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Mining Integrated Sequential Patterns 
From Multiple Databases
Christie I. Ezeife, University of Windsor, Ontario, Canada

Vignesh Aravindan, Royal Bank of Canada, Canada

Ritu Chaturvedi, School of Computer Science, University of Guelph, Ontario, Canada

ABSTRACT

Existing work on multiple databases (MDBs) sequential pattern mining cannot mine frequent 
sequences to answer exact and historical queries from MDBs having different table structures. 
This article proposes the transaction id frequent sequence pattern (TidFSeq) algorithm to handle 
the difficult problem of mining frequent sequences from diverse MDBs. The TidFSeq algorithm 
transforms candidate 1-sequences to get transaction subsequences where candidate 1-sequences 
occurred as (1-sequence, itssubsequenceidlist) tuple or (1-sequence, position id list). Subsequent 
frequent i-sequences are computed using the counts of the sequence ids in each candidate i-sequence 
position id list tuples. An extended version of the general sequential pattern (GSP)-like candidate 
generates and a frequency count approach is used for computing supports of itemset (I-step) and 
separate (S-step) sequences without repeated database scans but with transaction ids. Generated 
patterns answer complex queries from MDBs. The TidFSeq algorithm has a faster processing time 
than existing algorithms.

Keywords
Candidate Generation, Complex Queries, Foreign key, Frequent Itemsets, Frequent Patterns, Frequent Sequences, 
Multiple Databases, Sequence Database, Transaction Ids

INTRODUCTION

Existing works are mostly for mining frequent itemsets/sequences from single databases (Han, Kamber 
& Pei, 2012; Nanopoulos & Manolopoulos, 2000). Work does not exist for a sequential pattern 
algorithm that mines exact frequent sequences from multiple tables or databases that are related 
through foreign key attributes. For more useful interpretation and application of frequent patterns to 
real life cases where patterns from different tables or databases related through foreign key attributes 
need to be integrated to answer relevant queries, algorithms for mining frequent sequences from 
multiple data sources that carry foreign key tags (e.g., transaction id) are important. Existing work 
on mining frequent itemsets from transaction tables can be classified into Apriori- and nonApriori-
based algorithms, including the Fp-tree algorithm (Agrawal & Srikant, 1994; Srikant & Agrawal, 
1995; Han, Pei, Yin & Mao, 2004). Some prominent Apriori-based sequence pattern mining (SPM) 
algorithms on single databases include GSP (Srikant & Agrawal, 1996). Frequent sequence mining 
algorithms that are non-Apriori based include SPAM and Prefix-span (Ayres, Flannick, Gehrke, & 
Yiu, 2002; Pei, Han, Mortazavi-asl, & Zhu, 2000). Algorithms specifically for mining Web sequential 
patterns include WAP-tree and PLWAP-tree algorithms (Pei, Han, Mortazavi-asl, & Zhu, 2000; 
Ezeife, Lu, & Liu, 2005).
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However, these single sequence/itemset database mining algorithms cannot mine frequent patterns 
from MDBs or tables like a database with two tables, example drug/side effects sequence table for 
recording drugs and their side effects with the schema DrugSE(Drugid, Sequences of side effects). 
The second table is patient/drug sequence table for recording sequences of drugs taken by patients 
with the schema PatientDr(Patientid, Sequences of Drugids). The DrugSE and PatientDr tables are 
related through the Drugid foreign key attribute. Regular SPM algorithms, including GSP, can be 
run on each of these tables. It finds the table drug/side effects with frequent sequences of side effects, 
as well as the table patient/drug with frequent sequences of drugs (Srikant & Agrawal, 1996). Multiple 
table scans provide little or no information on finding the patterns. A complex pattern query requiring 
associating patterns from these two tables, for example “find frequent sequences of side effects 
suffered from patients p1  and p2 ” cannot be directly or easily answered with these algorithms 
without additional post-processing database scans. Some reasons for the need to mine frequent patterns 
from MDBs and example queries for each category include:

1. 	 Comparative Analysis: in applications like e-commerce websites where product information 
(e.g., product name, price) and products sold by online stores (e.g., Best Buy, Walmart) are stored 
in MDBs and updated frequently. An example historical query is “Find the e-commerce website 
that sells the cheapest Samsung television products”.

2. 	 Frequent Local and Global Product Pattern Analysis: There is a need to find frequent local 
and global patterns of products purchased from customer transaction databases with the same 
table structure in several local branches.

3. 	 Mining Frequent Patterns from Multiple Tables with Different Table or Attribute 
Structures: There is a need to mine frequent itemsets/sequences from related databases with 
structures related through foreign/primary key attributes (i.e., patient/drugs and drugs/side 
effects). For example, “Find patients who are affected by frequent sequences of side effect 
patterns involving side effect s1”.

4. 	 Mining Alternate Types of Information: Patterns for discovering regular product or customer 
behavior for targeted marketing, such as stable patterns or identifying important customers.

Existing techniques for mining frequent patterns from MDBs include algorithms mining global 
frequent patterns from multiple tables with the same structures for local databases. Example algorithms 
are the ApproxMAP algorithm (Kum, Chang, & Wang, 2006), IndividualMine (Peng & Liao, 2009), 
the hierarchical gray clustering algorithm (HGCA) (Lin, Hu, Li, & Wu, 2013), and clustering local 
frequency items in MDBs (Adhikari, 2013). An example algorithm that can mine frequent itemsets 
(not sequences) from MDBs with different structures is the TidFP algorithm (Ezeife & Zhang, 2009).

The main purpose of this article is to propose an algorithm for mining exact frequent sequences 
from MDBs with different table structures. These database structures are related through foreign key 
attributes, which would allow answering informative queries involving shared patterns.

Contributions and Problem Definition
Single database sequence mining algorithms cannot mine frequent sequential patterns from multiple 
related sequences. In addition, they cannot integrate the results to answer queries related to MDBs. 
This article contributes the following features to the problem of SPM through its newly proposed 
algorithm (TidFSeq) and work from an unpublished thesis (Aravindan, 2016) for mining exact 
frequent sequential patterns from general sequences (both multiset and uniset sequences) in MDBs 
(with different or similar structures) using transaction ids:

1. 	 Answers complex sequence database queries involving related data from more than one table or 
database.
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2. 	 Finds records sharing frequent sequences in MDBs with less database scans and faster.
3. 	 Mines alternate types of information from competitive databases (e.g., stable, trending patterns)

Given multiple related sequence tables where each table consists of sequence id and corresponding 
sequence of items and a minimum support count “s”, the problem of mining frequent sequences 
from multiple related sequence databases is that of mining the exact frequent sequences with support 
counts greater or equal to the given minimum support count “s” from each sequence table and to be 
integrated to answer queries.

Outline
Next, the article discusses related work in mining frequent itemsets, frequent sequences, and frequent 
patterns from MDBs. Then, the article presents a detailed discussion of the problem addressed with 
the TidFSeq algorithm. The article presents performance and experimental analysis before offering 
a conclusion and future work.

BACKGROUND AND RELATED WORK

Existing work on frequent pattern mining can be classified into Apriori- and nonApriori-based 
algorithms. The Apriori algorithm is a prominent frequent itemset mining algorithm (Agrawal & 
Srikant, 1994). Its extensions include algorithms using a hashing technique (Park, Chen, & Yu, 
1995) and a partitioning technique (Savasere, Omiecinski, & Navathe, 1995; Taniar, Clement, Leung, 
Rahayu, & Goel, 2008). NonApriori-based FP-tree and extensions to the FP-growth approach also 
exist (Han, Pei, Yin & Mao, 2004). Prominent frequent sequence mining algorithms are Apriori-based 
algorithms like GSP (Srikant & Agrawal, 1996). NonApriori-based algorithms include SPAM (Ayres, 
Flannick, Gehrke, & Yiu, 2002) and Prefix-span (Pei, Han, Pinto, Chen & Dayal, 2004). Algorithms 
specifically for mining Web sequential patterns include WAP-tree (Pei, Han, Mortazavi-asl & Zhu, 
2000) and PLWAP-tree (Ezeife & Lu, 2005; Ezeife, Lu & Liu, 2005). Hybrid Web SPM approaches 
combine Apriori and nonApriori (e.g., pattern-growth) techniques.

There are a few notable systems that focus on mining frequent patterns from MDBs (Liu, Lu, & 
Yao, 2001; Zhang, Wu, & Zhang, 2003; Kum, Chang, & Wang, 2006; Ezeife & Zhang, 2009; Peng & 
Liao, 2009; Zhang, You, Jin, & Wu, 2009; Mehenni & Moussaoui, 2012; Lin, Hu, Li & Wu, 2013). 
This article will provide a more detailed discussion of the ApproxMAP algorithm (Kum, Chang, & 
Wang, 2006), TidFp algorithm (Ezeife & Zhang, 2009), GSP algorithm (Srikant & Agrawal, 1996), 
and SPAM (Ayres, Flannick, Gehrke, & Yiu, 2002) in relation to the TidFseq algorithm.

Sequential Pattern Mining Algorithms on Single Databases
GSP
GSP is an Apriori-based SPM algorithm using the downward-closure property of sequential patterns 
(Srikant & Agrawal, 1996). It adopts a multiple pass, candidate generate-and-test approach called the 
GSP-join, which is like the Apriori-gen join function of the Apriori algorithm for frequent itemset 
mining. Thus, given a database of frequent sequences and a minimum support threshold of two 
transactions, the GSP algorithm mines all frequent sequential patterns with support count greater 
than or equal to the minimum support (see Table 1).

GSP in the first pass determines the frequent 1-item patterns (L
1
) as items with support count 

greater than or equal to the given minimum support. Each subsequent pass starts with a seed set 
consisting of the frequent sequences found in the previous pass (L

k−1 ). The seed set generates the 
k-candidate sequences (C

k
) as the frequent sequence L

k−1  GSP-joins with itself L
k−1  or written as 

L
k−1⋈

GSP oin kj
L −1 . The L

k−1  GSP-join L
k−1  requires that every sequence s in the first L

k−1  joins with 
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other sequences s '  in the second L
k−1  if the last k-2 items of the first sequence s are the same as the 

first k-2 items of the second sequence s ' . For example, the s = ((1, 2)(3)) GSP-join s '  = ((2)(3,4)) 
gives ((1, 2) (3,4)). The s = ((1, 2)(3)) GSP-join ((2)(3)(5)) = ((1, 2)(3)(5)). Note how the two types 
of sequence elements of itemset sequence (I-step) such as join of (3) in s and (3,4) in s’ resulted in 
(3,4) and not (3)(4) since one of the sequences being joined has both items together in a set. On the 
contrary, the second type of sequence elements have single items in sequence (S-step), such as a join 
of (3) in the first s  and (3)(5) in the second s '  resulting in (3)(5) and not (3,5). Thus, a join of a 
single item in one s  with either an I-step or S-step sequence in the second s '  will result in the I-step 
or S-step sequence they joined with. Following the join phase is the pruning phase, in which the 
candidate sequences that have any of their contiguous (k-1)-subsequences not frequent in an earlier 
L
k−1  are dropped because of the downward closure property. This means that this sequence would 

not have a chance of being frequent when the database is scanned for support.
The supports for the remaining candidate sequences determine which of the candidate sequences 

are frequent (L
k

). These frequent candidates become the seed for the next pass. The algorithm 
terminates when there are no frequent sequences at the end of a pass or when there are no candidate 
sequences generated. An example mining of Table 1 given minimum support count of 2 and the C

1
 

items as given below using the GSP algorithm will go through five iterations to find frequent sequences 
L: L L L L

1 2 3 4
∪ ∪ ∪  = {A, B, C, D, F, G, AB, AC, AD, AF, AG, BC, BD, BF, BG, CD, FA, FB, 

FC, FD, GD, (AB), ABD, ABF, ABG, ACD, AFD, AGD, BCD, BFD, BGD, FCD, F(AB), ABFD, 
ABGD}. The GSP algorithm, unlike the proposed TidFSeq algorithm, suffers from generation of 
long candidate sequences. It is designed for a single transaction database table.

SPAM
The SPAM algorithm (Ayres, Flannick, Gehrke, & Yiu, 2002) with vertical bitmap representation 

first uses the one-candidate items of the database to construct a lexicographic tree representation of the 
sequential database where each of the items, such as {a, b, c, d}, forms a child node of the root node 
of the tree. Each of these nodes will have their children extended to generate two-candidate sequences 
by extending in the two ways of item I-step extension (for example, extending the one-sequence a 
to the two-sequence in the same set (a, b)) and sequence S-step extension (for example, extending 
the one-sequence a to the two-sequence in the different sets a, a or a, b). Generally, in building the 
tree, each node can generate sequence-extended children sequences (in S-step process) and itemset-
extended children sequences (in I-step process). Each item (e.g., a, b, c, d) in the sequence database 

Table 1. Sequence table for GSP

SID Sequences

1 AB FG CD( )

2 BGD

3 BFG AB( )

4 F AB CD( )

5 A BC GF DE( ) ( )
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creates a vertical bitmap showing each transaction in the database. It shows if this item is present in 
the transaction with a bit of “1.” The bit is “0” if the item is absent.

For example, given the example transaction database of Table 2, transaction 1 will have the 
bitmap for items a, b, c, d in this database as 1101, 0111, and 0111 for its three subsequences (a, b, 
d)(b, c, d)(b, c, d), respectively. Each sequence in the sequence tree is either a sequence-extended 
sequence or an itemset-extended sequence. For example:

If we have a sequence sa = a b c a b, , , ,( ) ( ) , then a b c a b a, , , , ,( ) ( ) ( )  is a sequence-extended 

sequence of sa while a b c a b d, , , , ,( ) ( )  is an itemset-extended sequence of sa. If we generate sequences 
by traversing the tree, then each node in the tree can generate sequence-extended children sequences 
and itemset-extended children sequences. The process of generating sequence-extended sequences 
is known as the sequence-extension step (the S-step). The process of generating itemset-extended 
sequences is known as the item-extension step (the I-step).

The frequency count of an S-step sequence, such as, can be obtained as the count of the results of 
the Bit AND operation of the inverse of Bit (a) with that of Bit (b) that are TRUE for all the transactions 
in the database. This means if for any transaction Bit () AND Bit (b) = 1 then the S-step sequence 
is present in this transaction and should be counted as +1 to the support count of the sub-sequence. 
On the other hand, the frequency count of an I-step sequence, such as, can be obtained as the count 
of the results of the Bit AND operation of the Bit (a) with that of Bit (b) that are TRUE for all the 
transactions in the database. This means if for any transaction Bit (a) AND Bit (b) = 1 then the I-step 
sequence is present and counted as +1 to the support count of the sub-sequence.

Algorithms for Mining Patterns in MDBs
ApproxMAP
ApproxMAP (Kum, Chang, & Wang, 2006) finds the approximate frequent sequences from MDBs 
of sequences having the same table structure. ApproxMap uses multiple alignments to force all 
sequences in the input database to be of equal length or have the same number of sub-sequences (or 
columns). For example, if there are four input sequences (<(123)(1)> and <(123)> and <(3)(4)> 
and <(1)(3)>), they will have the highest length of two subsequences by padding sequences such as 
the second sequence that has only one subsequence with an empty second subsequence to transform 
it as <(123)()>. Then, it will find the frequent sequences of the two subsequence columns as those 
items in the four sequences that have occurred up to minimum support count times. Assume the 
minimum support count is two, for the mining of the above four sequences. The weighted sequence 
support count for column one-subsequences is <(123)> because only items 1, 2, and 3 have counts 
greater than min support count of two. Column two has no frequent patterns from the four and the 
approximate frequent sequential pattern mined from the above database is <(123)>. It uses the same 
method to get the approximate frequent sequential patterns from a second database.

Table 2. The SPAM sequence database

Tid Sequence of Purchases

1 a b d b c d b c d, , , , , ,( )( )( )

2 b a b c( )( ), ,

3 a b b c d, , ,( )( )
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The major drawback of this ApproxMAP algorithm is that it does not generate exact sequential 
patterns to answer exact queries for multiple sequence tables. Thus, it cannot handle multiple foreign 
key-related sequence tables with different table structures and attribute names.

TidFp. TidFP algorithm (Ezeife & Zhang, 2009) mines frequent itemsets from multiple sources 
using transaction ids for integrating patterns through set operations (i.e., intersect and union) to 
answer global queries involving multiple sources. Given two multiple tables such as the single item 
set versions of the drug/side effects in Table 5 with candidate one-item as side effects, = {1, 2, 3, 
4, 5}, and the patient/drug database in Table 6 with candidate one-item as drug ids, C1 = {d1, d2, d3, 
d4}, a minimum support threshold of three transactions, the TidFP algorithm mines frequent itemsets 
from the multiple related tables such as frequent side effects of drugs from Table 5 and frequent drugs 
purchased by patients from Table 6. Therefore, it can use these frequent items to answer queries like 
“Get the frequent drug side effects suffered by patients.” The TidFP algorithm’s four steps proceed 
as follows:
Step 1: 	 It scans the database once and obtains all items with their transaction IDs in the format of 
a 1-item, list of transaction ids (Tid-list) the item occurred abbreviated as 1-item, Tid-list

tuples. For example, the tuples for the drugs/side effect sets for items shown in Table 5 are 
presented in the form of side effect id, list of drug ids having these side effect. Thus, the scan

o f  t h e  d a t a b a s e  o f  Ta b l e  5  w i l l  g i v e  c a n d i d a t e  o n e - i t e m ,  C
1

 = 
1 2 3 4 5

1 3 2 3 4 1 2 3 1 2 3 4
, , , , , , , , , , , ,D D D D D D D D D D D D( ) ( ) ( ) ( ) ( ) . Similarly, for the second 

Table 3. Drug/side effects itemset sequences

Drug Sequence of Side Effects

d
1

123 1( )( )

d
2

< ( ) >123 ()

d
3

3 4( )( )

d
4

1 3( )( )

Table 4. Patient/drugs itemset sequences

Patient Sequence of Drugs purchased by patient

p
1

< ( ) >d d d
1 2 3

()

p
2

d d
3 4( )( )

p
3

d d d
1 2 1( )( )

p
4

d d
1 3( )( )



International Journal of Data Warehousing and Mining
Volume 16 • Issue 1 • January-March 2020

7

database of patients/drug id sequences for single items shown in Table 6, the candidate 1-item, C
1
 

is transformed to < drug id, list of patient ids taking these drugs> . For Table 6, the candidate 1-item, 
C
1
 tuples are: C D P P P

1 1 1 2 4
= ( ), , ,  D P P P D P P D P P

2 1 2 4 3 2 3 4 3 4
, , , , , , ,( ) ( ) ( ) .

Step 2: Compute frequent 1-item list F
1

 with less than 3 transactions. F
1

 tuples for Table 5 are 
F
1

 = 2 3 5
2 3 4 1 2 3 2 3 4

, , , , , , , , ,D D D D D D D D D( ) ( ) ( ) .  The F
1

 tuples  for  Table 6  are 

F D P P P D P P P
1 1 1 2 4 2 1 2 4
= ( ) ( ), , , , , , .

Step 3: Generate candidate 2-itemsets (C
2
). Generally, C F

i i+ =1  map-gen join F
i
 (e.g., C F

2 1
=  

map-gen join F
1

). For example, given items i
1
 and i

2
 with their Tid lists, The i tid tid

1 1 2
, ,( )  (Apriori 

m a p - g e n  j o i n )  i tid tid i i tid
2 1 5 1 2 1
, , ,( ) = ( ) .  F o r  d r u g s / s i d e  e f f e c t  Ta b l e  5 , 

C D D D D D D D
2 2 3 2 3 4 2 3

2 3 2 5 3 5= ( ) ( ) ( ), , , , , , ,  and for the patients/drug in Table 6 is 

D D P P P
1 2 1 2 4
, , ,( ) . The frequent-two itemsets F

2
 are obtained and process continues until an empty 

set is met in an iteration.
Frequent itemsets and corresponding transaction ids for drugs/side effect Table 5 is 

FP D D D D D D D D D D D D= ( ) ( ) ( ) ( )2 3 5 2 5
2 3 4 1 2 3 2 3 4 2 3 4

, , , , , , , , , , , , . Frequent itemsets and 
corresponding transaction ids for patients/drug Table 6 is:

Table 5. Drug/side effects just itemsets

Drug Sets of Side Effects

d
1

1 3 4

d
2

2 3 5

d
3

1 2 3 5

d
4

2 5

Table 6. Patient/drugs just itemsets

Patient Sets of Drugs Purchased by Patient

p
1

d d
1 2

p
2

d d d
1 2 3

p
3

d d
3 4

p
4

d d d
1 2 4
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FP D P P P D P P P D D P P P= ( ) ( ) ( )1 1 2 4 2 1 2 4 1 2 1 2 4
, , , , , , , , , 	

TidFp answers queries like: “What are possible frequent side effects suffered by patients P P
1 2
, ,  

and P
4
?” This is obtained using set operators like intersection (∩ ) in:

3
1 2 3

, , ,D D D( ) ∩ ( ) = ( )D D P P P P P P
1 2 1 2 4 1 2 4

3, , , , , , 	

This implies that Patients P1, P2, P4 buy drugs D1 and D2. Drugs, have common side-effects 3. A 
major drawback is that the TidFp algorithm mines and handles queries for multiple related itemset 
transaction tables. However, it does not handle queries for multiple related sequential database tables 
requiring mining sequential patterns.

Other Algorithms for Mining Patterns in MDBs
Peng and Liao (2009) proposed two algorithms for mining multiple-domain, single table sequential 
databases that are categorized to have co-occurred in the same time window (e.g. sequential purchase 
patterns from a book store and movies rented from a movie store in the same or different month 
time windows). However, unlike our proposed foreign key based multiple sequence database miner, 
TidFSeq, the algorithms in (Peng & Liao, 2009) do not mine multiple tables with different schemas 
that are related through foreign key attributes to answer more complex real-life queries. Also, their 
work did not extend any existing SPM algorithm but focused on how to combine sequential patterns 
after they are mined.

The HGCA algorithm mines stable patterns (Lin, Hu, Li & Wu, 2013). It defines an item “a” as 
stable if the item satisfies the minimum support count “s” in each of the local transaction tables (, 
where, is a local transaction table) that it occurs and the variation of the support count of that item 
“a” is less than or equal to a user-defined variation value “v”.

PROPOSED TIDFSEQ ALGORITHM FOR SEQUENTIAL MINING IN MDBS

Not all multiple tables have the same structure. There is also a need to mine frequent itemsets or 
sequences from multiple tables with different attribute structures but that are related through foreign 
key attributes. An example is the patient/drugs database in Table 4 and the drugs/side effects database 
in Table 3. The proposed TidFSeq algorithm, unlike the existing algorithms discussed in the related 
work section, is designed to mine frequent sequences from related multiple tables, including those 
with different attribute structures.

Definitions
This section presents formal concepts and definitions used in the proposed algorithm.

Definition 1. Elements in an n-sequence(S) ( e e e
S S nS1 2
, ,… ) are the subsequences of the n-length 

sequence with n ordered elements (or subsequences), e e e
S S nS1 2
, ,… .

For example, given the three-sequence d d d d d
1 2 3 1 4( )( )( ) , the first element (or subsequence) 

e
S1

 is (d d d
1 2 3

). It has three items in its set. The second element e
S2

 is (d
1

). It has one item. The 
third element e

S2
 is (d

4
). It also has one item in the third set.
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Definition 2. Position id list (Pid
IkS

) of a kth candidate one-item in a database sequence S 
specifies all the sequence elements of S where the kth candidate one-item occurred. In other words, 
it specifies all the subsequences of sequence S where the kth candidate one-item has occurred.

For example, given the sequence with Sid S d d d d d
1 1 2 3 1 4
= ( )( )( ) , the one-item d

1
 in this 

sequence is found in the first element (d d d
1 2 3

) and the second element (d
1

). Item “d
1

” in this 
sequence is in positions e

1
 and e

2
. Thus, the sequence S

1
’s position id list for item d

1
�(Pid

Id S1 1:
) is 

e
1
 and e

2
. Similarly, the position id list of item d

3
 is e

1
 because it is found only in the first element 

(d d d
1 2 3

).
Definition 3. For Sequence id Position id list, _  tuple, each item/sequence is associated 

with the sequence ids in which they occur, as well as the position ids in which they occur in each 
sequence id. This information is represented in the form of a tuple associated with each item/sequence. 
If an item “1” appears in sequence ids sid1 (the position ids of item 1 in sid 1 are e e

1 3
, ) and sid

3
 

(the position ids of item 1 in sid 3 are e e
1 2
, ), then sid pid list, _  tuple for item 1 is given as 

sid e e sid e e
1 1 3 3 1 2
, , , , ,( )( ) ( )( ) .

Definition 4. For the I-step and S-step sequences, the I-Step sequence and S-Step terms were 
first defined (Ayres, Flannick, Gehrke, & Yiu, 2002) as:

1. 	 I-Step sequence is a sequence of the form (a b) such as (1 2 3), meaning items 1, 2, and 3 occur 
together in a subsequence.

2. 	 S-Step sequence is a sequence of the form (a) (b) such as (1) (2) (3), meaning items 1, 2, and 3 
occur separately in a sequence.

Definition 5. For candidate 1-item tuples tuples, the Candidate 1-item tuples list is the 
representation of the input items. It lists each candidate 1-item with its position id list showing the 
occurrences of all subsequences. The tuples are of the form for a database with items.

For example, the tuples list for the drugs/side effects database of Table 3 in the form of
<side effect id: its drug position id list> is:

C1 = {1: <(d1, (e1, e2)), (d2, (e1)), (d4, (e1))>, 2: <d1, (e1)), (d2, (e1))>, 3: <d1, (e1)), (d2, (e1)), (d3, 
(e1)), (d4, (e2))>, 4: <(d3, (e2))>}.	

Definition 6. The support count computation rule for I-step sequences is the basic rule for 
computing support count of an I-step sequence of the form (ab). For example, “If items a  and b  
have the same sequence ids and occupy the same column (subsequence) positions (i.e., have the same 
position ids), then support count of sequence (ab) is incremented by 1”.

Definition 7. The support count computation rule for S-step sequences is the basic rule for 
computing support count of an S-step sequence of the form (a)(b). For example, “If items a  and b  
have the same sequence ids and a  occupies an earlier (subsequence) column position than that of b  
(i.e., position id of a  is less than position id of b ), then support count of sequence (a)(b) is incremented 
by 1”.

Steps in the Proposed TidFseq Algorithm
The formal algorithm for mining frequent sequential patterns from two or more related database tables 
(called TidFseq) is given as algorithm 1. Details of its steps are included in this section.
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Input to the Algorithm. Multiple related sequence database table MDBs, the input user defined 
minimum support count “s,” and the set of candidate 1-items for each database. For example, input 
of db1 = Drug/sequence of side effects, db2 = Patient/drugs sequence tables, user-defined minimum 
support count = 2, Cdb

1
1  for db1 = {side effects ids} = {1, 2, 3, 4, 5}, Cdb

1
2  for db2 = {drug ids} = 

{d1, d2, d3, d4}.
Output of the Algorithm. Frequent sequences of each database FSdb1 , FSdb2 , …, FSdbn  with 

the associated subsequence ids where they occurred listed in the form of {F
n sequence− : < subsequence 

that F
n sequence−  occurred >}.

Other Data. Initial iteration k = 1. For example, mining the proposed algorithm TidFseq on the 
input databases of db

1
 and db

2
 yields the following output frequent sequential patterns. For db1, the 

frequent sequences of side effects FSdb1 = {(1): < d1, d2, d4 >, (2): < d1, d2 >, (3): < d1, d2, d3, d4 >, 
(1, 2): < d1, d2 >, (1, 3): < d1, d2 >, (2, 3): < d1, d2 >, (1, 2, 3): < d1, d2 >}. For db2, the frequent 
sequences of drugs Sdb2 = {(d1): < p1, p3, p4>, (d2): < p1, p3 >, (d3): < p1, p2, p3, p4 >, (d1, d2): < p1, 
p3 >, (d1)(d3): < p3, p4 >}.

Algorithm 1: (TidFSeq() - Mines multiple related table sequences)
Input: Multiple related sequence tables TB

1
, TB

2
, …, TB

N
 and 

their corresponding candidate one-items sets C
TBK
1

, min-support 

count “s.” 
Output: Frequent sequences FP

TBK
 and their associated sequence ids 

in the form < ( :FS ssid
1 1

, … …( ), ), : ,ssid FS ssid ssid
n m2 1

, 

… …( )>FS ssid ssid
p q
:, ,

1
 where FS

i
 is frequent sequence i and the ssid

m
 

is the mth subsequence id that FS
i
 occurred.

Other variables: C
k
 candidate k-sequences, F

k
 k-Frequent 

sequences, pid list
sidj

_ , an array of sequence sid
j
’s elements or 

subsequence ids, k=1 initially, F
p
-final list of frequent 

sequences. 
Begin 
1. for each database table sequence TB

i
 do Begin

     1.1 Scan the sequence table to compute the candidate 
1-sequences with their position id lists in the form of 
C item sid pid list item sid pid list
1 1 1 1 2 2

2= { : : _ : : _     …item sid pid list
n n n
: : _ }, 

where k = 1 and item item C
n1 1

,… ∈  in the table sequence TB
i

     1.2 Compute Frequent k-sequences (F
k
) as sequences with 

support greater than or equal to minsupport “s”.  
     1.2.1 if F

k
= ∅ then go to step 1.7.

     1.3 k = k + 1 //to prepare for the next iteration 
     1.4 Compute the next k-candidate (C

k
) sequence as: C F

k k
= −1  

⋈ 
GSP join k

F− −1

          1.4.1 if C
k
= ∅  then go to step 1.7.

     1.5 while (candidate k-seq C
k
≠ ∅ ) do Begin

          1.5.1 Compute Frequent k-sequences (F
k
) as those with 

support >= minsupport “s”. 
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          for each sequence S C
k

∈  do Begin
               1.5.1.1 If sequence S  is I-step sequence of the 
form (a b) then 
 Call function I-step Pruning of Algorithm 2
               1.5.1.2 else if Sequence S  is I-step sequence of 
the form (a)(b) then 
                Call function S-step Pruning of Algorithm 3
          end //for each sequence S loop 
          end //while loop 1.5 
     1.6 if (F

k
≠ ∅) then go to step 1.3

     1.7 F F F F
p k
= ∪ ∪…∪

1 2
. 

end //for each database 1 
end // of TidFSeq //

The process of mining the two databases are presented formally in Algorithm 1 and discussed 
in the following steps. For each input database, mining the database includes:

Step 1: Get candidate 1-item (C
1
) sequence set. Scan the database table once to gather the 

transaction ids for each candidate 1-item as C
1
 tuples in the form of <1-Sequenceid, Position_idlist> 

tuples for each 1-item in C
1
 set.

Step 2: Find the frequent 1-items F
1

 from the C
1
 sequence as those with more than minimum 

support count transaction ids (e.g., two for the example databases). The occurrence count of each 
one-item is easily obtained from the C

1
 by counting the number of transaction ids in its Tid list (e.g., 

of d d
1 2
, ,  and d

4
 for side effect 1 means 1 has support 3).

Step 3: Set the next iteration k = k + 1 to compute higher level frequent k-item patterns.
Step 4: Generate the candidate k-sequence C

k
 using an adapted version of the GSP-gen join 

function. Here, candidate sequences are generated using the GSP’s join function as: C F
k k
= −1 �⋈

GSP gen k
F− −1  (Srikant & Agrawal 1996) with our newly defined I-step and S-step join conditions for 

sequences from MDB related through foreign key attribute based on definitions 6 and 7. If the 
computed C

k
 is an empty set, the iteration ends by going to step 7.

Step 5: Compute frequent k-sequences F
k

 from the C
k

 from Step 4 using two different functions 
for counting the supports of the two types of sequences called I-step and S-step sequences with I-step 
pruning and S-step pruning functions, respectively. After the candidate generation step, if the candidate 
sequence is of the form (a b) (i.e., itemset together), then it is an I-step sequence and I-step pruning 
algorithm is called to count its support. Otherwise, if the sequence is of the form (a)(b) (items a and 
b separately purchased), then it is an S-step sequence and S-step pruning algorithm is called to count 
its support. The basic rule for computing support count of an I-step sequence of the form (ab) is: “If 
items a  and b  have the same sequence ids and occupy the same column (subsequence) positions 
(i.e., have the same position ids), then support count of sequence (ab) is incremented by 1”. The basic 
rule for computing support count of an S-step sequence of the form (a)(b) is: “If items a  and b  have 
the same sequence ids and a  occupies an earlier (subsequence) column position than that of b  (i.e., 
position id of a  is less than position id of b ), then support count of sequence (a)(b) is incremented 
by 1.” These two rules are implemented by the two called functions of I-step pruning and S-step 
pruning respectively. If the computed F

k
 is an empty set with no sequences, the iteration ends by 

going to Step 7.
Step 6: Find the higher order frequent k-sequence after the I-step and S-step by pruning functions 

return to the main algorithm. To compute the next candidate (k+1)-sequence and frequent (k+1)-
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sequence, the algorithm goes back to Step 3, in which k is set to k+1 and the remaining steps are run 
iteratively until either a C

k
 or F

k
 generation step yields an empty set of sequences.

Step 7: Find the final set of frequent sequential patterns. The final output is the frequent sequential 
patterns consisting of the union of all the frequent n-sequences for 1≤ ≤n k . This is like 
FP F F F

k
= ∪ ∪…

1 2
.

This result set of two or multiple tables answers user queries for the input-related sequence tables, 
including “what are frequent sequences of side effects affecting patients p

1
 and p

3
?”

Algorithm 2: I-step Pruning (counting support of I-step sequences)
The I-step pruning algorithm computes the support count of I-step sequences after each iteration 
of generating the extended candidate (k+1)-sequences from the frequent k-sequences. Thus, this 
algorithm takes the (k+1)-sequences and counts the support of I-step sequences of the form (a, b) so 
that it will return only those I-step sequences that are frequent with support greater than or equal to 
the given minimum support count using Definition 6. It goes through the two steps.

Step 1: Compute the Support Count for the I-step Candidate Sequences of Form (a, b). 
This is done using Definition 6. For example, assume there is a candidate I-step sequence (1, 2) and 
the <  Sequence id, Position_id list >  tuples for item 1 is sid pos sid pos1 1 2 1, ,( )( )  (i.e., item 1 
occurs in sid1 at position id: pos1 and also occurs in sid2 at position id: pos1) and tuples for item 2 
are sid pos sid pos pos1 1 2 1 4, , ,( ) ( )( )  (i.e., item 2 occurs in sid1 at position id: pos1 and also occurs 
in sid2 at position ids: pos1, pos4). From the tuples, we can see that item 1 and item 2 have two 
matching sequence ids (i.e. sid 1 and sid2). The corresponding position ids also match (i.e., items 1 
and 2 occur at pos 1 in sid1 and again occur at pos1 in sid2). The Sequenceid Positionidlist,  tuple 
for I-step sequence (1, 2) is < ( )( ) >sid pos sid pos1 1 2 1, , . The support count of the I-step sequence 
is 2.

Step 2: Checking Whether the I-Step Sequence is Frequent. The support count computed in 
the previous step is checked for whether it satisfies the minimum support count (i.e., if the support 
count of I-step sequence is greater than or equal to minimum support count). If the minimum 
support count is 2, then the I-step sequence (1 2), whose support count calculated in previous step, 
is 2, satisfies the minimum support count and is frequent. Output of I-step pruning (): The frequent 
sequence and its < Sequence id, Position_id > list tuples will be added to the result set that will be 
returned to the main program.

Algorithm 3: S-step Pruning (counting support of S-step sequences)
The S-step pruning algorithm (Algorithm 3) accepts as its input the S-step sequences of the form (a)
(b). It returns the S-step sequences that are frequent and have support counts greater than or equal 
to the given minimum support count. In counting the support of each S-step sequence, it applies the 
S-step support count rule defined in the definition section. S-step input data are the S-step candidate 
sequences of the form (a) (b) generated by candidate generation method of the main algorithm 
(Algorithm 1) and min-support count (“s”). Its output consists of the S-step frequent sequences with 
the two steps below:

Step 1: Compute Support Count for the S-Step Candidate Sequence of the Form (a)(b).
This is done using the rule of Definition 7. For example, assume there is an S-step candidate 

sequence (1) (2) and the Sequenceid Position idlist, _  tuples for item 1 is sid pos sid pos
1 1 2 2
, ,( )( )  

(i.e., item 1 occurs in sid
1
 at sub sequence position id: pos

1
 and also occurs in sid

2
 at position id: 

pos
2

) and tuples for item 2 are < sid pos sid pos pos
1 3 2 1 4
, , ,( ) ( )( )>  (i.e., item 2 occurs in sid

1
 at sub 
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sequence position id = pos
3

 and also occurs in sid
2

 at position ids= pos
1
, pos

4
). From the tuples, 

we can see that item 1 and item 2 have a total of two matching sequence ids (i.e., sid
1
 and sid

2
). 

The corresponding position ids of item 1 are less than the corresponding position ids of item 2 (i.e., 
the position id ( pos

1
) of item 1 in sid

1
 is less than position id ( pos

3
) of item 2 in sid

1
 and the 

position id ( pos
2

) of item 1 in sid
2

 is less than position id ( pos
4

) of item 2 in sid
2

). The tuples for 
S-step sequence (1) (2) are < sid pos pos sid pos pos

1 1 3 2 2 4
, , ( , ,( )( ) ( )( )>  and the support count of the 

S-step for the sequence (1) (2) is 2.
Step 2: Checking Whether the S-Step Sequence is Frequent. The support count computed 

in the previous step is checked for whether it satisfies the minimum support count. If the minimum 
support count is 2, then the S-step sequence (1) (2), whose support count calculated in previous step, 
is 2, satisfies the minimum support count and is frequent.

EXAMPLE APPLICATION OF THE TIDFSEQ ALGORITHM

Input. Multiple related sequence tables db
1
 = Drug/sequence of side-effects (see Table 3), db

2
 = 

patient/drugs sequence (given in Table 4, user-defined minimum support count=2, Cdb
1
1  for db

1
 = 

{side effects ids} = {1, 2, 3, 4}, Cdb
1
2  for db

2
 = {drug ids} = {d d d d

1 2 3 4
, , , }.

Output of the Algorithm. Frequent sequences of each database FSdb1 , FSdb2 , … , FSdbn , with 
the associated subsequence ids where they occurred listed in the form of {F

n sequence− <: Ssids that 
F occurred
n sequence− > }. Other data: Initial iteration k = 1.

The process of mining with these two database tables using the TidFseq algorithm goes through 
the following steps for each database.

Step 1: Generate the <  Sequence id, Position id (Pid) list >  tuple for each 1-item in the C
1
 to 

get the C
1
 sequence set in vertical format for the drugs/side effect database of Table 3 shown in Table 

7, and of the patient/drugs database of Table 4 shown in Table 8.
For example, in Table 3 (shown here in Table 7), we can see that item “1” has a tuple of sequence 

ids (i.e., d d
1 2
, ,  and d

4
) and the corresponding position ids for each sequence id (i.e., pid e e

1 2
, , in 

sid d
1

, pid e
1
 in sid d

2
, pid e

1
 in sid d

4
).

Step 2: Find frequent (F
1

) as FDB
1

1  = {side effects} = {1, 2, 3}. F drugs d d dDB

1 1 2 3
2 = { } = { }, , .

Step 3: Since F
1

 are not empty set, we have k = 2.
Step 4: Finding candidate 2-sequences C

2
: C FDB DB

2 1
1 1= ⋈

GSP gen

DBF− 1
1 . C FDB DB

2 1
2 2= ⋈

GSP gen

DBF− 1
2 . Using the rules for GSP join, the candidate 2-sequences for the input DB

1
 sequence 

Drug/Side effects table, Table 3 are: C2
DB1 = {(1)(1), (1)(2), (1)(3), (1,1), (1, 2), (1, 3), (2)(1), (2)(2), 

(2)(3), (2, 1), (2, 2), (2, 3), (3)(1), (3)(2), (3)(3), (3, 1), (3, 2), (3, 3) }. The candidate 2-sequences for 
the input DB

2
 sequence table, Table 4 are: C2

DB2 = {(d1)(d1), (d1)(d2), (d1)(d3), (d1, d1), (d1, d2), (d1, 
d3), (d2)(d1), (d2)(d2), (d2)(d3), (d2, d1), (d2, d2), (d2, d3), (d3)(d1), (d3)(d2), (d3)(d3), (d3, d1), (d3, d2), (d3, 
d3)}.

Step 5/6: Computing frequent 2-sequences F
2
 by finding frequent I-step (of the form (1 2)) and 

S-step (of the form (1)(2)) sequences that are frequent. In the example, the candidate I-step sequence 
(1, 2) has the following < Sequence id, Position_id list>  tuples for item 1 and item 2: Item 1 as: 
d e e d e d e
1 1 2 2 1 4 1
, , , , , ,( )( ) ( ) ( )  (i.e., item 1 occurs in sid: d

1
 at position id: e e

1 2
,  and also occurs in 

sid: d
2
 and sid: d

4
 at position id: e

1
) and Item 2: d e d e

1 1 2 1
, , ,( ) ( )  (i.e., item 2 occurs in sid: d

1
 at 
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position id: e
1
 and also occurs in sid: d

2
 at position id: e

1
). From the tuples, it can be seen that item 

1 and item 2 have a total of two matching sequence ids and position ids (i.e., item 1 and item 2 occur 
at position id: e

1
 in sid: d

1
 and occur at position id: e

1
 in sid: d

2
). The condition for I-step sequence 

is met twice. Therefore, the support count of sequence (1, 2) is 2, which satisfies the input support 
count (2). Hence, I-step sequence (1, 2) is a frequent sequence. Running the I-step sequence prune 
algorithm on the CDB

2
1  yields the following frequent F

2
 I-step sequences for DB1. 

FDB
2
1 1 2 1 3 2 3= ( ) ( ) ( ){ }, , , , ,  for only I-step sequences. Running the I-step sequence prune algorithm 

on the CDB
2

2  yields the following frequent F
2
 I-step sequence for DB

2
. F d dDB

2 1 2
2 = ( ){ },  for only 

I-step sequences. If items of a candidate sequence occur separately then this is an S-step sequence 
of the form (a) (b). If “a” and “b” have same sequence ids and “a” occupies earlier position than that 
of “b,” in greater than or equal to min-support number of sequences, then (a)(b) is frequent. In the 
example db

2
, candidate S-step sequence d d

1 3( )( )  has the following < Sequence id, Position_id list
>  tuples for item d

1
 and item d

3
 in the same S-step sequence: Item d

1
 occurred in transactions 

p p
1 3
,  and p

4
 with the given position id lists, p e p e e p e

1 1 3 1 2 4 1
, , , , , ,( ) ( )( ) ( )  (i.e., item d

1
 occurs in 

Table 7. Transformed C
1

 item sequences for drug/side effects db1

1 2 3 4

Sid Pid_list Sid Pid_list Sid Pid_list Sid Pid_list

d
1

 e e
1 2
� d

1
 e
1

d
1

 e
1

d
3

 e
2

d
2

 e
1

d
2

 e
1

d
2

 e
1

d
4

 e
1

d
3

 e
1

d
4

 e
2

Table 8. Transformed item sequences for patient/drugs db2

d
1

d
2

d
3

d
4

Sid Pid_list Sid Pid_list Sid Pid_list Sid Pid_list

p
1

 e
1

p
1

 e
1

p
1

 e
1

p
2

 e
2

p
3

 e e
1 2
� p

3
 e
1

p
2

 e
1

p
4

 e
1

p
3

 e
3

p
4

 e
2



International Journal of Data Warehousing and Mining
Volume 16 • Issue 1 • January-March 2020

15

sid: p
1

 at position id: e
1
 and occurs in sid: p

3
 at position ids: e e

1 2
,  and also occurs in sid: p

4
 at 

position id: e
1
). The pid list for item item d

3
 is: p e p e p e p e

1 1 2 1 3 3 4 2
, , , , , , ,( ) ( ) ( ) ( )  (i.e., item d

3
 

occurs in sid: p p p p
1 2 3 4
, , ,  at position ids: e e e e

1 1 3 2
, , ,  respectively). From the tuples, items d

1
 and 

d
3
 have matching sequence ids p

3
 and p

4
. For sid p

3
, corresponding pids of item d

1
 (i.e., e e

1 2
, ) 

is less than the corresponding pid of item d
3
 (i.e., e

3
) and similarly for sid p

4
: corresponding pid 

of item d
1

 (i.e., e
1
) is less than corresponding pid of d

3
 (i.e., e

2
). Since the condition for S-step 

sequence is met twice, the support count of sequence d d
1 3( )( )  is 2, which satisfies the input support 

count (2). Hence, the result of running the S-step sequence algorithm on CDb
2

2  is d d
1 3( )( ){ } . The 

result of running the S-step sequence algorithm on CDB
2

1  is ∅ . Thus, the complete set of frequent 
sequences for both I-step and S-step sequences is F sideeffectsDB

2
1 1 2 1 3 2 3= { } = ( ) ( ) ( ){ }, , , , ,  and 

F drugs d d d dDB

2 1 2 1 3
2 = { } = ( ) ( )( ){ }, , .

Step 5 (again): Find higher order 3-sequences iteratively. C FDB DB

3 2
1 1= ⋈

GSP gen

DBF− 2
1  = 

C FDB DB

3 2
2 2= ⋈

GSP gen

DBF− 2
2 . Using the rules for GSP join, the candidate 3-sequences for the input 

DB1 sequence Drug/Side effects table, Table 3 are: CDB
3

1 1 2 3= ( ){ }, , . Running the I-step and S-step 

prune algorithms on this set also confirms it frequent so that FDB
3

1 1 2 3= ( ){ }, , . The candidate three-

sequences for the input DB2 sequence patient/drugs table, Table 4 are: CDB
3

1 = ∅  and the iteration 
terminates for this Db2.

Step 6 (again): Find higher order 4-sequences for DB1 iteratively. Since FDB
3

1 1 2 3= ( ){ }, , , 

C FDB DB

4 3
1 1= ⋈

GSP gen

DBF− = ∅
3

1 . Now the iteration for DB1 also terminates.
Step 7: The full mined sequential patterns from DB

1
 of (drugs, sequence of side effects) data 

in the form of (frequent sequence of side effects: sequence ids (drugs) they occurred in are: FDB1 = 
{ (1: d1, d2, d4), (2: d1, d2), (3: d1, d2, d3, d4), ((1, 2): d1, d2), ((1, 3): d1, d2), ((2, 3): d1, d2), ((1, 2, 3): 
d1, d2)}. The full mined sequential patterns from DB

2
 are: FDB2 = { (d1: p1, p3, p4), (d2: p1, p3), (d3: 

p1, p2, p3, p4), ((d1,d2): p1, p3), ((d1,d3): p3, p4)}. Sample query handled by the proposed algorithm for 
the given input tables: What are the possible frequent sequence of side effects that the patients p

1
 

and p
3
 suffer from? Answer: Patients p

1
 and p

3
 have purchased drugs d

1
 and d

2
 together. And the 

drugs d
1

 and d
2
 cause side effects 1, 2, and 3 to occur together. This answer can be derived by 

intersecting the result sets of the input tables from DB
2

 of (patients, sequence of drugs purchased) 
and  f requen t  pa t t e r n  re su l t s  o f  DB

1
 (d r ugs ,  s equence  o f  s ide  e f fec t s )  a s : 

d d p p d d p p
1 2 1 3 1 2 1 3

1 2 3 1 2 3( ) ∩ ( ) = ( ), , , .  We clearly see how the proposed algorithm is 
able to solve such complex queries for multiple related sequence tables that the existing systems are 
not able to achieve.

PERFORMANCE AND EXPERIMENTAL EVALUATION

This section compares the experimental performance analysis of the TidFSeq algorithm with the 
ApproxMap algorithm and PrefixSpan algorithm. The three algorithms were implemented with Java 
language running under Eclipse environment. All experiments were performed on Intel(R) CORE i7-
4700HQ CPU @ 2.40 Ghz. The operating system is Linux. Synthetic datasets are generated using the 
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publicly available synthetic data generation program of the SPMF library at www.philippe-fournier-
viger.com/spmf/index.php. The results obtained by the TidFSeq algorithm, ApproxMap algorithm, 
and PrefixSpan algorithm for mining frequent sequential patterns on multiple database tables were 
compared. Table 9 shows the drug/side effects database 1 representing Table 3 for the drugs/side 
Effects sequence database. Table 10 shows the patient/drugs sequence database 2 representing Table 
4. These small sequence datasets represent two multiple related sequence tables that have been used 
to describe the proposed technique.

These datasets show how the proposed algorithm mines the frequent sequences from both datasets 
to solve a sample query that the ApproxMap and PrefixSpan algorithms are not able to solve. Note 
that the datasets in the input data file are in the form of a text file. Each row represents a sequence 
and each itemset in sequence is separated by “-1” while “-2” represents the end of the sequence. For 
example, 1 2 3 -1 2 -1 -2 in the input data file represents the sequence (1, 2, 3) (2). This sequence 
contains the two itemsets (1, 2, 3) and (2). The standard sequence datasets do not contain transaction 
ids (i.e., sequence ids), in the experiment, we assume that each row represents a sequence and has an 
associated sequence id. For reference purposes, the sequence ids are included in both the datasets in 
Table 9 for the drug/side effects database 1 and Table 10 for patient/drugs database 2 before the start 
of each sequence. The programs TidFseq and PrefixSpan gave the exact mined frequent sequential 
patterns for the two databases as found in the example running of the TidFseq algorithm, but only 
the TidFseq generated sequential patterns carry their associated transaction or sequence ids that can 
be used to link up frequent patterns in other related tables through foreign key relationship. Also, the 
ApproXMap was only able to find approximate sequential patterns and not exact patterns and is not 
able to link patterns in tables with different attribute structures. Only the proposed TidFseq algorithm 
is able to answer complex queries involving patterns from more than one table such as: What are the 
possible frequent sequences of side effects that the patients p1 and p3 suffer from? This query can 
be answered as an intersection of the generated frequent sequential patterns using their foreign key 
transaction id link through an SQL SELECT instruction with a join of the patterns on the foreign key 
as: SELECT Output-db1.side-effects, Output-db2.patients FROM Output-db1, Output-db2 WHERE 
Output-db1.drugs = Output-db2.drugstaken;

Table 9. Drug/side effects table

Drug Sequence of Side Effects for Experiment

d1 1 2 3 -1 1 -1 -2

d2 1 2 3 -1 -2

d3 3 -1 4 -1 -2

d4 1 -1 3 -1 -2

Table 10. Patient/drugs table

Patient Sequence of Drugs Purchased by Patient for 
Experiment

p1 d1 d2 d3 -1 -2

p2 d3 -1 d4 -1 -2

p3 d1 d2 -1 d1 -1 -2

p4 d1 -1 d3 -1 -2
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Answer to this query from the generated patterns is: (1, 2, 3) p1 p2 indicating that patients p1 and 
p3 suffer from frequent sequence of side effects (1, 2, 3).

The following experiments are carried out on synthetic datasets generated with the SPFM library 
(Fournier-Viger, 2016) containing 250K, 500K, 750K, 1M, and 2M sequences over different support 
counts 10%, 20%, 30%, 40%, 50%. Subsections provide the comparison of the three algorithms based 
on:

1. 	 Execution speed (speed of processing) of the algorithms for datasets containing 250K, 500K, 
750K, 1M, and 2M sequences over support counts of 10%, 20%, 30%, 40%, 50%.

2. 	 Memory usage (in MB) for different data sizes at Minsupport of 40%.
3. 	 Accuracy of the frequent sequences obtained for datasets containing 250K, 500K, 750K sequences 

at minsupport of 40%.
4. 	 Execution speed for frequent sequences obtained for 250K sequence dataset having sequences 

of length greater than 10 elements.

Comparison of Execution Speed (Speed of Processing) of the Algorithms
Table 11 provides the result of comparing the CPU execution times of the three algorithms, and it 
can be seen that TidFseq algorithm performs considerably better than ApproxMap and PrefixSpan 
algorithms in terms of runtime for increasing data sizes (i.e., increasing number of sequences). The 
ApproxMap has to scan the input database twice (first time to make all sequences of equal length 
and second time to scan the pre-processed database for frequent approximate sequences) compared 
to the TidFseq algorithm that scans database once to get the sequence id and position id list tuples 
for the items.

Execution Times (in Secs) for Small Dataset (250K) at Different Supports
Table 12 shows the result of comparing the CPU execution times of the three algorithms for mining 
single table sequences for small-sized dataset (250K) for different support counts. It can be seen that 
with increasing support count, the run times for all the algorithms reduce. However, the TidFseq 
algorithm clearly has better run times than the ApproxMap and PrefixSpan algorithms, especially 
when support is less than or equal to 30%.

Table 11. Execution times (in secs) for different datasets sizes at MinSupport of 40%

Algorithm 250K 500K 750K 1M 2M

TidFSeq 34.32 59.2 78.45 113.56 145.62

ApproxMap 66.2 72.1 98.7 156.9 220.15

PrefixSpan 70 88 107.83 331 560.45

Table 12. Execution times (in secs) for small datasets at different supports

Algorithm 10% 20% 30% 40% 50%

TidFSeq 2905.1 792 73.03 34.32 14.2

ApproxMap 3866.6 1072.1 128.7 66.2 41.5

PrefixSpan 3869.09 1073 141 78.4 46.66
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Execution Times (in Secs) for Large Dataset (2M) at Different Supports
Table 13 shows the results of comparing the run times of the three algorithms for large datasets 
of two million sequences for different support counts. When processing very large data and when 
support counts are less, the run times for all three algorithms are also bigger. According to Table 13, 
the TidFseq algorithm runs faster than the ApproxMap and PrefixSpan algorithms, including higher 
support counts, when data is large.

CONCLUSION AND FUTURE WORK

This article proposes the TidFSeq algorithm, which extends the techniques of the TidFP algorithm 
for mining itemsets to the more challenging problem of mining frequent sequences from MDBs to 
answer more complex queries from multiple related sequence tables. A new technique of using <
sequence ids, position id_list >  tuples was derived from the < transaction id, itemsets>  tuples used 
in the TidFp algorithm to mine frequent sequences from multiple tables. It proposes new algorithms 
for implementing the support count of general sequences consisting of I-step sequence types of the 
form (a, b) and S-step sequence types of the form (a)(b) which would efficiently use the subsequence 
occurrence ids (called column element id and position id lists) of each 1-item to correctly count 
support for any extension of item sequences. The I-step prune and S-step prune algorithms for counting 
supports of sequences with their position ids are contributions. An adaptation of the GSP-gen join 
for extending higher-order frequent sequences carrying their position id lists from the only one 
database scan was used. Using the frequent sequences and their corresponding sequence ids mined 
from multiple related sequence tables, valuable user queries for multiple related sequence tables can 
be answered.

Future work should consider other ways of storing sequences, including hashing methods. This 
can be used rather than memory consuming data tuples. A parallel processing framework, including a 
Map-Reduce framework, can process multiple tables in parallel and data can be stored in a distributed 
storage system like Hadoop distributed file system to handle big data and growing sequences. The 
proposed algorithm can be extended to mine frequent sequences using compact tree-based approaches 
and condensed sequences, including maximal frequent sequence patterns.
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Table 13. Execution times for large dataset (2M) for different support count

Algorithm 10% 20% 30% 40% 50%

TidFSeq 30216.66 4876.23 701.01 145.62 70.89

ApproxMap 39994.96 5172.41 1008.5 220.15 142.3

PrefixSpan 41101 9908.4 5640.11 1590 896.32
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KEY TERMS AND DEFINITIONS

Candidate Generation: is the process of listing all possible combinations of itemsets/sequences of 
length k from frequent itemsets/sequences of length k-1.

Complex Queries: queries derived from patterns from more than one related table or database.
Foreign Key: is an attribute that appears in two tables and connects data in the tables.
Frequent Patterns: are the set of candidate itemsets/sequences which have occurred in the database 

more or equal times than the given minimum support count.
Frequent Itemsets: are frequent patterns that consist of only itemsets which have occurred in the 

database more or equal times than the given minimum support count.
Frequent Sequences: are frequent patterns that consist of only sequences which have occurred in 

the database more or equal times than the given minimum support count.
Multiple Databases: are composed of more than one itemset or sequence database tables.
Sequence Database: is a database where the value of each tuple or row of data is a sequence of 

values with some implied historical time order of occurrence.
Transaction Id: is a common foreign key attribute that links more than one database table data.
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