveness	is	validated	through	tenfold	cross-validation,	showing	

superior	 performance	 compared	 to	 existing	 models	 MGPred,	 SDPred	 and	 DSGAT.	

The	 study	 also	 demonstrates	 that	 incorporating	 drug	 protein	 target	 information	

with	 explicit	 targets	 achieve	 superior	 predictive	 performance.	 Ablation	 studies	

further	 confirm	 the	 value	 of	 each	 feature	 in	 the	 model,	 and	 independent	 tests	

performed	 on	 additional	 drugs	 validate	 the	 robustness	 and	 generalizability	 of	 the	

model.	

2.4.7 HMMF	

The	paper	by	Liu	et	al.	[53]	introduces	the	Hybrid	Multi-Modal	Fusion	(HMMF)	

framework,	 designed	 to	 predict	 the	 frequency	 of	 drug	 side	 effects.	 The	 HMMF	

framework	 leverages	a	multi-modal	approach	by	 integrating	various	types	of	data,	

including	 molecular	 structures,	 biomedical	 textual	 information,	 and	 attribute	

similarities	of	drugs	 and	 side	 effects.	To	 achieve	 this,	 the	model	 employs	multiple	

encoders	 that	understand	 these	diverse	data	 types	and	uses	both	coarse	and	 fine-

grained	fusion	strategies	to	integrate	the	multi-modal	features	effectively.	

The	 methodology	 begins	 with	 biomedical	 semantic	 representation	 learning,	

where	 biomedical	 text	 information	 for	 drugs	 and	 side	 effects	 is	 collected	 from	

sources	 like	 Wikipedia	 and	 PubChem.	 A	 KV-PLM	 model	 is	 then	 used	 to	 learn	

contextual	 representations	 of	 these	 texts.	 Concurrently,	 molecular	 structure	

representation	 learning	 is	 carried	 out	 by	 converting	 SMILES	 sequences	 into	

undirected	 molecule	 graphs	 using	 RDKit,	 followed	 by	 the	 application	 of	 a	 graph	
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attention	 network	 (GAT)	 to	 extract	 representations	 from	 these	molecular	 graphs.	

Additionally,	 attribute	 similarity	 learning	 is	 conducted	 by	 gathering	 drug-related	

data	from	databases	like	STITCH	and	CTD,	constructing	similarity	matrices	based	on	

chemical	structures	and	drug-disease	associations.	

The	HMMF	 framework	 employs	 a	 sophisticated	multi-modal	 fusion	 strategy	 to	

integrate	the	various	representations.	This	involves	projecting	representations	from	

the	 three	 modalities	 into	 a	 unified	 space,	 using	 coarse-grained	 fusion	 through	

element-wise	product,	and	fine-grained	fusion	via	outer	product	and	convolutional	

neural	networks	(CNNs).		

 

Figure	2.4.7:	Architecture	of	HMMF	[53]	

The	 effectiveness	 of	 the	 HMMF	 framework	 is	 validated	 through	 extensive	

experiments,	 demonstrating	 superior	 performance	 compared	 to	 existing	methods.	

The	model	 shows	exceptional	capability	 in	predicting	drug-side	effect	 frequencies,	
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particularly	 in	cold-start	scenarios	where	new	drugs	are	introduced.	This	research	

underscores	the	potential	of	combining	biomedical	texts,	molecular	structures,	and	

attribute	similarities	to	improve	the	accuracy	and	generalizability	of	drug	side	effect	

predictions.	

2.4.8 Summary	of	Key	Literature	and	Limitations	

The	key	literature	on	drug	side	effect	frequency	prediction	discussed	above	are	

summarized	with	 their	 significant	 contribution	 and	 limitations	 in	 this	 section.	 All	

the	papers	utilize	the	dataset	curated	by	Galeano	[30]	and	Zhao	[31]	with	different	

papers	incorporating	different	types	of	features.	The	summarized	table	is	as	follows:	

Model	
Technique	

Used	
Contribution	 Limitation	

Galeano’s	

Model	

[30]	

Non-Negative	

Matrix	

Factorization	

Created	the	benchmark	

DSF	dataset	and	the	first	

paper	to	look	into	DSF	

prediction	task.	

Cannot	be	adopted	to	

predict	side	effect	

frequencies	of	cold	start	

drugs	as	they	solely	used	

DSF	matrix.	

MGPred	

[31]	

Graph	

Attention	

Model	

Incorporated	multi-view	

data	for	both	side	effects	

and	drugs	–	similarity	

information,	known	

frequency	distribution,	

and	word	embedding	

Drugs	that	are	not	included	

in	the	training	set	will	not	

have	an	edge	in	the	

constructed	heterogenous	

graph	thus	will	not	be	able	

to	predict	the	side	effect	

frequencies	of	new	drugs.	

SDPred	

[37]	

Similarity	

Based	Deep	

Learning	

Approach	

Introduced	the	ability	to	

predict	the	frequency	of	

cold	start	drugs.	They	

also	utilized	10	different	

Overly	dependent	on	

complete	similarity	

information	of	new	drugs.	
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drug	similarities	and	4	

different	side	effect	

similarities	such	as	

chemical	structure	

similarity,	target	and	

word	similarity,	semantic	

similarity,	etc.	

DSGAT	

[38]	

Graph	

Attention	

Model	

Utilizes	molecular	graphs	

to	learn	representations	

of	the	drugs.	Ability	to	

predict	the	frequency	of	

side	effects	for	cold	start	

drugs.	

Does	not	take	into	

consideration	all	the	

relevant	information	of	

drugs	such	as	drug	target	

protein	information.	

NRFSE	

[39]	

Neighborhood	

Regularization	

They	utilized	multi-view	

data	-	3	views	for	drugs	–

side	effect	frequency,	

chemical	structure,	and	

Gene	Ontology	

annotation	of	drug	target.	

They	also	utilized	

frequencies	across	drugs,	

and	MedDRA	terms.	

Does	not	take	into	

consideration	all	the	

relevant	information	of	

drugs	such	as	drug	target	

protein	information	and	

semantic	text	description.	

Park’s	

Model	

[40]	

Deep	Learning	

Based		

Incorporated	drug	target	

information.	Also,	utilized	

all	the	heterogeneous	

features	-	chemical	

similarity	between	drugs,	

molecular	graphs,	

fingerprints,	and	protein	

targets	simultaneously.	

Limited	number	of	

features.	Just	4	drug	

features	used	to	generate	

the	embeddings.	
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They	used	Glove	word	

embeddings	and	MedDRA	

categories.	They	used	

Adaboost	ensemble	

technique	to	integrate	the	

features	of	drugs.	

HMMF	

[53]	

Hybrid	Multi-

Modal	Fusion	

Framework	

Introduced	concurrent	

multi-modal	learning	

from	molecular	structure,	

semantic	information,	

similarity	features	for	

drugs	and	semantic	

similarity	and	side	effect	

semantic	text	descriptors	

for	side	effects.	First	

paper	to	look	into	

semantic	text	information	

as	a	drug	and	side	effect	

feature.		

Not	the	most	effective	

representation	model	used	

to	encode	the	multi-modal	

information	

Table	2.4.1:	Summary	of	Papers	on	DSF	Prediction	

	

2.5 Papers	on	Large	Language	Models	

2.5.1 BERT	

The	 paper	 by	 Devlin	 et	 al.	 [29]	 addresses	 significant	 limitations	 in	 previous	

language	 representation	 models,	 particularly	 unidirectionality,	 which	 constrained	

their	 ability	 to	 leverage	 context	 from	 both	 directions.	 Traditional	 models	 like	
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OpenAI	 GPT	 [28]	 used	 unidirectional	 architectures,	 limiting	 their	 effectiveness	 in	

tasks	 requiring	 full	 context,	 such	 as	 question	 answering	 and	 named	 entity	

recognition.	The	distinction	between	feature-based	methods	like	ELMo	[42],	which	

required	task-specific	architectures,	and	fine-tuning	approaches	like	GPT	also	posed	

challenges.	ELMo,	for	instance,	concatenated	independently	trained	left-to-right	and	

right-to-left	models	but	failed	to	fully	exploit	bidirectional	context.	

BERT	 (Bidirectional	 Encoder	 Representations	 from	 Transformers)	 overcomes	

these	 limitations	by	pre-training	deep	bidirectional	 representations,	 allowing	 it	 to	

use	context	from	both	directions	simultaneously.	BERT	employs	two	tasks	-	masked	

language	 model	 (MLM)	 and	 next	 sentence	 prediction	 (NSP)	 during	 pre-training,	

which	 enables	 it	 to	 capture	 richer	 contextual	 information	 and	 understand	

relationships	 between	 sentences.	 This	 approach	 allows	 BERT	 to	 achieve	 state-of-

the-art	 performance	 across	 various	 NLP	 tasks	 with	 minimal	 task-specific	

modifications.	

BERT	is	trained	on	large-scale	corpora,	including	BooksCorpus	[65]	and	English	

Wikipedia	[66],	to	learn	diverse	language	patterns.	The	pre-training	involves	MLM,	

where	 random	 tokens	 are	masked	 and	 predicted	 using	 bidirectional	 context,	 and	

NSP,	 which	 helps	 understand	 sentence	 relationships.	 BERT's	 architecture	 uses	

WordPiece	 tokenizer	 [43]	with	a	30,000	 token	vocabulary,	 trained	over	1,000,000	

steps.	

The	 paper's	 contributions	 include	 introducing	 BERT,	 a	 model	 that	 pre-trains	

deep	bidirectional	representations,	employing	MLM	to	capture	bidirectional	context,	

and	using	NSP	to	enhance	sentence-pair	understanding.	BERT's	simple	and	unified	

architecture	allows	for	fine-tuning	on	various	NLP	tasks,	leading	to	state-of-the-art	

results	on	eleven	NLP	benchmarks,	including	the	GLUE	benchmark	[44]	and	SQuAD	

[45].	This	demonstrates	BERT's	effectiveness	 in	 improving	predictive	performance	

and	overcoming	the	constraints	of	previous	models.	
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2.5.2 ChemBERTa-2	

This	paper	by	Ahmad	et	al.	[48]	introduces	ChemBERTa-2,	a	transformer	model	

based	on	RoBERTa	[54],	aimed	at	enhancing	molecular	property	prediction	through	

advanced	pretraining	on	SMILES	strings.	Building	on	the	original	ChemBERTa	[56],	

ChemBERTa-2	 optimizes	 the	 pretraining	 process	 and	 significantly	 increases	 the	

dataset	 size	 to	 77	 million	 compounds	 from	 PubChem.	 This	 model	 leverages	 the	

principles	 of	 large-scale	 pretraining,	 similar	 to	 those	 used	 in	 natural	 language	

processing	models	like	GPT-3	[49],	to	learn	salient	representations	that	can	be	fine-

tuned	for	various	downstream	tasks.		

ChemBERTa-2	 employs	 two	 main	 pretraining	 strategies:	 Masked	 Language	

Modeling	(MLM)	and	Multi-task	Regression	(MTR).	MLM	involves	masking	15%	of	

the	 tokens	 in	 each	 SMILES	 string	 and	 training	 the	model	 to	 predict	 these	masked	

tokens,	 thereby	 helping	 the	 model	 understand	 the	 context	 within	 the	 molecular	

representations.	 MTR,	 on	 the	 other	 hand,	 focuses	 on	 predicting	 200	 molecular	

properties	 calculated	 from	 SMILES	 strings	 using	 RDKit	 [50].	 These	 strategies	 are	

applied	to	a	large	corpus	of	77	million	SMILES	strings,	making	it	one	of	the	largest	

datasets	used	for	molecular	pretraining.	

The	study	conducts	an	extensive	hyperparameter	search	to	optimize	the	model's	

performance.	This	involves	varying	configurations	of	hidden	sizes,	attention	heads,	

dropout	rates,	and	other	parameters	to	ensure	the	model	is	effectively	trained.	For	

evaluation,	 ChemBERTa-2	 is	 fine-tuned	 on	 several	 regression	 and	 classification	

tasks	 from	 the	 MoleculeNet	 benchmark	 suite	 [51],	 including	 datasets	 like	 BACE,	

Clearance,	 Delaney,	 Lipophilicity,	 BBBP,	 ClinTox,	 HIV,	 and	 Tox21.	 Performance	

metrics	such	as	ROC-AUC	for	classification	tasks	and	RMSE	for	regression	tasks	are	

used	to	assess	the	model’s	effectiveness.	

ChemBERTa-2	 achieves	 competitive	 results	 on	 nearly	 all	 MoleculeNet	 tasks,	

outperforming	existing	architectures	 in	several	 instances.	The	results	highlight	the	

benefits	of	pretraining	on	larger	datasets,	demonstrating	that	extensive	pretraining	
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can	lead	to	significant	improvements	in	downstream	molecular	property	prediction	

tasks.	The	study	suggests	that	the	improvements	in	pretraining	directly	translate	to	

better	 performance	 on	 downstream	 tasks,	 emphasizing	 the	 importance	 of	 large-

scale	data	and	effective	pretraining	strategies.	

In	 their	 discussion,	 the	 authors	note	 that	while	 ChemBERTa-2	 shows	promise,	

future	work	should	involve	benchmarking	against	other	graph-based	architectures	

and	extending	pretraining	to	even	larger	datasets.	They	also	emphasize	the	need	to	

understand	the	conditions	under	which	datasets	might	benefit	from	pretraining,	as	

this	can	further	refine	the	model's	application	and	performance.	

This	work	demonstrates	the	importance	of	large-scale	pretraining	in	developing	

robust	 and	 accurate	 molecular	 representations,	 paving	 the	 way	 for	 future	

advancements	in	molecular	property	prediction	and	related	fields.	

2.5.3 SimCSE	

The	 paper	 by	 Gao	 et	 al.	 [41]	 addresses	 limitations	 in	 previous	 sentence	

embedding	models	 by	 introducing	 SimCSE,	 a	 contrastive	 learning	 framework	 that	

improves	 the	 quality	 and	 effectiveness	 of	 sentence	 embeddings.	 Traditional	 NLP	

data	augmentation	techniques	often	degrade	performance,	and	many	models	suffer	

from	 representation	 collapse	 and	 anisotropy,	 limiting	 their	 expressiveness.	 The	

SimCSE	framework	uses	dropout	as	minimal	data	augmentation	and	employs	both	

unsupervised	and	supervised	contrastive	learning	to	enhance	embeddings.	

In	the	unsupervised	SimCSE,	sentences	are	encoded	twice	with	different	dropout	

masks,	 treating	 the	 resulting	 embeddings	 as	 positive	 pairs,	 and	 using	 other	

sentences	 in	 the	 batch	 as	 negatives.	 This	 approach	 maintains	 semantic	 meaning	

while	providing	variation	to	improve	embedding	quality.	In	the	supervised	SimCSE,	

entailment	pairs	 from	Natural	Language	 Inference	 (NLI)	 [67]	datasets	are	used	as	

positives	 and	 contradiction	 pairs	 as	 hard	 negatives,	 further	 enhancing	 alignment	



 

43 
 

and	 uniformity.	 They	 validated	 the	 quality	 of	 the	 embeddings	 using	 Spearman’s	

Rank	Correlation.	

The	 authors	 used	 various	 datasets	 for	 training	 and	 evaluation,	 including	 NLI	

datasets	for	supervised	learning	and	STS	datasets	for	evaluation.	They	also	explored	

the	effectiveness	of	different	supervised	datasets	like	QQP	[46]	and	Flickr30k	[47].	

The	unsupervised	SimCSE	was	trained	using	sentences	from	English	Wikipedia.	

Key	 contributions	 include	 the	 use	 of	 dropout	 noise	 for	 data	 augmentation,	

preventing	representation	collapse,	and	the	use	of	a	contrastive	learning	framework	

that	pulls	semantically	similar	sentences	closer	while	pushing	apart	dissimilar	ones.	

This	 method	 improves	 the	 uniformity	 and	 alignment	 of	 embeddings,	 leading	 to	

superior	performance	 in	 semantic	 textual	 similarity	 tasks.	The	SimCSE	 framework	

demonstrates	versatility,	robustness,	and	significant	advancements	in	the	quality	of	

sentence	embeddings.	

2.5.4 Angle-Optimized	Text	Embeddings	

In	their	paper	[55],	Xianming	Li	and	Jing	Li	address	the	limitations	of	traditional	

text	embedding	models,	particularly	 the	problem	of	vanishing	gradients	caused	by	

the	 saturation	 zones	 of	 the	 cosine	 function	 used	 in	 optimization	 objectives.	 To	

overcome	 this,	 they	 introduce	 a	 novel	 model	 named	 AnglE,	 which	 optimizes	 text	

embeddings	 by	 focusing	 on	 angle	 differences	 in	 a	 complex	 space.	 This	 approach	

mitigates	 the	 adverse	 effects	 of	 the	 saturation	 zones	 in	 the	 cosine	 function,	

improving	the	model's	ability	to	learn	subtle	distinctions	between	texts.	

The	 researchers	 conducted	 experiments	 on	 both	 existing	 short-text	 Semantic	

Textual	Similarity	(STS)	datasets	and	a	newly	collected	 long-text	STS	dataset	 from	

GitHub	 Issues.	 They	 demonstrated	 that	 AnglE	 outperforms	 state-of-the-art	 STS	

models,	 which	 often	 ignore	 the	 cosine	 saturation	 zone.	 The	 AnglE	 model	 utilizes	

multiple	encoders	to	understand	various	data	types,	including	molecular	structures	
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and	 biomedical	 textual	 information,	 and	 integrates	 these	 features	 through	 coarse	

and	fine-grained	fusion	strategies.	

The	 study	 reveals	 that	 AnglE	 achieves	 superior	 performance	 across	 various	

tasks,	 including	 short-text	 STS,	 long-text	 STS,	 and	 domain-specific	 STS	 scenarios	

with	 limited	 labeled	 data.	 The	 results	 show	 that	 AnglE's	 angle	 optimization	

technique	 significantly	 enhances	 text	 embedding	 quality	 and	 the	 overall	

performance	of	semantic	similarity	tasks.	The	paper	underscores	the	importance	of	

considering	 angle	 optimization	 in	 the	 development	 of	 robust	 and	 effective	 text	

embedding	 models,	 especially	 in	 applications	 requiring	 high-quality	 semantic	

textual	similarity.	

2.5.5 Summary	of	Key	Literature	and	Limitations	

The	 key	 literature	 on	 LLMs	 discussed	 above	 are	 summarized	 with	 their	

significant	contribution	and	 limitations	 in	 this	section.	The	summarized	table	 is	as	

follows:	

Model	
Pretraining	

Techniques	
Tokenizer	 Contribution	 Limitation	

BERT	[29]	

Masked	

Language	

Modeling	

(MLM)	and	

Next	Sentence	

Prediction	

(NSP)	tasks	on	

the	

BooksCorpus	

[65]	and	

English	

WordPiece	

Tokenizer	

Introduced	

bidirectional	

transformers	[27]	

by	using	just	the	

encoder	module.	

Revolutionized	

state-of-the-art	in	

numerous	NLP	

tasks.	

Requires	large	

number	of	data,	

overfits	on	small	

datasets.	

Computationally	

expensive.	NSP	

task	investigated	

to	be	less	

effective	in	later	

papers	such	as	

RoBERTa	[54]	
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Wikipedia	[66]	

ChemBERTa-

2	[48]	

MLM	with	

focus	on	

SMILES	strings	

pretrained	on	

the	PubChem	

dataset	[34]	

SMILES	

Tokenizer	

Optimized	BERT	

for	generating	

high	quality	

embeddings	of	

chemical	data,	

especially	useful	

for	downstream	

prediction	tasks.	

Limited	

generalization	to	

non-chemical	

text.	Effectiveness	

relies	heavily	on	

high-quality	

training	data.	

Noisy	data	can	

cause	the	

performance	to	

suffer.	

SimCSE	[41]	

Contrastive	

learning	by	

pretraining	on	

the	Natural	

Language	

Inference	(NLI)	

[67]	dataset.	

WordPiece	

Tokenizer	

Improved	

sentence	

embeddings	by	

focusing	on	

learning	

representations	

that	better	

capture	semantic	

similarity	

between	sentence	

pairs.	

Dependent	on	the	

quality	of	

augmentations;	

not	as	effective	

for	domain-

specific	data	

without	fine-

tuning.	

Angle	

Optimized	

Text	

Embeddings	

[55]	

Contrastive	

Learning	on	

Semantic	

Textual	

Similarity	task	

with	Angle	

Optimization	

WordPiece	

Tokenizer	

Enhanced	text	

embeddings	by	

optimizing	

angular	

relationships	in	

the	vector	space,	

improving	

ay	require	

specific	training	

strategies	and	

tuning	to	achieve	

optimal	results,	

potentially	

complex	to	
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Techniques	on	

the	NLI	dataset	

[67]	

semantic	

similarity	tasks.	

implement.	

Table	1.5.1:	Summary	of	Papers	on	LLM	
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CHAPTER	3	

Proposed	Methodology	
	

 

3.1 Material	and	Data	

For	 our	 research,	 we	 have	 used	 Galeano	 [30]	 and	 Zhao’s	 [31]	 dataset.	 The	

frequencies	were	extracted	from	the	SIDER	[35]	dataset.	A	section	of	the	dataset	is	

illustrated	below:	

Drug	 Side	Effect	 Frequency	
podophyllotoxin	 inflammation	 5	

podophyllotoxin	 pruritus	 5	

gadobutrol	 dermatitis	 3	

gadobutrol	 dyspnoea	 3	

gadobutrol	 injection	site	pain	 3	

gadobutrol	 headache	 4	

gadobutrol	 dizziness	 3	

gadobutrol	 nausea	 3	

gadobutrol	 rash	 3	

quinapril	 chest	pain	 4	

quinapril	 diarrhoea	 4	
Table	2.1.1	DSF	Dataset	
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There	are	a	total	of	750	drugs	and	994	side	effects,	with	37,741	frequency	values	

of	known	drug	side	effect	pairs.	The	dataset	has	5	frequency	values	–	1	(very	rare),	2	

(rare),	3	(uncommon),	4	(frequent)	and	5	(very	frequent).	For	DSHF,	the	frequency	

values	over	3	was	converted	to	1	and	the	rest	as	0	[31].	

The	 SMILES	 string	 of	 the	 drugs	 were	 obtained	 from	 DrugBank	 [36]	 and	

PubChem	[34]	by	using	the	PubChem	IDs	obtained	from	SIDER	[35].	A	section	of	the	

SMILES	string	data	is	illustrated	as	follow:	

Drug SMILES	Representation 

betaine	 C[N+](C)(C)CC(=O)[O-]	

bupropion	 CC(C(=O)C1=CC(=CC=C1)Cl)NC(C)(C)C	

estradiol	 CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O	

mannitol	 C(C(C(C(C(CO)O)O)O)O)O	

N-acetylcysteine	 CC(=O)NC(CS)C(=O)O	

Table	3.1.2:	Drug	SMILES	Dataset	

The	set	of	side	effects	were	taken	from	the	SIDER	Database	[35].	A	section	of	the	

list	of	side	effects	is	illustrated	as	follows:	

Side	Effects 

abdominal	discomfort	

abdominal	distension	

abdominal	pain	

abdominal	pain	lower	

abdominal	pain	upper	
	

Table	3.1.3:	Side	Effect	Dataset	
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3.2 Methodology	

In	 this	 section,	 we	 will	 discuss	 the	 proposed	 methodology	 of	 our	 research	

extensively.		The	architecture	of	our	model	includes	the	following	steps	–	1)	Feature	

Acquisition	 and	 Dataset	 Construction,	 2a)	 Embedding	 Generation	 of	 drug	 SMILES	

strings	 and	 side	 effect	 names,	 2b)	 Embeddings	 Generation	 of	 the	 biomedical	

semantic	text	information,	3)	Fine-tuning	the	biomedical	semantic	text	embeddings,	

4)	 Concatenation	 of	 the	 drug	 embeddings	 and	 side	 effect	 embeddings	 and	 cosine	

similarity	 of	 the	 embeddings,	 and	 5)	 Frequency	 Prediction	 using	 Multi-Layer	

Perceptron.	The	whole	process	is	illustrated	in	Figure	3.2.1:	

	

	

 

 

Figure	3.2.1:	The	proposed	LLMPred	Framework	

3.2.1 Feature	Acquisition	and	Dataset	Generation	

In	 the	 DSF	 network,	 we	 have	 two	 key	 entities	 –	 drugs	 and	 side	 effects.	 We	

acquire	features	of	these	entities	such	as	biomedical	semantic	information	of	drugs	

and	 side	 effects	 from	 DrugBank	 and	 Wikipedia.	 The	 tables	 below	 illustrate	 a	

segment	of	the	collected	datasets.	

Drug Drug	Description 

Alprostadil	

Alprostadil	 is	 produced	 endogenously	 and	 causes	 vasodilation	 by	

means	of	a	direct	effect	on	vascular	and	ductus	arteriosus	(DA)	smooth	

muscle,	 preventing	 or	 reversing	 the	 functional	 closure	 of	 the	DA	 that	
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occurs	 shortly	 after	 birth.	 This	 results	 in	 increased	 pulmonary	 or	

systemic	blood	 flow	 in	 infants.	 In	 infants,	 it	 is	 used	 for	palliative,	 not	

definitive,	 therapy	 to	 temporarily	maintain	 the	 patency	 of	 the	 ductus	

arteriosus	 until	 corrective	 or	 palliative	 surgery	 can	 be	 performed	 in	

neonates	who	have	congenital	heart	defects	and	who	depend	upon	the	

patent	 ductus	 for	 survival.	 In	 adults,	 it	 is	 used	 for	 the	 treatment	 of	

erectile	 dysfunction	 due	 to	 neurogenic,	 vasculogenic,	 psychogenic,	 or	

mixed	etiology.	
	

Phenytoin	

Phenytoin	is	classified	as	a	hydantoin	derivative	and	despite	its	narrow	

therapeutic	index,	it	is	one	of	the	most	commonly	used	anticonvulsants.	

[A33595,A188832,A189219]	Since	it's	introduction	about	80	years	ago,	

phenytoin	has	not	only	been	established	as	an	effective	anti-epileptic,	

but	 has	 also	 been	 investigated	 for	 several	 other	 indications	 such	 as	

bipolar	 disorder,	 retina	 protection,	 and	 wound	 healing.	

[A188826,A188832]	

Clinicians	 are	 advised	 to	 initiate	 therapeutic	 drug	 monitoring	 in	

patients	who	 require	phenytoin	 since	 even	 small	 deviations	 from	 the	

recommended	therapeutic	range	can	lead	to	suboptimal	treatment,	or	

adverse	 effects.[A189219,A35884]	 Both	 parenteral	 and	 oral	

formulations	of	phenytoin	are	available	on	the	market.[A189219]	
	

Salbutamol	

Salbutamol	 is	 a	 short-acting,	 selective	 beta2-adrenergic	 receptor	

agonist	used	in	the	treatment	of	asthma	and	COPD.	It	is	29	times	more	

selective	 for	 beta2	 receptors	 than	 beta1	 receptors	 giving	 it	 higher	

specificity	 for	 pulmonary	 beta	 receptors	 versus	 beta1-adrenergic	

receptors	 located	 in	 the	heart.	 Salbutamol	 is	 formulated	 as	 a	 racemic	

mixture	of	 the	R-	and	S-isomers.	The	R-isomer	has	150	 times	greater	

affinity	for	the	beta2-receptor	than	the	S-isomer	and	the	S-isomer	has	

been	 associated	 with	 toxicity.	 This	 led	 to	 the	 development	 of	

levalbuterol,	the	single	R-isomer	of	salbutamol.	However,	the	high	cost	

of	 levalbuterol	compared	to	salbutamol	has	deterred	wide-spread	use	
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of	 this	 enantiomerically	 pure	 version	 of	 the	 drug.	 Salbutamol	 is	

generally	 used	 for	 acute	 episodes	 of	 bronchospasm	 caused	 by	

bronchial	 asthma,	 chronic	 bronchitis,	 and	 other	 chronic	

bronchopulmonary	 disorders	 such	 as	 chronic	 obstructive	 pulmonary	

disorder	 (COPD).	 It	 is	 also	 used	prophylactically	 for	 exercise-induced	

asthma.	[Label,	A174379,A174400]	
	

	

Table	3.2.1:	Biomedical	Text	Information	of	Drugs	

Side	Effect Drug	Description 

Anemia	

Anemia	 is	 a	 deficiency	 in	 red	 blood	 cells,	

commonly	 caused	 by	 chemotherapy,	 NSAIDs,	

and	some	antibiotics.	

Bronchitis	
Bronchitis	 is	 inflammation	 of	 the	 bronchial	

tubes,	often	caused	by	infections	or	irritants.	

Depression	

Depression	 is	 a	 mental	 health	 disorder	

characterized	by	persistent	sadness	and	loss	of	

interest,	often	requiring	treatment.	
	

Table	3.2.2:	Biomedical	Text	Information	of	Side	Effects	

Using	these	data,	we	curate	our	final	dataset	to	perform	our	target	task	of	drug	

side	 effect	 frequency	 on.	 An	 example	 of	 a	 row	 of	 the	 final	 curated	 dataset	 is	

illustrated	in	Table	8.2.3:	

	

	

Drug	SMILES	 Drug	
Description	

Side	
Effect	 Side	Effect	Description	 Frequency	

C1=CC=C(C=C1)	
CCCC(=O)O	

Phenylbutyric	
acid	 is	 a	 fatty	
acid	 naturally	
produced	 by	

Shock	

Shock	 is	 a	 critical	
condition	 where	 blood	
circulation	is	insufficient	
to	 meet	 the	 body's	

4	
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Figure	3.2.2:	ChemBERTa-2	Architecture	

colonic	
bacteria	
fermentation.	

needs,	 often	 requiring	
emergency	treatment.	
	

	

Table	3.2.3:	Example	of	a	row	of	the	sample	dataset	

3.2.2 Embedding	Generation	

In	 our	 research,	 we	 have	 used	 two	 different	 BERT-based	 [29]	 LLM	models	 to	

generate	 the	 embeddings	 required	 for	 our	 task	 –	 ChemBERTa-2	 [48]	 and	 SimCSE	

[41].	 We	 have	 used	 ChemBERTa-2	 to	 generate	 embeddings	 of	 the	 SMILES	 string	

representation	[20]	of	drugs	and	used	SimCSE	to	generate	embeddings	of	 the	side	

effect	names.	We	also	generated	embeddings	of	the	biomedical	text	descriptions	of	

the	drugs	and	side	effects	using	SimCSE.	

3.2.2.1 Embedding	SMILES	String	Using	ChemBERTa-2	

The	SMILES	string	representation	of	drugs	was	done	via	the	BERT-based	model	

specifically	 pretrained	 on	 SMILES	 strings	 –	 ChemBERTa-2	 [48].	 The	 general	

architecture	of	the	model	is	illustrated	in	Figure	3.2.2:	

	

	

	

	

	

The	 SMILES	 string	 is	 first	 broken	 down	 into	 tokens.	 Tokens	 are	 decomposed	

units	 of	 sentences	 or	 strings	 which	 can	 constitute	 words,	 sub-words	 or	 even	

characters.	Here,	the	SMILES	strings	are	broken	down	into	tokens	using	the	SMILES	

tokenizer.	 SMILES	 tokenizer	 is	 the	 default	 tokenizer	 for	 ChemBERTa-2	 and	 it	

768-dimensional vector 

0.5  0.2   0.3   …      0.1   0.1  
CC(=O)NC(CS)C(=O)O 
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outperforms	 all	 other	 tokenizers	 for	 tokenizing	 SMILES	 string.	 For	 example,	 the	

SMILES	 string	 CC[N+](C)(C)Cc1ccccc1Br	 is	 tokenized	 into	 'CC[N+]C',	 'C[N+]C)',	

'[N+]C)C',	 'C)C)',	 ')C)C',	 'C)Cc',	 ')Ccc',	 'Cccc',	 'cccc',	 'cccc',	 'cccc',	 'ccc6',	 'cc6Br'.	These	

tokens	 are	 then	 mapped	 to	 integers	 called	 token	 ids.	 These	 token	 ids	 are	 then	

mapped	to	768	length	vectors	called	token	embeddings.		

Token	 embeddings	 are	 numerical	 vector	 representation	 of	 tokens	 in	 an	 input	

sequence.	For	example,	the	token	‘cc6Br’	might	be	mapped	to	a	vector	of	length	768	

that	looks	like	[0.12,	0.34,	-0.88,	…	,	0.95,	0.27].	This	mapping	is	done	based	on	the	

lookup	 table	 constructed	 during	 pretraining.	 This	 step	 is	 essential	 to	 BERT’s	

architecture	 as	 it	 converts	 discrete	 tokens	 into	 continuous	 vectors	 enabling	 it	 to	

capture	semantic	information.	

After	the	token	embeddings	are	generated,	positional	embeddings	are	generated.	

Positional	encoding	is	a	crucial	element	of	the	BERT	model	which	enables	the	model	

to	obtain	information	regarding	the	position	of	a	token	in	a	sequence	relative	to	all	

the	other	tokens.	This	is	important	as	BERT	processes	input	tokens	parallelly	rather	

than	sequentially	so	without	positional	encoding,	it	would	not	have	any	way	to	keep	

track	 of	 the	 order	 of	 tokens	 [29].	 Positional	 encoding	 is	 calculated	using	 sine	 and	

cosine	functions	for	even	and	odd	positions	of	the	embedding:	

𝑃𝐸(()&#*#)",,#) = sin <
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

10000
,#

%#$%&'

A (1)	

𝑃𝐸(()&#*#)",,#./) = cos<
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

10000
,#

%#$%&'

A (2)	

Here,	position	refers	to	the	position	of	the	token	in	a	sequence.	 i	is	the	index	of	

the	specific	dimension	of	the	768-length	vector	and	dmodel	refers	to	the	dimension,	or	

the	 length	 of	 the	 embedding	 of	 a	 model,	 which,	 in	 this	 case	 is	 768.	 This	 can	 be	

variable	 based	 on	 the	 model	 -	 BERT-large	 based	 models	 have	 1024	 dimensions	

where	BERT-base	based	models	have	768	dimensions.	These	positional	embeddings	
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are	 then	 added	 to	 the	 token	 embeddings.	 This	 creates	 a	 768-length	 embedding	

vector	X	to	be	passed	forward	to	the	encoder.		

𝑋 = F𝑥/,𝑥,, … , 𝑥"I (3)	

This	 embedding	 is	 then	 passed	 onto	 the	 encoder	 block	 which	 is	 the	 same	

encoder	block	 that	 is	 found	 in	 transformers	 [27].	 The	 encoder	block	 is	where	 the	

refinement	 of	 the	 embedding	 vector	 X	 takes	 place	 so	 that	 the	 representation	 is	

richer	and	context-aware.	

 

Figure	3.2.3:	Encoder	Block	of	BERT	[29]	

It	 consists	 of	 a	multi-head	 self-attention	 block	 through	which	 the	 embeddings	

are	 passed.	 The	 embeddings	 are	 linearly	 transformed	 into	 3	 different	 matrices	 –	

Query	 (Q),	 Key	 (K),	 and	Value	 (V).	 These	 are	 the	 3	 inputs	 that	 are	 going	 into	 the	

Multi-Head	Attention	module	illustrated	above.	These	are	calculated	as:	

𝑄 = 𝑋𝑊0 (4)	

𝐾 = 𝑋𝑊1 (5)	
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𝑉 = 𝑋𝑊2 (6)	

Here,	WQ,	WK	and	WV	are	learnable	weight	matrices.	

The	self-attention	scores	are	computed	as	follows:	

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 V
𝑄𝐾3

W𝑑4
X𝑉 (7)	

Here,	dk	is	the	dimensionality	of	the	key	vectors.	

The	weight	of	the	values	based	on	the	query	and	key	is	calculated	with:	

𝛼#$ =
𝑒
56!4"7
8%(

∑ 𝑒
56!4"7
8%("

$9/

(8)	

Here,	𝛼#$ 	is	the	weight	of	the	vector	between	the	i-th	query	and	the	j-th	key.	

	The	output	from	the	multi-head	attention	is	then	calculated:	

𝑜𝑢𝑡𝑝𝑢𝑡# =	^𝛼#$

"

$9/

𝑣$ (9)	

The	output	is	then	taken,	and	the	residual	connection	is	added	to	it	to	mitigate	

the	problem	of	vanishing	gradient.	This	summed	output	 is	normalized	 to	ensure	a	

stable	mean	and	variance	of	the	activations:	

𝑁𝑜𝑟𝑚(𝑥) =
𝑥 −𝑚𝑒𝑎𝑛(𝑥)
𝑠𝑡𝑑(𝑥)+	∈

(10)	

Here,	ϵ	is	a	constant	to	prevent	division	by	0.	

These	 embeddings	 are	 then	 passed	 onto	 a	 fully	 connected	 position	 wise	 feed	

forward	network	that	is	applied	to	each	position	in	a	sequence	independently:	
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Figure	3.2.4:	SimCSE	Architecture	

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊/ +	𝑏/)𝑊, + 𝑏, (11)	

W1	and	W2	are	weight	matrices,	and	b1	and	b2	are	bias	terms	and	x	is	the	input	to	

the	 feedforward	 neural	 network.	 This	will	 be	 added	with	 the	 residual	 connection	

again	and	normalized.	

This	process	is	repeated	over	the	12	encoder	blocks	refining	the	embeddings	in	a	

way	as	to	encode	the	contextual	information	in	it.	The	output	from	the	final	encoder	

block	will	be	the	final	embedding	of	the	SMILES	string.	

	

3.2.2.2 Embedding	Side	Effect	Names	Using	SimCSE	
 

 

	

	

	

SimCSE	 [41]	 works	 on	 the	 exact	 same	 BERT	 architecture	 as	 ChemBERTa	

described	 in	 the	 previous	 section.	 It	 generates	 a	 768-length	 vector	 for	 each	 side	

effect	name.	The	key	difference	between	ChemBERTa	and	SimCSE	is	the	concept	of	

contrastive	 learning	 employed	 during	 its	 pretraining.	 It	 is	 pretrained	 on	 Natural	

Language	Inference	(NLI)	datasets	where	there	are	two	types	of	pairs	of	sentences	-	

positive	 pairs	 where	 sentence	 pairs	 entail	 each	 other	 or	 are	 similar,	 and	 hard	

negative	pairs	where	the	sentences	are	contradictory.	Figure	3.2.4	and	Figure	3.2.5	

illustrates	 examples	 of	 how	 the	 embeddings	 of	 similar	 and	 dissimilar	 pairs	 of	

sentences	are	refined.	

	

Insomnia 

768-dimensional vector 

0.2  0.6   0.3    …     0.3   0.9 

Encoder	Block	



 

57 
 

	

	

	

	

	

	

 

 

 

 

 

Figure	3.2.6:	Pretraining	of	SimCSE	on	dissimilar	pair	of	sentences	

0

0.7 

0

0.1 

Figure	3.2.5:	Pretraining	of	SimCSE	on	similar	pairs	of	sentences	
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The	 pair	 of	 sentences	 are	 being	 input	 into	 the	 neural	 network	 with	 default	

weights	and	biases	and	embeddings	are	generated	for	the	two	separate	sentences.	

Cosine	similarity	of	the	two	sentences	is	calculated:	

𝑐𝑜𝑠𝑖𝑛𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(ℎ/, ℎ,) = 	
∑ ℎ/# 	.		ℎ,#%
#9/

n∑ ℎ/#,%
#9/ 	.		n∑ ℎ,#,%

#9/

(12)	

Here,	 h1	 and	 h2	 are	 the	 embedding	 of	 the	 two	 sentences,	 and	 d	 denotes	 the	

dimensionality	of	the	embeddings,	which,	in	this	case,	is	768.	

Based	on	 the	 similarity	of	 the	 sentences	and	 cosine	 similarity,	 if	 the	 sentences	

are	 similar	 as	 per	 Figure	 3.2.4,	 the	 cosine	 similarity	 value	 will	 be	 higher	 so	 the	

weights	and	biases	of	the	neural	network	will	be	updated	based	on	contrastive	loss	

function	 in	 a	way	as	 to	maximize	 the	 cosine	 similarity,	 and	 if	 the	 sentence	pair	 is	

dissimilar,	as	seen	in	Figure	3.2.5,	the	cosine	similarity	value	would	be	lower	and	the	

weights	and	biases	would	be	updated	based	on	contrastive	loss	function	in	a	way	as	

to	minimize	the	cosine	similarity.	The	contrastive	loss	function	is:	

ℒ:)"&*;<&*#=> =	− log<
𝑒
:)&#">_&#!(@),@*)

A

∑ 𝑒
:)&#">_&#!(@),@!)

A,B
#9/

A (13)	

Here,	h	refers	to	the	embeddings,	𝜏	is	a	temperature	hyperparameter	and	2N	 is	

the	batch	size.	

3.2.2.3 Embedding	Biomedical	Text	Descriptors	Using	SimCSE	

Both	 the	 biomedical	 text	 descriptors	 of	 the	 drugs	 and	 the	 side	 effects	 are	

embedded	using	SimCSE	[41],	explained	in	Section	3.2.2.2.	The	biomedical	semantic	

text	descriptor	for	the	drugs	is	converted	into	a	768-length	vectors.	The	biomedical	

semantic	 text	 descriptor	 for	 the	 side	 effects	 is	 also	 embedded	 into	 a	 768-length	

vector.		
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3.2.3 Fine-Tuning	the	Embeddings	of	the	Biomedical	Text	

Descriptors	

The	 two	 different	 embeddings	 for	 the	 biomedical	 semantic	 text	 descriptor	 of	

drugs	 and	 side	 effects	 are	 then	 fine-tuned	 using	 combinations	 of	 different	 loss	

functions	in	order	to	improve	the	representation	of	the	text	descriptors	better	and	

thus	improve	the	performance.	

The	architecture	of	the	fine-tuning	flow	is	illustrated	in	Figure	3.2.6:	

 

Figure	3.2.7:	Fine-Tuning	Framework	for	SimCSE	

Loss 
Calculation

Combined Loss 
Calculation

Backpropagation
and Optimization

Update Model 
Parameters

In-Batch Negative AngleCosent

Side Effect Biomedical Text Embeddings Drug Biomedical Text Embeddings

0.40 -0.34  0.96     . . .   -0.61   0.30.56 -0.94  0.66     . . .   -0.75  0.7
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This	 fine-tuning	architecture	uses	a	combination	of	 loss	 functions	discussed	by	

Li	 and	 Li	 in	 the	 paper	 AnglE	 [55].	 It	 discusses	 combining	 three	 loss	 functions	 –	

CoSENT	[52],	In-Batch	Negative	[57],	and	AnglE	[55].	

3.2.3.1 CoSENT	Loss	

According	to	CoSENT	[52],	the	primary	goal	is	to	maximize	the	cosine	similarity	

for	positive	sample	pairs	and	minimize	 it	 for	negative	sample	pairs.	This	principle	

underpins	 the	design	of	 the	cosine	 function	used	 in	generalization	and	end-to-end	

optimization	of	similarity	between	representations.	By	ensuring	that	the	similarity	

score	for	positive	pairs	is	higher	than	that	for	negative	pairs,	CoSENT	addresses	the	

need	 for	 more	 nuanced	 similarity	 measures	 beyond	 the	 binary	 classification	

approach	 typical	 in	 Natural	 Language	 Inference	 (NLI).	 The	 use	 of	 a	 temperature	

hyperparameter,	𝜏,	 helps	 to	 control	 the	degree	of	generalization,	 thereby	 reducing	

overfitting	 and	 enhancing	 the	model's	 performance	 on	 unseen	data.	 The	 equation	

for	ℒ:)&>"*	is:	

ℒ:)& = log s1 + 	 ^ 𝑒
CDE5F%+,-*	,			F/!%&*7	HCDE5F%+,-	,			F/!%&7

A

I5F%+,-	,			F/!%&7	J	I5F%+,-*	,			F/!%&*7

t (14)	

Where:	

• 𝑋%;KL	and	𝑋&#%> 	-	embeddings	of	 the	biomedical	 semantic	 text	descriptors	of	

drugs	and	side	effects.	

• 𝑠2𝑋%;KL	, 	𝑋&#%>3	-	labeled	frequency	scores.	

• cos	(. )	–	cosine	similarity	function	

• 𝜏	–	temperature	hyperparameter	

3.2.3.2 In-Batch	Negative	Loss	

Contrastive	 models	 typically	 generate	 positive	 samples	 through	 data	

augmentation	techniques.	Within	a	batch,	semantically	similar	sentences	that	aren't	

explicitly	labeled	as	positive	samples	might	end	up	as	in-batch	negatives.	To	address	
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this,	supervised	positive	samples	are	utilized,	ensuring	that	truly	similar	sentences	

are	correctly	identified	as	positives.	

The	in-batch	negative	loss	function	[57]	then	leverages	these	in-batch	negatives	

to	calculate	the	 loss.	This	 loss	 function	encourages	the	model	to	 learn	embeddings	

such	 that	 positive	 samples	 are	 closer	 together	 and	 negative	 samples	 are	 farther	

apart	 in	 the	 embedding	 space.	 This	 approach	 helps	 in	 effectively	 distinguishing	

between	 similar	 and	 dissimilar	 sentences,	 improving	 the	 overall	 quality	 of	 the	

learned	sentence	embeddings.	The	equation	for	the	In-Batch	Negative	Loss	is:	

ℒ#M" = −^^𝑙𝑜𝑔

⎣
⎢
⎢
⎢
⎡
𝑒
CDE	NF0! ,F0!

1 O
A 	

∑ 𝑒
CDE	PF0! ,F0"

1 Q

A 	B
$ ⎦

⎥
⎥
⎥
⎤!

#M

(15)	

Where:	

• 𝑏	–	the	batch	number	

• 𝑋M! 	and	𝑋M!
. 		 -	 embeddings	 of	 the	 positive	 samples	 of	 a	 drug	 and	 side	 effect	

biomedical	text	descriptor.	

• 𝑚	–	number	of	positive	pairs	in	a	batch.	

• cos	(.)	–	cosine	similarity	function	

• 𝜏	–	temperature	hyperparameter	

3.2.3.3 Angle	Loss	

Traditional	 cosine	 similarity	 functions	 used	 in	 In-Batch	Negative	 loss	 [57]	 can	

encounter	saturation	zones,	which	can	hinder	the	optimization	process	by	causing	

gradients	 to	 vanish,	 leading	 to	 suboptimal	 model	 performance.	 By	 focusing	 on	

optimizing	 the	 angle	 differences	 in	 complex	 space,	 the	 AnglE	 loss	 [55]	 addresses	

these	 saturation	 issues.	 Instead	 of	 relying	 solely	 on	 cosine	 similarity,	 AnglE	

introduces	a	 complex	 space	where	 the	angles	between	vectors	are	optimized.	The	

complex	space	representations	of	text	embeddings	𝑋%;KL	and	𝑋&#%> 	are	split	into	real	
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and	 imaginary	 parts	𝑋;><R	and	𝑋#!L.	 The	 representations	 are	 defined	 as	𝑧 = 𝑎 + 𝑏𝑖	

and	𝑤 = 𝑐 + 𝑑𝑖	with	𝑎 = 	𝑋%;KL,;><R	,	𝑏 = 𝑋%;KL,#!L,	𝑐 = 𝑋&#%>,;><R	and	𝑑 = 𝑋&#%>,#!L.	

The	angle	difference	of	𝛥𝜃ST 	is:	

𝛥𝜃ST = 𝑎𝑏𝑠 �
(𝑎𝑐 + 𝑏𝑑) + (𝑏𝑐	 − 𝑎𝑑)𝑖
W(𝑐, + 	𝑑,)(𝑎, + 	𝑏,)

	x	
W(𝑎, + 	𝑏,)
W(𝑐, + 	𝑑,)

� (16)	

With	the	angle	difference	𝛥𝜃!"	calculated,	the	angle	loss	ℒ<"LR>is	formulated	as:	

ℒ<"LR> = log s1		 + 	 ^ 𝑒
∆V%+,-_/!%&H	∆V%+,-*_/!%&*

A

I5F%+,-,	F/!%&7	J	I5F%+,-*,	F/!%&*7

t (17)	

Where:	

• 𝑓2𝑋%;KL, 	𝑋&#%>3	–	the	labeled	frequency	values	

• ∆𝜃%;KL_&#%> 	and	∆𝜃%;KL,_&#%>,	–	normalized	angle	differences	between	high	

and	low	frequency	pairs.	

• 𝜏	–	temperature	hyperparameter	

3.2.3.4 Combined	Loss	

After	the	calculation	of	all	the	loss	values,	the	combined	loss	is	calculated	as:	

ℒ:)!M#">% = 𝑤:)&>"* × ℒ:)&>"* +𝑤#M" × ℒ#M" +𝑤<"LR> × ℒ<"LR> (18)	

Here,	𝑤:)&>"* ,	𝑤#M"	and	𝑤<"LR> 	are	weights	for	each	of	the	loss	functions.	

3.2.4 Embedding	Concatenation	and	Cosine	Similarity	

After	the	generation	of	the	4	embeddings	vectors	of	drug	SMILES	representation,	

side	 effect	 names,	 biomedical	 text	 descriptor	 of	 drugs,	 and	 biomedical	 text	

descriptor	of	side	effects,	each	of	length	768,	the	2	drug	embeddings	and	the	2	side	
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effect	embeddings	are	concatenated	to	create	a	1536	length	vector	representing	the	

drugs	and	a	1536	length	vector	representing	the	side	effects.	

           

Figure	3.2.8:	Concatenated	Embeddings	of	Drugs	and	Side	Effects	

This	 is	 followed	by	 the	calculation	of	cosine	similarity	of	 the	 two	concatenated	

embeddings	of	drugs	and	side	effects.	

3.2.5 Frequency	Prediction	using	Multi-Layer	Perceptron	

The	 concatenated	 embeddings	 are	 then	 passed	 on	 to	 a	multi-layer	 perceptron	

(MLP)	 for	 classification.	 The	 MLP	 has	 4	 layers	 –	 an	 input	 layer	 where	 the	

embeddings	are	being	fed	to	the	model	as	input,	a	fully	connected	hidden	layer	with	

the	 activation	 function	 ReLU	 to	 introduce	 nonlinearity,	 a	 linear	 layer	 for	 the	 5	

classes	to	output	the	raw	scores	(logits),	and	a	final	softmax	function	to	convert	the	

logits	into	probabilities	that	enables	the	output	to	be	interpreted	as	the	likelihood	of	

each	class	thus	predicting	the	frequency	class.	

	 	

Drug SMILES Representation Biomedical Text Description of Drugs

1536-length Drug Embeddings

1536-length Side Effect Embeddings

Biomedical Text Description of Side EffectsSide Effect Names

0.50  0.23  -0.88   . . .    0.11   -0.2

0.73  0.43  -0.98   . . .    0.51   -0.9

0.73  0.43  -0.98   . . .    0.51   -0.9

0.50  0.23  -0.88   . . .    0.11   -0.2

0.40 -0.34  0.96     . . .   -0.61   0.3

0.56 -0.94  0.66     . . .   -0.75  0.7

0.56 -0.94  0.66     . . .   -0.75  0.7

0.40 -0.34  0.96     . . .   -0.61  0.3

Cosine Similarity
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CHAPTER	4	

Computational	Experiments	
	

	

4.1 System	Configuration	

We	have	conducted	the	experiments	on	the	cloud	GPU	rental	platform,	RunPod	

[58]	using	the	specifications	listed	in	Table	4.1.1:	

Spec Detail 

Processor	 Intel	®	CoreTM	i9-14900k,	3.2GHz,	24	Core(s)	

RAM	 188GB	5600MHz	DDR5	

OS	 Ubuntu	Linux	

GPU	 NVIDIA	®	RTX	6000	ADA	48GB	

Table	4.1.1:	System	Configuration	Details	

4.2 Dataset	

We	 conducted	 the	 experiments	 on	 Galeano	 [30]	 and	 Zhao’s	 [31]	 dataset	 with	

additional	 biomedical	 drug	 and	 side	 effect	 semantic	 text	 information	 for	 DSF	

prediction.	We	converted	the	same	dataset	with	the	frequency	labels	set	to	0	if	the	

labels	are	between	1	to	3,	and	1	otherwise	for	DSFH	prediction	[31].	It	is	to	be	noted	

that	all	the	state-of-the-art	models	rely	on	this	dataset.	
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4.3 Experiments	

We	 ran	 all	 the	 computational	 experiments	 using	 python3.10.1,	 pytorch2.3.1,	

transformers4.42.4,	numpy1.26.4	and	sklearn1.3.2	and	other	packages.	

We	started	off	by	aggregating	the	data	into	a	unified	table	–	drug	SMILES,	drug	

semantic	text	descriptor,	side	effect	name,	side	effect	semantic	text	descriptor,	and	

the	 frequency	 label.	We	then	proceeded	to	embed	each	of	 the	4	 features.	We	used	

the	 transformers	 library	 to	 import	ChemBERTa-2	and	SimCSE.	After	obtaining	 the	

embeddings,	 we	 fine-tuned	 a	 SimCSE	 model	 using	 the	 semantic	 text	 descriptors’	

embeddings,	 and	as	our	 loss	 functions,	we	used	 the	 combination	of	 loss	 functions	

Cosent	loss,	In-batch	Negative	loss,	and	AnglE	loss.	We	then	concatenated	the	drug	

embeddings	 and	 side	 effect	 embeddings	 and	 calculated	 the	 cosine	 similarity	

between	 the	 concatenated	 embeddings	 using	 the	 sklearn	 library	 to	 compute	 the	

SCC.	We	then	passed	 the	embeddings	on	 to	an	MLP	constructed	using	 the	pytorch	

library	to	obtain	the	frequency	value	predictions.	

With	 the	 hyperparameters	 listed	 in	 Table	 10.4.1,	 we	 performed	 10-fold	 cross	

validation.	In	each	of	the	10	iterations	over	all	the	folds,	we	iteratively	used	9	of	the	

folds	for	training	and	1	of	the	folds	for	testing.	This	ensures	that	the	results	that	we	

obtain	are	trustworthy	and	can	work	well	on	unseen	and	independent	dataset.	Also,	

this	ensures	that	our	model	is	robust,	generalizes	well	and	prevents	overfitting.	

Due	to	the	size	of	the	LLMs	being	very	large	with	over	a	100	million	parameters	

trained	 for	 every	 single	 model	 along	 with	 the	 10-fold	 cross	 validation,	 the	

experimental	 process	 was	 very	 resource	 and	 time	 intensive.	 Therefore,	 we	

experimented	 using	 the	 default	 values	 of	 the	 hyperparameters	 suggested	 by	 the	

previous	literature.	
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4.4 Hyperparameter	Tuning	

Hyperparameter	tuning	is	a	crucial	aspect	for	getting	a	machine	learning	model	

to	perform	well.	It	is	the	selection	of	ideal	values	for	hyperparameters.	We	chose	the	

values	of	these	hyperparameters	based	on	the	usage	guidelines	of	the	standard	fine-

tuning	 processes	 in	 different	 papers	 The	 hyperparameters	 that	 we	 used	 in	 this	

research	are	as	follows:	

4.4.1 CoSENT	Tau	

CoSENT	 tau	 adjusts	 the	 smoothness	 of	 the	 Softmax	 function	 by	 scaling	 the	

differences	 between	 the	 cosine	 similarities	 of	 the	 pairs.	 A	 lower	 tau	 makes	 the	

model	more	confident,	which	could	lead	to	overfitting,	while	a	higher	tau	produces	

softer	probability	distributions	across	the	pairs.	We	used	a	value	of	20.	

4.4.2 	In-Batch	Negative	Tau	

In-Batch	Negative	Tau	adjusts	the	differences	in	similarity	measures,	helping	to	

differentiate	between	negative	and	non-negative	pairs	within	the	batch.	We	used	a	

value	of	20	as	the	In-Batch	Negative	Tau.	

4.4.3 Angle	Tau	

Angle	Tau	scales	the	different	between	the	similarities	in	angle	between	pairs	of	

sentences.	We	used	a	value	of	1	for	it.	

4.4.4 Weights	of	the	Loss	Functions	

These	weights	𝑤:)&>"* ,	𝑤#M"	and	𝑤<"LR> 	refer	to	the	weights	of	the	individual	loss	

functions	in	the	combined	loss	that	controls	how	much	a	specific	loss	will	impact	the	
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overall	 combined	 loss.	We	used	 values	 of	 1	 for	 all	 of	 them	 in	 this	 research	 giving	

each	of	them	equal	impact.	

The	values	of	the	hyperparameters	are	listed	in	Table	4.4.1:	

Hyperparameters Values 

CoSENT	tau		 20	

In-Batch	Negative	Tau	 20	

Angle	Tau	 20	

𝑤:)&>"*	 1	

𝑤#M"	 1	

𝑤<"LR> 	 1	
Table	4.4.1:	Hyperparameter	Values	

4.5 Training	Parameters	

Training	 parameters	 are	 parameters	 that	 influence	 the	 training	 process	 and	

ultimately	affect	the	performance	of	the	model.	Unlike	model	parameters,	which	are	

learned	by	the	model	during	training	(such	as	weights	in	a	neural	network),	training	

parameters	 are	 set	 before	 training	 begins	 and	 are	 not	 learned	 from	 the	 data	 but	

rather	 set	 by	 the	users.	We	discuss	 the	 training	parameters	 that	we	used	 and	 the	

values	that	we	chose	for	each.	We	chose	the	values	of	these	parameters	based	on	the	

usage	guidelines	of	the	standard	fine-tuning	processes	in	different	papers.	

4.5.1 Batch	Size	

Batch	size	 is	a	 crucial	 training	parameter	 that	 refers	 to	 the	number	of	 training	

examples	 (or	 data	 points)	 that	 the	 model	 processes	 before	 updating	 its	 internal	

parameters	(such	as	weights)	during	a	single	iteration	of	training.	We	used	a	value	

of	32	for	the	batch	size.	
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4.5.2 Learning	Rate	

Learning	rate	is	a	training	parameter	that	controls	the	size	of	the	steps	that	the	

model	 takes	 while	 updating	 its	 internal	 parameters	 (such	 as	 weights)	 during	 the	

training	process.	We	used	a	value	of	2𝑒HW	as	the	learning	rate.	

4.5.3 Epochs	

Epoch	refers	to	one	complete	cycle	through	the	entire	training	dataset.	During	an	

epoch,	 the	 learning	 algorithm	 processes	 every	 example	 in	 the	 training	 dataset	

exactly	once	and	updates	the	model's	parameters	based	on	the	computed	gradients.	

We	trained	our	training	set	over	5	epochs.		

4.5.4 Weight	Decay	

Weight	 decay	 is	 a	 regularization	 technique	 used	 in	 training	 machine	 learning	

models,	 particularly	 neural	 networks,	 to	 prevent	 overfitting.	 It	works	 by	 adding	 a	

penalty	 to	 the	 loss	 function,	which	discourages	 the	model's	weights	 from	growing	

too	large.	This	penalty	is	proportional	to	the	size	of	the	weights	and	is	controlled	by	

a	parameter	known	as	the	weight	decay	coefficient.	We	used	a	value	of	0.01.	

4.5.5 Optimizer	

Optimizer	 is	 an	 algorithm	 that	 adjusts	 a	 model's	 internal	 parameters	 such	 as	

weights	 and	 biases	 in	 order	 to	 minimize	 the	 loss	 function.	 The	 loss	 function	

measures	how	well	the	model's	predictions	match	the	actual	target	values,	and	the	

optimizer's	 job	 is	 to	 find	 the	 set	 of	 parameters	 that	 results	 in	 the	 lowest	 possible	

loss.	We	used	 the	Adam	optimizer	 that	 computes	 adaptive	 learning	 rates	 for	 each	

parameter	and	has	bias	correction	terms.	

The	values	of	the	hyperparameters	are	listed	in	Table	4.5.1:	
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Training	Parameters Values 

Batch	Size	 32	
Learning	Rate	 2𝑒HW	
Epoch	 5	
Weight	Decay	 0.01	
Optimizer	 Adam	

	

Table	4.5.1:	Training	Parameters	

4.6 Evaluation	Metrics	

The	key	metrics	that	we	have	used	to	evaluate	the	performance	of	our	model	for	

DSF	and	DSHF	prediction	will	be	discussed	in	this	section.		

4.6.1 Evaluation	Metrics	for	DSF	Prediction	

For	 the	 DSF	 prediction	 problem,	 we	 employed	 the	 metrics	 Spearman’s	 Rank	

Correlation	Coefficient	(SCC),	Mean	Absolute	Error	(MAE)	and	Root	Mean	Squared	

Error	(RMSE).	

	

4.6.1.1 Spearman’s	Rank	Correlation	Coefficient	

The	 Spearman	 rank	 correlation	 coefficient,	 known	 as	 Spearman's	 rho	 (𝜌),	 is	 a	

non-parametric	statistic	that	measures	the	strength	and	direction	of	the	association	

between	 two	 ranked	variables.	Unlike	Pearson's	 correlation,	which	 looks	 at	 linear	

relationships,	 Spearman's	 rho	 determines	 how	well	 the	 relationship	 between	 two	

variables	can	be	described	using	a	monotonic	function.	This	is	particularly	useful	for	

data	that	doesn't	follow	a	normal	distribution	or	when	dealing	with	ordinal	data.	To	

compute	Spearman's	rho,	the	data	values	are	first	converted	to	ranks,	and	then	the	

differences	between	the	ranks	of	each	pair	of	variables	are	calculated.	
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The	equation	of	SCC	is	formulated	as:	

𝑆𝐶𝐶 = 1 −
6∑𝑑#

,

𝑛(𝑛, − 1)
(19)	

Where:	

• 𝑑# 	is	the	difference	between	ranks	of	each	pair	of	observations.	

• 𝑛	is	the	number	of	observations.	

4.6.1.2 Mean	Absolute	Error	(MAE)	

Mean	Absolute	Error	calculates	 the	average	magnitude	of	 the	errors	 in	a	set	of	

predictions,	without	 considering	 their	 direction.	 It	measures	 the	 average	 absolute	

difference	 between	 the	 predicted	 values	 and	 the	 actual	 values.	 MAE	 is	 useful	 in	

quantifying	the	prediction	error	of	models	in	regression	analysis.	MAE	is	formulated	

as:	

𝑀𝐴𝐸 =
1
𝑛^

|𝑦# − 𝑦�#|
"

#9/

(20)	

Where:	

• 𝑛	–	number	of	observations.	

• 𝑦# 	–	actual	value.	

• 𝑦�# 	–	predicted	value.	

4.6.1.3 Root	Mean	Square	Error	

Unlike	 the	 absolute	 average	 difference	 calculated	 in	 MAE,	 Root	 Mean	 Square	

Error	 (RMSE)	 measures	 the	 average	 magnitude	 of	 the	 errors	 between	 predicted	

values	and	actual	values.	RMSE	 is	particularly	useful	because	 it	provides	a	unified	

measure	 of	 predictive	 accuracy	 by	 combining	 both	 the	 variance	 and	 bias	 of	 the	

model's	errors.	RMSE	is	formulated	as:	
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𝑅𝑀𝑆𝐸 = �
1
𝑛^

(𝑦# − 𝑦�#),
"

#9/

(21)	

Where:	

• 𝑛	–	number	of	observations.	

• 𝑦# 	–	actual	value.	

• 𝑦�# 	–	predicted	value.	

4.6.2 Evaluation	Metrics	for	DSFH	Prediction	

For	the	binary	classification	problem	DSFH	prediction,	we	employed	the	metrics	

Accuracy,	Precision,	Recall,	F1-score,	Area	Under	Receiver	Operator	Curve	(AUROC),	

and	Area	Under	Precision	Recall	Curve	(AUPRC).	Before	discussing	these	metrics,	it	

is	imperative	to	understand	the	terms	that	are	used	to	calculate	these	metrics.	These	

can	be	found	from	the	confusion	matrix.	This	is	illustrated	in	Figure	4.6.1:	

 

Figure	4.6.1:	Confusion	Matrix	
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True	Positive:	The	total	number	of	high	frequency	values	predicted	correctly.	

True	Negative:	The	total	number	of	low	frequency	values	predicted	correctly.	

False	Positive:	The	total	number	of	 low	frequency	values	 incorrectly	predicted	as	

high	frequency	values.	

False	Negative:	The	total	number	of	high	frequency	values	incorrectly	predicted	as	

low	frequency	values.	

4.6.2.1 Accuracy	

Accuracy	is	defined	as	the	ratio	of	the	number	of	correct	predictions	made	by	the	

model	to	the	total	number	of	predictions.	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(22)	

4.6.2.2 Precision	

Precision	refers	to	the	ratio	of	the	true	positive	predictions	(correctly	identified	

positive	instances)	to	all	the	instances	that	are	predicted	as	positive	by	the	model.	In	

this	case,	this	refers	to	the	proportion	of	all	the	high	frequencies	that	are	correctly	

predicted	to	the	total	high	frequency	predictions.	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(23)	

4.6.2.3 Recall	

Recall	 refers	 to	 the	 ratio	 of	 the	 true	 positive	 predictions	 (correctly	 identified	

positive	instances)	to	all	the	instances	that	are	actually	true.	In	this	case,	this	refers	

to	the	proportion	of	all	the	high	frequencies	that	are	correctly	predicted	to	the	total	

number	of	samples	that	are	actually	labelled	as	high	frequency.	

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(24)	
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4.6.2.4 F1-Score	

The	 F1-Score	 shows	 the	 balance	 between	 the	 precision	 and	 recall.	 In	 this	

instance,	it	ensures	that	both	the	high	frequency	and	low	frequency	side	effects	are	

comprehensively	 identified	 without	 a	 significant	 number	 of	 false	 positives	 or	

negatives.	

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2	 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(25)	

4.6.2.5 Area	Under	the	Receiver	Operating	Characteristic	Curve	

(AUROC)	

AUROC	illustrates	the	tradeoff	between	recall	and	false	positive	rate.	It	measures	

how	well	a	model	can	distinguish	between	two	classes.	It	denotes	class	separability.	

𝐴𝑈𝑅𝑂𝐶 = 	� 𝑅𝑒𝑐𝑎𝑙𝑙2𝐹𝑃𝑅H/(𝑥)3𝑑𝑥
/

X
(26)	

Where:		

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝑇𝑃𝑅) = 	
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(27)	

4.6.2.6 Area	Under	the	Precision	Recall	Curve	(AUPRC)	

AUPRC	 illustrates	 the	 tradeoff	 between	 precision	 and	 recall	 at	 different	

thresholds.	 It	 is	 used	 to	 comprehend	 the	 performance	 of	 a	 model’s	 ability	 with	

regards	to	maintaining	high	precision	while	also	receiving	high	recall.	

𝐴𝑈𝑃𝑅𝐶 =
1
𝑁^

𝑇𝑃
𝐹𝑃 + 𝑇𝑃

B

%9/

(28)	

4.7 Result	

The	 results	 obtained	 by	 our	 proposed	 LLMPred	 model	 for	 DSF	 and	 DSHF	

prediction	is	summarized	in	Table	4.7.1	and	Table	4.7.2:	
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Metric Value 

SCC	 0.7070	

MAE	 0.4071	

RMSE	 0.4346	
	

Table	4.7.1:	DSF	Prediction	Results	

Metric Value 

Accuracy	 0.8226	

Precision	 0.8752	

Recall	 0.8113	

F1-Score	 0.8421	

AUROC	 0.8248	

AUPRC	 0.8337	
	

Table	4.7.2:	DSHF	Prediction	
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CHAPTER	5	

Comparison	and	Analysis	
	

	

5.1 DSF	Prediction	

The	most	recent	research	in	the	domain	of	DSF	prediction	have	utilized	different	

approaches	such	as	matrix	decomposition,	graph	attention	networks,	neighborhood	

regularization,	multi	modal	fusion	strategy,	etc.	

Model SCC MAE	 RMSE	
Galeano’s	Model	 -	 1.2980	 0.9530	

MGPred	 0.065	 0.4905	 0.6521	

SDPred	 0.258	 0.4212	 0.5794	

NRFSE	 -	 0.4330	 0.5930	

DSGAT	 0.431	 1.1750	 1.4690	

Park’s	model	 0.438	 1.0570	 1.4071	

HMMF	 -	 0.4216	 0.5810	

LLMPred	 0.707	 0.4071	 0.4346	
	

Table	5.1.1:	Comparison	of	DSF	Prediction	

In	 the	 table	 above,	 we	 compare	 our	 model	 with	 the	 current	 state-of-the-art	

paper.	Our	model	achieved	superior	metrics	in	all	the	metrics	reported	in	previous	

state-of-the-art	 models.	 We	 also	 included	 earlier	 state-of-the-art	 models	 for	
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comparison.	Figure	5.1.1,	5.1.2	and	5.1.3	visually	 illustrates	 the	comparison	of	 the	

performance	of	our	model	with	all	the	baseline	models:	

 

Figure	5.1.1:	Comparing	SCC	

	

LLMPred	 achieved	 state-of-the-art	 results	 obtaining	 SCC	 scores	 of	 0.707,	 a	

61.46%	increase	over	the	second-best	Park’s	model	at	an	SCC	score	of	0.438.	For	the	

metric	SCC,	the	higher	the	score,	the	better	the	performance	of	the	model.		
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Figure	5.1.2:	Comparing	MAE	

MGPred,	SDPred,	NRFSE	and	HMMF	performs	very	similar	 to	LLMPred	but	our	

model	slightly	outperforms	the	second	best	performing	model	by	around	3.35%.	In	

this	case,	the	lower	the	MAE,	the	better	the	model.	

 

Figure	5.1.3:	Comparing	RMSE	
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Our	 model	 LLMPred	 showed	 superior	 performance	 compared	 to	 the	 other	

baseline	models	 with	 an	 improvement	 from	 the	 best	model	 by	 around	 25%.	 The	

lower	the	RMSE,	the	better	the	performance.	

5.2 DSHF	Prediction	

DSFH	prediction	task	has	not	been	explored	 in	many	of	 the	papers	that	 looked	

into	 frequency	 values.	 The	most	 recent	 research	 that	 looked	 into	 high	 frequency	

prediction	is	MGPred	[31].		

Model Accuracy Precision	 Recall	 F1	 AUROC	 AUPRC	

Galeano’s	
Model	 0.6731	 0.8391	 0.5551	 0.6682	 0.7433	 0.8279	

MLP	 0.7391	 0.6696	 0.9441	 0.7835	 0.8944	 0.8886	

MGPred	 0.8107	 0.8732	 0.7942	 0.8318	 0.9012	 0.9197	

LLMPred	 0.8226	 0.8752	 0.8113	 0.8421	 0.8248	 0.8337	
	

Table	4.1.2:	Comparison	of	DSFH	Prediction	

In	Table	5.1.2,	we	compare	our	model	with	the	current	state-of-the-art	paper	on	

DSHF	prediction	MGPred.	Our	model	achieved	metrics	in	all	the	metrics	reported	in	

previous	 state-of-the-art	models.	We	 also	 included	 earlier	 state-of-the-art	models	

for	comparison.	Our	model	achieved	 the	best	accuracy	along	with	a	very	balanced	

predictive	 power	 as	 demonstrated	 by	 the	 f1-score.	 The	 following	 figures	 visually	

illustrate	 the	comparison	of	 the	metrics	 for	 the	models.	Figure	5.1.4	compares	 the	

accuracy,	precision,	recall	and	f-1	score	of	the	models	and	Figure	5.1.5	compares	the	

AUROC	and	AUPRC.	
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Figure	5.1.4:	Accuracy,	Precision,	Recall	and	F1-Score	

	

	

	

	

	

	

	

	

	

	

	

	

 

	

 

 

Figure	5.1.5:	AUROC	and	AUPRC	
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CHAPTER	6	

Conclusion	and	Future	Work	
	

	

6.1 Conclusion	

In	this	research,	we	strived	to	develop	a	novel	architecture	based	on	similarity	

measures	 to	 generate	 embeddings	 using	 LLMs.	We	 formulated	 the	DSF	 and	DSHF	

task	from	the	DSF	dataset	curated	in	previous	research	efforts	along	with	new	data	

acquired	 from	multiple	sources.	The	purpose	of	 this	methodology	 is	 to	predict	 the	

frequency	of	specific	side	effects	for	certain	drugs.	

The	first	step	involves	generating	embeddings	for	the	chemical	structures	of	the	

drugs	 and	 the	 names	 of	 the	 side	 effects.	 This	 allows	 the	 model	 to	 capture	 the	

inherent	 similarities	 between	 different	 chemical	 compounds	 and	 their	 associated	

side	effects.	

In	parallel,	embeddings	are	generated	from	biomedical	text	information	related	

to	the	drugs	and	side	effects.	This	step	leverages	textual	data	to	further	enhance	the	

embeddings	with	context-specific	information	derived	from	scientific	literature	and	

other	textual	sources.	

After	generating	these	embeddings,	the	research	concatenates	them,	combining	

both	 the	 structural	 and	 textual	 information.	The	 final	 step	 involves	predicting	 the	

frequency	 of	 drug	 side	 effects	 using	 these	 combined	 embeddings	 using	 cosine	

similarity.	 This	 comprehensive	 approach	 aims	 to	 enhance	 the	 accuracy	 and	
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reliability	of	side	effect	predictions	by	integrating	multiple	data	sources	and	types	of	

information.	

6.2 Limitation	and	Future	Work	

Despite	 obtaining	 significantly	 good	 results	 in	 the	 task	 of	 DSF,	 there	 are	 still	

some	 limitations	 of	 our	 research.	We	 focused	 primarily	 on	 DSF	 prediction	 rather	

than	drug	side	effect	association	prediction.	

Also,	 we	 did	 not	 consider	 external	 environments	 such	 as	 genetic	 factors	

associated	with	a	side	effect	occurring	after	a	drug	is	taken.	We	also	used	a	couple	of	

attributes	each	for	the	drugs	and	side	effects.	

Furthermore,	our	research	is	concerned	with	side	effects	of	single	drugs	rather	

than	how	a	side	effect	can	result	from	polypharmacy,	or	the	effect	of	multiple	drugs	

taken	at	once.		

Based	on	our	work,	future	research	could	focus	on	

• Incorporate	more	features	to	our	dataset	and	extend	it.	

• Extend	 the	 model	 architecture	 for	 polypharmacy	 side	 effect	 and	 side	

effect	frequency	prediction.	

• Carry	out	drug	side	effect	association	prediction.	

• Harness	 the	power	of	very	 large	 language	models	 such	as	Llama	3	with	

405	billion	parameters.	
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