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ABSTRACT

Multi-object tracking (MOT) is a chore task in various applications, including au-

tonomous driving and surveillance systems. Accurate and reliable MOT is essential

for these systems to operate safely and efficiently, especially in dynamic and cluttered

environments. Despite significant advancements in the field, challenges such as ob-

stacles causing occlusions and background interference persist, often leading to false

negatives, reduced accuracy, and reliability.

Traditional MOT methods, such as the widely-used Deep SORT, face significant

challenges in handling occlusions and minimizing false negatives. When objects are

temporarily obscured, these methods can lose track of them, resulting in inconsistent

object identities and increased false negatives. Addressing these challenges is vital

for improving tracking performance in complex scenarios.

This thesis enhances Deep SORT by incorporating memory management for oc-

cluded items and utilizing the Sørensen-Dice coefficient for better similarity measure-

ment. Our approach re-identifies occluded objects using motion features, enabling

more robust tracking even when objects are temporarily obscured.

Evaluated on the MOT16 dataset, our method significantly improves key perfor-

mance metrics, achieving a MOTA of 61.84 and a recall of 69.8, compared to the

baseline Deep SORT performance of 61.40 and 68.9, respectively.

The contributions of this thesis to the field of MOT are significant, providing

a reliable method for tracking objects in challenging situations. By addressing the

limitations of existing methods, particularly in handling occlusions and reducing false

negatives, this work paves the way for more reliable and accurate tracking systems

in real-world applications, ultimately enhancing the performance and resilience of

autonomous driving systems.
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CHAPTER 1

Introduction

1.1 Autonomous Vehicles

Vehicular technology, especially autonomous driving, has become more popular and

important, helping to develop smart transport systems. These systems need accu-

rate technologies to handle uncertainties like pedestrian actions, random objects, and

various road conditions. Autonomous vehicles are expected to drastically change

transport around the world, improving human quality of life and making roads safer

by reducing traffic accidents significantly.

1.1.1 Levels of Autonomy

The Society of Automotive Engineers (SAE) outlines five distinct levels of vehicle

autonomy [15]. There is no automation in Level 0, therefore the driver does all duties

with the assistance of safety features. At Level 1, the vehicle can control one function,

like steering or braking, but the driver must still pay full attention. Level 2 handles

two functions but also requires the driver to be ready to intervene. Level 3 vehicles

can drive themselves in some situations but will alert the driver if they need to take

over. Level 4 vehicles can drive on their own in many situations without needing the

driver to do anything, but the driver can still intervene if they choose to. Lastly, Level

5 vehicles are fully autonomous and can drive themselves in all situations without any

help from the driver.

1



1. INTRODUCTION

Fig. 1.1.1: Levels of Autonomous Vehicles by Sae [15]

1.1.2 Autonomous Vehicles Modules

Autonomous vehicles are built with five essential components: localization, percep-

tion, decision-making, planning, and control [35]. The perception component uses a

range of sensors, including Radar, camera, and LiDAR, to help the vehicle understand

its environment [41]. Localization and mapping algorithms determine the global and

local positions of the self-driving vehicle and create environmental maps using data

from sensors and other outputs from perception systems [27]. The decision-making

component controls actions like braking, acceleration, and maneuvering through lanes

[8]. The planning component assists the vehicle in determining the best paths from

one location to another. Lastly, the control component ensures that the vehicle’s

internal mechanisms accurately execute these plans, performing the necessary ma-

neuvers. The primary focus of this study is on autonomous vehicles’ perception and

localization features.

2



1. INTRODUCTION

Fig. 1.1.2: Autonomous Vehicles’ Development Stages [35]

1.1.3 Perception

Perception is a critical module for enabling autonomous vehicles to understand their

surrounding environment, including the locations, velocities, and future state pre-

dictions of pedestrians and objects. This task can be reached using various sensors.

Additionally, traditional methods may incorporate short- and long-range radars and

ultrasonic sensors, which assist autonomous vehicles’ ineffective path-planning and

decision-making modules.

1.1.4 Sensor Technology in Autonomous Vehicles

In Autonomous Vehicles (AVs), three main types of sensor technologies are crucial:

LiDAR operates by emitting lasers to map out the vehicle’s surroundings in three

dimensions.It calculates the time required for the lasers to reflect, allowing for precise

mapping and distance calculations [33]. Despite its precision, LiDAR can be limited

by its narrower field of coverage compared to other sensors and can experience issues

like glare in rainy conditions [33]. Though traditionally expensive, the costs associated

with LiDAR have been reduced, making it more accessible.

Cameras in AVs, on the other hand, are characterized into two main types: visible

(VIS) and infrared (IR). VIS cameras operate similarly to human eyes, and are valued

for their affordability and high-resolution color imaging capabilities [37]. These cam-

3



1. INTRODUCTION

eras enable stereo vision, which can generate a 3D view of the environment, though

they offer less depth accuracy compared to other sensors.

Infrared cameras exhibit less sensitivity to adverse conditions and fluctuations in

brightness [28]. They are particularly useful for detecting warm objects like pedes-

trians and animals [11]. Additionally, NIR cameras can measure distances using the

Time of Flight (ToF) principle, applicable across various settings.

RADAR is essential in autonomous vehicles [4]. This system utilizes the Doppler

effect to directly measure vehicle speeds, offering crucial velocity data that helps

improve the accuracy of sensor fusion algorithms.

There are various types of RADAR systems distinguished by their operational

range. Long-range RADAR operates at 77 GHz and can detect objects up to 200 me-

ters away, although it is limited by low resolution. Short to medium-range RADARs,

functioning at 24 GHz and 76 GHz, are more mature and cost-effective, but their

resolution is affected by the width of their beams and the length of their wavelengths.

RADAR is particularly effective in poor weather conditions as it does not require

the processing of data-heavy streams like video, allowing for lower computational

demands.

Fig. 1.1.3: Autonomous Vehicles’ Perception Sensors[1]

4



1. INTRODUCTION

1.2 Object Detection

Over the past twenty years, there has been a swift advancement in object-detecting

technologies. The main step in object detection involves identifying instances of spe-

cific visual object classes in images. The goal is to create computational models and

methods that precisely identify the location (object localization) and category (ob-

ject classification) of these objects, providing critical information for various computer

vision applications.

The effectiveness of object detection systems is typically measured by two key

metrics: accuracy, which includes both the precision of object classification and the

accuracy of localization, and the speed of detection.

1.2.1 Object Detection in Autonomous Vehicles

Object detection is an essential step in autonomous vehicle technology, crucial for

classifying and localizing objects within the vehicle’s environment to ensure safe and

efficient navigation. This deep learning task enables the vehicle to identify and moni-

tor various objects, using exteroceptive sensors including Cameras, LiDAR , RADAR,

and GPS[36]. These sensors collectively help the vehicle understand its surroundings,

localize itself, and track both stationary and moving objects.

1.3 Multiple Object Tracking

Multiple Object Tracking (MOT) is a fundamental and indispensable aspect of com-

puter vision. It entails the prediction of trajectories for all objects within a video

sequence.

A major benefit of video-based multi-object tracking (MOT) is to precisely detect

targets in continuous videos while maintaining their identities, even when there are

changes in their appearance or surroundings. This ability to produce complete motion

trajectories for tracked objects has attracted considerable interest from researchers.

[44]

5



1. INTRODUCTION

Fig. 1.3.1: Tracking Multiple Objects Using TBD Approach [12]

1.3.1 Multiple Object Tracking Applications

Multi-Object Tracking (MOT) is a sophisticated task with numerous practical ap-

plications across various fields. It is employed extensively in video surveillance [6],

human behavior recognition [13], and autonomous driving [6]. Beyond these, MOT is

also crucial for visual surveillance [38], and human-computer interaction [5], demon-

strating its versatility. These diverse real-world applications have significantly driven

advancements in MOT research, making it a key focus area in the field.

1.3.2 Multiple Object Tracking Categories

Luo et al.[24] categorized MOT approaches into three distinct groups. Firstly, They

categorized the methods according to their initialization approach, differentiating

between tracking by detection(TBD) and tracking without decetion. Detection-based

approach, often referred to as tracking-by-detection, involves associating detected

objects with their paths in subsequent frames based on similarities in appearance or

movement In contrast, detection-free tracking necessitates manually locating objects

in the initial frame, which are then followed through the subsequent frames. This

method is less preferred, especially when new objects appear.

Secondly, the approaches were categorized based on their processing mode, dis-

tinguishing between online and offline tracking. Online tracking is a fast tracking,

which is more suitable for applications like autonomous driving. In contrast, offline

tracking processes a batch of frames at a lower frame rate.

6



1. INTRODUCTION

Lastly, the authors classified approaches based on the type of output they produce,

which can be either stochastic or deterministic. Stochastic tracking results in varia-

tions in tracking at different times, while deterministic tracking results in consistent

tracking.

Table 1.3.1: Comparison of Different Tracking Methods

Category Method Application Limitation

Initialization
Approach

Detection-based
[44]

Reliable detections in
clear conditions

May fail in cluttered
scenes

Detection-free
[17]

Useful where
detection is
challenging

Struggles with object
variations

Processing
Mode

Online Tracking
[45]

Suitable for real-time
applications

May trade off
accuracy for speed

Offline Tracking
[39]

Ideal for detailed
tracking

Not suitable for
real-time

Output Type
Stochastic [25]

Accounts for
randomness

Outcomes can be
unpredictable

Deterministic
[18]

Provides precise data

May not always
account for random
and unforeseen
changes

1.4 Multiple Object Tracking Challenges

The monitoring of objects in autonomous vehicles is an ever-evolving field, with nu-

merous challenges that impact the effectiveness of tracking systems. Among these,

background interference [21] and obstacles causing occlusion [42] are particularly sig-

nificant. Background interference occurs when non-target objects or complex scenes

disrupt the tracking process, leading to inaccuracies. However, the main focus of this

research is on the challenge of occlusion.

Occlusion happens when an object in the view is partially or fully blocked by

7



1. INTRODUCTION

Fig. 1.4.1: Examples of Full and Partial Occlusions [42]

another object, making it difficult for tracking systems to keep an accurate track of

it. This problem is especially common in crowded environments where many objects

are present, increasing the likelihood of occlusions. When occlusions occur, tracking

systems may lose sight of the object or track it incorrectly, which can greatly reduce

the system’s overall performance and reliability.

Handling occlusions is complex, particularly when considering both full and par-

tial occlusions, as illustrated in Figure 1.4.1. Partial occlusion means only a part of

the object is hidden, which can lead to tracking errors, while full occlusion, where

the object is completely hidden, presents an even greater challenge and often results

in the object being temporarily lost from the tracking system. Many existing meth-

ods struggle to effectively manage these situations, highlighting the need for more

advanced techniques that can handle both types of occlusion in real-time.

1.5 Motivation

This research is motivated by the need to improve how tracking systems deal with

occlusions in autonomous vehicles. Effectively managing occlusions is crucial for

ensuring that tracking systems remain accurate and reliable, which directly affects

the safety and efficiency of autonomous driving. By focusing on methods that can

handle both full and partial occlusions while also being computationally efficient,

this research aims to enable real-time tracking in complex environments. Successfully

8



1. INTRODUCTION

tracking objects despite occlusions is essential for the advancement of autonomous

vehicle technologies and making them practical for real-world use.

1.6 Research Objectives

The primary objective of this research is to develop a more robust object-tracking

system that can effectively manage both full and partial occlusions in real-time sce-

narios. To achieve this, the system aims to significantly reduce the number of false

negatives (FNs) by enhancing its ability to track objects accurately, even when they

are partially or fully occluded. Additionally, the research focuses on designing meth-

ods that ensure high tracking accuracy while remaining computationally efficient,

allowing the system to operate effectively in real time. Ultimately, this work seeks to

demonstrate that the proposed methods can improve the resilience of object-tracking

systems in autonomous vehicles, ensuring greater reliability in complex, real-world

environments.

9



CHAPTER 2

Related Works

2.1 Object Detection Methods

Detecting objects is essential in multi-object tracking as it provides crucial positional

data about objects in an image. These days, many target identification algorithms use

Deep Convolutional Neural Networks (CNNs) to achieve a high level of accuracy [14].

These deep learning approaches leverage CNNs to extract object features, thereby

boosting both the efficiency and accuracy of recognition. The hierarchical learning

capability of CNNs enables the recognition of features at various levels of abstraction,

enhancing the precision of feature extraction. As shown in Figure 2.1.1, there are

generally two types of object detection techniques: traditional methods and modern

methods (based on CNNs). The modern methods are further subdivided into One-

stage Detection, Two-stage Detection, and Transformers.

Fig. 2.1.1: Overview of Object Detection Techniques.

10



2. RELATED WORKS

2.1.1 Two-stage Detectors

Two-stage detectors involve creating candidate regions and categorizing them in two

steps. These approaches, such as the R-CNN series, provide greater detection accu-

racy compared to traditional methods because they allow for more detailed analysis

of each candidate region. However, this comes at the cost of higher computational

demands and slower processing times, which can be a limitation for real-time appli-

cations.

2.1.1.1 R-CNN series

• Significant Evolution in Deep Neural Networks: The R-CNN series sig-

nifies a major advancement in deep neural network architectures specifically

designed for object detection, with each iteration improving efficiency and pre-

cision over its predecessor.

• R-CNN: Within computer vision, R-CNN [10] represented a major jump in

object detection. This method uses a multi-stage pipeline that consists of three

primary stages: the creation of region proposals, the extraction of features,

and the refinement and categorization of bounding boxes. Initially, a segmen-

tation process called selective search is used to develop region proposals. This

algorithm splits the image into several smaller segments, which are then repeat-

edly merged to form bigger regions. Bounding boxes are then drawn around

these merged areas. Subsequently, each proposed region is processed individ-

ually by a CNN to extract feature representations; several CNN architectures

can be employed. In the original R-CNN implementation, Support Vector Ma-

chines (SVMs) classify each region proposal into predefined object categories,

and bounding box regression refines the initial bounding box estimates to en-

hance localization accuracy.

• Fast R-CNN: Fast R-CNN [9] enhances the original R-CNN by passing the

entire image through the CNN once to create a feature map, rather than pro-

cessing each region proposal separately. This approach significantly reduces
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computational requirements. A softmax layer identifies objects within these

regions and predicts bounding box adjustments after a Region of Interest (RoI)

pooling layer extracts and resizes region suggestions.

• Faster R-CNN: Faster R-CNN [32] builds upon previous advancements by in-

tegrating the Fast R-CNN architecture with a Region Proposal Network (RPN).

The RPN, a fully convolutional network, calculates object boundaries and ob-

jectness scores at each location to efficiently generate high-quality region pro-

posals. This integration streamlines the object detection process, enhancing the

accuracy of region proposals and improving overall performance.

2.1.2 One-stage Detectors

One-stage detection algorithms predict class probabilities and object positions di-

rectly, bypassing the region proposal phase. Notable examples include the YOLO

(You Only Look Once) series [31], Single-Shot MultiBox Detector (SSD) [23], and

RetinaNet [2]. One-stage detectors are known for their speed, making them suitable

for real-time applications like object tracking and video analysis. However, this speed

often comes at the expense of accuracy, particularly in detecting smaller objects or

in complex scenes.

2.1.2.1 YOLO (You Only Look Once)

YOLO is a well-known single-stage detection method that does not use the tradi-

tional region proposal phase [31]. It converts each pixel in the image directly into

bounding box coordinates and class probabilities, processing the entire image in one

step. YOLO’s output layer is designed to forecast class probabilities, bounding box

coordinates, and confidence scores. This allows it to recognize many objects in a

single neural network pass. Compared to more conventional detection techniques,

this methodology yields far faster processing speeds by enabling end-to-end object

detection, as illustrated in Figure 2.1.2.
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Fig. 2.1.2: Illustration of How YOLO Works [31]

2.1.3 Transformers

Transformers, which became popular in natural language processing, have been adapted

for image classification with the introduction of models like Google’s Vision Trans-

former (ViT) [7]. Transformers leverage a wide receptive field to capture long-range

dependencies within an image, leading to superior feature extraction capabilities com-

pared to traditional CNNs. However, transformers generally require large datasets

and significant computational resources, which can be a limitation in real-time or

resource-constrained environments. Additionally, the field of transformers in com-

puter vision is still evolving, and their full potential and drawbacks are areas of

ongoing research.

2.2 Multiple Object Tracking Process

MOT is essential for identifying and following multiple objects over time in video

sequences. Object Detection and Object Tracking are the two primary stages of the

MOT process. Figure 2.2.1 illustrates these stages, which involve several key steps:

1. Video Sequence: The system receives a video sequence with various objects

that need to be tracked as input.

2. Object Localization: In the object detection stage, the system identifies and
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Fig. 2.2.1: The Process of Multiple Object Tracking (MOT)[12].

localizes objects within each frame of the video. This is achieved using tech-

niques like selective search to generate region proposals.

3. Feature Extraction: A convolutional neural network (CNN) gathers features

for every object it detects,and generates a detailed vector representation for

each proposed region.

4. Data Association: The features and predicted positions of objects are then

used to associate detected objects across frames. This is where techniques

like the Hungarian Algorithm come into play, enabling the system to maintain

consistent object identities over time.

5. Track Management: Tracks that have not been matched for a specific amount

of frames must be deleted, new tracks must be created for unmatched detections,

and current tracks must be updated with new detections.

6. Tracking Results: The final output is a set of tracking results, where each

object is consistently identified and followed throughout the video sequence.

2.2.1 Multiple Object Tracking Methods

Several techniques are employed to achieve MOT effectively. The Kalman Filter (KF)

relies on motion prediction to estimate future object positions. SORT (Simple Online

and Realtime Tracking) enhances the Kalman Filter by using the Hungarian Algo-

rithm for associating predicted positions with the detections [3], enabling real-time

performance. Deep SORT further improves tracking by incorporating appearance

data from convolutional neural networks (CNNs)..
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2.2.1.1 Kalman Filter

The Kalman Filter (KF) is a widely used algorithm in multi-object tracking (MOT)

for predicting and updating the positions of objects based on their motion. It is

particularly effective in estimating future positions by minimizing the mean square

error, making it a popular choice in tracking systems to determine an object’s location

in the current frame based on its previous state [22].

The Kalman Filter operates in two main phases: prediction and update.

Prediction Phase: In this phase, the Kalman Filter predicts the current state of

the object and the uncertainty of this prediction using information from the previous

state. This prediction relies on a model that describes how the object’s state changes

over time.

Update Phase: After making the prediction, the Kalman Filter refines it by in-

corporating new measurements. The refinement is done by calculating a gain that

determines how much the predicted state should be adjusted based on the new mea-

surement. This updated state provides a more accurate estimate of the object’s

position.

The recursive nature of the Kalman Filter allows it to continuously update its

estimates as new data becomes available, making it well-suited for real-time tracking

applications, where accurate and timely updates are crucial [22].

2.2.1.2 Simple Online and Realtime Tracking (SORT)

Using the Tracking-by-Detection (TBD) approach, SORT [3] is an effective online

method for multiple object tracking (MOT). This approach highlights the usefulness

of the algorithm and established a benchmark in the MOT domain at the time of its

launch. To identify items in SORT, the authors combine the traditional pedestrian

detection model ACF with the CNN-based Faster R-CNN network. Additionally, the

program uses the Hungarian algorithm and the Kalman filter to handle prediction

and data association.

As the first algorithm in the SORT family, it puts efficiency and speed first. Com-
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Fig. 2.2.2: SORT Algorithm Overview [29]

pared to the state-of-the-art algorithms of 2016, its processing speed can reach 260

Hz, making it 20 times faster than those earlier algorithms [43]. However, one signifi-

cant limitation of this technique is that IDs can only be updated by new detections; it

is unable to reacquire lost targets. To solve this problem, Deep SORT was developed

in response to this weakness.

Using a Kalman Filter (KF), SORT iteratively ascertains the states of tracked

objects. The technique uses the Hungarian algorithm [19] to reliably link tracked

and identified objects. The Data Association module in SORT is particularly crucial

because it compares the measured bounding boxes provided by the object detector

with the ones predicted by the KF.

As illustrated in Figure 2.2.2, the process involves inputting raw images into an ob-

ject detector, followed by the application of the SORT algorithm, which includes KF

estimation, data association through cost matrix matching, and track management.

The output consists of object bounding boxes and track IDs.

2.2.1.3 Simple Online and Realtime Tracking with a Deep Association

Metric (Deep SORT)

By merging appearance data with traditional tracking techniques, Deep SORT im-

proves multiple object tracking [40]. The algorithm forecasts object positions using

a Kalman Filter and uses the Hungarian algorithm to associate data between frames

16



2. RELATED WORKS

Fig. 2.2.3: Deep SORT Algorithm Overview

by analyzing bounding box overlaps. By extracting both motion and appearance fea-

tures, a trained convolutional neural network (CNN) enhances the tracker’s ability

to manage misidentifications and occlusions while maintaining real-time processing

capabilities.

In order to improve track associations, Deep SORT [40] integrates appearance

data into the SORT algorithm.

As illustrated in Figure 2.2.3, in Deep SORT, the Hungarian algorithm handles

the association between tracks and detected bounding boxes through a two-phase

matching cascade. Initially, it uses motion and visual criteria to match detections

with existing tracks. Afterward, it matches detections to new and tentative tracks

using the same approach as SORT.

To incorporate motion data, the squared Mahalanobis distance between the de-

tected states and the anticipated states is calculated by the algorithm. Additionally,

the appearance features of detections, obtained from a pre-trained CNN model, are

compared using the shortest cosine distance metric. This combination ensures robust

and accurate tracking by considering both motion and appearance information.
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2.2.2 Similarity Metrics

2.2.2.1 Intersection over Union (IoU)

Intersection over Union (IoU) is a standard metric in multi-object tracking, primarily

used for associating detected objects with their corresponding tracklets. It calculates

the overlap between predicted positions, typically estimated using a Kalman filter,

and the detected bounding boxes. The IoU is defined as the ratio of the intersection

area to the union area of two bounding boxes. This metric is particularly effective

in scenarios where objects have minimal movement between frames, ensuring accu-

rate associations. Algorithms like SORT [3] rely on IoU for precise object tracking.

However, IoU can be less effective in situations involving partial occlusions and small

objects, where the overlap between bounding boxes may not be substantial enough

for accurate association.

2.2.2.2 Sørensen-Dice Coefficient

The Sørensen-Dice Coefficient, commonly known as the Dice similarity measure,

serves as an alternative to IoU, especially in contexts where partial occlusion and

small object sizes are prevalent. The Dice coefficient is calculated by dividing twice

the area of overlap by the total area of both bounding boxes. Unlike IoU, the Dice

coefficient is more sensitive to partial overlaps, which is advantageous in complex

tracking environments with frequent occlusions.Figure 2.2.4 illustrates the difference

between IoU and the Dice coefficient.

Studies, such as those referenced in [30], have demonstrated that the Dice coeffi-

cient can be more effective than IoU in handling scenarios where objects are partially

visible or smaller in size. This is because the Dice coefficient accounts for the degree

of overlap more robustly, allowing for better detection and tracking in challenging

conditions. Specifically, the Dice coefficient has been shown to improve tracking per-

formance in environments where objects frequently enter and exit partial occlusion,

providing a more reliable measure for object association under these circumstances.
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Fig. 2.2.4: Comparison of Intersection over Union and Sørensen-Dice Coefficient [26]
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CHAPTER 3

Methodology

3.1 Proposed Methodology

In this section, we introduce the methodology used for enhancing multiple object

tracking (MOT) in autonomous vehicles. While pre-detections are utilized to ensure

an accurate comparison between the original Deep SORT and our proposed method,

our primary focus lies in the tracking component within a tracking-by-detection ap-

proach. The method is divided into several key sections, including the use of Deep

SORT with the Sørensen-Dice coefficient as a similarity metric, and the implemen-

tation of memory management for occluded objects. Each of these methods and

algorithms addresses specific challenges in MOT, as outlined in the following sec-

tions.

3.1.1 Using Deep SORT with Sørensen-Dice Coefficient and

Memory Management for Occluded Objects

Our approach employs an enhanced version of Deep SORT during the tracking phase.

This method, illustrated in Figure 3.1.1, integrates several crucial elements designed

to enhance tracking efficiency, particularly in managing partial occlusions and small

objects. The enhancements include incorporating the Sørensen-Dice coefficient for

improved similarity measurement and implementing a memory management system to

handle occluded objects. These innovations aim to provide more robust and accurate

re-identification of objects, even when they are temporarily obscured.
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Fig. 3.1.1: Our Proposed Method Process Diagram

3.1.2 Key Components of Deep SORT

3.1.2.1 Kalman Filter

The Kalman Filter plays a pivotal role in estimating the future position of an object

based on its previous state. This predictive approach enables the estimation of the

current state (e.g., position and velocity) of objects, even amidst noise and uncer-

tainty. The Kalman Filter contributes to smooth and accurate position predictions

across frames, which is crucial for effective tracking.

3.1.2.2 Sørensen-Dice Coefficient

To enhance the handling of partial occlusions and small objects, we replace the tra-

ditional Intersection over Union (IoU) with the Sørensen-Dice coefficient as the simi-

larity metric. The Sørensen-Dice coefficient offers improved sensitivity to smaller and

partially occluded objects, providing a more reliable similarity measure in challenging

tracking scenarios.
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3.1.2.3 Hungarian Algorithm

The Hungarian Algorithm is employed for data association, efficiently solving the

assignment problem. It matches the predicted object states with new detections,

ensuring accurate and consistent object tracking across frames.

3.1.2.4 Matching Cascade

The Matching Cascade utilizes a CNN-based method as a matching strategy. It lever-

ages appearance information extracted by a pre-trained CNN to re-identify objects

following occlusions. This process helps maintain the consistency of object identities

across frames, thereby improving the overall robustness and accuracy of the tracking

system.

By integrating these components, Deep SORT enhances the tracking system’s

performance in several ways:

• Improved Occlusion Handling: The inclusion of the Sørensen-Dice coeffi-

cient enhances the system’s ability to track partially occluded objects, thereby

reducing identity switches and false negatives.

• Robust Data Association: The combination of the Hungarian Algorithm

and Matching Cascade ensures accurate matching of detections with tracks,

maintaining the tracking system’s consistency and reliability.

• Accurate Predictions: The Kalman Filter provides precise predictions of

object positions, contributing to smoother and more accurate tracking.

3.1.2.5 Memory Management

A crucial aspect of our methodology is the implementation of memory management

for occluded objects. This step ensures that objects that become temporarily unde-

tectable due to occlusions can be effectively re-identified when they reappear, main-

taining the integrity of the tracking process.

• Step 1: Storing Missed Detections
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– Description: When the algorithm cannot match some tracks with the

detections, it assumes these tracks are occluded objects. To handle these

occlusions, the algorithm stores the occluded objects in memory. This

memory includes key features such as the last seen position, last seen

time, and velocity of each object. This step is crucial for ensuring that

temporarily undetected objects can be re-identified when they reappear.

The memory storage mechanism uses a dictionary to keep track of these

occluded objects, which allows for efficient look-up and updates.

Algorithm 3.1.1 Storing Missed Detections

Track list T = {1, . . . , N}, Memory M = ∅ each track t ∈ T track t is not
detected in the current frame Store the track t in memory M with features: -
Last seen position Pt, Last seen time Tt, and Velocity Vt estimated by Kalman
Filter Updated memory M

• Step 2: Updating Positions of Objects in Memory

– Description: After storing the occluded objects in memory, the next

step is to update their features and predicted positions. This is achieved

through a function that uses the Kalman Filter to estimate the new po-

sitions of these objects. By continuously updating the objects’ features,

the algorithm maintains accurate predictions, which are essential for re-

identifying the objects when they reappear. The Kalman Filter helps in

predicting future positions by considering the object’s last known velocity

and position, thus ensuring a more precise update of the object’s state.

Algorithm 3.1.2 Updating Positions of Objects in Memory

Memory M, Current time Tcurrent each object m ∈ M Predict future position
Ppredicted of m using Kalman Filter Update position of m to Ppredicted Update last
seen time of m to Tcurrent Updated memory M

• Step 3: Continuous Re-identification of Occluded Objects

– Description: This step involves continuously re-identifying the occluded

objects by matching new detections with the objects stored in memory.
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This re-identification process occurs in every frame, ensuring that the al-

gorithm consistently attempts to track the occluded objects. The matching

process involves comparing the predicted positions of the occluded objects

with new detections using a similarity metric, such as the Sørensen-Dice

coefficient, and updating the tracks if a match is found.

Algorithm 3.1.3 Continuous Re-identification of Occluded Objects

Detection list D = {1, . . . ,M}, Memory M, Track list T each detection d ∈ D
Predict future positions of occluded objects in memory M using Kalman Filter
each object m ∈ M detection d matches predicted position of m using matching
strategy Update track t with detection d Remove m from memory M Updated
track list T and memory M

• Step 4: Memory Cleanup and Performance Efficiency

– Description: To maintain system efficiency, objects that remain in mem-

ory without being re-detected for a certain period are removed. This time-

limited deletion prevents the memory from becoming overloaded and keeps

the tracking system performant. The cleanup process involves checking the

last seen time of each object and removing those that have not been up-

dated within a specified maximum age, ensuring that the system remains

efficient and responsive.

Algorithm 3.1.4 Memory Cleanup and Performance Efficiency

Memory M, Current time Tcurrent, Maximum age Amax each object m ∈ M
Tcurrent − Tm > Amax Remove m from memory M Updated memory M

3.2 Implementation Details

The implementation details for our improved Deep SORT model are presented in this

section. The steps outlined below cover the setup of the model, the integration of

various components, and the execution of the tracking algorithm.
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3.2.0.1 Software and Libraries

Our implementation is based on the following software and libraries:

• Python 3.7: The primary programming language used for our implementation.

• NumPy: For numerical computations and array operations.

• OpenCV: For image processing and video frame handling.

• TensorFlow/Keras: For implementing and using the pre-trained CNN model

for appearance feature extraction.

• scikit-learn: For implementing the Kalman Filter and other machine learning

utilities.

3.2.0.2 Pre-trained CNN Model

The CNN model used for extracting appearance features is pre-trained using an ample

human re-identification dataset. The framework utilized to implement this model is

TensorFlow/Keras. The CNN is meant to extract high-dimensional feature vectors

from the identified objects, which are then used for matching and re-identification.

3.2.0.3 Data Preparation

We use the MOT16 dataset for benchmarking our model. The dataset includes video

sequences with annotated bounding boxes for pedestrians. The data preparation

involves the following steps:

• Frame Extraction: Extract frames from the video sequences using OpenCV.

• Bounding Box Annotations: Load the bounding box annotations provided

in the MOT16 dataset.

• Feature Extraction: Extract appearance features from the bounding boxes

that have been recognized by using the pre-trained CNN model.
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CHAPTER 4

Results and Discussion

4.1 Dataset and Evaluation Metrics

4.1.1 MOT16 Dataset

An essential benchmark for assessing tracking algorithms, particularly those aimed at

tracking pedestrians, is the Multiple Object Tracking (MOT16) dataset. The dataset

includes a wide range of sequences that were taken in different settings, each of which

presents a different set of difficulties, such as situations with dense populations, varied

camera angles, and lighting conditions that fluctuate.

There are fourteen video sequences in the MOT16 dataset. Ground truth bound-

ary boxes and individual pedestrian identities are painstakingly annotated into every

sequence to enable thorough tracking performance assessment. Additionally, the an-

notations offer details on visibility ratios and occlusion levels, which are critical for

determining how well an algorithm can handle objects that are partially or completely

obscured.

4.1.2 Challenges in MOT16 Sequences

Each sequence in the MOT16 dataset introduces specific challenges that test the

robustness of tracking algorithms:

• MOT16-02: Captured in a crowded outdoor market, this sequence presents

significant occlusions and frequent interactions between pedestrians, making

consistent tracking challenging.
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• MOT16-04: Filmed at a busy pedestrian crossing, this sequence includes var-

ied lighting conditions and shadows that affect detection accuracy.

• MOT16-05: An indoor shopping mall environment with complex background

textures and reflections, posing difficulties in distinguishing between pedestrians

and background elements.

• MOT16-09: features a public space with little pedestrian activity yet quickly

changing appearances as a result of people’s varied outfits and body positions.

• MOT16-10: Recorded at a train station, this sequence has significant scale

variations as pedestrians move closer to and further from the camera.

• MOT16-11: An outdoor street scene with moving vehicles and varying pedes-

trian densities, presenting challenges in differentiating between pedestrians and

other moving objects.

• MOT16-13: A pedestrian street with heavy foot traffic and varying occlusion

levels, requiring robust tracking to maintain identities across frames.

4.1.3 Evaluation Metrics

Several common criteria are used to thoroughly assess tracking algorithm performance

on the MOT16 dataset:

4.1.3.1 Multiple Object Tracking Accuracy (MOTA)

MOTA is an all-inclusive statistic that accounts for identity shifts, false positives, and

false negatives. By taking into account different tracking faults that could happen, it

offers a comprehensive assessment of tracking performance. MOTA is computed as:

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

(1)

Where The frame index is indicated by t,

The number of false negatives is represented by FN ,
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The number of false positives is represented by FP ,

IDSW stands for identity switches, and

The number of ground truth objects is represented by GT .

4.1.3.2 Recall

The percentage of true positives that the tracking algorithm accurately identifies is

called recall. It’s an important metric to know how well the algorithm finds every

object in the scene. Recall is calculated as:

Recall =
TP

TP + FN
(2)

Where

TP represents the true positives, and

FN represents the false negatives.

4.1.3.3 False Negatives (FN)

When an object that is present in the ground truth is not detected by the tracking al-

gorithm, this is known as a false negative. Enhancing the accuracy and dependability

of the tracking system requires lowering the quantity of false negatives.

4.1.3.4 ID Switches (IDSW)

When the identify of a tracked item is erroneously altered between frames, it is known

as an ID switch.

When taken as a whole, these indicators offer a comprehensive evaluation of the

tracking algorithm’s performance, facilitating a full comparison with alternative ap-

proaches. Our methodology intends to overcome the inherent issues in multi-object

tracking by utilizing the MOT16 dataset and these assessment measures, with a focus

on assuring high recall and MOTA values, as well as enhancing the management of

occlusions.
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4.2 Results

We evaluated the effectiveness of our strategy using the MOT16 training set. It is

very important to emphasize that our methodology relies on a pre-trained model, and

our approach was validated using both the training set and testing set of MOT16.

4.2.1 Results in Datasets with Occlusion

Table 4.2.1: Performance Comparison on MOT16 Datasets

Dataset Method MOTA Recall IDs FN

MOT16-02
Deep SORT 34.8 36.8 122 18457

Our Method 35.1 37.0 134 18389

MOT16-09
Deep SORT 39.0 41.3 15 5184

Our Method 39.6 42.0 20 5121

MOT16-13
Deep SORT 36.0 44.5 197 10683

Our Method 37.6 44.7 182 10660

Fig. 4.2.1: Example from MOT02 Dataset
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Fig. 4.2.2: Example from MOT09 Dataset

Fig. 4.2.3: Example from MOT13 Dataset

4.2.2 Analysis

MOTA, recall, and False Negative improvements demonstrate the effectiveness of

integrating the Sørensen-Dice coefficient and memory management for occluded ob-

jects. These enhancements are particularly significant in datasets like MOT16-02

and MOT16-13, characterized by frequent occlusions as shown in the table 4.2.1, and

figure 4.2.4.

By addressing this challenge, our method shows a marked improvement in tracking

performance, with fewer false negatives and better overall accuracy.

To demonstrate the ability of our tracker to handle partial occlusions, we present
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Fig. 4.2.4: Result Diagram in Details on MOT-02, MOT-09, and MOT-13

examples from the MOT-02, MOT-09, and MOT-13 dataset. The figures 4.2.1, 4.2.2,

and 4.2.3 illustrate that our tracker can effectively manage partial occlusions, which

are prevalent in these datasets. While it is not possible to present full occlusions

in images, it is important to note that our methods are also designed to handle full

occlusions effectively.

4.2.3 Performance Comparison of Different Models

As illustrated in the table 4.2.2, and figure 4.2.5 the integration of the Dice coefficient

alone yielded only modest improvements in specific datasets. However, combining the

Dice coefficient with memory management resulted in more substantial enhancements,

particularly in handling occlusions. This is evident from the increased MOTA, and

recall, as well as the reduction in false negatives (FN) in several datasets. The im-

provements in these key metrics underscore the efficacy of our proposed methodology

in enhancing multi-object tracking performance in complex scenarios.
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Table 4.2.2: Performance Comparison of Different Models

Dataset Model MOTA Recall FN IDs

MOT16-02

Deep SORT 34.8 36.8 18457 122

Deep SORT with Dice 34.8 36.8 18454 124

Deep SORT with Dice and Memory 35.1 37.0 18389 134

MOT16-04

Deep SORT 31.1 33.4 71921 53

Deep SORT with Dice 31.1 33.4 71919 55

Deep SORT with Dice and Memory 31.3 33.9 71433 60

MOT16-05

Deep SORT 48.2 54.1 3524 48

Deep SORT with Dice 48.4 54.3 3507 48

Deep SORT with Dice and Memory 48.4 55.0 3453 53

MOT16-09

Deep SORT 39.0 41.3 5184 28

Deep SORT with Dice 39.0 41.3 5183 28

Deep SORT with Dice and Memory 39.6 42.0 5121 28

MOT16-10

Deep SORT 50.8 58.2 7078 154

Deep SORT with Dice 50.9 58.3 7061 148

Deep SORT with Dice and Memory 51.0 58.0 7114 144

MOT16-11

Deep SORT 62.0 66.5 3375 32

Deep SORT with Dice 61.8 66.5 3374 33

Deep SORT with Dice and Memory 62.1 67.4 3289 33

MOT16-13

Deep SORT 36.0 44.5 10683 197

Deep SORT with Dice 36.5 45.1 10580 201

Deep SORT with Dice and Memory 37.6 44.7 10660 182
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Fig. 4.2.5: MOTA Comparison of Baseline Deep SORT, Deep SORT with Dice
Coefficient, and Deep SORT with Dice and Memory

4.2.4 Overall Performance on MOT16 Testing Set

It is important to highlight that these results were obtained by submitting our model’s

output to the MOTChallenge website for evaluation. The MOTChallenge website

provides a standardized platform for evaluating tracking algorithms on the MOT16

testing set, ensuring consistent and reliable comparisons.

Table 4.2.3: Overall Performance Comparison on MOT16 Testing Set

Model MOTA Recall IDs FN

Deep SORT 61.40 68.9 781 56,668

Improved Method 61.84 69.8 894 55,153

4.2.5 Discussion

The comparison of overall performance in Table 4.2.3 demonstrates the improvements

achieved by our method over the baseline Deep SORT. Our method shows an increase

in MOTA and a significant increase in recall, as well as a reduction in false negatives

(FN).

These improvements indicate that our integration of the Dice coefficient and mem-

ory management for occluded objects effectively enhances the tracking performance,
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especially in complex scenarios with frequent occlusions. Handling occlusions, both

partial and full, impacts these metrics by ensuring that occluded objects are correctly

identified and re-identified. This reduces the chances of missing objects (thereby im-

proving recall and reducing false negatives) and maintains accurate tracking over time

(improving MOTA). The results underscore the efficacy of our proposed methodology

in providing a robust solution for multi-object tracking.
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CHAPTER 5

Conclusion and Future Work

5.1 Summary of Contributions

In this thesis, we introduced several enhancements to the Deep SORT algorithm

aimed at improving its performance in multi-object tracking (MOT) tasks, particu-

larly in challenging scenarios involving occlusions. Our principal contributions are

summarized as follows:

• Integration of the Sørensen-Dice Coefficient: We replaced the traditional

Intersection over Union (IoU) similarity metric with the Sørensen-Dice coeffi-

cient, which is more sensitive to smaller and partially occluded objects. This

change demonstrated modest improvements in specific datasets.

• Memory Management for Occluded Objects: We introduced a memory

management system to track occluded objects. By storing missed detections

and updating their positions using the Kalman Filter, we effectively re-identified

occluded objects when they reappeared.

5.2 Performance Evaluation

Our experimental evaluation demonstrated significant performance gains in multi-

object tracking due to the proposed improvements. Key metrics such as MOTA,

recall, and the number of false negatives showed notable improvements, especially in

datasets characterized by frequent occlusions. The integration of the Sørensen-Dice
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coefficient alone yielded modest improvements, while combining the Dice coefficient

with memory management resulted in substantial enhancements.

5.3 Conclusion

The improvements observed in MOTA, recall, and the reduction of false negatives

underscore the efficacy of our approach in enhancing multi-object tracking perfor-

mance. The memory management system proved particularly effective in handling

occlusions. By storing information about occluded objects and re-identifying them

when they reappear, the system reduces the number of false negatives. This ensures

that objects are consistently detected and tracked, even when temporarily obscured,

thereby improving recall. Additionally, maintaining object continuity enhances track-

ing accuracy, which is crucial in scenarios with frequent occlusions.

The integration of the Sørensen-Dice coefficient provided a more reliable similarity

metric for small and partially occluded objects. The Dice coefficient is more sensitive

to differences in overlap compared to traditional IoU metrics, making it better suited

for handling cases where objects are partially visible. This sensitivity allows for

more accurate matching and re-identification of objects, contributing to the observed

improvements in recall and overall accuracy.

However, the increase in the number of identity switches in some datasets suggests

that further refinement is needed to balance tracking accuracy and identity preserva-

tion. This challenge arises because our method prioritizes high recall and low false

negatives, which can sometimes lead to incorrect associations, particularly in densely

populated scenes or when objects have similar appearances. The memory manage-

ment system, while effective in many cases, might occasionally reassign IDs if the

appearance features of occluded and reappearing objects are not distinctive enough.

This results in an increase in identity switches.

Future work could focus on optimizing the trade-off between these two aspects to

achieve even better performance. This could involve refining the feature extraction

process to enhance the distinctiveness of appearance features, improving data associ-
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ation algorithms, or developing more sophisticated strategies for handling occlusions.

Additionally, incorporating advanced techniques like transformer-based models for

object detection could provide further improvements. By addressing these issues, it

will be possible to reduce identity switches while maintaining or improving recall and

accuracy, thereby enhancing the robustness and reliability of multi-object tracking

systems.

5.4 Limitations

While our method demonstrated significant improvements in several key metrics, it

also resulted in an increase in identity switches (IDs) in some datasets. This rise

in IDs can be attributed to the fact that by reducing false negatives (FNs), our

method successfully tracks a greater number of objects, which inherently increases

the likelihood of identity switches. This is a normal consequence when more objects

are tracked, as the system needs to handle more complex scenarios with overlapping

and similar-looking objects.

Additionally, while our approach effectively reduced FNs and enhanced overall

tracking accuracy, it did expose some limitations in managing variations in object

appearances. These variations further contributed to the increase in IDs. Therefore,

while our method significantly improves tracking performance, particularly in reduc-

ing FNs, it also highlights the need for more advanced techniques to manage identity

consistency, especially in complex and diverse environments.

5.5 Future Work

Several avenues for future research could build on the findings of this thesis:

• Refinement of Memory Management: Enhancing the memory manage-

ment system to further reduce identity switches and improve re-identification

accuracy. This could involve developing more sophisticated algorithms for man-

aging occluded objects and refining the criteria for storing and retrieving track
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information.

• Feature Extractor for Occlusion Management: Incorporating a feature

extractor to extract appearance features, in addition to motion features, for re-

identifying objects. This approach aims to handle occlusion management more

effectively and make the re-identification function of our method more robust.

Integrating deep learning models that can adaptively learn appearance changes

over time could significantly enhance the system’s resilience to occlusions.

• Advanced Kalman Filter Techniques: Exploring the use of advanced Kalman

filter techniques, such as adaptive or interacting multiple model (IMM) filters,

to improve the prediction of object movements and reduce the errors in trajec-

tory estimation.

• Larger Dataset and Transformer Models: Planning to work on a more

extensive dataset to validate and enhance the robustness of our method. Addi-

tionally, leveraging transformer-based models for object detection could provide

significant improvements in accuracy and handling complex scenes, given their

ability to capture long-range dependencies and context in the data.

By focusing on these areas, we aim to further enhance the performance of multi-

object tracking systems and address the current limitations, particularly the challenge

of identity switches.
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