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ABSTRACT

With the increasing usage of social media, the spread of information has become

abundant. However, this surge in accessible news and updates has also heightened

the risk of spreading rumors. In our research, we explore two problems related to this

phenomenon: the graph burning problem and the firefighter problem.

We provide a comprehensive survey of the graph burning problem, a discrete-

time process. Initially, all the vertices of the graph are unburned, and we start the

fire at a single vertex. The fire then spreads to the adjacent vertices of the burned

vertices, and at each step, we select a new vertex to burn. Our objective is to burn

all the vertices in a minimum number of steps. The graph burning problem is NP-

Complete. We review various approximation algorithms and bounds, highlighting

significant advancements over the past decade.

In the firefighter problem, a graph is given, and a fire starts from a subset of

vertices. At each step, firefighters protect a certain number of vertices as the fire

continues to spread to adjacent vertices.
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CHAPTER 1

Introduction

Communication has always played an important role in human life throughout history.

Over time, humans have developed increasingly sophisticated methods to communi-

cate over long distances.

In the modern era, the Internet has become a part of everyday life for everyone.

The Internet allows us to share information instantly with any user anywhere in the

world. This development has encouraged us to study the spread of the information

[4]. However, it is not only useful information that gets spread over a network. Some-

times it is falsified information or rumors that we do not want to spread. It can also

be compared with the spread of a virus or epidemic through a network [13]. Both the

problems have been widely studied as the mathematical models of graph burning [4]

and the firefighter problem [17].

In our thesis, we are going to discuss the important research milestones in these

fields. In section 1, we discuss the general introduction for the problems while section

1.1 focuses on graph burning and section 1.2 focuses on the firefighter problem. In

section 1.3, we have introduced all the useful terminology and concepts that are used

throughout the thesis. Section 1.4 describes the background where the motivation

and usefulness of these problems are noted while section 1.5 discusses the current best

results that have been studied over the years.

Section 2 focuses on the Euclidean version of the graph burning. It heavily depends

1



1. INTRODUCTION

on the minimum dominating set [16, 19, 26] which is discussed in section 2.1. Since the

problem is NP-Complete [19], many approximation algorithms have been developed

[16, 19, 26] and some of them are discussed in section 2.2. Subsections 2.2.1 to 2.2.3

study these algorithms and provide a sketch of the proof which shows the incremental

advancement of the research from (2 + ϵ)-Approximation [19] in subsection 2.2.1 to

(1.96296 + ϵ)-Approximation [16] in subsection 2.2.2 to (1.944 + ϵ)-Approximation

[26] in subsection 2.2.3.

Section 3 discusses the Graph Burning problem in detail. Many of the useful

properties have been proposed [4] which are presented in section 3.1. This problem

is also proven to be NP-Complete [2]. Section 3.2 discusses the approximation algo-

rithms proposed. For general graphs, Subsection 3.2.1 shows a 3-Approximation al-

gorithm [5] and subsection 3.2.2 shows a randomized 2.313-Approximation algorithm

[21]. For trees, a 2-Approximation algorithm [5] has been proposed in subsection

3.2.3. Subsection 3.2.4 discuss the algorithm based on a greedy approach which gives

a (3 − 2
b(G)

)-approximation [14]. At last, the approximation algorithm for directed

graphs has been studied in subsection 3.2.5 where the algorithm for multi-rooted trees

[15] is discussed in 3.2.5.1 and the algorithm for single-rooted trees [15] is discussed

in 3.2.5.2. Various combinatorial bounds have also been proposed for graph burning

which is discussed in section 3.3 [1, 3, 4]. Depending on the graph structures, the

sections are divided. Bounds for general graphs are given in subsection 3.3.1 [1, 3, 4]

where we propose our finding related to the current bound in subsection 3.3.1.1, for

trees in subsection 3.3.2 [10], for graphs with minimum degree k in section 3.3.3 [20],

for directed graphs in subsection 3.3.4 [18] and for spider graphs in subsection 3.3.5 [9].

The firefighter problem is comprehended in section 4. The previous results are

summarised in section 4.1 [7, 11, 22].

Section 5 shows the summary and conclusion of the thesis is given in section 5.1

along with the future work in section 5.2.
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1. INTRODUCTION

1.1 Graph Burning

The rise of social media has resulted in an efficient and swift exchange of information,

which gives us ease to spread information or news. The information travels from one

user to another. This phenomenon was mathematically modelled as the Graph Burn-

ing problem by Anthony Bonato in 2014 [4]. In this model, the network is analogous

to the graph structure where the nodes denote the social media users and the edges

represent the connections between them. Burning a node means giving a piece of

news to that user.

There are several variants of the graph burning problem, which can be broadly

classified into classic versions and Euclidean versions. The classic graph version, as

previously discussed, involves nodes and edges where the fire spreads to the neighbor-

ing nodes. In contrast, the Euclidean version does not involve a graph structure but

instead consists of a set of points in the Euclidean plane. In this variant, one point

is burned at each step, and in the subsequent step, all points within a 1-unit radius

from a burned point are also burned, while another point is chosen to start burning.

Once a vertex or point is burned, it stays in that state for the rest of the process.

The process ends when all the nodes or given points are burned. It is hard to decide

which points to burn and even if we know those points, it is hard to decide the order

in which we should burn them [2].

1.1.1 Classic Version

In the context of social media, we can relate the graph burning model by considering

all users as vertices (nodes) in a graph, with the edges representing the connections

between them [4]. The burning process is a discrete-time process that shows the

spread of information across the network. Initially, one vertex (a user) receives the

3



1. INTRODUCTION

news or information. It means we have burned that node. In the next time step,

the information is spread by that user to his connections which means the burned

node burns its neighbors. At the same time, a new user independently gets the news

which acts as the next burning source. In each step, the fire (news) keeps spreading

to the neighbors while new sources are picked. The process continues until all nodes

in the graph (all the users in the network) are burned (get the news). This model

depicts the characteristic spread of information in the network which can be studied

mathematically as a new graph parameter [4].

1.1.2 Euclidean Version

The Euclidean graph burning problem was inspired by the classic graph burning

version [19]. The aim of both the variants remains same which is to burn all the

points in the minimum number of steps but since the fundamental structure changes,

it drastically affects the burning process.

In the classical graph burning model, a vertex is burned at each step, and the fire

spreads to its neighboring vertices in the next step, and so on. In contrast, Euclidean

graph burning is a process of burning a set of points in the 2-dimensional Euclidean

plane. In this version, the process begins by choosing one of the points as a burning

source. In the next step, the fire spreads to all points within a radius of 1 unit. Any

points within that distance from the burning source are immediately burned. Addi-

tionally, a new burning source is chosen out of the remaining unburned points. The

fire continues to spread until all the points are burned.

The main challenge of the problem lies in selecting the points to burn the re-

maining points in the fewest steps possible. As the fire spreads radially outwards in

each step, we can think of it as covering the points with the disks of varying radii

[16, 19, 26].

4



1. INTRODUCTION

1.2 Firefighter Problem

The graph burning problem is derived from the firefighter problem [4]. In the fire-

fighter problem, along with the graph, a set of burning sources is given. Alongside,

we have a certain number of firefighters and the aim is to protect as many vertices as

possible from the fire [13]. At each step, the fire spreads similarly to the graph burn-

ing process and the firefighters protect a set of vertices. Once a vertex is protected by

a firefighter, the fire can no longer spread through it. The process ends when the fire

is no longer able to spread to any new vertex. When a vertex is burned or protected,

it stays in that state for the rest of the process. The main challenge in this problem

is to find the optimal vertices to deploy firefighters so that we can protect maximum

number of vertices [13].

The firefighter problem can be thought of as a turn-based game [7]. Initially, the

fire starts at the predefined sources and we deploy the given number of firefighters. In

the next step, the fire spreads to the unprotected neighbors of the burned vertices and

then the firefighters proceed to protect a new set of unburned vertices. In the original

firefighter problem, the firefighters were not restricted in terms of movements [13] but

in 2022, Burgess et al. proposed a constrained version of the firefighter problem where

the firefighters are allowed to move at most certain distance [7]. This modification

resembles a real-life scenario and has different results than the original version that

needs to be studied [7].

1.3 Basic Terminology and Concepts

Before proceeding further, we will define some key terms and concepts that will be

referenced throughout the rest of the thesis.

• Burning a Graph: Burning is a discrete-time process defined on a graph

5



1. INTRODUCTION

G(V,E). Any vertex of a graph is either burned or unburned. Initially, all

vertices are unburned. The burned vertices stay burned until the end of the

process. At t = 1, we choose a vertex to burn. For t = 1, 2, 3, . . . , the burned

vertices burn their neighbour vertices and we pick one extra vertex to burn.

The process ends when all the vertices of the graph are burned.

• Burning a set of points: In the Euclidean version of the burning process, a

set of points S is given in R2. At each discrete time step, one point is selected

and burned. After this initial burning, in the next step, all points within a

specified radius (typically 1 unit) of the burned point are also burned. This

process continues with a new point being burned in each subsequent step and

the expansion of fire from previous burning sources. The process ends when all

points are burned.

• Burning Number: The minimum number of steps required to burn the graph

is called the burning number of that graph. It is denoted by b(G) where G is

an input graph.

• Burning Sequence: The order in which the vertices are chosen to burn is

called the burning sequence.

• Burning Sources: A vertex in the burning sequence is known as a burning

source.

For example, consider a 7 × 7 square grid, and call it G, as shown in the figure

1.3.1. We want to burn it in a minimum number of steps.

Steps to burn 7× 7 square grid:

1. The process begins by burning the middle vertex, which is highlighted in red.

2. In the next step, the fire spreads to the vertices adjacent to the middle vertex,

shown in grey. At the same time, we select a new burning source in the top-left

grid.

6



1. INTRODUCTION

Fig. 1.3.1: Burning a 7× 7 square grid

3. The fire continues to spread from both the initial burning source and the newly

chosen one. The adjacent vertices of both burning sources are burned, and we

select another burning source in the bottom side of the grid.

4. In this step, the fire keeps spreading from all active burning sources, and an

additional burning source is selected at the top-right corner of the grid.

5. The burning process continues, with the fire expanding from all current burning

sources. We place an additional burning source at the bottom-right corner.

6. By this point, the fire has spread to all vertices, and the process ends. Since

all vertices are already burned, we do not need to choose the burning source in

this step.

Thus, using this method, we conclude that the burning number of the graph, b(G),

is at most 6.

The firefighter problem differs significantly from the graph burning process.

7



1. INTRODUCTION

• Firefighting Process: Firefighting is a discrete-time process. In a graph

G(V,E), a set S ⊂ V of burning sources is given. With b firefighters, we can

protect up to b vertices in each step. After the firefighters are deployed, the

fire spreads to any adjacent, unprotected vertices and the firefighters protect

the new set of vertices. The process continues until the fire can no longer

spread, either because all vertices are protected or there are no more unprotected

neighbors to ignite [13].

For example, let us consider the graph given in figure 1.3.2. In this example, the

fire starts at the top vertex, which acts as the source of the fire and we have only one

firefighter.

Steps for Firefighting:

1. The firefighter is placed on the neighboring vertex u1, stopping the fire from

spreading to this vertex.

2. After the firefighter’s action, it’s the fire’s turn to spread. Since u1 is protected,

the fire moves to the next unprotected vertex to the right.

3. In this step, the firefighter protects vertex u2, preventing the fire from spreading

to this point.

4. The fire spreads again, moving to another unprotected neighboring vertex. The

firefighter can now protect u3.

Once the firefighter has protected u3, the fire is contained. Since there are no

unprotected neighboring vertices left for the fire to spread to, the process ends.

1.4 Background

1.4.1 Graph Burning

Graph burning is a theoretical model designed to analyze the spread of information,

such as news or rumors, across a network. The main challenge is to decide which ver-

8



1. INTRODUCTION

Fig. 1.3.2: Process of Firefighter on a graph

tices or points to burn in each step to complete the burning process in the minimum

number of steps. Even when we know which vertices to burn, it is difficult to decide

their order of burning. Because of that graph burning problem is NP-Complete [2].

Bonato et al proved that the graph burning problem is reducible from a distinct 3-

partition problem which is a famous NP-Complete problem [2].

Over the years, various studies have been conducted to establish upper bounds

on the steps required to burn an entire graph [1, 3, 4]. Researchers have proposed a

number of approximation algorithms to find near-optimal solutions in feasible time

[5, 21]. Yet, even at present, much research is in progress to get better bounds and

better approximation ratios.

The graph burning problem has been studied for a variety of graph types, result-

ing in different bounds and characteristics unique to them [5, 9, 10, 23]. For example,

many papers have been published that focused on the burning process for trees [5, 10],

disjoint paths [5], spider graphs [9] and so on.

The graph burning process is also studied for directed graphs [15, 18]. The burn-

ing process differs for the directed graphs because in this case, the fire only spreads

to the outgoing neighbors [18].

9



1. INTRODUCTION

1.4.1.1 Euclidean Version

The Euclidean version of the graph burning problem was proposed by Keil et al. in

2022 [19]. It extends the concept of graph burning to a set of points in the Eu-

clidean plane. Instead of vertices and edges, it deals with points distributed in a

2-dimensional Euclidean plane. Same as in the classic version, the aim is to burn the

points in the minimum number of steps [19]. In this model, at each discrete time

step, one point is burned, and subsequently, the fire spreads from burned points to

additional 1 unit radius.

As discussed before, the main challenge is to find which points to burn in each step

to minimize the total time required to burn all points in the plane. Keil et al. demon-

strated that this problem is NP-hard [19]. In the Euclidean version of graph burning,

two main variants have been studied: point burning and anywhere burning [19].

• Point Burning: The burning process must start from one of the given points

in the plane. At each step, a point from the predefined set is selected as the

burning source. The fire then spreads to all points within a specified radius.

• Anywhere Burning: The anywhere burning variant allows the burning to

begin from any location in the plane, not necessarily at one of the predefined

points.

Figure 1.4.1 illustrates both the two variants of Euclidean graph burning.

The major difference between both versions is the placement of the burning source

[19]. It is obvious that the flexibility of anywhere burning can result in better place-

ment of the burning source that can potentially reduce the overall steps required to

burn the given points.

10



1. INTRODUCTION

Fig. 1.4.1: Burning Points in the Plane

1.4.2 Firefighter Problem

The firefighter problem was introduced by Bert Hartnell in 1995 [17]. As Graph

burning deals with the spread of information, the firefighter problem works to limit

the spread. The classic firefighter problem traditionally deals with connected graphs,

where the goal is to strategically deploy firefighters to protect vertices and prevent

the spread of fire. The problem was proven to be NP-hard [12]. The complexity of

the problem lies in the strategy to find optimal vertices to deploy the firefighters.

Over the time, various algorithms and heuristics have been developed to deal with

this problem which are surveyed in the literature. [13].

In 2022, Burgess et al. [7] introduced a new variant of the firefighter problem

known as the distance-restricted firefighter problem.

• Distance-Restricted Firefighting: In the distance-restricted firefighting pro-

11



1. INTRODUCTION

cess, firefighters are constrained to move a maximum of a certain distance.

Specifically, in a graph G(V,E), firefighters can only move to vertices that are

within a distance of d, where the distance between two vertices is defined as

the number of edges in the shortest path connecting them. In each step, with b

firefighters available, up to b vertices can be protected, given that the distance

between the firefighter’s current position and the next position is at most d.

The fire spreads to unprotected neighboring vertices of the burned vertices, and

the process continues until the fire can no longer spread [7].

The distance-restricted version of firefighting resembles the real-life scenario be-

cause, in practical life, firefighters can only move a certain distance in a given time [7].

1.5 Related Works

In this section, we will explore various research advancements in the fields of graph

burning and the firefighter problem. Both areas have received significant attention

in the past few years due to their practical applications. We already know that

researchers have proposed various approximation algorithms [5, 21] along with the

mathematical bounds [1, 3, 4] that have given us better insights into these fields.

1.5.1 Graph Burning

As previously mentioned, the graph burning problem was introduced by Anthony

Bonato in 2014 [4]. In his foundational work, he established several important prop-

erties of the problem, along with the very famous graph burning conjecture.

Conjecture 1. (Bonato, 2014) For any graph with n vertices, b(G) ≤ ⌈
√
n⌉.

The burning conjecture is still not proven. Bonato et al. [4] also established an

upper bound for general graphs. They demonstrated that any graph with n vertices

12
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can be burned in at most 2
√
n− 1 steps [4].

In 2017, Bessi et al. [2] proved the NP-completeness of the graph burning problem

with a reduction from distinct-3-partitions. In 2018, the upper bound was improved

by Bessi et al. to
√

12n
7

[3]. Also in 2018, Das et al. proved that the burning conjec-

ture holds for spider graphs [9]. The spider graphs are a special class of graphs where

there is one vertex of degree at least 3, and the rest of the vertices have degree less

than 3.

In 2019, Bonato and Kamali [5] proposed a 3-approximation algorithm to burn

general graphs and a 2-approximation algorithm to burn trees. In 2020, Janssen [18]

extended graph burning to directed graphs, where fire can only spread to outgoing

neighbors, and proved the problem of burning directed graphs is NP-hard.

In 2021, Bastide et al. [1] further improved the upper bound of the general undi-

rected graph to
√

4n
3
, which is currently the best known bound. In 2022, Garcia-Diaz

et al. [14] proposed the farthest-first algorithm based on a greedy approach, where

the next burning source is chosen at the farthest distance from the previously chosen

sources. This resulted in a 3− 2
b(G)

approximation, where b(G) is the optimal burning

number of the input graph G [14].

In 2023, Martinsson [21] proposed a randomized algorithm for graph burning,

achieving a 2.313-approximation algorithm. In the same year, Gautam et al. [15]

developed a 3-approximation algorithm to burn multi-rooted directed trees and in-

troduced a modified version for single-rooted trees with a 1.905-approximation.

Recently, in 2024, Norin and Turcotte [25] proved the burning conjecture asymp-

totically, meaning they demonstrated that for any graph G of n vertices, b(G) ≤

(1 + o(1))
√
n where o(1) means a function of n that approaches 0 as n approaches

infinity.

13
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1.5.1.1 Euclidean Version

The Euclidean version of the graph burning problem was introduced by Keil et al. in

2022 [19]. They proved the problem to be NP-complete and also proposed a (2 + ϵ)-

approximation algorithm for it [19]. In 2023, Gokhale et al. [16] proposed an improve-

ment which resulted in a (1.96296 + ϵ)-approximation algorithm.

In 2024, Kamali and Shabanijou [26] developed a (1.944+ ϵ)-approximation algo-

rithm, which currently stands as the best-known approximation for the point burning

problem.

1.5.2 Firefighter Problem

As discussed before, the firefighter problem was introduced by Hartnell in 1995 [17].

In 2007, Finbow et al. [12] proved that the firefighter problem is NP-complete, even

the decision version of problem for trees with maximum degree 3 by reducing it from

the Not-All-Equal 3SAT problem. There is a vast number of publications dedicated

to researching the firefighter problem, reflecting the complexity and practical applica-

tions. A comprehensive survey of the firefighter problem is provided by Finbow and

MacGillivray [13]. In this work, we are going to focus specifically on the distance-

restricted firefighting version.

In 2005, Messinger [22] proposed a thesis on firefighting in the infinite grid. They

discuss about both grids: square grid and strong grid. The strong grid is where a

vertex is connected with eight of its neighbors. They proved that four firefighters are

necessary to contain the fire in the square grid, even without any distance restriction

[22]. In 2019, Days-Merrill [11] determined the number of required firefighters for

d = 1. They proved that for the square grid, we need at least four firefighters, while

14
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in the strong grid, at least eight firefighters are required to contain the fire when

firefighters are restricted to move at most one unit in each step [11]. In 2022, Burgess

et al. [7] calculated that when firefighters can move at most two units (d = 2), at least

four firefighters are needed for the strong grid, and three firefighters are sufficient to

contain the fire in the square grid. They also conjectured that two firefighters are not

enough to contain the fire in the square grid when d = 2.

Conjecture 2. (Burgess et al., 2022) On the infinite square grid, two firefighters are

not sufficient to contain the fire.

The table 1.5.1 presents the known results for both the square and strong grids.

Type of Grid d = 1 d = 2 d ≥ 3

Strong Grid 8 [11] 4 [7] 4 [22]

Square Grid 4 [11] 2 or 3 1 [7] 2 [7]

Table 1.5.1: Necessary number of firefighters to contain fire in infinite grid

In 2023, Burgess et al. [6] proposed the distance-restricted firefighting problem for

finite graphs and proved that it is NP-Hard.

1Conjecture 2 says that we can not contain the fire in a square grid with 2 firefighters when d = 2
but since the conjecture is not proven yet, we are not sure about the minimum required number of
firefighters.
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CHAPTER 2

Graph Burning - Euclidean

Version

After almost a decade of the introduction of graph burning, Keil et al. [19] proposed

a new variant. This variant proposed the burning number for the points in the 2-

dimensional Euclidean plane R2. Unlike the classic version, there is no graph with

vertices or edges. That changes the definition of the burning process drastically.

As mentioned before, the are two types of Euclidean Graph Burning: Point Burn-

ing and Anywhere Burning. In this chapter, we are going to focus only on the point-

burning version.

The burning process for the points in the plane can be explained this way [19]. We

have a set of points in the Euclidean plane. The burning process starts by selecting

one of the given points as a burning source and calling it v1. In the next step, all the

points within 1 unit radius of v1 will get burned. After that, we pick another point

out of the remaining unburned points as the new burning source at this time and

call it v2. In the following step, the fire from v1 will be spread to 2-unit radius while

v2 will burn every point within a 1-unit radius and then we pick v3. The fire keeps

spreading and the process ends when all the points are burned [19].

For a better understanding of the point burning process, let us consider the ex-

ample given in Figure 2.0.1.
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2. GRAPH BURNING - EUCLIDEAN VERSION

Fig. 2.0.1: Point Burning Process

Steps to burn points in the plane:

1. We pick v1 as the initial burning source.

2. The fire from v1 spreads to a radius of 1 unit, burning all points within that

distance. At the same time, we pick v2 as the second burning source.

3. The fire from v1 reaches a radius of 2 units, burning 2 additional points within

that region. Meanwhile, the fire from v2 spreads to a radius of 1 unit. At this

step, we pick v3 as the third burning source.

4. The fire continues to spread from v1, v2, and v3, burning all points except one.

Finally, we pick that last point as v4 to complete the burning process.

The point burning problem can be mathematically modeled as follows [19]:

17
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Euclidean Burning Problem

Input: A set S of points in the R2 plane

Output: The minimum number of steps required to burn all the points of S.

This leads to the decision problem formulation [19]:

Decision Problem of Euclidean Burning

Input: A set S of points in the R2 plane and an integer b.

Question: Can all the points of S be burned in b steps?

This decision problem has been proven to be NP-Complete [19]. The complexity

arises from the challenge of choosing optimal points to burn at each step. The point

burning problem can be reduced from the path forest burning problem, which has

already been proven to be NP-hard [4].

The point burning process can be visualized as covering the set of points with

disks of increasing radii, starting from radius 0, then 1, 2, and so on. This interpre-

tation allows us to draw a connection between the point burning problem and the

minimum dominating set problem [19].

Many of the approximation algorithms use the concept of dominating set [16, 19,

26]. In this context, the minimum dominating set can be thought of as the minimum

set of disks required to cover all the points in the plane [24]. But in the minimum

dominating set, the radii of all disks are constant. By covering those constant radii

disks with the disks of varying radii, we can use them for burning. The centers of these

disks represent the burning sources, and the goal is to ensure that all the points fall

within the regions covered by these disks. The point burning problem then becomes

a task of finding the minimum number of such disks (or burning sources) necessary

to cover all disks of the minimum dominating set.

18
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2.1 Relationships to Dominating Set

A dominating set for a graph is defined as a set of vertices such that every vertex

is either part of the dominating set or has at least one neighbor in the dominating

set [24]. When we aim to minimize the number of vertices in this set, we obtain the

minimum dominating set problem. This set ensures all vertices are covered with the

minimum number of elements in the set and no smaller set can fulfill this condition

[24].

To apply the concept of the dominating set to the points in the Euclidean plane,

we first need to transform the set of points into a graph. This transformation is done

using the concept of a unit disk graph. In this approach, each point is imagined to

have a unit disk centered at it. If these disks have diameter r, we denote the resulting

graph as Gr. When two disks overlap or intersect, an edge is drawn between the

corresponding points [19].

By converting the points into a graph using this method, we can then compute the

minimum dominating set of the resulting graph. The points in this set correspond

to the minimum number of disks necessary to cover all other points, analogous to

burning all points in the Euclidean graph burning problem [19].

The problem of finding the minimum dominating set is known to be NP-hard [8],

even for unit disk graphs. In 2006, Nieberg and Hurink [24] proposed a Polynomial-

Time Approximation Scheme (PTAS) to find a (1 + ϵ) approximation algorithm for

the minimum dominating set in unit disk graphs. Their algorithm takes an undi-

rected graph or a unit disk graph as input and returns a solution that approximates

the minimum dominating set within a factor of (1 + ϵ) [24]. This result provides a

near-optimal solution for the minimum dominating set problem.

Using the concept of unit disk graphs and the dominating set, various approxi-

19



2. GRAPH BURNING - EUCLIDEAN VERSION

mation algorithms have been developed to find the approximated burning number of

points in the Euclidean plane [16, 19, 26].

2.2 Approximation Algorithms

2.2.1 (2+ϵ) Approximation Algorithm of Keil et al. [19]

In 2022, Keil et al. proposed a (2 + ϵ) approximation algorithm for burning a set

of points in the plane. The algorithm works by incrementally guessing the burning

number δ, for each guess, constructing a unit disk graph by placing disks of diameter

δ centered at each point and finding the (1+ ϵ)-Approximatied minimum dominating

set for that graph. The points in the dominating set are then chosen as the burning

sources, and the fire spreads for extra δ steps, ensuring that all points are burned

within the estimated burning number.

Algorithm A (2 + ϵ) Approximation Algorithm for Points in the Plane [19]

Input: S ← set of points in R2, an integer δ ∈ Z
Output: (2 + ϵ)-Approximation burning schedule
Gδ−1 ← unit disk graph with vertex set as S and edges where disks of radius δ

2

intersects.
Dδ−1 ← (1 + ϵ) approximation of minimum dominating set of Gδ−1

if |Dδ−1|
(1+ϵ)

> δ then
Return Bad-Guess

else
Return δ

end if

Theorem 3. (Keil et al., 2022, [19]) Algorithm A gives an 2 + ϵ approximation.

Proof. Here, we sketch the proof of [19]. For a set S of n points in the Euclidean

plane, we first guess the burning number δ such that 1 ≤ δ ≤ n. For each δ, we

construct the unit disk graph Gδ−1, where the diameter of each disk is δ − 1. Using

the PTAS for the minimum dominating set, we compute an approximate dominating
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set D′
δ−1 of Gδ−1, with an approximation factor (1 + ϵ) [24]. The set D′

δ−1 contains

the centers of disks that cover all points in the set S. Let the actual burning number

of the set be δ∗ the optimal number of steps needed to burn all points in S. Since

D′
δ−1 is a (1 + ϵ) dominating set, we have:

δ∗ ≥ |Dδ−1|

where Dδ−1 is the minimum dominating set for Gδ−1.

If δ∗ was smaller than |Dδ−1|, it would imply that all points in S could be covered

by disks of radius δ∗ − 1, contradicting the assumption that Dδ−1 is the minimum

dominating set. Hence, δ∗ ≥ |Dδ−1| holds.

For each guessed value δ, the algorithm checks the condition:
|D′

δ−1|
(1+ϵ)

≤ δ

If this condition is satisfied, the algorithm stops, and we can conclude that the

optimal burning number δ∗ ≥ δ. Once the algorithm identifies the smallest δ satis-

fying the condition, the vertices in D′
δ−1 are chosen as the burning sources. The fire

spreads for δ − 1 steps from each source, ensuring that all points within the range

are burned. Since every point in S is either in the dominating set D′
δ−1 or within

distance δ − 1 from a vertex in D′
δ−1 all points in the set will be burned. The total

number of steps taken by the algorithm to burn all points is:

|D′
δ−1|+ (δ − 1)

Since |D′
δ−1| ≤ (1+ϵ)|Dδ−1| and δ∗ ≥ |Dδ−1|, the total number of steps is bounded

by:
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(1 + ϵ)δ∗ + δ∗ = (2 + ϵ)δ∗

Thus, the algorithm provides a (2 + ϵ) approximation for the burning number.

2.2.2 (1.96296+ϵ)-Approximation Algorithm of Gokhale et

al. [16]

In 2022, Gokhale et al. proposed an improved algorithm for point burning. Instead

of burning each source for a fixed number of steps as in previous approaches, they

proposed to choose extra burning sources in those steps to burn the remaining points

in a fewer number of steps.

Similar to the previous algorithm, this improved approach also begins by guessing

the burning number, δ. For each guessed δ, the unit disk graph is generated the same

way, and the minimum dominating set is calculated. The vertices in this dominating

set are burned, but instead of burning for the additional δ steps, they burn for 26
27
δ

steps. During the first 13
27

steps, additional burning sources are selected, and as these

sources burn for 13
27
δ steps, they cover the remaining region. This strategy helps opti-

mize the process, ensuring efficient coverage of all points while minimizing the total

burning steps.

The algorithm is based on a simple lemma:

Lemma 4. (Gokhale et al., 2022, [16]) If we have two circles, C1 with radius r1 = 1

and C2 with radius r2 = 26
27
, consider the annulus defined by them. If we divide the

annulus into 13 equal parts, then one disk of radius 13
27

can cover one entire area.

Figure 2.2.1 illustrates an annulus formed by two concentric circles with radii 1

and 26
27
, respectively. This annular region can be divided into 13 equal parts. If we

select a point within any of these regions, then a disk of radius 13
27

centered at that
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Fig. 2.2.1: Regular Polygon inscribed in annulus of circles with radius 1 and radius
26
27

point will cover the entire corresponding section of the annulus. This concept ensures

that by strategically choosing the additional burning sources in these sections, we can

effectively reduce the number of steps to burn that entire region.

Theorem 5. (Gokhale et al., 2022, [16]) We can modify algorithm A to get a (1.96296

+ ϵ) approximation algorithm.

Proof. We sketch the proof of [16]. The algorithm begins by guessing the burning

number δ, just as in the previous approach. For each guessed δ a unit disk graph

is constructed, and a minimum dominating set is identified. Instead of burning all

the vertices for δ steps, the vertices in the dominating set are burned for 26
27
δ steps.

During the first 13
27
δ steps, additional burning sources are chosen, ensuring that the

remaining points are covered as the process continues. Consider the annulus formed

between two circles of radii 1 and 26
27

which can be divided into 13 equal parts. By

selecting a point in each of these regions, a disk of radius 13
27

is sufficient to cover

the entire corresponding section of the annulus. This ensures that the additional

burning sources cover the remaining unburned points efficiently. After the minimum
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number δ is returned by the algorithm, the burning process is carried out using

the strategy described, which takes a total of 53
27
δ steps. Since the optimal burning

number is at least δ, the ratio of the algorithm’s steps to the optimal solution is 53
27
≈

1.96296, giving a 1.96296-approximation. This proves that the algorithm efficiently

burns all the points in the plane within (1.96296+ϵ) δ steps, providing the desired

approximation.

2.2.3 (1.944+ϵ)-Approximation Algorithm of Kamali and Sha-

banijou [26]

Kamali and Shabanijou’s improvement on the point burning algorithm introduced a

more efficient use of smaller disks to achieve a (1.944+ ϵ)-Approximation for burning

all the points. To burn the points within (1.944 + ϵ)δ steps, the idea is to use the

disks with radii 0, 1, up to (1.944 + ϵ)δ more efficiently.

Instead of relying on larger disks alone, the algorithm optimizes the use of smaller

disks to cover areas that are not reachable by the larger disks in earlier steps. As

in the previous algorithm, the majority of the points are covered with larger disks,

but now there is a more refined strategy for the remaining areas. Unlike the previ-

ous algorithm where the annulus was divided into 13 equal parts, this new approach

allows for dividing the annular region into varying numbers of sections depending on

the situation. This flexibility helps ensure that the additional burning sources use

smaller disks more efficiently to cover the remaining points.

Theorem 6. (Kamali and Shabanijou, 2023, [26]) Algorithm B is (1.944 + ϵ) ap-

proximation.

Proof. Here, we sketch the proof of [26]. We begin by selecting a small value for ϵ

and computing ϵ′ = ϵ
1.944

. This allows us to apply an approximation algorithm for the

unit disk cover problem that returns a (1 + ϵ′) approximate solution. The solution,

denoted by U ′, gives an approximation for the unit disk cover. The cardinality of U ′
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Algorithm B (1.944 + ϵ) Approximation Algorithm

Input: δ ←minimum integer for which A does not return Bad-Guess, arbitrary small
number ϵ ∈ R

Output: (1.944 + ϵ)-Approximation Schedule
ϵ′ ← ϵ

1.944

h∗ ← cardinality of (1 + ϵ′) approximation of minimum dominating set Dδ−1

g∗ ← smallest integer such that g∗ ≥ h∗ and g∗ < h∗ + 104

D ← set of disks of radii {0, 1, . . . , 1.944g∗}
Use disks of radii [g∗, 1.944g∗] to cover 0.944g∗ disks out of h∗

Use disks of radii [0.944g∗, g∗) to cover remaining disks out of h∗

for the remaining 0.056g∗ annuli,
for 7 ≤ k ≤ 16 do
divide annulus into k regions
Use disks of radii [2 sin (2π

k
), 2 sin ( 2π

k−1
)) to cover ⌊no. of disks

k
⌋

end for

is denoted by h∗, representing the number of disks required to cover the points in the

set. Assume h∗ is arbitrarily large. We define g∗ as the smallest integer no smaller

than h∗, where g∗ < h∗ + 104.

We now attempt to cover all points using disks with radii from 0 to 1.944g∗. Out of

these 1.944g∗ disks will have radii at least g∗. The remaining disks are classified into

several groups, with class 6 consisting of disks with radii at least 0.944g∗ (totalling

0.056g∗ disks). These disks are centered at the remaining unit disk cover centers.

For the remaining annular regions (defined between circles of radii 1 and 0.944), we

use smaller disks from classes 7 to 16. Each class of disks is determined by dividing

the annular region into k parts where 7 ≤ k ≤ 16. For each class k disks with

radii between 2 sin (2π
k
) and 2 sin ( 2π

(k−1)
) are used to cover the annuli. By doing so,

each part of the annular region is covered with disks of an appropriate radius, as

illustrated in Figure 2.2.2. The disks of class 6 cover the central region, while disks

from classes 7 to 16 cover the remaining annuli. The total number of disks used across

all classes exceeds 0.056g∗, ensuring that all points in U ′ are fully covered. To burn

all the points in the graph, we require at least h∗−1
1+ϵ′

disks. Since h∗ > g∗ − 104, we

conclude that at least g∗−104

1+ϵ′
steps are required to burn all points. The total burning

process uses disks with radii 0 to 1.944g∗, so the total number of steps required is
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Fig. 2.2.2: Dividing the annulus of circles with radius 1 and 0.994 into k parts

1.944g∗. The approximation ratio for the algorithm is ⌊1.944g∗⌋
(g∗−104)(1+ϵ′)

, which converges

to 1.944(1 + ϵ′) = 1.944 + ϵ for large g∗. Thus, the algorithm provides a (1.944 + ϵ)-

Approximation for the point burning problem.

Table 2.2.1 provides a breakdown of the number of disks in U ′ that are covered

by each class of disks.
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Class Radius Range No. of disks in the class Partially covered disks of U’

1 [g∗, 1.944g∗] 0.944g∗ 0.0944g∗

6 [0.944g∗, g∗) 0.056g∗ 0.056g∗

7 [0.8678g∗, 0.944g∗) 0.0762g∗ > 0.01g∗

8 [0.7654g∗, 0.8678g∗) 0.1024g∗ 0.0128g∗

9 [0.6841g∗, 0.7654g∗) 0.0813g∗ > 0.009g∗

10 [0.6181g∗, 0.6841g∗) 0.066g∗ 0.0066g∗

11 [0.5635g∗, 0.6181g∗) 0.0546g∗ > 0.0049g∗

12 [0.5177g∗, 0.5635g∗) 0.0458g∗ > 0.0038g∗

13 [0.4787g∗, 0.5177g∗) 0.039g∗ 0.003g∗

14 [0.4451g∗, 0.4787g∗) 0.0336g∗ 0.0024g∗

15 [0.4159g∗, 0.4451g∗) 0.0292g∗ > 0.0019g∗

16 [0.3902g∗, 0.4159g∗) 0.0257g∗ > 0.0016g∗

Table 2.2.1: The number of disks with radius g∗ covered by different groups of disks
[26]
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CHAPTER 3

Graph Burning - Classic Version

The increased usage of social media has resulted in the rapid growth of communica-

tion which motivated us to study the spread of information in the networks. This

phenomenon, where news or rumors spread rapidly, can be studied mathematically

with the concept of graph burning, suggested by Anthony Bonato in 2014 [4]. In

this model, the vertices of the graph represent users in the network and the edges

represent the connections between them. The process shows how the information

spreads in real-world networks, such as social media, where a piece of information

travels from user to user.

Graph burning is a discrete-time process on a graph G(V,E), where initially all

vertices are unburned. At each time step, a new vertex is selected out of the unburned

vertices and it is burned, with previously burned vertices spreading the fire to their

neighbors. The goal is to burn all the vertices of the graph in the fewest steps, simu-

lating the spread of information. The steps required to burn the graph G is called its

burning number and is denoted by b(G). The main challenge of the problem is to find

the optimal sequence of vertices to burn. The problem is proven to be NP-Complete

[2].

Over time, various approximation algorithms have been proposed to find the ap-

proximated burning number [5]. Moreover, various upper bounds have been calculated

to find the maximum number of steps required to burn any graph [1, 3, 4]. Various

research has studied the graph burning number for different types of graphs such as
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binary trees [10], disjoint paths [5], spider graphs [9] and so on.

The classic version of graph burning problem has been studied for both undirected

and directed graphs [18]. For directed graphs, the fire only spreads to the outgoing

neighbors. That results in different bounds than its undirected counterpart [18].

Along with the introduction of the graph burning problem, Anthony Bonato [4]

also proposed a famous conjecture that says that for any graph G of order n, b(G) is

at most
√
n as discussed in 1. The conjecture still remains unproved.

Nonetheless, the conjecture has been confirmed asymptotically, showing that a

graph of n vertices can be burned in (1 + o(1))
√
n steps [25]. Further research con-

tinues advancements in the field resulting in tighter bounds and progresses to prove

the conjecture.

3.1 Properties of Burning Number by Bonato et

al. [4]

Bonato et al. discussed some important properties of burning a graph. We summarise

them in this section.

Proposition 1. For a graph G = (V,E) with a burning sequence (x1, x2, . . . , xk), the

vertices of the graph satisfy: Nk−1[x1] ∪Nk−2[x2] ∪ · · · ∪N0[xk] = V (G), where Nr[v]

denotes the rth neighborhood of vertex v, which is the set of vertices at a distance at

most r from v.

Since we pick a new burning source after the fire spreads in each step, the follow-

ing property holds:
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Proposition 2. For a graph G = (V,E) with a burning sequence (x1, x2, . . . , xk) and

for all 1 ≤ i < j ≤ k, it holds that: d(xi, xj) ≥ j − i, where d(xi, xj) denotes the

distance between vertices xi and xj.

Proof. Assume, for contradiction, that d(xi, xj) < j − i. Since i < j, vertex xi was

burned at step i, and xj was selected to be burned at step j. The fire from xi takes

exactly j − i steps to reach xj. However, if d(xi, xj) < j − i, then xj would already

have been burned by step j, meaning it could not have been selected as a burning

source at that step. This contradicts the assumption that xj was burned at step j,

thus proving the claim.

A spanning subgraph of a graph contains all the vertices but it need not contain

all the edges of the original graph. The burning number of a graph is upper bounded

by the burning number of its spanning subgraph. This holds because a spanning

subgraph contains all the vertices of the original graph but potentially fewer edges,

making it easier or equally challenging to spread the fire in the original graph.

Theorem 7. Let H be a spanning subgraph of G. Then, the burning number of G

satisfies: b(G) ≤ b(H).

Proof. If a burning sequence can burn all the vertices of H, then it can also burn all

the vertices of G, since H is a subgraph of G. Therefore, the burning number of G is

at most the burning number of H.

The burning number of a graph is closely related to the burning number of its

spanning tree. More precisely, the burning number of a graph is same as the minimum

burning number among its spanning trees.

Theorem 8. For a graph G, b(G) = min{b(T ) : T is a spanning tree of G}

Proof. Since a spanning tree is also a spanning subgraph of G, we know that if Tm is

the spanning tree with the minimum burning number, then b(G) ≤ b(Tm).
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Now, consider a rooted tree partition of G, consisting of trees T1, T2, . . . , Tk, where

Tk has height 0, Tk−1 has height 1, and so on until T1 has height k − 1. In this case,

b(G) = k. A rooted tree partition is a partition of a rooted tree such that the union

of the all trees gives back the entire vertex set of the tree. If we connect all the

rooted trees without inducing a cycle, the resulting tree T is a spanning subtree. By

spanning subtree, we mean that that it contains all the vertices of the original tree

but not all the edges. By burning the trees in the order T1, T2, . . . , Tk, the tree T can

be burned in k steps, implying b(T ) ≤ k = b(G).

Combining both results, we conclude that b(G) = b(T ).

The burning number of a graph is also related to the burning number of its isomet-

ric subgraph. An isometric subgraph preserves the shortest path distances between

vertices from the original graph. Since distances are preserved, the fire spreads in the

same manner in both the original graph and its isometric subgraph.

Theorem 9. For a graph G and its isometric subgraph H, b(H) ≤ b(G).

Proof. Since H = (VH , EH) is an isometric subgraph of G = (VG, EG), we know that

VH ⊆ VG and the distance between any two vertices vi, vj ∈ VH is the same as the

distance between vi and vj in VG.

Thus, we can use the same burning sequence for H as for G, implying that b(H) ≤

b(G).

The process of burning a path is straightforward. We select burning sources such

that they burn an odd number of vertices 1, 3, 5, and so on. In this way, the fire

spreads efficiently.

Theorem 10. For a path Pn, b(Pn) = ⌈
√
n⌉.

Proof. The burning sources chosen at times t = 1, 2, 3, . . . , k will burn 1, 3, 5, . . . , 2k−

1 vertices of the path. We can burn the entire path if the sum of the burned vertices
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is greater than or equal to n (the total number of vertices).

k∑
i=1

(2i− 1) = k2 ≥ n,

hence,

k ≥ ⌈
√
n⌉.

Thus, b(Pn) = ⌈
√
n⌉.

The same process applies to burning a cycle as well.

Theorem 11. For a cycle Cn, b(Cn) = ⌈
√
n⌉

Proof. The proof is the same as for Theorem 10. We can remove an edge from the

cycle Cn, reducing it to a path Pn, and apply the same burning strategy.

The burning number of a graph can also be related to the graph’s radius and

diameter. The radius of a graph is the minimum distance from a central vertex to all

other vertices in the graph. The radius of the tree is defined in the same way. The

diameter of a graph is the greatest distance between any two vertices in the graph.

Theorem 12. For a graph G with radius r and diameter d, ⌈
√
d+ 1⌉ ≤ b(G) ≤ r+1

Proof. The eccentricity of a vertex v in G is the greatest distance from v to any other

vertex in the graph. If we burn the vertex with minimum eccentricity, the fire will

spread to all vertices in r steps, so b(G) ≤ r + 1.

Now, consider a path P between two vertices u and v such that d(u, v) = d. The path

P is an isometric subgraph with d + 1 vertices. To burn a path with d + 1 vertices,

we need ⌈
√
d+ 1⌉ steps. Since b(Pd+1) ≤ b(G), we have ⌈

√
d+ 1⌉ ≤ b(G).

The burning number is also related to the k-distance dominating number of a

graph. A dominating set in a graph is a set of vertices such that every vertex in the
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graph is either in the dominating set or adjacent to a vertex in the dominating set.

The k-distance dominating set generalizes this idea by allowing vertices to be at most

k distance away from any vertex in the dominating set.

Theorem 13. For a graph G with |V (G)| ≥ 2 and optimal burning number k, let

γk−1(G) be the (k − 1)-distance minimum dominating set of G. Then, γk−1(G) ≤ k.

Proof. The value γk−1(G) represents the cardinality of the (k−1)-distance dominating

set, meaning that all vertices of G are within distance k− 1 from the dominating set.

Suppose k < γk−1(G). All vertices of G are at most distance k−1 from some burning

source, meaning that the set of burning sources forms a dominating set for G with

respect to radius k − 1. However, since k < γk−1(G), this contradicts the fact that

γk−1(G) is the minimum size of a dominating set where every vertex is within distance

k − 1 of some dominating vertex. Therefore, the assumption k < γk−1(G) must be

false.

Burning Number Decision Problem:

Input: a graph G and an integer k ∈ R

Question: Is the burning number of the graph b(G) is less than or equal to k?

Considering the burning number properties, we can conclude that the graph of

n vertices which is the hardest to burn may be a path. Since adding more number

of edges can increase the number of vertices burned per step. In the same way, the

easiest graph to burn is a complete graph or a spider graph where the center vertex

has n− 1 neighbors. In both cases, the graph can be burned in 2 steps.

As mentioned before, the decision version is defined as above. Bonato et al. [2]

proved that this decision problem is NP-Complete. They proved that the graph burn-

ing problem is polynomial time reducible from distinct 3-partition problem. This

result holds even when G is planar or disconnected [2].
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3.2 Approximation Algorithms

Since the graph burning problem is NP-complete, many approximation algorithms

have been introduced over the past decade [5].

3.2.1 3-Approximation Algorithm of Bonato and Kamali [5]

Bonato and Kamali proposed a 3-approximation algorithm for burning a graph. The

algorithm begins by guessing the burning number of the graph G, denoted by g. It

then selects an arbitrary vertex as the first burning source and marks all vertices

within a distance of 2g − 1 from it. This process is repeated, selecting new burning

sources and marking their respective neighborhoods until all vertices in the graph are

either burning sources or marked.

If the number of burning sources reaches g and the entire graph has not yet been

burned, the guess for g is deemed incorrect, referred to as a Bad-Guess. This implies

that the graph cannot be burned in g steps, and a larger guess for the burning number

is needed. The pseudocode is given in algorithm C.

Lemma 14. (Bonato and Kamali, 2019, [5]) If the number of centers becomes equal

to g, then at least g steps are required to burn the graph G.

Proof. When the number of centers becomes equal to g, there are g vertices with

pairwise distance 2g − 1. To burn G in g steps, the maximum radius of any burning

source can be at most g−1. Given that the pairwise distance between centers is 2g−1,

at least one source is needed for each center. Thus, at least g steps are required to

burn the entire graph.

Theorem 15. (Bonato and Kamali, 2019, [5]) The algorithm C is a 3-approximation

algorithm.

34



3. GRAPH BURNING - CLASSIC VERSION

Algorithm C 3-Approximation Algorithm for General Graph

Input: G = (V,E)← general undirected graph, g ∈ N
Output: 3-Approximation Burning Schedule
unmarked ← V
centres ← []
while |unmarked| > 0 do
v ← arbitrary vertex from unmarked
c← the closest centre from v
if d(v, c) > 2g − 2 then
centres = centres + v
if |centers| ≥ g then
return Bad-guess

end if
end if
unmarked = unmarked \ v

end while

Proof. The algorithm iterates the value of g from 1, 2, . . . until it finds the smallest

gm such that a valid burning sequence is achieved. For gm, we burn the gm−1 centers

in arbitrary order and allow the burning process to continue for another 2gm−2 steps

to ensure that the entire graph G is burned. This process takes 3gm − 3 steps. Since

gm is the smallest integer for which a valid burning sequence exists, the algorithm

returns a Bad-Guess for gm − 1, meaning the optimal burning sequence requires at

least gm − 1 steps.

Thus, the approximation ratio is given by:

3gm − 3

gm − 1
= 3

3.2.2 2.313-Approximation Algorithm of Martinsson [21]

Anders Martinsson proposed a greedy random algorithm to burn the graph and gave

a 2.313-approximation ratio. In this, we choose a disk of random radius from the

uniform distribution and place it on a random unburned vertex.
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Algorithm D 2.313 Approximation Algorithm

Input: G = (V,E),m ∈ Z
Output: 2.313-Approximation Burning Schedule
t← 0
V ′ ← V
while v ∈ V ′ do
r ∼ U [0,m]
Place disk of radius r centred on v
V ′ = V/Nr(v)
t← t+ 1

end while

Theorem 16. (Martinsson, 2023, [21]) The given algorithm D is a 2.313-approximation

if m ≥
(

2
1+e−2

)
b(G).

Proof. The algorithm is randomized. While there are any unburned vertices, it selects

a burning radius from a uniform distribution over [0,m]. Let B0, B1, . . . , Bb(G)−1 be

the optimal burning schedule for G. The probability that the chosen vertex v is Bi

for i ∈ {0, 1, . . . , b(G)− 1} is 1− 2i
m
. The expected value of the algorithm placing the

burn center at Bi is
1

1− 2i
m

. Thus, the algorithm places at most:

b(G)−1∑
i=0

1

1− 2i
m

≤
∫ b(G)

0

1

1− 2x
m

dx =
m

2
log

1

1− 2b(G)
m

.

To burn G, we choose a value for m between 2
1−e−2 b(G) and 2

1−e−2 b(G)+O(
√
m logm).

We then select a set of radii to cover G by running the algorithm. Let r be the

smallest integer such that the set (0, 1, . . . , r−1) dominates the burning sequence. The

algorithm uses m disks with probability at most 1
m+1

, and the corresponding burning

sequence is dominated by (0, 1, . . . ,m + O(
√
m logm − 1)). Therefore, b(G) ≤ m +

O(
√
m logm) with probability at least 1

2(m+1)
. Repeating this procedure ω(m logm)

times ensures that b(G) ≤ (1 + ϵ)m with high probability.
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3.2.3 2-Approximation Algorithm for Trees of Bonato and

Kamali [5]

The best-known approximation algorithm for trees till now was introduced by Bonato

and Kamali. In this algorithm, after guessing the burning number g, we look for the

vertex v with the highest level, that means the vertex with the maximum distance

from the root, and then add the gth ancestor of v in the list of centers. We mark

the gth neighbourhood of center as burned and repeat the process for the remaining

unburned vertices.

Algorithm E 2-Approximation Algorithm for General Tree

Input: T (V,E)← general undirected tree, g ∈ N
Output: 2-Approximation Burning Schedule
unmarked ← V
centres ← [ ]
while |unmarked| > 0 do
v ← vertex of highest level.
if level of v < g then
centres ← centres + s

else
centres ← centres + gth-ancestor of v

end if
unmarked ← unmarked \ Ng(v)
if |centres| > g then
return Bad-Guess

end if
end while

To calculate the approximation ratio, we use the concept of a g-site partition. A

g-site partition is a set of at most g vertices such that all other vertices are within

distance g from them. If the tree does not have a g-site partition, it implies that no

set of g vertices with radius g can cover the tree. Therefore, b(T ) > g.

Theorem 17. (Bonato and Kamali, 2019, [5]) The algorithm E is a 2-approximation

algorithm.
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Proof. Let T be an undirected tree, and let g be the minimum integer for which the

algorithm returns the burning sequence. This means the algorithm produces a Bad-

Guess for g − 1, indicating that the tree cannot be burned in g − 1 steps, as it does

not have a (g − 1)-site partition. Hence, b(T ) > g − 1.

The algorithm burns the g vertices it selects, and burns for an additional g steps,

resulting in a total of 2g steps.

Therefore, the approximation ratio is:

2g

g
= 2.

3.2.4 Farthest-first Algorithm of Garcia-Diaz et al. [14]

Garcia-Diaz et al. proposed a greedy method for burning a graph. The process begins

by selecting an arbitrary vertex and adding it to the list of burning sources. In sub-

sequent steps, the algorithm selects the vertex that is farthest from all the vertices

already in the list of burning sources. They proved that selecting
(
3− 2

b(G)

)
vertices

using this method is sufficient to burn all the vertices in the graph, where b(G) is the

optimal burning number.

Lemma 18. (Garcia-Diaz et al., 2022, [14]) Choosing 3 − 2
b(G)

vertices with this

method is sufficient to burn all the vertices where b(G) is the optimal burning number.

Theorem 19. (Garcia-Diaz et al., 2022, [14]) The algorithm F is a 3− 2
b(G)

approx-

imation, where b(G) is the optimal burning number of the given graph G.

Proof. In the algorithm F, we select the vertices that are at the maximum distance

from the previously chosen burning sources. By Lemma 18, we know that the al-

gorithm selects at most 3 − 2
b(G)

burning sources to ensure all vertices are burned.

Hence, the approximation ratio of the algorithm is 3− 2
b(G)

.
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Algorithm F Farthest-First Algorithm

Input: G = (V,E)← an undirected graph
Output: (3− 2

b(G)
)-Approximation Burning Schedule

Compute all pair-wise shortest distance
v ∈ V is an arbitrary vertex
S ← {v}
Bprevios ← ϕ
Bcurrent ← {v}
while Bcurrent ̸= V do
u← argmaxk∈V d(k, S)
S = S ∪ {u}
Bprevious = Bcurrent

Bcurrent = Bcurrent ∪N(Bcurrent Bprevious) ∪ {u}
end while

3.2.5 Directed Graph

The burning process for directed graphs was introduced by Remie Janssen [18]. In this

variant, the burning process is similar to that of undirected graphs, but the key dif-

ference is that the fire only spreads to the out-neighbours of a vertex. This restriction

changes the bounds of the burning process, because it limits the spread of the fire [18].

Finding the burning number of a directed graph is also NP-hard, and this can be

proven in the same way as undirected graphs [18].

3.2.5.1 Multirooted Directed Tree of Gautam et al. [15]

Gautam et al. introduced a 3-approximation algorithm for multirooted directed trees.

The algorithm leverages the concept of the b-cutting process. The b-cutting pro-

cess is defined as follows: remove vertices with in-degree 0 and out-degree 1, and

repeat this process b times. This iterative approach helps in approximating the opti-

mal burning number for directed trees.

The algorithm G shows the pseudocode. We guess the burning number b. In this

39



3. GRAPH BURNING - CLASSIC VERSION

Algorithm G 3-Approximation Algorithm for Multirooted Directed Tree

Input: T ← multirooted directed tree, an integer b ∈ N
Output: 3-Approximation Burning Schedule
BS ← ϕ
BS ′ ← ϕ
while |V (T )| > 0 do
T ′ ← (b− 1)-cutting of T
for v ∈ V (T ′) do
if D+(v) = 0 then
if D−(v) ≤ 1 then
BS ← BS ∪ {v}

else
BS ′ ← BS ′ ∪ {v}

end if
T ← T \{u : d(u,v) ≤ b and u ∈ V (T )}

end if
end for
if |BS| > b or |BS ′| > b then
Return Bad-Guess

else
Return (BS,BS ′)

end if
end while
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algorithm, after performing (b−1)-cutting, we divide the vertices of indegree 1. If the

vertex has an outdegree at most 1 then we put it in the list BS, otherwise, we put it

in the list BS ′. We then mark all the vertices within distance b from any vertex of

list BS and BS ′ as marked.

Lemma 20. (Gautam et al., 2023, [15]) In algorithm G, if |BS| > b then b(T ) > b.

Proof. BS is a list of vertices with in-degree 0 and out-degree 1 after performing the

b− 1-cutting. It means BS is a list of vertices which are either roots or have a tail of

length b− 1. One burning source can burn at most one vertex in the list BS. So, if

|BS| > b then we need at least b burning sources.

Lemma 21. (Gautam et al., 2023, [15]) In algorithm G, if |BS ′| > b then b(T ) > b.

Proof. BS ′ is a list of vertices with in-degree > 1 means all the vertices of BS ′ will

have more than one parent node. If |BS ′| > b then there will be at least b+1 parent

nodes since two vertices of BS ′ cannot share more than one parent as that would

result in a cycle. To burn b+ 1 parents with no common ancestors, we need at least

b+ 1 burning sources, so if |BS ′| > b then b(T ) > b.

To burn a tree, we begin by selecting burning sources from the sets BS and BS ′

in an arbitrary order. Then we allow the fire to spread for an additional b steps. Since

all the vertices are within distance at most b from the burning sources, by allowing

the fire to propagate over these b steps, the entire tree will be burned completely.

Theorem 22. (Gautam et al., 2023, [15]) The algorithm G is a 3-approximation

algorithm.

Proof. Here, we present the sketch of proof of [15]. We iteratively apply the algo-

rithm G to find the smallest integer b for which the algorithm G does not return

a Bad-Guess. Since b is the smallest integer meaning the algorithm G returns a

Bad-Guess for b − 1 because either |BS| > b − 1 or |BS ′| > b − 1. In either case,
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we can say that b(T ) > b−1 =⇒ b ≤ b(T ) where b(T ) is the optimal burning number.

By burning all the vertices in the lists BS and BS ′ and letting them burn for

another b steps, we can burn all the vertices of the tree T . Since the algorithm G

does not return a Bad-Guess, it means |BS| ≤ b and |BS ′| ≤ b, so the total number

of steps required is |BS|+ |BS ′|+b ≤ 3b. Therefore, the approximation ratio is 3.

3.2.5.2 Single Rooted Directed Tree of Gautam et al. [15]

Gautam et al. suggested a modified version of the algorithm G that achieves a 1.905-

approximation for single-rooted directed trees.

We can use the same algorithm G to burn single-rooted trees as well. In this

case, BS ′ = 0, so we obtain |BS|+ b = 2b, resulting in a 2-approximation algorithm.

The main improvement is merging two burning sources that have the lowest common

ancestor within a certain distance.

Lemma 23. (Gautam et al., 2023, [15]) If the number of merge trees is less than

0.095b, where b is an input integer, then we cannot burn the tree in b steps.

We can use the lemma 23 to improve the approximation ratio from 2 to 1.905.

Theorem 24. (Gautam et al., 2023, [15]) The algorithm H is a 1.905-Approximation

Algorithm.

Proof. Here, we sketch the proof of [15]. The algorithm H either returns a Bad-Guess

or a list of burning sources. Let b be the smallest integer for which the algorithm

returns a valid burning sequence. This implies that the algorithm will return a Bad-

Guess for b−1. Initially, we have the list BS where |BS| < b. If we let these burning

sources burn for b steps, we can cover the entire tree. However, merging at least

0.095b trees results in a merged tree with a height of at most 1.81b. We use the
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Algorithm H 1.905-Approximation Algorithm

Input: T ← single-rooted directed tree, an integer b ∈ N
Output: 1.905-Approximation Burning Schedule
BS ← BS received from the algorithm G
if |BS| > b then
Return Bad-Guess

else
merges← 0
new centers← ∅
for u, v ∈ BS and u ̸= v do
k ← lowest-common-ancestor of u and v
if d(k, u) ≤ 0.81b and d(k, v) ≤ 0.81b then
BS ← BS \ {u, v}

end if
end for
if merges ≥ 0.095b then
Return Bad-Guess

else
Return (BS,
end if

end if

set of burning radii {0, 1, . . . , 1.905b} to cover the entire tree. The sources with radii

{b, b+1, . . . , 1.81b} cover the unmerged trees, as the number of unmerged trees will be

at most b−2×0.095b = 0.81b. The remaining radii set {1.81b+1, . . . , 1.905b} is used

to cover the merged trees, where the number of sources in this set is 1.905b− 1.81b =

0.095b. Hence, the tree can be burned in 1.905b steps, while the optimal burning

number is at least b since b − 1 returns a Bad-Guess. This gives an approximation

ratio of 1.905.

3.3 Combinatorial Bounds

It is challenging to find the minimum number of steps required to burn the graph [2].

That motivates us to find the upper bound for the graphs to observe the maximum

number of steps required for burning.
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3.3.1 General Graphs

Bessy et al. [3] proved that b(G) ≤
√

12n
7
. Over the decade, a lot of efforts were made

to improve this bound. Bestide et al. [1] provided a simple proof for an improved

bound of
√

4
3
n+ 1.

Lemma 25. (Bestide et al., 2021, [1]) Given a tree T and a nonempty finite set of

integers R ⊆ N, there exists a subtree T ′ and an integer r ∈ R such that

1. T \ T ′ is connected,

2. radius(T ′) ≤ r,

3. |V (T ′)| ≥ r + |R|
2
.

Proof. We present the sketch of proof of [1]. Let P be the longest path in T with

vertices (v0, v1, . . . , vp). Let vp be the new root and let Ti denote the subtree rooted

at vertex vi. Define ϕ(i) as the maximum index such that for j ∈ {0, 1, . . . , p}, Tj is

part of the i-neighborhood of vi. This means

ϕ(i) = max{j : Tj ⊆ Ni(vi)}.

Clearly, i ≤ ϕ(i) ≤ 2i. If for some r ∈ R, ϕ(r) = p, then we have proved the lemma.

Assume instead that for every r ∈ R, ϕ(r) < p. If Tϕ(r) has more than r + |R|
2

vertices, then we also get the expected result. So assume that for every Tϕ(r) where

r ∈ R, the number of vertices |V (Tϕ(r))| < r + |R|
2
. Consider R′ to be the set of the

maximum N elements, where N = |R|
2
. For r′ ∈ R′, we know that r′ ≥ |R|

2
− 1 and

ϕ(r′) < 2r′, because we assumed ϕ(r) < r + |R|
2
− 1. Since ϕ(r′) < 2r′, there will be

a vertex xr′ such that xr′ ∈ Tϕ(r′)+1 \ Tϕ(r′) and d(xr′ , vr′) = r′ + 1 as shown in the

figure 3.3.1. Each r′ ∈ R′ has a distinct xr′ . Also, if ϕ(r′i) > ϕ(r′j), then xr′j
∈ Tϕ(r′i)

.

Let the elements of R′ be r′1 < r′2 < . . . < r′N and m be the minimum index such that
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Fig. 3.3.1: There exist xr′ for vr

ϕ(r′m) ≥ ϕ(r′N). We calculate the number of vertices in Tϕ(r′m). We have

|V (Tr′m)| ≥ m+ r′N ≥ m+ r′m + (N −m) ≥ r′m +N ≥ r′m +
|R|
2
.

R is an independent set of integers from tree T but lemma 25 shows that we can

always find an element r from R such that if we burn a vertex in the subtree T ′ ⊂ T

and let it burn for r steps then we will be able to burn entire subtree T ′.

To burn a graph G within p steps using burning sources with radii {1, 2, 3, . . . , p},

and to improve the approximation ratio, we can use a lemma 25 repetitively to find

a spanning subtree with an appropriate size.

Theorem 26. (Bestide et al., 2021, [1]) For any connected graph G with n vertices,
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b(G) ≤
√

4
3
n+ 1.

Proof. We use Lemma 25 to prove this theorem. Let T be a spanning tree of graph

G and let p be the integer we guess for the burning number. Let R be the set of the

first p integers. By applying Lemma 25 iteratively, we can say that T is not burnable

in p steps unless

n >

p∑
i=0

i+

p∑
i=0

i

2
=

3p(p+ 1)

4
.

Solving this equation gives us

p ≤ ⌈
√

4

3
n⌉+ 1.

Norin and Turcotte [25] showed that the burning number conjecture holds asymp-

totically.

Theorem 27. (Norin and Turcotte, 2024,[25]) For a connected graph G with n ver-

tices, b(G) ≤ (1 + o(1))
√
n.

To prove this theorem, the authors use the concept of metric trees to get benefits

from the continuous and probabilistic settings. They prove that the converted met-

ric tree can be covered with the disks of varying radii such that the cover is frugal

meaning the sum of their radii will be minimal [25].

3.3.1.1 Our Contribution

We claim that the same result of theorem 26 can be achieved by a better approach.

In lemma 25, we are only considering the maximum N
2
members of the same R

where R is the set of first N natural numbers. But for the rest of the smaller elements

of set R, we claim that we can find a subtree T ′ such that we can either burn 2r + 1
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vertices or there exists xr corresponding to the element r.

Theorem 28. Given a tree T with the longest path {v0, v1, . . . , vl} Let R = {1, 2, . . . , p}

be the set of first p integers. For r ∈ {1, 2, . . . , p
2
},

• either there exists xr which is not on the longest path of the tree T

• or we can burn 2r + 1 vertices.

Proof. Its proof is straightforward. In the set R, we check for an element r such that

ϕ(r) = 2r. In that case, if we burn the vr, in r steps we will be able to burn at least

2r + 1 vertices.

In case, no such r exist, means for every r ∈ R, ϕ(r) < 2r. In this case, we will

find separate xr for every r ∈ R. So, we will be able to burn r + |R| vertices.

We can use this result to find elements of R such that it either burns 2r + 1 or

r+ |R| vertices. Each element r of R corresponds to the burning source with radius r.

If we calculate the minimum number of vertices possible to burn this way, we know

that for r ≤ p
2
, 2r + 1 will be less than r + |R|. If we sum them, we get

p
2∑
1

2r + 1 +

p∑
p
2

r + |R|

This equals to 3p2

4
+O(n) which gives us the same bound.
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3.3.2 General Trees

Many studies focus on determining the bounds for the burning number of trees

[10, 20, 23]. These results are directly applicable to graphs by considering their

spanning trees.

Theorem 29. (Das et al., 2023, [10]) Let T be a tree with n vertices, out of which

n2 vertices have degree 2. Then, b(T ) ≤
√
n+ n2 + 8− 1.

Sandip Das et al. proved this bound using mathematical induction. For further

details, please refer to [10].

A Homeomorphically Irreducible Tree is a tree where there is no vertex of degree

2. Murakami proved burning conjecture for them [23].

Theorem 30. (Murakami, 2023, [23]) For a Homeomorphically Irreducible Tree

(HIT) T with n vertices, b(T ) ≤ ⌈
√
n⌉.

Proof. We sketch the proof of [23]. Let Tu(uv) be the subtree including vertex u when

the edge uv is removed. In an HIT, we can always find a vertex x with neighbors

v1, v2, . . . , vk = y such that |Tx(xy)| ≥ 2
√
n−1 and for i ∈ {1, 2, . . . , k−1}, |Tvi(xvi)| <

2
√
n − 1. So if we burn x in step 1, after ⌈

√
n⌉ steps, all vertices in Tx(xy) will be

burned. The remaining vertices will be

n− |Tx(xy)| ≤ n− 2
√
n+ 1 ≤ (

√
n− 1)2.

We can use induction to burn the tree in
√
n steps.

It is obvious that we can convert any tree to HIT if we add a pendant vertex to

the vertices of degree 2. The pendant vertex is a vertex with degree 1.

Theorem 31. (Murakami, 2023, [23]) For a tree T with n vertices, out of which d

vertices are of degree 2, we can burn T in
√
n+ d steps.
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Proof. We connect a pendant vertex to all d vertices of degree 2 to convert T into an

HIT. Using the result from Theorem 20, we can say that we will need
√
n+ d steps

to burn T .

3.3.3 Graphs with Minimum Degree k of Martinsson [20]

Anders Martinsson proposed results related to the burning number for graphs with a

minimum degree k. These results focus on finding a suitable connected subgraph for

burning.

Theorem 32. (Martinsson, 2023, [20]) For a graph G with n vertices and minimum

degree k, there exists a connected subgraph H with at most 3⌊ n
k+1
⌋ − 2 vertices such

that all the vertices of G are within distance 2 from H.

Proof. We sketch the proof of [20]. We start with an arbitrary vertex H0 of G. Then,

we iteratively add a vertex which is at distance 3, say v, and add the path from H0

to v into Hi to form Hi+1. After t steps, we will have 1 + 3t vertices in Ht. Let at be

the set of vertices at a distance at most 1 from Ht. Since H0 is a single vertex and

G has a minimum degree k, a0 ≥ k + 1. For Ht, we have at ≥ at−1 + k + 1. at can

never exceed the order of G, so we get t ≤ ⌊ n
k+1
⌋ − 1. Therefore, H can have at most

3⌊ n
k+1
⌋ − 2 vertices.

We can apply the Theorem 32 to identify a subtree such that every vertex in the

original graph is within a distance of at most 2 from some vertex in this subtree. By

utilizing theorem 27, we can effectively burn the subtree and then allow the fire to

spread for an additional 2 steps to ensure that the entire graph is completely burned.

Theorem 33. (Martinsson, 2023, [20]) For any graph G with n vertices and mini-

mum degree k, b(G) ≤ (1 + o(1))
√

3n
k+1

.

Proof. For the given graph G, we can find a subgraph H such that all vertices of

G are within distance at most 2 from H using the method described in Theorem
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22. Since the burning number conjecture holds asymptotically, we can burn H in

(1 + o(1))⌈
√

3n
k+1
⌉ − 2 steps. Allowing H to burn for 2 more steps ensures that all

vertices of G are burned. Thus, b(G) ≤ (1 + o(1))⌈
√

3n
k+1
⌉.

3.3.4 Directed Graphs of Janssen [18]

The upper bound of the burning number for single-source Directed Acyclic Graphs

(DAGs) was given by Remie Janssen.

Theorem 34. (Janssen, 2020, [18]) The burning number of a single-source Directed

Acyclic Graph (DAG) with n vertices is at most ⌈
√

2n+ 1
4
− 1

2
⌉.

Proof. We sketch the proof of [18]. Let k be the burning number of the DAG. With

burning sources of radii {0, 1, . . . , k− 1}, we can burn vertices in a range that allows

us to cover at least {1, 2, . . . , k} vertices. Thus, the total number of vertices that can

be burned must be at least n, the order of the graph. Therefore:

k∑
i=1

i ≥ n

k(k + 1)

2
≥ n

k2 + k − 2n ≥ 0

Solving this quadratic inequality for k, we get:

k ≤ ⌈
√

2n+
1

4
− 1

2
⌉

3.3.5 Spider Graph of Das et al. [9]

The conjecture 1 was proven for spiders by Das et al. A spider of order n has one

vertex of degree at least 3 (called the head) and n− 1 vertices of degree at most 2.
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Theorem 35. (Das et al., 2018, [9]) For a spider S of order n, b(S) ≤ ⌈
√
n⌉.

Proof. Here, we sketch the proof of [9]. We will prove this theorem using induction.

Consider the base case where n = 4. The spider with 4 vertices consists of a single

vertex connected to 3 others. We can burn this spider in 2 steps by burning the head

vertex.

Assume that for all spiders of order n2, the burning number b(S) ≤ n. We want

to determine the burning number for spiders of order (n+ 1)2.

Assume the spider has k paths attached to the head, and let m denote the number

of paths with length at least n. Let Pi be the length of path i as depicted in Figure

3.3.2. We have m ≤ n; otherwise, the total number of vertices would exceed (n+1)2.

1. If Pm ≥ 2n+1, we can burn a vertex in the middle of the path, which will burn

at least 2n+1 vertices. The remaining vertices, totaling (n+1)2−(2n+1) = n2,

can be burned in n steps by the induction hypothesis [9].

2. If Pm ≤ 2n and m < n, burn the head of the spider in the first step. All paths

of length at most n will be burned, and the remaining paths will have a length

at most n. The number of remaining vertices will be at most n2 − (m − 1)2,

which can be covered with n burning sources [9].

3. If Pm ≤ 2n and m = n, all paths of length at least n will have order at least

n(n+1). The remaining paths will have a total order of at most n+1. Burning

the head in the first step will cover at least n2 + 1 vertices. The remaining

vertices can be burned in n steps [9].

4. If no path has length ≤ n, it implies k = m = n. Burning the head in the first

step will burn at least n2− n+3 vertices. The remaining vertices will induce a

path-forest with at most 3n− 2 vertices, which can be burned in n steps.

Hence, in all cases, we can burn (n+ 1)2 vertices in at most n+ 1 steps, proving

the theorem.
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Fig. 3.3.2: Spider Graph Notations
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CHAPTER 4

Firefighter Problem

In 1995, Hartnell [17] introduced the firefighter problem. In this problem, the fire

starts at certain vertices in a graph, and firefighters aim to protect a set of vertices.

During each step, the fire spreads to adjacent unprotected vertices, while firefighters

work to protect new unburned vertices. The goal is to save the maximum number of

vertices possible.

Firefighter Problem: Given an undirected graph G = (V,E), the fire starts at

vertex set S ⊂ V and f firefighters are placed to protect f vertices which are not

on fire. The protected vertices and burned vertices stay in the same state during

the rest of the game. In the next step, the fire spreads to the adjacent unprotected

vertices of all burned vertices and then f firefighters protect another set of vertices.

The game continues until the fire can not spread to any more vertices. This problem

is NP-complete [12].

For finite graphs, the main objective is to protect the maximum number of ver-

tices. In the case of an infinite grid, the goal is to decide if f firefighters are sufficient

to contain the fire. Containing the fire implies stopping it from spreading after a

finite number of steps. For different variants, refer to the survey on firefighting [13].

In 2022, Burgess et al. [7] introduced the concept of distance-based restrictions

within the context of the firefighter problem. In real-life scenarios, firefighters can

travel a limited distance in a given time. That motivated them to propose that fire-
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fighters be restricted to moving a maximum distance of d in each step.

In 2023, Burgess et al. [6] further extended the distance restriction concept to

finite graphs. They introduced two decision problems related to the firefighter prob-

lem, thereby broadening the scope of theoretical investigation in this area.

DR-b-FF

Input: An undirected graph G = (V,E), the set of fire sources S ⊂ V , an integer

distance d ≥ 1, and a natural number k ≤ |V |.

Question: Given that the fire breaks out on all vertices of S in graph G, can b

firefighters protect at least k vertices if they are allowed to move a maximum distance

of d?

DPR-b-FF

Input: An undirected graph G = (V,E), the set of fire sources S ⊂ V , an integer

distance d ≥ 1, and a natural number k ≤ |V |.

Question: Given that the fire breaks out on all vertices of S in graph G, can b

firefighters protect at least k vertices if they are allowed to move a maximum distance

of d without passing through any burning vertex?

Both problems have been proven to be NP-hard [6].

4.1 Current Results

For an infinite square grid, the number of firefighters required to contain the fire is

well-studied.

Theorem 36. (Days-Merrill, 2019, [11]) If firefighters can only move to adjacent

vertices (d = 1), then three firefighters are insufficient to contain the fire in a square

grid.

Proof. Here, we sketch the proof of [11]. To contain the fire, at least one vertex on
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Fig. 4.1.1: One firefighter can save at most one axis

each axis must be protected. However, each firefighter can protect only one axis.

Suppose a firefighter starts at a vertex (0, y) (without loss of generality) and moves

towards the positive x-axis to protect a vertex. The firefighter needs to travel a dis-

tance of at least x + y to protect the vertex (x, 0), but the fire will reach (x, 0) in

just x steps, meaning the vertex will burn before the firefighter can arrive to protect it.

If the firefighter instead starts at (x, y) where x ≥ y, they may be able to protect

a vertex on the positive x-axis. However, after protecting that vertex, the firefighter

will need more time to reach any vertex on the positive y-axis, as both the fire and

the firefighter move at the same speed. Consequently, a single firefighter can protect

at most one axis.

Thus, with three firefighters, it is impossible to protect all necessary axes in the

square grid, and the fire cannot be contained when d = 1.

Similarly, in the strong grid, we need to deploy 4 firefighters to protect the four

principal axes. However, due to the faster spread of the fire in the strong grid, addi-

tional firefighters are required to safeguard the vertices along the lines at a 45-degree
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angle, specifically those on the lines x = y and x = −y.

Theorem 37. (Days-Merrill, 2019, [11]) In the strong grid, seven firefighters are

insufficient to contain the fire if they are restricted to moving to adjacent vertices.

Proof. We sketch the proof of [11]. In the strong grid, to contain the fire, at least one

vertex on each of the four axes (positive and negative x- and y-axes) must be pro-

tected, along with two points on the line (x = y) and two points on the line (x = −y).

This requires eight points in total, meaning we need one firefighter for each point.

Suppose a firefighter starts at a point on the positive y-axis, say (0, y), and moves

toward a point on the line x = y, such as (x′, x′), to protect it in the first quadrant.

To successfully contain the fire, the firefighter must move either horizontally or ver-

tically, as moving diagonally would leave a gap for the fire to spread. Let (x′, x′) be

the closest point on the line x = y, which would be (y, y).

Both the fire and the firefighter require y steps to reach this point, but since the

fire starts spreading first, the vertex (y, y) will burn before the firefighter can protect

it. Similarly, if the firefighter starts on the line x = y, they won’t be able to protect

any vertex on the axes. Even if the firefighter begins somewhere in between and tries

to protect either a line or an axis, it will take them longer to reach the next critical

point than the fire.

Consequently, each firefighter can protect at most one axis or line. Since we

need to protect eight points in total, seven firefighters are not enough to contain the

fire.

When the movable distance for firefighters is increased to 2 units, we can success-

fully contain the fire in the strong grid using just 4 firefighters.
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Fig. 4.1.2: One firefighter can save at most one point on either axis or on the line
x = y or x = −y

Theorem 38. (Burgess et al., 2022, [7]) (Messinger, 2005, [22]) For d ≥ 2, at least

four firefighters are required to contain the fire on the strong grid.

Proof. We sketch the proof of [7, 22]. Burgess, Marcoux, and Pike demonstrated that

four firefighters are sufficient to contain the fire in the strong grid when d = 2 [7].

Figure 4.1.3 illustrates the fire’s origin (represented as a red square) and the initial

positions of the four firefighters (represented as blue squares).

Margaret-Ellen Messinger further proved that four firefighters are necessary, even

without distance restrictions [22]. Imagine a fire starts at the point (0, 0) on the grid,

and three firefighters immediately try to protect the nearby vertices. The goal of the

firefighters is to ”surround” the fire by creating walls of protected vertices around

it. These walls would stop the fire from spreading any further. The idea is that at

some time t = k + j where k, j > 0, the firefighters would have built all three walls

to contain the fire. However, there’s a problem. By time t = k + j, the firefighters

would need to protect more vertices than they can actually handle. The math shows

that the firefighters can protect fewer vertices than the number of vertices needed to

build the walls. Specifically, the number of vertices that need protection is too high
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Fig. 4.1.3: Four firefighters are sufficient to contain the fire in the infinite strong grid
for d = 2.

compared to what the three firefighters can protect at the same time. The detailed

proof is given in [22].

In the square grid, it is possible to contain the fire with just 3 firefighters when

the distance parameter d is set to 2.

In the following figures, the initial position of fire is marked as a red square and

the vertices burned in each step are shown in red and orange disks alternatively. The

initial firefighter positions are blue squares and their positions in different time are

shown in cyan and blue disks in alternate manner.

Theorem 39. (Burgess et al., 2022, [7]) In the infinite square grid, a single source

of fire can be contained using three firefighters when d = 2.

Proof. In the square grid, three firefighters are sufficient to contain the fire when

they are allowed to move up to two vertices per step (d = 2). Initially, the three

firefighters protect three adjacent vertices around the fire’s origin. As the fire spreads

in the remaining direction, two of the firefighters can move parallel to the fire’s spread,

protecting adjacent vertices as they go. Meanwhile, the third firefighter can utilize

the increased movement distance to jump ahead by two vertices and cover the fire

from the remaining direction, as shown in Figure 4.1.4.
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Fig. 4.1.4: Three firefighters are sufficient to contain the fire in the infinite square
grid for d = 2

For d = 2 in the square grid, Burgess et al. [7] conjectured that two firefighters

are insufficient to contain the fire.

Conjecture 40. In the square grid, it is not possible to contain the fire with two

firefighters if they are restricted to moving up to two vertices per step (d = 2). [7]

For distances greater than 2, we can always contain the fire in a square grid using

just 2 firefighters. The same result can be applied when distance restriction is not

applied.

Theorem 41. (Burgess et al., 2022, [7]) The fire in the square grid can be contained

with two firefighters when d ≥ 3.

Proof. As demonstrated by Burgess, Marcoux, and Pike, consider a fire that starts at

the origin (0, 0) in the square grid [7]. Starting with two firefighters, they can contain

the fire by spiraling outward from the origin, as depicted in Figure 4.1.5, utilizing

their ability to move up to three vertices per step d ≥ 3.
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Fig. 4.1.5: Two firefighters are sufficient to contain the fire in the infinite square grid
for d ≥ 3
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CHAPTER 5

Conclusion and Future Work

In this thesis, we have analysed two critical problems arising from the spread of in-

formation: the graph burning problem and the firefighter problem.

The graph burning is a discrete-time process that models the spread of information

in the network. Since the problem has been proven to be NP-complete, we have

summarised much of the literature that proposed the mathematical bounds and ap-

proximation algorithms. We have highlighted the continuous advancements in the

field that led to the current state-of-the-art results in order to prove the famous

burning number conjecture.

In contrast, the firefighter problem deals with the challenge of minimising the spread

of falsified information or rumours. In our thesis, we mostly focused on distance-

restricted firefighting where the firefighters have additional constraints.

Overall, the thesis summarised the main ideas and important advancements in the

field of the mathematical study of information spreading in terms of graph burning

and firefighter problems. The survey aims to provide a comprehensive study for fu-

ture research.

5.1 Future Works

Future research can include investigating other restrictions on the firefighters by vary-

ing the distance allowed for them to move in each step. We can also analyse the results

for increased number of firefighters.
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Additionally, the conjectures 1 and 2 are still open problems which can be studied

further.

Moreover, investigating the problem for different types of grids like strong grids or

hexagonal grids can give us more insights. We can also change the properties of fire

spreading to add further complexity to the problem which can give us a better un-

derstanding of the problem characteristics.

62



REFERENCES

[1] Bastide, P., Bonamy, M., Bonato, A., Charbit, P., Kamali, S., Pierron, T., and

Rabie, M. (2023). Improved pyrotechnics: Closer to the burning number conjecture.

Electron. J. Comb., 30(4).

[2] Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., and Roshanbin, E. (2017).

Burning a graph is hard. Discrete Applied Mathematics, 232:73–87.

[3] Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., and Roshanbin, E. (2018).

Bounds on the burning number. Discrete Applied Mathematics, 235:16–22.

[4] Bonato, A., Janssen, J., and Roshanbin, E. (2014). Burning a graph as a model of

social contagion. In Algorithms and Models for the Web Graph: 11th International

Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings 11,

pages 13–22. Springer.

[5] Bonato, A. and Kamali, S. (2019). Approximation algorithms for graph burning.

In Theory and Applications of Models of Computation: 15th Annual Conference,

TAMC 2019, Kitakyushu, Japan, April 13–16, 2019, Proceedings 15, pages 74–92.

Springer.

[6] Burgess, A. C., Hawkin, J., Howse, A., Marcoux, J., and Pike, D. A. (2023).

Distance-restricted firefighting on finite graphs. arXiv preprint arXiv:2306.12575.

[7] Burgess, A. C., Marcoux, J., and Pike, D. A. (2022). Firefighting with a distance-

based restriction. CoRR, abs/2204.01908.

63



REFERENCES

[8] Clark, B. N., Colbourn, C. J., and Johnson, D. S. (1990). Unit disk graphs.

Discrete mathematics, 86(1-3):165–177.

[9] Das, S., Dev, S. R., Sadhukhan, A., Sahoo, U. K., and Sen, S. (2018). Burning

spiders. In Conference on Algorithms and Discrete Applied Mathematics, pages

155–163. Springer.

[10] Das, S., Islam, S. S., Mitra, R. M., and Paul, S. (2023). Burning a binary tree

and its generalization. CoRR, abs/2308.02825.

[11] Days-Merrill, S. (2019). Firefighter problem played on infinite graphs. PhD thesis,

Honors thesis, Bridgewater State University.

[12] Finbow, S., King, A., MacGillivray, G., and Rizzi, R. (2007). The firefighter

problem for graphs of maximum degree three. Discrete Mathematics, 307(16):2094–

2105. EuroComb ’03 - Graphs and Algorithms.

[13] Finbow, S. and MacGillivray, G. (2009). The firefighter problem: a survey of

results, directions and questions. Australas. J Comb., 43:57–78.
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